xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ISelLowering.h (revision 8bcb0991864975618c09697b1aca10683346d9f0)
10b57cec5SDimitry Andric //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file defines the interfaces that X86 uses to lower LLVM code into a
100b57cec5SDimitry Andric // selection DAG.
110b57cec5SDimitry Andric //
120b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
130b57cec5SDimitry Andric 
140b57cec5SDimitry Andric #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
150b57cec5SDimitry Andric #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
160b57cec5SDimitry Andric 
170b57cec5SDimitry Andric #include "llvm/CodeGen/CallingConvLower.h"
180b57cec5SDimitry Andric #include "llvm/CodeGen/SelectionDAG.h"
190b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
200b57cec5SDimitry Andric 
210b57cec5SDimitry Andric namespace llvm {
220b57cec5SDimitry Andric   class X86Subtarget;
230b57cec5SDimitry Andric   class X86TargetMachine;
240b57cec5SDimitry Andric 
250b57cec5SDimitry Andric   namespace X86ISD {
260b57cec5SDimitry Andric     // X86 Specific DAG Nodes
270b57cec5SDimitry Andric     enum NodeType : unsigned {
280b57cec5SDimitry Andric       // Start the numbering where the builtin ops leave off.
290b57cec5SDimitry Andric       FIRST_NUMBER = ISD::BUILTIN_OP_END,
300b57cec5SDimitry Andric 
310b57cec5SDimitry Andric       /// Bit scan forward.
320b57cec5SDimitry Andric       BSF,
330b57cec5SDimitry Andric       /// Bit scan reverse.
340b57cec5SDimitry Andric       BSR,
350b57cec5SDimitry Andric 
360b57cec5SDimitry Andric       /// Double shift instructions. These correspond to
370b57cec5SDimitry Andric       /// X86::SHLDxx and X86::SHRDxx instructions.
380b57cec5SDimitry Andric       SHLD,
390b57cec5SDimitry Andric       SHRD,
400b57cec5SDimitry Andric 
410b57cec5SDimitry Andric       /// Bitwise logical AND of floating point values. This corresponds
420b57cec5SDimitry Andric       /// to X86::ANDPS or X86::ANDPD.
430b57cec5SDimitry Andric       FAND,
440b57cec5SDimitry Andric 
450b57cec5SDimitry Andric       /// Bitwise logical OR of floating point values. This corresponds
460b57cec5SDimitry Andric       /// to X86::ORPS or X86::ORPD.
470b57cec5SDimitry Andric       FOR,
480b57cec5SDimitry Andric 
490b57cec5SDimitry Andric       /// Bitwise logical XOR of floating point values. This corresponds
500b57cec5SDimitry Andric       /// to X86::XORPS or X86::XORPD.
510b57cec5SDimitry Andric       FXOR,
520b57cec5SDimitry Andric 
530b57cec5SDimitry Andric       ///  Bitwise logical ANDNOT of floating point values. This
540b57cec5SDimitry Andric       /// corresponds to X86::ANDNPS or X86::ANDNPD.
550b57cec5SDimitry Andric       FANDN,
560b57cec5SDimitry Andric 
570b57cec5SDimitry Andric       /// These operations represent an abstract X86 call
580b57cec5SDimitry Andric       /// instruction, which includes a bunch of information.  In particular the
590b57cec5SDimitry Andric       /// operands of these node are:
600b57cec5SDimitry Andric       ///
610b57cec5SDimitry Andric       ///     #0 - The incoming token chain
620b57cec5SDimitry Andric       ///     #1 - The callee
630b57cec5SDimitry Andric       ///     #2 - The number of arg bytes the caller pushes on the stack.
640b57cec5SDimitry Andric       ///     #3 - The number of arg bytes the callee pops off the stack.
650b57cec5SDimitry Andric       ///     #4 - The value to pass in AL/AX/EAX (optional)
660b57cec5SDimitry Andric       ///     #5 - The value to pass in DL/DX/EDX (optional)
670b57cec5SDimitry Andric       ///
680b57cec5SDimitry Andric       /// The result values of these nodes are:
690b57cec5SDimitry Andric       ///
700b57cec5SDimitry Andric       ///     #0 - The outgoing token chain
710b57cec5SDimitry Andric       ///     #1 - The first register result value (optional)
720b57cec5SDimitry Andric       ///     #2 - The second register result value (optional)
730b57cec5SDimitry Andric       ///
740b57cec5SDimitry Andric       CALL,
750b57cec5SDimitry Andric 
760b57cec5SDimitry Andric       /// Same as call except it adds the NoTrack prefix.
770b57cec5SDimitry Andric       NT_CALL,
780b57cec5SDimitry Andric 
790b57cec5SDimitry Andric       /// X86 compare and logical compare instructions.
800b57cec5SDimitry Andric       CMP, COMI, UCOMI,
810b57cec5SDimitry Andric 
820b57cec5SDimitry Andric       /// X86 bit-test instructions.
830b57cec5SDimitry Andric       BT,
840b57cec5SDimitry Andric 
850b57cec5SDimitry Andric       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
860b57cec5SDimitry Andric       /// operand, usually produced by a CMP instruction.
870b57cec5SDimitry Andric       SETCC,
880b57cec5SDimitry Andric 
890b57cec5SDimitry Andric       /// X86 Select
900b57cec5SDimitry Andric       SELECTS,
910b57cec5SDimitry Andric 
920b57cec5SDimitry Andric       // Same as SETCC except it's materialized with a sbb and the value is all
930b57cec5SDimitry Andric       // one's or all zero's.
940b57cec5SDimitry Andric       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
950b57cec5SDimitry Andric 
960b57cec5SDimitry Andric       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
970b57cec5SDimitry Andric       /// Operands are two FP values to compare; result is a mask of
980b57cec5SDimitry Andric       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
990b57cec5SDimitry Andric       FSETCC,
1000b57cec5SDimitry Andric 
1010b57cec5SDimitry Andric       /// X86 FP SETCC, similar to above, but with output as an i1 mask and
1020b57cec5SDimitry Andric       /// and a version with SAE.
1030b57cec5SDimitry Andric       FSETCCM, FSETCCM_SAE,
1040b57cec5SDimitry Andric 
1050b57cec5SDimitry Andric       /// X86 conditional moves. Operand 0 and operand 1 are the two values
1060b57cec5SDimitry Andric       /// to select from. Operand 2 is the condition code, and operand 3 is the
1070b57cec5SDimitry Andric       /// flag operand produced by a CMP or TEST instruction.
1080b57cec5SDimitry Andric       CMOV,
1090b57cec5SDimitry Andric 
1100b57cec5SDimitry Andric       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
1110b57cec5SDimitry Andric       /// is the block to branch if condition is true, operand 2 is the
1120b57cec5SDimitry Andric       /// condition code, and operand 3 is the flag operand produced by a CMP
1130b57cec5SDimitry Andric       /// or TEST instruction.
1140b57cec5SDimitry Andric       BRCOND,
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric       /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
1170b57cec5SDimitry Andric       /// operand 1 is the target address.
1180b57cec5SDimitry Andric       NT_BRIND,
1190b57cec5SDimitry Andric 
1200b57cec5SDimitry Andric       /// Return with a flag operand. Operand 0 is the chain operand, operand
1210b57cec5SDimitry Andric       /// 1 is the number of bytes of stack to pop.
1220b57cec5SDimitry Andric       RET_FLAG,
1230b57cec5SDimitry Andric 
1240b57cec5SDimitry Andric       /// Return from interrupt. Operand 0 is the number of bytes to pop.
1250b57cec5SDimitry Andric       IRET,
1260b57cec5SDimitry Andric 
1270b57cec5SDimitry Andric       /// Repeat fill, corresponds to X86::REP_STOSx.
1280b57cec5SDimitry Andric       REP_STOS,
1290b57cec5SDimitry Andric 
1300b57cec5SDimitry Andric       /// Repeat move, corresponds to X86::REP_MOVSx.
1310b57cec5SDimitry Andric       REP_MOVS,
1320b57cec5SDimitry Andric 
1330b57cec5SDimitry Andric       /// On Darwin, this node represents the result of the popl
1340b57cec5SDimitry Andric       /// at function entry, used for PIC code.
1350b57cec5SDimitry Andric       GlobalBaseReg,
1360b57cec5SDimitry Andric 
1370b57cec5SDimitry Andric       /// A wrapper node for TargetConstantPool, TargetJumpTable,
1380b57cec5SDimitry Andric       /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
1390b57cec5SDimitry Andric       /// MCSymbol and TargetBlockAddress.
1400b57cec5SDimitry Andric       Wrapper,
1410b57cec5SDimitry Andric 
1420b57cec5SDimitry Andric       /// Special wrapper used under X86-64 PIC mode for RIP
1430b57cec5SDimitry Andric       /// relative displacements.
1440b57cec5SDimitry Andric       WrapperRIP,
1450b57cec5SDimitry Andric 
146*8bcb0991SDimitry Andric       /// Copies a 64-bit value from an MMX vector to the low word
147*8bcb0991SDimitry Andric       /// of an XMM vector, with the high word zero filled.
148*8bcb0991SDimitry Andric       MOVQ2DQ,
149*8bcb0991SDimitry Andric 
1500b57cec5SDimitry Andric       /// Copies a 64-bit value from the low word of an XMM vector
1510b57cec5SDimitry Andric       /// to an MMX vector.
1520b57cec5SDimitry Andric       MOVDQ2Q,
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric       /// Copies a 32-bit value from the low word of a MMX
1550b57cec5SDimitry Andric       /// vector to a GPR.
1560b57cec5SDimitry Andric       MMX_MOVD2W,
1570b57cec5SDimitry Andric 
1580b57cec5SDimitry Andric       /// Copies a GPR into the low 32-bit word of a MMX vector
1590b57cec5SDimitry Andric       /// and zero out the high word.
1600b57cec5SDimitry Andric       MMX_MOVW2D,
1610b57cec5SDimitry Andric 
1620b57cec5SDimitry Andric       /// Extract an 8-bit value from a vector and zero extend it to
1630b57cec5SDimitry Andric       /// i32, corresponds to X86::PEXTRB.
1640b57cec5SDimitry Andric       PEXTRB,
1650b57cec5SDimitry Andric 
1660b57cec5SDimitry Andric       /// Extract a 16-bit value from a vector and zero extend it to
1670b57cec5SDimitry Andric       /// i32, corresponds to X86::PEXTRW.
1680b57cec5SDimitry Andric       PEXTRW,
1690b57cec5SDimitry Andric 
1700b57cec5SDimitry Andric       /// Insert any element of a 4 x float vector into any element
1710b57cec5SDimitry Andric       /// of a destination 4 x floatvector.
1720b57cec5SDimitry Andric       INSERTPS,
1730b57cec5SDimitry Andric 
1740b57cec5SDimitry Andric       /// Insert the lower 8-bits of a 32-bit value to a vector,
1750b57cec5SDimitry Andric       /// corresponds to X86::PINSRB.
1760b57cec5SDimitry Andric       PINSRB,
1770b57cec5SDimitry Andric 
1780b57cec5SDimitry Andric       /// Insert the lower 16-bits of a 32-bit value to a vector,
1790b57cec5SDimitry Andric       /// corresponds to X86::PINSRW.
1800b57cec5SDimitry Andric       PINSRW,
1810b57cec5SDimitry Andric 
1820b57cec5SDimitry Andric       /// Shuffle 16 8-bit values within a vector.
1830b57cec5SDimitry Andric       PSHUFB,
1840b57cec5SDimitry Andric 
1850b57cec5SDimitry Andric       /// Compute Sum of Absolute Differences.
1860b57cec5SDimitry Andric       PSADBW,
1870b57cec5SDimitry Andric       /// Compute Double Block Packed Sum-Absolute-Differences
1880b57cec5SDimitry Andric       DBPSADBW,
1890b57cec5SDimitry Andric 
1900b57cec5SDimitry Andric       /// Bitwise Logical AND NOT of Packed FP values.
1910b57cec5SDimitry Andric       ANDNP,
1920b57cec5SDimitry Andric 
1930b57cec5SDimitry Andric       /// Blend where the selector is an immediate.
1940b57cec5SDimitry Andric       BLENDI,
1950b57cec5SDimitry Andric 
1960b57cec5SDimitry Andric       /// Dynamic (non-constant condition) vector blend where only the sign bits
1970b57cec5SDimitry Andric       /// of the condition elements are used. This is used to enforce that the
1980b57cec5SDimitry Andric       /// condition mask is not valid for generic VSELECT optimizations. This
1990b57cec5SDimitry Andric       /// is also used to implement the intrinsics.
2000b57cec5SDimitry Andric       /// Operands are in VSELECT order: MASK, TRUE, FALSE
2010b57cec5SDimitry Andric       BLENDV,
2020b57cec5SDimitry Andric 
2030b57cec5SDimitry Andric       /// Combined add and sub on an FP vector.
2040b57cec5SDimitry Andric       ADDSUB,
2050b57cec5SDimitry Andric 
2060b57cec5SDimitry Andric       //  FP vector ops with rounding mode.
2070b57cec5SDimitry Andric       FADD_RND, FADDS, FADDS_RND,
2080b57cec5SDimitry Andric       FSUB_RND, FSUBS, FSUBS_RND,
2090b57cec5SDimitry Andric       FMUL_RND, FMULS, FMULS_RND,
2100b57cec5SDimitry Andric       FDIV_RND, FDIVS, FDIVS_RND,
2110b57cec5SDimitry Andric       FMAX_SAE, FMAXS_SAE,
2120b57cec5SDimitry Andric       FMIN_SAE, FMINS_SAE,
2130b57cec5SDimitry Andric       FSQRT_RND, FSQRTS, FSQRTS_RND,
2140b57cec5SDimitry Andric 
2150b57cec5SDimitry Andric       // FP vector get exponent.
2160b57cec5SDimitry Andric       FGETEXP, FGETEXP_SAE, FGETEXPS, FGETEXPS_SAE,
2170b57cec5SDimitry Andric       // Extract Normalized Mantissas.
2180b57cec5SDimitry Andric       VGETMANT, VGETMANT_SAE, VGETMANTS, VGETMANTS_SAE,
2190b57cec5SDimitry Andric       // FP Scale.
2200b57cec5SDimitry Andric       SCALEF, SCALEF_RND,
2210b57cec5SDimitry Andric       SCALEFS, SCALEFS_RND,
2220b57cec5SDimitry Andric 
2230b57cec5SDimitry Andric       // Unsigned Integer average.
2240b57cec5SDimitry Andric       AVG,
2250b57cec5SDimitry Andric 
2260b57cec5SDimitry Andric       /// Integer horizontal add/sub.
2270b57cec5SDimitry Andric       HADD,
2280b57cec5SDimitry Andric       HSUB,
2290b57cec5SDimitry Andric 
2300b57cec5SDimitry Andric       /// Floating point horizontal add/sub.
2310b57cec5SDimitry Andric       FHADD,
2320b57cec5SDimitry Andric       FHSUB,
2330b57cec5SDimitry Andric 
2340b57cec5SDimitry Andric       // Detect Conflicts Within a Vector
2350b57cec5SDimitry Andric       CONFLICT,
2360b57cec5SDimitry Andric 
2370b57cec5SDimitry Andric       /// Floating point max and min.
2380b57cec5SDimitry Andric       FMAX, FMIN,
2390b57cec5SDimitry Andric 
2400b57cec5SDimitry Andric       /// Commutative FMIN and FMAX.
2410b57cec5SDimitry Andric       FMAXC, FMINC,
2420b57cec5SDimitry Andric 
2430b57cec5SDimitry Andric       /// Scalar intrinsic floating point max and min.
2440b57cec5SDimitry Andric       FMAXS, FMINS,
2450b57cec5SDimitry Andric 
2460b57cec5SDimitry Andric       /// Floating point reciprocal-sqrt and reciprocal approximation.
2470b57cec5SDimitry Andric       /// Note that these typically require refinement
2480b57cec5SDimitry Andric       /// in order to obtain suitable precision.
2490b57cec5SDimitry Andric       FRSQRT, FRCP,
2500b57cec5SDimitry Andric 
2510b57cec5SDimitry Andric       // AVX-512 reciprocal approximations with a little more precision.
2520b57cec5SDimitry Andric       RSQRT14, RSQRT14S, RCP14, RCP14S,
2530b57cec5SDimitry Andric 
2540b57cec5SDimitry Andric       // Thread Local Storage.
2550b57cec5SDimitry Andric       TLSADDR,
2560b57cec5SDimitry Andric 
2570b57cec5SDimitry Andric       // Thread Local Storage. A call to get the start address
2580b57cec5SDimitry Andric       // of the TLS block for the current module.
2590b57cec5SDimitry Andric       TLSBASEADDR,
2600b57cec5SDimitry Andric 
2610b57cec5SDimitry Andric       // Thread Local Storage.  When calling to an OS provided
2620b57cec5SDimitry Andric       // thunk at the address from an earlier relocation.
2630b57cec5SDimitry Andric       TLSCALL,
2640b57cec5SDimitry Andric 
2650b57cec5SDimitry Andric       // Exception Handling helpers.
2660b57cec5SDimitry Andric       EH_RETURN,
2670b57cec5SDimitry Andric 
2680b57cec5SDimitry Andric       // SjLj exception handling setjmp.
2690b57cec5SDimitry Andric       EH_SJLJ_SETJMP,
2700b57cec5SDimitry Andric 
2710b57cec5SDimitry Andric       // SjLj exception handling longjmp.
2720b57cec5SDimitry Andric       EH_SJLJ_LONGJMP,
2730b57cec5SDimitry Andric 
2740b57cec5SDimitry Andric       // SjLj exception handling dispatch.
2750b57cec5SDimitry Andric       EH_SJLJ_SETUP_DISPATCH,
2760b57cec5SDimitry Andric 
2770b57cec5SDimitry Andric       /// Tail call return. See X86TargetLowering::LowerCall for
2780b57cec5SDimitry Andric       /// the list of operands.
2790b57cec5SDimitry Andric       TC_RETURN,
2800b57cec5SDimitry Andric 
2810b57cec5SDimitry Andric       // Vector move to low scalar and zero higher vector elements.
2820b57cec5SDimitry Andric       VZEXT_MOVL,
2830b57cec5SDimitry Andric 
2840b57cec5SDimitry Andric       // Vector integer truncate.
2850b57cec5SDimitry Andric       VTRUNC,
2860b57cec5SDimitry Andric       // Vector integer truncate with unsigned/signed saturation.
2870b57cec5SDimitry Andric       VTRUNCUS, VTRUNCS,
2880b57cec5SDimitry Andric 
2890b57cec5SDimitry Andric       // Masked version of the above. Used when less than a 128-bit result is
2900b57cec5SDimitry Andric       // produced since the mask only applies to the lower elements and can't
2910b57cec5SDimitry Andric       // be represented by a select.
2920b57cec5SDimitry Andric       // SRC, PASSTHRU, MASK
2930b57cec5SDimitry Andric       VMTRUNC, VMTRUNCUS, VMTRUNCS,
2940b57cec5SDimitry Andric 
2950b57cec5SDimitry Andric       // Vector FP extend.
2960b57cec5SDimitry Andric       VFPEXT, VFPEXT_SAE, VFPEXTS, VFPEXTS_SAE,
2970b57cec5SDimitry Andric 
2980b57cec5SDimitry Andric       // Vector FP round.
2990b57cec5SDimitry Andric       VFPROUND, VFPROUND_RND, VFPROUNDS, VFPROUNDS_RND,
3000b57cec5SDimitry Andric 
3010b57cec5SDimitry Andric       // Masked version of above. Used for v2f64->v4f32.
3020b57cec5SDimitry Andric       // SRC, PASSTHRU, MASK
3030b57cec5SDimitry Andric       VMFPROUND,
3040b57cec5SDimitry Andric 
3050b57cec5SDimitry Andric       // 128-bit vector logical left / right shift
3060b57cec5SDimitry Andric       VSHLDQ, VSRLDQ,
3070b57cec5SDimitry Andric 
3080b57cec5SDimitry Andric       // Vector shift elements
3090b57cec5SDimitry Andric       VSHL, VSRL, VSRA,
3100b57cec5SDimitry Andric 
3110b57cec5SDimitry Andric       // Vector variable shift
3120b57cec5SDimitry Andric       VSHLV, VSRLV, VSRAV,
3130b57cec5SDimitry Andric 
3140b57cec5SDimitry Andric       // Vector shift elements by immediate
3150b57cec5SDimitry Andric       VSHLI, VSRLI, VSRAI,
3160b57cec5SDimitry Andric 
3170b57cec5SDimitry Andric       // Shifts of mask registers.
3180b57cec5SDimitry Andric       KSHIFTL, KSHIFTR,
3190b57cec5SDimitry Andric 
3200b57cec5SDimitry Andric       // Bit rotate by immediate
3210b57cec5SDimitry Andric       VROTLI, VROTRI,
3220b57cec5SDimitry Andric 
3230b57cec5SDimitry Andric       // Vector packed double/float comparison.
3240b57cec5SDimitry Andric       CMPP,
3250b57cec5SDimitry Andric 
3260b57cec5SDimitry Andric       // Vector integer comparisons.
3270b57cec5SDimitry Andric       PCMPEQ, PCMPGT,
3280b57cec5SDimitry Andric 
3290b57cec5SDimitry Andric       // v8i16 Horizontal minimum and position.
3300b57cec5SDimitry Andric       PHMINPOS,
3310b57cec5SDimitry Andric 
3320b57cec5SDimitry Andric       MULTISHIFT,
3330b57cec5SDimitry Andric 
3340b57cec5SDimitry Andric       /// Vector comparison generating mask bits for fp and
3350b57cec5SDimitry Andric       /// integer signed and unsigned data types.
3360b57cec5SDimitry Andric       CMPM,
3370b57cec5SDimitry Andric       // Vector comparison with SAE for FP values
3380b57cec5SDimitry Andric       CMPM_SAE,
3390b57cec5SDimitry Andric 
3400b57cec5SDimitry Andric       // Arithmetic operations with FLAGS results.
3410b57cec5SDimitry Andric       ADD, SUB, ADC, SBB, SMUL, UMUL,
3420b57cec5SDimitry Andric       OR, XOR, AND,
3430b57cec5SDimitry Andric 
3440b57cec5SDimitry Andric       // Bit field extract.
3450b57cec5SDimitry Andric       BEXTR,
3460b57cec5SDimitry Andric 
3470b57cec5SDimitry Andric       // Zero High Bits Starting with Specified Bit Position.
3480b57cec5SDimitry Andric       BZHI,
3490b57cec5SDimitry Andric 
3500b57cec5SDimitry Andric       // X86-specific multiply by immediate.
3510b57cec5SDimitry Andric       MUL_IMM,
3520b57cec5SDimitry Andric 
3530b57cec5SDimitry Andric       // Vector sign bit extraction.
3540b57cec5SDimitry Andric       MOVMSK,
3550b57cec5SDimitry Andric 
3560b57cec5SDimitry Andric       // Vector bitwise comparisons.
3570b57cec5SDimitry Andric       PTEST,
3580b57cec5SDimitry Andric 
3590b57cec5SDimitry Andric       // Vector packed fp sign bitwise comparisons.
3600b57cec5SDimitry Andric       TESTP,
3610b57cec5SDimitry Andric 
3620b57cec5SDimitry Andric       // OR/AND test for masks.
3630b57cec5SDimitry Andric       KORTEST,
3640b57cec5SDimitry Andric       KTEST,
3650b57cec5SDimitry Andric 
3660b57cec5SDimitry Andric       // ADD for masks.
3670b57cec5SDimitry Andric       KADD,
3680b57cec5SDimitry Andric 
3690b57cec5SDimitry Andric       // Several flavors of instructions with vector shuffle behaviors.
3700b57cec5SDimitry Andric       // Saturated signed/unnsigned packing.
3710b57cec5SDimitry Andric       PACKSS,
3720b57cec5SDimitry Andric       PACKUS,
3730b57cec5SDimitry Andric       // Intra-lane alignr.
3740b57cec5SDimitry Andric       PALIGNR,
3750b57cec5SDimitry Andric       // AVX512 inter-lane alignr.
3760b57cec5SDimitry Andric       VALIGN,
3770b57cec5SDimitry Andric       PSHUFD,
3780b57cec5SDimitry Andric       PSHUFHW,
3790b57cec5SDimitry Andric       PSHUFLW,
3800b57cec5SDimitry Andric       SHUFP,
3810b57cec5SDimitry Andric       // VBMI2 Concat & Shift.
3820b57cec5SDimitry Andric       VSHLD,
3830b57cec5SDimitry Andric       VSHRD,
3840b57cec5SDimitry Andric       VSHLDV,
3850b57cec5SDimitry Andric       VSHRDV,
3860b57cec5SDimitry Andric       //Shuffle Packed Values at 128-bit granularity.
3870b57cec5SDimitry Andric       SHUF128,
3880b57cec5SDimitry Andric       MOVDDUP,
3890b57cec5SDimitry Andric       MOVSHDUP,
3900b57cec5SDimitry Andric       MOVSLDUP,
3910b57cec5SDimitry Andric       MOVLHPS,
3920b57cec5SDimitry Andric       MOVHLPS,
3930b57cec5SDimitry Andric       MOVSD,
3940b57cec5SDimitry Andric       MOVSS,
3950b57cec5SDimitry Andric       UNPCKL,
3960b57cec5SDimitry Andric       UNPCKH,
3970b57cec5SDimitry Andric       VPERMILPV,
3980b57cec5SDimitry Andric       VPERMILPI,
3990b57cec5SDimitry Andric       VPERMI,
4000b57cec5SDimitry Andric       VPERM2X128,
4010b57cec5SDimitry Andric 
4020b57cec5SDimitry Andric       // Variable Permute (VPERM).
4030b57cec5SDimitry Andric       // Res = VPERMV MaskV, V0
4040b57cec5SDimitry Andric       VPERMV,
4050b57cec5SDimitry Andric 
4060b57cec5SDimitry Andric       // 3-op Variable Permute (VPERMT2).
4070b57cec5SDimitry Andric       // Res = VPERMV3 V0, MaskV, V1
4080b57cec5SDimitry Andric       VPERMV3,
4090b57cec5SDimitry Andric 
4100b57cec5SDimitry Andric       // Bitwise ternary logic.
4110b57cec5SDimitry Andric       VPTERNLOG,
4120b57cec5SDimitry Andric       // Fix Up Special Packed Float32/64 values.
4130b57cec5SDimitry Andric       VFIXUPIMM, VFIXUPIMM_SAE,
4140b57cec5SDimitry Andric       VFIXUPIMMS, VFIXUPIMMS_SAE,
4150b57cec5SDimitry Andric       // Range Restriction Calculation For Packed Pairs of Float32/64 values.
4160b57cec5SDimitry Andric       VRANGE, VRANGE_SAE, VRANGES, VRANGES_SAE,
4170b57cec5SDimitry Andric       // Reduce - Perform Reduction Transformation on scalar\packed FP.
4180b57cec5SDimitry Andric       VREDUCE, VREDUCE_SAE, VREDUCES, VREDUCES_SAE,
4190b57cec5SDimitry Andric       // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
4200b57cec5SDimitry Andric       // Also used by the legacy (V)ROUND intrinsics where we mask out the
4210b57cec5SDimitry Andric       // scaling part of the immediate.
4220b57cec5SDimitry Andric       VRNDSCALE, VRNDSCALE_SAE, VRNDSCALES, VRNDSCALES_SAE,
4230b57cec5SDimitry Andric       // Tests Types Of a FP Values for packed types.
4240b57cec5SDimitry Andric       VFPCLASS,
4250b57cec5SDimitry Andric       // Tests Types Of a FP Values for scalar types.
4260b57cec5SDimitry Andric       VFPCLASSS,
4270b57cec5SDimitry Andric 
4280b57cec5SDimitry Andric       // Broadcast (splat) scalar or element 0 of a vector. If the operand is
4290b57cec5SDimitry Andric       // a vector, this node may change the vector length as part of the splat.
4300b57cec5SDimitry Andric       VBROADCAST,
4310b57cec5SDimitry Andric       // Broadcast mask to vector.
4320b57cec5SDimitry Andric       VBROADCASTM,
4330b57cec5SDimitry Andric       // Broadcast subvector to vector.
4340b57cec5SDimitry Andric       SUBV_BROADCAST,
4350b57cec5SDimitry Andric 
4360b57cec5SDimitry Andric       /// SSE4A Extraction and Insertion.
4370b57cec5SDimitry Andric       EXTRQI, INSERTQI,
4380b57cec5SDimitry Andric 
4390b57cec5SDimitry Andric       // XOP arithmetic/logical shifts.
4400b57cec5SDimitry Andric       VPSHA, VPSHL,
4410b57cec5SDimitry Andric       // XOP signed/unsigned integer comparisons.
4420b57cec5SDimitry Andric       VPCOM, VPCOMU,
4430b57cec5SDimitry Andric       // XOP packed permute bytes.
4440b57cec5SDimitry Andric       VPPERM,
4450b57cec5SDimitry Andric       // XOP two source permutation.
4460b57cec5SDimitry Andric       VPERMIL2,
4470b57cec5SDimitry Andric 
4480b57cec5SDimitry Andric       // Vector multiply packed unsigned doubleword integers.
4490b57cec5SDimitry Andric       PMULUDQ,
4500b57cec5SDimitry Andric       // Vector multiply packed signed doubleword integers.
4510b57cec5SDimitry Andric       PMULDQ,
4520b57cec5SDimitry Andric       // Vector Multiply Packed UnsignedIntegers with Round and Scale.
4530b57cec5SDimitry Andric       MULHRS,
4540b57cec5SDimitry Andric 
4550b57cec5SDimitry Andric       // Multiply and Add Packed Integers.
4560b57cec5SDimitry Andric       VPMADDUBSW, VPMADDWD,
4570b57cec5SDimitry Andric 
4580b57cec5SDimitry Andric       // AVX512IFMA multiply and add.
4590b57cec5SDimitry Andric       // NOTE: These are different than the instruction and perform
4600b57cec5SDimitry Andric       // op0 x op1 + op2.
4610b57cec5SDimitry Andric       VPMADD52L, VPMADD52H,
4620b57cec5SDimitry Andric 
4630b57cec5SDimitry Andric       // VNNI
4640b57cec5SDimitry Andric       VPDPBUSD,
4650b57cec5SDimitry Andric       VPDPBUSDS,
4660b57cec5SDimitry Andric       VPDPWSSD,
4670b57cec5SDimitry Andric       VPDPWSSDS,
4680b57cec5SDimitry Andric 
4690b57cec5SDimitry Andric       // FMA nodes.
4700b57cec5SDimitry Andric       // We use the target independent ISD::FMA for the non-inverted case.
4710b57cec5SDimitry Andric       FNMADD,
4720b57cec5SDimitry Andric       FMSUB,
4730b57cec5SDimitry Andric       FNMSUB,
4740b57cec5SDimitry Andric       FMADDSUB,
4750b57cec5SDimitry Andric       FMSUBADD,
4760b57cec5SDimitry Andric 
4770b57cec5SDimitry Andric       // FMA with rounding mode.
4780b57cec5SDimitry Andric       FMADD_RND,
4790b57cec5SDimitry Andric       FNMADD_RND,
4800b57cec5SDimitry Andric       FMSUB_RND,
4810b57cec5SDimitry Andric       FNMSUB_RND,
4820b57cec5SDimitry Andric       FMADDSUB_RND,
4830b57cec5SDimitry Andric       FMSUBADD_RND,
4840b57cec5SDimitry Andric 
4850b57cec5SDimitry Andric       // Compress and expand.
4860b57cec5SDimitry Andric       COMPRESS,
4870b57cec5SDimitry Andric       EXPAND,
4880b57cec5SDimitry Andric 
4890b57cec5SDimitry Andric       // Bits shuffle
4900b57cec5SDimitry Andric       VPSHUFBITQMB,
4910b57cec5SDimitry Andric 
4920b57cec5SDimitry Andric       // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
4930b57cec5SDimitry Andric       SINT_TO_FP_RND, UINT_TO_FP_RND,
4940b57cec5SDimitry Andric       SCALAR_SINT_TO_FP, SCALAR_UINT_TO_FP,
4950b57cec5SDimitry Andric       SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,
4960b57cec5SDimitry Andric 
4970b57cec5SDimitry Andric       // Vector float/double to signed/unsigned integer.
4980b57cec5SDimitry Andric       CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
4990b57cec5SDimitry Andric       // Scalar float/double to signed/unsigned integer.
5000b57cec5SDimitry Andric       CVTS2SI, CVTS2UI, CVTS2SI_RND, CVTS2UI_RND,
5010b57cec5SDimitry Andric 
5020b57cec5SDimitry Andric       // Vector float/double to signed/unsigned integer with truncation.
5030b57cec5SDimitry Andric       CVTTP2SI, CVTTP2UI, CVTTP2SI_SAE, CVTTP2UI_SAE,
5040b57cec5SDimitry Andric       // Scalar float/double to signed/unsigned integer with truncation.
5050b57cec5SDimitry Andric       CVTTS2SI, CVTTS2UI, CVTTS2SI_SAE, CVTTS2UI_SAE,
5060b57cec5SDimitry Andric 
5070b57cec5SDimitry Andric       // Vector signed/unsigned integer to float/double.
5080b57cec5SDimitry Andric       CVTSI2P, CVTUI2P,
5090b57cec5SDimitry Andric 
5100b57cec5SDimitry Andric       // Masked versions of above. Used for v2f64->v4f32.
5110b57cec5SDimitry Andric       // SRC, PASSTHRU, MASK
5120b57cec5SDimitry Andric       MCVTP2SI, MCVTP2UI, MCVTTP2SI, MCVTTP2UI,
5130b57cec5SDimitry Andric       MCVTSI2P, MCVTUI2P,
5140b57cec5SDimitry Andric 
5150b57cec5SDimitry Andric       // Vector float to bfloat16.
5160b57cec5SDimitry Andric       // Convert TWO packed single data to one packed BF16 data
5170b57cec5SDimitry Andric       CVTNE2PS2BF16,
5180b57cec5SDimitry Andric       // Convert packed single data to packed BF16 data
5190b57cec5SDimitry Andric       CVTNEPS2BF16,
5200b57cec5SDimitry Andric       // Masked version of above.
5210b57cec5SDimitry Andric       // SRC, PASSTHRU, MASK
5220b57cec5SDimitry Andric       MCVTNEPS2BF16,
5230b57cec5SDimitry Andric 
5240b57cec5SDimitry Andric       // Dot product of BF16 pairs to accumulated into
5250b57cec5SDimitry Andric       // packed single precision.
5260b57cec5SDimitry Andric       DPBF16PS,
5270b57cec5SDimitry Andric 
5280b57cec5SDimitry Andric       // Save xmm argument registers to the stack, according to %al. An operator
5290b57cec5SDimitry Andric       // is needed so that this can be expanded with control flow.
5300b57cec5SDimitry Andric       VASTART_SAVE_XMM_REGS,
5310b57cec5SDimitry Andric 
5320b57cec5SDimitry Andric       // Windows's _chkstk call to do stack probing.
5330b57cec5SDimitry Andric       WIN_ALLOCA,
5340b57cec5SDimitry Andric 
5350b57cec5SDimitry Andric       // For allocating variable amounts of stack space when using
5360b57cec5SDimitry Andric       // segmented stacks. Check if the current stacklet has enough space, and
5370b57cec5SDimitry Andric       // falls back to heap allocation if not.
5380b57cec5SDimitry Andric       SEG_ALLOCA,
5390b57cec5SDimitry Andric 
5400b57cec5SDimitry Andric       // Memory barriers.
5410b57cec5SDimitry Andric       MEMBARRIER,
5420b57cec5SDimitry Andric       MFENCE,
5430b57cec5SDimitry Andric 
5440b57cec5SDimitry Andric       // Store FP status word into i16 register.
5450b57cec5SDimitry Andric       FNSTSW16r,
5460b57cec5SDimitry Andric 
5470b57cec5SDimitry Andric       // Store contents of %ah into %eflags.
5480b57cec5SDimitry Andric       SAHF,
5490b57cec5SDimitry Andric 
5500b57cec5SDimitry Andric       // Get a random integer and indicate whether it is valid in CF.
5510b57cec5SDimitry Andric       RDRAND,
5520b57cec5SDimitry Andric 
5530b57cec5SDimitry Andric       // Get a NIST SP800-90B & C compliant random integer and
5540b57cec5SDimitry Andric       // indicate whether it is valid in CF.
5550b57cec5SDimitry Andric       RDSEED,
5560b57cec5SDimitry Andric 
5570b57cec5SDimitry Andric       // Protection keys
5580b57cec5SDimitry Andric       // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
5590b57cec5SDimitry Andric       // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
5600b57cec5SDimitry Andric       // value for ECX.
5610b57cec5SDimitry Andric       RDPKRU, WRPKRU,
5620b57cec5SDimitry Andric 
5630b57cec5SDimitry Andric       // SSE42 string comparisons.
5640b57cec5SDimitry Andric       // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
5650b57cec5SDimitry Andric       // will emit one or two instructions based on which results are used. If
5660b57cec5SDimitry Andric       // flags and index/mask this allows us to use a single instruction since
5670b57cec5SDimitry Andric       // we won't have to pick and opcode for flags. Instead we can rely on the
5680b57cec5SDimitry Andric       // DAG to CSE everything and decide at isel.
5690b57cec5SDimitry Andric       PCMPISTR,
5700b57cec5SDimitry Andric       PCMPESTR,
5710b57cec5SDimitry Andric 
5720b57cec5SDimitry Andric       // Test if in transactional execution.
5730b57cec5SDimitry Andric       XTEST,
5740b57cec5SDimitry Andric 
5750b57cec5SDimitry Andric       // ERI instructions.
5760b57cec5SDimitry Andric       RSQRT28, RSQRT28_SAE, RSQRT28S, RSQRT28S_SAE,
5770b57cec5SDimitry Andric       RCP28, RCP28_SAE, RCP28S, RCP28S_SAE, EXP2, EXP2_SAE,
5780b57cec5SDimitry Andric 
5790b57cec5SDimitry Andric       // Conversions between float and half-float.
5800b57cec5SDimitry Andric       CVTPS2PH, CVTPH2PS, CVTPH2PS_SAE,
5810b57cec5SDimitry Andric 
5820b57cec5SDimitry Andric       // Masked version of above.
5830b57cec5SDimitry Andric       // SRC, RND, PASSTHRU, MASK
5840b57cec5SDimitry Andric       MCVTPS2PH,
5850b57cec5SDimitry Andric 
5860b57cec5SDimitry Andric       // Galois Field Arithmetic Instructions
5870b57cec5SDimitry Andric       GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,
5880b57cec5SDimitry Andric 
5890b57cec5SDimitry Andric       // LWP insert record.
5900b57cec5SDimitry Andric       LWPINS,
5910b57cec5SDimitry Andric 
5920b57cec5SDimitry Andric       // User level wait
5930b57cec5SDimitry Andric       UMWAIT, TPAUSE,
5940b57cec5SDimitry Andric 
5950b57cec5SDimitry Andric       // Enqueue Stores Instructions
5960b57cec5SDimitry Andric       ENQCMD, ENQCMDS,
5970b57cec5SDimitry Andric 
5980b57cec5SDimitry Andric       // For avx512-vp2intersect
5990b57cec5SDimitry Andric       VP2INTERSECT,
6000b57cec5SDimitry Andric 
6010b57cec5SDimitry Andric       // Compare and swap.
6020b57cec5SDimitry Andric       LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
6030b57cec5SDimitry Andric       LCMPXCHG8_DAG,
6040b57cec5SDimitry Andric       LCMPXCHG16_DAG,
6050b57cec5SDimitry Andric       LCMPXCHG8_SAVE_EBX_DAG,
6060b57cec5SDimitry Andric       LCMPXCHG16_SAVE_RBX_DAG,
6070b57cec5SDimitry Andric 
6080b57cec5SDimitry Andric       /// LOCK-prefixed arithmetic read-modify-write instructions.
6090b57cec5SDimitry Andric       /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
6100b57cec5SDimitry Andric       LADD, LSUB, LOR, LXOR, LAND,
6110b57cec5SDimitry Andric 
6120b57cec5SDimitry Andric       // Load, scalar_to_vector, and zero extend.
6130b57cec5SDimitry Andric       VZEXT_LOAD,
6140b57cec5SDimitry Andric 
6150b57cec5SDimitry Andric       // extract_vector_elt, store.
6160b57cec5SDimitry Andric       VEXTRACT_STORE,
6170b57cec5SDimitry Andric 
618*8bcb0991SDimitry Andric       // scalar broadcast from memory
619*8bcb0991SDimitry Andric       VBROADCAST_LOAD,
620*8bcb0991SDimitry Andric 
6210b57cec5SDimitry Andric       // Store FP control world into i16 memory.
6220b57cec5SDimitry Andric       FNSTCW16m,
6230b57cec5SDimitry Andric 
6240b57cec5SDimitry Andric       /// This instruction implements FP_TO_SINT with the
6250b57cec5SDimitry Andric       /// integer destination in memory and a FP reg source.  This corresponds
6260b57cec5SDimitry Andric       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
6270b57cec5SDimitry Andric       /// has two inputs (token chain and address) and two outputs (int value
6280b57cec5SDimitry Andric       /// and token chain). Memory VT specifies the type to store to.
6290b57cec5SDimitry Andric       FP_TO_INT_IN_MEM,
6300b57cec5SDimitry Andric 
6310b57cec5SDimitry Andric       /// This instruction implements SINT_TO_FP with the
6320b57cec5SDimitry Andric       /// integer source in memory and FP reg result.  This corresponds to the
6330b57cec5SDimitry Andric       /// X86::FILD*m instructions. It has two inputs (token chain and address)
6340b57cec5SDimitry Andric       /// and two outputs (FP value and token chain). FILD_FLAG also produces a
6350b57cec5SDimitry Andric       /// flag). The integer source type is specified by the memory VT.
6360b57cec5SDimitry Andric       FILD,
6370b57cec5SDimitry Andric       FILD_FLAG,
6380b57cec5SDimitry Andric 
6390b57cec5SDimitry Andric       /// This instruction implements a fp->int store from FP stack
6400b57cec5SDimitry Andric       /// slots. This corresponds to the fist instruction. It takes a
6410b57cec5SDimitry Andric       /// chain operand, value to store, address, and glue. The memory VT
6420b57cec5SDimitry Andric       /// specifies the type to store as.
6430b57cec5SDimitry Andric       FIST,
6440b57cec5SDimitry Andric 
6450b57cec5SDimitry Andric       /// This instruction implements an extending load to FP stack slots.
6460b57cec5SDimitry Andric       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
6470b57cec5SDimitry Andric       /// operand, and ptr to load from. The memory VT specifies the type to
6480b57cec5SDimitry Andric       /// load from.
6490b57cec5SDimitry Andric       FLD,
6500b57cec5SDimitry Andric 
6510b57cec5SDimitry Andric       /// This instruction implements a truncating store from FP stack
6520b57cec5SDimitry Andric       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
6530b57cec5SDimitry Andric       /// chain operand, value to store, address, and glue. The memory VT
6540b57cec5SDimitry Andric       /// specifies the type to store as.
6550b57cec5SDimitry Andric       FST,
6560b57cec5SDimitry Andric 
6570b57cec5SDimitry Andric       /// This instruction grabs the address of the next argument
6580b57cec5SDimitry Andric       /// from a va_list. (reads and modifies the va_list in memory)
6590b57cec5SDimitry Andric       VAARG_64,
6600b57cec5SDimitry Andric 
6610b57cec5SDimitry Andric       // Vector truncating store with unsigned/signed saturation
6620b57cec5SDimitry Andric       VTRUNCSTOREUS, VTRUNCSTORES,
6630b57cec5SDimitry Andric       // Vector truncating masked store with unsigned/signed saturation
6640b57cec5SDimitry Andric       VMTRUNCSTOREUS, VMTRUNCSTORES,
6650b57cec5SDimitry Andric 
6660b57cec5SDimitry Andric       // X86 specific gather and scatter
6670b57cec5SDimitry Andric       MGATHER, MSCATTER,
6680b57cec5SDimitry Andric 
6690b57cec5SDimitry Andric       // WARNING: Do not add anything in the end unless you want the node to
6700b57cec5SDimitry Andric       // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
6710b57cec5SDimitry Andric       // opcodes will be thought as target memory ops!
6720b57cec5SDimitry Andric     };
6730b57cec5SDimitry Andric   } // end namespace X86ISD
6740b57cec5SDimitry Andric 
6750b57cec5SDimitry Andric   /// Define some predicates that are used for node matching.
6760b57cec5SDimitry Andric   namespace X86 {
6770b57cec5SDimitry Andric     /// Returns true if Elt is a constant zero or floating point constant +0.0.
6780b57cec5SDimitry Andric     bool isZeroNode(SDValue Elt);
6790b57cec5SDimitry Andric 
6800b57cec5SDimitry Andric     /// Returns true of the given offset can be
6810b57cec5SDimitry Andric     /// fit into displacement field of the instruction.
6820b57cec5SDimitry Andric     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
6830b57cec5SDimitry Andric                                       bool hasSymbolicDisplacement = true);
6840b57cec5SDimitry Andric 
6850b57cec5SDimitry Andric     /// Determines whether the callee is required to pop its
6860b57cec5SDimitry Andric     /// own arguments. Callee pop is necessary to support tail calls.
6870b57cec5SDimitry Andric     bool isCalleePop(CallingConv::ID CallingConv,
6880b57cec5SDimitry Andric                      bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
6890b57cec5SDimitry Andric 
690*8bcb0991SDimitry Andric     /// If Op is a constant whose elements are all the same constant or
691*8bcb0991SDimitry Andric     /// undefined, return true and return the constant value in \p SplatVal.
692*8bcb0991SDimitry Andric     bool isConstantSplat(SDValue Op, APInt &SplatVal);
6930b57cec5SDimitry Andric   } // end namespace X86
6940b57cec5SDimitry Andric 
6950b57cec5SDimitry Andric   //===--------------------------------------------------------------------===//
6960b57cec5SDimitry Andric   //  X86 Implementation of the TargetLowering interface
6970b57cec5SDimitry Andric   class X86TargetLowering final : public TargetLowering {
6980b57cec5SDimitry Andric   public:
6990b57cec5SDimitry Andric     explicit X86TargetLowering(const X86TargetMachine &TM,
7000b57cec5SDimitry Andric                                const X86Subtarget &STI);
7010b57cec5SDimitry Andric 
7020b57cec5SDimitry Andric     unsigned getJumpTableEncoding() const override;
7030b57cec5SDimitry Andric     bool useSoftFloat() const override;
7040b57cec5SDimitry Andric 
7050b57cec5SDimitry Andric     void markLibCallAttributes(MachineFunction *MF, unsigned CC,
7060b57cec5SDimitry Andric                                ArgListTy &Args) const override;
7070b57cec5SDimitry Andric 
7080b57cec5SDimitry Andric     MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
7090b57cec5SDimitry Andric       return MVT::i8;
7100b57cec5SDimitry Andric     }
7110b57cec5SDimitry Andric 
7120b57cec5SDimitry Andric     const MCExpr *
7130b57cec5SDimitry Andric     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
7140b57cec5SDimitry Andric                               const MachineBasicBlock *MBB, unsigned uid,
7150b57cec5SDimitry Andric                               MCContext &Ctx) const override;
7160b57cec5SDimitry Andric 
7170b57cec5SDimitry Andric     /// Returns relocation base for the given PIC jumptable.
7180b57cec5SDimitry Andric     SDValue getPICJumpTableRelocBase(SDValue Table,
7190b57cec5SDimitry Andric                                      SelectionDAG &DAG) const override;
7200b57cec5SDimitry Andric     const MCExpr *
7210b57cec5SDimitry Andric     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
7220b57cec5SDimitry Andric                                  unsigned JTI, MCContext &Ctx) const override;
7230b57cec5SDimitry Andric 
7240b57cec5SDimitry Andric     /// Return the desired alignment for ByVal aggregate
7250b57cec5SDimitry Andric     /// function arguments in the caller parameter area. For X86, aggregates
7260b57cec5SDimitry Andric     /// that contains are placed at 16-byte boundaries while the rest are at
7270b57cec5SDimitry Andric     /// 4-byte boundaries.
7280b57cec5SDimitry Andric     unsigned getByValTypeAlignment(Type *Ty,
7290b57cec5SDimitry Andric                                    const DataLayout &DL) const override;
7300b57cec5SDimitry Andric 
7310b57cec5SDimitry Andric     /// Returns the target specific optimal type for load
7320b57cec5SDimitry Andric     /// and store operations as a result of memset, memcpy, and memmove
7330b57cec5SDimitry Andric     /// lowering. If DstAlign is zero that means it's safe to destination
7340b57cec5SDimitry Andric     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7350b57cec5SDimitry Andric     /// means there isn't a need to check it against alignment requirement,
7360b57cec5SDimitry Andric     /// probably because the source does not need to be loaded. If 'IsMemset' is
7370b57cec5SDimitry Andric     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7380b57cec5SDimitry Andric     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7390b57cec5SDimitry Andric     /// source is constant so it does not need to be loaded.
7400b57cec5SDimitry Andric     /// It returns EVT::Other if the type should be determined using generic
7410b57cec5SDimitry Andric     /// target-independent logic.
7420b57cec5SDimitry Andric     EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
7430b57cec5SDimitry Andric                             bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
7440b57cec5SDimitry Andric                             const AttributeList &FuncAttributes) const override;
7450b57cec5SDimitry Andric 
7460b57cec5SDimitry Andric     /// Returns true if it's safe to use load / store of the
7470b57cec5SDimitry Andric     /// specified type to expand memcpy / memset inline. This is mostly true
7480b57cec5SDimitry Andric     /// for all types except for some special cases. For example, on X86
7490b57cec5SDimitry Andric     /// targets without SSE2 f64 load / store are done with fldl / fstpl which
7500b57cec5SDimitry Andric     /// also does type conversion. Note the specified type doesn't have to be
7510b57cec5SDimitry Andric     /// legal as the hook is used before type legalization.
7520b57cec5SDimitry Andric     bool isSafeMemOpType(MVT VT) const override;
7530b57cec5SDimitry Andric 
7540b57cec5SDimitry Andric     /// Returns true if the target allows unaligned memory accesses of the
7550b57cec5SDimitry Andric     /// specified type. Returns whether it is "fast" in the last argument.
7560b57cec5SDimitry Andric     bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
7570b57cec5SDimitry Andric                                         MachineMemOperand::Flags Flags,
7580b57cec5SDimitry Andric                                         bool *Fast) const override;
7590b57cec5SDimitry Andric 
7600b57cec5SDimitry Andric     /// Provide custom lowering hooks for some operations.
7610b57cec5SDimitry Andric     ///
7620b57cec5SDimitry Andric     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
7630b57cec5SDimitry Andric 
7640b57cec5SDimitry Andric     /// Places new result values for the node in Results (their number
7650b57cec5SDimitry Andric     /// and types must exactly match those of the original return values of
7660b57cec5SDimitry Andric     /// the node), or leaves Results empty, which indicates that the node is not
7670b57cec5SDimitry Andric     /// to be custom lowered after all.
7680b57cec5SDimitry Andric     void LowerOperationWrapper(SDNode *N,
7690b57cec5SDimitry Andric                                SmallVectorImpl<SDValue> &Results,
7700b57cec5SDimitry Andric                                SelectionDAG &DAG) const override;
7710b57cec5SDimitry Andric 
7720b57cec5SDimitry Andric     /// Replace the results of node with an illegal result
7730b57cec5SDimitry Andric     /// type with new values built out of custom code.
7740b57cec5SDimitry Andric     ///
7750b57cec5SDimitry Andric     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
7760b57cec5SDimitry Andric                             SelectionDAG &DAG) const override;
7770b57cec5SDimitry Andric 
7780b57cec5SDimitry Andric     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
7790b57cec5SDimitry Andric 
7800b57cec5SDimitry Andric     // Return true if it is profitable to combine a BUILD_VECTOR with a
7810b57cec5SDimitry Andric     // stride-pattern to a shuffle and a truncate.
7820b57cec5SDimitry Andric     // Example of such a combine:
7830b57cec5SDimitry Andric     // v4i32 build_vector((extract_elt V, 1),
7840b57cec5SDimitry Andric     //                    (extract_elt V, 3),
7850b57cec5SDimitry Andric     //                    (extract_elt V, 5),
7860b57cec5SDimitry Andric     //                    (extract_elt V, 7))
7870b57cec5SDimitry Andric     //  -->
7880b57cec5SDimitry Andric     // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
7890b57cec5SDimitry Andric     // v4i64)
7900b57cec5SDimitry Andric     bool isDesirableToCombineBuildVectorToShuffleTruncate(
7910b57cec5SDimitry Andric         ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;
7920b57cec5SDimitry Andric 
7930b57cec5SDimitry Andric     /// Return true if the target has native support for
7940b57cec5SDimitry Andric     /// the specified value type and it is 'desirable' to use the type for the
7950b57cec5SDimitry Andric     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
7960b57cec5SDimitry Andric     /// instruction encodings are longer and some i16 instructions are slow.
7970b57cec5SDimitry Andric     bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
7980b57cec5SDimitry Andric 
7990b57cec5SDimitry Andric     /// Return true if the target has native support for the
8000b57cec5SDimitry Andric     /// specified value type and it is 'desirable' to use the type. e.g. On x86
8010b57cec5SDimitry Andric     /// i16 is legal, but undesirable since i16 instruction encodings are longer
8020b57cec5SDimitry Andric     /// and some i16 instructions are slow.
8030b57cec5SDimitry Andric     bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
8040b57cec5SDimitry Andric 
805*8bcb0991SDimitry Andric     /// Return 1 if we can compute the negated form of the specified expression
806*8bcb0991SDimitry Andric     /// for the same cost as the expression itself, or 2 if we can compute the
807*8bcb0991SDimitry Andric     /// negated form more cheaply than the expression itself. Else return 0.
808*8bcb0991SDimitry Andric     char isNegatibleForFree(SDValue Op, SelectionDAG &DAG, bool LegalOperations,
809*8bcb0991SDimitry Andric                             bool ForCodeSize, unsigned Depth) const override;
810*8bcb0991SDimitry Andric 
811*8bcb0991SDimitry Andric     /// If isNegatibleForFree returns true, return the newly negated expression.
812*8bcb0991SDimitry Andric     SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
813*8bcb0991SDimitry Andric                                  bool LegalOperations, bool ForCodeSize,
814*8bcb0991SDimitry Andric                                  unsigned Depth) const override;
815*8bcb0991SDimitry Andric 
8160b57cec5SDimitry Andric     MachineBasicBlock *
8170b57cec5SDimitry Andric     EmitInstrWithCustomInserter(MachineInstr &MI,
8180b57cec5SDimitry Andric                                 MachineBasicBlock *MBB) const override;
8190b57cec5SDimitry Andric 
8200b57cec5SDimitry Andric     /// This method returns the name of a target specific DAG node.
8210b57cec5SDimitry Andric     const char *getTargetNodeName(unsigned Opcode) const override;
8220b57cec5SDimitry Andric 
8230b57cec5SDimitry Andric     /// Do not merge vector stores after legalization because that may conflict
8240b57cec5SDimitry Andric     /// with x86-specific store splitting optimizations.
8250b57cec5SDimitry Andric     bool mergeStoresAfterLegalization(EVT MemVT) const override {
8260b57cec5SDimitry Andric       return !MemVT.isVector();
8270b57cec5SDimitry Andric     }
8280b57cec5SDimitry Andric 
8290b57cec5SDimitry Andric     bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
8300b57cec5SDimitry Andric                           const SelectionDAG &DAG) const override;
8310b57cec5SDimitry Andric 
8320b57cec5SDimitry Andric     bool isCheapToSpeculateCttz() const override;
8330b57cec5SDimitry Andric 
8340b57cec5SDimitry Andric     bool isCheapToSpeculateCtlz() const override;
8350b57cec5SDimitry Andric 
8360b57cec5SDimitry Andric     bool isCtlzFast() const override;
8370b57cec5SDimitry Andric 
8380b57cec5SDimitry Andric     bool hasBitPreservingFPLogic(EVT VT) const override {
8390b57cec5SDimitry Andric       return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
8400b57cec5SDimitry Andric     }
8410b57cec5SDimitry Andric 
8420b57cec5SDimitry Andric     bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
8430b57cec5SDimitry Andric       // If the pair to store is a mixture of float and int values, we will
8440b57cec5SDimitry Andric       // save two bitwise instructions and one float-to-int instruction and
8450b57cec5SDimitry Andric       // increase one store instruction. There is potentially a more
8460b57cec5SDimitry Andric       // significant benefit because it avoids the float->int domain switch
8470b57cec5SDimitry Andric       // for input value. So It is more likely a win.
8480b57cec5SDimitry Andric       if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
8490b57cec5SDimitry Andric           (LTy.isInteger() && HTy.isFloatingPoint()))
8500b57cec5SDimitry Andric         return true;
8510b57cec5SDimitry Andric       // If the pair only contains int values, we will save two bitwise
8520b57cec5SDimitry Andric       // instructions and increase one store instruction (costing one more
8530b57cec5SDimitry Andric       // store buffer). Since the benefit is more blurred so we leave
8540b57cec5SDimitry Andric       // such pair out until we get testcase to prove it is a win.
8550b57cec5SDimitry Andric       return false;
8560b57cec5SDimitry Andric     }
8570b57cec5SDimitry Andric 
8580b57cec5SDimitry Andric     bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
8590b57cec5SDimitry Andric 
8600b57cec5SDimitry Andric     bool hasAndNotCompare(SDValue Y) const override;
8610b57cec5SDimitry Andric 
8620b57cec5SDimitry Andric     bool hasAndNot(SDValue Y) const override;
8630b57cec5SDimitry Andric 
864*8bcb0991SDimitry Andric     bool hasBitTest(SDValue X, SDValue Y) const override;
865*8bcb0991SDimitry Andric 
866*8bcb0991SDimitry Andric     bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
867*8bcb0991SDimitry Andric         SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
868*8bcb0991SDimitry Andric         unsigned OldShiftOpcode, unsigned NewShiftOpcode,
869*8bcb0991SDimitry Andric         SelectionDAG &DAG) const override;
870*8bcb0991SDimitry Andric 
8710b57cec5SDimitry Andric     bool shouldFoldConstantShiftPairToMask(const SDNode *N,
8720b57cec5SDimitry Andric                                            CombineLevel Level) const override;
8730b57cec5SDimitry Andric 
8740b57cec5SDimitry Andric     bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
8750b57cec5SDimitry Andric 
8760b57cec5SDimitry Andric     bool
8770b57cec5SDimitry Andric     shouldTransformSignedTruncationCheck(EVT XVT,
8780b57cec5SDimitry Andric                                          unsigned KeptBits) const override {
8790b57cec5SDimitry Andric       // For vectors, we don't have a preference..
8800b57cec5SDimitry Andric       if (XVT.isVector())
8810b57cec5SDimitry Andric         return false;
8820b57cec5SDimitry Andric 
8830b57cec5SDimitry Andric       auto VTIsOk = [](EVT VT) -> bool {
8840b57cec5SDimitry Andric         return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
8850b57cec5SDimitry Andric                VT == MVT::i64;
8860b57cec5SDimitry Andric       };
8870b57cec5SDimitry Andric 
8880b57cec5SDimitry Andric       // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
8890b57cec5SDimitry Andric       // XVT will be larger than KeptBitsVT.
8900b57cec5SDimitry Andric       MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
8910b57cec5SDimitry Andric       return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
8920b57cec5SDimitry Andric     }
8930b57cec5SDimitry Andric 
8940b57cec5SDimitry Andric     bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;
8950b57cec5SDimitry Andric 
8960b57cec5SDimitry Andric     bool shouldSplatInsEltVarIndex(EVT VT) const override;
8970b57cec5SDimitry Andric 
8980b57cec5SDimitry Andric     bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
8990b57cec5SDimitry Andric       return VT.isScalarInteger();
9000b57cec5SDimitry Andric     }
9010b57cec5SDimitry Andric 
9020b57cec5SDimitry Andric     /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
9030b57cec5SDimitry Andric     MVT hasFastEqualityCompare(unsigned NumBits) const override;
9040b57cec5SDimitry Andric 
9050b57cec5SDimitry Andric     /// Return the value type to use for ISD::SETCC.
9060b57cec5SDimitry Andric     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
9070b57cec5SDimitry Andric                            EVT VT) const override;
9080b57cec5SDimitry Andric 
9090b57cec5SDimitry Andric     bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
9100b57cec5SDimitry Andric                                       TargetLoweringOpt &TLO) const override;
9110b57cec5SDimitry Andric 
9120b57cec5SDimitry Andric     /// Determine which of the bits specified in Mask are known to be either
9130b57cec5SDimitry Andric     /// zero or one and return them in the KnownZero/KnownOne bitsets.
9140b57cec5SDimitry Andric     void computeKnownBitsForTargetNode(const SDValue Op,
9150b57cec5SDimitry Andric                                        KnownBits &Known,
9160b57cec5SDimitry Andric                                        const APInt &DemandedElts,
9170b57cec5SDimitry Andric                                        const SelectionDAG &DAG,
9180b57cec5SDimitry Andric                                        unsigned Depth = 0) const override;
9190b57cec5SDimitry Andric 
9200b57cec5SDimitry Andric     /// Determine the number of bits in the operation that are sign bits.
9210b57cec5SDimitry Andric     unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
9220b57cec5SDimitry Andric                                              const APInt &DemandedElts,
9230b57cec5SDimitry Andric                                              const SelectionDAG &DAG,
9240b57cec5SDimitry Andric                                              unsigned Depth) const override;
9250b57cec5SDimitry Andric 
9260b57cec5SDimitry Andric     bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
9270b57cec5SDimitry Andric                                                  const APInt &DemandedElts,
9280b57cec5SDimitry Andric                                                  APInt &KnownUndef,
9290b57cec5SDimitry Andric                                                  APInt &KnownZero,
9300b57cec5SDimitry Andric                                                  TargetLoweringOpt &TLO,
9310b57cec5SDimitry Andric                                                  unsigned Depth) const override;
9320b57cec5SDimitry Andric 
9330b57cec5SDimitry Andric     bool SimplifyDemandedBitsForTargetNode(SDValue Op,
9340b57cec5SDimitry Andric                                            const APInt &DemandedBits,
9350b57cec5SDimitry Andric                                            const APInt &DemandedElts,
9360b57cec5SDimitry Andric                                            KnownBits &Known,
9370b57cec5SDimitry Andric                                            TargetLoweringOpt &TLO,
9380b57cec5SDimitry Andric                                            unsigned Depth) const override;
9390b57cec5SDimitry Andric 
940*8bcb0991SDimitry Andric     SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
941*8bcb0991SDimitry Andric         SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
942*8bcb0991SDimitry Andric         SelectionDAG &DAG, unsigned Depth) const override;
943*8bcb0991SDimitry Andric 
9440b57cec5SDimitry Andric     const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
9450b57cec5SDimitry Andric 
9460b57cec5SDimitry Andric     SDValue unwrapAddress(SDValue N) const override;
9470b57cec5SDimitry Andric 
9480b57cec5SDimitry Andric     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
9490b57cec5SDimitry Andric 
9500b57cec5SDimitry Andric     bool ExpandInlineAsm(CallInst *CI) const override;
9510b57cec5SDimitry Andric 
9520b57cec5SDimitry Andric     ConstraintType getConstraintType(StringRef Constraint) const override;
9530b57cec5SDimitry Andric 
9540b57cec5SDimitry Andric     /// Examine constraint string and operand type and determine a weight value.
9550b57cec5SDimitry Andric     /// The operand object must already have been set up with the operand type.
9560b57cec5SDimitry Andric     ConstraintWeight
9570b57cec5SDimitry Andric       getSingleConstraintMatchWeight(AsmOperandInfo &info,
9580b57cec5SDimitry Andric                                      const char *constraint) const override;
9590b57cec5SDimitry Andric 
9600b57cec5SDimitry Andric     const char *LowerXConstraint(EVT ConstraintVT) const override;
9610b57cec5SDimitry Andric 
9620b57cec5SDimitry Andric     /// Lower the specified operand into the Ops vector. If it is invalid, don't
9630b57cec5SDimitry Andric     /// add anything to Ops. If hasMemory is true it means one of the asm
9640b57cec5SDimitry Andric     /// constraint of the inline asm instruction being processed is 'm'.
9650b57cec5SDimitry Andric     void LowerAsmOperandForConstraint(SDValue Op,
9660b57cec5SDimitry Andric                                       std::string &Constraint,
9670b57cec5SDimitry Andric                                       std::vector<SDValue> &Ops,
9680b57cec5SDimitry Andric                                       SelectionDAG &DAG) const override;
9690b57cec5SDimitry Andric 
9700b57cec5SDimitry Andric     unsigned
9710b57cec5SDimitry Andric     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
9720b57cec5SDimitry Andric       if (ConstraintCode == "i")
9730b57cec5SDimitry Andric         return InlineAsm::Constraint_i;
9740b57cec5SDimitry Andric       else if (ConstraintCode == "o")
9750b57cec5SDimitry Andric         return InlineAsm::Constraint_o;
9760b57cec5SDimitry Andric       else if (ConstraintCode == "v")
9770b57cec5SDimitry Andric         return InlineAsm::Constraint_v;
9780b57cec5SDimitry Andric       else if (ConstraintCode == "X")
9790b57cec5SDimitry Andric         return InlineAsm::Constraint_X;
9800b57cec5SDimitry Andric       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
9810b57cec5SDimitry Andric     }
9820b57cec5SDimitry Andric 
9830b57cec5SDimitry Andric     /// Handle Lowering flag assembly outputs.
9840b57cec5SDimitry Andric     SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, SDLoc DL,
9850b57cec5SDimitry Andric                                         const AsmOperandInfo &Constraint,
9860b57cec5SDimitry Andric                                         SelectionDAG &DAG) const override;
9870b57cec5SDimitry Andric 
9880b57cec5SDimitry Andric     /// Given a physical register constraint
9890b57cec5SDimitry Andric     /// (e.g. {edx}), return the register number and the register class for the
9900b57cec5SDimitry Andric     /// register.  This should only be used for C_Register constraints.  On
9910b57cec5SDimitry Andric     /// error, this returns a register number of 0.
9920b57cec5SDimitry Andric     std::pair<unsigned, const TargetRegisterClass *>
9930b57cec5SDimitry Andric     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
9940b57cec5SDimitry Andric                                  StringRef Constraint, MVT VT) const override;
9950b57cec5SDimitry Andric 
9960b57cec5SDimitry Andric     /// Return true if the addressing mode represented
9970b57cec5SDimitry Andric     /// by AM is legal for this target, for a load/store of the specified type.
9980b57cec5SDimitry Andric     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
9990b57cec5SDimitry Andric                                Type *Ty, unsigned AS,
10000b57cec5SDimitry Andric                                Instruction *I = nullptr) const override;
10010b57cec5SDimitry Andric 
10020b57cec5SDimitry Andric     /// Return true if the specified immediate is legal
10030b57cec5SDimitry Andric     /// icmp immediate, that is the target has icmp instructions which can
10040b57cec5SDimitry Andric     /// compare a register against the immediate without having to materialize
10050b57cec5SDimitry Andric     /// the immediate into a register.
10060b57cec5SDimitry Andric     bool isLegalICmpImmediate(int64_t Imm) const override;
10070b57cec5SDimitry Andric 
10080b57cec5SDimitry Andric     /// Return true if the specified immediate is legal
10090b57cec5SDimitry Andric     /// add immediate, that is the target has add instructions which can
10100b57cec5SDimitry Andric     /// add a register and the immediate without having to materialize
10110b57cec5SDimitry Andric     /// the immediate into a register.
10120b57cec5SDimitry Andric     bool isLegalAddImmediate(int64_t Imm) const override;
10130b57cec5SDimitry Andric 
10140b57cec5SDimitry Andric     bool isLegalStoreImmediate(int64_t Imm) const override;
10150b57cec5SDimitry Andric 
10160b57cec5SDimitry Andric     /// Return the cost of the scaling factor used in the addressing
10170b57cec5SDimitry Andric     /// mode represented by AM for this target, for a load/store
10180b57cec5SDimitry Andric     /// of the specified type.
10190b57cec5SDimitry Andric     /// If the AM is supported, the return value must be >= 0.
10200b57cec5SDimitry Andric     /// If the AM is not supported, it returns a negative value.
10210b57cec5SDimitry Andric     int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
10220b57cec5SDimitry Andric                              unsigned AS) const override;
10230b57cec5SDimitry Andric 
10240b57cec5SDimitry Andric     bool isVectorShiftByScalarCheap(Type *Ty) const override;
10250b57cec5SDimitry Andric 
10260b57cec5SDimitry Andric     /// Add x86-specific opcodes to the default list.
10270b57cec5SDimitry Andric     bool isBinOp(unsigned Opcode) const override;
10280b57cec5SDimitry Andric 
10290b57cec5SDimitry Andric     /// Returns true if the opcode is a commutative binary operation.
10300b57cec5SDimitry Andric     bool isCommutativeBinOp(unsigned Opcode) const override;
10310b57cec5SDimitry Andric 
10320b57cec5SDimitry Andric     /// Return true if it's free to truncate a value of
10330b57cec5SDimitry Andric     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
10340b57cec5SDimitry Andric     /// register EAX to i16 by referencing its sub-register AX.
10350b57cec5SDimitry Andric     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
10360b57cec5SDimitry Andric     bool isTruncateFree(EVT VT1, EVT VT2) const override;
10370b57cec5SDimitry Andric 
10380b57cec5SDimitry Andric     bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
10390b57cec5SDimitry Andric 
10400b57cec5SDimitry Andric     /// Return true if any actual instruction that defines a
10410b57cec5SDimitry Andric     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
10420b57cec5SDimitry Andric     /// register. This does not necessarily include registers defined in
10430b57cec5SDimitry Andric     /// unknown ways, such as incoming arguments, or copies from unknown
10440b57cec5SDimitry Andric     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
10450b57cec5SDimitry Andric     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
10460b57cec5SDimitry Andric     /// all instructions that define 32-bit values implicit zero-extend the
10470b57cec5SDimitry Andric     /// result out to 64 bits.
10480b57cec5SDimitry Andric     bool isZExtFree(Type *Ty1, Type *Ty2) const override;
10490b57cec5SDimitry Andric     bool isZExtFree(EVT VT1, EVT VT2) const override;
10500b57cec5SDimitry Andric     bool isZExtFree(SDValue Val, EVT VT2) const override;
10510b57cec5SDimitry Andric 
10520b57cec5SDimitry Andric     /// Return true if folding a vector load into ExtVal (a sign, zero, or any
10530b57cec5SDimitry Andric     /// extend node) is profitable.
10540b57cec5SDimitry Andric     bool isVectorLoadExtDesirable(SDValue) const override;
10550b57cec5SDimitry Andric 
10560b57cec5SDimitry Andric     /// Return true if an FMA operation is faster than a pair of fmul and fadd
10570b57cec5SDimitry Andric     /// instructions. fmuladd intrinsics will be expanded to FMAs when this
10580b57cec5SDimitry Andric     /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
10590b57cec5SDimitry Andric     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
10600b57cec5SDimitry Andric 
10610b57cec5SDimitry Andric     /// Return true if it's profitable to narrow
10620b57cec5SDimitry Andric     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
10630b57cec5SDimitry Andric     /// from i32 to i8 but not from i32 to i16.
10640b57cec5SDimitry Andric     bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
10650b57cec5SDimitry Andric 
10660b57cec5SDimitry Andric     /// Given an intrinsic, checks if on the target the intrinsic will need to map
10670b57cec5SDimitry Andric     /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
10680b57cec5SDimitry Andric     /// true and stores the intrinsic information into the IntrinsicInfo that was
10690b57cec5SDimitry Andric     /// passed to the function.
10700b57cec5SDimitry Andric     bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
10710b57cec5SDimitry Andric                             MachineFunction &MF,
10720b57cec5SDimitry Andric                             unsigned Intrinsic) const override;
10730b57cec5SDimitry Andric 
10740b57cec5SDimitry Andric     /// Returns true if the target can instruction select the
10750b57cec5SDimitry Andric     /// specified FP immediate natively. If false, the legalizer will
10760b57cec5SDimitry Andric     /// materialize the FP immediate as a load from a constant pool.
10770b57cec5SDimitry Andric     bool isFPImmLegal(const APFloat &Imm, EVT VT,
10780b57cec5SDimitry Andric                       bool ForCodeSize) const override;
10790b57cec5SDimitry Andric 
10800b57cec5SDimitry Andric     /// Targets can use this to indicate that they only support *some*
10810b57cec5SDimitry Andric     /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
10820b57cec5SDimitry Andric     /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
10830b57cec5SDimitry Andric     /// be legal.
10840b57cec5SDimitry Andric     bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
10850b57cec5SDimitry Andric 
10860b57cec5SDimitry Andric     /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
10870b57cec5SDimitry Andric     /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
10880b57cec5SDimitry Andric     /// constant pool entry.
10890b57cec5SDimitry Andric     bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
10900b57cec5SDimitry Andric 
10910b57cec5SDimitry Andric     /// Returns true if lowering to a jump table is allowed.
10920b57cec5SDimitry Andric     bool areJTsAllowed(const Function *Fn) const override;
10930b57cec5SDimitry Andric 
10940b57cec5SDimitry Andric     /// If true, then instruction selection should
10950b57cec5SDimitry Andric     /// seek to shrink the FP constant of the specified type to a smaller type
10960b57cec5SDimitry Andric     /// in order to save space and / or reduce runtime.
10970b57cec5SDimitry Andric     bool ShouldShrinkFPConstant(EVT VT) const override {
10980b57cec5SDimitry Andric       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
10990b57cec5SDimitry Andric       // expensive than a straight movsd. On the other hand, it's important to
11000b57cec5SDimitry Andric       // shrink long double fp constant since fldt is very slow.
11010b57cec5SDimitry Andric       return !X86ScalarSSEf64 || VT == MVT::f80;
11020b57cec5SDimitry Andric     }
11030b57cec5SDimitry Andric 
11040b57cec5SDimitry Andric     /// Return true if we believe it is correct and profitable to reduce the
11050b57cec5SDimitry Andric     /// load node to a smaller type.
11060b57cec5SDimitry Andric     bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
11070b57cec5SDimitry Andric                                EVT NewVT) const override;
11080b57cec5SDimitry Andric 
11090b57cec5SDimitry Andric     /// Return true if the specified scalar FP type is computed in an SSE
11100b57cec5SDimitry Andric     /// register, not on the X87 floating point stack.
11110b57cec5SDimitry Andric     bool isScalarFPTypeInSSEReg(EVT VT) const {
11120b57cec5SDimitry Andric       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
11130b57cec5SDimitry Andric              (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
11140b57cec5SDimitry Andric     }
11150b57cec5SDimitry Andric 
11160b57cec5SDimitry Andric     /// Returns true if it is beneficial to convert a load of a constant
11170b57cec5SDimitry Andric     /// to just the constant itself.
11180b57cec5SDimitry Andric     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
11190b57cec5SDimitry Andric                                            Type *Ty) const override;
11200b57cec5SDimitry Andric 
1121*8bcb0991SDimitry Andric     bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override;
11220b57cec5SDimitry Andric 
11230b57cec5SDimitry Andric     bool convertSelectOfConstantsToMath(EVT VT) const override;
11240b57cec5SDimitry Andric 
1125*8bcb0991SDimitry Andric     bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1126*8bcb0991SDimitry Andric                                 SDValue C) const override;
11270b57cec5SDimitry Andric 
11280b57cec5SDimitry Andric     bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
11290b57cec5SDimitry Andric                                   bool IsSigned) const override;
11300b57cec5SDimitry Andric 
11310b57cec5SDimitry Andric     /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
11320b57cec5SDimitry Andric     /// with this index.
11330b57cec5SDimitry Andric     bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
11340b57cec5SDimitry Andric                                  unsigned Index) const override;
11350b57cec5SDimitry Andric 
11360b57cec5SDimitry Andric     /// Scalar ops always have equal or better analysis/performance/power than
11370b57cec5SDimitry Andric     /// the vector equivalent, so this always makes sense if the scalar op is
11380b57cec5SDimitry Andric     /// supported.
11390b57cec5SDimitry Andric     bool shouldScalarizeBinop(SDValue) const override;
11400b57cec5SDimitry Andric 
11410b57cec5SDimitry Andric     /// Extract of a scalar FP value from index 0 of a vector is free.
11420b57cec5SDimitry Andric     bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
11430b57cec5SDimitry Andric       EVT EltVT = VT.getScalarType();
11440b57cec5SDimitry Andric       return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
11450b57cec5SDimitry Andric     }
11460b57cec5SDimitry Andric 
11470b57cec5SDimitry Andric     /// Overflow nodes should get combined/lowered to optimal instructions
11480b57cec5SDimitry Andric     /// (they should allow eliminating explicit compares by getting flags from
11490b57cec5SDimitry Andric     /// math ops).
11500b57cec5SDimitry Andric     bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const override;
11510b57cec5SDimitry Andric 
11520b57cec5SDimitry Andric     bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
11530b57cec5SDimitry Andric                                       unsigned AddrSpace) const override {
11540b57cec5SDimitry Andric       // If we can replace more than 2 scalar stores, there will be a reduction
11550b57cec5SDimitry Andric       // in instructions even after we add a vector constant load.
11560b57cec5SDimitry Andric       return NumElem > 2;
11570b57cec5SDimitry Andric     }
11580b57cec5SDimitry Andric 
11590b57cec5SDimitry Andric     bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
11600b57cec5SDimitry Andric                                  const SelectionDAG &DAG,
11610b57cec5SDimitry Andric                                  const MachineMemOperand &MMO) const override;
11620b57cec5SDimitry Andric 
11630b57cec5SDimitry Andric     /// Intel processors have a unified instruction and data cache
11640b57cec5SDimitry Andric     const char * getClearCacheBuiltinName() const override {
11650b57cec5SDimitry Andric       return nullptr; // nothing to do, move along.
11660b57cec5SDimitry Andric     }
11670b57cec5SDimitry Andric 
1168*8bcb0991SDimitry Andric     Register getRegisterByName(const char* RegName, EVT VT,
1169*8bcb0991SDimitry Andric                                const MachineFunction &MF) const override;
11700b57cec5SDimitry Andric 
11710b57cec5SDimitry Andric     /// If a physical register, this returns the register that receives the
11720b57cec5SDimitry Andric     /// exception address on entry to an EH pad.
11730b57cec5SDimitry Andric     unsigned
11740b57cec5SDimitry Andric     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
11750b57cec5SDimitry Andric 
11760b57cec5SDimitry Andric     /// If a physical register, this returns the register that receives the
11770b57cec5SDimitry Andric     /// exception typeid on entry to a landing pad.
11780b57cec5SDimitry Andric     unsigned
11790b57cec5SDimitry Andric     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
11800b57cec5SDimitry Andric 
11810b57cec5SDimitry Andric     virtual bool needsFixedCatchObjects() const override;
11820b57cec5SDimitry Andric 
11830b57cec5SDimitry Andric     /// This method returns a target specific FastISel object,
11840b57cec5SDimitry Andric     /// or null if the target does not support "fast" ISel.
11850b57cec5SDimitry Andric     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
11860b57cec5SDimitry Andric                              const TargetLibraryInfo *libInfo) const override;
11870b57cec5SDimitry Andric 
11880b57cec5SDimitry Andric     /// If the target has a standard location for the stack protector cookie,
11890b57cec5SDimitry Andric     /// returns the address of that location. Otherwise, returns nullptr.
11900b57cec5SDimitry Andric     Value *getIRStackGuard(IRBuilder<> &IRB) const override;
11910b57cec5SDimitry Andric 
11920b57cec5SDimitry Andric     bool useLoadStackGuardNode() const override;
11930b57cec5SDimitry Andric     bool useStackGuardXorFP() const override;
11940b57cec5SDimitry Andric     void insertSSPDeclarations(Module &M) const override;
11950b57cec5SDimitry Andric     Value *getSDagStackGuard(const Module &M) const override;
11960b57cec5SDimitry Andric     Function *getSSPStackGuardCheck(const Module &M) const override;
11970b57cec5SDimitry Andric     SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
11980b57cec5SDimitry Andric                                 const SDLoc &DL) const override;
11990b57cec5SDimitry Andric 
12000b57cec5SDimitry Andric 
12010b57cec5SDimitry Andric     /// Return true if the target stores SafeStack pointer at a fixed offset in
12020b57cec5SDimitry Andric     /// some non-standard address space, and populates the address space and
12030b57cec5SDimitry Andric     /// offset as appropriate.
12040b57cec5SDimitry Andric     Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;
12050b57cec5SDimitry Andric 
12060b57cec5SDimitry Andric     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
12070b57cec5SDimitry Andric                       SelectionDAG &DAG) const;
12080b57cec5SDimitry Andric 
12090b57cec5SDimitry Andric     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
12100b57cec5SDimitry Andric 
12110b57cec5SDimitry Andric     /// Customize the preferred legalization strategy for certain types.
12120b57cec5SDimitry Andric     LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;
12130b57cec5SDimitry Andric 
12140b57cec5SDimitry Andric     MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
12150b57cec5SDimitry Andric                                       EVT VT) const override;
12160b57cec5SDimitry Andric 
12170b57cec5SDimitry Andric     unsigned getNumRegistersForCallingConv(LLVMContext &Context,
12180b57cec5SDimitry Andric                                            CallingConv::ID CC,
12190b57cec5SDimitry Andric                                            EVT VT) const override;
12200b57cec5SDimitry Andric 
1221*8bcb0991SDimitry Andric     unsigned getVectorTypeBreakdownForCallingConv(
1222*8bcb0991SDimitry Andric         LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1223*8bcb0991SDimitry Andric         unsigned &NumIntermediates, MVT &RegisterVT) const override;
1224*8bcb0991SDimitry Andric 
12250b57cec5SDimitry Andric     bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
12260b57cec5SDimitry Andric 
12270b57cec5SDimitry Andric     bool supportSwiftError() const override;
12280b57cec5SDimitry Andric 
12290b57cec5SDimitry Andric     StringRef getStackProbeSymbolName(MachineFunction &MF) const override;
12300b57cec5SDimitry Andric 
1231*8bcb0991SDimitry Andric     unsigned getStackProbeSize(MachineFunction &MF) const;
1232*8bcb0991SDimitry Andric 
12330b57cec5SDimitry Andric     bool hasVectorBlend() const override { return true; }
12340b57cec5SDimitry Andric 
12350b57cec5SDimitry Andric     unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
12360b57cec5SDimitry Andric 
12370b57cec5SDimitry Andric     /// Lower interleaved load(s) into target specific
12380b57cec5SDimitry Andric     /// instructions/intrinsics.
12390b57cec5SDimitry Andric     bool lowerInterleavedLoad(LoadInst *LI,
12400b57cec5SDimitry Andric                               ArrayRef<ShuffleVectorInst *> Shuffles,
12410b57cec5SDimitry Andric                               ArrayRef<unsigned> Indices,
12420b57cec5SDimitry Andric                               unsigned Factor) const override;
12430b57cec5SDimitry Andric 
12440b57cec5SDimitry Andric     /// Lower interleaved store(s) into target specific
12450b57cec5SDimitry Andric     /// instructions/intrinsics.
12460b57cec5SDimitry Andric     bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
12470b57cec5SDimitry Andric                                unsigned Factor) const override;
12480b57cec5SDimitry Andric 
12490b57cec5SDimitry Andric     SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
12500b57cec5SDimitry Andric                                    SDValue Addr, SelectionDAG &DAG)
12510b57cec5SDimitry Andric                                    const override;
12520b57cec5SDimitry Andric 
12530b57cec5SDimitry Andric   protected:
12540b57cec5SDimitry Andric     std::pair<const TargetRegisterClass *, uint8_t>
12550b57cec5SDimitry Andric     findRepresentativeClass(const TargetRegisterInfo *TRI,
12560b57cec5SDimitry Andric                             MVT VT) const override;
12570b57cec5SDimitry Andric 
12580b57cec5SDimitry Andric   private:
12590b57cec5SDimitry Andric     /// Keep a reference to the X86Subtarget around so that we can
12600b57cec5SDimitry Andric     /// make the right decision when generating code for different targets.
12610b57cec5SDimitry Andric     const X86Subtarget &Subtarget;
12620b57cec5SDimitry Andric 
12630b57cec5SDimitry Andric     /// Select between SSE or x87 floating point ops.
12640b57cec5SDimitry Andric     /// When SSE is available, use it for f32 operations.
12650b57cec5SDimitry Andric     /// When SSE2 is available, use it for f64 operations.
12660b57cec5SDimitry Andric     bool X86ScalarSSEf32;
12670b57cec5SDimitry Andric     bool X86ScalarSSEf64;
12680b57cec5SDimitry Andric 
12690b57cec5SDimitry Andric     /// A list of legal FP immediates.
12700b57cec5SDimitry Andric     std::vector<APFloat> LegalFPImmediates;
12710b57cec5SDimitry Andric 
12720b57cec5SDimitry Andric     /// Indicate that this x86 target can instruction
12730b57cec5SDimitry Andric     /// select the specified FP immediate natively.
12740b57cec5SDimitry Andric     void addLegalFPImmediate(const APFloat& Imm) {
12750b57cec5SDimitry Andric       LegalFPImmediates.push_back(Imm);
12760b57cec5SDimitry Andric     }
12770b57cec5SDimitry Andric 
12780b57cec5SDimitry Andric     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
12790b57cec5SDimitry Andric                             CallingConv::ID CallConv, bool isVarArg,
12800b57cec5SDimitry Andric                             const SmallVectorImpl<ISD::InputArg> &Ins,
12810b57cec5SDimitry Andric                             const SDLoc &dl, SelectionDAG &DAG,
12820b57cec5SDimitry Andric                             SmallVectorImpl<SDValue> &InVals,
12830b57cec5SDimitry Andric                             uint32_t *RegMask) const;
12840b57cec5SDimitry Andric     SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
12850b57cec5SDimitry Andric                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
12860b57cec5SDimitry Andric                              const SDLoc &dl, SelectionDAG &DAG,
12870b57cec5SDimitry Andric                              const CCValAssign &VA, MachineFrameInfo &MFI,
12880b57cec5SDimitry Andric                              unsigned i) const;
12890b57cec5SDimitry Andric     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
12900b57cec5SDimitry Andric                              const SDLoc &dl, SelectionDAG &DAG,
12910b57cec5SDimitry Andric                              const CCValAssign &VA,
12920b57cec5SDimitry Andric                              ISD::ArgFlagsTy Flags) const;
12930b57cec5SDimitry Andric 
12940b57cec5SDimitry Andric     // Call lowering helpers.
12950b57cec5SDimitry Andric 
12960b57cec5SDimitry Andric     /// Check whether the call is eligible for tail call optimization. Targets
12970b57cec5SDimitry Andric     /// that want to do tail call optimization should implement this function.
12980b57cec5SDimitry Andric     bool IsEligibleForTailCallOptimization(SDValue Callee,
12990b57cec5SDimitry Andric                                            CallingConv::ID CalleeCC,
13000b57cec5SDimitry Andric                                            bool isVarArg,
13010b57cec5SDimitry Andric                                            bool isCalleeStructRet,
13020b57cec5SDimitry Andric                                            bool isCallerStructRet,
13030b57cec5SDimitry Andric                                            Type *RetTy,
13040b57cec5SDimitry Andric                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
13050b57cec5SDimitry Andric                                     const SmallVectorImpl<SDValue> &OutVals,
13060b57cec5SDimitry Andric                                     const SmallVectorImpl<ISD::InputArg> &Ins,
13070b57cec5SDimitry Andric                                            SelectionDAG& DAG) const;
13080b57cec5SDimitry Andric     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
13090b57cec5SDimitry Andric                                     SDValue Chain, bool IsTailCall,
13100b57cec5SDimitry Andric                                     bool Is64Bit, int FPDiff,
13110b57cec5SDimitry Andric                                     const SDLoc &dl) const;
13120b57cec5SDimitry Andric 
13130b57cec5SDimitry Andric     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
13140b57cec5SDimitry Andric                                          SelectionDAG &DAG) const;
13150b57cec5SDimitry Andric 
13160b57cec5SDimitry Andric     unsigned getAddressSpace(void) const;
13170b57cec5SDimitry Andric 
13180b57cec5SDimitry Andric     SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned) const;
13190b57cec5SDimitry Andric 
13200b57cec5SDimitry Andric     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
13210b57cec5SDimitry Andric     SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
13220b57cec5SDimitry Andric     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
13230b57cec5SDimitry Andric     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
13240b57cec5SDimitry Andric 
13250b57cec5SDimitry Andric     unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
13260b57cec5SDimitry Andric                                   const unsigned char OpFlags = 0) const;
13270b57cec5SDimitry Andric     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
13280b57cec5SDimitry Andric     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
13290b57cec5SDimitry Andric     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
13300b57cec5SDimitry Andric     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
13310b57cec5SDimitry Andric     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
13320b57cec5SDimitry Andric 
13330b57cec5SDimitry Andric     /// Creates target global address or external symbol nodes for calls or
13340b57cec5SDimitry Andric     /// other uses.
13350b57cec5SDimitry Andric     SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
13360b57cec5SDimitry Andric                                   bool ForCall) const;
13370b57cec5SDimitry Andric 
13380b57cec5SDimitry Andric     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
13390b57cec5SDimitry Andric     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
13400b57cec5SDimitry Andric     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
13410b57cec5SDimitry Andric     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
13420b57cec5SDimitry Andric     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
13430b57cec5SDimitry Andric     SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
13440b57cec5SDimitry Andric     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
13450b57cec5SDimitry Andric     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
13460b57cec5SDimitry Andric     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
13470b57cec5SDimitry Andric     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
13480b57cec5SDimitry Andric     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
13490b57cec5SDimitry Andric     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
13500b57cec5SDimitry Andric     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
13510b57cec5SDimitry Andric     SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
13520b57cec5SDimitry Andric     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
13530b57cec5SDimitry Andric     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
13540b57cec5SDimitry Andric     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
13550b57cec5SDimitry Andric     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
13560b57cec5SDimitry Andric     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
13570b57cec5SDimitry Andric     SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
13580b57cec5SDimitry Andric     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
13590b57cec5SDimitry Andric     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
13600b57cec5SDimitry Andric     SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
13610b57cec5SDimitry Andric     SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
13620b57cec5SDimitry Andric     SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
13630b57cec5SDimitry Andric     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1364*8bcb0991SDimitry Andric     SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const;
1365*8bcb0991SDimitry Andric     SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1366*8bcb0991SDimitry Andric     SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1367*8bcb0991SDimitry Andric 
1368*8bcb0991SDimitry Andric     SDValue LowerF128Call(SDValue Op, SelectionDAG &DAG,
1369*8bcb0991SDimitry Andric                           RTLIB::Libcall Call) const;
13700b57cec5SDimitry Andric 
13710b57cec5SDimitry Andric     SDValue
13720b57cec5SDimitry Andric     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
13730b57cec5SDimitry Andric                          const SmallVectorImpl<ISD::InputArg> &Ins,
13740b57cec5SDimitry Andric                          const SDLoc &dl, SelectionDAG &DAG,
13750b57cec5SDimitry Andric                          SmallVectorImpl<SDValue> &InVals) const override;
13760b57cec5SDimitry Andric     SDValue LowerCall(CallLoweringInfo &CLI,
13770b57cec5SDimitry Andric                       SmallVectorImpl<SDValue> &InVals) const override;
13780b57cec5SDimitry Andric 
13790b57cec5SDimitry Andric     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
13800b57cec5SDimitry Andric                         const SmallVectorImpl<ISD::OutputArg> &Outs,
13810b57cec5SDimitry Andric                         const SmallVectorImpl<SDValue> &OutVals,
13820b57cec5SDimitry Andric                         const SDLoc &dl, SelectionDAG &DAG) const override;
13830b57cec5SDimitry Andric 
13840b57cec5SDimitry Andric     bool supportSplitCSR(MachineFunction *MF) const override {
13850b57cec5SDimitry Andric       return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
13860b57cec5SDimitry Andric           MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
13870b57cec5SDimitry Andric     }
13880b57cec5SDimitry Andric     void initializeSplitCSR(MachineBasicBlock *Entry) const override;
13890b57cec5SDimitry Andric     void insertCopiesSplitCSR(
13900b57cec5SDimitry Andric       MachineBasicBlock *Entry,
13910b57cec5SDimitry Andric       const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
13920b57cec5SDimitry Andric 
13930b57cec5SDimitry Andric     bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
13940b57cec5SDimitry Andric 
13950b57cec5SDimitry Andric     bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
13960b57cec5SDimitry Andric 
13970b57cec5SDimitry Andric     EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
13980b57cec5SDimitry Andric                             ISD::NodeType ExtendKind) const override;
13990b57cec5SDimitry Andric 
14000b57cec5SDimitry Andric     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
14010b57cec5SDimitry Andric                         bool isVarArg,
14020b57cec5SDimitry Andric                         const SmallVectorImpl<ISD::OutputArg> &Outs,
14030b57cec5SDimitry Andric                         LLVMContext &Context) const override;
14040b57cec5SDimitry Andric 
14050b57cec5SDimitry Andric     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
14060b57cec5SDimitry Andric 
14070b57cec5SDimitry Andric     TargetLoweringBase::AtomicExpansionKind
14080b57cec5SDimitry Andric     shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
14090b57cec5SDimitry Andric     bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
14100b57cec5SDimitry Andric     TargetLoweringBase::AtomicExpansionKind
14110b57cec5SDimitry Andric     shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
14120b57cec5SDimitry Andric 
14130b57cec5SDimitry Andric     LoadInst *
14140b57cec5SDimitry Andric     lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
14150b57cec5SDimitry Andric 
1416*8bcb0991SDimitry Andric     bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const override;
1417*8bcb0991SDimitry Andric     bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const override;
1418*8bcb0991SDimitry Andric 
14190b57cec5SDimitry Andric     bool needsCmpXchgNb(Type *MemType) const;
14200b57cec5SDimitry Andric 
14210b57cec5SDimitry Andric     void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
14220b57cec5SDimitry Andric                                 MachineBasicBlock *DispatchBB, int FI) const;
14230b57cec5SDimitry Andric 
14240b57cec5SDimitry Andric     // Utility function to emit the low-level va_arg code for X86-64.
14250b57cec5SDimitry Andric     MachineBasicBlock *
14260b57cec5SDimitry Andric     EmitVAARG64WithCustomInserter(MachineInstr &MI,
14270b57cec5SDimitry Andric                                   MachineBasicBlock *MBB) const;
14280b57cec5SDimitry Andric 
14290b57cec5SDimitry Andric     /// Utility function to emit the xmm reg save portion of va_start.
14300b57cec5SDimitry Andric     MachineBasicBlock *
14310b57cec5SDimitry Andric     EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
14320b57cec5SDimitry Andric                                              MachineBasicBlock *BB) const;
14330b57cec5SDimitry Andric 
14340b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
14350b57cec5SDimitry Andric                                                  MachineInstr &MI2,
14360b57cec5SDimitry Andric                                                  MachineBasicBlock *BB) const;
14370b57cec5SDimitry Andric 
14380b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
14390b57cec5SDimitry Andric                                          MachineBasicBlock *BB) const;
14400b57cec5SDimitry Andric 
14410b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
14420b57cec5SDimitry Andric                                            MachineBasicBlock *BB) const;
14430b57cec5SDimitry Andric 
14440b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
14450b57cec5SDimitry Andric                                            MachineBasicBlock *BB) const;
14460b57cec5SDimitry Andric 
14470b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
14480b57cec5SDimitry Andric                                            MachineBasicBlock *BB) const;
14490b57cec5SDimitry Andric 
14500b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
14510b57cec5SDimitry Andric                                             MachineBasicBlock *BB) const;
14520b57cec5SDimitry Andric 
14530b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
14540b57cec5SDimitry Andric                                           MachineBasicBlock *BB) const;
14550b57cec5SDimitry Andric 
14560b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
14570b57cec5SDimitry Andric                                           MachineBasicBlock *BB) const;
14580b57cec5SDimitry Andric 
14590b57cec5SDimitry Andric     MachineBasicBlock *EmitLoweredRetpoline(MachineInstr &MI,
14600b57cec5SDimitry Andric                                             MachineBasicBlock *BB) const;
14610b57cec5SDimitry Andric 
14620b57cec5SDimitry Andric     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
14630b57cec5SDimitry Andric                                         MachineBasicBlock *MBB) const;
14640b57cec5SDimitry Andric 
14650b57cec5SDimitry Andric     void emitSetJmpShadowStackFix(MachineInstr &MI,
14660b57cec5SDimitry Andric                                   MachineBasicBlock *MBB) const;
14670b57cec5SDimitry Andric 
14680b57cec5SDimitry Andric     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
14690b57cec5SDimitry Andric                                          MachineBasicBlock *MBB) const;
14700b57cec5SDimitry Andric 
14710b57cec5SDimitry Andric     MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
14720b57cec5SDimitry Andric                                                  MachineBasicBlock *MBB) const;
14730b57cec5SDimitry Andric 
14740b57cec5SDimitry Andric     MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
14750b57cec5SDimitry Andric                                      MachineBasicBlock *MBB) const;
14760b57cec5SDimitry Andric 
14770b57cec5SDimitry Andric     MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
14780b57cec5SDimitry Andric                                              MachineBasicBlock *MBB) const;
14790b57cec5SDimitry Andric 
14800b57cec5SDimitry Andric     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
14810b57cec5SDimitry Andric     /// equivalent, for use with the given x86 condition code.
14820b57cec5SDimitry Andric     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
14830b57cec5SDimitry Andric                     SelectionDAG &DAG) const;
14840b57cec5SDimitry Andric 
14850b57cec5SDimitry Andric     /// Convert a comparison if required by the subtarget.
14860b57cec5SDimitry Andric     SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
14870b57cec5SDimitry Andric 
14880b57cec5SDimitry Andric     /// Emit flags for the given setcc condition and operands. Also returns the
14890b57cec5SDimitry Andric     /// corresponding X86 condition code constant in X86CC.
14900b57cec5SDimitry Andric     SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1,
14910b57cec5SDimitry Andric                               ISD::CondCode CC, const SDLoc &dl,
14920b57cec5SDimitry Andric                               SelectionDAG &DAG,
14930b57cec5SDimitry Andric                               SDValue &X86CC) const;
14940b57cec5SDimitry Andric 
14950b57cec5SDimitry Andric     /// Check if replacement of SQRT with RSQRT should be disabled.
14960b57cec5SDimitry Andric     bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;
14970b57cec5SDimitry Andric 
14980b57cec5SDimitry Andric     /// Use rsqrt* to speed up sqrt calculations.
14990b57cec5SDimitry Andric     SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
15000b57cec5SDimitry Andric                             int &RefinementSteps, bool &UseOneConstNR,
15010b57cec5SDimitry Andric                             bool Reciprocal) const override;
15020b57cec5SDimitry Andric 
15030b57cec5SDimitry Andric     /// Use rcp* to speed up fdiv calculations.
15040b57cec5SDimitry Andric     SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
15050b57cec5SDimitry Andric                              int &RefinementSteps) const override;
15060b57cec5SDimitry Andric 
15070b57cec5SDimitry Andric     /// Reassociate floating point divisions into multiply by reciprocal.
15080b57cec5SDimitry Andric     unsigned combineRepeatedFPDivisors() const override;
1509*8bcb0991SDimitry Andric 
1510*8bcb0991SDimitry Andric     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
1511*8bcb0991SDimitry Andric                           SmallVectorImpl<SDNode *> &Created) const override;
15120b57cec5SDimitry Andric   };
15130b57cec5SDimitry Andric 
15140b57cec5SDimitry Andric   namespace X86 {
15150b57cec5SDimitry Andric     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
15160b57cec5SDimitry Andric                              const TargetLibraryInfo *libInfo);
15170b57cec5SDimitry Andric   } // end namespace X86
15180b57cec5SDimitry Andric 
15190b57cec5SDimitry Andric   // Base class for all X86 non-masked store operations.
15200b57cec5SDimitry Andric   class X86StoreSDNode : public MemSDNode {
15210b57cec5SDimitry Andric   public:
15220b57cec5SDimitry Andric     X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
15230b57cec5SDimitry Andric                    SDVTList VTs, EVT MemVT,
15240b57cec5SDimitry Andric                    MachineMemOperand *MMO)
15250b57cec5SDimitry Andric       :MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
15260b57cec5SDimitry Andric     const SDValue &getValue() const { return getOperand(1); }
15270b57cec5SDimitry Andric     const SDValue &getBasePtr() const { return getOperand(2); }
15280b57cec5SDimitry Andric 
15290b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
15300b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::VTRUNCSTORES ||
15310b57cec5SDimitry Andric         N->getOpcode() == X86ISD::VTRUNCSTOREUS;
15320b57cec5SDimitry Andric     }
15330b57cec5SDimitry Andric   };
15340b57cec5SDimitry Andric 
15350b57cec5SDimitry Andric   // Base class for all X86 masked store operations.
15360b57cec5SDimitry Andric   // The class has the same order of operands as MaskedStoreSDNode for
15370b57cec5SDimitry Andric   // convenience.
15380b57cec5SDimitry Andric   class X86MaskedStoreSDNode : public MemSDNode {
15390b57cec5SDimitry Andric   public:
15400b57cec5SDimitry Andric     X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
15410b57cec5SDimitry Andric                          const DebugLoc &dl, SDVTList VTs, EVT MemVT,
15420b57cec5SDimitry Andric                          MachineMemOperand *MMO)
15430b57cec5SDimitry Andric       : MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
15440b57cec5SDimitry Andric 
15450b57cec5SDimitry Andric     const SDValue &getValue()   const { return getOperand(1); }
15460b57cec5SDimitry Andric     const SDValue &getBasePtr() const { return getOperand(2); }
15470b57cec5SDimitry Andric     const SDValue &getMask()    const { return getOperand(3); }
15480b57cec5SDimitry Andric 
15490b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
15500b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
15510b57cec5SDimitry Andric         N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
15520b57cec5SDimitry Andric     }
15530b57cec5SDimitry Andric   };
15540b57cec5SDimitry Andric 
15550b57cec5SDimitry Andric   // X86 Truncating Store with Signed saturation.
15560b57cec5SDimitry Andric   class TruncSStoreSDNode : public X86StoreSDNode {
15570b57cec5SDimitry Andric   public:
15580b57cec5SDimitry Andric     TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
15590b57cec5SDimitry Andric                         SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
15600b57cec5SDimitry Andric       : X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
15610b57cec5SDimitry Andric 
15620b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
15630b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::VTRUNCSTORES;
15640b57cec5SDimitry Andric     }
15650b57cec5SDimitry Andric   };
15660b57cec5SDimitry Andric 
15670b57cec5SDimitry Andric   // X86 Truncating Store with Unsigned saturation.
15680b57cec5SDimitry Andric   class TruncUSStoreSDNode : public X86StoreSDNode {
15690b57cec5SDimitry Andric   public:
15700b57cec5SDimitry Andric     TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
15710b57cec5SDimitry Andric                       SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
15720b57cec5SDimitry Andric       : X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
15730b57cec5SDimitry Andric 
15740b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
15750b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
15760b57cec5SDimitry Andric     }
15770b57cec5SDimitry Andric   };
15780b57cec5SDimitry Andric 
15790b57cec5SDimitry Andric   // X86 Truncating Masked Store with Signed saturation.
15800b57cec5SDimitry Andric   class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
15810b57cec5SDimitry Andric   public:
15820b57cec5SDimitry Andric     MaskedTruncSStoreSDNode(unsigned Order,
15830b57cec5SDimitry Andric                          const DebugLoc &dl, SDVTList VTs, EVT MemVT,
15840b57cec5SDimitry Andric                          MachineMemOperand *MMO)
15850b57cec5SDimitry Andric       : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
15860b57cec5SDimitry Andric 
15870b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
15880b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::VMTRUNCSTORES;
15890b57cec5SDimitry Andric     }
15900b57cec5SDimitry Andric   };
15910b57cec5SDimitry Andric 
15920b57cec5SDimitry Andric   // X86 Truncating Masked Store with Unsigned saturation.
15930b57cec5SDimitry Andric   class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
15940b57cec5SDimitry Andric   public:
15950b57cec5SDimitry Andric     MaskedTruncUSStoreSDNode(unsigned Order,
15960b57cec5SDimitry Andric                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
15970b57cec5SDimitry Andric                             MachineMemOperand *MMO)
15980b57cec5SDimitry Andric       : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
15990b57cec5SDimitry Andric 
16000b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
16010b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
16020b57cec5SDimitry Andric     }
16030b57cec5SDimitry Andric   };
16040b57cec5SDimitry Andric 
16050b57cec5SDimitry Andric   // X86 specific Gather/Scatter nodes.
16060b57cec5SDimitry Andric   // The class has the same order of operands as MaskedGatherScatterSDNode for
16070b57cec5SDimitry Andric   // convenience.
16080b57cec5SDimitry Andric   class X86MaskedGatherScatterSDNode : public MemSDNode {
16090b57cec5SDimitry Andric   public:
16100b57cec5SDimitry Andric     X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
16110b57cec5SDimitry Andric                                  const DebugLoc &dl, SDVTList VTs, EVT MemVT,
16120b57cec5SDimitry Andric                                  MachineMemOperand *MMO)
16130b57cec5SDimitry Andric         : MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}
16140b57cec5SDimitry Andric 
16150b57cec5SDimitry Andric     const SDValue &getBasePtr() const { return getOperand(3); }
16160b57cec5SDimitry Andric     const SDValue &getIndex()   const { return getOperand(4); }
16170b57cec5SDimitry Andric     const SDValue &getMask()    const { return getOperand(2); }
16180b57cec5SDimitry Andric     const SDValue &getScale()   const { return getOperand(5); }
16190b57cec5SDimitry Andric 
16200b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
16210b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::MGATHER ||
16220b57cec5SDimitry Andric              N->getOpcode() == X86ISD::MSCATTER;
16230b57cec5SDimitry Andric     }
16240b57cec5SDimitry Andric   };
16250b57cec5SDimitry Andric 
16260b57cec5SDimitry Andric   class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
16270b57cec5SDimitry Andric   public:
16280b57cec5SDimitry Andric     X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
16290b57cec5SDimitry Andric                           EVT MemVT, MachineMemOperand *MMO)
16300b57cec5SDimitry Andric         : X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
16310b57cec5SDimitry Andric                                        MMO) {}
16320b57cec5SDimitry Andric 
16330b57cec5SDimitry Andric     const SDValue &getPassThru() const { return getOperand(1); }
16340b57cec5SDimitry Andric 
16350b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
16360b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::MGATHER;
16370b57cec5SDimitry Andric     }
16380b57cec5SDimitry Andric   };
16390b57cec5SDimitry Andric 
16400b57cec5SDimitry Andric   class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
16410b57cec5SDimitry Andric   public:
16420b57cec5SDimitry Andric     X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
16430b57cec5SDimitry Andric                            EVT MemVT, MachineMemOperand *MMO)
16440b57cec5SDimitry Andric         : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
16450b57cec5SDimitry Andric                                        MMO) {}
16460b57cec5SDimitry Andric 
16470b57cec5SDimitry Andric     const SDValue &getValue() const { return getOperand(1); }
16480b57cec5SDimitry Andric 
16490b57cec5SDimitry Andric     static bool classof(const SDNode *N) {
16500b57cec5SDimitry Andric       return N->getOpcode() == X86ISD::MSCATTER;
16510b57cec5SDimitry Andric     }
16520b57cec5SDimitry Andric   };
16530b57cec5SDimitry Andric 
16540b57cec5SDimitry Andric   /// Generate unpacklo/unpackhi shuffle mask.
16550b57cec5SDimitry Andric   template <typename T = int>
16560b57cec5SDimitry Andric   void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
16570b57cec5SDimitry Andric                                bool Unary) {
16580b57cec5SDimitry Andric     assert(Mask.empty() && "Expected an empty shuffle mask vector");
16590b57cec5SDimitry Andric     int NumElts = VT.getVectorNumElements();
16600b57cec5SDimitry Andric     int NumEltsInLane = 128 / VT.getScalarSizeInBits();
16610b57cec5SDimitry Andric     for (int i = 0; i < NumElts; ++i) {
16620b57cec5SDimitry Andric       unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
16630b57cec5SDimitry Andric       int Pos = (i % NumEltsInLane) / 2 + LaneStart;
16640b57cec5SDimitry Andric       Pos += (Unary ? 0 : NumElts * (i % 2));
16650b57cec5SDimitry Andric       Pos += (Lo ? 0 : NumEltsInLane / 2);
16660b57cec5SDimitry Andric       Mask.push_back(Pos);
16670b57cec5SDimitry Andric     }
16680b57cec5SDimitry Andric   }
16690b57cec5SDimitry Andric 
16700b57cec5SDimitry Andric   /// Helper function to scale a shuffle or target shuffle mask, replacing each
16710b57cec5SDimitry Andric   /// mask index with the scaled sequential indices for an equivalent narrowed
16720b57cec5SDimitry Andric   /// mask. This is the reverse process to canWidenShuffleElements, but can
16730b57cec5SDimitry Andric   /// always succeed.
16740b57cec5SDimitry Andric   template <typename T>
1675*8bcb0991SDimitry Andric   void scaleShuffleMask(size_t Scale, ArrayRef<T> Mask,
16760b57cec5SDimitry Andric                         SmallVectorImpl<T> &ScaledMask) {
16770b57cec5SDimitry Andric     assert(0 < Scale && "Unexpected scaling factor");
16780b57cec5SDimitry Andric     size_t NumElts = Mask.size();
16790b57cec5SDimitry Andric     ScaledMask.assign(NumElts * Scale, -1);
16800b57cec5SDimitry Andric 
1681*8bcb0991SDimitry Andric     for (size_t i = 0; i != NumElts; ++i) {
16820b57cec5SDimitry Andric       int M = Mask[i];
16830b57cec5SDimitry Andric 
16840b57cec5SDimitry Andric       // Repeat sentinel values in every mask element.
16850b57cec5SDimitry Andric       if (M < 0) {
1686*8bcb0991SDimitry Andric         for (size_t s = 0; s != Scale; ++s)
16870b57cec5SDimitry Andric           ScaledMask[(Scale * i) + s] = M;
16880b57cec5SDimitry Andric         continue;
16890b57cec5SDimitry Andric       }
16900b57cec5SDimitry Andric 
16910b57cec5SDimitry Andric       // Scale mask element and increment across each mask element.
1692*8bcb0991SDimitry Andric       for (size_t s = 0; s != Scale; ++s)
16930b57cec5SDimitry Andric         ScaledMask[(Scale * i) + s] = (Scale * M) + s;
16940b57cec5SDimitry Andric     }
16950b57cec5SDimitry Andric   }
16960b57cec5SDimitry Andric } // end namespace llvm
16970b57cec5SDimitry Andric 
16980b57cec5SDimitry Andric #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
1699