1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a DAG pattern matching instruction selector for X86, 10 // converting from a legalized dag to a X86 dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86.h" 15 #include "X86MachineFunctionInfo.h" 16 #include "X86RegisterInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/MachineModuleInfo.h" 21 #include "llvm/CodeGen/SelectionDAGISel.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/IntrinsicsX86.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <cstdint> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "x86-isel" 38 39 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 40 41 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true), 42 cl::desc("Enable setting constant bits to reduce size of mask immediates"), 43 cl::Hidden); 44 45 static cl::opt<bool> EnablePromoteAnyextLoad( 46 "x86-promote-anyext-load", cl::init(true), 47 cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden); 48 49 extern cl::opt<bool> IndirectBranchTracking; 50 51 //===----------------------------------------------------------------------===// 52 // Pattern Matcher Implementation 53 //===----------------------------------------------------------------------===// 54 55 namespace { 56 /// This corresponds to X86AddressMode, but uses SDValue's instead of register 57 /// numbers for the leaves of the matched tree. 58 struct X86ISelAddressMode { 59 enum { 60 RegBase, 61 FrameIndexBase 62 } BaseType = RegBase; 63 64 // This is really a union, discriminated by BaseType! 65 SDValue Base_Reg; 66 int Base_FrameIndex = 0; 67 68 unsigned Scale = 1; 69 SDValue IndexReg; 70 int32_t Disp = 0; 71 SDValue Segment; 72 const GlobalValue *GV = nullptr; 73 const Constant *CP = nullptr; 74 const BlockAddress *BlockAddr = nullptr; 75 const char *ES = nullptr; 76 MCSymbol *MCSym = nullptr; 77 int JT = -1; 78 Align Alignment; // CP alignment. 79 unsigned char SymbolFlags = X86II::MO_NO_FLAG; // X86II::MO_* 80 bool NegateIndex = false; 81 82 X86ISelAddressMode() = default; 83 84 bool hasSymbolicDisplacement() const { 85 return GV != nullptr || CP != nullptr || ES != nullptr || 86 MCSym != nullptr || JT != -1 || BlockAddr != nullptr; 87 } 88 89 bool hasBaseOrIndexReg() const { 90 return BaseType == FrameIndexBase || 91 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr; 92 } 93 94 /// Return true if this addressing mode is already RIP-relative. 95 bool isRIPRelative() const { 96 if (BaseType != RegBase) return false; 97 if (RegisterSDNode *RegNode = 98 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) 99 return RegNode->getReg() == X86::RIP; 100 return false; 101 } 102 103 void setBaseReg(SDValue Reg) { 104 BaseType = RegBase; 105 Base_Reg = Reg; 106 } 107 108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 109 void dump(SelectionDAG *DAG = nullptr) { 110 dbgs() << "X86ISelAddressMode " << this << '\n'; 111 dbgs() << "Base_Reg "; 112 if (Base_Reg.getNode()) 113 Base_Reg.getNode()->dump(DAG); 114 else 115 dbgs() << "nul\n"; 116 if (BaseType == FrameIndexBase) 117 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'; 118 dbgs() << " Scale " << Scale << '\n' 119 << "IndexReg "; 120 if (NegateIndex) 121 dbgs() << "negate "; 122 if (IndexReg.getNode()) 123 IndexReg.getNode()->dump(DAG); 124 else 125 dbgs() << "nul\n"; 126 dbgs() << " Disp " << Disp << '\n' 127 << "GV "; 128 if (GV) 129 GV->dump(); 130 else 131 dbgs() << "nul"; 132 dbgs() << " CP "; 133 if (CP) 134 CP->dump(); 135 else 136 dbgs() << "nul"; 137 dbgs() << '\n' 138 << "ES "; 139 if (ES) 140 dbgs() << ES; 141 else 142 dbgs() << "nul"; 143 dbgs() << " MCSym "; 144 if (MCSym) 145 dbgs() << MCSym; 146 else 147 dbgs() << "nul"; 148 dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n'; 149 } 150 #endif 151 }; 152 } 153 154 namespace { 155 //===--------------------------------------------------------------------===// 156 /// ISel - X86-specific code to select X86 machine instructions for 157 /// SelectionDAG operations. 158 /// 159 class X86DAGToDAGISel final : public SelectionDAGISel { 160 /// Keep a pointer to the X86Subtarget around so that we can 161 /// make the right decision when generating code for different targets. 162 const X86Subtarget *Subtarget; 163 164 /// If true, selector should try to optimize for minimum code size. 165 bool OptForMinSize; 166 167 /// Disable direct TLS access through segment registers. 168 bool IndirectTlsSegRefs; 169 170 public: 171 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 172 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr), 173 OptForMinSize(false), IndirectTlsSegRefs(false) {} 174 175 StringRef getPassName() const override { 176 return "X86 DAG->DAG Instruction Selection"; 177 } 178 179 bool runOnMachineFunction(MachineFunction &MF) override { 180 // Reset the subtarget each time through. 181 Subtarget = &MF.getSubtarget<X86Subtarget>(); 182 IndirectTlsSegRefs = MF.getFunction().hasFnAttribute( 183 "indirect-tls-seg-refs"); 184 185 // OptFor[Min]Size are used in pattern predicates that isel is matching. 186 OptForMinSize = MF.getFunction().hasMinSize(); 187 assert((!OptForMinSize || MF.getFunction().hasOptSize()) && 188 "OptForMinSize implies OptForSize"); 189 190 SelectionDAGISel::runOnMachineFunction(MF); 191 return true; 192 } 193 194 void emitFunctionEntryCode() override; 195 196 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; 197 198 void PreprocessISelDAG() override; 199 void PostprocessISelDAG() override; 200 201 // Include the pieces autogenerated from the target description. 202 #include "X86GenDAGISel.inc" 203 204 private: 205 void Select(SDNode *N) override; 206 207 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); 208 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM, 209 bool AllowSegmentRegForX32 = false); 210 bool matchWrapper(SDValue N, X86ISelAddressMode &AM); 211 bool matchAddress(SDValue N, X86ISelAddressMode &AM); 212 bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM); 213 bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth); 214 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 215 unsigned Depth); 216 bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM, 217 unsigned Depth); 218 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM); 219 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base, 220 SDValue &Scale, SDValue &Index, SDValue &Disp, 221 SDValue &Segment); 222 bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp, 223 SDValue ScaleOp, SDValue &Base, SDValue &Scale, 224 SDValue &Index, SDValue &Disp, SDValue &Segment); 225 bool selectMOV64Imm32(SDValue N, SDValue &Imm); 226 bool selectLEAAddr(SDValue N, SDValue &Base, 227 SDValue &Scale, SDValue &Index, SDValue &Disp, 228 SDValue &Segment); 229 bool selectLEA64_32Addr(SDValue N, SDValue &Base, 230 SDValue &Scale, SDValue &Index, SDValue &Disp, 231 SDValue &Segment); 232 bool selectTLSADDRAddr(SDValue N, SDValue &Base, 233 SDValue &Scale, SDValue &Index, SDValue &Disp, 234 SDValue &Segment); 235 bool selectRelocImm(SDValue N, SDValue &Op); 236 237 bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, 238 SDValue &Base, SDValue &Scale, 239 SDValue &Index, SDValue &Disp, 240 SDValue &Segment); 241 242 // Convenience method where P is also root. 243 bool tryFoldLoad(SDNode *P, SDValue N, 244 SDValue &Base, SDValue &Scale, 245 SDValue &Index, SDValue &Disp, 246 SDValue &Segment) { 247 return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment); 248 } 249 250 bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N, 251 SDValue &Base, SDValue &Scale, 252 SDValue &Index, SDValue &Disp, 253 SDValue &Segment); 254 255 bool isProfitableToFormMaskedOp(SDNode *N) const; 256 257 /// Implement addressing mode selection for inline asm expressions. 258 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 259 unsigned ConstraintID, 260 std::vector<SDValue> &OutOps) override; 261 262 void emitSpecialCodeForMain(); 263 264 inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL, 265 MVT VT, SDValue &Base, SDValue &Scale, 266 SDValue &Index, SDValue &Disp, 267 SDValue &Segment) { 268 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 269 Base = CurDAG->getTargetFrameIndex( 270 AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout())); 271 else if (AM.Base_Reg.getNode()) 272 Base = AM.Base_Reg; 273 else 274 Base = CurDAG->getRegister(0, VT); 275 276 Scale = getI8Imm(AM.Scale, DL); 277 278 // Negate the index if needed. 279 if (AM.NegateIndex) { 280 unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r; 281 SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32, 282 AM.IndexReg), 0); 283 AM.IndexReg = Neg; 284 } 285 286 if (AM.IndexReg.getNode()) 287 Index = AM.IndexReg; 288 else 289 Index = CurDAG->getRegister(0, VT); 290 291 // These are 32-bit even in 64-bit mode since RIP-relative offset 292 // is 32-bit. 293 if (AM.GV) 294 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(), 295 MVT::i32, AM.Disp, 296 AM.SymbolFlags); 297 else if (AM.CP) 298 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment, 299 AM.Disp, AM.SymbolFlags); 300 else if (AM.ES) { 301 assert(!AM.Disp && "Non-zero displacement is ignored with ES."); 302 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 303 } else if (AM.MCSym) { 304 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym."); 305 assert(AM.SymbolFlags == 0 && "oo"); 306 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32); 307 } else if (AM.JT != -1) { 308 assert(!AM.Disp && "Non-zero displacement is ignored with JT."); 309 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 310 } else if (AM.BlockAddr) 311 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, 312 AM.SymbolFlags); 313 else 314 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32); 315 316 if (AM.Segment.getNode()) 317 Segment = AM.Segment; 318 else 319 Segment = CurDAG->getRegister(0, MVT::i16); 320 } 321 322 // Utility function to determine whether we should avoid selecting 323 // immediate forms of instructions for better code size or not. 324 // At a high level, we'd like to avoid such instructions when 325 // we have similar constants used within the same basic block 326 // that can be kept in a register. 327 // 328 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const { 329 uint32_t UseCount = 0; 330 331 // Do not want to hoist if we're not optimizing for size. 332 // TODO: We'd like to remove this restriction. 333 // See the comment in X86InstrInfo.td for more info. 334 if (!CurDAG->shouldOptForSize()) 335 return false; 336 337 // Walk all the users of the immediate. 338 for (const SDNode *User : N->uses()) { 339 if (UseCount >= 2) 340 break; 341 342 // This user is already selected. Count it as a legitimate use and 343 // move on. 344 if (User->isMachineOpcode()) { 345 UseCount++; 346 continue; 347 } 348 349 // We want to count stores of immediates as real uses. 350 if (User->getOpcode() == ISD::STORE && 351 User->getOperand(1).getNode() == N) { 352 UseCount++; 353 continue; 354 } 355 356 // We don't currently match users that have > 2 operands (except 357 // for stores, which are handled above) 358 // Those instruction won't match in ISEL, for now, and would 359 // be counted incorrectly. 360 // This may change in the future as we add additional instruction 361 // types. 362 if (User->getNumOperands() != 2) 363 continue; 364 365 // If this is a sign-extended 8-bit integer immediate used in an ALU 366 // instruction, there is probably an opcode encoding to save space. 367 auto *C = dyn_cast<ConstantSDNode>(N); 368 if (C && isInt<8>(C->getSExtValue())) 369 continue; 370 371 // Immediates that are used for offsets as part of stack 372 // manipulation should be left alone. These are typically 373 // used to indicate SP offsets for argument passing and 374 // will get pulled into stores/pushes (implicitly). 375 if (User->getOpcode() == X86ISD::ADD || 376 User->getOpcode() == ISD::ADD || 377 User->getOpcode() == X86ISD::SUB || 378 User->getOpcode() == ISD::SUB) { 379 380 // Find the other operand of the add/sub. 381 SDValue OtherOp = User->getOperand(0); 382 if (OtherOp.getNode() == N) 383 OtherOp = User->getOperand(1); 384 385 // Don't count if the other operand is SP. 386 RegisterSDNode *RegNode; 387 if (OtherOp->getOpcode() == ISD::CopyFromReg && 388 (RegNode = dyn_cast_or_null<RegisterSDNode>( 389 OtherOp->getOperand(1).getNode()))) 390 if ((RegNode->getReg() == X86::ESP) || 391 (RegNode->getReg() == X86::RSP)) 392 continue; 393 } 394 395 // ... otherwise, count this and move on. 396 UseCount++; 397 } 398 399 // If we have more than 1 use, then recommend for hoisting. 400 return (UseCount > 1); 401 } 402 403 /// Return a target constant with the specified value of type i8. 404 inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) { 405 return CurDAG->getTargetConstant(Imm, DL, MVT::i8); 406 } 407 408 /// Return a target constant with the specified value, of type i32. 409 inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) { 410 return CurDAG->getTargetConstant(Imm, DL, MVT::i32); 411 } 412 413 /// Return a target constant with the specified value, of type i64. 414 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) { 415 return CurDAG->getTargetConstant(Imm, DL, MVT::i64); 416 } 417 418 SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth, 419 const SDLoc &DL) { 420 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width"); 421 uint64_t Index = N->getConstantOperandVal(1); 422 MVT VecVT = N->getOperand(0).getSimpleValueType(); 423 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL); 424 } 425 426 SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth, 427 const SDLoc &DL) { 428 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width"); 429 uint64_t Index = N->getConstantOperandVal(2); 430 MVT VecVT = N->getSimpleValueType(0); 431 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL); 432 } 433 434 SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth, 435 const SDLoc &DL) { 436 assert(VecWidth == 128 && "Unexpected vector width"); 437 uint64_t Index = N->getConstantOperandVal(2); 438 MVT VecVT = N->getSimpleValueType(0); 439 uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth; 440 assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index"); 441 // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub) 442 // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub) 443 return getI8Imm(InsertIdx ? 0x02 : 0x30, DL); 444 } 445 446 SDValue getSBBZero(SDNode *N) { 447 SDLoc dl(N); 448 MVT VT = N->getSimpleValueType(0); 449 450 // Create zero. 451 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32); 452 SDValue Zero = 453 SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0); 454 if (VT == MVT::i64) { 455 Zero = SDValue( 456 CurDAG->getMachineNode( 457 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, 458 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero, 459 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)), 460 0); 461 } 462 463 // Copy flags to the EFLAGS register and glue it to next node. 464 unsigned Opcode = N->getOpcode(); 465 assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) && 466 "Unexpected opcode for SBB materialization"); 467 unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1; 468 SDValue EFLAGS = 469 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS, 470 N->getOperand(FlagOpIndex), SDValue()); 471 472 // Create a 64-bit instruction if the result is 64-bits otherwise use the 473 // 32-bit version. 474 unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr; 475 MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32; 476 VTs = CurDAG->getVTList(SBBVT, MVT::i32); 477 return SDValue( 478 CurDAG->getMachineNode(Opc, dl, VTs, 479 {Zero, Zero, EFLAGS, EFLAGS.getValue(1)}), 480 0); 481 } 482 483 // Helper to detect unneeded and instructions on shift amounts. Called 484 // from PatFrags in tablegen. 485 bool isUnneededShiftMask(SDNode *N, unsigned Width) const { 486 assert(N->getOpcode() == ISD::AND && "Unexpected opcode"); 487 const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 488 489 if (Val.countTrailingOnes() >= Width) 490 return true; 491 492 APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero; 493 return Mask.countTrailingOnes() >= Width; 494 } 495 496 /// Return an SDNode that returns the value of the global base register. 497 /// Output instructions required to initialize the global base register, 498 /// if necessary. 499 SDNode *getGlobalBaseReg(); 500 501 /// Return a reference to the TargetMachine, casted to the target-specific 502 /// type. 503 const X86TargetMachine &getTargetMachine() const { 504 return static_cast<const X86TargetMachine &>(TM); 505 } 506 507 /// Return a reference to the TargetInstrInfo, casted to the target-specific 508 /// type. 509 const X86InstrInfo *getInstrInfo() const { 510 return Subtarget->getInstrInfo(); 511 } 512 513 /// Return a condition code of the given SDNode 514 X86::CondCode getCondFromNode(SDNode *N) const; 515 516 /// Address-mode matching performs shift-of-and to and-of-shift 517 /// reassociation in order to expose more scaled addressing 518 /// opportunities. 519 bool ComplexPatternFuncMutatesDAG() const override { 520 return true; 521 } 522 523 bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const; 524 525 // Indicates we should prefer to use a non-temporal load for this load. 526 bool useNonTemporalLoad(LoadSDNode *N) const { 527 if (!N->isNonTemporal()) 528 return false; 529 530 unsigned StoreSize = N->getMemoryVT().getStoreSize(); 531 532 if (N->getAlign().value() < StoreSize) 533 return false; 534 535 switch (StoreSize) { 536 default: llvm_unreachable("Unsupported store size"); 537 case 4: 538 case 8: 539 return false; 540 case 16: 541 return Subtarget->hasSSE41(); 542 case 32: 543 return Subtarget->hasAVX2(); 544 case 64: 545 return Subtarget->hasAVX512(); 546 } 547 } 548 549 bool foldLoadStoreIntoMemOperand(SDNode *Node); 550 MachineSDNode *matchBEXTRFromAndImm(SDNode *Node); 551 bool matchBitExtract(SDNode *Node); 552 bool shrinkAndImmediate(SDNode *N); 553 bool isMaskZeroExtended(SDNode *N) const; 554 bool tryShiftAmountMod(SDNode *N); 555 bool tryShrinkShlLogicImm(SDNode *N); 556 bool tryVPTERNLOG(SDNode *N); 557 bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB, 558 SDNode *ParentC, SDValue A, SDValue B, SDValue C, 559 uint8_t Imm); 560 bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask); 561 bool tryMatchBitSelect(SDNode *N); 562 563 MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, 564 const SDLoc &dl, MVT VT, SDNode *Node); 565 MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, 566 const SDLoc &dl, MVT VT, SDNode *Node, 567 SDValue &InFlag); 568 569 bool tryOptimizeRem8Extend(SDNode *N); 570 571 bool onlyUsesZeroFlag(SDValue Flags) const; 572 bool hasNoSignFlagUses(SDValue Flags) const; 573 bool hasNoCarryFlagUses(SDValue Flags) const; 574 }; 575 } 576 577 578 // Returns true if this masked compare can be implemented legally with this 579 // type. 580 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) { 581 unsigned Opcode = N->getOpcode(); 582 if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM || 583 Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC || 584 Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) { 585 // We can get 256-bit 8 element types here without VLX being enabled. When 586 // this happens we will use 512-bit operations and the mask will not be 587 // zero extended. 588 EVT OpVT = N->getOperand(0).getValueType(); 589 // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the 590 // second operand. 591 if (Opcode == X86ISD::STRICT_CMPM) 592 OpVT = N->getOperand(1).getValueType(); 593 if (OpVT.is256BitVector() || OpVT.is128BitVector()) 594 return Subtarget->hasVLX(); 595 596 return true; 597 } 598 // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check. 599 if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM || 600 Opcode == X86ISD::FSETCCM_SAE) 601 return true; 602 603 return false; 604 } 605 606 // Returns true if we can assume the writer of the mask has zero extended it 607 // for us. 608 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const { 609 // If this is an AND, check if we have a compare on either side. As long as 610 // one side guarantees the mask is zero extended, the AND will preserve those 611 // zeros. 612 if (N->getOpcode() == ISD::AND) 613 return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) || 614 isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget); 615 616 return isLegalMaskCompare(N, Subtarget); 617 } 618 619 bool 620 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { 621 if (OptLevel == CodeGenOpt::None) return false; 622 623 if (!N.hasOneUse()) 624 return false; 625 626 if (N.getOpcode() != ISD::LOAD) 627 return true; 628 629 // Don't fold non-temporal loads if we have an instruction for them. 630 if (useNonTemporalLoad(cast<LoadSDNode>(N))) 631 return false; 632 633 // If N is a load, do additional profitability checks. 634 if (U == Root) { 635 switch (U->getOpcode()) { 636 default: break; 637 case X86ISD::ADD: 638 case X86ISD::ADC: 639 case X86ISD::SUB: 640 case X86ISD::SBB: 641 case X86ISD::AND: 642 case X86ISD::XOR: 643 case X86ISD::OR: 644 case ISD::ADD: 645 case ISD::ADDCARRY: 646 case ISD::AND: 647 case ISD::OR: 648 case ISD::XOR: { 649 SDValue Op1 = U->getOperand(1); 650 651 // If the other operand is a 8-bit immediate we should fold the immediate 652 // instead. This reduces code size. 653 // e.g. 654 // movl 4(%esp), %eax 655 // addl $4, %eax 656 // vs. 657 // movl $4, %eax 658 // addl 4(%esp), %eax 659 // The former is 2 bytes shorter. In case where the increment is 1, then 660 // the saving can be 4 bytes (by using incl %eax). 661 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) { 662 if (Imm->getAPIntValue().isSignedIntN(8)) 663 return false; 664 665 // If this is a 64-bit AND with an immediate that fits in 32-bits, 666 // prefer using the smaller and over folding the load. This is needed to 667 // make sure immediates created by shrinkAndImmediate are always folded. 668 // Ideally we would narrow the load during DAG combine and get the 669 // best of both worlds. 670 if (U->getOpcode() == ISD::AND && 671 Imm->getAPIntValue().getBitWidth() == 64 && 672 Imm->getAPIntValue().isIntN(32)) 673 return false; 674 675 // If this really a zext_inreg that can be represented with a movzx 676 // instruction, prefer that. 677 // TODO: We could shrink the load and fold if it is non-volatile. 678 if (U->getOpcode() == ISD::AND && 679 (Imm->getAPIntValue() == UINT8_MAX || 680 Imm->getAPIntValue() == UINT16_MAX || 681 Imm->getAPIntValue() == UINT32_MAX)) 682 return false; 683 684 // ADD/SUB with can negate the immediate and use the opposite operation 685 // to fit 128 into a sign extended 8 bit immediate. 686 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) && 687 (-Imm->getAPIntValue()).isSignedIntN(8)) 688 return false; 689 690 if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) && 691 (-Imm->getAPIntValue()).isSignedIntN(8) && 692 hasNoCarryFlagUses(SDValue(U, 1))) 693 return false; 694 } 695 696 // If the other operand is a TLS address, we should fold it instead. 697 // This produces 698 // movl %gs:0, %eax 699 // leal i@NTPOFF(%eax), %eax 700 // instead of 701 // movl $i@NTPOFF, %eax 702 // addl %gs:0, %eax 703 // if the block also has an access to a second TLS address this will save 704 // a load. 705 // FIXME: This is probably also true for non-TLS addresses. 706 if (Op1.getOpcode() == X86ISD::Wrapper) { 707 SDValue Val = Op1.getOperand(0); 708 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 709 return false; 710 } 711 712 // Don't fold load if this matches the BTS/BTR/BTC patterns. 713 // BTS: (or X, (shl 1, n)) 714 // BTR: (and X, (rotl -2, n)) 715 // BTC: (xor X, (shl 1, n)) 716 if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) { 717 if (U->getOperand(0).getOpcode() == ISD::SHL && 718 isOneConstant(U->getOperand(0).getOperand(0))) 719 return false; 720 721 if (U->getOperand(1).getOpcode() == ISD::SHL && 722 isOneConstant(U->getOperand(1).getOperand(0))) 723 return false; 724 } 725 if (U->getOpcode() == ISD::AND) { 726 SDValue U0 = U->getOperand(0); 727 SDValue U1 = U->getOperand(1); 728 if (U0.getOpcode() == ISD::ROTL) { 729 auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0)); 730 if (C && C->getSExtValue() == -2) 731 return false; 732 } 733 734 if (U1.getOpcode() == ISD::ROTL) { 735 auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0)); 736 if (C && C->getSExtValue() == -2) 737 return false; 738 } 739 } 740 741 break; 742 } 743 case ISD::SHL: 744 case ISD::SRA: 745 case ISD::SRL: 746 // Don't fold a load into a shift by immediate. The BMI2 instructions 747 // support folding a load, but not an immediate. The legacy instructions 748 // support folding an immediate, but can't fold a load. Folding an 749 // immediate is preferable to folding a load. 750 if (isa<ConstantSDNode>(U->getOperand(1))) 751 return false; 752 753 break; 754 } 755 } 756 757 // Prevent folding a load if this can implemented with an insert_subreg or 758 // a move that implicitly zeroes. 759 if (Root->getOpcode() == ISD::INSERT_SUBVECTOR && 760 isNullConstant(Root->getOperand(2)) && 761 (Root->getOperand(0).isUndef() || 762 ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode()))) 763 return false; 764 765 return true; 766 } 767 768 // Indicates it is profitable to form an AVX512 masked operation. Returning 769 // false will favor a masked register-register masked move or vblendm and the 770 // operation will be selected separately. 771 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const { 772 assert( 773 (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) && 774 "Unexpected opcode!"); 775 776 // If the operation has additional users, the operation will be duplicated. 777 // Check the use count to prevent that. 778 // FIXME: Are there cheap opcodes we might want to duplicate? 779 return N->getOperand(1).hasOneUse(); 780 } 781 782 /// Replace the original chain operand of the call with 783 /// load's chain operand and move load below the call's chain operand. 784 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, 785 SDValue Call, SDValue OrigChain) { 786 SmallVector<SDValue, 8> Ops; 787 SDValue Chain = OrigChain.getOperand(0); 788 if (Chain.getNode() == Load.getNode()) 789 Ops.push_back(Load.getOperand(0)); 790 else { 791 assert(Chain.getOpcode() == ISD::TokenFactor && 792 "Unexpected chain operand"); 793 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 794 if (Chain.getOperand(i).getNode() == Load.getNode()) 795 Ops.push_back(Load.getOperand(0)); 796 else 797 Ops.push_back(Chain.getOperand(i)); 798 SDValue NewChain = 799 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops); 800 Ops.clear(); 801 Ops.push_back(NewChain); 802 } 803 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end()); 804 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops); 805 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), 806 Load.getOperand(1), Load.getOperand(2)); 807 808 Ops.clear(); 809 Ops.push_back(SDValue(Load.getNode(), 1)); 810 Ops.append(Call->op_begin() + 1, Call->op_end()); 811 CurDAG->UpdateNodeOperands(Call.getNode(), Ops); 812 } 813 814 /// Return true if call address is a load and it can be 815 /// moved below CALLSEQ_START and the chains leading up to the call. 816 /// Return the CALLSEQ_START by reference as a second output. 817 /// In the case of a tail call, there isn't a callseq node between the call 818 /// chain and the load. 819 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { 820 // The transformation is somewhat dangerous if the call's chain was glued to 821 // the call. After MoveBelowOrigChain the load is moved between the call and 822 // the chain, this can create a cycle if the load is not folded. So it is 823 // *really* important that we are sure the load will be folded. 824 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 825 return false; 826 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 827 if (!LD || 828 !LD->isSimple() || 829 LD->getAddressingMode() != ISD::UNINDEXED || 830 LD->getExtensionType() != ISD::NON_EXTLOAD) 831 return false; 832 833 // Now let's find the callseq_start. 834 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { 835 if (!Chain.hasOneUse()) 836 return false; 837 Chain = Chain.getOperand(0); 838 } 839 840 if (!Chain.getNumOperands()) 841 return false; 842 // Since we are not checking for AA here, conservatively abort if the chain 843 // writes to memory. It's not safe to move the callee (a load) across a store. 844 if (isa<MemSDNode>(Chain.getNode()) && 845 cast<MemSDNode>(Chain.getNode())->writeMem()) 846 return false; 847 if (Chain.getOperand(0).getNode() == Callee.getNode()) 848 return true; 849 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 850 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 851 Callee.getValue(1).hasOneUse()) 852 return true; 853 return false; 854 } 855 856 static bool isEndbrImm64(uint64_t Imm) { 857 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA. 858 // i.g: 0xF3660F1EFA, 0xF3670F1EFA 859 if ((Imm & 0x00FFFFFF) != 0x0F1EFA) 860 return false; 861 862 uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64, 863 0x65, 0x66, 0x67, 0xf0, 0xf2}; 864 int i = 24; // 24bit 0x0F1EFA has matched 865 while (i < 64) { 866 uint8_t Byte = (Imm >> i) & 0xFF; 867 if (Byte == 0xF3) 868 return true; 869 if (!llvm::is_contained(OptionalPrefixBytes, Byte)) 870 return false; 871 i += 8; 872 } 873 874 return false; 875 } 876 877 void X86DAGToDAGISel::PreprocessISelDAG() { 878 bool MadeChange = false; 879 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 880 E = CurDAG->allnodes_end(); I != E; ) { 881 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues. 882 883 // This is for CET enhancement. 884 // 885 // ENDBR32 and ENDBR64 have specific opcodes: 886 // ENDBR32: F3 0F 1E FB 887 // ENDBR64: F3 0F 1E FA 888 // And we want that attackers won’t find unintended ENDBR32/64 889 // opcode matches in the binary 890 // Here’s an example: 891 // If the compiler had to generate asm for the following code: 892 // a = 0xF30F1EFA 893 // it could, for example, generate: 894 // mov 0xF30F1EFA, dword ptr[a] 895 // In such a case, the binary would include a gadget that starts 896 // with a fake ENDBR64 opcode. Therefore, we split such generation 897 // into multiple operations, let it not shows in the binary 898 if (N->getOpcode() == ISD::Constant) { 899 MVT VT = N->getSimpleValueType(0); 900 int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue(); 901 int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB; 902 if (Imm == EndbrImm || isEndbrImm64(Imm)) { 903 // Check that the cf-protection-branch is enabled. 904 Metadata *CFProtectionBranch = 905 MF->getMMI().getModule()->getModuleFlag("cf-protection-branch"); 906 if (CFProtectionBranch || IndirectBranchTracking) { 907 SDLoc dl(N); 908 SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true); 909 Complement = CurDAG->getNOT(dl, Complement, VT); 910 --I; 911 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement); 912 ++I; 913 MadeChange = true; 914 continue; 915 } 916 } 917 } 918 919 // If this is a target specific AND node with no flag usages, turn it back 920 // into ISD::AND to enable test instruction matching. 921 if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) { 922 SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0), 923 N->getOperand(0), N->getOperand(1)); 924 --I; 925 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 926 ++I; 927 MadeChange = true; 928 continue; 929 } 930 931 // Convert vector increment or decrement to sub/add with an all-ones 932 // constant: 933 // add X, <1, 1...> --> sub X, <-1, -1...> 934 // sub X, <1, 1...> --> add X, <-1, -1...> 935 // The all-ones vector constant can be materialized using a pcmpeq 936 // instruction that is commonly recognized as an idiom (has no register 937 // dependency), so that's better/smaller than loading a splat 1 constant. 938 // 939 // But don't do this if it would inhibit a potentially profitable load 940 // folding opportunity for the other operand. That only occurs with the 941 // intersection of: 942 // (1) The other operand (op0) is load foldable. 943 // (2) The op is an add (otherwise, we are *creating* an add and can still 944 // load fold the other op). 945 // (3) The target has AVX (otherwise, we have a destructive add and can't 946 // load fold the other op without killing the constant op). 947 // (4) The constant 1 vector has multiple uses (so it is profitable to load 948 // into a register anyway). 949 auto mayPreventLoadFold = [&]() { 950 return X86::mayFoldLoad(N->getOperand(0), *Subtarget) && 951 N->getOpcode() == ISD::ADD && Subtarget->hasAVX() && 952 !N->getOperand(1).hasOneUse(); 953 }; 954 if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 955 N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) { 956 APInt SplatVal; 957 if (X86::isConstantSplat(N->getOperand(1), SplatVal) && 958 SplatVal.isOne()) { 959 SDLoc DL(N); 960 961 MVT VT = N->getSimpleValueType(0); 962 unsigned NumElts = VT.getSizeInBits() / 32; 963 SDValue AllOnes = 964 CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts)); 965 AllOnes = CurDAG->getBitcast(VT, AllOnes); 966 967 unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD; 968 SDValue Res = 969 CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes); 970 --I; 971 CurDAG->ReplaceAllUsesWith(N, Res.getNode()); 972 ++I; 973 MadeChange = true; 974 continue; 975 } 976 } 977 978 switch (N->getOpcode()) { 979 case X86ISD::VBROADCAST: { 980 MVT VT = N->getSimpleValueType(0); 981 // Emulate v32i16/v64i8 broadcast without BWI. 982 if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) { 983 MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8; 984 SDLoc dl(N); 985 SDValue NarrowBCast = 986 CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0)); 987 SDValue Res = 988 CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT), 989 NarrowBCast, CurDAG->getIntPtrConstant(0, dl)); 990 unsigned Index = VT == MVT::v32i16 ? 16 : 32; 991 Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast, 992 CurDAG->getIntPtrConstant(Index, dl)); 993 994 --I; 995 CurDAG->ReplaceAllUsesWith(N, Res.getNode()); 996 ++I; 997 MadeChange = true; 998 continue; 999 } 1000 1001 break; 1002 } 1003 case X86ISD::VBROADCAST_LOAD: { 1004 MVT VT = N->getSimpleValueType(0); 1005 // Emulate v32i16/v64i8 broadcast without BWI. 1006 if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) { 1007 MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8; 1008 auto *MemNode = cast<MemSDNode>(N); 1009 SDLoc dl(N); 1010 SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other); 1011 SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()}; 1012 SDValue NarrowBCast = CurDAG->getMemIntrinsicNode( 1013 X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(), 1014 MemNode->getMemOperand()); 1015 SDValue Res = 1016 CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT), 1017 NarrowBCast, CurDAG->getIntPtrConstant(0, dl)); 1018 unsigned Index = VT == MVT::v32i16 ? 16 : 32; 1019 Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast, 1020 CurDAG->getIntPtrConstant(Index, dl)); 1021 1022 --I; 1023 SDValue To[] = {Res, NarrowBCast.getValue(1)}; 1024 CurDAG->ReplaceAllUsesWith(N, To); 1025 ++I; 1026 MadeChange = true; 1027 continue; 1028 } 1029 1030 break; 1031 } 1032 case ISD::VSELECT: { 1033 // Replace VSELECT with non-mask conditions with with BLENDV. 1034 if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1) 1035 break; 1036 1037 assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!"); 1038 SDValue Blendv = 1039 CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0), 1040 N->getOperand(0), N->getOperand(1), N->getOperand(2)); 1041 --I; 1042 CurDAG->ReplaceAllUsesWith(N, Blendv.getNode()); 1043 ++I; 1044 MadeChange = true; 1045 continue; 1046 } 1047 case ISD::FP_ROUND: 1048 case ISD::STRICT_FP_ROUND: 1049 case ISD::FP_TO_SINT: 1050 case ISD::FP_TO_UINT: 1051 case ISD::STRICT_FP_TO_SINT: 1052 case ISD::STRICT_FP_TO_UINT: { 1053 // Replace vector fp_to_s/uint with their X86 specific equivalent so we 1054 // don't need 2 sets of patterns. 1055 if (!N->getSimpleValueType(0).isVector()) 1056 break; 1057 1058 unsigned NewOpc; 1059 switch (N->getOpcode()) { 1060 default: llvm_unreachable("Unexpected opcode!"); 1061 case ISD::FP_ROUND: NewOpc = X86ISD::VFPROUND; break; 1062 case ISD::STRICT_FP_ROUND: NewOpc = X86ISD::STRICT_VFPROUND; break; 1063 case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break; 1064 case ISD::FP_TO_SINT: NewOpc = X86ISD::CVTTP2SI; break; 1065 case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break; 1066 case ISD::FP_TO_UINT: NewOpc = X86ISD::CVTTP2UI; break; 1067 } 1068 SDValue Res; 1069 if (N->isStrictFPOpcode()) 1070 Res = 1071 CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other}, 1072 {N->getOperand(0), N->getOperand(1)}); 1073 else 1074 Res = 1075 CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0), 1076 N->getOperand(0)); 1077 --I; 1078 CurDAG->ReplaceAllUsesWith(N, Res.getNode()); 1079 ++I; 1080 MadeChange = true; 1081 continue; 1082 } 1083 case ISD::SHL: 1084 case ISD::SRA: 1085 case ISD::SRL: { 1086 // Replace vector shifts with their X86 specific equivalent so we don't 1087 // need 2 sets of patterns. 1088 if (!N->getValueType(0).isVector()) 1089 break; 1090 1091 unsigned NewOpc; 1092 switch (N->getOpcode()) { 1093 default: llvm_unreachable("Unexpected opcode!"); 1094 case ISD::SHL: NewOpc = X86ISD::VSHLV; break; 1095 case ISD::SRA: NewOpc = X86ISD::VSRAV; break; 1096 case ISD::SRL: NewOpc = X86ISD::VSRLV; break; 1097 } 1098 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0), 1099 N->getOperand(0), N->getOperand(1)); 1100 --I; 1101 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 1102 ++I; 1103 MadeChange = true; 1104 continue; 1105 } 1106 case ISD::ANY_EXTEND: 1107 case ISD::ANY_EXTEND_VECTOR_INREG: { 1108 // Replace vector any extend with the zero extend equivalents so we don't 1109 // need 2 sets of patterns. Ignore vXi1 extensions. 1110 if (!N->getValueType(0).isVector()) 1111 break; 1112 1113 unsigned NewOpc; 1114 if (N->getOperand(0).getScalarValueSizeInBits() == 1) { 1115 assert(N->getOpcode() == ISD::ANY_EXTEND && 1116 "Unexpected opcode for mask vector!"); 1117 NewOpc = ISD::SIGN_EXTEND; 1118 } else { 1119 NewOpc = N->getOpcode() == ISD::ANY_EXTEND 1120 ? ISD::ZERO_EXTEND 1121 : ISD::ZERO_EXTEND_VECTOR_INREG; 1122 } 1123 1124 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0), 1125 N->getOperand(0)); 1126 --I; 1127 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 1128 ++I; 1129 MadeChange = true; 1130 continue; 1131 } 1132 case ISD::FCEIL: 1133 case ISD::STRICT_FCEIL: 1134 case ISD::FFLOOR: 1135 case ISD::STRICT_FFLOOR: 1136 case ISD::FTRUNC: 1137 case ISD::STRICT_FTRUNC: 1138 case ISD::FROUNDEVEN: 1139 case ISD::STRICT_FROUNDEVEN: 1140 case ISD::FNEARBYINT: 1141 case ISD::STRICT_FNEARBYINT: 1142 case ISD::FRINT: 1143 case ISD::STRICT_FRINT: { 1144 // Replace fp rounding with their X86 specific equivalent so we don't 1145 // need 2 sets of patterns. 1146 unsigned Imm; 1147 switch (N->getOpcode()) { 1148 default: llvm_unreachable("Unexpected opcode!"); 1149 case ISD::STRICT_FCEIL: 1150 case ISD::FCEIL: Imm = 0xA; break; 1151 case ISD::STRICT_FFLOOR: 1152 case ISD::FFLOOR: Imm = 0x9; break; 1153 case ISD::STRICT_FTRUNC: 1154 case ISD::FTRUNC: Imm = 0xB; break; 1155 case ISD::STRICT_FROUNDEVEN: 1156 case ISD::FROUNDEVEN: Imm = 0x8; break; 1157 case ISD::STRICT_FNEARBYINT: 1158 case ISD::FNEARBYINT: Imm = 0xC; break; 1159 case ISD::STRICT_FRINT: 1160 case ISD::FRINT: Imm = 0x4; break; 1161 } 1162 SDLoc dl(N); 1163 bool IsStrict = N->isStrictFPOpcode(); 1164 SDValue Res; 1165 if (IsStrict) 1166 Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl, 1167 {N->getValueType(0), MVT::Other}, 1168 {N->getOperand(0), N->getOperand(1), 1169 CurDAG->getTargetConstant(Imm, dl, MVT::i32)}); 1170 else 1171 Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0), 1172 N->getOperand(0), 1173 CurDAG->getTargetConstant(Imm, dl, MVT::i32)); 1174 --I; 1175 CurDAG->ReplaceAllUsesWith(N, Res.getNode()); 1176 ++I; 1177 MadeChange = true; 1178 continue; 1179 } 1180 case X86ISD::FANDN: 1181 case X86ISD::FAND: 1182 case X86ISD::FOR: 1183 case X86ISD::FXOR: { 1184 // Widen scalar fp logic ops to vector to reduce isel patterns. 1185 // FIXME: Can we do this during lowering/combine. 1186 MVT VT = N->getSimpleValueType(0); 1187 if (VT.isVector() || VT == MVT::f128) 1188 break; 1189 1190 MVT VecVT = VT == MVT::f64 ? MVT::v2f64 1191 : VT == MVT::f32 ? MVT::v4f32 1192 : MVT::v8f16; 1193 1194 SDLoc dl(N); 1195 SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, 1196 N->getOperand(0)); 1197 SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, 1198 N->getOperand(1)); 1199 1200 SDValue Res; 1201 if (Subtarget->hasSSE2()) { 1202 EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger(); 1203 Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0); 1204 Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1); 1205 unsigned Opc; 1206 switch (N->getOpcode()) { 1207 default: llvm_unreachable("Unexpected opcode!"); 1208 case X86ISD::FANDN: Opc = X86ISD::ANDNP; break; 1209 case X86ISD::FAND: Opc = ISD::AND; break; 1210 case X86ISD::FOR: Opc = ISD::OR; break; 1211 case X86ISD::FXOR: Opc = ISD::XOR; break; 1212 } 1213 Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1); 1214 Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res); 1215 } else { 1216 Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1); 1217 } 1218 Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res, 1219 CurDAG->getIntPtrConstant(0, dl)); 1220 --I; 1221 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 1222 ++I; 1223 MadeChange = true; 1224 continue; 1225 } 1226 } 1227 1228 if (OptLevel != CodeGenOpt::None && 1229 // Only do this when the target can fold the load into the call or 1230 // jmp. 1231 !Subtarget->useIndirectThunkCalls() && 1232 ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) || 1233 (N->getOpcode() == X86ISD::TC_RETURN && 1234 (Subtarget->is64Bit() || 1235 !getTargetMachine().isPositionIndependent())))) { 1236 /// Also try moving call address load from outside callseq_start to just 1237 /// before the call to allow it to be folded. 1238 /// 1239 /// [Load chain] 1240 /// ^ 1241 /// | 1242 /// [Load] 1243 /// ^ ^ 1244 /// | | 1245 /// / \-- 1246 /// / | 1247 ///[CALLSEQ_START] | 1248 /// ^ | 1249 /// | | 1250 /// [LOAD/C2Reg] | 1251 /// | | 1252 /// \ / 1253 /// \ / 1254 /// [CALL] 1255 bool HasCallSeq = N->getOpcode() == X86ISD::CALL; 1256 SDValue Chain = N->getOperand(0); 1257 SDValue Load = N->getOperand(1); 1258 if (!isCalleeLoad(Load, Chain, HasCallSeq)) 1259 continue; 1260 moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); 1261 ++NumLoadMoved; 1262 MadeChange = true; 1263 continue; 1264 } 1265 1266 // Lower fpround and fpextend nodes that target the FP stack to be store and 1267 // load to the stack. This is a gross hack. We would like to simply mark 1268 // these as being illegal, but when we do that, legalize produces these when 1269 // it expands calls, then expands these in the same legalize pass. We would 1270 // like dag combine to be able to hack on these between the call expansion 1271 // and the node legalization. As such this pass basically does "really 1272 // late" legalization of these inline with the X86 isel pass. 1273 // FIXME: This should only happen when not compiled with -O0. 1274 switch (N->getOpcode()) { 1275 default: continue; 1276 case ISD::FP_ROUND: 1277 case ISD::FP_EXTEND: 1278 { 1279 MVT SrcVT = N->getOperand(0).getSimpleValueType(); 1280 MVT DstVT = N->getSimpleValueType(0); 1281 1282 // If any of the sources are vectors, no fp stack involved. 1283 if (SrcVT.isVector() || DstVT.isVector()) 1284 continue; 1285 1286 // If the source and destination are SSE registers, then this is a legal 1287 // conversion that should not be lowered. 1288 const X86TargetLowering *X86Lowering = 1289 static_cast<const X86TargetLowering *>(TLI); 1290 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); 1291 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); 1292 if (SrcIsSSE && DstIsSSE) 1293 continue; 1294 1295 if (!SrcIsSSE && !DstIsSSE) { 1296 // If this is an FPStack extension, it is a noop. 1297 if (N->getOpcode() == ISD::FP_EXTEND) 1298 continue; 1299 // If this is a value-preserving FPStack truncation, it is a noop. 1300 if (N->getConstantOperandVal(1)) 1301 continue; 1302 } 1303 1304 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 1305 // FPStack has extload and truncstore. SSE can fold direct loads into other 1306 // operations. Based on this, decide what we want to do. 1307 MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT; 1308 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 1309 int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex(); 1310 MachinePointerInfo MPI = 1311 MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI); 1312 SDLoc dl(N); 1313 1314 // FIXME: optimize the case where the src/dest is a load or store? 1315 1316 SDValue Store = CurDAG->getTruncStore( 1317 CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT); 1318 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, 1319 MemTmp, MPI, MemVT); 1320 1321 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 1322 // extload we created. This will cause general havok on the dag because 1323 // anything below the conversion could be folded into other existing nodes. 1324 // To avoid invalidating 'I', back it up to the convert node. 1325 --I; 1326 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1327 break; 1328 } 1329 1330 //The sequence of events for lowering STRICT_FP versions of these nodes requires 1331 //dealing with the chain differently, as there is already a preexisting chain. 1332 case ISD::STRICT_FP_ROUND: 1333 case ISD::STRICT_FP_EXTEND: 1334 { 1335 MVT SrcVT = N->getOperand(1).getSimpleValueType(); 1336 MVT DstVT = N->getSimpleValueType(0); 1337 1338 // If any of the sources are vectors, no fp stack involved. 1339 if (SrcVT.isVector() || DstVT.isVector()) 1340 continue; 1341 1342 // If the source and destination are SSE registers, then this is a legal 1343 // conversion that should not be lowered. 1344 const X86TargetLowering *X86Lowering = 1345 static_cast<const X86TargetLowering *>(TLI); 1346 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); 1347 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); 1348 if (SrcIsSSE && DstIsSSE) 1349 continue; 1350 1351 if (!SrcIsSSE && !DstIsSSE) { 1352 // If this is an FPStack extension, it is a noop. 1353 if (N->getOpcode() == ISD::STRICT_FP_EXTEND) 1354 continue; 1355 // If this is a value-preserving FPStack truncation, it is a noop. 1356 if (N->getConstantOperandVal(2)) 1357 continue; 1358 } 1359 1360 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 1361 // FPStack has extload and truncstore. SSE can fold direct loads into other 1362 // operations. Based on this, decide what we want to do. 1363 MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT; 1364 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 1365 int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex(); 1366 MachinePointerInfo MPI = 1367 MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI); 1368 SDLoc dl(N); 1369 1370 // FIXME: optimize the case where the src/dest is a load or store? 1371 1372 //Since the operation is StrictFP, use the preexisting chain. 1373 SDValue Store, Result; 1374 if (!SrcIsSSE) { 1375 SDVTList VTs = CurDAG->getVTList(MVT::Other); 1376 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp}; 1377 Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT, 1378 MPI, /*Align*/ None, 1379 MachineMemOperand::MOStore); 1380 if (N->getFlags().hasNoFPExcept()) { 1381 SDNodeFlags Flags = Store->getFlags(); 1382 Flags.setNoFPExcept(true); 1383 Store->setFlags(Flags); 1384 } 1385 } else { 1386 assert(SrcVT == MemVT && "Unexpected VT!"); 1387 Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp, 1388 MPI); 1389 } 1390 1391 if (!DstIsSSE) { 1392 SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other); 1393 SDValue Ops[] = {Store, MemTmp}; 1394 Result = CurDAG->getMemIntrinsicNode( 1395 X86ISD::FLD, dl, VTs, Ops, MemVT, MPI, 1396 /*Align*/ None, MachineMemOperand::MOLoad); 1397 if (N->getFlags().hasNoFPExcept()) { 1398 SDNodeFlags Flags = Result->getFlags(); 1399 Flags.setNoFPExcept(true); 1400 Result->setFlags(Flags); 1401 } 1402 } else { 1403 assert(DstVT == MemVT && "Unexpected VT!"); 1404 Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI); 1405 } 1406 1407 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 1408 // extload we created. This will cause general havok on the dag because 1409 // anything below the conversion could be folded into other existing nodes. 1410 // To avoid invalidating 'I', back it up to the convert node. 1411 --I; 1412 CurDAG->ReplaceAllUsesWith(N, Result.getNode()); 1413 break; 1414 } 1415 } 1416 1417 1418 // Now that we did that, the node is dead. Increment the iterator to the 1419 // next node to process, then delete N. 1420 ++I; 1421 MadeChange = true; 1422 } 1423 1424 // Remove any dead nodes that may have been left behind. 1425 if (MadeChange) 1426 CurDAG->RemoveDeadNodes(); 1427 } 1428 1429 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem. 1430 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) { 1431 unsigned Opc = N->getMachineOpcode(); 1432 if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 && 1433 Opc != X86::MOVSX64rr8) 1434 return false; 1435 1436 SDValue N0 = N->getOperand(0); 1437 1438 // We need to be extracting the lower bit of an extend. 1439 if (!N0.isMachineOpcode() || 1440 N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG || 1441 N0.getConstantOperandVal(1) != X86::sub_8bit) 1442 return false; 1443 1444 // We're looking for either a movsx or movzx to match the original opcode. 1445 unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX 1446 : X86::MOVSX32rr8_NOREX; 1447 SDValue N00 = N0.getOperand(0); 1448 if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc) 1449 return false; 1450 1451 if (Opc == X86::MOVSX64rr8) { 1452 // If we had a sign extend from 8 to 64 bits. We still need to go from 32 1453 // to 64. 1454 MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N), 1455 MVT::i64, N00); 1456 ReplaceUses(N, Extend); 1457 } else { 1458 // Ok we can drop this extend and just use the original extend. 1459 ReplaceUses(N, N00.getNode()); 1460 } 1461 1462 return true; 1463 } 1464 1465 void X86DAGToDAGISel::PostprocessISelDAG() { 1466 // Skip peepholes at -O0. 1467 if (TM.getOptLevel() == CodeGenOpt::None) 1468 return; 1469 1470 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 1471 1472 bool MadeChange = false; 1473 while (Position != CurDAG->allnodes_begin()) { 1474 SDNode *N = &*--Position; 1475 // Skip dead nodes and any non-machine opcodes. 1476 if (N->use_empty() || !N->isMachineOpcode()) 1477 continue; 1478 1479 if (tryOptimizeRem8Extend(N)) { 1480 MadeChange = true; 1481 continue; 1482 } 1483 1484 // Look for a TESTrr+ANDrr pattern where both operands of the test are 1485 // the same. Rewrite to remove the AND. 1486 unsigned Opc = N->getMachineOpcode(); 1487 if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr || 1488 Opc == X86::TEST32rr || Opc == X86::TEST64rr) && 1489 N->getOperand(0) == N->getOperand(1) && 1490 N->isOnlyUserOf(N->getOperand(0).getNode()) && 1491 N->getOperand(0).isMachineOpcode()) { 1492 SDValue And = N->getOperand(0); 1493 unsigned N0Opc = And.getMachineOpcode(); 1494 if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr || 1495 N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) { 1496 MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N), 1497 MVT::i32, 1498 And.getOperand(0), 1499 And.getOperand(1)); 1500 ReplaceUses(N, Test); 1501 MadeChange = true; 1502 continue; 1503 } 1504 if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm || 1505 N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) { 1506 unsigned NewOpc; 1507 switch (N0Opc) { 1508 case X86::AND8rm: NewOpc = X86::TEST8mr; break; 1509 case X86::AND16rm: NewOpc = X86::TEST16mr; break; 1510 case X86::AND32rm: NewOpc = X86::TEST32mr; break; 1511 case X86::AND64rm: NewOpc = X86::TEST64mr; break; 1512 } 1513 1514 // Need to swap the memory and register operand. 1515 SDValue Ops[] = { And.getOperand(1), 1516 And.getOperand(2), 1517 And.getOperand(3), 1518 And.getOperand(4), 1519 And.getOperand(5), 1520 And.getOperand(0), 1521 And.getOperand(6) /* Chain */ }; 1522 MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N), 1523 MVT::i32, MVT::Other, Ops); 1524 CurDAG->setNodeMemRefs( 1525 Test, cast<MachineSDNode>(And.getNode())->memoperands()); 1526 ReplaceUses(N, Test); 1527 MadeChange = true; 1528 continue; 1529 } 1530 } 1531 1532 // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is 1533 // used. We're doing this late so we can prefer to fold the AND into masked 1534 // comparisons. Doing that can be better for the live range of the mask 1535 // register. 1536 if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr || 1537 Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) && 1538 N->getOperand(0) == N->getOperand(1) && 1539 N->isOnlyUserOf(N->getOperand(0).getNode()) && 1540 N->getOperand(0).isMachineOpcode() && 1541 onlyUsesZeroFlag(SDValue(N, 0))) { 1542 SDValue And = N->getOperand(0); 1543 unsigned N0Opc = And.getMachineOpcode(); 1544 // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other 1545 // KAND instructions and KTEST use the same ISA feature. 1546 if (N0Opc == X86::KANDBrr || 1547 (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) || 1548 N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) { 1549 unsigned NewOpc; 1550 switch (Opc) { 1551 default: llvm_unreachable("Unexpected opcode!"); 1552 case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break; 1553 case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break; 1554 case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break; 1555 case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break; 1556 } 1557 MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N), 1558 MVT::i32, 1559 And.getOperand(0), 1560 And.getOperand(1)); 1561 ReplaceUses(N, KTest); 1562 MadeChange = true; 1563 continue; 1564 } 1565 } 1566 1567 // Attempt to remove vectors moves that were inserted to zero upper bits. 1568 if (Opc != TargetOpcode::SUBREG_TO_REG) 1569 continue; 1570 1571 unsigned SubRegIdx = N->getConstantOperandVal(2); 1572 if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm) 1573 continue; 1574 1575 SDValue Move = N->getOperand(1); 1576 if (!Move.isMachineOpcode()) 1577 continue; 1578 1579 // Make sure its one of the move opcodes we recognize. 1580 switch (Move.getMachineOpcode()) { 1581 default: 1582 continue; 1583 case X86::VMOVAPDrr: case X86::VMOVUPDrr: 1584 case X86::VMOVAPSrr: case X86::VMOVUPSrr: 1585 case X86::VMOVDQArr: case X86::VMOVDQUrr: 1586 case X86::VMOVAPDYrr: case X86::VMOVUPDYrr: 1587 case X86::VMOVAPSYrr: case X86::VMOVUPSYrr: 1588 case X86::VMOVDQAYrr: case X86::VMOVDQUYrr: 1589 case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr: 1590 case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr: 1591 case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr: 1592 case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr: 1593 case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr: 1594 case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr: 1595 case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr: 1596 case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr: 1597 break; 1598 } 1599 1600 SDValue In = Move.getOperand(0); 1601 if (!In.isMachineOpcode() || 1602 In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END) 1603 continue; 1604 1605 // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers 1606 // the SHA instructions which use a legacy encoding. 1607 uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags; 1608 if ((TSFlags & X86II::EncodingMask) != X86II::VEX && 1609 (TSFlags & X86II::EncodingMask) != X86II::EVEX && 1610 (TSFlags & X86II::EncodingMask) != X86II::XOP) 1611 continue; 1612 1613 // Producing instruction is another vector instruction. We can drop the 1614 // move. 1615 CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2)); 1616 MadeChange = true; 1617 } 1618 1619 if (MadeChange) 1620 CurDAG->RemoveDeadNodes(); 1621 } 1622 1623 1624 /// Emit any code that needs to be executed only in the main function. 1625 void X86DAGToDAGISel::emitSpecialCodeForMain() { 1626 if (Subtarget->isTargetCygMing()) { 1627 TargetLowering::ArgListTy Args; 1628 auto &DL = CurDAG->getDataLayout(); 1629 1630 TargetLowering::CallLoweringInfo CLI(*CurDAG); 1631 CLI.setChain(CurDAG->getRoot()) 1632 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()), 1633 CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)), 1634 std::move(Args)); 1635 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo(); 1636 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 1637 CurDAG->setRoot(Result.second); 1638 } 1639 } 1640 1641 void X86DAGToDAGISel::emitFunctionEntryCode() { 1642 // If this is main, emit special code for main. 1643 const Function &F = MF->getFunction(); 1644 if (F.hasExternalLinkage() && F.getName() == "main") 1645 emitSpecialCodeForMain(); 1646 } 1647 1648 static bool isDispSafeForFrameIndex(int64_t Val) { 1649 // On 64-bit platforms, we can run into an issue where a frame index 1650 // includes a displacement that, when added to the explicit displacement, 1651 // will overflow the displacement field. Assuming that the frame index 1652 // displacement fits into a 31-bit integer (which is only slightly more 1653 // aggressive than the current fundamental assumption that it fits into 1654 // a 32-bit integer), a 31-bit disp should always be safe. 1655 return isInt<31>(Val); 1656 } 1657 1658 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset, 1659 X86ISelAddressMode &AM) { 1660 // We may have already matched a displacement and the caller just added the 1661 // symbolic displacement. So we still need to do the checks even if Offset 1662 // is zero. 1663 1664 int64_t Val = AM.Disp + Offset; 1665 1666 // Cannot combine ExternalSymbol displacements with integer offsets. 1667 if (Val != 0 && (AM.ES || AM.MCSym)) 1668 return true; 1669 1670 CodeModel::Model M = TM.getCodeModel(); 1671 if (Subtarget->is64Bit()) { 1672 if (Val != 0 && 1673 !X86::isOffsetSuitableForCodeModel(Val, M, 1674 AM.hasSymbolicDisplacement())) 1675 return true; 1676 // In addition to the checks required for a register base, check that 1677 // we do not try to use an unsafe Disp with a frame index. 1678 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && 1679 !isDispSafeForFrameIndex(Val)) 1680 return true; 1681 } 1682 AM.Disp = Val; 1683 return false; 1684 1685 } 1686 1687 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM, 1688 bool AllowSegmentRegForX32) { 1689 SDValue Address = N->getOperand(1); 1690 1691 // load gs:0 -> GS segment register. 1692 // load fs:0 -> FS segment register. 1693 // 1694 // This optimization is generally valid because the GNU TLS model defines that 1695 // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode 1696 // with 32-bit registers, as we get in ILP32 mode, those registers are first 1697 // zero-extended to 64 bits and then added it to the base address, which gives 1698 // unwanted results when the register holds a negative value. 1699 // For more information see http://people.redhat.com/drepper/tls.pdf 1700 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) { 1701 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr && 1702 !IndirectTlsSegRefs && 1703 (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() || 1704 Subtarget->isTargetFuchsia())) { 1705 if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32) 1706 return true; 1707 switch (N->getPointerInfo().getAddrSpace()) { 1708 case X86AS::GS: 1709 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1710 return false; 1711 case X86AS::FS: 1712 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1713 return false; 1714 // Address space X86AS::SS is not handled here, because it is not used to 1715 // address TLS areas. 1716 } 1717 } 1718 } 1719 1720 return true; 1721 } 1722 1723 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing 1724 /// mode. These wrap things that will resolve down into a symbol reference. 1725 /// If no match is possible, this returns true, otherwise it returns false. 1726 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) { 1727 // If the addressing mode already has a symbol as the displacement, we can 1728 // never match another symbol. 1729 if (AM.hasSymbolicDisplacement()) 1730 return true; 1731 1732 bool IsRIPRelTLS = false; 1733 bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP; 1734 if (IsRIPRel) { 1735 SDValue Val = N.getOperand(0); 1736 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 1737 IsRIPRelTLS = true; 1738 } 1739 1740 // We can't use an addressing mode in the 64-bit large code model. 1741 // Global TLS addressing is an exception. In the medium code model, 1742 // we use can use a mode when RIP wrappers are present. 1743 // That signifies access to globals that are known to be "near", 1744 // such as the GOT itself. 1745 CodeModel::Model M = TM.getCodeModel(); 1746 if (Subtarget->is64Bit() && 1747 ((M == CodeModel::Large && !IsRIPRelTLS) || 1748 (M == CodeModel::Medium && !IsRIPRel))) 1749 return true; 1750 1751 // Base and index reg must be 0 in order to use %rip as base. 1752 if (IsRIPRel && AM.hasBaseOrIndexReg()) 1753 return true; 1754 1755 // Make a local copy in case we can't do this fold. 1756 X86ISelAddressMode Backup = AM; 1757 1758 int64_t Offset = 0; 1759 SDValue N0 = N.getOperand(0); 1760 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 1761 AM.GV = G->getGlobal(); 1762 AM.SymbolFlags = G->getTargetFlags(); 1763 Offset = G->getOffset(); 1764 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 1765 AM.CP = CP->getConstVal(); 1766 AM.Alignment = CP->getAlign(); 1767 AM.SymbolFlags = CP->getTargetFlags(); 1768 Offset = CP->getOffset(); 1769 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 1770 AM.ES = S->getSymbol(); 1771 AM.SymbolFlags = S->getTargetFlags(); 1772 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) { 1773 AM.MCSym = S->getMCSymbol(); 1774 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 1775 AM.JT = J->getIndex(); 1776 AM.SymbolFlags = J->getTargetFlags(); 1777 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { 1778 AM.BlockAddr = BA->getBlockAddress(); 1779 AM.SymbolFlags = BA->getTargetFlags(); 1780 Offset = BA->getOffset(); 1781 } else 1782 llvm_unreachable("Unhandled symbol reference node."); 1783 1784 if (foldOffsetIntoAddress(Offset, AM)) { 1785 AM = Backup; 1786 return true; 1787 } 1788 1789 if (IsRIPRel) 1790 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 1791 1792 // Commit the changes now that we know this fold is safe. 1793 return false; 1794 } 1795 1796 /// Add the specified node to the specified addressing mode, returning true if 1797 /// it cannot be done. This just pattern matches for the addressing mode. 1798 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) { 1799 if (matchAddressRecursively(N, AM, 0)) 1800 return true; 1801 1802 // Post-processing: Make a second attempt to fold a load, if we now know 1803 // that there will not be any other register. This is only performed for 1804 // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded 1805 // any foldable load the first time. 1806 if (Subtarget->isTarget64BitILP32() && 1807 AM.BaseType == X86ISelAddressMode::RegBase && 1808 AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) { 1809 SDValue Save_Base_Reg = AM.Base_Reg; 1810 if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) { 1811 AM.Base_Reg = SDValue(); 1812 if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true)) 1813 AM.Base_Reg = Save_Base_Reg; 1814 } 1815 } 1816 1817 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 1818 // a smaller encoding and avoids a scaled-index. 1819 if (AM.Scale == 2 && 1820 AM.BaseType == X86ISelAddressMode::RegBase && 1821 AM.Base_Reg.getNode() == nullptr) { 1822 AM.Base_Reg = AM.IndexReg; 1823 AM.Scale = 1; 1824 } 1825 1826 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 1827 // because it has a smaller encoding. 1828 // TODO: Which other code models can use this? 1829 switch (TM.getCodeModel()) { 1830 default: break; 1831 case CodeModel::Small: 1832 case CodeModel::Kernel: 1833 if (Subtarget->is64Bit() && 1834 AM.Scale == 1 && 1835 AM.BaseType == X86ISelAddressMode::RegBase && 1836 AM.Base_Reg.getNode() == nullptr && 1837 AM.IndexReg.getNode() == nullptr && 1838 AM.SymbolFlags == X86II::MO_NO_FLAG && 1839 AM.hasSymbolicDisplacement()) 1840 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 1841 break; 1842 } 1843 1844 return false; 1845 } 1846 1847 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM, 1848 unsigned Depth) { 1849 // Add an artificial use to this node so that we can keep track of 1850 // it if it gets CSE'd with a different node. 1851 HandleSDNode Handle(N); 1852 1853 X86ISelAddressMode Backup = AM; 1854 if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1855 !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) 1856 return false; 1857 AM = Backup; 1858 1859 // Try again after commutating the operands. 1860 if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, 1861 Depth + 1) && 1862 !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1)) 1863 return false; 1864 AM = Backup; 1865 1866 // If we couldn't fold both operands into the address at the same time, 1867 // see if we can just put each operand into a register and fold at least 1868 // the add. 1869 if (AM.BaseType == X86ISelAddressMode::RegBase && 1870 !AM.Base_Reg.getNode() && 1871 !AM.IndexReg.getNode()) { 1872 N = Handle.getValue(); 1873 AM.Base_Reg = N.getOperand(0); 1874 AM.IndexReg = N.getOperand(1); 1875 AM.Scale = 1; 1876 return false; 1877 } 1878 N = Handle.getValue(); 1879 return true; 1880 } 1881 1882 // Insert a node into the DAG at least before the Pos node's position. This 1883 // will reposition the node as needed, and will assign it a node ID that is <= 1884 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node 1885 // IDs! The selection DAG must no longer depend on their uniqueness when this 1886 // is used. 1887 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { 1888 if (N->getNodeId() == -1 || 1889 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) > 1890 SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) { 1891 DAG.RepositionNode(Pos->getIterator(), N.getNode()); 1892 // Mark Node as invalid for pruning as after this it may be a successor to a 1893 // selected node but otherwise be in the same position of Pos. 1894 // Conservatively mark it with the same -abs(Id) to assure node id 1895 // invariant is preserved. 1896 N->setNodeId(Pos->getNodeId()); 1897 SelectionDAGISel::InvalidateNodeId(N.getNode()); 1898 } 1899 } 1900 1901 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if 1902 // safe. This allows us to convert the shift and and into an h-register 1903 // extract and a scaled index. Returns false if the simplification is 1904 // performed. 1905 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, 1906 uint64_t Mask, 1907 SDValue Shift, SDValue X, 1908 X86ISelAddressMode &AM) { 1909 if (Shift.getOpcode() != ISD::SRL || 1910 !isa<ConstantSDNode>(Shift.getOperand(1)) || 1911 !Shift.hasOneUse()) 1912 return true; 1913 1914 int ScaleLog = 8 - Shift.getConstantOperandVal(1); 1915 if (ScaleLog <= 0 || ScaleLog >= 4 || 1916 Mask != (0xffu << ScaleLog)) 1917 return true; 1918 1919 MVT VT = N.getSimpleValueType(); 1920 SDLoc DL(N); 1921 SDValue Eight = DAG.getConstant(8, DL, MVT::i8); 1922 SDValue NewMask = DAG.getConstant(0xff, DL, VT); 1923 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); 1924 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); 1925 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8); 1926 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); 1927 1928 // Insert the new nodes into the topological ordering. We must do this in 1929 // a valid topological ordering as nothing is going to go back and re-sort 1930 // these nodes. We continually insert before 'N' in sequence as this is 1931 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 1932 // hierarchy left to express. 1933 insertDAGNode(DAG, N, Eight); 1934 insertDAGNode(DAG, N, Srl); 1935 insertDAGNode(DAG, N, NewMask); 1936 insertDAGNode(DAG, N, And); 1937 insertDAGNode(DAG, N, ShlCount); 1938 insertDAGNode(DAG, N, Shl); 1939 DAG.ReplaceAllUsesWith(N, Shl); 1940 DAG.RemoveDeadNode(N.getNode()); 1941 AM.IndexReg = And; 1942 AM.Scale = (1 << ScaleLog); 1943 return false; 1944 } 1945 1946 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this 1947 // allows us to fold the shift into this addressing mode. Returns false if the 1948 // transform succeeded. 1949 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, 1950 X86ISelAddressMode &AM) { 1951 SDValue Shift = N.getOperand(0); 1952 1953 // Use a signed mask so that shifting right will insert sign bits. These 1954 // bits will be removed when we shift the result left so it doesn't matter 1955 // what we use. This might allow a smaller immediate encoding. 1956 int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue(); 1957 1958 // If we have an any_extend feeding the AND, look through it to see if there 1959 // is a shift behind it. But only if the AND doesn't use the extended bits. 1960 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64? 1961 bool FoundAnyExtend = false; 1962 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() && 1963 Shift.getOperand(0).getSimpleValueType() == MVT::i32 && 1964 isUInt<32>(Mask)) { 1965 FoundAnyExtend = true; 1966 Shift = Shift.getOperand(0); 1967 } 1968 1969 if (Shift.getOpcode() != ISD::SHL || 1970 !isa<ConstantSDNode>(Shift.getOperand(1))) 1971 return true; 1972 1973 SDValue X = Shift.getOperand(0); 1974 1975 // Not likely to be profitable if either the AND or SHIFT node has more 1976 // than one use (unless all uses are for address computation). Besides, 1977 // isel mechanism requires their node ids to be reused. 1978 if (!N.hasOneUse() || !Shift.hasOneUse()) 1979 return true; 1980 1981 // Verify that the shift amount is something we can fold. 1982 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 1983 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) 1984 return true; 1985 1986 MVT VT = N.getSimpleValueType(); 1987 SDLoc DL(N); 1988 if (FoundAnyExtend) { 1989 SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X); 1990 insertDAGNode(DAG, N, NewX); 1991 X = NewX; 1992 } 1993 1994 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT); 1995 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); 1996 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); 1997 1998 // Insert the new nodes into the topological ordering. We must do this in 1999 // a valid topological ordering as nothing is going to go back and re-sort 2000 // these nodes. We continually insert before 'N' in sequence as this is 2001 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 2002 // hierarchy left to express. 2003 insertDAGNode(DAG, N, NewMask); 2004 insertDAGNode(DAG, N, NewAnd); 2005 insertDAGNode(DAG, N, NewShift); 2006 DAG.ReplaceAllUsesWith(N, NewShift); 2007 DAG.RemoveDeadNode(N.getNode()); 2008 2009 AM.Scale = 1 << ShiftAmt; 2010 AM.IndexReg = NewAnd; 2011 return false; 2012 } 2013 2014 // Implement some heroics to detect shifts of masked values where the mask can 2015 // be replaced by extending the shift and undoing that in the addressing mode 2016 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and 2017 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in 2018 // the addressing mode. This results in code such as: 2019 // 2020 // int f(short *y, int *lookup_table) { 2021 // ... 2022 // return *y + lookup_table[*y >> 11]; 2023 // } 2024 // 2025 // Turning into: 2026 // movzwl (%rdi), %eax 2027 // movl %eax, %ecx 2028 // shrl $11, %ecx 2029 // addl (%rsi,%rcx,4), %eax 2030 // 2031 // Instead of: 2032 // movzwl (%rdi), %eax 2033 // movl %eax, %ecx 2034 // shrl $9, %ecx 2035 // andl $124, %rcx 2036 // addl (%rsi,%rcx), %eax 2037 // 2038 // Note that this function assumes the mask is provided as a mask *after* the 2039 // value is shifted. The input chain may or may not match that, but computing 2040 // such a mask is trivial. 2041 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, 2042 uint64_t Mask, 2043 SDValue Shift, SDValue X, 2044 X86ISelAddressMode &AM) { 2045 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || 2046 !isa<ConstantSDNode>(Shift.getOperand(1))) 2047 return true; 2048 2049 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 2050 unsigned MaskLZ = countLeadingZeros(Mask); 2051 unsigned MaskTZ = countTrailingZeros(Mask); 2052 2053 // The amount of shift we're trying to fit into the addressing mode is taken 2054 // from the trailing zeros of the mask. 2055 unsigned AMShiftAmt = MaskTZ; 2056 2057 // There is nothing we can do here unless the mask is removing some bits. 2058 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. 2059 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true; 2060 2061 // We also need to ensure that mask is a continuous run of bits. 2062 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; 2063 2064 // Scale the leading zero count down based on the actual size of the value. 2065 // Also scale it down based on the size of the shift. 2066 unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt; 2067 if (MaskLZ < ScaleDown) 2068 return true; 2069 MaskLZ -= ScaleDown; 2070 2071 // The final check is to ensure that any masked out high bits of X are 2072 // already known to be zero. Otherwise, the mask has a semantic impact 2073 // other than masking out a couple of low bits. Unfortunately, because of 2074 // the mask, zero extensions will be removed from operands in some cases. 2075 // This code works extra hard to look through extensions because we can 2076 // replace them with zero extensions cheaply if necessary. 2077 bool ReplacingAnyExtend = false; 2078 if (X.getOpcode() == ISD::ANY_EXTEND) { 2079 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() - 2080 X.getOperand(0).getSimpleValueType().getSizeInBits(); 2081 // Assume that we'll replace the any-extend with a zero-extend, and 2082 // narrow the search to the extended value. 2083 X = X.getOperand(0); 2084 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; 2085 ReplacingAnyExtend = true; 2086 } 2087 APInt MaskedHighBits = 2088 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ); 2089 KnownBits Known = DAG.computeKnownBits(X); 2090 if (MaskedHighBits != Known.Zero) return true; 2091 2092 // We've identified a pattern that can be transformed into a single shift 2093 // and an addressing mode. Make it so. 2094 MVT VT = N.getSimpleValueType(); 2095 if (ReplacingAnyExtend) { 2096 assert(X.getValueType() != VT); 2097 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. 2098 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X); 2099 insertDAGNode(DAG, N, NewX); 2100 X = NewX; 2101 } 2102 SDLoc DL(N); 2103 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8); 2104 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); 2105 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8); 2106 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); 2107 2108 // Insert the new nodes into the topological ordering. We must do this in 2109 // a valid topological ordering as nothing is going to go back and re-sort 2110 // these nodes. We continually insert before 'N' in sequence as this is 2111 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 2112 // hierarchy left to express. 2113 insertDAGNode(DAG, N, NewSRLAmt); 2114 insertDAGNode(DAG, N, NewSRL); 2115 insertDAGNode(DAG, N, NewSHLAmt); 2116 insertDAGNode(DAG, N, NewSHL); 2117 DAG.ReplaceAllUsesWith(N, NewSHL); 2118 DAG.RemoveDeadNode(N.getNode()); 2119 2120 AM.Scale = 1 << AMShiftAmt; 2121 AM.IndexReg = NewSRL; 2122 return false; 2123 } 2124 2125 // Transform "(X >> SHIFT) & (MASK << C1)" to 2126 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be 2127 // matched to a BEXTR later. Returns false if the simplification is performed. 2128 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N, 2129 uint64_t Mask, 2130 SDValue Shift, SDValue X, 2131 X86ISelAddressMode &AM, 2132 const X86Subtarget &Subtarget) { 2133 if (Shift.getOpcode() != ISD::SRL || 2134 !isa<ConstantSDNode>(Shift.getOperand(1)) || 2135 !Shift.hasOneUse() || !N.hasOneUse()) 2136 return true; 2137 2138 // Only do this if BEXTR will be matched by matchBEXTRFromAndImm. 2139 if (!Subtarget.hasTBM() && 2140 !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR())) 2141 return true; 2142 2143 // We need to ensure that mask is a continuous run of bits. 2144 if (!isShiftedMask_64(Mask)) return true; 2145 2146 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 2147 2148 // The amount of shift we're trying to fit into the addressing mode is taken 2149 // from the trailing zeros of the mask. 2150 unsigned AMShiftAmt = countTrailingZeros(Mask); 2151 2152 // There is nothing we can do here unless the mask is removing some bits. 2153 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. 2154 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true; 2155 2156 MVT VT = N.getSimpleValueType(); 2157 SDLoc DL(N); 2158 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8); 2159 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); 2160 SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT); 2161 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask); 2162 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8); 2163 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt); 2164 2165 // Insert the new nodes into the topological ordering. We must do this in 2166 // a valid topological ordering as nothing is going to go back and re-sort 2167 // these nodes. We continually insert before 'N' in sequence as this is 2168 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 2169 // hierarchy left to express. 2170 insertDAGNode(DAG, N, NewSRLAmt); 2171 insertDAGNode(DAG, N, NewSRL); 2172 insertDAGNode(DAG, N, NewMask); 2173 insertDAGNode(DAG, N, NewAnd); 2174 insertDAGNode(DAG, N, NewSHLAmt); 2175 insertDAGNode(DAG, N, NewSHL); 2176 DAG.ReplaceAllUsesWith(N, NewSHL); 2177 DAG.RemoveDeadNode(N.getNode()); 2178 2179 AM.Scale = 1 << AMShiftAmt; 2180 AM.IndexReg = NewAnd; 2181 return false; 2182 } 2183 2184 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 2185 unsigned Depth) { 2186 SDLoc dl(N); 2187 LLVM_DEBUG({ 2188 dbgs() << "MatchAddress: "; 2189 AM.dump(CurDAG); 2190 }); 2191 // Limit recursion. 2192 if (Depth > 5) 2193 return matchAddressBase(N, AM); 2194 2195 // If this is already a %rip relative address, we can only merge immediates 2196 // into it. Instead of handling this in every case, we handle it here. 2197 // RIP relative addressing: %rip + 32-bit displacement! 2198 if (AM.isRIPRelative()) { 2199 // FIXME: JumpTable and ExternalSymbol address currently don't like 2200 // displacements. It isn't very important, but this should be fixed for 2201 // consistency. 2202 if (!(AM.ES || AM.MCSym) && AM.JT != -1) 2203 return true; 2204 2205 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) 2206 if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM)) 2207 return false; 2208 return true; 2209 } 2210 2211 switch (N.getOpcode()) { 2212 default: break; 2213 case ISD::LOCAL_RECOVER: { 2214 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0) 2215 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) { 2216 // Use the symbol and don't prefix it. 2217 AM.MCSym = ESNode->getMCSymbol(); 2218 return false; 2219 } 2220 break; 2221 } 2222 case ISD::Constant: { 2223 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 2224 if (!foldOffsetIntoAddress(Val, AM)) 2225 return false; 2226 break; 2227 } 2228 2229 case X86ISD::Wrapper: 2230 case X86ISD::WrapperRIP: 2231 if (!matchWrapper(N, AM)) 2232 return false; 2233 break; 2234 2235 case ISD::LOAD: 2236 if (!matchLoadInAddress(cast<LoadSDNode>(N), AM)) 2237 return false; 2238 break; 2239 2240 case ISD::FrameIndex: 2241 if (AM.BaseType == X86ISelAddressMode::RegBase && 2242 AM.Base_Reg.getNode() == nullptr && 2243 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { 2244 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 2245 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 2246 return false; 2247 } 2248 break; 2249 2250 case ISD::SHL: 2251 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) 2252 break; 2253 2254 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 2255 unsigned Val = CN->getZExtValue(); 2256 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 2257 // that the base operand remains free for further matching. If 2258 // the base doesn't end up getting used, a post-processing step 2259 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 2260 if (Val == 1 || Val == 2 || Val == 3) { 2261 AM.Scale = 1 << Val; 2262 SDValue ShVal = N.getOperand(0); 2263 2264 // Okay, we know that we have a scale by now. However, if the scaled 2265 // value is an add of something and a constant, we can fold the 2266 // constant into the disp field here. 2267 if (CurDAG->isBaseWithConstantOffset(ShVal)) { 2268 AM.IndexReg = ShVal.getOperand(0); 2269 ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1)); 2270 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; 2271 if (!foldOffsetIntoAddress(Disp, AM)) 2272 return false; 2273 } 2274 2275 AM.IndexReg = ShVal; 2276 return false; 2277 } 2278 } 2279 break; 2280 2281 case ISD::SRL: { 2282 // Scale must not be used already. 2283 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; 2284 2285 // We only handle up to 64-bit values here as those are what matter for 2286 // addressing mode optimizations. 2287 assert(N.getSimpleValueType().getSizeInBits() <= 64 && 2288 "Unexpected value size!"); 2289 2290 SDValue And = N.getOperand(0); 2291 if (And.getOpcode() != ISD::AND) break; 2292 SDValue X = And.getOperand(0); 2293 2294 // The mask used for the transform is expected to be post-shift, but we 2295 // found the shift first so just apply the shift to the mask before passing 2296 // it down. 2297 if (!isa<ConstantSDNode>(N.getOperand(1)) || 2298 !isa<ConstantSDNode>(And.getOperand(1))) 2299 break; 2300 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); 2301 2302 // Try to fold the mask and shift into the scale, and return false if we 2303 // succeed. 2304 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) 2305 return false; 2306 break; 2307 } 2308 2309 case ISD::SMUL_LOHI: 2310 case ISD::UMUL_LOHI: 2311 // A mul_lohi where we need the low part can be folded as a plain multiply. 2312 if (N.getResNo() != 0) break; 2313 LLVM_FALLTHROUGH; 2314 case ISD::MUL: 2315 case X86ISD::MUL_IMM: 2316 // X*[3,5,9] -> X+X*[2,4,8] 2317 if (AM.BaseType == X86ISelAddressMode::RegBase && 2318 AM.Base_Reg.getNode() == nullptr && 2319 AM.IndexReg.getNode() == nullptr) { 2320 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) 2321 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 2322 CN->getZExtValue() == 9) { 2323 AM.Scale = unsigned(CN->getZExtValue())-1; 2324 2325 SDValue MulVal = N.getOperand(0); 2326 SDValue Reg; 2327 2328 // Okay, we know that we have a scale by now. However, if the scaled 2329 // value is an add of something and a constant, we can fold the 2330 // constant into the disp field here. 2331 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 2332 isa<ConstantSDNode>(MulVal.getOperand(1))) { 2333 Reg = MulVal.getOperand(0); 2334 ConstantSDNode *AddVal = 2335 cast<ConstantSDNode>(MulVal.getOperand(1)); 2336 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); 2337 if (foldOffsetIntoAddress(Disp, AM)) 2338 Reg = N.getOperand(0); 2339 } else { 2340 Reg = N.getOperand(0); 2341 } 2342 2343 AM.IndexReg = AM.Base_Reg = Reg; 2344 return false; 2345 } 2346 } 2347 break; 2348 2349 case ISD::SUB: { 2350 // Given A-B, if A can be completely folded into the address and 2351 // the index field with the index field unused, use -B as the index. 2352 // This is a win if a has multiple parts that can be folded into 2353 // the address. Also, this saves a mov if the base register has 2354 // other uses, since it avoids a two-address sub instruction, however 2355 // it costs an additional mov if the index register has other uses. 2356 2357 // Add an artificial use to this node so that we can keep track of 2358 // it if it gets CSE'd with a different node. 2359 HandleSDNode Handle(N); 2360 2361 // Test if the LHS of the sub can be folded. 2362 X86ISelAddressMode Backup = AM; 2363 if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) { 2364 N = Handle.getValue(); 2365 AM = Backup; 2366 break; 2367 } 2368 N = Handle.getValue(); 2369 // Test if the index field is free for use. 2370 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 2371 AM = Backup; 2372 break; 2373 } 2374 2375 int Cost = 0; 2376 SDValue RHS = N.getOperand(1); 2377 // If the RHS involves a register with multiple uses, this 2378 // transformation incurs an extra mov, due to the neg instruction 2379 // clobbering its operand. 2380 if (!RHS.getNode()->hasOneUse() || 2381 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 2382 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 2383 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 2384 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 2385 RHS.getOperand(0).getValueType() == MVT::i32)) 2386 ++Cost; 2387 // If the base is a register with multiple uses, this 2388 // transformation may save a mov. 2389 if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() && 2390 !AM.Base_Reg.getNode()->hasOneUse()) || 2391 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 2392 --Cost; 2393 // If the folded LHS was interesting, this transformation saves 2394 // address arithmetic. 2395 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 2396 ((AM.Disp != 0) && (Backup.Disp == 0)) + 2397 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 2398 --Cost; 2399 // If it doesn't look like it may be an overall win, don't do it. 2400 if (Cost >= 0) { 2401 AM = Backup; 2402 break; 2403 } 2404 2405 // Ok, the transformation is legal and appears profitable. Go for it. 2406 // Negation will be emitted later to avoid creating dangling nodes if this 2407 // was an unprofitable LEA. 2408 AM.IndexReg = RHS; 2409 AM.NegateIndex = true; 2410 AM.Scale = 1; 2411 return false; 2412 } 2413 2414 case ISD::ADD: 2415 if (!matchAdd(N, AM, Depth)) 2416 return false; 2417 break; 2418 2419 case ISD::OR: 2420 // We want to look through a transform in InstCombine and DAGCombiner that 2421 // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'. 2422 // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3)) 2423 // An 'lea' can then be used to match the shift (multiply) and add: 2424 // and $1, %esi 2425 // lea (%rsi, %rdi, 8), %rax 2426 if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) && 2427 !matchAdd(N, AM, Depth)) 2428 return false; 2429 break; 2430 2431 case ISD::XOR: 2432 // We want to look through a transform in InstCombine that 2433 // turns 'add' with min_signed_val into 'xor', so we can treat this 'xor' 2434 // exactly like an 'add'. 2435 if (isMinSignedConstant(N.getOperand(1)) && !matchAdd(N, AM, Depth)) 2436 return false; 2437 break; 2438 2439 case ISD::AND: { 2440 // Perform some heroic transforms on an and of a constant-count shift 2441 // with a constant to enable use of the scaled offset field. 2442 2443 // Scale must not be used already. 2444 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; 2445 2446 // We only handle up to 64-bit values here as those are what matter for 2447 // addressing mode optimizations. 2448 assert(N.getSimpleValueType().getSizeInBits() <= 64 && 2449 "Unexpected value size!"); 2450 2451 if (!isa<ConstantSDNode>(N.getOperand(1))) 2452 break; 2453 2454 if (N.getOperand(0).getOpcode() == ISD::SRL) { 2455 SDValue Shift = N.getOperand(0); 2456 SDValue X = Shift.getOperand(0); 2457 2458 uint64_t Mask = N.getConstantOperandVal(1); 2459 2460 // Try to fold the mask and shift into an extract and scale. 2461 if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) 2462 return false; 2463 2464 // Try to fold the mask and shift directly into the scale. 2465 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) 2466 return false; 2467 2468 // Try to fold the mask and shift into BEXTR and scale. 2469 if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget)) 2470 return false; 2471 } 2472 2473 // Try to swap the mask and shift to place shifts which can be done as 2474 // a scale on the outside of the mask. 2475 if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM)) 2476 return false; 2477 2478 break; 2479 } 2480 case ISD::ZERO_EXTEND: { 2481 // Try to widen a zexted shift left to the same size as its use, so we can 2482 // match the shift as a scale factor. 2483 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) 2484 break; 2485 if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse()) 2486 break; 2487 2488 // Give up if the shift is not a valid scale factor [1,2,3]. 2489 SDValue Shl = N.getOperand(0); 2490 auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1)); 2491 if (!ShAmtC || ShAmtC->getZExtValue() > 3) 2492 break; 2493 2494 // The narrow shift must only shift out zero bits (it must be 'nuw'). 2495 // That makes it safe to widen to the destination type. 2496 APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(), 2497 ShAmtC->getZExtValue()); 2498 if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros)) 2499 break; 2500 2501 // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C) 2502 MVT VT = N.getSimpleValueType(); 2503 SDLoc DL(N); 2504 SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0)); 2505 SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1)); 2506 2507 // Convert the shift to scale factor. 2508 AM.Scale = 1 << ShAmtC->getZExtValue(); 2509 AM.IndexReg = Zext; 2510 2511 insertDAGNode(*CurDAG, N, Zext); 2512 insertDAGNode(*CurDAG, N, NewShl); 2513 CurDAG->ReplaceAllUsesWith(N, NewShl); 2514 CurDAG->RemoveDeadNode(N.getNode()); 2515 return false; 2516 } 2517 } 2518 2519 return matchAddressBase(N, AM); 2520 } 2521 2522 /// Helper for MatchAddress. Add the specified node to the 2523 /// specified addressing mode without any further recursion. 2524 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) { 2525 // Is the base register already occupied? 2526 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { 2527 // If so, check to see if the scale index register is set. 2528 if (!AM.IndexReg.getNode()) { 2529 AM.IndexReg = N; 2530 AM.Scale = 1; 2531 return false; 2532 } 2533 2534 // Otherwise, we cannot select it. 2535 return true; 2536 } 2537 2538 // Default, generate it as a register. 2539 AM.BaseType = X86ISelAddressMode::RegBase; 2540 AM.Base_Reg = N; 2541 return false; 2542 } 2543 2544 bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N, 2545 X86ISelAddressMode &AM, 2546 unsigned Depth) { 2547 SDLoc dl(N); 2548 LLVM_DEBUG({ 2549 dbgs() << "MatchVectorAddress: "; 2550 AM.dump(CurDAG); 2551 }); 2552 // Limit recursion. 2553 if (Depth > 5) 2554 return matchAddressBase(N, AM); 2555 2556 // TODO: Support other operations. 2557 switch (N.getOpcode()) { 2558 case ISD::Constant: { 2559 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 2560 if (!foldOffsetIntoAddress(Val, AM)) 2561 return false; 2562 break; 2563 } 2564 case X86ISD::Wrapper: 2565 if (!matchWrapper(N, AM)) 2566 return false; 2567 break; 2568 case ISD::ADD: { 2569 // Add an artificial use to this node so that we can keep track of 2570 // it if it gets CSE'd with a different node. 2571 HandleSDNode Handle(N); 2572 2573 X86ISelAddressMode Backup = AM; 2574 if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) && 2575 !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM, 2576 Depth + 1)) 2577 return false; 2578 AM = Backup; 2579 2580 // Try again after commuting the operands. 2581 if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM, 2582 Depth + 1) && 2583 !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM, 2584 Depth + 1)) 2585 return false; 2586 AM = Backup; 2587 2588 N = Handle.getValue(); 2589 break; 2590 } 2591 } 2592 2593 return matchAddressBase(N, AM); 2594 } 2595 2596 /// Helper for selectVectorAddr. Handles things that can be folded into a 2597 /// gather/scatter address. The index register and scale should have already 2598 /// been handled. 2599 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) { 2600 return matchVectorAddressRecursively(N, AM, 0); 2601 } 2602 2603 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, 2604 SDValue IndexOp, SDValue ScaleOp, 2605 SDValue &Base, SDValue &Scale, 2606 SDValue &Index, SDValue &Disp, 2607 SDValue &Segment) { 2608 X86ISelAddressMode AM; 2609 AM.IndexReg = IndexOp; 2610 AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 2611 2612 unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace(); 2613 if (AddrSpace == X86AS::GS) 2614 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 2615 if (AddrSpace == X86AS::FS) 2616 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 2617 if (AddrSpace == X86AS::SS) 2618 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); 2619 2620 SDLoc DL(BasePtr); 2621 MVT VT = BasePtr.getSimpleValueType(); 2622 2623 // Try to match into the base and displacement fields. 2624 if (matchVectorAddress(BasePtr, AM)) 2625 return false; 2626 2627 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment); 2628 return true; 2629 } 2630 2631 /// Returns true if it is able to pattern match an addressing mode. 2632 /// It returns the operands which make up the maximal addressing mode it can 2633 /// match by reference. 2634 /// 2635 /// Parent is the parent node of the addr operand that is being matched. It 2636 /// is always a load, store, atomic node, or null. It is only null when 2637 /// checking memory operands for inline asm nodes. 2638 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base, 2639 SDValue &Scale, SDValue &Index, 2640 SDValue &Disp, SDValue &Segment) { 2641 X86ISelAddressMode AM; 2642 2643 if (Parent && 2644 // This list of opcodes are all the nodes that have an "addr:$ptr" operand 2645 // that are not a MemSDNode, and thus don't have proper addrspace info. 2646 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme 2647 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores 2648 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme 2649 Parent->getOpcode() != X86ISD::ENQCMD && // Fixme 2650 Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme 2651 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp 2652 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp 2653 unsigned AddrSpace = 2654 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); 2655 if (AddrSpace == X86AS::GS) 2656 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 2657 if (AddrSpace == X86AS::FS) 2658 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 2659 if (AddrSpace == X86AS::SS) 2660 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); 2661 } 2662 2663 // Save the DL and VT before calling matchAddress, it can invalidate N. 2664 SDLoc DL(N); 2665 MVT VT = N.getSimpleValueType(); 2666 2667 if (matchAddress(N, AM)) 2668 return false; 2669 2670 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment); 2671 return true; 2672 } 2673 2674 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) { 2675 // In static codegen with small code model, we can get the address of a label 2676 // into a register with 'movl' 2677 if (N->getOpcode() != X86ISD::Wrapper) 2678 return false; 2679 2680 N = N.getOperand(0); 2681 2682 // At least GNU as does not accept 'movl' for TPOFF relocations. 2683 // FIXME: We could use 'movl' when we know we are targeting MC. 2684 if (N->getOpcode() == ISD::TargetGlobalTLSAddress) 2685 return false; 2686 2687 Imm = N; 2688 if (N->getOpcode() != ISD::TargetGlobalAddress) 2689 return TM.getCodeModel() == CodeModel::Small; 2690 2691 Optional<ConstantRange> CR = 2692 cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange(); 2693 if (!CR) 2694 return TM.getCodeModel() == CodeModel::Small; 2695 2696 return CR->getUnsignedMax().ult(1ull << 32); 2697 } 2698 2699 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base, 2700 SDValue &Scale, SDValue &Index, 2701 SDValue &Disp, SDValue &Segment) { 2702 // Save the debug loc before calling selectLEAAddr, in case it invalidates N. 2703 SDLoc DL(N); 2704 2705 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment)) 2706 return false; 2707 2708 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base); 2709 if (RN && RN->getReg() == 0) 2710 Base = CurDAG->getRegister(0, MVT::i64); 2711 else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) { 2712 // Base could already be %rip, particularly in the x32 ABI. 2713 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL, 2714 MVT::i64), 0); 2715 Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef, 2716 Base); 2717 } 2718 2719 RN = dyn_cast<RegisterSDNode>(Index); 2720 if (RN && RN->getReg() == 0) 2721 Index = CurDAG->getRegister(0, MVT::i64); 2722 else { 2723 assert(Index.getValueType() == MVT::i32 && 2724 "Expect to be extending 32-bit registers for use in LEA"); 2725 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL, 2726 MVT::i64), 0); 2727 Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef, 2728 Index); 2729 } 2730 2731 return true; 2732 } 2733 2734 /// Calls SelectAddr and determines if the maximal addressing 2735 /// mode it matches can be cost effectively emitted as an LEA instruction. 2736 bool X86DAGToDAGISel::selectLEAAddr(SDValue N, 2737 SDValue &Base, SDValue &Scale, 2738 SDValue &Index, SDValue &Disp, 2739 SDValue &Segment) { 2740 X86ISelAddressMode AM; 2741 2742 // Save the DL and VT before calling matchAddress, it can invalidate N. 2743 SDLoc DL(N); 2744 MVT VT = N.getSimpleValueType(); 2745 2746 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 2747 // segments. 2748 SDValue Copy = AM.Segment; 2749 SDValue T = CurDAG->getRegister(0, MVT::i32); 2750 AM.Segment = T; 2751 if (matchAddress(N, AM)) 2752 return false; 2753 assert (T == AM.Segment); 2754 AM.Segment = Copy; 2755 2756 unsigned Complexity = 0; 2757 if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode()) 2758 Complexity = 1; 2759 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 2760 Complexity = 4; 2761 2762 if (AM.IndexReg.getNode()) 2763 Complexity++; 2764 2765 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 2766 // a simple shift. 2767 if (AM.Scale > 1) 2768 Complexity++; 2769 2770 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 2771 // to a LEA. This is determined with some experimentation but is by no means 2772 // optimal (especially for code size consideration). LEA is nice because of 2773 // its three-address nature. Tweak the cost function again when we can run 2774 // convertToThreeAddress() at register allocation time. 2775 if (AM.hasSymbolicDisplacement()) { 2776 // For X86-64, always use LEA to materialize RIP-relative addresses. 2777 if (Subtarget->is64Bit()) 2778 Complexity = 4; 2779 else 2780 Complexity += 2; 2781 } 2782 2783 // Heuristic: try harder to form an LEA from ADD if the operands set flags. 2784 // Unlike ADD, LEA does not affect flags, so we will be less likely to require 2785 // duplicating flag-producing instructions later in the pipeline. 2786 if (N.getOpcode() == ISD::ADD) { 2787 auto isMathWithFlags = [](SDValue V) { 2788 switch (V.getOpcode()) { 2789 case X86ISD::ADD: 2790 case X86ISD::SUB: 2791 case X86ISD::ADC: 2792 case X86ISD::SBB: 2793 case X86ISD::SMUL: 2794 case X86ISD::UMUL: 2795 /* TODO: These opcodes can be added safely, but we may want to justify 2796 their inclusion for different reasons (better for reg-alloc). 2797 case X86ISD::OR: 2798 case X86ISD::XOR: 2799 case X86ISD::AND: 2800 */ 2801 // Value 1 is the flag output of the node - verify it's not dead. 2802 return !SDValue(V.getNode(), 1).use_empty(); 2803 default: 2804 return false; 2805 } 2806 }; 2807 // TODO: We might want to factor in whether there's a load folding 2808 // opportunity for the math op that disappears with LEA. 2809 if (isMathWithFlags(N.getOperand(0)) || isMathWithFlags(N.getOperand(1))) 2810 Complexity++; 2811 } 2812 2813 if (AM.Disp) 2814 Complexity++; 2815 2816 // If it isn't worth using an LEA, reject it. 2817 if (Complexity <= 2) 2818 return false; 2819 2820 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment); 2821 return true; 2822 } 2823 2824 /// This is only run on TargetGlobalTLSAddress nodes. 2825 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base, 2826 SDValue &Scale, SDValue &Index, 2827 SDValue &Disp, SDValue &Segment) { 2828 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 2829 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 2830 2831 X86ISelAddressMode AM; 2832 AM.GV = GA->getGlobal(); 2833 AM.Disp += GA->getOffset(); 2834 AM.SymbolFlags = GA->getTargetFlags(); 2835 2836 if (Subtarget->is32Bit()) { 2837 AM.Scale = 1; 2838 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 2839 } 2840 2841 MVT VT = N.getSimpleValueType(); 2842 getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment); 2843 return true; 2844 } 2845 2846 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) { 2847 // Keep track of the original value type and whether this value was 2848 // truncated. If we see a truncation from pointer type to VT that truncates 2849 // bits that are known to be zero, we can use a narrow reference. 2850 EVT VT = N.getValueType(); 2851 bool WasTruncated = false; 2852 if (N.getOpcode() == ISD::TRUNCATE) { 2853 WasTruncated = true; 2854 N = N.getOperand(0); 2855 } 2856 2857 if (N.getOpcode() != X86ISD::Wrapper) 2858 return false; 2859 2860 // We can only use non-GlobalValues as immediates if they were not truncated, 2861 // as we do not have any range information. If we have a GlobalValue and the 2862 // address was not truncated, we can select it as an operand directly. 2863 unsigned Opc = N.getOperand(0)->getOpcode(); 2864 if (Opc != ISD::TargetGlobalAddress || !WasTruncated) { 2865 Op = N.getOperand(0); 2866 // We can only select the operand directly if we didn't have to look past a 2867 // truncate. 2868 return !WasTruncated; 2869 } 2870 2871 // Check that the global's range fits into VT. 2872 auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0)); 2873 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange(); 2874 if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits())) 2875 return false; 2876 2877 // Okay, we can use a narrow reference. 2878 Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT, 2879 GA->getOffset(), GA->getTargetFlags()); 2880 return true; 2881 } 2882 2883 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, 2884 SDValue &Base, SDValue &Scale, 2885 SDValue &Index, SDValue &Disp, 2886 SDValue &Segment) { 2887 assert(Root && P && "Unknown root/parent nodes"); 2888 if (!ISD::isNON_EXTLoad(N.getNode()) || 2889 !IsProfitableToFold(N, P, Root) || 2890 !IsLegalToFold(N, P, Root, OptLevel)) 2891 return false; 2892 2893 return selectAddr(N.getNode(), 2894 N.getOperand(1), Base, Scale, Index, Disp, Segment); 2895 } 2896 2897 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N, 2898 SDValue &Base, SDValue &Scale, 2899 SDValue &Index, SDValue &Disp, 2900 SDValue &Segment) { 2901 assert(Root && P && "Unknown root/parent nodes"); 2902 if (N->getOpcode() != X86ISD::VBROADCAST_LOAD || 2903 !IsProfitableToFold(N, P, Root) || 2904 !IsLegalToFold(N, P, Root, OptLevel)) 2905 return false; 2906 2907 return selectAddr(N.getNode(), 2908 N.getOperand(1), Base, Scale, Index, Disp, Segment); 2909 } 2910 2911 /// Return an SDNode that returns the value of the global base register. 2912 /// Output instructions required to initialize the global base register, 2913 /// if necessary. 2914 SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 2915 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 2916 auto &DL = MF->getDataLayout(); 2917 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode(); 2918 } 2919 2920 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const { 2921 if (N->getOpcode() == ISD::TRUNCATE) 2922 N = N->getOperand(0).getNode(); 2923 if (N->getOpcode() != X86ISD::Wrapper) 2924 return false; 2925 2926 auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0)); 2927 if (!GA) 2928 return false; 2929 2930 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange(); 2931 if (!CR) 2932 return Width == 32 && TM.getCodeModel() == CodeModel::Small; 2933 2934 return CR->getSignedMin().sge(-1ull << Width) && 2935 CR->getSignedMax().slt(1ull << Width); 2936 } 2937 2938 X86::CondCode X86DAGToDAGISel::getCondFromNode(SDNode *N) const { 2939 assert(N->isMachineOpcode() && "Unexpected node"); 2940 unsigned Opc = N->getMachineOpcode(); 2941 const MCInstrDesc &MCID = getInstrInfo()->get(Opc); 2942 int CondNo = X86::getCondSrcNoFromDesc(MCID); 2943 if (CondNo < 0) 2944 return X86::COND_INVALID; 2945 2946 return static_cast<X86::CondCode>(N->getConstantOperandVal(CondNo)); 2947 } 2948 2949 /// Test whether the given X86ISD::CMP node has any users that use a flag 2950 /// other than ZF. 2951 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const { 2952 // Examine each user of the node. 2953 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end(); 2954 UI != UE; ++UI) { 2955 // Only check things that use the flags. 2956 if (UI.getUse().getResNo() != Flags.getResNo()) 2957 continue; 2958 // Only examine CopyToReg uses that copy to EFLAGS. 2959 if (UI->getOpcode() != ISD::CopyToReg || 2960 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) 2961 return false; 2962 // Examine each user of the CopyToReg use. 2963 for (SDNode::use_iterator FlagUI = UI->use_begin(), 2964 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 2965 // Only examine the Flag result. 2966 if (FlagUI.getUse().getResNo() != 1) continue; 2967 // Anything unusual: assume conservatively. 2968 if (!FlagUI->isMachineOpcode()) return false; 2969 // Examine the condition code of the user. 2970 X86::CondCode CC = getCondFromNode(*FlagUI); 2971 2972 switch (CC) { 2973 // Comparisons which only use the zero flag. 2974 case X86::COND_E: case X86::COND_NE: 2975 continue; 2976 // Anything else: assume conservatively. 2977 default: 2978 return false; 2979 } 2980 } 2981 } 2982 return true; 2983 } 2984 2985 /// Test whether the given X86ISD::CMP node has any uses which require the SF 2986 /// flag to be accurate. 2987 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const { 2988 // Examine each user of the node. 2989 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end(); 2990 UI != UE; ++UI) { 2991 // Only check things that use the flags. 2992 if (UI.getUse().getResNo() != Flags.getResNo()) 2993 continue; 2994 // Only examine CopyToReg uses that copy to EFLAGS. 2995 if (UI->getOpcode() != ISD::CopyToReg || 2996 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) 2997 return false; 2998 // Examine each user of the CopyToReg use. 2999 for (SDNode::use_iterator FlagUI = UI->use_begin(), 3000 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 3001 // Only examine the Flag result. 3002 if (FlagUI.getUse().getResNo() != 1) continue; 3003 // Anything unusual: assume conservatively. 3004 if (!FlagUI->isMachineOpcode()) return false; 3005 // Examine the condition code of the user. 3006 X86::CondCode CC = getCondFromNode(*FlagUI); 3007 3008 switch (CC) { 3009 // Comparisons which don't examine the SF flag. 3010 case X86::COND_A: case X86::COND_AE: 3011 case X86::COND_B: case X86::COND_BE: 3012 case X86::COND_E: case X86::COND_NE: 3013 case X86::COND_O: case X86::COND_NO: 3014 case X86::COND_P: case X86::COND_NP: 3015 continue; 3016 // Anything else: assume conservatively. 3017 default: 3018 return false; 3019 } 3020 } 3021 } 3022 return true; 3023 } 3024 3025 static bool mayUseCarryFlag(X86::CondCode CC) { 3026 switch (CC) { 3027 // Comparisons which don't examine the CF flag. 3028 case X86::COND_O: case X86::COND_NO: 3029 case X86::COND_E: case X86::COND_NE: 3030 case X86::COND_S: case X86::COND_NS: 3031 case X86::COND_P: case X86::COND_NP: 3032 case X86::COND_L: case X86::COND_GE: 3033 case X86::COND_G: case X86::COND_LE: 3034 return false; 3035 // Anything else: assume conservatively. 3036 default: 3037 return true; 3038 } 3039 } 3040 3041 /// Test whether the given node which sets flags has any uses which require the 3042 /// CF flag to be accurate. 3043 bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const { 3044 // Examine each user of the node. 3045 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end(); 3046 UI != UE; ++UI) { 3047 // Only check things that use the flags. 3048 if (UI.getUse().getResNo() != Flags.getResNo()) 3049 continue; 3050 3051 unsigned UIOpc = UI->getOpcode(); 3052 3053 if (UIOpc == ISD::CopyToReg) { 3054 // Only examine CopyToReg uses that copy to EFLAGS. 3055 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) 3056 return false; 3057 // Examine each user of the CopyToReg use. 3058 for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end(); 3059 FlagUI != FlagUE; ++FlagUI) { 3060 // Only examine the Flag result. 3061 if (FlagUI.getUse().getResNo() != 1) 3062 continue; 3063 // Anything unusual: assume conservatively. 3064 if (!FlagUI->isMachineOpcode()) 3065 return false; 3066 // Examine the condition code of the user. 3067 X86::CondCode CC = getCondFromNode(*FlagUI); 3068 3069 if (mayUseCarryFlag(CC)) 3070 return false; 3071 } 3072 3073 // This CopyToReg is ok. Move on to the next user. 3074 continue; 3075 } 3076 3077 // This might be an unselected node. So look for the pre-isel opcodes that 3078 // use flags. 3079 unsigned CCOpNo; 3080 switch (UIOpc) { 3081 default: 3082 // Something unusual. Be conservative. 3083 return false; 3084 case X86ISD::SETCC: CCOpNo = 0; break; 3085 case X86ISD::SETCC_CARRY: CCOpNo = 0; break; 3086 case X86ISD::CMOV: CCOpNo = 2; break; 3087 case X86ISD::BRCOND: CCOpNo = 2; break; 3088 } 3089 3090 X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo); 3091 if (mayUseCarryFlag(CC)) 3092 return false; 3093 } 3094 return true; 3095 } 3096 3097 /// Check whether or not the chain ending in StoreNode is suitable for doing 3098 /// the {load; op; store} to modify transformation. 3099 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, 3100 SDValue StoredVal, SelectionDAG *CurDAG, 3101 unsigned LoadOpNo, 3102 LoadSDNode *&LoadNode, 3103 SDValue &InputChain) { 3104 // Is the stored value result 0 of the operation? 3105 if (StoredVal.getResNo() != 0) return false; 3106 3107 // Are there other uses of the operation other than the store? 3108 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; 3109 3110 // Is the store non-extending and non-indexed? 3111 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) 3112 return false; 3113 3114 SDValue Load = StoredVal->getOperand(LoadOpNo); 3115 // Is the stored value a non-extending and non-indexed load? 3116 if (!ISD::isNormalLoad(Load.getNode())) return false; 3117 3118 // Return LoadNode by reference. 3119 LoadNode = cast<LoadSDNode>(Load); 3120 3121 // Is store the only read of the loaded value? 3122 if (!Load.hasOneUse()) 3123 return false; 3124 3125 // Is the address of the store the same as the load? 3126 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || 3127 LoadNode->getOffset() != StoreNode->getOffset()) 3128 return false; 3129 3130 bool FoundLoad = false; 3131 SmallVector<SDValue, 4> ChainOps; 3132 SmallVector<const SDNode *, 4> LoopWorklist; 3133 SmallPtrSet<const SDNode *, 16> Visited; 3134 const unsigned int Max = 1024; 3135 3136 // Visualization of Load-Op-Store fusion: 3137 // ------------------------- 3138 // Legend: 3139 // *-lines = Chain operand dependencies. 3140 // |-lines = Normal operand dependencies. 3141 // Dependencies flow down and right. n-suffix references multiple nodes. 3142 // 3143 // C Xn C 3144 // * * * 3145 // * * * 3146 // Xn A-LD Yn TF Yn 3147 // * * \ | * | 3148 // * * \ | * | 3149 // * * \ | => A--LD_OP_ST 3150 // * * \| \ 3151 // TF OP \ 3152 // * | \ Zn 3153 // * | \ 3154 // A-ST Zn 3155 // 3156 3157 // This merge induced dependences from: #1: Xn -> LD, OP, Zn 3158 // #2: Yn -> LD 3159 // #3: ST -> Zn 3160 3161 // Ensure the transform is safe by checking for the dual 3162 // dependencies to make sure we do not induce a loop. 3163 3164 // As LD is a predecessor to both OP and ST we can do this by checking: 3165 // a). if LD is a predecessor to a member of Xn or Yn. 3166 // b). if a Zn is a predecessor to ST. 3167 3168 // However, (b) can only occur through being a chain predecessor to 3169 // ST, which is the same as Zn being a member or predecessor of Xn, 3170 // which is a subset of LD being a predecessor of Xn. So it's 3171 // subsumed by check (a). 3172 3173 SDValue Chain = StoreNode->getChain(); 3174 3175 // Gather X elements in ChainOps. 3176 if (Chain == Load.getValue(1)) { 3177 FoundLoad = true; 3178 ChainOps.push_back(Load.getOperand(0)); 3179 } else if (Chain.getOpcode() == ISD::TokenFactor) { 3180 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { 3181 SDValue Op = Chain.getOperand(i); 3182 if (Op == Load.getValue(1)) { 3183 FoundLoad = true; 3184 // Drop Load, but keep its chain. No cycle check necessary. 3185 ChainOps.push_back(Load.getOperand(0)); 3186 continue; 3187 } 3188 LoopWorklist.push_back(Op.getNode()); 3189 ChainOps.push_back(Op); 3190 } 3191 } 3192 3193 if (!FoundLoad) 3194 return false; 3195 3196 // Worklist is currently Xn. Add Yn to worklist. 3197 for (SDValue Op : StoredVal->ops()) 3198 if (Op.getNode() != LoadNode) 3199 LoopWorklist.push_back(Op.getNode()); 3200 3201 // Check (a) if Load is a predecessor to Xn + Yn 3202 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max, 3203 true)) 3204 return false; 3205 3206 InputChain = 3207 CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps); 3208 return true; 3209 } 3210 3211 // Change a chain of {load; op; store} of the same value into a simple op 3212 // through memory of that value, if the uses of the modified value and its 3213 // address are suitable. 3214 // 3215 // The tablegen pattern memory operand pattern is currently not able to match 3216 // the case where the EFLAGS on the original operation are used. 3217 // 3218 // To move this to tablegen, we'll need to improve tablegen to allow flags to 3219 // be transferred from a node in the pattern to the result node, probably with 3220 // a new keyword. For example, we have this 3221 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 3222 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 3223 // (implicit EFLAGS)]>; 3224 // but maybe need something like this 3225 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 3226 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 3227 // (transferrable EFLAGS)]>; 3228 // 3229 // Until then, we manually fold these and instruction select the operation 3230 // here. 3231 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) { 3232 StoreSDNode *StoreNode = cast<StoreSDNode>(Node); 3233 SDValue StoredVal = StoreNode->getOperand(1); 3234 unsigned Opc = StoredVal->getOpcode(); 3235 3236 // Before we try to select anything, make sure this is memory operand size 3237 // and opcode we can handle. Note that this must match the code below that 3238 // actually lowers the opcodes. 3239 EVT MemVT = StoreNode->getMemoryVT(); 3240 if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 && 3241 MemVT != MVT::i8) 3242 return false; 3243 3244 bool IsCommutable = false; 3245 bool IsNegate = false; 3246 switch (Opc) { 3247 default: 3248 return false; 3249 case X86ISD::SUB: 3250 IsNegate = isNullConstant(StoredVal.getOperand(0)); 3251 break; 3252 case X86ISD::SBB: 3253 break; 3254 case X86ISD::ADD: 3255 case X86ISD::ADC: 3256 case X86ISD::AND: 3257 case X86ISD::OR: 3258 case X86ISD::XOR: 3259 IsCommutable = true; 3260 break; 3261 } 3262 3263 unsigned LoadOpNo = IsNegate ? 1 : 0; 3264 LoadSDNode *LoadNode = nullptr; 3265 SDValue InputChain; 3266 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo, 3267 LoadNode, InputChain)) { 3268 if (!IsCommutable) 3269 return false; 3270 3271 // This operation is commutable, try the other operand. 3272 LoadOpNo = 1; 3273 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo, 3274 LoadNode, InputChain)) 3275 return false; 3276 } 3277 3278 SDValue Base, Scale, Index, Disp, Segment; 3279 if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp, 3280 Segment)) 3281 return false; 3282 3283 auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16, 3284 unsigned Opc8) { 3285 switch (MemVT.getSimpleVT().SimpleTy) { 3286 case MVT::i64: 3287 return Opc64; 3288 case MVT::i32: 3289 return Opc32; 3290 case MVT::i16: 3291 return Opc16; 3292 case MVT::i8: 3293 return Opc8; 3294 default: 3295 llvm_unreachable("Invalid size!"); 3296 } 3297 }; 3298 3299 MachineSDNode *Result; 3300 switch (Opc) { 3301 case X86ISD::SUB: 3302 // Handle negate. 3303 if (IsNegate) { 3304 unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m, 3305 X86::NEG8m); 3306 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain}; 3307 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, 3308 MVT::Other, Ops); 3309 break; 3310 } 3311 LLVM_FALLTHROUGH; 3312 case X86ISD::ADD: 3313 // Try to match inc/dec. 3314 if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) { 3315 bool IsOne = isOneConstant(StoredVal.getOperand(1)); 3316 bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1)); 3317 // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec. 3318 if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) { 3319 unsigned NewOpc = 3320 ((Opc == X86ISD::ADD) == IsOne) 3321 ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m) 3322 : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m); 3323 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain}; 3324 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, 3325 MVT::Other, Ops); 3326 break; 3327 } 3328 } 3329 LLVM_FALLTHROUGH; 3330 case X86ISD::ADC: 3331 case X86ISD::SBB: 3332 case X86ISD::AND: 3333 case X86ISD::OR: 3334 case X86ISD::XOR: { 3335 auto SelectRegOpcode = [SelectOpcode](unsigned Opc) { 3336 switch (Opc) { 3337 case X86ISD::ADD: 3338 return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr, 3339 X86::ADD8mr); 3340 case X86ISD::ADC: 3341 return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr, 3342 X86::ADC8mr); 3343 case X86ISD::SUB: 3344 return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr, 3345 X86::SUB8mr); 3346 case X86ISD::SBB: 3347 return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr, 3348 X86::SBB8mr); 3349 case X86ISD::AND: 3350 return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr, 3351 X86::AND8mr); 3352 case X86ISD::OR: 3353 return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr); 3354 case X86ISD::XOR: 3355 return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr, 3356 X86::XOR8mr); 3357 default: 3358 llvm_unreachable("Invalid opcode!"); 3359 } 3360 }; 3361 auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) { 3362 switch (Opc) { 3363 case X86ISD::ADD: 3364 return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0); 3365 case X86ISD::ADC: 3366 return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0); 3367 case X86ISD::SUB: 3368 return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0); 3369 case X86ISD::SBB: 3370 return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0); 3371 case X86ISD::AND: 3372 return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0); 3373 case X86ISD::OR: 3374 return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0); 3375 case X86ISD::XOR: 3376 return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0); 3377 default: 3378 llvm_unreachable("Invalid opcode!"); 3379 } 3380 }; 3381 auto SelectImmOpcode = [SelectOpcode](unsigned Opc) { 3382 switch (Opc) { 3383 case X86ISD::ADD: 3384 return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi, 3385 X86::ADD8mi); 3386 case X86ISD::ADC: 3387 return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi, 3388 X86::ADC8mi); 3389 case X86ISD::SUB: 3390 return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi, 3391 X86::SUB8mi); 3392 case X86ISD::SBB: 3393 return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi, 3394 X86::SBB8mi); 3395 case X86ISD::AND: 3396 return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi, 3397 X86::AND8mi); 3398 case X86ISD::OR: 3399 return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi, 3400 X86::OR8mi); 3401 case X86ISD::XOR: 3402 return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi, 3403 X86::XOR8mi); 3404 default: 3405 llvm_unreachable("Invalid opcode!"); 3406 } 3407 }; 3408 3409 unsigned NewOpc = SelectRegOpcode(Opc); 3410 SDValue Operand = StoredVal->getOperand(1-LoadOpNo); 3411 3412 // See if the operand is a constant that we can fold into an immediate 3413 // operand. 3414 if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) { 3415 int64_t OperandV = OperandC->getSExtValue(); 3416 3417 // Check if we can shrink the operand enough to fit in an immediate (or 3418 // fit into a smaller immediate) by negating it and switching the 3419 // operation. 3420 if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) && 3421 ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) || 3422 (MemVT == MVT::i64 && !isInt<32>(OperandV) && 3423 isInt<32>(-OperandV))) && 3424 hasNoCarryFlagUses(StoredVal.getValue(1))) { 3425 OperandV = -OperandV; 3426 Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD; 3427 } 3428 3429 // First try to fit this into an Imm8 operand. If it doesn't fit, then try 3430 // the larger immediate operand. 3431 if (MemVT != MVT::i8 && isInt<8>(OperandV)) { 3432 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT); 3433 NewOpc = SelectImm8Opcode(Opc); 3434 } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) { 3435 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT); 3436 NewOpc = SelectImmOpcode(Opc); 3437 } 3438 } 3439 3440 if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) { 3441 SDValue CopyTo = 3442 CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS, 3443 StoredVal.getOperand(2), SDValue()); 3444 3445 const SDValue Ops[] = {Base, Scale, Index, Disp, 3446 Segment, Operand, CopyTo, CopyTo.getValue(1)}; 3447 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, 3448 Ops); 3449 } else { 3450 const SDValue Ops[] = {Base, Scale, Index, Disp, 3451 Segment, Operand, InputChain}; 3452 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, 3453 Ops); 3454 } 3455 break; 3456 } 3457 default: 3458 llvm_unreachable("Invalid opcode!"); 3459 } 3460 3461 MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(), 3462 LoadNode->getMemOperand()}; 3463 CurDAG->setNodeMemRefs(Result, MemOps); 3464 3465 // Update Load Chain uses as well. 3466 ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1)); 3467 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); 3468 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); 3469 CurDAG->RemoveDeadNode(Node); 3470 return true; 3471 } 3472 3473 // See if this is an X & Mask that we can match to BEXTR/BZHI. 3474 // Where Mask is one of the following patterns: 3475 // a) x & (1 << nbits) - 1 3476 // b) x & ~(-1 << nbits) 3477 // c) x & (-1 >> (32 - y)) 3478 // d) x << (32 - y) >> (32 - y) 3479 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) { 3480 assert( 3481 (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) && 3482 "Should be either an and-mask, or right-shift after clearing high bits."); 3483 3484 // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one. 3485 if (!Subtarget->hasBMI() && !Subtarget->hasBMI2()) 3486 return false; 3487 3488 MVT NVT = Node->getSimpleValueType(0); 3489 3490 // Only supported for 32 and 64 bits. 3491 if (NVT != MVT::i32 && NVT != MVT::i64) 3492 return false; 3493 3494 SDValue NBits; 3495 bool NegateNBits; 3496 3497 // If we have BMI2's BZHI, we are ok with muti-use patterns. 3498 // Else, if we only have BMI1's BEXTR, we require one-use. 3499 const bool AllowExtraUsesByDefault = Subtarget->hasBMI2(); 3500 auto checkUses = [AllowExtraUsesByDefault](SDValue Op, unsigned NUses, 3501 Optional<bool> AllowExtraUses) { 3502 return AllowExtraUses.value_or(AllowExtraUsesByDefault) || 3503 Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo()); 3504 }; 3505 auto checkOneUse = [checkUses](SDValue Op, 3506 Optional<bool> AllowExtraUses = None) { 3507 return checkUses(Op, 1, AllowExtraUses); 3508 }; 3509 auto checkTwoUse = [checkUses](SDValue Op, 3510 Optional<bool> AllowExtraUses = None) { 3511 return checkUses(Op, 2, AllowExtraUses); 3512 }; 3513 3514 auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) { 3515 if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) { 3516 assert(V.getSimpleValueType() == MVT::i32 && 3517 V.getOperand(0).getSimpleValueType() == MVT::i64 && 3518 "Expected i64 -> i32 truncation"); 3519 V = V.getOperand(0); 3520 } 3521 return V; 3522 }; 3523 3524 // a) x & ((1 << nbits) + (-1)) 3525 auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits, 3526 &NegateNBits](SDValue Mask) -> bool { 3527 // Match `add`. Must only have one use! 3528 if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask)) 3529 return false; 3530 // We should be adding all-ones constant (i.e. subtracting one.) 3531 if (!isAllOnesConstant(Mask->getOperand(1))) 3532 return false; 3533 // Match `1 << nbits`. Might be truncated. Must only have one use! 3534 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0)); 3535 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0)) 3536 return false; 3537 if (!isOneConstant(M0->getOperand(0))) 3538 return false; 3539 NBits = M0->getOperand(1); 3540 NegateNBits = false; 3541 return true; 3542 }; 3543 3544 auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) { 3545 V = peekThroughOneUseTruncation(V); 3546 return CurDAG->MaskedValueIsAllOnes( 3547 V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(), 3548 NVT.getSizeInBits())); 3549 }; 3550 3551 // b) x & ~(-1 << nbits) 3552 auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation, 3553 &NBits, &NegateNBits](SDValue Mask) -> bool { 3554 // Match `~()`. Must only have one use! 3555 if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask)) 3556 return false; 3557 // The -1 only has to be all-ones for the final Node's NVT. 3558 if (!isAllOnes(Mask->getOperand(1))) 3559 return false; 3560 // Match `-1 << nbits`. Might be truncated. Must only have one use! 3561 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0)); 3562 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0)) 3563 return false; 3564 // The -1 only has to be all-ones for the final Node's NVT. 3565 if (!isAllOnes(M0->getOperand(0))) 3566 return false; 3567 NBits = M0->getOperand(1); 3568 NegateNBits = false; 3569 return true; 3570 }; 3571 3572 // Try to match potentially-truncated shift amount as `(bitwidth - y)`, 3573 // or leave the shift amount as-is, but then we'll have to negate it. 3574 auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt, 3575 unsigned Bitwidth) { 3576 NBits = ShiftAmt; 3577 NegateNBits = true; 3578 // Skip over a truncate of the shift amount, if any. 3579 if (NBits.getOpcode() == ISD::TRUNCATE) 3580 NBits = NBits.getOperand(0); 3581 // Try to match the shift amount as (bitwidth - y). It should go away, too. 3582 // If it doesn't match, that's fine, we'll just negate it ourselves. 3583 if (NBits.getOpcode() != ISD::SUB) 3584 return; 3585 auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0)); 3586 if (!V0 || V0->getZExtValue() != Bitwidth) 3587 return; 3588 NBits = NBits.getOperand(1); 3589 NegateNBits = false; 3590 }; 3591 3592 // c) x & (-1 >> z) but then we'll have to subtract z from bitwidth 3593 // or 3594 // c) x & (-1 >> (32 - y)) 3595 auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits, 3596 canonicalizeShiftAmt](SDValue Mask) -> bool { 3597 // The mask itself may be truncated. 3598 Mask = peekThroughOneUseTruncation(Mask); 3599 unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits(); 3600 // Match `l>>`. Must only have one use! 3601 if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask)) 3602 return false; 3603 // We should be shifting truly all-ones constant. 3604 if (!isAllOnesConstant(Mask.getOperand(0))) 3605 return false; 3606 SDValue M1 = Mask.getOperand(1); 3607 // The shift amount should not be used externally. 3608 if (!checkOneUse(M1)) 3609 return false; 3610 canonicalizeShiftAmt(M1, Bitwidth); 3611 // Pattern c. is non-canonical, and is expanded into pattern d. iff there 3612 // is no extra use of the mask. Clearly, there was one since we are here. 3613 // But at the same time, if we need to negate the shift amount, 3614 // then we don't want the mask to stick around, else it's unprofitable. 3615 return !NegateNBits; 3616 }; 3617 3618 SDValue X; 3619 3620 // d) x << z >> z but then we'll have to subtract z from bitwidth 3621 // or 3622 // d) x << (32 - y) >> (32 - y) 3623 auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt, 3624 AllowExtraUsesByDefault, &NegateNBits, 3625 &X](SDNode *Node) -> bool { 3626 if (Node->getOpcode() != ISD::SRL) 3627 return false; 3628 SDValue N0 = Node->getOperand(0); 3629 if (N0->getOpcode() != ISD::SHL) 3630 return false; 3631 unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits(); 3632 SDValue N1 = Node->getOperand(1); 3633 SDValue N01 = N0->getOperand(1); 3634 // Both of the shifts must be by the exact same value. 3635 if (N1 != N01) 3636 return false; 3637 canonicalizeShiftAmt(N1, Bitwidth); 3638 // There should not be any external uses of the inner shift / shift amount. 3639 // Note that while we are generally okay with external uses given BMI2, 3640 // iff we need to negate the shift amount, we are not okay with extra uses. 3641 const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits; 3642 if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses)) 3643 return false; 3644 X = N0->getOperand(0); 3645 return true; 3646 }; 3647 3648 auto matchLowBitMask = [matchPatternA, matchPatternB, 3649 matchPatternC](SDValue Mask) -> bool { 3650 return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask); 3651 }; 3652 3653 if (Node->getOpcode() == ISD::AND) { 3654 X = Node->getOperand(0); 3655 SDValue Mask = Node->getOperand(1); 3656 3657 if (matchLowBitMask(Mask)) { 3658 // Great. 3659 } else { 3660 std::swap(X, Mask); 3661 if (!matchLowBitMask(Mask)) 3662 return false; 3663 } 3664 } else if (!matchPatternD(Node)) 3665 return false; 3666 3667 // If we need to negate the shift amount, require BMI2 BZHI support. 3668 // It's just too unprofitable for BMI1 BEXTR. 3669 if (NegateNBits && !Subtarget->hasBMI2()) 3670 return false; 3671 3672 SDLoc DL(Node); 3673 3674 // Truncate the shift amount. 3675 NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits); 3676 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits); 3677 3678 // Insert 8-bit NBits into lowest 8 bits of 32-bit register. 3679 // All the other bits are undefined, we do not care about them. 3680 SDValue ImplDef = SDValue( 3681 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0); 3682 insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef); 3683 3684 SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32); 3685 insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal); 3686 NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 3687 MVT::i32, ImplDef, NBits, SRIdxVal), 3688 0); 3689 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits); 3690 3691 // We might have matched the amount of high bits to be cleared, 3692 // but we want the amount of low bits to be kept, so negate it then. 3693 if (NegateNBits) { 3694 SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32); 3695 insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC); 3696 3697 NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits); 3698 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits); 3699 } 3700 3701 if (Subtarget->hasBMI2()) { 3702 // Great, just emit the the BZHI.. 3703 if (NVT != MVT::i32) { 3704 // But have to place the bit count into the wide-enough register first. 3705 NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits); 3706 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits); 3707 } 3708 3709 SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits); 3710 ReplaceNode(Node, Extract.getNode()); 3711 SelectCode(Extract.getNode()); 3712 return true; 3713 } 3714 3715 // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is 3716 // *logically* shifted (potentially with one-use trunc inbetween), 3717 // and the truncation was the only use of the shift, 3718 // and if so look past one-use truncation. 3719 { 3720 SDValue RealX = peekThroughOneUseTruncation(X); 3721 // FIXME: only if the shift is one-use? 3722 if (RealX != X && RealX.getOpcode() == ISD::SRL) 3723 X = RealX; 3724 } 3725 3726 MVT XVT = X.getSimpleValueType(); 3727 3728 // Else, emitting BEXTR requires one more step. 3729 // The 'control' of BEXTR has the pattern of: 3730 // [15...8 bit][ 7...0 bit] location 3731 // [ bit count][ shift] name 3732 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11 3733 3734 // Shift NBits left by 8 bits, thus producing 'control'. 3735 // This makes the low 8 bits to be zero. 3736 SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8); 3737 insertDAGNode(*CurDAG, SDValue(Node, 0), C8); 3738 SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8); 3739 insertDAGNode(*CurDAG, SDValue(Node, 0), Control); 3740 3741 // If the 'X' is *logically* shifted, we can fold that shift into 'control'. 3742 // FIXME: only if the shift is one-use? 3743 if (X.getOpcode() == ISD::SRL) { 3744 SDValue ShiftAmt = X.getOperand(1); 3745 X = X.getOperand(0); 3746 3747 assert(ShiftAmt.getValueType() == MVT::i8 && 3748 "Expected shift amount to be i8"); 3749 3750 // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero! 3751 // We could zext to i16 in some form, but we intentionally don't do that. 3752 SDValue OrigShiftAmt = ShiftAmt; 3753 ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt); 3754 insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt); 3755 3756 // And now 'or' these low 8 bits of shift amount into the 'control'. 3757 Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt); 3758 insertDAGNode(*CurDAG, SDValue(Node, 0), Control); 3759 } 3760 3761 // But have to place the 'control' into the wide-enough register first. 3762 if (XVT != MVT::i32) { 3763 Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control); 3764 insertDAGNode(*CurDAG, SDValue(Node, 0), Control); 3765 } 3766 3767 // And finally, form the BEXTR itself. 3768 SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control); 3769 3770 // The 'X' was originally truncated. Do that now. 3771 if (XVT != NVT) { 3772 insertDAGNode(*CurDAG, SDValue(Node, 0), Extract); 3773 Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract); 3774 } 3775 3776 ReplaceNode(Node, Extract.getNode()); 3777 SelectCode(Extract.getNode()); 3778 3779 return true; 3780 } 3781 3782 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI. 3783 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) { 3784 MVT NVT = Node->getSimpleValueType(0); 3785 SDLoc dl(Node); 3786 3787 SDValue N0 = Node->getOperand(0); 3788 SDValue N1 = Node->getOperand(1); 3789 3790 // If we have TBM we can use an immediate for the control. If we have BMI 3791 // we should only do this if the BEXTR instruction is implemented well. 3792 // Otherwise moving the control into a register makes this more costly. 3793 // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM 3794 // hoisting the move immediate would make it worthwhile with a less optimal 3795 // BEXTR? 3796 bool PreferBEXTR = 3797 Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR()); 3798 if (!PreferBEXTR && !Subtarget->hasBMI2()) 3799 return nullptr; 3800 3801 // Must have a shift right. 3802 if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA) 3803 return nullptr; 3804 3805 // Shift can't have additional users. 3806 if (!N0->hasOneUse()) 3807 return nullptr; 3808 3809 // Only supported for 32 and 64 bits. 3810 if (NVT != MVT::i32 && NVT != MVT::i64) 3811 return nullptr; 3812 3813 // Shift amount and RHS of and must be constant. 3814 ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1); 3815 ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 3816 if (!MaskCst || !ShiftCst) 3817 return nullptr; 3818 3819 // And RHS must be a mask. 3820 uint64_t Mask = MaskCst->getZExtValue(); 3821 if (!isMask_64(Mask)) 3822 return nullptr; 3823 3824 uint64_t Shift = ShiftCst->getZExtValue(); 3825 uint64_t MaskSize = countPopulation(Mask); 3826 3827 // Don't interfere with something that can be handled by extracting AH. 3828 // TODO: If we are able to fold a load, BEXTR might still be better than AH. 3829 if (Shift == 8 && MaskSize == 8) 3830 return nullptr; 3831 3832 // Make sure we are only using bits that were in the original value, not 3833 // shifted in. 3834 if (Shift + MaskSize > NVT.getSizeInBits()) 3835 return nullptr; 3836 3837 // BZHI, if available, is always fast, unlike BEXTR. But even if we decide 3838 // that we can't use BEXTR, it is only worthwhile using BZHI if the mask 3839 // does not fit into 32 bits. Load folding is not a sufficient reason. 3840 if (!PreferBEXTR && MaskSize <= 32) 3841 return nullptr; 3842 3843 SDValue Control; 3844 unsigned ROpc, MOpc; 3845 3846 if (!PreferBEXTR) { 3847 assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then."); 3848 // If we can't make use of BEXTR then we can't fuse shift+mask stages. 3849 // Let's perform the mask first, and apply shift later. Note that we need to 3850 // widen the mask to account for the fact that we'll apply shift afterwards! 3851 Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT); 3852 ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr; 3853 MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm; 3854 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri; 3855 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0); 3856 } else { 3857 // The 'control' of BEXTR has the pattern of: 3858 // [15...8 bit][ 7...0 bit] location 3859 // [ bit count][ shift] name 3860 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11 3861 Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT); 3862 if (Subtarget->hasTBM()) { 3863 ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri; 3864 MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi; 3865 } else { 3866 assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then."); 3867 // BMI requires the immediate to placed in a register. 3868 ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr; 3869 MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm; 3870 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri; 3871 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0); 3872 } 3873 } 3874 3875 MachineSDNode *NewNode; 3876 SDValue Input = N0->getOperand(0); 3877 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 3878 if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 3879 SDValue Ops[] = { 3880 Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)}; 3881 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other); 3882 NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 3883 // Update the chain. 3884 ReplaceUses(Input.getValue(1), SDValue(NewNode, 2)); 3885 // Record the mem-refs 3886 CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()}); 3887 } else { 3888 NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control); 3889 } 3890 3891 if (!PreferBEXTR) { 3892 // We still need to apply the shift. 3893 SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT); 3894 unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri; 3895 NewNode = 3896 CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt); 3897 } 3898 3899 return NewNode; 3900 } 3901 3902 // Emit a PCMISTR(I/M) instruction. 3903 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc, 3904 bool MayFoldLoad, const SDLoc &dl, 3905 MVT VT, SDNode *Node) { 3906 SDValue N0 = Node->getOperand(0); 3907 SDValue N1 = Node->getOperand(1); 3908 SDValue Imm = Node->getOperand(2); 3909 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3910 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType()); 3911 3912 // Try to fold a load. No need to check alignment. 3913 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 3914 if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 3915 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, 3916 N1.getOperand(0) }; 3917 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other); 3918 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 3919 // Update the chain. 3920 ReplaceUses(N1.getValue(1), SDValue(CNode, 2)); 3921 // Record the mem-refs 3922 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); 3923 return CNode; 3924 } 3925 3926 SDValue Ops[] = { N0, N1, Imm }; 3927 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32); 3928 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops); 3929 return CNode; 3930 } 3931 3932 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need 3933 // to emit a second instruction after this one. This is needed since we have two 3934 // copyToReg nodes glued before this and we need to continue that glue through. 3935 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc, 3936 bool MayFoldLoad, const SDLoc &dl, 3937 MVT VT, SDNode *Node, 3938 SDValue &InFlag) { 3939 SDValue N0 = Node->getOperand(0); 3940 SDValue N2 = Node->getOperand(2); 3941 SDValue Imm = Node->getOperand(4); 3942 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3943 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType()); 3944 3945 // Try to fold a load. No need to check alignment. 3946 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 3947 if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 3948 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, 3949 N2.getOperand(0), InFlag }; 3950 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue); 3951 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 3952 InFlag = SDValue(CNode, 3); 3953 // Update the chain. 3954 ReplaceUses(N2.getValue(1), SDValue(CNode, 2)); 3955 // Record the mem-refs 3956 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()}); 3957 return CNode; 3958 } 3959 3960 SDValue Ops[] = { N0, N2, Imm, InFlag }; 3961 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue); 3962 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops); 3963 InFlag = SDValue(CNode, 2); 3964 return CNode; 3965 } 3966 3967 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) { 3968 EVT VT = N->getValueType(0); 3969 3970 // Only handle scalar shifts. 3971 if (VT.isVector()) 3972 return false; 3973 3974 // Narrower shifts only mask to 5 bits in hardware. 3975 unsigned Size = VT == MVT::i64 ? 64 : 32; 3976 3977 SDValue OrigShiftAmt = N->getOperand(1); 3978 SDValue ShiftAmt = OrigShiftAmt; 3979 SDLoc DL(N); 3980 3981 // Skip over a truncate of the shift amount. 3982 if (ShiftAmt->getOpcode() == ISD::TRUNCATE) 3983 ShiftAmt = ShiftAmt->getOperand(0); 3984 3985 // This function is called after X86DAGToDAGISel::matchBitExtract(), 3986 // so we are not afraid that we might mess up BZHI/BEXTR pattern. 3987 3988 SDValue NewShiftAmt; 3989 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) { 3990 SDValue Add0 = ShiftAmt->getOperand(0); 3991 SDValue Add1 = ShiftAmt->getOperand(1); 3992 auto *Add0C = dyn_cast<ConstantSDNode>(Add0); 3993 auto *Add1C = dyn_cast<ConstantSDNode>(Add1); 3994 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X 3995 // to avoid the ADD/SUB. 3996 if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) { 3997 NewShiftAmt = Add0; 3998 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X 3999 // to generate a NEG instead of a SUB of a constant. 4000 } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C && 4001 Add0C->getZExtValue() != 0) { 4002 EVT SubVT = ShiftAmt.getValueType(); 4003 SDValue X; 4004 if (Add0C->getZExtValue() % Size == 0) 4005 X = Add1; 4006 else if (ShiftAmt.hasOneUse() && Size == 64 && 4007 Add0C->getZExtValue() % 32 == 0) { 4008 // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32). 4009 // This is mainly beneficial if we already compute (x+n*32). 4010 if (Add1.getOpcode() == ISD::TRUNCATE) { 4011 Add1 = Add1.getOperand(0); 4012 SubVT = Add1.getValueType(); 4013 } 4014 if (Add0.getValueType() != SubVT) { 4015 Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT); 4016 insertDAGNode(*CurDAG, OrigShiftAmt, Add0); 4017 } 4018 4019 X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0); 4020 insertDAGNode(*CurDAG, OrigShiftAmt, X); 4021 } else 4022 return false; 4023 // Insert a negate op. 4024 // TODO: This isn't guaranteed to replace the sub if there is a logic cone 4025 // that uses it that's not a shift. 4026 SDValue Zero = CurDAG->getConstant(0, DL, SubVT); 4027 SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X); 4028 NewShiftAmt = Neg; 4029 4030 // Insert these operands into a valid topological order so they can 4031 // get selected independently. 4032 insertDAGNode(*CurDAG, OrigShiftAmt, Zero); 4033 insertDAGNode(*CurDAG, OrigShiftAmt, Neg); 4034 } else 4035 return false; 4036 } else 4037 return false; 4038 4039 if (NewShiftAmt.getValueType() != MVT::i8) { 4040 // Need to truncate the shift amount. 4041 NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt); 4042 // Add to a correct topological ordering. 4043 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt); 4044 } 4045 4046 // Insert a new mask to keep the shift amount legal. This should be removed 4047 // by isel patterns. 4048 NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt, 4049 CurDAG->getConstant(Size - 1, DL, MVT::i8)); 4050 // Place in a correct topological ordering. 4051 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt); 4052 4053 SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0), 4054 NewShiftAmt); 4055 if (UpdatedNode != N) { 4056 // If we found an existing node, we should replace ourselves with that node 4057 // and wait for it to be selected after its other users. 4058 ReplaceNode(N, UpdatedNode); 4059 return true; 4060 } 4061 4062 // If the original shift amount is now dead, delete it so that we don't run 4063 // it through isel. 4064 if (OrigShiftAmt.getNode()->use_empty()) 4065 CurDAG->RemoveDeadNode(OrigShiftAmt.getNode()); 4066 4067 // Now that we've optimized the shift amount, defer to normal isel to get 4068 // load folding and legacy vs BMI2 selection without repeating it here. 4069 SelectCode(N); 4070 return true; 4071 } 4072 4073 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) { 4074 MVT NVT = N->getSimpleValueType(0); 4075 unsigned Opcode = N->getOpcode(); 4076 SDLoc dl(N); 4077 4078 // For operations of the form (x << C1) op C2, check if we can use a smaller 4079 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. 4080 SDValue Shift = N->getOperand(0); 4081 SDValue N1 = N->getOperand(1); 4082 4083 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 4084 if (!Cst) 4085 return false; 4086 4087 int64_t Val = Cst->getSExtValue(); 4088 4089 // If we have an any_extend feeding the AND, look through it to see if there 4090 // is a shift behind it. But only if the AND doesn't use the extended bits. 4091 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64? 4092 bool FoundAnyExtend = false; 4093 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() && 4094 Shift.getOperand(0).getSimpleValueType() == MVT::i32 && 4095 isUInt<32>(Val)) { 4096 FoundAnyExtend = true; 4097 Shift = Shift.getOperand(0); 4098 } 4099 4100 if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse()) 4101 return false; 4102 4103 // i8 is unshrinkable, i16 should be promoted to i32. 4104 if (NVT != MVT::i32 && NVT != MVT::i64) 4105 return false; 4106 4107 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 4108 if (!ShlCst) 4109 return false; 4110 4111 uint64_t ShAmt = ShlCst->getZExtValue(); 4112 4113 // Make sure that we don't change the operation by removing bits. 4114 // This only matters for OR and XOR, AND is unaffected. 4115 uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1; 4116 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) 4117 return false; 4118 4119 // Check the minimum bitwidth for the new constant. 4120 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. 4121 auto CanShrinkImmediate = [&](int64_t &ShiftedVal) { 4122 if (Opcode == ISD::AND) { 4123 // AND32ri is the same as AND64ri32 with zext imm. 4124 // Try this before sign extended immediates below. 4125 ShiftedVal = (uint64_t)Val >> ShAmt; 4126 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal)) 4127 return true; 4128 // Also swap order when the AND can become MOVZX. 4129 if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX) 4130 return true; 4131 } 4132 ShiftedVal = Val >> ShAmt; 4133 if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) || 4134 (!isInt<32>(Val) && isInt<32>(ShiftedVal))) 4135 return true; 4136 if (Opcode != ISD::AND) { 4137 // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr 4138 ShiftedVal = (uint64_t)Val >> ShAmt; 4139 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal)) 4140 return true; 4141 } 4142 return false; 4143 }; 4144 4145 int64_t ShiftedVal; 4146 if (!CanShrinkImmediate(ShiftedVal)) 4147 return false; 4148 4149 // Ok, we can reorder to get a smaller immediate. 4150 4151 // But, its possible the original immediate allowed an AND to become MOVZX. 4152 // Doing this late due to avoid the MakedValueIsZero call as late as 4153 // possible. 4154 if (Opcode == ISD::AND) { 4155 // Find the smallest zext this could possibly be. 4156 unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits(); 4157 ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U)); 4158 4159 // Figure out which bits need to be zero to achieve that mask. 4160 APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(), 4161 ZExtWidth); 4162 NeededMask &= ~Cst->getAPIntValue(); 4163 4164 if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask)) 4165 return false; 4166 } 4167 4168 SDValue X = Shift.getOperand(0); 4169 if (FoundAnyExtend) { 4170 SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X); 4171 insertDAGNode(*CurDAG, SDValue(N, 0), NewX); 4172 X = NewX; 4173 } 4174 4175 SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT); 4176 insertDAGNode(*CurDAG, SDValue(N, 0), NewCst); 4177 SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst); 4178 insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp); 4179 SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp, 4180 Shift.getOperand(1)); 4181 ReplaceNode(N, NewSHL.getNode()); 4182 SelectCode(NewSHL.getNode()); 4183 return true; 4184 } 4185 4186 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA, 4187 SDNode *ParentB, SDNode *ParentC, 4188 SDValue A, SDValue B, SDValue C, 4189 uint8_t Imm) { 4190 assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) && 4191 C.isOperandOf(ParentC) && "Incorrect parent node"); 4192 4193 auto tryFoldLoadOrBCast = 4194 [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale, 4195 SDValue &Index, SDValue &Disp, SDValue &Segment) { 4196 if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment)) 4197 return true; 4198 4199 // Not a load, check for broadcast which may be behind a bitcast. 4200 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) { 4201 P = L.getNode(); 4202 L = L.getOperand(0); 4203 } 4204 4205 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD) 4206 return false; 4207 4208 // Only 32 and 64 bit broadcasts are supported. 4209 auto *MemIntr = cast<MemIntrinsicSDNode>(L); 4210 unsigned Size = MemIntr->getMemoryVT().getSizeInBits(); 4211 if (Size != 32 && Size != 64) 4212 return false; 4213 4214 return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment); 4215 }; 4216 4217 bool FoldedLoad = false; 4218 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 4219 if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 4220 FoldedLoad = true; 4221 } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3, 4222 Tmp4)) { 4223 FoldedLoad = true; 4224 std::swap(A, C); 4225 // Swap bits 1/4 and 3/6. 4226 uint8_t OldImm = Imm; 4227 Imm = OldImm & 0xa5; 4228 if (OldImm & 0x02) Imm |= 0x10; 4229 if (OldImm & 0x10) Imm |= 0x02; 4230 if (OldImm & 0x08) Imm |= 0x40; 4231 if (OldImm & 0x40) Imm |= 0x08; 4232 } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3, 4233 Tmp4)) { 4234 FoldedLoad = true; 4235 std::swap(B, C); 4236 // Swap bits 1/2 and 5/6. 4237 uint8_t OldImm = Imm; 4238 Imm = OldImm & 0x99; 4239 if (OldImm & 0x02) Imm |= 0x04; 4240 if (OldImm & 0x04) Imm |= 0x02; 4241 if (OldImm & 0x20) Imm |= 0x40; 4242 if (OldImm & 0x40) Imm |= 0x20; 4243 } 4244 4245 SDLoc DL(Root); 4246 4247 SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8); 4248 4249 MVT NVT = Root->getSimpleValueType(0); 4250 4251 MachineSDNode *MNode; 4252 if (FoldedLoad) { 4253 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other); 4254 4255 unsigned Opc; 4256 if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) { 4257 auto *MemIntr = cast<MemIntrinsicSDNode>(C); 4258 unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits(); 4259 assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!"); 4260 4261 bool UseD = EltSize == 32; 4262 if (NVT.is128BitVector()) 4263 Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi; 4264 else if (NVT.is256BitVector()) 4265 Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi; 4266 else if (NVT.is512BitVector()) 4267 Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi; 4268 else 4269 llvm_unreachable("Unexpected vector size!"); 4270 } else { 4271 bool UseD = NVT.getVectorElementType() == MVT::i32; 4272 if (NVT.is128BitVector()) 4273 Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi; 4274 else if (NVT.is256BitVector()) 4275 Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi; 4276 else if (NVT.is512BitVector()) 4277 Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi; 4278 else 4279 llvm_unreachable("Unexpected vector size!"); 4280 } 4281 4282 SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)}; 4283 MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops); 4284 4285 // Update the chain. 4286 ReplaceUses(C.getValue(1), SDValue(MNode, 1)); 4287 // Record the mem-refs 4288 CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()}); 4289 } else { 4290 bool UseD = NVT.getVectorElementType() == MVT::i32; 4291 unsigned Opc; 4292 if (NVT.is128BitVector()) 4293 Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri; 4294 else if (NVT.is256BitVector()) 4295 Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri; 4296 else if (NVT.is512BitVector()) 4297 Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri; 4298 else 4299 llvm_unreachable("Unexpected vector size!"); 4300 4301 MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm}); 4302 } 4303 4304 ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0)); 4305 CurDAG->RemoveDeadNode(Root); 4306 return true; 4307 } 4308 4309 // Try to match two logic ops to a VPTERNLOG. 4310 // FIXME: Handle more complex patterns that use an operand more than once? 4311 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) { 4312 MVT NVT = N->getSimpleValueType(0); 4313 4314 // Make sure we support VPTERNLOG. 4315 if (!NVT.isVector() || !Subtarget->hasAVX512() || 4316 NVT.getVectorElementType() == MVT::i1) 4317 return false; 4318 4319 // We need VLX for 128/256-bit. 4320 if (!(Subtarget->hasVLX() || NVT.is512BitVector())) 4321 return false; 4322 4323 SDValue N0 = N->getOperand(0); 4324 SDValue N1 = N->getOperand(1); 4325 4326 auto getFoldableLogicOp = [](SDValue Op) { 4327 // Peek through single use bitcast. 4328 if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse()) 4329 Op = Op.getOperand(0); 4330 4331 if (!Op.hasOneUse()) 4332 return SDValue(); 4333 4334 unsigned Opc = Op.getOpcode(); 4335 if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR || 4336 Opc == X86ISD::ANDNP) 4337 return Op; 4338 4339 return SDValue(); 4340 }; 4341 4342 SDValue A, FoldableOp; 4343 if ((FoldableOp = getFoldableLogicOp(N1))) { 4344 A = N0; 4345 } else if ((FoldableOp = getFoldableLogicOp(N0))) { 4346 A = N1; 4347 } else 4348 return false; 4349 4350 SDValue B = FoldableOp.getOperand(0); 4351 SDValue C = FoldableOp.getOperand(1); 4352 SDNode *ParentA = N; 4353 SDNode *ParentB = FoldableOp.getNode(); 4354 SDNode *ParentC = FoldableOp.getNode(); 4355 4356 // We can build the appropriate control immediate by performing the logic 4357 // operation we're matching using these constants for A, B, and C. 4358 uint8_t TernlogMagicA = 0xf0; 4359 uint8_t TernlogMagicB = 0xcc; 4360 uint8_t TernlogMagicC = 0xaa; 4361 4362 // Some of the inputs may be inverted, peek through them and invert the 4363 // magic values accordingly. 4364 // TODO: There may be a bitcast before the xor that we should peek through. 4365 auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) { 4366 if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() && 4367 ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) { 4368 Magic = ~Magic; 4369 Parent = Op.getNode(); 4370 Op = Op.getOperand(0); 4371 } 4372 }; 4373 4374 PeekThroughNot(A, ParentA, TernlogMagicA); 4375 PeekThroughNot(B, ParentB, TernlogMagicB); 4376 PeekThroughNot(C, ParentC, TernlogMagicC); 4377 4378 uint8_t Imm; 4379 switch (FoldableOp.getOpcode()) { 4380 default: llvm_unreachable("Unexpected opcode!"); 4381 case ISD::AND: Imm = TernlogMagicB & TernlogMagicC; break; 4382 case ISD::OR: Imm = TernlogMagicB | TernlogMagicC; break; 4383 case ISD::XOR: Imm = TernlogMagicB ^ TernlogMagicC; break; 4384 case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break; 4385 } 4386 4387 switch (N->getOpcode()) { 4388 default: llvm_unreachable("Unexpected opcode!"); 4389 case X86ISD::ANDNP: 4390 if (A == N0) 4391 Imm &= ~TernlogMagicA; 4392 else 4393 Imm = ~(Imm) & TernlogMagicA; 4394 break; 4395 case ISD::AND: Imm &= TernlogMagicA; break; 4396 case ISD::OR: Imm |= TernlogMagicA; break; 4397 case ISD::XOR: Imm ^= TernlogMagicA; break; 4398 } 4399 4400 return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm); 4401 } 4402 4403 /// If the high bits of an 'and' operand are known zero, try setting the 4404 /// high bits of an 'and' constant operand to produce a smaller encoding by 4405 /// creating a small, sign-extended negative immediate rather than a large 4406 /// positive one. This reverses a transform in SimplifyDemandedBits that 4407 /// shrinks mask constants by clearing bits. There is also a possibility that 4408 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that 4409 /// case, just replace the 'and'. Return 'true' if the node is replaced. 4410 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) { 4411 // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't 4412 // have immediate operands. 4413 MVT VT = And->getSimpleValueType(0); 4414 if (VT != MVT::i32 && VT != MVT::i64) 4415 return false; 4416 4417 auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1)); 4418 if (!And1C) 4419 return false; 4420 4421 // Bail out if the mask constant is already negative. It's can't shrink more. 4422 // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel 4423 // patterns to use a 32-bit and instead of a 64-bit and by relying on the 4424 // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits 4425 // are negative too. 4426 APInt MaskVal = And1C->getAPIntValue(); 4427 unsigned MaskLZ = MaskVal.countLeadingZeros(); 4428 if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32)) 4429 return false; 4430 4431 // Don't extend into the upper 32 bits of a 64 bit mask. 4432 if (VT == MVT::i64 && MaskLZ >= 32) { 4433 MaskLZ -= 32; 4434 MaskVal = MaskVal.trunc(32); 4435 } 4436 4437 SDValue And0 = And->getOperand(0); 4438 APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ); 4439 APInt NegMaskVal = MaskVal | HighZeros; 4440 4441 // If a negative constant would not allow a smaller encoding, there's no need 4442 // to continue. Only change the constant when we know it's a win. 4443 unsigned MinWidth = NegMaskVal.getMinSignedBits(); 4444 if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32)) 4445 return false; 4446 4447 // Extend masks if we truncated above. 4448 if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) { 4449 NegMaskVal = NegMaskVal.zext(64); 4450 HighZeros = HighZeros.zext(64); 4451 } 4452 4453 // The variable operand must be all zeros in the top bits to allow using the 4454 // new, negative constant as the mask. 4455 if (!CurDAG->MaskedValueIsZero(And0, HighZeros)) 4456 return false; 4457 4458 // Check if the mask is -1. In that case, this is an unnecessary instruction 4459 // that escaped earlier analysis. 4460 if (NegMaskVal.isAllOnes()) { 4461 ReplaceNode(And, And0.getNode()); 4462 return true; 4463 } 4464 4465 // A negative mask allows a smaller encoding. Create a new 'and' node. 4466 SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT); 4467 insertDAGNode(*CurDAG, SDValue(And, 0), NewMask); 4468 SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask); 4469 ReplaceNode(And, NewAnd.getNode()); 4470 SelectCode(NewAnd.getNode()); 4471 return true; 4472 } 4473 4474 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad, 4475 bool FoldedBCast, bool Masked) { 4476 #define VPTESTM_CASE(VT, SUFFIX) \ 4477 case MVT::VT: \ 4478 if (Masked) \ 4479 return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \ 4480 return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX; 4481 4482 4483 #define VPTESTM_BROADCAST_CASES(SUFFIX) \ 4484 default: llvm_unreachable("Unexpected VT!"); \ 4485 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \ 4486 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \ 4487 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \ 4488 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \ 4489 VPTESTM_CASE(v16i32, DZ##SUFFIX) \ 4490 VPTESTM_CASE(v8i64, QZ##SUFFIX) 4491 4492 #define VPTESTM_FULL_CASES(SUFFIX) \ 4493 VPTESTM_BROADCAST_CASES(SUFFIX) \ 4494 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \ 4495 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \ 4496 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \ 4497 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \ 4498 VPTESTM_CASE(v64i8, BZ##SUFFIX) \ 4499 VPTESTM_CASE(v32i16, WZ##SUFFIX) 4500 4501 if (FoldedBCast) { 4502 switch (TestVT.SimpleTy) { 4503 VPTESTM_BROADCAST_CASES(rmb) 4504 } 4505 } 4506 4507 if (FoldedLoad) { 4508 switch (TestVT.SimpleTy) { 4509 VPTESTM_FULL_CASES(rm) 4510 } 4511 } 4512 4513 switch (TestVT.SimpleTy) { 4514 VPTESTM_FULL_CASES(rr) 4515 } 4516 4517 #undef VPTESTM_FULL_CASES 4518 #undef VPTESTM_BROADCAST_CASES 4519 #undef VPTESTM_CASE 4520 } 4521 4522 // Try to create VPTESTM instruction. If InMask is not null, it will be used 4523 // to form a masked operation. 4524 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc, 4525 SDValue InMask) { 4526 assert(Subtarget->hasAVX512() && "Expected AVX512!"); 4527 assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 && 4528 "Unexpected VT!"); 4529 4530 // Look for equal and not equal compares. 4531 ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get(); 4532 if (CC != ISD::SETEQ && CC != ISD::SETNE) 4533 return false; 4534 4535 SDValue SetccOp0 = Setcc.getOperand(0); 4536 SDValue SetccOp1 = Setcc.getOperand(1); 4537 4538 // Canonicalize the all zero vector to the RHS. 4539 if (ISD::isBuildVectorAllZeros(SetccOp0.getNode())) 4540 std::swap(SetccOp0, SetccOp1); 4541 4542 // See if we're comparing against zero. 4543 if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode())) 4544 return false; 4545 4546 SDValue N0 = SetccOp0; 4547 4548 MVT CmpVT = N0.getSimpleValueType(); 4549 MVT CmpSVT = CmpVT.getVectorElementType(); 4550 4551 // Start with both operands the same. We'll try to refine this. 4552 SDValue Src0 = N0; 4553 SDValue Src1 = N0; 4554 4555 { 4556 // Look through single use bitcasts. 4557 SDValue N0Temp = N0; 4558 if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse()) 4559 N0Temp = N0.getOperand(0); 4560 4561 // Look for single use AND. 4562 if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) { 4563 Src0 = N0Temp.getOperand(0); 4564 Src1 = N0Temp.getOperand(1); 4565 } 4566 } 4567 4568 // Without VLX we need to widen the operation. 4569 bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector(); 4570 4571 auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L, 4572 SDValue &Base, SDValue &Scale, SDValue &Index, 4573 SDValue &Disp, SDValue &Segment) { 4574 // If we need to widen, we can't fold the load. 4575 if (!Widen) 4576 if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment)) 4577 return true; 4578 4579 // If we didn't fold a load, try to match broadcast. No widening limitation 4580 // for this. But only 32 and 64 bit types are supported. 4581 if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64) 4582 return false; 4583 4584 // Look through single use bitcasts. 4585 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) { 4586 P = L.getNode(); 4587 L = L.getOperand(0); 4588 } 4589 4590 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD) 4591 return false; 4592 4593 auto *MemIntr = cast<MemIntrinsicSDNode>(L); 4594 if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits()) 4595 return false; 4596 4597 return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment); 4598 }; 4599 4600 // We can only fold loads if the sources are unique. 4601 bool CanFoldLoads = Src0 != Src1; 4602 4603 bool FoldedLoad = false; 4604 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 4605 if (CanFoldLoads) { 4606 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2, 4607 Tmp3, Tmp4); 4608 if (!FoldedLoad) { 4609 // And is commutative. 4610 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1, 4611 Tmp2, Tmp3, Tmp4); 4612 if (FoldedLoad) 4613 std::swap(Src0, Src1); 4614 } 4615 } 4616 4617 bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD; 4618 4619 bool IsMasked = InMask.getNode() != nullptr; 4620 4621 SDLoc dl(Root); 4622 4623 MVT ResVT = Setcc.getSimpleValueType(); 4624 MVT MaskVT = ResVT; 4625 if (Widen) { 4626 // Widen the inputs using insert_subreg or copy_to_regclass. 4627 unsigned Scale = CmpVT.is128BitVector() ? 4 : 2; 4628 unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm; 4629 unsigned NumElts = CmpVT.getVectorNumElements() * Scale; 4630 CmpVT = MVT::getVectorVT(CmpSVT, NumElts); 4631 MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 4632 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl, 4633 CmpVT), 0); 4634 Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0); 4635 4636 if (!FoldedBCast) 4637 Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1); 4638 4639 if (IsMasked) { 4640 // Widen the mask. 4641 unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID(); 4642 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32); 4643 InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 4644 dl, MaskVT, InMask, RC), 0); 4645 } 4646 } 4647 4648 bool IsTestN = CC == ISD::SETEQ; 4649 unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast, 4650 IsMasked); 4651 4652 MachineSDNode *CNode; 4653 if (FoldedLoad) { 4654 SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other); 4655 4656 if (IsMasked) { 4657 SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, 4658 Src1.getOperand(0) }; 4659 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 4660 } else { 4661 SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, 4662 Src1.getOperand(0) }; 4663 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 4664 } 4665 4666 // Update the chain. 4667 ReplaceUses(Src1.getValue(1), SDValue(CNode, 1)); 4668 // Record the mem-refs 4669 CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()}); 4670 } else { 4671 if (IsMasked) 4672 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1); 4673 else 4674 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1); 4675 } 4676 4677 // If we widened, we need to shrink the mask VT. 4678 if (Widen) { 4679 unsigned RegClass = TLI->getRegClassFor(ResVT)->getID(); 4680 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32); 4681 CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 4682 dl, ResVT, SDValue(CNode, 0), RC); 4683 } 4684 4685 ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0)); 4686 CurDAG->RemoveDeadNode(Root); 4687 return true; 4688 } 4689 4690 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it 4691 // into vpternlog. 4692 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) { 4693 assert(N->getOpcode() == ISD::OR && "Unexpected opcode!"); 4694 4695 MVT NVT = N->getSimpleValueType(0); 4696 4697 // Make sure we support VPTERNLOG. 4698 if (!NVT.isVector() || !Subtarget->hasAVX512()) 4699 return false; 4700 4701 // We need VLX for 128/256-bit. 4702 if (!(Subtarget->hasVLX() || NVT.is512BitVector())) 4703 return false; 4704 4705 SDValue N0 = N->getOperand(0); 4706 SDValue N1 = N->getOperand(1); 4707 4708 // Canonicalize AND to LHS. 4709 if (N1.getOpcode() == ISD::AND) 4710 std::swap(N0, N1); 4711 4712 if (N0.getOpcode() != ISD::AND || 4713 N1.getOpcode() != X86ISD::ANDNP || 4714 !N0.hasOneUse() || !N1.hasOneUse()) 4715 return false; 4716 4717 // ANDN is not commutable, use it to pick down A and C. 4718 SDValue A = N1.getOperand(0); 4719 SDValue C = N1.getOperand(1); 4720 4721 // AND is commutable, if one operand matches A, the other operand is B. 4722 // Otherwise this isn't a match. 4723 SDValue B; 4724 if (N0.getOperand(0) == A) 4725 B = N0.getOperand(1); 4726 else if (N0.getOperand(1) == A) 4727 B = N0.getOperand(0); 4728 else 4729 return false; 4730 4731 SDLoc dl(N); 4732 SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8); 4733 SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm); 4734 ReplaceNode(N, Ternlog.getNode()); 4735 4736 return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(), 4737 Ternlog.getNode(), A, B, C, 0xCA); 4738 } 4739 4740 void X86DAGToDAGISel::Select(SDNode *Node) { 4741 MVT NVT = Node->getSimpleValueType(0); 4742 unsigned Opcode = Node->getOpcode(); 4743 SDLoc dl(Node); 4744 4745 if (Node->isMachineOpcode()) { 4746 LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); 4747 Node->setNodeId(-1); 4748 return; // Already selected. 4749 } 4750 4751 switch (Opcode) { 4752 default: break; 4753 case ISD::INTRINSIC_W_CHAIN: { 4754 unsigned IntNo = Node->getConstantOperandVal(1); 4755 switch (IntNo) { 4756 default: break; 4757 case Intrinsic::x86_encodekey128: 4758 case Intrinsic::x86_encodekey256: { 4759 if (!Subtarget->hasKL()) 4760 break; 4761 4762 unsigned Opcode; 4763 switch (IntNo) { 4764 default: llvm_unreachable("Impossible intrinsic"); 4765 case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break; 4766 case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break; 4767 } 4768 4769 SDValue Chain = Node->getOperand(0); 4770 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3), 4771 SDValue()); 4772 if (Opcode == X86::ENCODEKEY256) 4773 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4), 4774 Chain.getValue(1)); 4775 4776 MachineSDNode *Res = CurDAG->getMachineNode( 4777 Opcode, dl, Node->getVTList(), 4778 {Node->getOperand(2), Chain, Chain.getValue(1)}); 4779 ReplaceNode(Node, Res); 4780 return; 4781 } 4782 case Intrinsic::x86_tileloadd64_internal: 4783 case Intrinsic::x86_tileloaddt164_internal: { 4784 if (!Subtarget->hasAMXTILE()) 4785 break; 4786 unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal 4787 ? X86::PTILELOADDV 4788 : X86::PTILELOADDT1V; 4789 // _tile_loadd_internal(row, col, buf, STRIDE) 4790 SDValue Base = Node->getOperand(4); 4791 SDValue Scale = getI8Imm(1, dl); 4792 SDValue Index = Node->getOperand(5); 4793 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32); 4794 SDValue Segment = CurDAG->getRegister(0, MVT::i16); 4795 SDValue Chain = Node->getOperand(0); 4796 MachineSDNode *CNode; 4797 SDValue Ops[] = {Node->getOperand(2), 4798 Node->getOperand(3), 4799 Base, 4800 Scale, 4801 Index, 4802 Disp, 4803 Segment, 4804 Chain}; 4805 CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops); 4806 ReplaceNode(Node, CNode); 4807 return; 4808 } 4809 } 4810 break; 4811 } 4812 case ISD::INTRINSIC_VOID: { 4813 unsigned IntNo = Node->getConstantOperandVal(1); 4814 switch (IntNo) { 4815 default: break; 4816 case Intrinsic::x86_sse3_monitor: 4817 case Intrinsic::x86_monitorx: 4818 case Intrinsic::x86_clzero: { 4819 bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64; 4820 4821 unsigned Opc = 0; 4822 switch (IntNo) { 4823 default: llvm_unreachable("Unexpected intrinsic!"); 4824 case Intrinsic::x86_sse3_monitor: 4825 if (!Subtarget->hasSSE3()) 4826 break; 4827 Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr; 4828 break; 4829 case Intrinsic::x86_monitorx: 4830 if (!Subtarget->hasMWAITX()) 4831 break; 4832 Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr; 4833 break; 4834 case Intrinsic::x86_clzero: 4835 if (!Subtarget->hasCLZERO()) 4836 break; 4837 Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r; 4838 break; 4839 } 4840 4841 if (Opc) { 4842 unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX; 4843 SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg, 4844 Node->getOperand(2), SDValue()); 4845 SDValue InFlag = Chain.getValue(1); 4846 4847 if (IntNo == Intrinsic::x86_sse3_monitor || 4848 IntNo == Intrinsic::x86_monitorx) { 4849 // Copy the other two operands to ECX and EDX. 4850 Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3), 4851 InFlag); 4852 InFlag = Chain.getValue(1); 4853 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4), 4854 InFlag); 4855 InFlag = Chain.getValue(1); 4856 } 4857 4858 MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, 4859 { Chain, InFlag}); 4860 ReplaceNode(Node, CNode); 4861 return; 4862 } 4863 4864 break; 4865 } 4866 case Intrinsic::x86_tilestored64_internal: { 4867 unsigned Opc = X86::PTILESTOREDV; 4868 // _tile_stored_internal(row, col, buf, STRIDE, c) 4869 SDValue Base = Node->getOperand(4); 4870 SDValue Scale = getI8Imm(1, dl); 4871 SDValue Index = Node->getOperand(5); 4872 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32); 4873 SDValue Segment = CurDAG->getRegister(0, MVT::i16); 4874 SDValue Chain = Node->getOperand(0); 4875 MachineSDNode *CNode; 4876 SDValue Ops[] = {Node->getOperand(2), 4877 Node->getOperand(3), 4878 Base, 4879 Scale, 4880 Index, 4881 Disp, 4882 Segment, 4883 Node->getOperand(6), 4884 Chain}; 4885 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); 4886 ReplaceNode(Node, CNode); 4887 return; 4888 } 4889 case Intrinsic::x86_tileloadd64: 4890 case Intrinsic::x86_tileloaddt164: 4891 case Intrinsic::x86_tilestored64: { 4892 if (!Subtarget->hasAMXTILE()) 4893 break; 4894 unsigned Opc; 4895 switch (IntNo) { 4896 default: llvm_unreachable("Unexpected intrinsic!"); 4897 case Intrinsic::x86_tileloadd64: Opc = X86::PTILELOADD; break; 4898 case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break; 4899 case Intrinsic::x86_tilestored64: Opc = X86::PTILESTORED; break; 4900 } 4901 // FIXME: Match displacement and scale. 4902 unsigned TIndex = Node->getConstantOperandVal(2); 4903 SDValue TReg = getI8Imm(TIndex, dl); 4904 SDValue Base = Node->getOperand(3); 4905 SDValue Scale = getI8Imm(1, dl); 4906 SDValue Index = Node->getOperand(4); 4907 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32); 4908 SDValue Segment = CurDAG->getRegister(0, MVT::i16); 4909 SDValue Chain = Node->getOperand(0); 4910 MachineSDNode *CNode; 4911 if (Opc == X86::PTILESTORED) { 4912 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain }; 4913 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); 4914 } else { 4915 SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain }; 4916 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); 4917 } 4918 ReplaceNode(Node, CNode); 4919 return; 4920 } 4921 } 4922 break; 4923 } 4924 case ISD::BRIND: 4925 case X86ISD::NT_BRIND: { 4926 if (Subtarget->isTargetNaCl()) 4927 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We 4928 // leave the instruction alone. 4929 break; 4930 if (Subtarget->isTarget64BitILP32()) { 4931 // Converts a 32-bit register to a 64-bit, zero-extended version of 4932 // it. This is needed because x86-64 can do many things, but jmp %r32 4933 // ain't one of them. 4934 SDValue Target = Node->getOperand(1); 4935 assert(Target.getValueType() == MVT::i32 && "Unexpected VT!"); 4936 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64); 4937 SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other, 4938 Node->getOperand(0), ZextTarget); 4939 ReplaceNode(Node, Brind.getNode()); 4940 SelectCode(ZextTarget.getNode()); 4941 SelectCode(Brind.getNode()); 4942 return; 4943 } 4944 break; 4945 } 4946 case X86ISD::GlobalBaseReg: 4947 ReplaceNode(Node, getGlobalBaseReg()); 4948 return; 4949 4950 case ISD::BITCAST: 4951 // Just drop all 128/256/512-bit bitcasts. 4952 if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() || 4953 NVT == MVT::f128) { 4954 ReplaceUses(SDValue(Node, 0), Node->getOperand(0)); 4955 CurDAG->RemoveDeadNode(Node); 4956 return; 4957 } 4958 break; 4959 4960 case ISD::SRL: 4961 if (matchBitExtract(Node)) 4962 return; 4963 LLVM_FALLTHROUGH; 4964 case ISD::SRA: 4965 case ISD::SHL: 4966 if (tryShiftAmountMod(Node)) 4967 return; 4968 break; 4969 4970 case X86ISD::VPTERNLOG: { 4971 uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue(); 4972 if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0), 4973 Node->getOperand(1), Node->getOperand(2), Imm)) 4974 return; 4975 break; 4976 } 4977 4978 case X86ISD::ANDNP: 4979 if (tryVPTERNLOG(Node)) 4980 return; 4981 break; 4982 4983 case ISD::AND: 4984 if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) { 4985 // Try to form a masked VPTESTM. Operands can be in either order. 4986 SDValue N0 = Node->getOperand(0); 4987 SDValue N1 = Node->getOperand(1); 4988 if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() && 4989 tryVPTESTM(Node, N0, N1)) 4990 return; 4991 if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() && 4992 tryVPTESTM(Node, N1, N0)) 4993 return; 4994 } 4995 4996 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) { 4997 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0)); 4998 CurDAG->RemoveDeadNode(Node); 4999 return; 5000 } 5001 if (matchBitExtract(Node)) 5002 return; 5003 if (AndImmShrink && shrinkAndImmediate(Node)) 5004 return; 5005 5006 LLVM_FALLTHROUGH; 5007 case ISD::OR: 5008 case ISD::XOR: 5009 if (tryShrinkShlLogicImm(Node)) 5010 return; 5011 if (Opcode == ISD::OR && tryMatchBitSelect(Node)) 5012 return; 5013 if (tryVPTERNLOG(Node)) 5014 return; 5015 5016 LLVM_FALLTHROUGH; 5017 case ISD::ADD: 5018 case ISD::SUB: { 5019 // Try to avoid folding immediates with multiple uses for optsize. 5020 // This code tries to select to register form directly to avoid going 5021 // through the isel table which might fold the immediate. We can't change 5022 // the patterns on the add/sub/and/or/xor with immediate paterns in the 5023 // tablegen files to check immediate use count without making the patterns 5024 // unavailable to the fast-isel table. 5025 if (!CurDAG->shouldOptForSize()) 5026 break; 5027 5028 // Only handle i8/i16/i32/i64. 5029 if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64) 5030 break; 5031 5032 SDValue N0 = Node->getOperand(0); 5033 SDValue N1 = Node->getOperand(1); 5034 5035 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 5036 if (!Cst) 5037 break; 5038 5039 int64_t Val = Cst->getSExtValue(); 5040 5041 // Make sure its an immediate that is considered foldable. 5042 // FIXME: Handle unsigned 32 bit immediates for 64-bit AND. 5043 if (!isInt<8>(Val) && !isInt<32>(Val)) 5044 break; 5045 5046 // If this can match to INC/DEC, let it go. 5047 if (Opcode == ISD::ADD && (Val == 1 || Val == -1)) 5048 break; 5049 5050 // Check if we should avoid folding this immediate. 5051 if (!shouldAvoidImmediateInstFormsForSize(N1.getNode())) 5052 break; 5053 5054 // We should not fold the immediate. So we need a register form instead. 5055 unsigned ROpc, MOpc; 5056 switch (NVT.SimpleTy) { 5057 default: llvm_unreachable("Unexpected VT!"); 5058 case MVT::i8: 5059 switch (Opcode) { 5060 default: llvm_unreachable("Unexpected opcode!"); 5061 case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break; 5062 case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break; 5063 case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break; 5064 case ISD::OR: ROpc = X86::OR8rr; MOpc = X86::OR8rm; break; 5065 case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break; 5066 } 5067 break; 5068 case MVT::i16: 5069 switch (Opcode) { 5070 default: llvm_unreachable("Unexpected opcode!"); 5071 case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break; 5072 case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break; 5073 case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break; 5074 case ISD::OR: ROpc = X86::OR16rr; MOpc = X86::OR16rm; break; 5075 case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break; 5076 } 5077 break; 5078 case MVT::i32: 5079 switch (Opcode) { 5080 default: llvm_unreachable("Unexpected opcode!"); 5081 case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break; 5082 case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break; 5083 case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break; 5084 case ISD::OR: ROpc = X86::OR32rr; MOpc = X86::OR32rm; break; 5085 case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break; 5086 } 5087 break; 5088 case MVT::i64: 5089 switch (Opcode) { 5090 default: llvm_unreachable("Unexpected opcode!"); 5091 case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break; 5092 case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break; 5093 case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break; 5094 case ISD::OR: ROpc = X86::OR64rr; MOpc = X86::OR64rm; break; 5095 case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break; 5096 } 5097 break; 5098 } 5099 5100 // Ok this is a AND/OR/XOR/ADD/SUB with constant. 5101 5102 // If this is a not a subtract, we can still try to fold a load. 5103 if (Opcode != ISD::SUB) { 5104 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5105 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 5106 SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 5107 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other); 5108 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5109 // Update the chain. 5110 ReplaceUses(N0.getValue(1), SDValue(CNode, 2)); 5111 // Record the mem-refs 5112 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()}); 5113 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 5114 CurDAG->RemoveDeadNode(Node); 5115 return; 5116 } 5117 } 5118 5119 CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1); 5120 return; 5121 } 5122 5123 case X86ISD::SMUL: 5124 // i16/i32/i64 are handled with isel patterns. 5125 if (NVT != MVT::i8) 5126 break; 5127 LLVM_FALLTHROUGH; 5128 case X86ISD::UMUL: { 5129 SDValue N0 = Node->getOperand(0); 5130 SDValue N1 = Node->getOperand(1); 5131 5132 unsigned LoReg, ROpc, MOpc; 5133 switch (NVT.SimpleTy) { 5134 default: llvm_unreachable("Unsupported VT!"); 5135 case MVT::i8: 5136 LoReg = X86::AL; 5137 ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r; 5138 MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m; 5139 break; 5140 case MVT::i16: 5141 LoReg = X86::AX; 5142 ROpc = X86::MUL16r; 5143 MOpc = X86::MUL16m; 5144 break; 5145 case MVT::i32: 5146 LoReg = X86::EAX; 5147 ROpc = X86::MUL32r; 5148 MOpc = X86::MUL32m; 5149 break; 5150 case MVT::i64: 5151 LoReg = X86::RAX; 5152 ROpc = X86::MUL64r; 5153 MOpc = X86::MUL64m; 5154 break; 5155 } 5156 5157 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5158 bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5159 // Multiply is commutative. 5160 if (!FoldedLoad) { 5161 FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5162 if (FoldedLoad) 5163 std::swap(N0, N1); 5164 } 5165 5166 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 5167 N0, SDValue()).getValue(1); 5168 5169 MachineSDNode *CNode; 5170 if (FoldedLoad) { 5171 // i16/i32/i64 use an instruction that produces a low and high result even 5172 // though only the low result is used. 5173 SDVTList VTs; 5174 if (NVT == MVT::i8) 5175 VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other); 5176 else 5177 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other); 5178 5179 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 5180 InFlag }; 5181 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5182 5183 // Update the chain. 5184 ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3)); 5185 // Record the mem-refs 5186 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); 5187 } else { 5188 // i16/i32/i64 use an instruction that produces a low and high result even 5189 // though only the low result is used. 5190 SDVTList VTs; 5191 if (NVT == MVT::i8) 5192 VTs = CurDAG->getVTList(NVT, MVT::i32); 5193 else 5194 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); 5195 5196 CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag}); 5197 } 5198 5199 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 5200 ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2)); 5201 CurDAG->RemoveDeadNode(Node); 5202 return; 5203 } 5204 5205 case ISD::SMUL_LOHI: 5206 case ISD::UMUL_LOHI: { 5207 SDValue N0 = Node->getOperand(0); 5208 SDValue N1 = Node->getOperand(1); 5209 5210 unsigned Opc, MOpc; 5211 unsigned LoReg, HiReg; 5212 bool IsSigned = Opcode == ISD::SMUL_LOHI; 5213 bool UseMULX = !IsSigned && Subtarget->hasBMI2(); 5214 bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty(); 5215 switch (NVT.SimpleTy) { 5216 default: llvm_unreachable("Unsupported VT!"); 5217 case MVT::i32: 5218 Opc = UseMULXHi ? X86::MULX32Hrr : 5219 UseMULX ? X86::MULX32rr : 5220 IsSigned ? X86::IMUL32r : X86::MUL32r; 5221 MOpc = UseMULXHi ? X86::MULX32Hrm : 5222 UseMULX ? X86::MULX32rm : 5223 IsSigned ? X86::IMUL32m : X86::MUL32m; 5224 LoReg = UseMULX ? X86::EDX : X86::EAX; 5225 HiReg = X86::EDX; 5226 break; 5227 case MVT::i64: 5228 Opc = UseMULXHi ? X86::MULX64Hrr : 5229 UseMULX ? X86::MULX64rr : 5230 IsSigned ? X86::IMUL64r : X86::MUL64r; 5231 MOpc = UseMULXHi ? X86::MULX64Hrm : 5232 UseMULX ? X86::MULX64rm : 5233 IsSigned ? X86::IMUL64m : X86::MUL64m; 5234 LoReg = UseMULX ? X86::RDX : X86::RAX; 5235 HiReg = X86::RDX; 5236 break; 5237 } 5238 5239 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5240 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5241 // Multiply is commmutative. 5242 if (!foldedLoad) { 5243 foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5244 if (foldedLoad) 5245 std::swap(N0, N1); 5246 } 5247 5248 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 5249 N0, SDValue()).getValue(1); 5250 SDValue ResHi, ResLo; 5251 if (foldedLoad) { 5252 SDValue Chain; 5253 MachineSDNode *CNode = nullptr; 5254 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 5255 InFlag }; 5256 if (UseMULXHi) { 5257 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other); 5258 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5259 ResHi = SDValue(CNode, 0); 5260 Chain = SDValue(CNode, 1); 5261 } else if (UseMULX) { 5262 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other); 5263 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5264 ResHi = SDValue(CNode, 0); 5265 ResLo = SDValue(CNode, 1); 5266 Chain = SDValue(CNode, 2); 5267 } else { 5268 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); 5269 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5270 Chain = SDValue(CNode, 0); 5271 InFlag = SDValue(CNode, 1); 5272 } 5273 5274 // Update the chain. 5275 ReplaceUses(N1.getValue(1), Chain); 5276 // Record the mem-refs 5277 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); 5278 } else { 5279 SDValue Ops[] = { N1, InFlag }; 5280 if (UseMULXHi) { 5281 SDVTList VTs = CurDAG->getVTList(NVT); 5282 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 5283 ResHi = SDValue(CNode, 0); 5284 } else if (UseMULX) { 5285 SDVTList VTs = CurDAG->getVTList(NVT, NVT); 5286 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 5287 ResHi = SDValue(CNode, 0); 5288 ResLo = SDValue(CNode, 1); 5289 } else { 5290 SDVTList VTs = CurDAG->getVTList(MVT::Glue); 5291 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 5292 InFlag = SDValue(CNode, 0); 5293 } 5294 } 5295 5296 // Copy the low half of the result, if it is needed. 5297 if (!SDValue(Node, 0).use_empty()) { 5298 if (!ResLo) { 5299 assert(LoReg && "Register for low half is not defined!"); 5300 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, 5301 NVT, InFlag); 5302 InFlag = ResLo.getValue(2); 5303 } 5304 ReplaceUses(SDValue(Node, 0), ResLo); 5305 LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); 5306 dbgs() << '\n'); 5307 } 5308 // Copy the high half of the result, if it is needed. 5309 if (!SDValue(Node, 1).use_empty()) { 5310 if (!ResHi) { 5311 assert(HiReg && "Register for high half is not defined!"); 5312 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, 5313 NVT, InFlag); 5314 InFlag = ResHi.getValue(2); 5315 } 5316 ReplaceUses(SDValue(Node, 1), ResHi); 5317 LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); 5318 dbgs() << '\n'); 5319 } 5320 5321 CurDAG->RemoveDeadNode(Node); 5322 return; 5323 } 5324 5325 case ISD::SDIVREM: 5326 case ISD::UDIVREM: { 5327 SDValue N0 = Node->getOperand(0); 5328 SDValue N1 = Node->getOperand(1); 5329 5330 unsigned ROpc, MOpc; 5331 bool isSigned = Opcode == ISD::SDIVREM; 5332 if (!isSigned) { 5333 switch (NVT.SimpleTy) { 5334 default: llvm_unreachable("Unsupported VT!"); 5335 case MVT::i8: ROpc = X86::DIV8r; MOpc = X86::DIV8m; break; 5336 case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break; 5337 case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break; 5338 case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break; 5339 } 5340 } else { 5341 switch (NVT.SimpleTy) { 5342 default: llvm_unreachable("Unsupported VT!"); 5343 case MVT::i8: ROpc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 5344 case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 5345 case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 5346 case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 5347 } 5348 } 5349 5350 unsigned LoReg, HiReg, ClrReg; 5351 unsigned SExtOpcode; 5352 switch (NVT.SimpleTy) { 5353 default: llvm_unreachable("Unsupported VT!"); 5354 case MVT::i8: 5355 LoReg = X86::AL; ClrReg = HiReg = X86::AH; 5356 SExtOpcode = 0; // Not used. 5357 break; 5358 case MVT::i16: 5359 LoReg = X86::AX; HiReg = X86::DX; 5360 ClrReg = X86::DX; 5361 SExtOpcode = X86::CWD; 5362 break; 5363 case MVT::i32: 5364 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; 5365 SExtOpcode = X86::CDQ; 5366 break; 5367 case MVT::i64: 5368 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; 5369 SExtOpcode = X86::CQO; 5370 break; 5371 } 5372 5373 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5374 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5375 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 5376 5377 SDValue InFlag; 5378 if (NVT == MVT::i8) { 5379 // Special case for div8, just use a move with zero extension to AX to 5380 // clear the upper 8 bits (AH). 5381 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain; 5382 MachineSDNode *Move; 5383 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 5384 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 5385 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8 5386 : X86::MOVZX16rm8; 5387 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops); 5388 Chain = SDValue(Move, 1); 5389 ReplaceUses(N0.getValue(1), Chain); 5390 // Record the mem-refs 5391 CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()}); 5392 } else { 5393 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8 5394 : X86::MOVZX16rr8; 5395 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0); 5396 Chain = CurDAG->getEntryNode(); 5397 } 5398 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0), 5399 SDValue()); 5400 InFlag = Chain.getValue(1); 5401 } else { 5402 InFlag = 5403 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 5404 LoReg, N0, SDValue()).getValue(1); 5405 if (isSigned && !signBitIsZero) { 5406 // Sign extend the low part into the high part. 5407 InFlag = 5408 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); 5409 } else { 5410 // Zero out the high part, effectively zero extending the input. 5411 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32); 5412 SDValue ClrNode = 5413 SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0); 5414 switch (NVT.SimpleTy) { 5415 case MVT::i16: 5416 ClrNode = 5417 SDValue(CurDAG->getMachineNode( 5418 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode, 5419 CurDAG->getTargetConstant(X86::sub_16bit, dl, 5420 MVT::i32)), 5421 0); 5422 break; 5423 case MVT::i32: 5424 break; 5425 case MVT::i64: 5426 ClrNode = 5427 SDValue(CurDAG->getMachineNode( 5428 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, 5429 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode, 5430 CurDAG->getTargetConstant(X86::sub_32bit, dl, 5431 MVT::i32)), 5432 0); 5433 break; 5434 default: 5435 llvm_unreachable("Unexpected division source"); 5436 } 5437 5438 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, 5439 ClrNode, InFlag).getValue(1); 5440 } 5441 } 5442 5443 if (foldedLoad) { 5444 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 5445 InFlag }; 5446 MachineSDNode *CNode = 5447 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops); 5448 InFlag = SDValue(CNode, 1); 5449 // Update the chain. 5450 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 5451 // Record the mem-refs 5452 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); 5453 } else { 5454 InFlag = 5455 SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0); 5456 } 5457 5458 // Prevent use of AH in a REX instruction by explicitly copying it to 5459 // an ABCD_L register. 5460 // 5461 // The current assumption of the register allocator is that isel 5462 // won't generate explicit references to the GR8_ABCD_H registers. If 5463 // the allocator and/or the backend get enhanced to be more robust in 5464 // that regard, this can be, and should be, removed. 5465 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) { 5466 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8); 5467 unsigned AHExtOpcode = 5468 isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX; 5469 5470 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32, 5471 MVT::Glue, AHCopy, InFlag); 5472 SDValue Result(RNode, 0); 5473 InFlag = SDValue(RNode, 1); 5474 5475 Result = 5476 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result); 5477 5478 ReplaceUses(SDValue(Node, 1), Result); 5479 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); 5480 dbgs() << '\n'); 5481 } 5482 // Copy the division (low) result, if it is needed. 5483 if (!SDValue(Node, 0).use_empty()) { 5484 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 5485 LoReg, NVT, InFlag); 5486 InFlag = Result.getValue(2); 5487 ReplaceUses(SDValue(Node, 0), Result); 5488 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); 5489 dbgs() << '\n'); 5490 } 5491 // Copy the remainder (high) result, if it is needed. 5492 if (!SDValue(Node, 1).use_empty()) { 5493 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 5494 HiReg, NVT, InFlag); 5495 InFlag = Result.getValue(2); 5496 ReplaceUses(SDValue(Node, 1), Result); 5497 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); 5498 dbgs() << '\n'); 5499 } 5500 CurDAG->RemoveDeadNode(Node); 5501 return; 5502 } 5503 5504 case X86ISD::FCMP: 5505 case X86ISD::STRICT_FCMP: 5506 case X86ISD::STRICT_FCMPS: { 5507 bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP || 5508 Node->getOpcode() == X86ISD::STRICT_FCMPS; 5509 SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0); 5510 SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1); 5511 5512 // Save the original VT of the compare. 5513 MVT CmpVT = N0.getSimpleValueType(); 5514 5515 // Floating point needs special handling if we don't have FCOMI. 5516 if (Subtarget->canUseCMOV()) 5517 break; 5518 5519 bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS; 5520 5521 unsigned Opc; 5522 switch (CmpVT.SimpleTy) { 5523 default: llvm_unreachable("Unexpected type!"); 5524 case MVT::f32: 5525 Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32; 5526 break; 5527 case MVT::f64: 5528 Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64; 5529 break; 5530 case MVT::f80: 5531 Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80; 5532 break; 5533 } 5534 5535 SDValue Chain = 5536 IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode(); 5537 SDValue Glue; 5538 if (IsStrictCmp) { 5539 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); 5540 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0); 5541 Glue = Chain.getValue(1); 5542 } else { 5543 Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0); 5544 } 5545 5546 // Move FPSW to AX. 5547 SDValue FNSTSW = 5548 SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0); 5549 5550 // Extract upper 8-bits of AX. 5551 SDValue Extract = 5552 CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW); 5553 5554 // Move AH into flags. 5555 // Some 64-bit targets lack SAHF support, but they do support FCOMI. 5556 assert(Subtarget->canUseLAHFSAHF() && 5557 "Target doesn't support SAHF or FCOMI?"); 5558 SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue()); 5559 Chain = AH; 5560 SDValue SAHF = SDValue( 5561 CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0); 5562 5563 if (IsStrictCmp) 5564 ReplaceUses(SDValue(Node, 1), Chain); 5565 5566 ReplaceUses(SDValue(Node, 0), SAHF); 5567 CurDAG->RemoveDeadNode(Node); 5568 return; 5569 } 5570 5571 case X86ISD::CMP: { 5572 SDValue N0 = Node->getOperand(0); 5573 SDValue N1 = Node->getOperand(1); 5574 5575 // Optimizations for TEST compares. 5576 if (!isNullConstant(N1)) 5577 break; 5578 5579 // Save the original VT of the compare. 5580 MVT CmpVT = N0.getSimpleValueType(); 5581 5582 // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed 5583 // by a test instruction. The test should be removed later by 5584 // analyzeCompare if we are using only the zero flag. 5585 // TODO: Should we check the users and use the BEXTR flags directly? 5586 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5587 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) { 5588 unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr 5589 : X86::TEST32rr; 5590 SDValue BEXTR = SDValue(NewNode, 0); 5591 NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR); 5592 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0)); 5593 CurDAG->RemoveDeadNode(Node); 5594 return; 5595 } 5596 } 5597 5598 // We can peek through truncates, but we need to be careful below. 5599 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse()) 5600 N0 = N0.getOperand(0); 5601 5602 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 5603 // use a smaller encoding. 5604 // Look past the truncate if CMP is the only use of it. 5605 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && 5606 N0.getValueType() != MVT::i8) { 5607 auto *MaskC = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5608 if (!MaskC) 5609 break; 5610 5611 // We may have looked through a truncate so mask off any bits that 5612 // shouldn't be part of the compare. 5613 uint64_t Mask = MaskC->getZExtValue(); 5614 Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits()); 5615 5616 // Check if we can replace AND+IMM{32,64} with a shift. This is possible 5617 // for masks like 0xFF000000 or 0x00FFFFFF and if we care only about the 5618 // zero flag. 5619 if (CmpVT == MVT::i64 && !isInt<8>(Mask) && isShiftedMask_64(Mask) && 5620 onlyUsesZeroFlag(SDValue(Node, 0))) { 5621 unsigned ShiftOpcode = ISD::DELETED_NODE; 5622 unsigned ShiftAmt; 5623 unsigned SubRegIdx; 5624 MVT SubRegVT; 5625 unsigned TestOpcode; 5626 unsigned LeadingZeros = countLeadingZeros(Mask); 5627 unsigned TrailingZeros = countTrailingZeros(Mask); 5628 5629 // With leading/trailing zeros, the transform is profitable if we can 5630 // eliminate a movabsq or shrink a 32-bit immediate to 8-bit without 5631 // incurring any extra register moves. 5632 bool SavesBytes = !isInt<32>(Mask) || N0.getOperand(0).hasOneUse(); 5633 if (LeadingZeros == 0 && SavesBytes) { 5634 // If the mask covers the most significant bit, then we can replace 5635 // TEST+AND with a SHR and check eflags. 5636 // This emits a redundant TEST which is subsequently eliminated. 5637 ShiftOpcode = X86::SHR64ri; 5638 ShiftAmt = TrailingZeros; 5639 SubRegIdx = 0; 5640 TestOpcode = X86::TEST64rr; 5641 } else if (TrailingZeros == 0 && SavesBytes) { 5642 // If the mask covers the least significant bit, then we can replace 5643 // TEST+AND with a SHL and check eflags. 5644 // This emits a redundant TEST which is subsequently eliminated. 5645 ShiftOpcode = X86::SHL64ri; 5646 ShiftAmt = LeadingZeros; 5647 SubRegIdx = 0; 5648 TestOpcode = X86::TEST64rr; 5649 } else if (MaskC->hasOneUse() && !isInt<32>(Mask)) { 5650 // If the shifted mask extends into the high half and is 8/16/32 bits 5651 // wide, then replace it with a SHR and a TEST8rr/TEST16rr/TEST32rr. 5652 unsigned PopCount = 64 - LeadingZeros - TrailingZeros; 5653 if (PopCount == 8) { 5654 ShiftOpcode = X86::SHR64ri; 5655 ShiftAmt = TrailingZeros; 5656 SubRegIdx = X86::sub_8bit; 5657 SubRegVT = MVT::i8; 5658 TestOpcode = X86::TEST8rr; 5659 } else if (PopCount == 16) { 5660 ShiftOpcode = X86::SHR64ri; 5661 ShiftAmt = TrailingZeros; 5662 SubRegIdx = X86::sub_16bit; 5663 SubRegVT = MVT::i16; 5664 TestOpcode = X86::TEST16rr; 5665 } else if (PopCount == 32) { 5666 ShiftOpcode = X86::SHR64ri; 5667 ShiftAmt = TrailingZeros; 5668 SubRegIdx = X86::sub_32bit; 5669 SubRegVT = MVT::i32; 5670 TestOpcode = X86::TEST32rr; 5671 } 5672 } 5673 if (ShiftOpcode != ISD::DELETED_NODE) { 5674 SDValue ShiftC = CurDAG->getTargetConstant(ShiftAmt, dl, MVT::i64); 5675 SDValue Shift = SDValue( 5676 CurDAG->getMachineNode(ShiftOpcode, dl, MVT::i64, MVT::i32, 5677 N0.getOperand(0), ShiftC), 5678 0); 5679 if (SubRegIdx != 0) { 5680 Shift = 5681 CurDAG->getTargetExtractSubreg(SubRegIdx, dl, SubRegVT, Shift); 5682 } 5683 MachineSDNode *Test = 5684 CurDAG->getMachineNode(TestOpcode, dl, MVT::i32, Shift, Shift); 5685 ReplaceNode(Node, Test); 5686 return; 5687 } 5688 } 5689 5690 MVT VT; 5691 int SubRegOp; 5692 unsigned ROpc, MOpc; 5693 5694 // For each of these checks we need to be careful if the sign flag is 5695 // being used. It is only safe to use the sign flag in two conditions, 5696 // either the sign bit in the shrunken mask is zero or the final test 5697 // size is equal to the original compare size. 5698 5699 if (isUInt<8>(Mask) && 5700 (!(Mask & 0x80) || CmpVT == MVT::i8 || 5701 hasNoSignFlagUses(SDValue(Node, 0)))) { 5702 // For example, convert "testl %eax, $8" to "testb %al, $8" 5703 VT = MVT::i8; 5704 SubRegOp = X86::sub_8bit; 5705 ROpc = X86::TEST8ri; 5706 MOpc = X86::TEST8mi; 5707 } else if (OptForMinSize && isUInt<16>(Mask) && 5708 (!(Mask & 0x8000) || CmpVT == MVT::i16 || 5709 hasNoSignFlagUses(SDValue(Node, 0)))) { 5710 // For example, "testl %eax, $32776" to "testw %ax, $32776". 5711 // NOTE: We only want to form TESTW instructions if optimizing for 5712 // min size. Otherwise we only save one byte and possibly get a length 5713 // changing prefix penalty in the decoders. 5714 VT = MVT::i16; 5715 SubRegOp = X86::sub_16bit; 5716 ROpc = X86::TEST16ri; 5717 MOpc = X86::TEST16mi; 5718 } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 && 5719 ((!(Mask & 0x80000000) && 5720 // Without minsize 16-bit Cmps can get here so we need to 5721 // be sure we calculate the correct sign flag if needed. 5722 (CmpVT != MVT::i16 || !(Mask & 0x8000))) || 5723 CmpVT == MVT::i32 || 5724 hasNoSignFlagUses(SDValue(Node, 0)))) { 5725 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 5726 // NOTE: We only want to run that transform if N0 is 32 or 64 bits. 5727 // Otherwize, we find ourselves in a position where we have to do 5728 // promotion. If previous passes did not promote the and, we assume 5729 // they had a good reason not to and do not promote here. 5730 VT = MVT::i32; 5731 SubRegOp = X86::sub_32bit; 5732 ROpc = X86::TEST32ri; 5733 MOpc = X86::TEST32mi; 5734 } else { 5735 // No eligible transformation was found. 5736 break; 5737 } 5738 5739 SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT); 5740 SDValue Reg = N0.getOperand(0); 5741 5742 // Emit a testl or testw. 5743 MachineSDNode *NewNode; 5744 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5745 if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 5746 if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) { 5747 if (!LoadN->isSimple()) { 5748 unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits(); 5749 if ((MOpc == X86::TEST8mi && NumVolBits != 8) || 5750 (MOpc == X86::TEST16mi && NumVolBits != 16) || 5751 (MOpc == X86::TEST32mi && NumVolBits != 32)) 5752 break; 5753 } 5754 } 5755 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, 5756 Reg.getOperand(0) }; 5757 NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops); 5758 // Update the chain. 5759 ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1)); 5760 // Record the mem-refs 5761 CurDAG->setNodeMemRefs(NewNode, 5762 {cast<LoadSDNode>(Reg)->getMemOperand()}); 5763 } else { 5764 // Extract the subregister if necessary. 5765 if (N0.getValueType() != VT) 5766 Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg); 5767 5768 NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm); 5769 } 5770 // Replace CMP with TEST. 5771 ReplaceNode(Node, NewNode); 5772 return; 5773 } 5774 break; 5775 } 5776 case X86ISD::PCMPISTR: { 5777 if (!Subtarget->hasSSE42()) 5778 break; 5779 5780 bool NeedIndex = !SDValue(Node, 0).use_empty(); 5781 bool NeedMask = !SDValue(Node, 1).use_empty(); 5782 // We can't fold a load if we are going to make two instructions. 5783 bool MayFoldLoad = !NeedIndex || !NeedMask; 5784 5785 MachineSDNode *CNode; 5786 if (NeedMask) { 5787 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr; 5788 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm; 5789 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node); 5790 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0)); 5791 } 5792 if (NeedIndex || !NeedMask) { 5793 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr; 5794 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm; 5795 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node); 5796 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 5797 } 5798 5799 // Connect the flag usage to the last instruction created. 5800 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1)); 5801 CurDAG->RemoveDeadNode(Node); 5802 return; 5803 } 5804 case X86ISD::PCMPESTR: { 5805 if (!Subtarget->hasSSE42()) 5806 break; 5807 5808 // Copy the two implicit register inputs. 5809 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX, 5810 Node->getOperand(1), 5811 SDValue()).getValue(1); 5812 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX, 5813 Node->getOperand(3), InFlag).getValue(1); 5814 5815 bool NeedIndex = !SDValue(Node, 0).use_empty(); 5816 bool NeedMask = !SDValue(Node, 1).use_empty(); 5817 // We can't fold a load if we are going to make two instructions. 5818 bool MayFoldLoad = !NeedIndex || !NeedMask; 5819 5820 MachineSDNode *CNode; 5821 if (NeedMask) { 5822 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr; 5823 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm; 5824 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node, 5825 InFlag); 5826 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0)); 5827 } 5828 if (NeedIndex || !NeedMask) { 5829 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr; 5830 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm; 5831 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag); 5832 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 5833 } 5834 // Connect the flag usage to the last instruction created. 5835 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1)); 5836 CurDAG->RemoveDeadNode(Node); 5837 return; 5838 } 5839 5840 case ISD::SETCC: { 5841 if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue())) 5842 return; 5843 5844 break; 5845 } 5846 5847 case ISD::STORE: 5848 if (foldLoadStoreIntoMemOperand(Node)) 5849 return; 5850 break; 5851 5852 case X86ISD::SETCC_CARRY: { 5853 MVT VT = Node->getSimpleValueType(0); 5854 SDValue Result; 5855 if (Subtarget->hasSBBDepBreaking()) { 5856 // We have to do this manually because tblgen will put the eflags copy in 5857 // the wrong place if we use an extract_subreg in the pattern. 5858 // Copy flags to the EFLAGS register and glue it to next node. 5859 SDValue EFLAGS = 5860 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS, 5861 Node->getOperand(1), SDValue()); 5862 5863 // Create a 64-bit instruction if the result is 64-bits otherwise use the 5864 // 32-bit version. 5865 unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r; 5866 MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32; 5867 Result = SDValue( 5868 CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)), 5869 0); 5870 } else { 5871 // The target does not recognize sbb with the same reg operand as a 5872 // no-source idiom, so we explicitly zero the input values. 5873 Result = getSBBZero(Node); 5874 } 5875 5876 // For less than 32-bits we need to extract from the 32-bit node. 5877 if (VT == MVT::i8 || VT == MVT::i16) { 5878 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit; 5879 Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result); 5880 } 5881 5882 ReplaceUses(SDValue(Node, 0), Result); 5883 CurDAG->RemoveDeadNode(Node); 5884 return; 5885 } 5886 case X86ISD::SBB: { 5887 if (isNullConstant(Node->getOperand(0)) && 5888 isNullConstant(Node->getOperand(1))) { 5889 SDValue Result = getSBBZero(Node); 5890 5891 // Replace the flag use. 5892 ReplaceUses(SDValue(Node, 1), Result.getValue(1)); 5893 5894 // Replace the result use. 5895 if (!SDValue(Node, 0).use_empty()) { 5896 // For less than 32-bits we need to extract from the 32-bit node. 5897 MVT VT = Node->getSimpleValueType(0); 5898 if (VT == MVT::i8 || VT == MVT::i16) { 5899 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit; 5900 Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result); 5901 } 5902 ReplaceUses(SDValue(Node, 0), Result); 5903 } 5904 5905 CurDAG->RemoveDeadNode(Node); 5906 return; 5907 } 5908 break; 5909 } 5910 case X86ISD::MGATHER: { 5911 auto *Mgt = cast<X86MaskedGatherSDNode>(Node); 5912 SDValue IndexOp = Mgt->getIndex(); 5913 SDValue Mask = Mgt->getMask(); 5914 MVT IndexVT = IndexOp.getSimpleValueType(); 5915 MVT ValueVT = Node->getSimpleValueType(0); 5916 MVT MaskVT = Mask.getSimpleValueType(); 5917 5918 // This is just to prevent crashes if the nodes are malformed somehow. We're 5919 // otherwise only doing loose type checking in here based on type what 5920 // a type constraint would say just like table based isel. 5921 if (!ValueVT.isVector() || !MaskVT.isVector()) 5922 break; 5923 5924 unsigned NumElts = ValueVT.getVectorNumElements(); 5925 MVT ValueSVT = ValueVT.getVectorElementType(); 5926 5927 bool IsFP = ValueSVT.isFloatingPoint(); 5928 unsigned EltSize = ValueSVT.getSizeInBits(); 5929 5930 unsigned Opc = 0; 5931 bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1; 5932 if (AVX512Gather) { 5933 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) 5934 Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm; 5935 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) 5936 Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm; 5937 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32) 5938 Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm; 5939 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) 5940 Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm; 5941 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) 5942 Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm; 5943 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64) 5944 Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm; 5945 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) 5946 Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm; 5947 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) 5948 Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm; 5949 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32) 5950 Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm; 5951 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) 5952 Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm; 5953 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) 5954 Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm; 5955 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64) 5956 Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm; 5957 } else { 5958 assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() && 5959 "Unexpected mask VT!"); 5960 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) 5961 Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm; 5962 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) 5963 Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm; 5964 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) 5965 Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm; 5966 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) 5967 Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm; 5968 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) 5969 Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm; 5970 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) 5971 Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm; 5972 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) 5973 Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm; 5974 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) 5975 Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm; 5976 } 5977 5978 if (!Opc) 5979 break; 5980 5981 SDValue Base, Scale, Index, Disp, Segment; 5982 if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(), 5983 Base, Scale, Index, Disp, Segment)) 5984 break; 5985 5986 SDValue PassThru = Mgt->getPassThru(); 5987 SDValue Chain = Mgt->getChain(); 5988 // Gather instructions have a mask output not in the ISD node. 5989 SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other); 5990 5991 MachineSDNode *NewNode; 5992 if (AVX512Gather) { 5993 SDValue Ops[] = {PassThru, Mask, Base, Scale, 5994 Index, Disp, Segment, Chain}; 5995 NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); 5996 } else { 5997 SDValue Ops[] = {PassThru, Base, Scale, Index, 5998 Disp, Segment, Mask, Chain}; 5999 NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); 6000 } 6001 CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()}); 6002 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0)); 6003 ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2)); 6004 CurDAG->RemoveDeadNode(Node); 6005 return; 6006 } 6007 case X86ISD::MSCATTER: { 6008 auto *Sc = cast<X86MaskedScatterSDNode>(Node); 6009 SDValue Value = Sc->getValue(); 6010 SDValue IndexOp = Sc->getIndex(); 6011 MVT IndexVT = IndexOp.getSimpleValueType(); 6012 MVT ValueVT = Value.getSimpleValueType(); 6013 6014 // This is just to prevent crashes if the nodes are malformed somehow. We're 6015 // otherwise only doing loose type checking in here based on type what 6016 // a type constraint would say just like table based isel. 6017 if (!ValueVT.isVector()) 6018 break; 6019 6020 unsigned NumElts = ValueVT.getVectorNumElements(); 6021 MVT ValueSVT = ValueVT.getVectorElementType(); 6022 6023 bool IsFP = ValueSVT.isFloatingPoint(); 6024 unsigned EltSize = ValueSVT.getSizeInBits(); 6025 6026 unsigned Opc; 6027 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) 6028 Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr; 6029 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) 6030 Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr; 6031 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32) 6032 Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr; 6033 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) 6034 Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr; 6035 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) 6036 Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr; 6037 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64) 6038 Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr; 6039 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) 6040 Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr; 6041 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) 6042 Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr; 6043 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32) 6044 Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr; 6045 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) 6046 Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr; 6047 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) 6048 Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr; 6049 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64) 6050 Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr; 6051 else 6052 break; 6053 6054 SDValue Base, Scale, Index, Disp, Segment; 6055 if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(), 6056 Base, Scale, Index, Disp, Segment)) 6057 break; 6058 6059 SDValue Mask = Sc->getMask(); 6060 SDValue Chain = Sc->getChain(); 6061 // Scatter instructions have a mask output not in the ISD node. 6062 SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other); 6063 SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain}; 6064 6065 MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); 6066 CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()}); 6067 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1)); 6068 CurDAG->RemoveDeadNode(Node); 6069 return; 6070 } 6071 case ISD::PREALLOCATED_SETUP: { 6072 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>(); 6073 auto CallId = MFI->getPreallocatedIdForCallSite( 6074 cast<SrcValueSDNode>(Node->getOperand(1))->getValue()); 6075 SDValue Chain = Node->getOperand(0); 6076 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32); 6077 MachineSDNode *New = CurDAG->getMachineNode( 6078 TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain); 6079 ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain 6080 CurDAG->RemoveDeadNode(Node); 6081 return; 6082 } 6083 case ISD::PREALLOCATED_ARG: { 6084 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>(); 6085 auto CallId = MFI->getPreallocatedIdForCallSite( 6086 cast<SrcValueSDNode>(Node->getOperand(1))->getValue()); 6087 SDValue Chain = Node->getOperand(0); 6088 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32); 6089 SDValue ArgIndex = Node->getOperand(2); 6090 SDValue Ops[3]; 6091 Ops[0] = CallIdValue; 6092 Ops[1] = ArgIndex; 6093 Ops[2] = Chain; 6094 MachineSDNode *New = CurDAG->getMachineNode( 6095 TargetOpcode::PREALLOCATED_ARG, dl, 6096 CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()), 6097 MVT::Other), 6098 Ops); 6099 ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer 6100 ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain 6101 CurDAG->RemoveDeadNode(Node); 6102 return; 6103 } 6104 case X86ISD::AESENCWIDE128KL: 6105 case X86ISD::AESDECWIDE128KL: 6106 case X86ISD::AESENCWIDE256KL: 6107 case X86ISD::AESDECWIDE256KL: { 6108 if (!Subtarget->hasWIDEKL()) 6109 break; 6110 6111 unsigned Opcode; 6112 switch (Node->getOpcode()) { 6113 default: 6114 llvm_unreachable("Unexpected opcode!"); 6115 case X86ISD::AESENCWIDE128KL: 6116 Opcode = X86::AESENCWIDE128KL; 6117 break; 6118 case X86ISD::AESDECWIDE128KL: 6119 Opcode = X86::AESDECWIDE128KL; 6120 break; 6121 case X86ISD::AESENCWIDE256KL: 6122 Opcode = X86::AESENCWIDE256KL; 6123 break; 6124 case X86ISD::AESDECWIDE256KL: 6125 Opcode = X86::AESDECWIDE256KL; 6126 break; 6127 } 6128 6129 SDValue Chain = Node->getOperand(0); 6130 SDValue Addr = Node->getOperand(1); 6131 6132 SDValue Base, Scale, Index, Disp, Segment; 6133 if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment)) 6134 break; 6135 6136 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2), 6137 SDValue()); 6138 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3), 6139 Chain.getValue(1)); 6140 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4), 6141 Chain.getValue(1)); 6142 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5), 6143 Chain.getValue(1)); 6144 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6), 6145 Chain.getValue(1)); 6146 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7), 6147 Chain.getValue(1)); 6148 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8), 6149 Chain.getValue(1)); 6150 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9), 6151 Chain.getValue(1)); 6152 6153 MachineSDNode *Res = CurDAG->getMachineNode( 6154 Opcode, dl, Node->getVTList(), 6155 {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)}); 6156 CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand()); 6157 ReplaceNode(Node, Res); 6158 return; 6159 } 6160 } 6161 6162 SelectCode(Node); 6163 } 6164 6165 bool X86DAGToDAGISel:: 6166 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 6167 std::vector<SDValue> &OutOps) { 6168 SDValue Op0, Op1, Op2, Op3, Op4; 6169 switch (ConstraintID) { 6170 default: 6171 llvm_unreachable("Unexpected asm memory constraint"); 6172 case InlineAsm::Constraint_o: // offsetable ?? 6173 case InlineAsm::Constraint_v: // not offsetable ?? 6174 case InlineAsm::Constraint_m: // memory 6175 case InlineAsm::Constraint_X: 6176 case InlineAsm::Constraint_p: // address 6177 if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4)) 6178 return true; 6179 break; 6180 } 6181 6182 OutOps.push_back(Op0); 6183 OutOps.push_back(Op1); 6184 OutOps.push_back(Op2); 6185 OutOps.push_back(Op3); 6186 OutOps.push_back(Op4); 6187 return false; 6188 } 6189 6190 /// This pass converts a legalized DAG into a X86-specific DAG, 6191 /// ready for instruction scheduling. 6192 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 6193 CodeGenOpt::Level OptLevel) { 6194 return new X86DAGToDAGISel(TM, OptLevel); 6195 } 6196