1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a DAG pattern matching instruction selector for X86, 10 // converting from a legalized dag to a X86 dag. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "X86.h" 15 #include "X86MachineFunctionInfo.h" 16 #include "X86RegisterInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/MachineModuleInfo.h" 21 #include "llvm/CodeGen/SelectionDAGISel.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/IntrinsicsX86.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <cstdint> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "x86-isel" 38 39 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor"); 40 41 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true), 42 cl::desc("Enable setting constant bits to reduce size of mask immediates"), 43 cl::Hidden); 44 45 static cl::opt<bool> EnablePromoteAnyextLoad( 46 "x86-promote-anyext-load", cl::init(true), 47 cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden); 48 49 extern cl::opt<bool> IndirectBranchTracking; 50 51 //===----------------------------------------------------------------------===// 52 // Pattern Matcher Implementation 53 //===----------------------------------------------------------------------===// 54 55 namespace { 56 /// This corresponds to X86AddressMode, but uses SDValue's instead of register 57 /// numbers for the leaves of the matched tree. 58 struct X86ISelAddressMode { 59 enum { 60 RegBase, 61 FrameIndexBase 62 } BaseType; 63 64 // This is really a union, discriminated by BaseType! 65 SDValue Base_Reg; 66 int Base_FrameIndex; 67 68 unsigned Scale; 69 SDValue IndexReg; 70 int32_t Disp; 71 SDValue Segment; 72 const GlobalValue *GV; 73 const Constant *CP; 74 const BlockAddress *BlockAddr; 75 const char *ES; 76 MCSymbol *MCSym; 77 int JT; 78 Align Alignment; // CP alignment. 79 unsigned char SymbolFlags; // X86II::MO_* 80 bool NegateIndex = false; 81 82 X86ISelAddressMode() 83 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), Disp(0), GV(nullptr), 84 CP(nullptr), BlockAddr(nullptr), ES(nullptr), MCSym(nullptr), JT(-1), 85 SymbolFlags(X86II::MO_NO_FLAG) {} 86 87 bool hasSymbolicDisplacement() const { 88 return GV != nullptr || CP != nullptr || ES != nullptr || 89 MCSym != nullptr || JT != -1 || BlockAddr != nullptr; 90 } 91 92 bool hasBaseOrIndexReg() const { 93 return BaseType == FrameIndexBase || 94 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr; 95 } 96 97 /// Return true if this addressing mode is already RIP-relative. 98 bool isRIPRelative() const { 99 if (BaseType != RegBase) return false; 100 if (RegisterSDNode *RegNode = 101 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode())) 102 return RegNode->getReg() == X86::RIP; 103 return false; 104 } 105 106 void setBaseReg(SDValue Reg) { 107 BaseType = RegBase; 108 Base_Reg = Reg; 109 } 110 111 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 112 void dump(SelectionDAG *DAG = nullptr) { 113 dbgs() << "X86ISelAddressMode " << this << '\n'; 114 dbgs() << "Base_Reg "; 115 if (Base_Reg.getNode()) 116 Base_Reg.getNode()->dump(DAG); 117 else 118 dbgs() << "nul\n"; 119 if (BaseType == FrameIndexBase) 120 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'; 121 dbgs() << " Scale " << Scale << '\n' 122 << "IndexReg "; 123 if (NegateIndex) 124 dbgs() << "negate "; 125 if (IndexReg.getNode()) 126 IndexReg.getNode()->dump(DAG); 127 else 128 dbgs() << "nul\n"; 129 dbgs() << " Disp " << Disp << '\n' 130 << "GV "; 131 if (GV) 132 GV->dump(); 133 else 134 dbgs() << "nul"; 135 dbgs() << " CP "; 136 if (CP) 137 CP->dump(); 138 else 139 dbgs() << "nul"; 140 dbgs() << '\n' 141 << "ES "; 142 if (ES) 143 dbgs() << ES; 144 else 145 dbgs() << "nul"; 146 dbgs() << " MCSym "; 147 if (MCSym) 148 dbgs() << MCSym; 149 else 150 dbgs() << "nul"; 151 dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n'; 152 } 153 #endif 154 }; 155 } 156 157 namespace { 158 //===--------------------------------------------------------------------===// 159 /// ISel - X86-specific code to select X86 machine instructions for 160 /// SelectionDAG operations. 161 /// 162 class X86DAGToDAGISel final : public SelectionDAGISel { 163 /// Keep a pointer to the X86Subtarget around so that we can 164 /// make the right decision when generating code for different targets. 165 const X86Subtarget *Subtarget; 166 167 /// If true, selector should try to optimize for minimum code size. 168 bool OptForMinSize; 169 170 /// Disable direct TLS access through segment registers. 171 bool IndirectTlsSegRefs; 172 173 public: 174 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) 175 : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr), 176 OptForMinSize(false), IndirectTlsSegRefs(false) {} 177 178 StringRef getPassName() const override { 179 return "X86 DAG->DAG Instruction Selection"; 180 } 181 182 bool runOnMachineFunction(MachineFunction &MF) override { 183 // Reset the subtarget each time through. 184 Subtarget = &MF.getSubtarget<X86Subtarget>(); 185 IndirectTlsSegRefs = MF.getFunction().hasFnAttribute( 186 "indirect-tls-seg-refs"); 187 188 // OptFor[Min]Size are used in pattern predicates that isel is matching. 189 OptForMinSize = MF.getFunction().hasMinSize(); 190 assert((!OptForMinSize || MF.getFunction().hasOptSize()) && 191 "OptForMinSize implies OptForSize"); 192 193 SelectionDAGISel::runOnMachineFunction(MF); 194 return true; 195 } 196 197 void emitFunctionEntryCode() override; 198 199 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; 200 201 void PreprocessISelDAG() override; 202 void PostprocessISelDAG() override; 203 204 // Include the pieces autogenerated from the target description. 205 #include "X86GenDAGISel.inc" 206 207 private: 208 void Select(SDNode *N) override; 209 210 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM); 211 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM, 212 bool AllowSegmentRegForX32 = false); 213 bool matchWrapper(SDValue N, X86ISelAddressMode &AM); 214 bool matchAddress(SDValue N, X86ISelAddressMode &AM); 215 bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM); 216 bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth); 217 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 218 unsigned Depth); 219 bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM, 220 unsigned Depth); 221 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM); 222 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base, 223 SDValue &Scale, SDValue &Index, SDValue &Disp, 224 SDValue &Segment); 225 bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp, 226 SDValue ScaleOp, SDValue &Base, SDValue &Scale, 227 SDValue &Index, SDValue &Disp, SDValue &Segment); 228 bool selectMOV64Imm32(SDValue N, SDValue &Imm); 229 bool selectLEAAddr(SDValue N, SDValue &Base, 230 SDValue &Scale, SDValue &Index, SDValue &Disp, 231 SDValue &Segment); 232 bool selectLEA64_32Addr(SDValue N, SDValue &Base, 233 SDValue &Scale, SDValue &Index, SDValue &Disp, 234 SDValue &Segment); 235 bool selectTLSADDRAddr(SDValue N, SDValue &Base, 236 SDValue &Scale, SDValue &Index, SDValue &Disp, 237 SDValue &Segment); 238 bool selectRelocImm(SDValue N, SDValue &Op); 239 240 bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, 241 SDValue &Base, SDValue &Scale, 242 SDValue &Index, SDValue &Disp, 243 SDValue &Segment); 244 245 // Convenience method where P is also root. 246 bool tryFoldLoad(SDNode *P, SDValue N, 247 SDValue &Base, SDValue &Scale, 248 SDValue &Index, SDValue &Disp, 249 SDValue &Segment) { 250 return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment); 251 } 252 253 bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N, 254 SDValue &Base, SDValue &Scale, 255 SDValue &Index, SDValue &Disp, 256 SDValue &Segment); 257 258 bool isProfitableToFormMaskedOp(SDNode *N) const; 259 260 /// Implement addressing mode selection for inline asm expressions. 261 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 262 unsigned ConstraintID, 263 std::vector<SDValue> &OutOps) override; 264 265 void emitSpecialCodeForMain(); 266 267 inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL, 268 MVT VT, SDValue &Base, SDValue &Scale, 269 SDValue &Index, SDValue &Disp, 270 SDValue &Segment) { 271 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 272 Base = CurDAG->getTargetFrameIndex( 273 AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout())); 274 else if (AM.Base_Reg.getNode()) 275 Base = AM.Base_Reg; 276 else 277 Base = CurDAG->getRegister(0, VT); 278 279 Scale = getI8Imm(AM.Scale, DL); 280 281 // Negate the index if needed. 282 if (AM.NegateIndex) { 283 unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r; 284 SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32, 285 AM.IndexReg), 0); 286 AM.IndexReg = Neg; 287 } 288 289 if (AM.IndexReg.getNode()) 290 Index = AM.IndexReg; 291 else 292 Index = CurDAG->getRegister(0, VT); 293 294 // These are 32-bit even in 64-bit mode since RIP-relative offset 295 // is 32-bit. 296 if (AM.GV) 297 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(), 298 MVT::i32, AM.Disp, 299 AM.SymbolFlags); 300 else if (AM.CP) 301 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment, 302 AM.Disp, AM.SymbolFlags); 303 else if (AM.ES) { 304 assert(!AM.Disp && "Non-zero displacement is ignored with ES."); 305 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); 306 } else if (AM.MCSym) { 307 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym."); 308 assert(AM.SymbolFlags == 0 && "oo"); 309 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32); 310 } else if (AM.JT != -1) { 311 assert(!AM.Disp && "Non-zero displacement is ignored with JT."); 312 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags); 313 } else if (AM.BlockAddr) 314 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp, 315 AM.SymbolFlags); 316 else 317 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32); 318 319 if (AM.Segment.getNode()) 320 Segment = AM.Segment; 321 else 322 Segment = CurDAG->getRegister(0, MVT::i16); 323 } 324 325 // Utility function to determine whether we should avoid selecting 326 // immediate forms of instructions for better code size or not. 327 // At a high level, we'd like to avoid such instructions when 328 // we have similar constants used within the same basic block 329 // that can be kept in a register. 330 // 331 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const { 332 uint32_t UseCount = 0; 333 334 // Do not want to hoist if we're not optimizing for size. 335 // TODO: We'd like to remove this restriction. 336 // See the comment in X86InstrInfo.td for more info. 337 if (!CurDAG->shouldOptForSize()) 338 return false; 339 340 // Walk all the users of the immediate. 341 for (const SDNode *User : N->uses()) { 342 if (UseCount >= 2) 343 break; 344 345 // This user is already selected. Count it as a legitimate use and 346 // move on. 347 if (User->isMachineOpcode()) { 348 UseCount++; 349 continue; 350 } 351 352 // We want to count stores of immediates as real uses. 353 if (User->getOpcode() == ISD::STORE && 354 User->getOperand(1).getNode() == N) { 355 UseCount++; 356 continue; 357 } 358 359 // We don't currently match users that have > 2 operands (except 360 // for stores, which are handled above) 361 // Those instruction won't match in ISEL, for now, and would 362 // be counted incorrectly. 363 // This may change in the future as we add additional instruction 364 // types. 365 if (User->getNumOperands() != 2) 366 continue; 367 368 // If this is a sign-extended 8-bit integer immediate used in an ALU 369 // instruction, there is probably an opcode encoding to save space. 370 auto *C = dyn_cast<ConstantSDNode>(N); 371 if (C && isInt<8>(C->getSExtValue())) 372 continue; 373 374 // Immediates that are used for offsets as part of stack 375 // manipulation should be left alone. These are typically 376 // used to indicate SP offsets for argument passing and 377 // will get pulled into stores/pushes (implicitly). 378 if (User->getOpcode() == X86ISD::ADD || 379 User->getOpcode() == ISD::ADD || 380 User->getOpcode() == X86ISD::SUB || 381 User->getOpcode() == ISD::SUB) { 382 383 // Find the other operand of the add/sub. 384 SDValue OtherOp = User->getOperand(0); 385 if (OtherOp.getNode() == N) 386 OtherOp = User->getOperand(1); 387 388 // Don't count if the other operand is SP. 389 RegisterSDNode *RegNode; 390 if (OtherOp->getOpcode() == ISD::CopyFromReg && 391 (RegNode = dyn_cast_or_null<RegisterSDNode>( 392 OtherOp->getOperand(1).getNode()))) 393 if ((RegNode->getReg() == X86::ESP) || 394 (RegNode->getReg() == X86::RSP)) 395 continue; 396 } 397 398 // ... otherwise, count this and move on. 399 UseCount++; 400 } 401 402 // If we have more than 1 use, then recommend for hoisting. 403 return (UseCount > 1); 404 } 405 406 /// Return a target constant with the specified value of type i8. 407 inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) { 408 return CurDAG->getTargetConstant(Imm, DL, MVT::i8); 409 } 410 411 /// Return a target constant with the specified value, of type i32. 412 inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) { 413 return CurDAG->getTargetConstant(Imm, DL, MVT::i32); 414 } 415 416 /// Return a target constant with the specified value, of type i64. 417 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) { 418 return CurDAG->getTargetConstant(Imm, DL, MVT::i64); 419 } 420 421 SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth, 422 const SDLoc &DL) { 423 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width"); 424 uint64_t Index = N->getConstantOperandVal(1); 425 MVT VecVT = N->getOperand(0).getSimpleValueType(); 426 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL); 427 } 428 429 SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth, 430 const SDLoc &DL) { 431 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width"); 432 uint64_t Index = N->getConstantOperandVal(2); 433 MVT VecVT = N->getSimpleValueType(0); 434 return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL); 435 } 436 437 SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth, 438 const SDLoc &DL) { 439 assert(VecWidth == 128 && "Unexpected vector width"); 440 uint64_t Index = N->getConstantOperandVal(2); 441 MVT VecVT = N->getSimpleValueType(0); 442 uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth; 443 assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index"); 444 // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub) 445 // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub) 446 return getI8Imm(InsertIdx ? 0x02 : 0x30, DL); 447 } 448 449 // Helper to detect unneeded and instructions on shift amounts. Called 450 // from PatFrags in tablegen. 451 bool isUnneededShiftMask(SDNode *N, unsigned Width) const { 452 assert(N->getOpcode() == ISD::AND && "Unexpected opcode"); 453 const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 454 455 if (Val.countTrailingOnes() >= Width) 456 return true; 457 458 APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero; 459 return Mask.countTrailingOnes() >= Width; 460 } 461 462 /// Return an SDNode that returns the value of the global base register. 463 /// Output instructions required to initialize the global base register, 464 /// if necessary. 465 SDNode *getGlobalBaseReg(); 466 467 /// Return a reference to the TargetMachine, casted to the target-specific 468 /// type. 469 const X86TargetMachine &getTargetMachine() const { 470 return static_cast<const X86TargetMachine &>(TM); 471 } 472 473 /// Return a reference to the TargetInstrInfo, casted to the target-specific 474 /// type. 475 const X86InstrInfo *getInstrInfo() const { 476 return Subtarget->getInstrInfo(); 477 } 478 479 /// Address-mode matching performs shift-of-and to and-of-shift 480 /// reassociation in order to expose more scaled addressing 481 /// opportunities. 482 bool ComplexPatternFuncMutatesDAG() const override { 483 return true; 484 } 485 486 bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const; 487 488 // Indicates we should prefer to use a non-temporal load for this load. 489 bool useNonTemporalLoad(LoadSDNode *N) const { 490 if (!N->isNonTemporal()) 491 return false; 492 493 unsigned StoreSize = N->getMemoryVT().getStoreSize(); 494 495 if (N->getAlignment() < StoreSize) 496 return false; 497 498 switch (StoreSize) { 499 default: llvm_unreachable("Unsupported store size"); 500 case 4: 501 case 8: 502 return false; 503 case 16: 504 return Subtarget->hasSSE41(); 505 case 32: 506 return Subtarget->hasAVX2(); 507 case 64: 508 return Subtarget->hasAVX512(); 509 } 510 } 511 512 bool foldLoadStoreIntoMemOperand(SDNode *Node); 513 MachineSDNode *matchBEXTRFromAndImm(SDNode *Node); 514 bool matchBitExtract(SDNode *Node); 515 bool shrinkAndImmediate(SDNode *N); 516 bool isMaskZeroExtended(SDNode *N) const; 517 bool tryShiftAmountMod(SDNode *N); 518 bool tryShrinkShlLogicImm(SDNode *N); 519 bool tryVPTERNLOG(SDNode *N); 520 bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB, 521 SDNode *ParentC, SDValue A, SDValue B, SDValue C, 522 uint8_t Imm); 523 bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask); 524 bool tryMatchBitSelect(SDNode *N); 525 526 MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, 527 const SDLoc &dl, MVT VT, SDNode *Node); 528 MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad, 529 const SDLoc &dl, MVT VT, SDNode *Node, 530 SDValue &InFlag); 531 532 bool tryOptimizeRem8Extend(SDNode *N); 533 534 bool onlyUsesZeroFlag(SDValue Flags) const; 535 bool hasNoSignFlagUses(SDValue Flags) const; 536 bool hasNoCarryFlagUses(SDValue Flags) const; 537 }; 538 } 539 540 541 // Returns true if this masked compare can be implemented legally with this 542 // type. 543 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) { 544 unsigned Opcode = N->getOpcode(); 545 if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM || 546 Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC || 547 Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) { 548 // We can get 256-bit 8 element types here without VLX being enabled. When 549 // this happens we will use 512-bit operations and the mask will not be 550 // zero extended. 551 EVT OpVT = N->getOperand(0).getValueType(); 552 // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the 553 // second operand. 554 if (Opcode == X86ISD::STRICT_CMPM) 555 OpVT = N->getOperand(1).getValueType(); 556 if (OpVT.is256BitVector() || OpVT.is128BitVector()) 557 return Subtarget->hasVLX(); 558 559 return true; 560 } 561 // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check. 562 if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM || 563 Opcode == X86ISD::FSETCCM_SAE) 564 return true; 565 566 return false; 567 } 568 569 // Returns true if we can assume the writer of the mask has zero extended it 570 // for us. 571 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const { 572 // If this is an AND, check if we have a compare on either side. As long as 573 // one side guarantees the mask is zero extended, the AND will preserve those 574 // zeros. 575 if (N->getOpcode() == ISD::AND) 576 return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) || 577 isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget); 578 579 return isLegalMaskCompare(N, Subtarget); 580 } 581 582 bool 583 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { 584 if (OptLevel == CodeGenOpt::None) return false; 585 586 if (!N.hasOneUse()) 587 return false; 588 589 if (N.getOpcode() != ISD::LOAD) 590 return true; 591 592 // Don't fold non-temporal loads if we have an instruction for them. 593 if (useNonTemporalLoad(cast<LoadSDNode>(N))) 594 return false; 595 596 // If N is a load, do additional profitability checks. 597 if (U == Root) { 598 switch (U->getOpcode()) { 599 default: break; 600 case X86ISD::ADD: 601 case X86ISD::ADC: 602 case X86ISD::SUB: 603 case X86ISD::SBB: 604 case X86ISD::AND: 605 case X86ISD::XOR: 606 case X86ISD::OR: 607 case ISD::ADD: 608 case ISD::ADDCARRY: 609 case ISD::AND: 610 case ISD::OR: 611 case ISD::XOR: { 612 SDValue Op1 = U->getOperand(1); 613 614 // If the other operand is a 8-bit immediate we should fold the immediate 615 // instead. This reduces code size. 616 // e.g. 617 // movl 4(%esp), %eax 618 // addl $4, %eax 619 // vs. 620 // movl $4, %eax 621 // addl 4(%esp), %eax 622 // The former is 2 bytes shorter. In case where the increment is 1, then 623 // the saving can be 4 bytes (by using incl %eax). 624 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) { 625 if (Imm->getAPIntValue().isSignedIntN(8)) 626 return false; 627 628 // If this is a 64-bit AND with an immediate that fits in 32-bits, 629 // prefer using the smaller and over folding the load. This is needed to 630 // make sure immediates created by shrinkAndImmediate are always folded. 631 // Ideally we would narrow the load during DAG combine and get the 632 // best of both worlds. 633 if (U->getOpcode() == ISD::AND && 634 Imm->getAPIntValue().getBitWidth() == 64 && 635 Imm->getAPIntValue().isIntN(32)) 636 return false; 637 638 // If this really a zext_inreg that can be represented with a movzx 639 // instruction, prefer that. 640 // TODO: We could shrink the load and fold if it is non-volatile. 641 if (U->getOpcode() == ISD::AND && 642 (Imm->getAPIntValue() == UINT8_MAX || 643 Imm->getAPIntValue() == UINT16_MAX || 644 Imm->getAPIntValue() == UINT32_MAX)) 645 return false; 646 647 // ADD/SUB with can negate the immediate and use the opposite operation 648 // to fit 128 into a sign extended 8 bit immediate. 649 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) && 650 (-Imm->getAPIntValue()).isSignedIntN(8)) 651 return false; 652 653 if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) && 654 (-Imm->getAPIntValue()).isSignedIntN(8) && 655 hasNoCarryFlagUses(SDValue(U, 1))) 656 return false; 657 } 658 659 // If the other operand is a TLS address, we should fold it instead. 660 // This produces 661 // movl %gs:0, %eax 662 // leal i@NTPOFF(%eax), %eax 663 // instead of 664 // movl $i@NTPOFF, %eax 665 // addl %gs:0, %eax 666 // if the block also has an access to a second TLS address this will save 667 // a load. 668 // FIXME: This is probably also true for non-TLS addresses. 669 if (Op1.getOpcode() == X86ISD::Wrapper) { 670 SDValue Val = Op1.getOperand(0); 671 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 672 return false; 673 } 674 675 // Don't fold load if this matches the BTS/BTR/BTC patterns. 676 // BTS: (or X, (shl 1, n)) 677 // BTR: (and X, (rotl -2, n)) 678 // BTC: (xor X, (shl 1, n)) 679 if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) { 680 if (U->getOperand(0).getOpcode() == ISD::SHL && 681 isOneConstant(U->getOperand(0).getOperand(0))) 682 return false; 683 684 if (U->getOperand(1).getOpcode() == ISD::SHL && 685 isOneConstant(U->getOperand(1).getOperand(0))) 686 return false; 687 } 688 if (U->getOpcode() == ISD::AND) { 689 SDValue U0 = U->getOperand(0); 690 SDValue U1 = U->getOperand(1); 691 if (U0.getOpcode() == ISD::ROTL) { 692 auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0)); 693 if (C && C->getSExtValue() == -2) 694 return false; 695 } 696 697 if (U1.getOpcode() == ISD::ROTL) { 698 auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0)); 699 if (C && C->getSExtValue() == -2) 700 return false; 701 } 702 } 703 704 break; 705 } 706 case ISD::SHL: 707 case ISD::SRA: 708 case ISD::SRL: 709 // Don't fold a load into a shift by immediate. The BMI2 instructions 710 // support folding a load, but not an immediate. The legacy instructions 711 // support folding an immediate, but can't fold a load. Folding an 712 // immediate is preferable to folding a load. 713 if (isa<ConstantSDNode>(U->getOperand(1))) 714 return false; 715 716 break; 717 } 718 } 719 720 // Prevent folding a load if this can implemented with an insert_subreg or 721 // a move that implicitly zeroes. 722 if (Root->getOpcode() == ISD::INSERT_SUBVECTOR && 723 isNullConstant(Root->getOperand(2)) && 724 (Root->getOperand(0).isUndef() || 725 ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode()))) 726 return false; 727 728 return true; 729 } 730 731 // Indicates it is profitable to form an AVX512 masked operation. Returning 732 // false will favor a masked register-register masked move or vblendm and the 733 // operation will be selected separately. 734 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const { 735 assert( 736 (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) && 737 "Unexpected opcode!"); 738 739 // If the operation has additional users, the operation will be duplicated. 740 // Check the use count to prevent that. 741 // FIXME: Are there cheap opcodes we might want to duplicate? 742 return N->getOperand(1).hasOneUse(); 743 } 744 745 /// Replace the original chain operand of the call with 746 /// load's chain operand and move load below the call's chain operand. 747 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, 748 SDValue Call, SDValue OrigChain) { 749 SmallVector<SDValue, 8> Ops; 750 SDValue Chain = OrigChain.getOperand(0); 751 if (Chain.getNode() == Load.getNode()) 752 Ops.push_back(Load.getOperand(0)); 753 else { 754 assert(Chain.getOpcode() == ISD::TokenFactor && 755 "Unexpected chain operand"); 756 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) 757 if (Chain.getOperand(i).getNode() == Load.getNode()) 758 Ops.push_back(Load.getOperand(0)); 759 else 760 Ops.push_back(Chain.getOperand(i)); 761 SDValue NewChain = 762 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops); 763 Ops.clear(); 764 Ops.push_back(NewChain); 765 } 766 Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end()); 767 CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops); 768 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0), 769 Load.getOperand(1), Load.getOperand(2)); 770 771 Ops.clear(); 772 Ops.push_back(SDValue(Load.getNode(), 1)); 773 Ops.append(Call->op_begin() + 1, Call->op_end()); 774 CurDAG->UpdateNodeOperands(Call.getNode(), Ops); 775 } 776 777 /// Return true if call address is a load and it can be 778 /// moved below CALLSEQ_START and the chains leading up to the call. 779 /// Return the CALLSEQ_START by reference as a second output. 780 /// In the case of a tail call, there isn't a callseq node between the call 781 /// chain and the load. 782 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { 783 // The transformation is somewhat dangerous if the call's chain was glued to 784 // the call. After MoveBelowOrigChain the load is moved between the call and 785 // the chain, this can create a cycle if the load is not folded. So it is 786 // *really* important that we are sure the load will be folded. 787 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse()) 788 return false; 789 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode()); 790 if (!LD || 791 !LD->isSimple() || 792 LD->getAddressingMode() != ISD::UNINDEXED || 793 LD->getExtensionType() != ISD::NON_EXTLOAD) 794 return false; 795 796 // Now let's find the callseq_start. 797 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) { 798 if (!Chain.hasOneUse()) 799 return false; 800 Chain = Chain.getOperand(0); 801 } 802 803 if (!Chain.getNumOperands()) 804 return false; 805 // Since we are not checking for AA here, conservatively abort if the chain 806 // writes to memory. It's not safe to move the callee (a load) across a store. 807 if (isa<MemSDNode>(Chain.getNode()) && 808 cast<MemSDNode>(Chain.getNode())->writeMem()) 809 return false; 810 if (Chain.getOperand(0).getNode() == Callee.getNode()) 811 return true; 812 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor && 813 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) && 814 Callee.getValue(1).hasOneUse()) 815 return true; 816 return false; 817 } 818 819 static bool isEndbrImm64(uint64_t Imm) { 820 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA. 821 // i.g: 0xF3660F1EFA, 0xF3670F1EFA 822 if ((Imm & 0x00FFFFFF) != 0x0F1EFA) 823 return false; 824 825 uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64, 826 0x65, 0x66, 0x67, 0xf0, 0xf2}; 827 int i = 24; // 24bit 0x0F1EFA has matched 828 while (i < 64) { 829 uint8_t Byte = (Imm >> i) & 0xFF; 830 if (Byte == 0xF3) 831 return true; 832 if (!llvm::is_contained(OptionalPrefixBytes, Byte)) 833 return false; 834 i += 8; 835 } 836 837 return false; 838 } 839 840 void X86DAGToDAGISel::PreprocessISelDAG() { 841 bool MadeChange = false; 842 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 843 E = CurDAG->allnodes_end(); I != E; ) { 844 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues. 845 846 // This is for CET enhancement. 847 // 848 // ENDBR32 and ENDBR64 have specific opcodes: 849 // ENDBR32: F3 0F 1E FB 850 // ENDBR64: F3 0F 1E FA 851 // And we want that attackers won’t find unintended ENDBR32/64 852 // opcode matches in the binary 853 // Here’s an example: 854 // If the compiler had to generate asm for the following code: 855 // a = 0xF30F1EFA 856 // it could, for example, generate: 857 // mov 0xF30F1EFA, dword ptr[a] 858 // In such a case, the binary would include a gadget that starts 859 // with a fake ENDBR64 opcode. Therefore, we split such generation 860 // into multiple operations, let it not shows in the binary 861 if (N->getOpcode() == ISD::Constant) { 862 MVT VT = N->getSimpleValueType(0); 863 int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue(); 864 int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB; 865 if (Imm == EndbrImm || isEndbrImm64(Imm)) { 866 // Check that the cf-protection-branch is enabled. 867 Metadata *CFProtectionBranch = 868 MF->getMMI().getModule()->getModuleFlag("cf-protection-branch"); 869 if (CFProtectionBranch || IndirectBranchTracking) { 870 SDLoc dl(N); 871 SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true); 872 Complement = CurDAG->getNOT(dl, Complement, VT); 873 --I; 874 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement); 875 ++I; 876 MadeChange = true; 877 continue; 878 } 879 } 880 } 881 882 // If this is a target specific AND node with no flag usages, turn it back 883 // into ISD::AND to enable test instruction matching. 884 if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) { 885 SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0), 886 N->getOperand(0), N->getOperand(1)); 887 --I; 888 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 889 ++I; 890 MadeChange = true; 891 continue; 892 } 893 894 // Convert vector increment or decrement to sub/add with an all-ones 895 // constant: 896 // add X, <1, 1...> --> sub X, <-1, -1...> 897 // sub X, <1, 1...> --> add X, <-1, -1...> 898 // The all-ones vector constant can be materialized using a pcmpeq 899 // instruction that is commonly recognized as an idiom (has no register 900 // dependency), so that's better/smaller than loading a splat 1 constant. 901 // 902 // But don't do this if it would inhibit a potentially profitable load 903 // folding opportunity for the other operand. That only occurs with the 904 // intersection of: 905 // (1) The other operand (op0) is load foldable. 906 // (2) The op is an add (otherwise, we are *creating* an add and can still 907 // load fold the other op). 908 // (3) The target has AVX (otherwise, we have a destructive add and can't 909 // load fold the other op without killing the constant op). 910 // (4) The constant 1 vector has multiple uses (so it is profitable to load 911 // into a register anyway). 912 auto mayPreventLoadFold = [&]() { 913 return X86::mayFoldLoad(N->getOperand(0), *Subtarget) && 914 N->getOpcode() == ISD::ADD && Subtarget->hasAVX() && 915 !N->getOperand(1).hasOneUse(); 916 }; 917 if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 918 N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) { 919 APInt SplatVal; 920 if (X86::isConstantSplat(N->getOperand(1), SplatVal) && 921 SplatVal.isOne()) { 922 SDLoc DL(N); 923 924 MVT VT = N->getSimpleValueType(0); 925 unsigned NumElts = VT.getSizeInBits() / 32; 926 SDValue AllOnes = 927 CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts)); 928 AllOnes = CurDAG->getBitcast(VT, AllOnes); 929 930 unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD; 931 SDValue Res = 932 CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes); 933 --I; 934 CurDAG->ReplaceAllUsesWith(N, Res.getNode()); 935 ++I; 936 MadeChange = true; 937 continue; 938 } 939 } 940 941 switch (N->getOpcode()) { 942 case X86ISD::VBROADCAST: { 943 MVT VT = N->getSimpleValueType(0); 944 // Emulate v32i16/v64i8 broadcast without BWI. 945 if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) { 946 MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8; 947 SDLoc dl(N); 948 SDValue NarrowBCast = 949 CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0)); 950 SDValue Res = 951 CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT), 952 NarrowBCast, CurDAG->getIntPtrConstant(0, dl)); 953 unsigned Index = VT == MVT::v32i16 ? 16 : 32; 954 Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast, 955 CurDAG->getIntPtrConstant(Index, dl)); 956 957 --I; 958 CurDAG->ReplaceAllUsesWith(N, Res.getNode()); 959 ++I; 960 MadeChange = true; 961 continue; 962 } 963 964 break; 965 } 966 case X86ISD::VBROADCAST_LOAD: { 967 MVT VT = N->getSimpleValueType(0); 968 // Emulate v32i16/v64i8 broadcast without BWI. 969 if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) { 970 MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8; 971 auto *MemNode = cast<MemSDNode>(N); 972 SDLoc dl(N); 973 SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other); 974 SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()}; 975 SDValue NarrowBCast = CurDAG->getMemIntrinsicNode( 976 X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(), 977 MemNode->getMemOperand()); 978 SDValue Res = 979 CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT), 980 NarrowBCast, CurDAG->getIntPtrConstant(0, dl)); 981 unsigned Index = VT == MVT::v32i16 ? 16 : 32; 982 Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast, 983 CurDAG->getIntPtrConstant(Index, dl)); 984 985 --I; 986 SDValue To[] = {Res, NarrowBCast.getValue(1)}; 987 CurDAG->ReplaceAllUsesWith(N, To); 988 ++I; 989 MadeChange = true; 990 continue; 991 } 992 993 break; 994 } 995 case ISD::VSELECT: { 996 // Replace VSELECT with non-mask conditions with with BLENDV. 997 if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1) 998 break; 999 1000 assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!"); 1001 SDValue Blendv = 1002 CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0), 1003 N->getOperand(0), N->getOperand(1), N->getOperand(2)); 1004 --I; 1005 CurDAG->ReplaceAllUsesWith(N, Blendv.getNode()); 1006 ++I; 1007 MadeChange = true; 1008 continue; 1009 } 1010 case ISD::FP_ROUND: 1011 case ISD::STRICT_FP_ROUND: 1012 case ISD::FP_TO_SINT: 1013 case ISD::FP_TO_UINT: 1014 case ISD::STRICT_FP_TO_SINT: 1015 case ISD::STRICT_FP_TO_UINT: { 1016 // Replace vector fp_to_s/uint with their X86 specific equivalent so we 1017 // don't need 2 sets of patterns. 1018 if (!N->getSimpleValueType(0).isVector()) 1019 break; 1020 1021 unsigned NewOpc; 1022 switch (N->getOpcode()) { 1023 default: llvm_unreachable("Unexpected opcode!"); 1024 case ISD::FP_ROUND: NewOpc = X86ISD::VFPROUND; break; 1025 case ISD::STRICT_FP_ROUND: NewOpc = X86ISD::STRICT_VFPROUND; break; 1026 case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break; 1027 case ISD::FP_TO_SINT: NewOpc = X86ISD::CVTTP2SI; break; 1028 case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break; 1029 case ISD::FP_TO_UINT: NewOpc = X86ISD::CVTTP2UI; break; 1030 } 1031 SDValue Res; 1032 if (N->isStrictFPOpcode()) 1033 Res = 1034 CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other}, 1035 {N->getOperand(0), N->getOperand(1)}); 1036 else 1037 Res = 1038 CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0), 1039 N->getOperand(0)); 1040 --I; 1041 CurDAG->ReplaceAllUsesWith(N, Res.getNode()); 1042 ++I; 1043 MadeChange = true; 1044 continue; 1045 } 1046 case ISD::SHL: 1047 case ISD::SRA: 1048 case ISD::SRL: { 1049 // Replace vector shifts with their X86 specific equivalent so we don't 1050 // need 2 sets of patterns. 1051 if (!N->getValueType(0).isVector()) 1052 break; 1053 1054 unsigned NewOpc; 1055 switch (N->getOpcode()) { 1056 default: llvm_unreachable("Unexpected opcode!"); 1057 case ISD::SHL: NewOpc = X86ISD::VSHLV; break; 1058 case ISD::SRA: NewOpc = X86ISD::VSRAV; break; 1059 case ISD::SRL: NewOpc = X86ISD::VSRLV; break; 1060 } 1061 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0), 1062 N->getOperand(0), N->getOperand(1)); 1063 --I; 1064 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 1065 ++I; 1066 MadeChange = true; 1067 continue; 1068 } 1069 case ISD::ANY_EXTEND: 1070 case ISD::ANY_EXTEND_VECTOR_INREG: { 1071 // Replace vector any extend with the zero extend equivalents so we don't 1072 // need 2 sets of patterns. Ignore vXi1 extensions. 1073 if (!N->getValueType(0).isVector()) 1074 break; 1075 1076 unsigned NewOpc; 1077 if (N->getOperand(0).getScalarValueSizeInBits() == 1) { 1078 assert(N->getOpcode() == ISD::ANY_EXTEND && 1079 "Unexpected opcode for mask vector!"); 1080 NewOpc = ISD::SIGN_EXTEND; 1081 } else { 1082 NewOpc = N->getOpcode() == ISD::ANY_EXTEND 1083 ? ISD::ZERO_EXTEND 1084 : ISD::ZERO_EXTEND_VECTOR_INREG; 1085 } 1086 1087 SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0), 1088 N->getOperand(0)); 1089 --I; 1090 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 1091 ++I; 1092 MadeChange = true; 1093 continue; 1094 } 1095 case ISD::FCEIL: 1096 case ISD::STRICT_FCEIL: 1097 case ISD::FFLOOR: 1098 case ISD::STRICT_FFLOOR: 1099 case ISD::FTRUNC: 1100 case ISD::STRICT_FTRUNC: 1101 case ISD::FROUNDEVEN: 1102 case ISD::STRICT_FROUNDEVEN: 1103 case ISD::FNEARBYINT: 1104 case ISD::STRICT_FNEARBYINT: 1105 case ISD::FRINT: 1106 case ISD::STRICT_FRINT: { 1107 // Replace fp rounding with their X86 specific equivalent so we don't 1108 // need 2 sets of patterns. 1109 unsigned Imm; 1110 switch (N->getOpcode()) { 1111 default: llvm_unreachable("Unexpected opcode!"); 1112 case ISD::STRICT_FCEIL: 1113 case ISD::FCEIL: Imm = 0xA; break; 1114 case ISD::STRICT_FFLOOR: 1115 case ISD::FFLOOR: Imm = 0x9; break; 1116 case ISD::STRICT_FTRUNC: 1117 case ISD::FTRUNC: Imm = 0xB; break; 1118 case ISD::STRICT_FROUNDEVEN: 1119 case ISD::FROUNDEVEN: Imm = 0x8; break; 1120 case ISD::STRICT_FNEARBYINT: 1121 case ISD::FNEARBYINT: Imm = 0xC; break; 1122 case ISD::STRICT_FRINT: 1123 case ISD::FRINT: Imm = 0x4; break; 1124 } 1125 SDLoc dl(N); 1126 bool IsStrict = N->isStrictFPOpcode(); 1127 SDValue Res; 1128 if (IsStrict) 1129 Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl, 1130 {N->getValueType(0), MVT::Other}, 1131 {N->getOperand(0), N->getOperand(1), 1132 CurDAG->getTargetConstant(Imm, dl, MVT::i32)}); 1133 else 1134 Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0), 1135 N->getOperand(0), 1136 CurDAG->getTargetConstant(Imm, dl, MVT::i32)); 1137 --I; 1138 CurDAG->ReplaceAllUsesWith(N, Res.getNode()); 1139 ++I; 1140 MadeChange = true; 1141 continue; 1142 } 1143 case X86ISD::FANDN: 1144 case X86ISD::FAND: 1145 case X86ISD::FOR: 1146 case X86ISD::FXOR: { 1147 // Widen scalar fp logic ops to vector to reduce isel patterns. 1148 // FIXME: Can we do this during lowering/combine. 1149 MVT VT = N->getSimpleValueType(0); 1150 if (VT.isVector() || VT == MVT::f128) 1151 break; 1152 1153 MVT VecVT = VT == MVT::f64 ? MVT::v2f64 1154 : VT == MVT::f32 ? MVT::v4f32 1155 : MVT::v8f16; 1156 1157 SDLoc dl(N); 1158 SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, 1159 N->getOperand(0)); 1160 SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, 1161 N->getOperand(1)); 1162 1163 SDValue Res; 1164 if (Subtarget->hasSSE2()) { 1165 EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger(); 1166 Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0); 1167 Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1); 1168 unsigned Opc; 1169 switch (N->getOpcode()) { 1170 default: llvm_unreachable("Unexpected opcode!"); 1171 case X86ISD::FANDN: Opc = X86ISD::ANDNP; break; 1172 case X86ISD::FAND: Opc = ISD::AND; break; 1173 case X86ISD::FOR: Opc = ISD::OR; break; 1174 case X86ISD::FXOR: Opc = ISD::XOR; break; 1175 } 1176 Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1); 1177 Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res); 1178 } else { 1179 Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1); 1180 } 1181 Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res, 1182 CurDAG->getIntPtrConstant(0, dl)); 1183 --I; 1184 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 1185 ++I; 1186 MadeChange = true; 1187 continue; 1188 } 1189 } 1190 1191 if (OptLevel != CodeGenOpt::None && 1192 // Only do this when the target can fold the load into the call or 1193 // jmp. 1194 !Subtarget->useIndirectThunkCalls() && 1195 ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) || 1196 (N->getOpcode() == X86ISD::TC_RETURN && 1197 (Subtarget->is64Bit() || 1198 !getTargetMachine().isPositionIndependent())))) { 1199 /// Also try moving call address load from outside callseq_start to just 1200 /// before the call to allow it to be folded. 1201 /// 1202 /// [Load chain] 1203 /// ^ 1204 /// | 1205 /// [Load] 1206 /// ^ ^ 1207 /// | | 1208 /// / \-- 1209 /// / | 1210 ///[CALLSEQ_START] | 1211 /// ^ | 1212 /// | | 1213 /// [LOAD/C2Reg] | 1214 /// | | 1215 /// \ / 1216 /// \ / 1217 /// [CALL] 1218 bool HasCallSeq = N->getOpcode() == X86ISD::CALL; 1219 SDValue Chain = N->getOperand(0); 1220 SDValue Load = N->getOperand(1); 1221 if (!isCalleeLoad(Load, Chain, HasCallSeq)) 1222 continue; 1223 moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); 1224 ++NumLoadMoved; 1225 MadeChange = true; 1226 continue; 1227 } 1228 1229 // Lower fpround and fpextend nodes that target the FP stack to be store and 1230 // load to the stack. This is a gross hack. We would like to simply mark 1231 // these as being illegal, but when we do that, legalize produces these when 1232 // it expands calls, then expands these in the same legalize pass. We would 1233 // like dag combine to be able to hack on these between the call expansion 1234 // and the node legalization. As such this pass basically does "really 1235 // late" legalization of these inline with the X86 isel pass. 1236 // FIXME: This should only happen when not compiled with -O0. 1237 switch (N->getOpcode()) { 1238 default: continue; 1239 case ISD::FP_ROUND: 1240 case ISD::FP_EXTEND: 1241 { 1242 MVT SrcVT = N->getOperand(0).getSimpleValueType(); 1243 MVT DstVT = N->getSimpleValueType(0); 1244 1245 // If any of the sources are vectors, no fp stack involved. 1246 if (SrcVT.isVector() || DstVT.isVector()) 1247 continue; 1248 1249 // If the source and destination are SSE registers, then this is a legal 1250 // conversion that should not be lowered. 1251 const X86TargetLowering *X86Lowering = 1252 static_cast<const X86TargetLowering *>(TLI); 1253 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); 1254 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); 1255 if (SrcIsSSE && DstIsSSE) 1256 continue; 1257 1258 if (!SrcIsSSE && !DstIsSSE) { 1259 // If this is an FPStack extension, it is a noop. 1260 if (N->getOpcode() == ISD::FP_EXTEND) 1261 continue; 1262 // If this is a value-preserving FPStack truncation, it is a noop. 1263 if (N->getConstantOperandVal(1)) 1264 continue; 1265 } 1266 1267 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 1268 // FPStack has extload and truncstore. SSE can fold direct loads into other 1269 // operations. Based on this, decide what we want to do. 1270 MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT; 1271 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 1272 int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex(); 1273 MachinePointerInfo MPI = 1274 MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI); 1275 SDLoc dl(N); 1276 1277 // FIXME: optimize the case where the src/dest is a load or store? 1278 1279 SDValue Store = CurDAG->getTruncStore( 1280 CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT); 1281 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, 1282 MemTmp, MPI, MemVT); 1283 1284 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 1285 // extload we created. This will cause general havok on the dag because 1286 // anything below the conversion could be folded into other existing nodes. 1287 // To avoid invalidating 'I', back it up to the convert node. 1288 --I; 1289 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); 1290 break; 1291 } 1292 1293 //The sequence of events for lowering STRICT_FP versions of these nodes requires 1294 //dealing with the chain differently, as there is already a preexisting chain. 1295 case ISD::STRICT_FP_ROUND: 1296 case ISD::STRICT_FP_EXTEND: 1297 { 1298 MVT SrcVT = N->getOperand(1).getSimpleValueType(); 1299 MVT DstVT = N->getSimpleValueType(0); 1300 1301 // If any of the sources are vectors, no fp stack involved. 1302 if (SrcVT.isVector() || DstVT.isVector()) 1303 continue; 1304 1305 // If the source and destination are SSE registers, then this is a legal 1306 // conversion that should not be lowered. 1307 const X86TargetLowering *X86Lowering = 1308 static_cast<const X86TargetLowering *>(TLI); 1309 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT); 1310 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT); 1311 if (SrcIsSSE && DstIsSSE) 1312 continue; 1313 1314 if (!SrcIsSSE && !DstIsSSE) { 1315 // If this is an FPStack extension, it is a noop. 1316 if (N->getOpcode() == ISD::STRICT_FP_EXTEND) 1317 continue; 1318 // If this is a value-preserving FPStack truncation, it is a noop. 1319 if (N->getConstantOperandVal(2)) 1320 continue; 1321 } 1322 1323 // Here we could have an FP stack truncation or an FPStack <-> SSE convert. 1324 // FPStack has extload and truncstore. SSE can fold direct loads into other 1325 // operations. Based on this, decide what we want to do. 1326 MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT; 1327 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); 1328 int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex(); 1329 MachinePointerInfo MPI = 1330 MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI); 1331 SDLoc dl(N); 1332 1333 // FIXME: optimize the case where the src/dest is a load or store? 1334 1335 //Since the operation is StrictFP, use the preexisting chain. 1336 SDValue Store, Result; 1337 if (!SrcIsSSE) { 1338 SDVTList VTs = CurDAG->getVTList(MVT::Other); 1339 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp}; 1340 Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT, 1341 MPI, /*Align*/ None, 1342 MachineMemOperand::MOStore); 1343 if (N->getFlags().hasNoFPExcept()) { 1344 SDNodeFlags Flags = Store->getFlags(); 1345 Flags.setNoFPExcept(true); 1346 Store->setFlags(Flags); 1347 } 1348 } else { 1349 assert(SrcVT == MemVT && "Unexpected VT!"); 1350 Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp, 1351 MPI); 1352 } 1353 1354 if (!DstIsSSE) { 1355 SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other); 1356 SDValue Ops[] = {Store, MemTmp}; 1357 Result = CurDAG->getMemIntrinsicNode( 1358 X86ISD::FLD, dl, VTs, Ops, MemVT, MPI, 1359 /*Align*/ None, MachineMemOperand::MOLoad); 1360 if (N->getFlags().hasNoFPExcept()) { 1361 SDNodeFlags Flags = Result->getFlags(); 1362 Flags.setNoFPExcept(true); 1363 Result->setFlags(Flags); 1364 } 1365 } else { 1366 assert(DstVT == MemVT && "Unexpected VT!"); 1367 Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI); 1368 } 1369 1370 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the 1371 // extload we created. This will cause general havok on the dag because 1372 // anything below the conversion could be folded into other existing nodes. 1373 // To avoid invalidating 'I', back it up to the convert node. 1374 --I; 1375 CurDAG->ReplaceAllUsesWith(N, Result.getNode()); 1376 break; 1377 } 1378 } 1379 1380 1381 // Now that we did that, the node is dead. Increment the iterator to the 1382 // next node to process, then delete N. 1383 ++I; 1384 MadeChange = true; 1385 } 1386 1387 // Remove any dead nodes that may have been left behind. 1388 if (MadeChange) 1389 CurDAG->RemoveDeadNodes(); 1390 } 1391 1392 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem. 1393 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) { 1394 unsigned Opc = N->getMachineOpcode(); 1395 if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 && 1396 Opc != X86::MOVSX64rr8) 1397 return false; 1398 1399 SDValue N0 = N->getOperand(0); 1400 1401 // We need to be extracting the lower bit of an extend. 1402 if (!N0.isMachineOpcode() || 1403 N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG || 1404 N0.getConstantOperandVal(1) != X86::sub_8bit) 1405 return false; 1406 1407 // We're looking for either a movsx or movzx to match the original opcode. 1408 unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX 1409 : X86::MOVSX32rr8_NOREX; 1410 SDValue N00 = N0.getOperand(0); 1411 if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc) 1412 return false; 1413 1414 if (Opc == X86::MOVSX64rr8) { 1415 // If we had a sign extend from 8 to 64 bits. We still need to go from 32 1416 // to 64. 1417 MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N), 1418 MVT::i64, N00); 1419 ReplaceUses(N, Extend); 1420 } else { 1421 // Ok we can drop this extend and just use the original extend. 1422 ReplaceUses(N, N00.getNode()); 1423 } 1424 1425 return true; 1426 } 1427 1428 void X86DAGToDAGISel::PostprocessISelDAG() { 1429 // Skip peepholes at -O0. 1430 if (TM.getOptLevel() == CodeGenOpt::None) 1431 return; 1432 1433 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 1434 1435 bool MadeChange = false; 1436 while (Position != CurDAG->allnodes_begin()) { 1437 SDNode *N = &*--Position; 1438 // Skip dead nodes and any non-machine opcodes. 1439 if (N->use_empty() || !N->isMachineOpcode()) 1440 continue; 1441 1442 if (tryOptimizeRem8Extend(N)) { 1443 MadeChange = true; 1444 continue; 1445 } 1446 1447 // Look for a TESTrr+ANDrr pattern where both operands of the test are 1448 // the same. Rewrite to remove the AND. 1449 unsigned Opc = N->getMachineOpcode(); 1450 if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr || 1451 Opc == X86::TEST32rr || Opc == X86::TEST64rr) && 1452 N->getOperand(0) == N->getOperand(1) && 1453 N->isOnlyUserOf(N->getOperand(0).getNode()) && 1454 N->getOperand(0).isMachineOpcode()) { 1455 SDValue And = N->getOperand(0); 1456 unsigned N0Opc = And.getMachineOpcode(); 1457 if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr || 1458 N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) { 1459 MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N), 1460 MVT::i32, 1461 And.getOperand(0), 1462 And.getOperand(1)); 1463 ReplaceUses(N, Test); 1464 MadeChange = true; 1465 continue; 1466 } 1467 if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm || 1468 N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) { 1469 unsigned NewOpc; 1470 switch (N0Opc) { 1471 case X86::AND8rm: NewOpc = X86::TEST8mr; break; 1472 case X86::AND16rm: NewOpc = X86::TEST16mr; break; 1473 case X86::AND32rm: NewOpc = X86::TEST32mr; break; 1474 case X86::AND64rm: NewOpc = X86::TEST64mr; break; 1475 } 1476 1477 // Need to swap the memory and register operand. 1478 SDValue Ops[] = { And.getOperand(1), 1479 And.getOperand(2), 1480 And.getOperand(3), 1481 And.getOperand(4), 1482 And.getOperand(5), 1483 And.getOperand(0), 1484 And.getOperand(6) /* Chain */ }; 1485 MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N), 1486 MVT::i32, MVT::Other, Ops); 1487 CurDAG->setNodeMemRefs( 1488 Test, cast<MachineSDNode>(And.getNode())->memoperands()); 1489 ReplaceUses(N, Test); 1490 MadeChange = true; 1491 continue; 1492 } 1493 } 1494 1495 // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is 1496 // used. We're doing this late so we can prefer to fold the AND into masked 1497 // comparisons. Doing that can be better for the live range of the mask 1498 // register. 1499 if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr || 1500 Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) && 1501 N->getOperand(0) == N->getOperand(1) && 1502 N->isOnlyUserOf(N->getOperand(0).getNode()) && 1503 N->getOperand(0).isMachineOpcode() && 1504 onlyUsesZeroFlag(SDValue(N, 0))) { 1505 SDValue And = N->getOperand(0); 1506 unsigned N0Opc = And.getMachineOpcode(); 1507 // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other 1508 // KAND instructions and KTEST use the same ISA feature. 1509 if (N0Opc == X86::KANDBrr || 1510 (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) || 1511 N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) { 1512 unsigned NewOpc; 1513 switch (Opc) { 1514 default: llvm_unreachable("Unexpected opcode!"); 1515 case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break; 1516 case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break; 1517 case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break; 1518 case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break; 1519 } 1520 MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N), 1521 MVT::i32, 1522 And.getOperand(0), 1523 And.getOperand(1)); 1524 ReplaceUses(N, KTest); 1525 MadeChange = true; 1526 continue; 1527 } 1528 } 1529 1530 // Attempt to remove vectors moves that were inserted to zero upper bits. 1531 if (Opc != TargetOpcode::SUBREG_TO_REG) 1532 continue; 1533 1534 unsigned SubRegIdx = N->getConstantOperandVal(2); 1535 if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm) 1536 continue; 1537 1538 SDValue Move = N->getOperand(1); 1539 if (!Move.isMachineOpcode()) 1540 continue; 1541 1542 // Make sure its one of the move opcodes we recognize. 1543 switch (Move.getMachineOpcode()) { 1544 default: 1545 continue; 1546 case X86::VMOVAPDrr: case X86::VMOVUPDrr: 1547 case X86::VMOVAPSrr: case X86::VMOVUPSrr: 1548 case X86::VMOVDQArr: case X86::VMOVDQUrr: 1549 case X86::VMOVAPDYrr: case X86::VMOVUPDYrr: 1550 case X86::VMOVAPSYrr: case X86::VMOVUPSYrr: 1551 case X86::VMOVDQAYrr: case X86::VMOVDQUYrr: 1552 case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr: 1553 case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr: 1554 case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr: 1555 case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr: 1556 case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr: 1557 case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr: 1558 case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr: 1559 case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr: 1560 break; 1561 } 1562 1563 SDValue In = Move.getOperand(0); 1564 if (!In.isMachineOpcode() || 1565 In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END) 1566 continue; 1567 1568 // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers 1569 // the SHA instructions which use a legacy encoding. 1570 uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags; 1571 if ((TSFlags & X86II::EncodingMask) != X86II::VEX && 1572 (TSFlags & X86II::EncodingMask) != X86II::EVEX && 1573 (TSFlags & X86II::EncodingMask) != X86II::XOP) 1574 continue; 1575 1576 // Producing instruction is another vector instruction. We can drop the 1577 // move. 1578 CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2)); 1579 MadeChange = true; 1580 } 1581 1582 if (MadeChange) 1583 CurDAG->RemoveDeadNodes(); 1584 } 1585 1586 1587 /// Emit any code that needs to be executed only in the main function. 1588 void X86DAGToDAGISel::emitSpecialCodeForMain() { 1589 if (Subtarget->isTargetCygMing()) { 1590 TargetLowering::ArgListTy Args; 1591 auto &DL = CurDAG->getDataLayout(); 1592 1593 TargetLowering::CallLoweringInfo CLI(*CurDAG); 1594 CLI.setChain(CurDAG->getRoot()) 1595 .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()), 1596 CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)), 1597 std::move(Args)); 1598 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo(); 1599 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 1600 CurDAG->setRoot(Result.second); 1601 } 1602 } 1603 1604 void X86DAGToDAGISel::emitFunctionEntryCode() { 1605 // If this is main, emit special code for main. 1606 const Function &F = MF->getFunction(); 1607 if (F.hasExternalLinkage() && F.getName() == "main") 1608 emitSpecialCodeForMain(); 1609 } 1610 1611 static bool isDispSafeForFrameIndex(int64_t Val) { 1612 // On 64-bit platforms, we can run into an issue where a frame index 1613 // includes a displacement that, when added to the explicit displacement, 1614 // will overflow the displacement field. Assuming that the frame index 1615 // displacement fits into a 31-bit integer (which is only slightly more 1616 // aggressive than the current fundamental assumption that it fits into 1617 // a 32-bit integer), a 31-bit disp should always be safe. 1618 return isInt<31>(Val); 1619 } 1620 1621 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset, 1622 X86ISelAddressMode &AM) { 1623 // We may have already matched a displacement and the caller just added the 1624 // symbolic displacement. So we still need to do the checks even if Offset 1625 // is zero. 1626 1627 int64_t Val = AM.Disp + Offset; 1628 1629 // Cannot combine ExternalSymbol displacements with integer offsets. 1630 if (Val != 0 && (AM.ES || AM.MCSym)) 1631 return true; 1632 1633 CodeModel::Model M = TM.getCodeModel(); 1634 if (Subtarget->is64Bit()) { 1635 if (Val != 0 && 1636 !X86::isOffsetSuitableForCodeModel(Val, M, 1637 AM.hasSymbolicDisplacement())) 1638 return true; 1639 // In addition to the checks required for a register base, check that 1640 // we do not try to use an unsafe Disp with a frame index. 1641 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase && 1642 !isDispSafeForFrameIndex(Val)) 1643 return true; 1644 } 1645 AM.Disp = Val; 1646 return false; 1647 1648 } 1649 1650 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM, 1651 bool AllowSegmentRegForX32) { 1652 SDValue Address = N->getOperand(1); 1653 1654 // load gs:0 -> GS segment register. 1655 // load fs:0 -> FS segment register. 1656 // 1657 // This optimization is generally valid because the GNU TLS model defines that 1658 // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode 1659 // with 32-bit registers, as we get in ILP32 mode, those registers are first 1660 // zero-extended to 64 bits and then added it to the base address, which gives 1661 // unwanted results when the register holds a negative value. 1662 // For more information see http://people.redhat.com/drepper/tls.pdf 1663 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) { 1664 if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr && 1665 !IndirectTlsSegRefs && 1666 (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() || 1667 Subtarget->isTargetFuchsia())) { 1668 if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32) 1669 return true; 1670 switch (N->getPointerInfo().getAddrSpace()) { 1671 case X86AS::GS: 1672 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 1673 return false; 1674 case X86AS::FS: 1675 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 1676 return false; 1677 // Address space X86AS::SS is not handled here, because it is not used to 1678 // address TLS areas. 1679 } 1680 } 1681 } 1682 1683 return true; 1684 } 1685 1686 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing 1687 /// mode. These wrap things that will resolve down into a symbol reference. 1688 /// If no match is possible, this returns true, otherwise it returns false. 1689 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) { 1690 // If the addressing mode already has a symbol as the displacement, we can 1691 // never match another symbol. 1692 if (AM.hasSymbolicDisplacement()) 1693 return true; 1694 1695 bool IsRIPRelTLS = false; 1696 bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP; 1697 if (IsRIPRel) { 1698 SDValue Val = N.getOperand(0); 1699 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress) 1700 IsRIPRelTLS = true; 1701 } 1702 1703 // We can't use an addressing mode in the 64-bit large code model. 1704 // Global TLS addressing is an exception. In the medium code model, 1705 // we use can use a mode when RIP wrappers are present. 1706 // That signifies access to globals that are known to be "near", 1707 // such as the GOT itself. 1708 CodeModel::Model M = TM.getCodeModel(); 1709 if (Subtarget->is64Bit() && 1710 ((M == CodeModel::Large && !IsRIPRelTLS) || 1711 (M == CodeModel::Medium && !IsRIPRel))) 1712 return true; 1713 1714 // Base and index reg must be 0 in order to use %rip as base. 1715 if (IsRIPRel && AM.hasBaseOrIndexReg()) 1716 return true; 1717 1718 // Make a local copy in case we can't do this fold. 1719 X86ISelAddressMode Backup = AM; 1720 1721 int64_t Offset = 0; 1722 SDValue N0 = N.getOperand(0); 1723 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) { 1724 AM.GV = G->getGlobal(); 1725 AM.SymbolFlags = G->getTargetFlags(); 1726 Offset = G->getOffset(); 1727 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { 1728 AM.CP = CP->getConstVal(); 1729 AM.Alignment = CP->getAlign(); 1730 AM.SymbolFlags = CP->getTargetFlags(); 1731 Offset = CP->getOffset(); 1732 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { 1733 AM.ES = S->getSymbol(); 1734 AM.SymbolFlags = S->getTargetFlags(); 1735 } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) { 1736 AM.MCSym = S->getMCSymbol(); 1737 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) { 1738 AM.JT = J->getIndex(); 1739 AM.SymbolFlags = J->getTargetFlags(); 1740 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) { 1741 AM.BlockAddr = BA->getBlockAddress(); 1742 AM.SymbolFlags = BA->getTargetFlags(); 1743 Offset = BA->getOffset(); 1744 } else 1745 llvm_unreachable("Unhandled symbol reference node."); 1746 1747 if (foldOffsetIntoAddress(Offset, AM)) { 1748 AM = Backup; 1749 return true; 1750 } 1751 1752 if (IsRIPRel) 1753 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64)); 1754 1755 // Commit the changes now that we know this fold is safe. 1756 return false; 1757 } 1758 1759 /// Add the specified node to the specified addressing mode, returning true if 1760 /// it cannot be done. This just pattern matches for the addressing mode. 1761 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) { 1762 if (matchAddressRecursively(N, AM, 0)) 1763 return true; 1764 1765 // Post-processing: Make a second attempt to fold a load, if we now know 1766 // that there will not be any other register. This is only performed for 1767 // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded 1768 // any foldable load the first time. 1769 if (Subtarget->isTarget64BitILP32() && 1770 AM.BaseType == X86ISelAddressMode::RegBase && 1771 AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) { 1772 SDValue Save_Base_Reg = AM.Base_Reg; 1773 if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) { 1774 AM.Base_Reg = SDValue(); 1775 if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true)) 1776 AM.Base_Reg = Save_Base_Reg; 1777 } 1778 } 1779 1780 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has 1781 // a smaller encoding and avoids a scaled-index. 1782 if (AM.Scale == 2 && 1783 AM.BaseType == X86ISelAddressMode::RegBase && 1784 AM.Base_Reg.getNode() == nullptr) { 1785 AM.Base_Reg = AM.IndexReg; 1786 AM.Scale = 1; 1787 } 1788 1789 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode, 1790 // because it has a smaller encoding. 1791 // TODO: Which other code models can use this? 1792 switch (TM.getCodeModel()) { 1793 default: break; 1794 case CodeModel::Small: 1795 case CodeModel::Kernel: 1796 if (Subtarget->is64Bit() && 1797 AM.Scale == 1 && 1798 AM.BaseType == X86ISelAddressMode::RegBase && 1799 AM.Base_Reg.getNode() == nullptr && 1800 AM.IndexReg.getNode() == nullptr && 1801 AM.SymbolFlags == X86II::MO_NO_FLAG && 1802 AM.hasSymbolicDisplacement()) 1803 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64); 1804 break; 1805 } 1806 1807 return false; 1808 } 1809 1810 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM, 1811 unsigned Depth) { 1812 // Add an artificial use to this node so that we can keep track of 1813 // it if it gets CSE'd with a different node. 1814 HandleSDNode Handle(N); 1815 1816 X86ISelAddressMode Backup = AM; 1817 if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) && 1818 !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)) 1819 return false; 1820 AM = Backup; 1821 1822 // Try again after commutating the operands. 1823 if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, 1824 Depth + 1) && 1825 !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1)) 1826 return false; 1827 AM = Backup; 1828 1829 // If we couldn't fold both operands into the address at the same time, 1830 // see if we can just put each operand into a register and fold at least 1831 // the add. 1832 if (AM.BaseType == X86ISelAddressMode::RegBase && 1833 !AM.Base_Reg.getNode() && 1834 !AM.IndexReg.getNode()) { 1835 N = Handle.getValue(); 1836 AM.Base_Reg = N.getOperand(0); 1837 AM.IndexReg = N.getOperand(1); 1838 AM.Scale = 1; 1839 return false; 1840 } 1841 N = Handle.getValue(); 1842 return true; 1843 } 1844 1845 // Insert a node into the DAG at least before the Pos node's position. This 1846 // will reposition the node as needed, and will assign it a node ID that is <= 1847 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node 1848 // IDs! The selection DAG must no longer depend on their uniqueness when this 1849 // is used. 1850 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) { 1851 if (N->getNodeId() == -1 || 1852 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) > 1853 SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) { 1854 DAG.RepositionNode(Pos->getIterator(), N.getNode()); 1855 // Mark Node as invalid for pruning as after this it may be a successor to a 1856 // selected node but otherwise be in the same position of Pos. 1857 // Conservatively mark it with the same -abs(Id) to assure node id 1858 // invariant is preserved. 1859 N->setNodeId(Pos->getNodeId()); 1860 SelectionDAGISel::InvalidateNodeId(N.getNode()); 1861 } 1862 } 1863 1864 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if 1865 // safe. This allows us to convert the shift and and into an h-register 1866 // extract and a scaled index. Returns false if the simplification is 1867 // performed. 1868 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, 1869 uint64_t Mask, 1870 SDValue Shift, SDValue X, 1871 X86ISelAddressMode &AM) { 1872 if (Shift.getOpcode() != ISD::SRL || 1873 !isa<ConstantSDNode>(Shift.getOperand(1)) || 1874 !Shift.hasOneUse()) 1875 return true; 1876 1877 int ScaleLog = 8 - Shift.getConstantOperandVal(1); 1878 if (ScaleLog <= 0 || ScaleLog >= 4 || 1879 Mask != (0xffu << ScaleLog)) 1880 return true; 1881 1882 MVT VT = N.getSimpleValueType(); 1883 SDLoc DL(N); 1884 SDValue Eight = DAG.getConstant(8, DL, MVT::i8); 1885 SDValue NewMask = DAG.getConstant(0xff, DL, VT); 1886 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight); 1887 SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask); 1888 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8); 1889 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount); 1890 1891 // Insert the new nodes into the topological ordering. We must do this in 1892 // a valid topological ordering as nothing is going to go back and re-sort 1893 // these nodes. We continually insert before 'N' in sequence as this is 1894 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 1895 // hierarchy left to express. 1896 insertDAGNode(DAG, N, Eight); 1897 insertDAGNode(DAG, N, Srl); 1898 insertDAGNode(DAG, N, NewMask); 1899 insertDAGNode(DAG, N, And); 1900 insertDAGNode(DAG, N, ShlCount); 1901 insertDAGNode(DAG, N, Shl); 1902 DAG.ReplaceAllUsesWith(N, Shl); 1903 DAG.RemoveDeadNode(N.getNode()); 1904 AM.IndexReg = And; 1905 AM.Scale = (1 << ScaleLog); 1906 return false; 1907 } 1908 1909 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this 1910 // allows us to fold the shift into this addressing mode. Returns false if the 1911 // transform succeeded. 1912 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, 1913 X86ISelAddressMode &AM) { 1914 SDValue Shift = N.getOperand(0); 1915 1916 // Use a signed mask so that shifting right will insert sign bits. These 1917 // bits will be removed when we shift the result left so it doesn't matter 1918 // what we use. This might allow a smaller immediate encoding. 1919 int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue(); 1920 1921 // If we have an any_extend feeding the AND, look through it to see if there 1922 // is a shift behind it. But only if the AND doesn't use the extended bits. 1923 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64? 1924 bool FoundAnyExtend = false; 1925 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() && 1926 Shift.getOperand(0).getSimpleValueType() == MVT::i32 && 1927 isUInt<32>(Mask)) { 1928 FoundAnyExtend = true; 1929 Shift = Shift.getOperand(0); 1930 } 1931 1932 if (Shift.getOpcode() != ISD::SHL || 1933 !isa<ConstantSDNode>(Shift.getOperand(1))) 1934 return true; 1935 1936 SDValue X = Shift.getOperand(0); 1937 1938 // Not likely to be profitable if either the AND or SHIFT node has more 1939 // than one use (unless all uses are for address computation). Besides, 1940 // isel mechanism requires their node ids to be reused. 1941 if (!N.hasOneUse() || !Shift.hasOneUse()) 1942 return true; 1943 1944 // Verify that the shift amount is something we can fold. 1945 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 1946 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3) 1947 return true; 1948 1949 MVT VT = N.getSimpleValueType(); 1950 SDLoc DL(N); 1951 if (FoundAnyExtend) { 1952 SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X); 1953 insertDAGNode(DAG, N, NewX); 1954 X = NewX; 1955 } 1956 1957 SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT); 1958 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask); 1959 SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1)); 1960 1961 // Insert the new nodes into the topological ordering. We must do this in 1962 // a valid topological ordering as nothing is going to go back and re-sort 1963 // these nodes. We continually insert before 'N' in sequence as this is 1964 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 1965 // hierarchy left to express. 1966 insertDAGNode(DAG, N, NewMask); 1967 insertDAGNode(DAG, N, NewAnd); 1968 insertDAGNode(DAG, N, NewShift); 1969 DAG.ReplaceAllUsesWith(N, NewShift); 1970 DAG.RemoveDeadNode(N.getNode()); 1971 1972 AM.Scale = 1 << ShiftAmt; 1973 AM.IndexReg = NewAnd; 1974 return false; 1975 } 1976 1977 // Implement some heroics to detect shifts of masked values where the mask can 1978 // be replaced by extending the shift and undoing that in the addressing mode 1979 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and 1980 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in 1981 // the addressing mode. This results in code such as: 1982 // 1983 // int f(short *y, int *lookup_table) { 1984 // ... 1985 // return *y + lookup_table[*y >> 11]; 1986 // } 1987 // 1988 // Turning into: 1989 // movzwl (%rdi), %eax 1990 // movl %eax, %ecx 1991 // shrl $11, %ecx 1992 // addl (%rsi,%rcx,4), %eax 1993 // 1994 // Instead of: 1995 // movzwl (%rdi), %eax 1996 // movl %eax, %ecx 1997 // shrl $9, %ecx 1998 // andl $124, %rcx 1999 // addl (%rsi,%rcx), %eax 2000 // 2001 // Note that this function assumes the mask is provided as a mask *after* the 2002 // value is shifted. The input chain may or may not match that, but computing 2003 // such a mask is trivial. 2004 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, 2005 uint64_t Mask, 2006 SDValue Shift, SDValue X, 2007 X86ISelAddressMode &AM) { 2008 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() || 2009 !isa<ConstantSDNode>(Shift.getOperand(1))) 2010 return true; 2011 2012 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 2013 unsigned MaskLZ = countLeadingZeros(Mask); 2014 unsigned MaskTZ = countTrailingZeros(Mask); 2015 2016 // The amount of shift we're trying to fit into the addressing mode is taken 2017 // from the trailing zeros of the mask. 2018 unsigned AMShiftAmt = MaskTZ; 2019 2020 // There is nothing we can do here unless the mask is removing some bits. 2021 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. 2022 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true; 2023 2024 // We also need to ensure that mask is a continuous run of bits. 2025 if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; 2026 2027 // Scale the leading zero count down based on the actual size of the value. 2028 // Also scale it down based on the size of the shift. 2029 unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt; 2030 if (MaskLZ < ScaleDown) 2031 return true; 2032 MaskLZ -= ScaleDown; 2033 2034 // The final check is to ensure that any masked out high bits of X are 2035 // already known to be zero. Otherwise, the mask has a semantic impact 2036 // other than masking out a couple of low bits. Unfortunately, because of 2037 // the mask, zero extensions will be removed from operands in some cases. 2038 // This code works extra hard to look through extensions because we can 2039 // replace them with zero extensions cheaply if necessary. 2040 bool ReplacingAnyExtend = false; 2041 if (X.getOpcode() == ISD::ANY_EXTEND) { 2042 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() - 2043 X.getOperand(0).getSimpleValueType().getSizeInBits(); 2044 // Assume that we'll replace the any-extend with a zero-extend, and 2045 // narrow the search to the extended value. 2046 X = X.getOperand(0); 2047 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits; 2048 ReplacingAnyExtend = true; 2049 } 2050 APInt MaskedHighBits = 2051 APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ); 2052 KnownBits Known = DAG.computeKnownBits(X); 2053 if (MaskedHighBits != Known.Zero) return true; 2054 2055 // We've identified a pattern that can be transformed into a single shift 2056 // and an addressing mode. Make it so. 2057 MVT VT = N.getSimpleValueType(); 2058 if (ReplacingAnyExtend) { 2059 assert(X.getValueType() != VT); 2060 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND. 2061 SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X); 2062 insertDAGNode(DAG, N, NewX); 2063 X = NewX; 2064 } 2065 SDLoc DL(N); 2066 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8); 2067 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); 2068 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8); 2069 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt); 2070 2071 // Insert the new nodes into the topological ordering. We must do this in 2072 // a valid topological ordering as nothing is going to go back and re-sort 2073 // these nodes. We continually insert before 'N' in sequence as this is 2074 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 2075 // hierarchy left to express. 2076 insertDAGNode(DAG, N, NewSRLAmt); 2077 insertDAGNode(DAG, N, NewSRL); 2078 insertDAGNode(DAG, N, NewSHLAmt); 2079 insertDAGNode(DAG, N, NewSHL); 2080 DAG.ReplaceAllUsesWith(N, NewSHL); 2081 DAG.RemoveDeadNode(N.getNode()); 2082 2083 AM.Scale = 1 << AMShiftAmt; 2084 AM.IndexReg = NewSRL; 2085 return false; 2086 } 2087 2088 // Transform "(X >> SHIFT) & (MASK << C1)" to 2089 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be 2090 // matched to a BEXTR later. Returns false if the simplification is performed. 2091 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N, 2092 uint64_t Mask, 2093 SDValue Shift, SDValue X, 2094 X86ISelAddressMode &AM, 2095 const X86Subtarget &Subtarget) { 2096 if (Shift.getOpcode() != ISD::SRL || 2097 !isa<ConstantSDNode>(Shift.getOperand(1)) || 2098 !Shift.hasOneUse() || !N.hasOneUse()) 2099 return true; 2100 2101 // Only do this if BEXTR will be matched by matchBEXTRFromAndImm. 2102 if (!Subtarget.hasTBM() && 2103 !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR())) 2104 return true; 2105 2106 // We need to ensure that mask is a continuous run of bits. 2107 if (!isShiftedMask_64(Mask)) return true; 2108 2109 unsigned ShiftAmt = Shift.getConstantOperandVal(1); 2110 2111 // The amount of shift we're trying to fit into the addressing mode is taken 2112 // from the trailing zeros of the mask. 2113 unsigned AMShiftAmt = countTrailingZeros(Mask); 2114 2115 // There is nothing we can do here unless the mask is removing some bits. 2116 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. 2117 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true; 2118 2119 MVT VT = N.getSimpleValueType(); 2120 SDLoc DL(N); 2121 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8); 2122 SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt); 2123 SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT); 2124 SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask); 2125 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8); 2126 SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt); 2127 2128 // Insert the new nodes into the topological ordering. We must do this in 2129 // a valid topological ordering as nothing is going to go back and re-sort 2130 // these nodes. We continually insert before 'N' in sequence as this is 2131 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no 2132 // hierarchy left to express. 2133 insertDAGNode(DAG, N, NewSRLAmt); 2134 insertDAGNode(DAG, N, NewSRL); 2135 insertDAGNode(DAG, N, NewMask); 2136 insertDAGNode(DAG, N, NewAnd); 2137 insertDAGNode(DAG, N, NewSHLAmt); 2138 insertDAGNode(DAG, N, NewSHL); 2139 DAG.ReplaceAllUsesWith(N, NewSHL); 2140 DAG.RemoveDeadNode(N.getNode()); 2141 2142 AM.Scale = 1 << AMShiftAmt; 2143 AM.IndexReg = NewAnd; 2144 return false; 2145 } 2146 2147 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM, 2148 unsigned Depth) { 2149 SDLoc dl(N); 2150 LLVM_DEBUG({ 2151 dbgs() << "MatchAddress: "; 2152 AM.dump(CurDAG); 2153 }); 2154 // Limit recursion. 2155 if (Depth > 5) 2156 return matchAddressBase(N, AM); 2157 2158 // If this is already a %rip relative address, we can only merge immediates 2159 // into it. Instead of handling this in every case, we handle it here. 2160 // RIP relative addressing: %rip + 32-bit displacement! 2161 if (AM.isRIPRelative()) { 2162 // FIXME: JumpTable and ExternalSymbol address currently don't like 2163 // displacements. It isn't very important, but this should be fixed for 2164 // consistency. 2165 if (!(AM.ES || AM.MCSym) && AM.JT != -1) 2166 return true; 2167 2168 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) 2169 if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM)) 2170 return false; 2171 return true; 2172 } 2173 2174 switch (N.getOpcode()) { 2175 default: break; 2176 case ISD::LOCAL_RECOVER: { 2177 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0) 2178 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) { 2179 // Use the symbol and don't prefix it. 2180 AM.MCSym = ESNode->getMCSymbol(); 2181 return false; 2182 } 2183 break; 2184 } 2185 case ISD::Constant: { 2186 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 2187 if (!foldOffsetIntoAddress(Val, AM)) 2188 return false; 2189 break; 2190 } 2191 2192 case X86ISD::Wrapper: 2193 case X86ISD::WrapperRIP: 2194 if (!matchWrapper(N, AM)) 2195 return false; 2196 break; 2197 2198 case ISD::LOAD: 2199 if (!matchLoadInAddress(cast<LoadSDNode>(N), AM)) 2200 return false; 2201 break; 2202 2203 case ISD::FrameIndex: 2204 if (AM.BaseType == X86ISelAddressMode::RegBase && 2205 AM.Base_Reg.getNode() == nullptr && 2206 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) { 2207 AM.BaseType = X86ISelAddressMode::FrameIndexBase; 2208 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex(); 2209 return false; 2210 } 2211 break; 2212 2213 case ISD::SHL: 2214 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) 2215 break; 2216 2217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) { 2218 unsigned Val = CN->getZExtValue(); 2219 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so 2220 // that the base operand remains free for further matching. If 2221 // the base doesn't end up getting used, a post-processing step 2222 // in MatchAddress turns (,x,2) into (x,x), which is cheaper. 2223 if (Val == 1 || Val == 2 || Val == 3) { 2224 AM.Scale = 1 << Val; 2225 SDValue ShVal = N.getOperand(0); 2226 2227 // Okay, we know that we have a scale by now. However, if the scaled 2228 // value is an add of something and a constant, we can fold the 2229 // constant into the disp field here. 2230 if (CurDAG->isBaseWithConstantOffset(ShVal)) { 2231 AM.IndexReg = ShVal.getOperand(0); 2232 ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1)); 2233 uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val; 2234 if (!foldOffsetIntoAddress(Disp, AM)) 2235 return false; 2236 } 2237 2238 AM.IndexReg = ShVal; 2239 return false; 2240 } 2241 } 2242 break; 2243 2244 case ISD::SRL: { 2245 // Scale must not be used already. 2246 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; 2247 2248 // We only handle up to 64-bit values here as those are what matter for 2249 // addressing mode optimizations. 2250 assert(N.getSimpleValueType().getSizeInBits() <= 64 && 2251 "Unexpected value size!"); 2252 2253 SDValue And = N.getOperand(0); 2254 if (And.getOpcode() != ISD::AND) break; 2255 SDValue X = And.getOperand(0); 2256 2257 // The mask used for the transform is expected to be post-shift, but we 2258 // found the shift first so just apply the shift to the mask before passing 2259 // it down. 2260 if (!isa<ConstantSDNode>(N.getOperand(1)) || 2261 !isa<ConstantSDNode>(And.getOperand(1))) 2262 break; 2263 uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1); 2264 2265 // Try to fold the mask and shift into the scale, and return false if we 2266 // succeed. 2267 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM)) 2268 return false; 2269 break; 2270 } 2271 2272 case ISD::SMUL_LOHI: 2273 case ISD::UMUL_LOHI: 2274 // A mul_lohi where we need the low part can be folded as a plain multiply. 2275 if (N.getResNo() != 0) break; 2276 LLVM_FALLTHROUGH; 2277 case ISD::MUL: 2278 case X86ISD::MUL_IMM: 2279 // X*[3,5,9] -> X+X*[2,4,8] 2280 if (AM.BaseType == X86ISelAddressMode::RegBase && 2281 AM.Base_Reg.getNode() == nullptr && 2282 AM.IndexReg.getNode() == nullptr) { 2283 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) 2284 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 || 2285 CN->getZExtValue() == 9) { 2286 AM.Scale = unsigned(CN->getZExtValue())-1; 2287 2288 SDValue MulVal = N.getOperand(0); 2289 SDValue Reg; 2290 2291 // Okay, we know that we have a scale by now. However, if the scaled 2292 // value is an add of something and a constant, we can fold the 2293 // constant into the disp field here. 2294 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() && 2295 isa<ConstantSDNode>(MulVal.getOperand(1))) { 2296 Reg = MulVal.getOperand(0); 2297 ConstantSDNode *AddVal = 2298 cast<ConstantSDNode>(MulVal.getOperand(1)); 2299 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue(); 2300 if (foldOffsetIntoAddress(Disp, AM)) 2301 Reg = N.getOperand(0); 2302 } else { 2303 Reg = N.getOperand(0); 2304 } 2305 2306 AM.IndexReg = AM.Base_Reg = Reg; 2307 return false; 2308 } 2309 } 2310 break; 2311 2312 case ISD::SUB: { 2313 // Given A-B, if A can be completely folded into the address and 2314 // the index field with the index field unused, use -B as the index. 2315 // This is a win if a has multiple parts that can be folded into 2316 // the address. Also, this saves a mov if the base register has 2317 // other uses, since it avoids a two-address sub instruction, however 2318 // it costs an additional mov if the index register has other uses. 2319 2320 // Add an artificial use to this node so that we can keep track of 2321 // it if it gets CSE'd with a different node. 2322 HandleSDNode Handle(N); 2323 2324 // Test if the LHS of the sub can be folded. 2325 X86ISelAddressMode Backup = AM; 2326 if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) { 2327 N = Handle.getValue(); 2328 AM = Backup; 2329 break; 2330 } 2331 N = Handle.getValue(); 2332 // Test if the index field is free for use. 2333 if (AM.IndexReg.getNode() || AM.isRIPRelative()) { 2334 AM = Backup; 2335 break; 2336 } 2337 2338 int Cost = 0; 2339 SDValue RHS = N.getOperand(1); 2340 // If the RHS involves a register with multiple uses, this 2341 // transformation incurs an extra mov, due to the neg instruction 2342 // clobbering its operand. 2343 if (!RHS.getNode()->hasOneUse() || 2344 RHS.getNode()->getOpcode() == ISD::CopyFromReg || 2345 RHS.getNode()->getOpcode() == ISD::TRUNCATE || 2346 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND || 2347 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND && 2348 RHS.getOperand(0).getValueType() == MVT::i32)) 2349 ++Cost; 2350 // If the base is a register with multiple uses, this 2351 // transformation may save a mov. 2352 if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() && 2353 !AM.Base_Reg.getNode()->hasOneUse()) || 2354 AM.BaseType == X86ISelAddressMode::FrameIndexBase) 2355 --Cost; 2356 // If the folded LHS was interesting, this transformation saves 2357 // address arithmetic. 2358 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) + 2359 ((AM.Disp != 0) && (Backup.Disp == 0)) + 2360 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2) 2361 --Cost; 2362 // If it doesn't look like it may be an overall win, don't do it. 2363 if (Cost >= 0) { 2364 AM = Backup; 2365 break; 2366 } 2367 2368 // Ok, the transformation is legal and appears profitable. Go for it. 2369 // Negation will be emitted later to avoid creating dangling nodes if this 2370 // was an unprofitable LEA. 2371 AM.IndexReg = RHS; 2372 AM.NegateIndex = true; 2373 AM.Scale = 1; 2374 return false; 2375 } 2376 2377 case ISD::ADD: 2378 if (!matchAdd(N, AM, Depth)) 2379 return false; 2380 break; 2381 2382 case ISD::OR: 2383 // We want to look through a transform in InstCombine and DAGCombiner that 2384 // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'. 2385 // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3)) 2386 // An 'lea' can then be used to match the shift (multiply) and add: 2387 // and $1, %esi 2388 // lea (%rsi, %rdi, 8), %rax 2389 if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) && 2390 !matchAdd(N, AM, Depth)) 2391 return false; 2392 break; 2393 2394 case ISD::AND: { 2395 // Perform some heroic transforms on an and of a constant-count shift 2396 // with a constant to enable use of the scaled offset field. 2397 2398 // Scale must not be used already. 2399 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break; 2400 2401 // We only handle up to 64-bit values here as those are what matter for 2402 // addressing mode optimizations. 2403 assert(N.getSimpleValueType().getSizeInBits() <= 64 && 2404 "Unexpected value size!"); 2405 2406 if (!isa<ConstantSDNode>(N.getOperand(1))) 2407 break; 2408 2409 if (N.getOperand(0).getOpcode() == ISD::SRL) { 2410 SDValue Shift = N.getOperand(0); 2411 SDValue X = Shift.getOperand(0); 2412 2413 uint64_t Mask = N.getConstantOperandVal(1); 2414 2415 // Try to fold the mask and shift into an extract and scale. 2416 if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM)) 2417 return false; 2418 2419 // Try to fold the mask and shift directly into the scale. 2420 if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM)) 2421 return false; 2422 2423 // Try to fold the mask and shift into BEXTR and scale. 2424 if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget)) 2425 return false; 2426 } 2427 2428 // Try to swap the mask and shift to place shifts which can be done as 2429 // a scale on the outside of the mask. 2430 if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM)) 2431 return false; 2432 2433 break; 2434 } 2435 case ISD::ZERO_EXTEND: { 2436 // Try to widen a zexted shift left to the same size as its use, so we can 2437 // match the shift as a scale factor. 2438 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) 2439 break; 2440 if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse()) 2441 break; 2442 2443 // Give up if the shift is not a valid scale factor [1,2,3]. 2444 SDValue Shl = N.getOperand(0); 2445 auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1)); 2446 if (!ShAmtC || ShAmtC->getZExtValue() > 3) 2447 break; 2448 2449 // The narrow shift must only shift out zero bits (it must be 'nuw'). 2450 // That makes it safe to widen to the destination type. 2451 APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(), 2452 ShAmtC->getZExtValue()); 2453 if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros)) 2454 break; 2455 2456 // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C) 2457 MVT VT = N.getSimpleValueType(); 2458 SDLoc DL(N); 2459 SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0)); 2460 SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1)); 2461 2462 // Convert the shift to scale factor. 2463 AM.Scale = 1 << ShAmtC->getZExtValue(); 2464 AM.IndexReg = Zext; 2465 2466 insertDAGNode(*CurDAG, N, Zext); 2467 insertDAGNode(*CurDAG, N, NewShl); 2468 CurDAG->ReplaceAllUsesWith(N, NewShl); 2469 CurDAG->RemoveDeadNode(N.getNode()); 2470 return false; 2471 } 2472 } 2473 2474 return matchAddressBase(N, AM); 2475 } 2476 2477 /// Helper for MatchAddress. Add the specified node to the 2478 /// specified addressing mode without any further recursion. 2479 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) { 2480 // Is the base register already occupied? 2481 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) { 2482 // If so, check to see if the scale index register is set. 2483 if (!AM.IndexReg.getNode()) { 2484 AM.IndexReg = N; 2485 AM.Scale = 1; 2486 return false; 2487 } 2488 2489 // Otherwise, we cannot select it. 2490 return true; 2491 } 2492 2493 // Default, generate it as a register. 2494 AM.BaseType = X86ISelAddressMode::RegBase; 2495 AM.Base_Reg = N; 2496 return false; 2497 } 2498 2499 bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N, 2500 X86ISelAddressMode &AM, 2501 unsigned Depth) { 2502 SDLoc dl(N); 2503 LLVM_DEBUG({ 2504 dbgs() << "MatchVectorAddress: "; 2505 AM.dump(CurDAG); 2506 }); 2507 // Limit recursion. 2508 if (Depth > 5) 2509 return matchAddressBase(N, AM); 2510 2511 // TODO: Support other operations. 2512 switch (N.getOpcode()) { 2513 case ISD::Constant: { 2514 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue(); 2515 if (!foldOffsetIntoAddress(Val, AM)) 2516 return false; 2517 break; 2518 } 2519 case X86ISD::Wrapper: 2520 if (!matchWrapper(N, AM)) 2521 return false; 2522 break; 2523 case ISD::ADD: { 2524 // Add an artificial use to this node so that we can keep track of 2525 // it if it gets CSE'd with a different node. 2526 HandleSDNode Handle(N); 2527 2528 X86ISelAddressMode Backup = AM; 2529 if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) && 2530 !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM, 2531 Depth + 1)) 2532 return false; 2533 AM = Backup; 2534 2535 // Try again after commuting the operands. 2536 if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM, 2537 Depth + 1) && 2538 !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM, 2539 Depth + 1)) 2540 return false; 2541 AM = Backup; 2542 2543 N = Handle.getValue(); 2544 break; 2545 } 2546 } 2547 2548 return matchAddressBase(N, AM); 2549 } 2550 2551 /// Helper for selectVectorAddr. Handles things that can be folded into a 2552 /// gather/scatter address. The index register and scale should have already 2553 /// been handled. 2554 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) { 2555 return matchVectorAddressRecursively(N, AM, 0); 2556 } 2557 2558 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, 2559 SDValue IndexOp, SDValue ScaleOp, 2560 SDValue &Base, SDValue &Scale, 2561 SDValue &Index, SDValue &Disp, 2562 SDValue &Segment) { 2563 X86ISelAddressMode AM; 2564 AM.IndexReg = IndexOp; 2565 AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); 2566 2567 unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace(); 2568 if (AddrSpace == X86AS::GS) 2569 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 2570 if (AddrSpace == X86AS::FS) 2571 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 2572 if (AddrSpace == X86AS::SS) 2573 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); 2574 2575 SDLoc DL(BasePtr); 2576 MVT VT = BasePtr.getSimpleValueType(); 2577 2578 // Try to match into the base and displacement fields. 2579 if (matchVectorAddress(BasePtr, AM)) 2580 return false; 2581 2582 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment); 2583 return true; 2584 } 2585 2586 /// Returns true if it is able to pattern match an addressing mode. 2587 /// It returns the operands which make up the maximal addressing mode it can 2588 /// match by reference. 2589 /// 2590 /// Parent is the parent node of the addr operand that is being matched. It 2591 /// is always a load, store, atomic node, or null. It is only null when 2592 /// checking memory operands for inline asm nodes. 2593 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base, 2594 SDValue &Scale, SDValue &Index, 2595 SDValue &Disp, SDValue &Segment) { 2596 X86ISelAddressMode AM; 2597 2598 if (Parent && 2599 // This list of opcodes are all the nodes that have an "addr:$ptr" operand 2600 // that are not a MemSDNode, and thus don't have proper addrspace info. 2601 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme 2602 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores 2603 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme 2604 Parent->getOpcode() != X86ISD::ENQCMD && // Fixme 2605 Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme 2606 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp 2607 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp 2608 unsigned AddrSpace = 2609 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); 2610 if (AddrSpace == X86AS::GS) 2611 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); 2612 if (AddrSpace == X86AS::FS) 2613 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); 2614 if (AddrSpace == X86AS::SS) 2615 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); 2616 } 2617 2618 // Save the DL and VT before calling matchAddress, it can invalidate N. 2619 SDLoc DL(N); 2620 MVT VT = N.getSimpleValueType(); 2621 2622 if (matchAddress(N, AM)) 2623 return false; 2624 2625 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment); 2626 return true; 2627 } 2628 2629 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) { 2630 // In static codegen with small code model, we can get the address of a label 2631 // into a register with 'movl' 2632 if (N->getOpcode() != X86ISD::Wrapper) 2633 return false; 2634 2635 N = N.getOperand(0); 2636 2637 // At least GNU as does not accept 'movl' for TPOFF relocations. 2638 // FIXME: We could use 'movl' when we know we are targeting MC. 2639 if (N->getOpcode() == ISD::TargetGlobalTLSAddress) 2640 return false; 2641 2642 Imm = N; 2643 if (N->getOpcode() != ISD::TargetGlobalAddress) 2644 return TM.getCodeModel() == CodeModel::Small; 2645 2646 Optional<ConstantRange> CR = 2647 cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange(); 2648 if (!CR) 2649 return TM.getCodeModel() == CodeModel::Small; 2650 2651 return CR->getUnsignedMax().ult(1ull << 32); 2652 } 2653 2654 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base, 2655 SDValue &Scale, SDValue &Index, 2656 SDValue &Disp, SDValue &Segment) { 2657 // Save the debug loc before calling selectLEAAddr, in case it invalidates N. 2658 SDLoc DL(N); 2659 2660 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment)) 2661 return false; 2662 2663 RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base); 2664 if (RN && RN->getReg() == 0) 2665 Base = CurDAG->getRegister(0, MVT::i64); 2666 else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) { 2667 // Base could already be %rip, particularly in the x32 ABI. 2668 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL, 2669 MVT::i64), 0); 2670 Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef, 2671 Base); 2672 } 2673 2674 RN = dyn_cast<RegisterSDNode>(Index); 2675 if (RN && RN->getReg() == 0) 2676 Index = CurDAG->getRegister(0, MVT::i64); 2677 else { 2678 assert(Index.getValueType() == MVT::i32 && 2679 "Expect to be extending 32-bit registers for use in LEA"); 2680 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL, 2681 MVT::i64), 0); 2682 Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef, 2683 Index); 2684 } 2685 2686 return true; 2687 } 2688 2689 /// Calls SelectAddr and determines if the maximal addressing 2690 /// mode it matches can be cost effectively emitted as an LEA instruction. 2691 bool X86DAGToDAGISel::selectLEAAddr(SDValue N, 2692 SDValue &Base, SDValue &Scale, 2693 SDValue &Index, SDValue &Disp, 2694 SDValue &Segment) { 2695 X86ISelAddressMode AM; 2696 2697 // Save the DL and VT before calling matchAddress, it can invalidate N. 2698 SDLoc DL(N); 2699 MVT VT = N.getSimpleValueType(); 2700 2701 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support 2702 // segments. 2703 SDValue Copy = AM.Segment; 2704 SDValue T = CurDAG->getRegister(0, MVT::i32); 2705 AM.Segment = T; 2706 if (matchAddress(N, AM)) 2707 return false; 2708 assert (T == AM.Segment); 2709 AM.Segment = Copy; 2710 2711 unsigned Complexity = 0; 2712 if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode()) 2713 Complexity = 1; 2714 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase) 2715 Complexity = 4; 2716 2717 if (AM.IndexReg.getNode()) 2718 Complexity++; 2719 2720 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with 2721 // a simple shift. 2722 if (AM.Scale > 1) 2723 Complexity++; 2724 2725 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA 2726 // to a LEA. This is determined with some experimentation but is by no means 2727 // optimal (especially for code size consideration). LEA is nice because of 2728 // its three-address nature. Tweak the cost function again when we can run 2729 // convertToThreeAddress() at register allocation time. 2730 if (AM.hasSymbolicDisplacement()) { 2731 // For X86-64, always use LEA to materialize RIP-relative addresses. 2732 if (Subtarget->is64Bit()) 2733 Complexity = 4; 2734 else 2735 Complexity += 2; 2736 } 2737 2738 // Heuristic: try harder to form an LEA from ADD if the operands set flags. 2739 // Unlike ADD, LEA does not affect flags, so we will be less likely to require 2740 // duplicating flag-producing instructions later in the pipeline. 2741 if (N.getOpcode() == ISD::ADD) { 2742 auto isMathWithFlags = [](SDValue V) { 2743 switch (V.getOpcode()) { 2744 case X86ISD::ADD: 2745 case X86ISD::SUB: 2746 case X86ISD::ADC: 2747 case X86ISD::SBB: 2748 /* TODO: These opcodes can be added safely, but we may want to justify 2749 their inclusion for different reasons (better for reg-alloc). 2750 case X86ISD::SMUL: 2751 case X86ISD::UMUL: 2752 case X86ISD::OR: 2753 case X86ISD::XOR: 2754 case X86ISD::AND: 2755 */ 2756 // Value 1 is the flag output of the node - verify it's not dead. 2757 return !SDValue(V.getNode(), 1).use_empty(); 2758 default: 2759 return false; 2760 } 2761 }; 2762 // TODO: This could be an 'or' rather than 'and' to make the transform more 2763 // likely to happen. We might want to factor in whether there's a 2764 // load folding opportunity for the math op that disappears with LEA. 2765 if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1))) 2766 Complexity++; 2767 } 2768 2769 if (AM.Disp) 2770 Complexity++; 2771 2772 // If it isn't worth using an LEA, reject it. 2773 if (Complexity <= 2) 2774 return false; 2775 2776 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment); 2777 return true; 2778 } 2779 2780 /// This is only run on TargetGlobalTLSAddress nodes. 2781 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base, 2782 SDValue &Scale, SDValue &Index, 2783 SDValue &Disp, SDValue &Segment) { 2784 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress); 2785 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 2786 2787 X86ISelAddressMode AM; 2788 AM.GV = GA->getGlobal(); 2789 AM.Disp += GA->getOffset(); 2790 AM.SymbolFlags = GA->getTargetFlags(); 2791 2792 if (Subtarget->is32Bit()) { 2793 AM.Scale = 1; 2794 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32); 2795 } 2796 2797 MVT VT = N.getSimpleValueType(); 2798 getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment); 2799 return true; 2800 } 2801 2802 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) { 2803 // Keep track of the original value type and whether this value was 2804 // truncated. If we see a truncation from pointer type to VT that truncates 2805 // bits that are known to be zero, we can use a narrow reference. 2806 EVT VT = N.getValueType(); 2807 bool WasTruncated = false; 2808 if (N.getOpcode() == ISD::TRUNCATE) { 2809 WasTruncated = true; 2810 N = N.getOperand(0); 2811 } 2812 2813 if (N.getOpcode() != X86ISD::Wrapper) 2814 return false; 2815 2816 // We can only use non-GlobalValues as immediates if they were not truncated, 2817 // as we do not have any range information. If we have a GlobalValue and the 2818 // address was not truncated, we can select it as an operand directly. 2819 unsigned Opc = N.getOperand(0)->getOpcode(); 2820 if (Opc != ISD::TargetGlobalAddress || !WasTruncated) { 2821 Op = N.getOperand(0); 2822 // We can only select the operand directly if we didn't have to look past a 2823 // truncate. 2824 return !WasTruncated; 2825 } 2826 2827 // Check that the global's range fits into VT. 2828 auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0)); 2829 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange(); 2830 if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits())) 2831 return false; 2832 2833 // Okay, we can use a narrow reference. 2834 Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT, 2835 GA->getOffset(), GA->getTargetFlags()); 2836 return true; 2837 } 2838 2839 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, 2840 SDValue &Base, SDValue &Scale, 2841 SDValue &Index, SDValue &Disp, 2842 SDValue &Segment) { 2843 assert(Root && P && "Unknown root/parent nodes"); 2844 if (!ISD::isNON_EXTLoad(N.getNode()) || 2845 !IsProfitableToFold(N, P, Root) || 2846 !IsLegalToFold(N, P, Root, OptLevel)) 2847 return false; 2848 2849 return selectAddr(N.getNode(), 2850 N.getOperand(1), Base, Scale, Index, Disp, Segment); 2851 } 2852 2853 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N, 2854 SDValue &Base, SDValue &Scale, 2855 SDValue &Index, SDValue &Disp, 2856 SDValue &Segment) { 2857 assert(Root && P && "Unknown root/parent nodes"); 2858 if (N->getOpcode() != X86ISD::VBROADCAST_LOAD || 2859 !IsProfitableToFold(N, P, Root) || 2860 !IsLegalToFold(N, P, Root, OptLevel)) 2861 return false; 2862 2863 return selectAddr(N.getNode(), 2864 N.getOperand(1), Base, Scale, Index, Disp, Segment); 2865 } 2866 2867 /// Return an SDNode that returns the value of the global base register. 2868 /// Output instructions required to initialize the global base register, 2869 /// if necessary. 2870 SDNode *X86DAGToDAGISel::getGlobalBaseReg() { 2871 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF); 2872 auto &DL = MF->getDataLayout(); 2873 return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode(); 2874 } 2875 2876 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const { 2877 if (N->getOpcode() == ISD::TRUNCATE) 2878 N = N->getOperand(0).getNode(); 2879 if (N->getOpcode() != X86ISD::Wrapper) 2880 return false; 2881 2882 auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0)); 2883 if (!GA) 2884 return false; 2885 2886 Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange(); 2887 if (!CR) 2888 return Width == 32 && TM.getCodeModel() == CodeModel::Small; 2889 2890 return CR->getSignedMin().sge(-1ull << Width) && 2891 CR->getSignedMax().slt(1ull << Width); 2892 } 2893 2894 static X86::CondCode getCondFromNode(SDNode *N) { 2895 assert(N->isMachineOpcode() && "Unexpected node"); 2896 X86::CondCode CC = X86::COND_INVALID; 2897 unsigned Opc = N->getMachineOpcode(); 2898 if (Opc == X86::JCC_1) 2899 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1)); 2900 else if (Opc == X86::SETCCr) 2901 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0)); 2902 else if (Opc == X86::SETCCm) 2903 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5)); 2904 else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr || 2905 Opc == X86::CMOV64rr) 2906 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2)); 2907 else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm || 2908 Opc == X86::CMOV64rm) 2909 CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6)); 2910 2911 return CC; 2912 } 2913 2914 /// Test whether the given X86ISD::CMP node has any users that use a flag 2915 /// other than ZF. 2916 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const { 2917 // Examine each user of the node. 2918 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end(); 2919 UI != UE; ++UI) { 2920 // Only check things that use the flags. 2921 if (UI.getUse().getResNo() != Flags.getResNo()) 2922 continue; 2923 // Only examine CopyToReg uses that copy to EFLAGS. 2924 if (UI->getOpcode() != ISD::CopyToReg || 2925 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) 2926 return false; 2927 // Examine each user of the CopyToReg use. 2928 for (SDNode::use_iterator FlagUI = UI->use_begin(), 2929 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 2930 // Only examine the Flag result. 2931 if (FlagUI.getUse().getResNo() != 1) continue; 2932 // Anything unusual: assume conservatively. 2933 if (!FlagUI->isMachineOpcode()) return false; 2934 // Examine the condition code of the user. 2935 X86::CondCode CC = getCondFromNode(*FlagUI); 2936 2937 switch (CC) { 2938 // Comparisons which only use the zero flag. 2939 case X86::COND_E: case X86::COND_NE: 2940 continue; 2941 // Anything else: assume conservatively. 2942 default: 2943 return false; 2944 } 2945 } 2946 } 2947 return true; 2948 } 2949 2950 /// Test whether the given X86ISD::CMP node has any uses which require the SF 2951 /// flag to be accurate. 2952 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const { 2953 // Examine each user of the node. 2954 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end(); 2955 UI != UE; ++UI) { 2956 // Only check things that use the flags. 2957 if (UI.getUse().getResNo() != Flags.getResNo()) 2958 continue; 2959 // Only examine CopyToReg uses that copy to EFLAGS. 2960 if (UI->getOpcode() != ISD::CopyToReg || 2961 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) 2962 return false; 2963 // Examine each user of the CopyToReg use. 2964 for (SDNode::use_iterator FlagUI = UI->use_begin(), 2965 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) { 2966 // Only examine the Flag result. 2967 if (FlagUI.getUse().getResNo() != 1) continue; 2968 // Anything unusual: assume conservatively. 2969 if (!FlagUI->isMachineOpcode()) return false; 2970 // Examine the condition code of the user. 2971 X86::CondCode CC = getCondFromNode(*FlagUI); 2972 2973 switch (CC) { 2974 // Comparisons which don't examine the SF flag. 2975 case X86::COND_A: case X86::COND_AE: 2976 case X86::COND_B: case X86::COND_BE: 2977 case X86::COND_E: case X86::COND_NE: 2978 case X86::COND_O: case X86::COND_NO: 2979 case X86::COND_P: case X86::COND_NP: 2980 continue; 2981 // Anything else: assume conservatively. 2982 default: 2983 return false; 2984 } 2985 } 2986 } 2987 return true; 2988 } 2989 2990 static bool mayUseCarryFlag(X86::CondCode CC) { 2991 switch (CC) { 2992 // Comparisons which don't examine the CF flag. 2993 case X86::COND_O: case X86::COND_NO: 2994 case X86::COND_E: case X86::COND_NE: 2995 case X86::COND_S: case X86::COND_NS: 2996 case X86::COND_P: case X86::COND_NP: 2997 case X86::COND_L: case X86::COND_GE: 2998 case X86::COND_G: case X86::COND_LE: 2999 return false; 3000 // Anything else: assume conservatively. 3001 default: 3002 return true; 3003 } 3004 } 3005 3006 /// Test whether the given node which sets flags has any uses which require the 3007 /// CF flag to be accurate. 3008 bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const { 3009 // Examine each user of the node. 3010 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end(); 3011 UI != UE; ++UI) { 3012 // Only check things that use the flags. 3013 if (UI.getUse().getResNo() != Flags.getResNo()) 3014 continue; 3015 3016 unsigned UIOpc = UI->getOpcode(); 3017 3018 if (UIOpc == ISD::CopyToReg) { 3019 // Only examine CopyToReg uses that copy to EFLAGS. 3020 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS) 3021 return false; 3022 // Examine each user of the CopyToReg use. 3023 for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end(); 3024 FlagUI != FlagUE; ++FlagUI) { 3025 // Only examine the Flag result. 3026 if (FlagUI.getUse().getResNo() != 1) 3027 continue; 3028 // Anything unusual: assume conservatively. 3029 if (!FlagUI->isMachineOpcode()) 3030 return false; 3031 // Examine the condition code of the user. 3032 X86::CondCode CC = getCondFromNode(*FlagUI); 3033 3034 if (mayUseCarryFlag(CC)) 3035 return false; 3036 } 3037 3038 // This CopyToReg is ok. Move on to the next user. 3039 continue; 3040 } 3041 3042 // This might be an unselected node. So look for the pre-isel opcodes that 3043 // use flags. 3044 unsigned CCOpNo; 3045 switch (UIOpc) { 3046 default: 3047 // Something unusual. Be conservative. 3048 return false; 3049 case X86ISD::SETCC: CCOpNo = 0; break; 3050 case X86ISD::SETCC_CARRY: CCOpNo = 0; break; 3051 case X86ISD::CMOV: CCOpNo = 2; break; 3052 case X86ISD::BRCOND: CCOpNo = 2; break; 3053 } 3054 3055 X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo); 3056 if (mayUseCarryFlag(CC)) 3057 return false; 3058 } 3059 return true; 3060 } 3061 3062 /// Check whether or not the chain ending in StoreNode is suitable for doing 3063 /// the {load; op; store} to modify transformation. 3064 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, 3065 SDValue StoredVal, SelectionDAG *CurDAG, 3066 unsigned LoadOpNo, 3067 LoadSDNode *&LoadNode, 3068 SDValue &InputChain) { 3069 // Is the stored value result 0 of the operation? 3070 if (StoredVal.getResNo() != 0) return false; 3071 3072 // Are there other uses of the operation other than the store? 3073 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false; 3074 3075 // Is the store non-extending and non-indexed? 3076 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) 3077 return false; 3078 3079 SDValue Load = StoredVal->getOperand(LoadOpNo); 3080 // Is the stored value a non-extending and non-indexed load? 3081 if (!ISD::isNormalLoad(Load.getNode())) return false; 3082 3083 // Return LoadNode by reference. 3084 LoadNode = cast<LoadSDNode>(Load); 3085 3086 // Is store the only read of the loaded value? 3087 if (!Load.hasOneUse()) 3088 return false; 3089 3090 // Is the address of the store the same as the load? 3091 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || 3092 LoadNode->getOffset() != StoreNode->getOffset()) 3093 return false; 3094 3095 bool FoundLoad = false; 3096 SmallVector<SDValue, 4> ChainOps; 3097 SmallVector<const SDNode *, 4> LoopWorklist; 3098 SmallPtrSet<const SDNode *, 16> Visited; 3099 const unsigned int Max = 1024; 3100 3101 // Visualization of Load-Op-Store fusion: 3102 // ------------------------- 3103 // Legend: 3104 // *-lines = Chain operand dependencies. 3105 // |-lines = Normal operand dependencies. 3106 // Dependencies flow down and right. n-suffix references multiple nodes. 3107 // 3108 // C Xn C 3109 // * * * 3110 // * * * 3111 // Xn A-LD Yn TF Yn 3112 // * * \ | * | 3113 // * * \ | * | 3114 // * * \ | => A--LD_OP_ST 3115 // * * \| \ 3116 // TF OP \ 3117 // * | \ Zn 3118 // * | \ 3119 // A-ST Zn 3120 // 3121 3122 // This merge induced dependences from: #1: Xn -> LD, OP, Zn 3123 // #2: Yn -> LD 3124 // #3: ST -> Zn 3125 3126 // Ensure the transform is safe by checking for the dual 3127 // dependencies to make sure we do not induce a loop. 3128 3129 // As LD is a predecessor to both OP and ST we can do this by checking: 3130 // a). if LD is a predecessor to a member of Xn or Yn. 3131 // b). if a Zn is a predecessor to ST. 3132 3133 // However, (b) can only occur through being a chain predecessor to 3134 // ST, which is the same as Zn being a member or predecessor of Xn, 3135 // which is a subset of LD being a predecessor of Xn. So it's 3136 // subsumed by check (a). 3137 3138 SDValue Chain = StoreNode->getChain(); 3139 3140 // Gather X elements in ChainOps. 3141 if (Chain == Load.getValue(1)) { 3142 FoundLoad = true; 3143 ChainOps.push_back(Load.getOperand(0)); 3144 } else if (Chain.getOpcode() == ISD::TokenFactor) { 3145 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { 3146 SDValue Op = Chain.getOperand(i); 3147 if (Op == Load.getValue(1)) { 3148 FoundLoad = true; 3149 // Drop Load, but keep its chain. No cycle check necessary. 3150 ChainOps.push_back(Load.getOperand(0)); 3151 continue; 3152 } 3153 LoopWorklist.push_back(Op.getNode()); 3154 ChainOps.push_back(Op); 3155 } 3156 } 3157 3158 if (!FoundLoad) 3159 return false; 3160 3161 // Worklist is currently Xn. Add Yn to worklist. 3162 for (SDValue Op : StoredVal->ops()) 3163 if (Op.getNode() != LoadNode) 3164 LoopWorklist.push_back(Op.getNode()); 3165 3166 // Check (a) if Load is a predecessor to Xn + Yn 3167 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max, 3168 true)) 3169 return false; 3170 3171 InputChain = 3172 CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps); 3173 return true; 3174 } 3175 3176 // Change a chain of {load; op; store} of the same value into a simple op 3177 // through memory of that value, if the uses of the modified value and its 3178 // address are suitable. 3179 // 3180 // The tablegen pattern memory operand pattern is currently not able to match 3181 // the case where the EFLAGS on the original operation are used. 3182 // 3183 // To move this to tablegen, we'll need to improve tablegen to allow flags to 3184 // be transferred from a node in the pattern to the result node, probably with 3185 // a new keyword. For example, we have this 3186 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 3187 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 3188 // (implicit EFLAGS)]>; 3189 // but maybe need something like this 3190 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 3191 // [(store (add (loadi64 addr:$dst), -1), addr:$dst), 3192 // (transferrable EFLAGS)]>; 3193 // 3194 // Until then, we manually fold these and instruction select the operation 3195 // here. 3196 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) { 3197 StoreSDNode *StoreNode = cast<StoreSDNode>(Node); 3198 SDValue StoredVal = StoreNode->getOperand(1); 3199 unsigned Opc = StoredVal->getOpcode(); 3200 3201 // Before we try to select anything, make sure this is memory operand size 3202 // and opcode we can handle. Note that this must match the code below that 3203 // actually lowers the opcodes. 3204 EVT MemVT = StoreNode->getMemoryVT(); 3205 if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 && 3206 MemVT != MVT::i8) 3207 return false; 3208 3209 bool IsCommutable = false; 3210 bool IsNegate = false; 3211 switch (Opc) { 3212 default: 3213 return false; 3214 case X86ISD::SUB: 3215 IsNegate = isNullConstant(StoredVal.getOperand(0)); 3216 break; 3217 case X86ISD::SBB: 3218 break; 3219 case X86ISD::ADD: 3220 case X86ISD::ADC: 3221 case X86ISD::AND: 3222 case X86ISD::OR: 3223 case X86ISD::XOR: 3224 IsCommutable = true; 3225 break; 3226 } 3227 3228 unsigned LoadOpNo = IsNegate ? 1 : 0; 3229 LoadSDNode *LoadNode = nullptr; 3230 SDValue InputChain; 3231 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo, 3232 LoadNode, InputChain)) { 3233 if (!IsCommutable) 3234 return false; 3235 3236 // This operation is commutable, try the other operand. 3237 LoadOpNo = 1; 3238 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo, 3239 LoadNode, InputChain)) 3240 return false; 3241 } 3242 3243 SDValue Base, Scale, Index, Disp, Segment; 3244 if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp, 3245 Segment)) 3246 return false; 3247 3248 auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16, 3249 unsigned Opc8) { 3250 switch (MemVT.getSimpleVT().SimpleTy) { 3251 case MVT::i64: 3252 return Opc64; 3253 case MVT::i32: 3254 return Opc32; 3255 case MVT::i16: 3256 return Opc16; 3257 case MVT::i8: 3258 return Opc8; 3259 default: 3260 llvm_unreachable("Invalid size!"); 3261 } 3262 }; 3263 3264 MachineSDNode *Result; 3265 switch (Opc) { 3266 case X86ISD::SUB: 3267 // Handle negate. 3268 if (IsNegate) { 3269 unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m, 3270 X86::NEG8m); 3271 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain}; 3272 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, 3273 MVT::Other, Ops); 3274 break; 3275 } 3276 LLVM_FALLTHROUGH; 3277 case X86ISD::ADD: 3278 // Try to match inc/dec. 3279 if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) { 3280 bool IsOne = isOneConstant(StoredVal.getOperand(1)); 3281 bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1)); 3282 // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec. 3283 if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) { 3284 unsigned NewOpc = 3285 ((Opc == X86ISD::ADD) == IsOne) 3286 ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m) 3287 : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m); 3288 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain}; 3289 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, 3290 MVT::Other, Ops); 3291 break; 3292 } 3293 } 3294 LLVM_FALLTHROUGH; 3295 case X86ISD::ADC: 3296 case X86ISD::SBB: 3297 case X86ISD::AND: 3298 case X86ISD::OR: 3299 case X86ISD::XOR: { 3300 auto SelectRegOpcode = [SelectOpcode](unsigned Opc) { 3301 switch (Opc) { 3302 case X86ISD::ADD: 3303 return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr, 3304 X86::ADD8mr); 3305 case X86ISD::ADC: 3306 return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr, 3307 X86::ADC8mr); 3308 case X86ISD::SUB: 3309 return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr, 3310 X86::SUB8mr); 3311 case X86ISD::SBB: 3312 return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr, 3313 X86::SBB8mr); 3314 case X86ISD::AND: 3315 return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr, 3316 X86::AND8mr); 3317 case X86ISD::OR: 3318 return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr); 3319 case X86ISD::XOR: 3320 return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr, 3321 X86::XOR8mr); 3322 default: 3323 llvm_unreachable("Invalid opcode!"); 3324 } 3325 }; 3326 auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) { 3327 switch (Opc) { 3328 case X86ISD::ADD: 3329 return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0); 3330 case X86ISD::ADC: 3331 return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0); 3332 case X86ISD::SUB: 3333 return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0); 3334 case X86ISD::SBB: 3335 return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0); 3336 case X86ISD::AND: 3337 return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0); 3338 case X86ISD::OR: 3339 return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0); 3340 case X86ISD::XOR: 3341 return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0); 3342 default: 3343 llvm_unreachable("Invalid opcode!"); 3344 } 3345 }; 3346 auto SelectImmOpcode = [SelectOpcode](unsigned Opc) { 3347 switch (Opc) { 3348 case X86ISD::ADD: 3349 return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi, 3350 X86::ADD8mi); 3351 case X86ISD::ADC: 3352 return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi, 3353 X86::ADC8mi); 3354 case X86ISD::SUB: 3355 return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi, 3356 X86::SUB8mi); 3357 case X86ISD::SBB: 3358 return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi, 3359 X86::SBB8mi); 3360 case X86ISD::AND: 3361 return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi, 3362 X86::AND8mi); 3363 case X86ISD::OR: 3364 return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi, 3365 X86::OR8mi); 3366 case X86ISD::XOR: 3367 return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi, 3368 X86::XOR8mi); 3369 default: 3370 llvm_unreachable("Invalid opcode!"); 3371 } 3372 }; 3373 3374 unsigned NewOpc = SelectRegOpcode(Opc); 3375 SDValue Operand = StoredVal->getOperand(1-LoadOpNo); 3376 3377 // See if the operand is a constant that we can fold into an immediate 3378 // operand. 3379 if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) { 3380 int64_t OperandV = OperandC->getSExtValue(); 3381 3382 // Check if we can shrink the operand enough to fit in an immediate (or 3383 // fit into a smaller immediate) by negating it and switching the 3384 // operation. 3385 if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) && 3386 ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) || 3387 (MemVT == MVT::i64 && !isInt<32>(OperandV) && 3388 isInt<32>(-OperandV))) && 3389 hasNoCarryFlagUses(StoredVal.getValue(1))) { 3390 OperandV = -OperandV; 3391 Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD; 3392 } 3393 3394 // First try to fit this into an Imm8 operand. If it doesn't fit, then try 3395 // the larger immediate operand. 3396 if (MemVT != MVT::i8 && isInt<8>(OperandV)) { 3397 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT); 3398 NewOpc = SelectImm8Opcode(Opc); 3399 } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) { 3400 Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT); 3401 NewOpc = SelectImmOpcode(Opc); 3402 } 3403 } 3404 3405 if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) { 3406 SDValue CopyTo = 3407 CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS, 3408 StoredVal.getOperand(2), SDValue()); 3409 3410 const SDValue Ops[] = {Base, Scale, Index, Disp, 3411 Segment, Operand, CopyTo, CopyTo.getValue(1)}; 3412 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, 3413 Ops); 3414 } else { 3415 const SDValue Ops[] = {Base, Scale, Index, Disp, 3416 Segment, Operand, InputChain}; 3417 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other, 3418 Ops); 3419 } 3420 break; 3421 } 3422 default: 3423 llvm_unreachable("Invalid opcode!"); 3424 } 3425 3426 MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(), 3427 LoadNode->getMemOperand()}; 3428 CurDAG->setNodeMemRefs(Result, MemOps); 3429 3430 // Update Load Chain uses as well. 3431 ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1)); 3432 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); 3433 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); 3434 CurDAG->RemoveDeadNode(Node); 3435 return true; 3436 } 3437 3438 // See if this is an X & Mask that we can match to BEXTR/BZHI. 3439 // Where Mask is one of the following patterns: 3440 // a) x & (1 << nbits) - 1 3441 // b) x & ~(-1 << nbits) 3442 // c) x & (-1 >> (32 - y)) 3443 // d) x << (32 - y) >> (32 - y) 3444 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) { 3445 assert( 3446 (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) && 3447 "Should be either an and-mask, or right-shift after clearing high bits."); 3448 3449 // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one. 3450 if (!Subtarget->hasBMI() && !Subtarget->hasBMI2()) 3451 return false; 3452 3453 MVT NVT = Node->getSimpleValueType(0); 3454 3455 // Only supported for 32 and 64 bits. 3456 if (NVT != MVT::i32 && NVT != MVT::i64) 3457 return false; 3458 3459 SDValue NBits; 3460 bool NegateNBits; 3461 3462 // If we have BMI2's BZHI, we are ok with muti-use patterns. 3463 // Else, if we only have BMI1's BEXTR, we require one-use. 3464 const bool AllowExtraUsesByDefault = Subtarget->hasBMI2(); 3465 auto checkUses = [AllowExtraUsesByDefault](SDValue Op, unsigned NUses, 3466 Optional<bool> AllowExtraUses) { 3467 return AllowExtraUses.getValueOr(AllowExtraUsesByDefault) || 3468 Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo()); 3469 }; 3470 auto checkOneUse = [checkUses](SDValue Op, 3471 Optional<bool> AllowExtraUses = None) { 3472 return checkUses(Op, 1, AllowExtraUses); 3473 }; 3474 auto checkTwoUse = [checkUses](SDValue Op, 3475 Optional<bool> AllowExtraUses = None) { 3476 return checkUses(Op, 2, AllowExtraUses); 3477 }; 3478 3479 auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) { 3480 if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) { 3481 assert(V.getSimpleValueType() == MVT::i32 && 3482 V.getOperand(0).getSimpleValueType() == MVT::i64 && 3483 "Expected i64 -> i32 truncation"); 3484 V = V.getOperand(0); 3485 } 3486 return V; 3487 }; 3488 3489 // a) x & ((1 << nbits) + (-1)) 3490 auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits, 3491 &NegateNBits](SDValue Mask) -> bool { 3492 // Match `add`. Must only have one use! 3493 if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask)) 3494 return false; 3495 // We should be adding all-ones constant (i.e. subtracting one.) 3496 if (!isAllOnesConstant(Mask->getOperand(1))) 3497 return false; 3498 // Match `1 << nbits`. Might be truncated. Must only have one use! 3499 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0)); 3500 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0)) 3501 return false; 3502 if (!isOneConstant(M0->getOperand(0))) 3503 return false; 3504 NBits = M0->getOperand(1); 3505 NegateNBits = false; 3506 return true; 3507 }; 3508 3509 auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) { 3510 V = peekThroughOneUseTruncation(V); 3511 return CurDAG->MaskedValueIsAllOnes( 3512 V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(), 3513 NVT.getSizeInBits())); 3514 }; 3515 3516 // b) x & ~(-1 << nbits) 3517 auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation, 3518 &NBits, &NegateNBits](SDValue Mask) -> bool { 3519 // Match `~()`. Must only have one use! 3520 if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask)) 3521 return false; 3522 // The -1 only has to be all-ones for the final Node's NVT. 3523 if (!isAllOnes(Mask->getOperand(1))) 3524 return false; 3525 // Match `-1 << nbits`. Might be truncated. Must only have one use! 3526 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0)); 3527 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0)) 3528 return false; 3529 // The -1 only has to be all-ones for the final Node's NVT. 3530 if (!isAllOnes(M0->getOperand(0))) 3531 return false; 3532 NBits = M0->getOperand(1); 3533 NegateNBits = false; 3534 return true; 3535 }; 3536 3537 // Try to match potentially-truncated shift amount as `(bitwidth - y)`, 3538 // or leave the shift amount as-is, but then we'll have to negate it. 3539 auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt, 3540 unsigned Bitwidth) { 3541 NBits = ShiftAmt; 3542 NegateNBits = true; 3543 // Skip over a truncate of the shift amount, if any. 3544 if (NBits.getOpcode() == ISD::TRUNCATE) 3545 NBits = NBits.getOperand(0); 3546 // Try to match the shift amount as (bitwidth - y). It should go away, too. 3547 // If it doesn't match, that's fine, we'll just negate it ourselves. 3548 if (NBits.getOpcode() != ISD::SUB) 3549 return; 3550 auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0)); 3551 if (!V0 || V0->getZExtValue() != Bitwidth) 3552 return; 3553 NBits = NBits.getOperand(1); 3554 NegateNBits = false; 3555 }; 3556 3557 // c) x & (-1 >> z) but then we'll have to subtract z from bitwidth 3558 // or 3559 // c) x & (-1 >> (32 - y)) 3560 auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits, 3561 canonicalizeShiftAmt](SDValue Mask) -> bool { 3562 // The mask itself may be truncated. 3563 Mask = peekThroughOneUseTruncation(Mask); 3564 unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits(); 3565 // Match `l>>`. Must only have one use! 3566 if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask)) 3567 return false; 3568 // We should be shifting truly all-ones constant. 3569 if (!isAllOnesConstant(Mask.getOperand(0))) 3570 return false; 3571 SDValue M1 = Mask.getOperand(1); 3572 // The shift amount should not be used externally. 3573 if (!checkOneUse(M1)) 3574 return false; 3575 canonicalizeShiftAmt(M1, Bitwidth); 3576 // Pattern c. is non-canonical, and is expanded into pattern d. iff there 3577 // is no extra use of the mask. Clearly, there was one since we are here. 3578 // But at the same time, if we need to negate the shift amount, 3579 // then we don't want the mask to stick around, else it's unprofitable. 3580 return !NegateNBits; 3581 }; 3582 3583 SDValue X; 3584 3585 // d) x << z >> z but then we'll have to subtract z from bitwidth 3586 // or 3587 // d) x << (32 - y) >> (32 - y) 3588 auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt, 3589 AllowExtraUsesByDefault, &NegateNBits, 3590 &X](SDNode *Node) -> bool { 3591 if (Node->getOpcode() != ISD::SRL) 3592 return false; 3593 SDValue N0 = Node->getOperand(0); 3594 if (N0->getOpcode() != ISD::SHL) 3595 return false; 3596 unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits(); 3597 SDValue N1 = Node->getOperand(1); 3598 SDValue N01 = N0->getOperand(1); 3599 // Both of the shifts must be by the exact same value. 3600 if (N1 != N01) 3601 return false; 3602 canonicalizeShiftAmt(N1, Bitwidth); 3603 // There should not be any external uses of the inner shift / shift amount. 3604 // Note that while we are generally okay with external uses given BMI2, 3605 // iff we need to negate the shift amount, we are not okay with extra uses. 3606 const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits; 3607 if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses)) 3608 return false; 3609 X = N0->getOperand(0); 3610 return true; 3611 }; 3612 3613 auto matchLowBitMask = [matchPatternA, matchPatternB, 3614 matchPatternC](SDValue Mask) -> bool { 3615 return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask); 3616 }; 3617 3618 if (Node->getOpcode() == ISD::AND) { 3619 X = Node->getOperand(0); 3620 SDValue Mask = Node->getOperand(1); 3621 3622 if (matchLowBitMask(Mask)) { 3623 // Great. 3624 } else { 3625 std::swap(X, Mask); 3626 if (!matchLowBitMask(Mask)) 3627 return false; 3628 } 3629 } else if (!matchPatternD(Node)) 3630 return false; 3631 3632 // If we need to negate the shift amount, require BMI2 BZHI support. 3633 // It's just too unprofitable for BMI1 BEXTR. 3634 if (NegateNBits && !Subtarget->hasBMI2()) 3635 return false; 3636 3637 SDLoc DL(Node); 3638 3639 // Truncate the shift amount. 3640 NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits); 3641 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits); 3642 3643 // Insert 8-bit NBits into lowest 8 bits of 32-bit register. 3644 // All the other bits are undefined, we do not care about them. 3645 SDValue ImplDef = SDValue( 3646 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0); 3647 insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef); 3648 3649 SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32); 3650 insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal); 3651 NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 3652 MVT::i32, ImplDef, NBits, SRIdxVal), 3653 0); 3654 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits); 3655 3656 // We might have matched the amount of high bits to be cleared, 3657 // but we want the amount of low bits to be kept, so negate it then. 3658 if (NegateNBits) { 3659 SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32); 3660 insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC); 3661 3662 NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits); 3663 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits); 3664 } 3665 3666 if (Subtarget->hasBMI2()) { 3667 // Great, just emit the the BZHI.. 3668 if (NVT != MVT::i32) { 3669 // But have to place the bit count into the wide-enough register first. 3670 NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits); 3671 insertDAGNode(*CurDAG, SDValue(Node, 0), NBits); 3672 } 3673 3674 SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits); 3675 ReplaceNode(Node, Extract.getNode()); 3676 SelectCode(Extract.getNode()); 3677 return true; 3678 } 3679 3680 // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is 3681 // *logically* shifted (potentially with one-use trunc inbetween), 3682 // and the truncation was the only use of the shift, 3683 // and if so look past one-use truncation. 3684 { 3685 SDValue RealX = peekThroughOneUseTruncation(X); 3686 // FIXME: only if the shift is one-use? 3687 if (RealX != X && RealX.getOpcode() == ISD::SRL) 3688 X = RealX; 3689 } 3690 3691 MVT XVT = X.getSimpleValueType(); 3692 3693 // Else, emitting BEXTR requires one more step. 3694 // The 'control' of BEXTR has the pattern of: 3695 // [15...8 bit][ 7...0 bit] location 3696 // [ bit count][ shift] name 3697 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11 3698 3699 // Shift NBits left by 8 bits, thus producing 'control'. 3700 // This makes the low 8 bits to be zero. 3701 SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8); 3702 insertDAGNode(*CurDAG, SDValue(Node, 0), C8); 3703 SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8); 3704 insertDAGNode(*CurDAG, SDValue(Node, 0), Control); 3705 3706 // If the 'X' is *logically* shifted, we can fold that shift into 'control'. 3707 // FIXME: only if the shift is one-use? 3708 if (X.getOpcode() == ISD::SRL) { 3709 SDValue ShiftAmt = X.getOperand(1); 3710 X = X.getOperand(0); 3711 3712 assert(ShiftAmt.getValueType() == MVT::i8 && 3713 "Expected shift amount to be i8"); 3714 3715 // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero! 3716 // We could zext to i16 in some form, but we intentionally don't do that. 3717 SDValue OrigShiftAmt = ShiftAmt; 3718 ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt); 3719 insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt); 3720 3721 // And now 'or' these low 8 bits of shift amount into the 'control'. 3722 Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt); 3723 insertDAGNode(*CurDAG, SDValue(Node, 0), Control); 3724 } 3725 3726 // But have to place the 'control' into the wide-enough register first. 3727 if (XVT != MVT::i32) { 3728 Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control); 3729 insertDAGNode(*CurDAG, SDValue(Node, 0), Control); 3730 } 3731 3732 // And finally, form the BEXTR itself. 3733 SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control); 3734 3735 // The 'X' was originally truncated. Do that now. 3736 if (XVT != NVT) { 3737 insertDAGNode(*CurDAG, SDValue(Node, 0), Extract); 3738 Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract); 3739 } 3740 3741 ReplaceNode(Node, Extract.getNode()); 3742 SelectCode(Extract.getNode()); 3743 3744 return true; 3745 } 3746 3747 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI. 3748 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) { 3749 MVT NVT = Node->getSimpleValueType(0); 3750 SDLoc dl(Node); 3751 3752 SDValue N0 = Node->getOperand(0); 3753 SDValue N1 = Node->getOperand(1); 3754 3755 // If we have TBM we can use an immediate for the control. If we have BMI 3756 // we should only do this if the BEXTR instruction is implemented well. 3757 // Otherwise moving the control into a register makes this more costly. 3758 // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM 3759 // hoisting the move immediate would make it worthwhile with a less optimal 3760 // BEXTR? 3761 bool PreferBEXTR = 3762 Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR()); 3763 if (!PreferBEXTR && !Subtarget->hasBMI2()) 3764 return nullptr; 3765 3766 // Must have a shift right. 3767 if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA) 3768 return nullptr; 3769 3770 // Shift can't have additional users. 3771 if (!N0->hasOneUse()) 3772 return nullptr; 3773 3774 // Only supported for 32 and 64 bits. 3775 if (NVT != MVT::i32 && NVT != MVT::i64) 3776 return nullptr; 3777 3778 // Shift amount and RHS of and must be constant. 3779 ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1); 3780 ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 3781 if (!MaskCst || !ShiftCst) 3782 return nullptr; 3783 3784 // And RHS must be a mask. 3785 uint64_t Mask = MaskCst->getZExtValue(); 3786 if (!isMask_64(Mask)) 3787 return nullptr; 3788 3789 uint64_t Shift = ShiftCst->getZExtValue(); 3790 uint64_t MaskSize = countPopulation(Mask); 3791 3792 // Don't interfere with something that can be handled by extracting AH. 3793 // TODO: If we are able to fold a load, BEXTR might still be better than AH. 3794 if (Shift == 8 && MaskSize == 8) 3795 return nullptr; 3796 3797 // Make sure we are only using bits that were in the original value, not 3798 // shifted in. 3799 if (Shift + MaskSize > NVT.getSizeInBits()) 3800 return nullptr; 3801 3802 // BZHI, if available, is always fast, unlike BEXTR. But even if we decide 3803 // that we can't use BEXTR, it is only worthwhile using BZHI if the mask 3804 // does not fit into 32 bits. Load folding is not a sufficient reason. 3805 if (!PreferBEXTR && MaskSize <= 32) 3806 return nullptr; 3807 3808 SDValue Control; 3809 unsigned ROpc, MOpc; 3810 3811 if (!PreferBEXTR) { 3812 assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then."); 3813 // If we can't make use of BEXTR then we can't fuse shift+mask stages. 3814 // Let's perform the mask first, and apply shift later. Note that we need to 3815 // widen the mask to account for the fact that we'll apply shift afterwards! 3816 Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT); 3817 ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr; 3818 MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm; 3819 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri; 3820 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0); 3821 } else { 3822 // The 'control' of BEXTR has the pattern of: 3823 // [15...8 bit][ 7...0 bit] location 3824 // [ bit count][ shift] name 3825 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11 3826 Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT); 3827 if (Subtarget->hasTBM()) { 3828 ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri; 3829 MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi; 3830 } else { 3831 assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then."); 3832 // BMI requires the immediate to placed in a register. 3833 ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr; 3834 MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm; 3835 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri; 3836 Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0); 3837 } 3838 } 3839 3840 MachineSDNode *NewNode; 3841 SDValue Input = N0->getOperand(0); 3842 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 3843 if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 3844 SDValue Ops[] = { 3845 Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)}; 3846 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other); 3847 NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 3848 // Update the chain. 3849 ReplaceUses(Input.getValue(1), SDValue(NewNode, 2)); 3850 // Record the mem-refs 3851 CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()}); 3852 } else { 3853 NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control); 3854 } 3855 3856 if (!PreferBEXTR) { 3857 // We still need to apply the shift. 3858 SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT); 3859 unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri; 3860 NewNode = 3861 CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt); 3862 } 3863 3864 return NewNode; 3865 } 3866 3867 // Emit a PCMISTR(I/M) instruction. 3868 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc, 3869 bool MayFoldLoad, const SDLoc &dl, 3870 MVT VT, SDNode *Node) { 3871 SDValue N0 = Node->getOperand(0); 3872 SDValue N1 = Node->getOperand(1); 3873 SDValue Imm = Node->getOperand(2); 3874 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3875 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType()); 3876 3877 // Try to fold a load. No need to check alignment. 3878 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 3879 if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 3880 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, 3881 N1.getOperand(0) }; 3882 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other); 3883 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 3884 // Update the chain. 3885 ReplaceUses(N1.getValue(1), SDValue(CNode, 2)); 3886 // Record the mem-refs 3887 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); 3888 return CNode; 3889 } 3890 3891 SDValue Ops[] = { N0, N1, Imm }; 3892 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32); 3893 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops); 3894 return CNode; 3895 } 3896 3897 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need 3898 // to emit a second instruction after this one. This is needed since we have two 3899 // copyToReg nodes glued before this and we need to continue that glue through. 3900 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc, 3901 bool MayFoldLoad, const SDLoc &dl, 3902 MVT VT, SDNode *Node, 3903 SDValue &InFlag) { 3904 SDValue N0 = Node->getOperand(0); 3905 SDValue N2 = Node->getOperand(2); 3906 SDValue Imm = Node->getOperand(4); 3907 const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3908 Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType()); 3909 3910 // Try to fold a load. No need to check alignment. 3911 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 3912 if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 3913 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, 3914 N2.getOperand(0), InFlag }; 3915 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue); 3916 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 3917 InFlag = SDValue(CNode, 3); 3918 // Update the chain. 3919 ReplaceUses(N2.getValue(1), SDValue(CNode, 2)); 3920 // Record the mem-refs 3921 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()}); 3922 return CNode; 3923 } 3924 3925 SDValue Ops[] = { N0, N2, Imm, InFlag }; 3926 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue); 3927 MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops); 3928 InFlag = SDValue(CNode, 2); 3929 return CNode; 3930 } 3931 3932 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) { 3933 EVT VT = N->getValueType(0); 3934 3935 // Only handle scalar shifts. 3936 if (VT.isVector()) 3937 return false; 3938 3939 // Narrower shifts only mask to 5 bits in hardware. 3940 unsigned Size = VT == MVT::i64 ? 64 : 32; 3941 3942 SDValue OrigShiftAmt = N->getOperand(1); 3943 SDValue ShiftAmt = OrigShiftAmt; 3944 SDLoc DL(N); 3945 3946 // Skip over a truncate of the shift amount. 3947 if (ShiftAmt->getOpcode() == ISD::TRUNCATE) 3948 ShiftAmt = ShiftAmt->getOperand(0); 3949 3950 // This function is called after X86DAGToDAGISel::matchBitExtract(), 3951 // so we are not afraid that we might mess up BZHI/BEXTR pattern. 3952 3953 SDValue NewShiftAmt; 3954 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) { 3955 SDValue Add0 = ShiftAmt->getOperand(0); 3956 SDValue Add1 = ShiftAmt->getOperand(1); 3957 auto *Add0C = dyn_cast<ConstantSDNode>(Add0); 3958 auto *Add1C = dyn_cast<ConstantSDNode>(Add1); 3959 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X 3960 // to avoid the ADD/SUB. 3961 if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) { 3962 NewShiftAmt = Add0; 3963 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X 3964 // to generate a NEG instead of a SUB of a constant. 3965 } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C && 3966 Add0C->getZExtValue() != 0) { 3967 EVT SubVT = ShiftAmt.getValueType(); 3968 SDValue X; 3969 if (Add0C->getZExtValue() % Size == 0) 3970 X = Add1; 3971 else if (ShiftAmt.hasOneUse() && Size == 64 && 3972 Add0C->getZExtValue() % 32 == 0) { 3973 // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32). 3974 // This is mainly beneficial if we already compute (x+n*32). 3975 if (Add1.getOpcode() == ISD::TRUNCATE) { 3976 Add1 = Add1.getOperand(0); 3977 SubVT = Add1.getValueType(); 3978 } 3979 if (Add0.getValueType() != SubVT) { 3980 Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT); 3981 insertDAGNode(*CurDAG, OrigShiftAmt, Add0); 3982 } 3983 3984 X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0); 3985 insertDAGNode(*CurDAG, OrigShiftAmt, X); 3986 } else 3987 return false; 3988 // Insert a negate op. 3989 // TODO: This isn't guaranteed to replace the sub if there is a logic cone 3990 // that uses it that's not a shift. 3991 SDValue Zero = CurDAG->getConstant(0, DL, SubVT); 3992 SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X); 3993 NewShiftAmt = Neg; 3994 3995 // Insert these operands into a valid topological order so they can 3996 // get selected independently. 3997 insertDAGNode(*CurDAG, OrigShiftAmt, Zero); 3998 insertDAGNode(*CurDAG, OrigShiftAmt, Neg); 3999 } else 4000 return false; 4001 } else 4002 return false; 4003 4004 if (NewShiftAmt.getValueType() != MVT::i8) { 4005 // Need to truncate the shift amount. 4006 NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt); 4007 // Add to a correct topological ordering. 4008 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt); 4009 } 4010 4011 // Insert a new mask to keep the shift amount legal. This should be removed 4012 // by isel patterns. 4013 NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt, 4014 CurDAG->getConstant(Size - 1, DL, MVT::i8)); 4015 // Place in a correct topological ordering. 4016 insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt); 4017 4018 SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0), 4019 NewShiftAmt); 4020 if (UpdatedNode != N) { 4021 // If we found an existing node, we should replace ourselves with that node 4022 // and wait for it to be selected after its other users. 4023 ReplaceNode(N, UpdatedNode); 4024 return true; 4025 } 4026 4027 // If the original shift amount is now dead, delete it so that we don't run 4028 // it through isel. 4029 if (OrigShiftAmt.getNode()->use_empty()) 4030 CurDAG->RemoveDeadNode(OrigShiftAmt.getNode()); 4031 4032 // Now that we've optimized the shift amount, defer to normal isel to get 4033 // load folding and legacy vs BMI2 selection without repeating it here. 4034 SelectCode(N); 4035 return true; 4036 } 4037 4038 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) { 4039 MVT NVT = N->getSimpleValueType(0); 4040 unsigned Opcode = N->getOpcode(); 4041 SDLoc dl(N); 4042 4043 // For operations of the form (x << C1) op C2, check if we can use a smaller 4044 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1. 4045 SDValue Shift = N->getOperand(0); 4046 SDValue N1 = N->getOperand(1); 4047 4048 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 4049 if (!Cst) 4050 return false; 4051 4052 int64_t Val = Cst->getSExtValue(); 4053 4054 // If we have an any_extend feeding the AND, look through it to see if there 4055 // is a shift behind it. But only if the AND doesn't use the extended bits. 4056 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64? 4057 bool FoundAnyExtend = false; 4058 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() && 4059 Shift.getOperand(0).getSimpleValueType() == MVT::i32 && 4060 isUInt<32>(Val)) { 4061 FoundAnyExtend = true; 4062 Shift = Shift.getOperand(0); 4063 } 4064 4065 if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse()) 4066 return false; 4067 4068 // i8 is unshrinkable, i16 should be promoted to i32. 4069 if (NVT != MVT::i32 && NVT != MVT::i64) 4070 return false; 4071 4072 ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 4073 if (!ShlCst) 4074 return false; 4075 4076 uint64_t ShAmt = ShlCst->getZExtValue(); 4077 4078 // Make sure that we don't change the operation by removing bits. 4079 // This only matters for OR and XOR, AND is unaffected. 4080 uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1; 4081 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) 4082 return false; 4083 4084 // Check the minimum bitwidth for the new constant. 4085 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32. 4086 auto CanShrinkImmediate = [&](int64_t &ShiftedVal) { 4087 if (Opcode == ISD::AND) { 4088 // AND32ri is the same as AND64ri32 with zext imm. 4089 // Try this before sign extended immediates below. 4090 ShiftedVal = (uint64_t)Val >> ShAmt; 4091 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal)) 4092 return true; 4093 // Also swap order when the AND can become MOVZX. 4094 if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX) 4095 return true; 4096 } 4097 ShiftedVal = Val >> ShAmt; 4098 if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) || 4099 (!isInt<32>(Val) && isInt<32>(ShiftedVal))) 4100 return true; 4101 if (Opcode != ISD::AND) { 4102 // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr 4103 ShiftedVal = (uint64_t)Val >> ShAmt; 4104 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal)) 4105 return true; 4106 } 4107 return false; 4108 }; 4109 4110 int64_t ShiftedVal; 4111 if (!CanShrinkImmediate(ShiftedVal)) 4112 return false; 4113 4114 // Ok, we can reorder to get a smaller immediate. 4115 4116 // But, its possible the original immediate allowed an AND to become MOVZX. 4117 // Doing this late due to avoid the MakedValueIsZero call as late as 4118 // possible. 4119 if (Opcode == ISD::AND) { 4120 // Find the smallest zext this could possibly be. 4121 unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits(); 4122 ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U)); 4123 4124 // Figure out which bits need to be zero to achieve that mask. 4125 APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(), 4126 ZExtWidth); 4127 NeededMask &= ~Cst->getAPIntValue(); 4128 4129 if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask)) 4130 return false; 4131 } 4132 4133 SDValue X = Shift.getOperand(0); 4134 if (FoundAnyExtend) { 4135 SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X); 4136 insertDAGNode(*CurDAG, SDValue(N, 0), NewX); 4137 X = NewX; 4138 } 4139 4140 SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT); 4141 insertDAGNode(*CurDAG, SDValue(N, 0), NewCst); 4142 SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst); 4143 insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp); 4144 SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp, 4145 Shift.getOperand(1)); 4146 ReplaceNode(N, NewSHL.getNode()); 4147 SelectCode(NewSHL.getNode()); 4148 return true; 4149 } 4150 4151 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA, 4152 SDNode *ParentB, SDNode *ParentC, 4153 SDValue A, SDValue B, SDValue C, 4154 uint8_t Imm) { 4155 assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) && 4156 C.isOperandOf(ParentC) && "Incorrect parent node"); 4157 4158 auto tryFoldLoadOrBCast = 4159 [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale, 4160 SDValue &Index, SDValue &Disp, SDValue &Segment) { 4161 if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment)) 4162 return true; 4163 4164 // Not a load, check for broadcast which may be behind a bitcast. 4165 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) { 4166 P = L.getNode(); 4167 L = L.getOperand(0); 4168 } 4169 4170 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD) 4171 return false; 4172 4173 // Only 32 and 64 bit broadcasts are supported. 4174 auto *MemIntr = cast<MemIntrinsicSDNode>(L); 4175 unsigned Size = MemIntr->getMemoryVT().getSizeInBits(); 4176 if (Size != 32 && Size != 64) 4177 return false; 4178 4179 return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment); 4180 }; 4181 4182 bool FoldedLoad = false; 4183 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 4184 if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 4185 FoldedLoad = true; 4186 } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3, 4187 Tmp4)) { 4188 FoldedLoad = true; 4189 std::swap(A, C); 4190 // Swap bits 1/4 and 3/6. 4191 uint8_t OldImm = Imm; 4192 Imm = OldImm & 0xa5; 4193 if (OldImm & 0x02) Imm |= 0x10; 4194 if (OldImm & 0x10) Imm |= 0x02; 4195 if (OldImm & 0x08) Imm |= 0x40; 4196 if (OldImm & 0x40) Imm |= 0x08; 4197 } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3, 4198 Tmp4)) { 4199 FoldedLoad = true; 4200 std::swap(B, C); 4201 // Swap bits 1/2 and 5/6. 4202 uint8_t OldImm = Imm; 4203 Imm = OldImm & 0x99; 4204 if (OldImm & 0x02) Imm |= 0x04; 4205 if (OldImm & 0x04) Imm |= 0x02; 4206 if (OldImm & 0x20) Imm |= 0x40; 4207 if (OldImm & 0x40) Imm |= 0x20; 4208 } 4209 4210 SDLoc DL(Root); 4211 4212 SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8); 4213 4214 MVT NVT = Root->getSimpleValueType(0); 4215 4216 MachineSDNode *MNode; 4217 if (FoldedLoad) { 4218 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other); 4219 4220 unsigned Opc; 4221 if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) { 4222 auto *MemIntr = cast<MemIntrinsicSDNode>(C); 4223 unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits(); 4224 assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!"); 4225 4226 bool UseD = EltSize == 32; 4227 if (NVT.is128BitVector()) 4228 Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi; 4229 else if (NVT.is256BitVector()) 4230 Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi; 4231 else if (NVT.is512BitVector()) 4232 Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi; 4233 else 4234 llvm_unreachable("Unexpected vector size!"); 4235 } else { 4236 bool UseD = NVT.getVectorElementType() == MVT::i32; 4237 if (NVT.is128BitVector()) 4238 Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi; 4239 else if (NVT.is256BitVector()) 4240 Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi; 4241 else if (NVT.is512BitVector()) 4242 Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi; 4243 else 4244 llvm_unreachable("Unexpected vector size!"); 4245 } 4246 4247 SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)}; 4248 MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops); 4249 4250 // Update the chain. 4251 ReplaceUses(C.getValue(1), SDValue(MNode, 1)); 4252 // Record the mem-refs 4253 CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()}); 4254 } else { 4255 bool UseD = NVT.getVectorElementType() == MVT::i32; 4256 unsigned Opc; 4257 if (NVT.is128BitVector()) 4258 Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri; 4259 else if (NVT.is256BitVector()) 4260 Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri; 4261 else if (NVT.is512BitVector()) 4262 Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri; 4263 else 4264 llvm_unreachable("Unexpected vector size!"); 4265 4266 MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm}); 4267 } 4268 4269 ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0)); 4270 CurDAG->RemoveDeadNode(Root); 4271 return true; 4272 } 4273 4274 // Try to match two logic ops to a VPTERNLOG. 4275 // FIXME: Handle more complex patterns that use an operand more than once? 4276 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) { 4277 MVT NVT = N->getSimpleValueType(0); 4278 4279 // Make sure we support VPTERNLOG. 4280 if (!NVT.isVector() || !Subtarget->hasAVX512() || 4281 NVT.getVectorElementType() == MVT::i1) 4282 return false; 4283 4284 // We need VLX for 128/256-bit. 4285 if (!(Subtarget->hasVLX() || NVT.is512BitVector())) 4286 return false; 4287 4288 SDValue N0 = N->getOperand(0); 4289 SDValue N1 = N->getOperand(1); 4290 4291 auto getFoldableLogicOp = [](SDValue Op) { 4292 // Peek through single use bitcast. 4293 if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse()) 4294 Op = Op.getOperand(0); 4295 4296 if (!Op.hasOneUse()) 4297 return SDValue(); 4298 4299 unsigned Opc = Op.getOpcode(); 4300 if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR || 4301 Opc == X86ISD::ANDNP) 4302 return Op; 4303 4304 return SDValue(); 4305 }; 4306 4307 SDValue A, FoldableOp; 4308 if ((FoldableOp = getFoldableLogicOp(N1))) { 4309 A = N0; 4310 } else if ((FoldableOp = getFoldableLogicOp(N0))) { 4311 A = N1; 4312 } else 4313 return false; 4314 4315 SDValue B = FoldableOp.getOperand(0); 4316 SDValue C = FoldableOp.getOperand(1); 4317 SDNode *ParentA = N; 4318 SDNode *ParentB = FoldableOp.getNode(); 4319 SDNode *ParentC = FoldableOp.getNode(); 4320 4321 // We can build the appropriate control immediate by performing the logic 4322 // operation we're matching using these constants for A, B, and C. 4323 uint8_t TernlogMagicA = 0xf0; 4324 uint8_t TernlogMagicB = 0xcc; 4325 uint8_t TernlogMagicC = 0xaa; 4326 4327 // Some of the inputs may be inverted, peek through them and invert the 4328 // magic values accordingly. 4329 // TODO: There may be a bitcast before the xor that we should peek through. 4330 auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) { 4331 if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() && 4332 ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) { 4333 Magic = ~Magic; 4334 Parent = Op.getNode(); 4335 Op = Op.getOperand(0); 4336 } 4337 }; 4338 4339 PeekThroughNot(A, ParentA, TernlogMagicA); 4340 PeekThroughNot(B, ParentB, TernlogMagicB); 4341 PeekThroughNot(C, ParentC, TernlogMagicC); 4342 4343 uint8_t Imm; 4344 switch (FoldableOp.getOpcode()) { 4345 default: llvm_unreachable("Unexpected opcode!"); 4346 case ISD::AND: Imm = TernlogMagicB & TernlogMagicC; break; 4347 case ISD::OR: Imm = TernlogMagicB | TernlogMagicC; break; 4348 case ISD::XOR: Imm = TernlogMagicB ^ TernlogMagicC; break; 4349 case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break; 4350 } 4351 4352 switch (N->getOpcode()) { 4353 default: llvm_unreachable("Unexpected opcode!"); 4354 case X86ISD::ANDNP: 4355 if (A == N0) 4356 Imm &= ~TernlogMagicA; 4357 else 4358 Imm = ~(Imm) & TernlogMagicA; 4359 break; 4360 case ISD::AND: Imm &= TernlogMagicA; break; 4361 case ISD::OR: Imm |= TernlogMagicA; break; 4362 case ISD::XOR: Imm ^= TernlogMagicA; break; 4363 } 4364 4365 return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm); 4366 } 4367 4368 /// If the high bits of an 'and' operand are known zero, try setting the 4369 /// high bits of an 'and' constant operand to produce a smaller encoding by 4370 /// creating a small, sign-extended negative immediate rather than a large 4371 /// positive one. This reverses a transform in SimplifyDemandedBits that 4372 /// shrinks mask constants by clearing bits. There is also a possibility that 4373 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that 4374 /// case, just replace the 'and'. Return 'true' if the node is replaced. 4375 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) { 4376 // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't 4377 // have immediate operands. 4378 MVT VT = And->getSimpleValueType(0); 4379 if (VT != MVT::i32 && VT != MVT::i64) 4380 return false; 4381 4382 auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1)); 4383 if (!And1C) 4384 return false; 4385 4386 // Bail out if the mask constant is already negative. It's can't shrink more. 4387 // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel 4388 // patterns to use a 32-bit and instead of a 64-bit and by relying on the 4389 // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits 4390 // are negative too. 4391 APInt MaskVal = And1C->getAPIntValue(); 4392 unsigned MaskLZ = MaskVal.countLeadingZeros(); 4393 if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32)) 4394 return false; 4395 4396 // Don't extend into the upper 32 bits of a 64 bit mask. 4397 if (VT == MVT::i64 && MaskLZ >= 32) { 4398 MaskLZ -= 32; 4399 MaskVal = MaskVal.trunc(32); 4400 } 4401 4402 SDValue And0 = And->getOperand(0); 4403 APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ); 4404 APInt NegMaskVal = MaskVal | HighZeros; 4405 4406 // If a negative constant would not allow a smaller encoding, there's no need 4407 // to continue. Only change the constant when we know it's a win. 4408 unsigned MinWidth = NegMaskVal.getMinSignedBits(); 4409 if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32)) 4410 return false; 4411 4412 // Extend masks if we truncated above. 4413 if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) { 4414 NegMaskVal = NegMaskVal.zext(64); 4415 HighZeros = HighZeros.zext(64); 4416 } 4417 4418 // The variable operand must be all zeros in the top bits to allow using the 4419 // new, negative constant as the mask. 4420 if (!CurDAG->MaskedValueIsZero(And0, HighZeros)) 4421 return false; 4422 4423 // Check if the mask is -1. In that case, this is an unnecessary instruction 4424 // that escaped earlier analysis. 4425 if (NegMaskVal.isAllOnes()) { 4426 ReplaceNode(And, And0.getNode()); 4427 return true; 4428 } 4429 4430 // A negative mask allows a smaller encoding. Create a new 'and' node. 4431 SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT); 4432 insertDAGNode(*CurDAG, SDValue(And, 0), NewMask); 4433 SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask); 4434 ReplaceNode(And, NewAnd.getNode()); 4435 SelectCode(NewAnd.getNode()); 4436 return true; 4437 } 4438 4439 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad, 4440 bool FoldedBCast, bool Masked) { 4441 #define VPTESTM_CASE(VT, SUFFIX) \ 4442 case MVT::VT: \ 4443 if (Masked) \ 4444 return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \ 4445 return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX; 4446 4447 4448 #define VPTESTM_BROADCAST_CASES(SUFFIX) \ 4449 default: llvm_unreachable("Unexpected VT!"); \ 4450 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \ 4451 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \ 4452 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \ 4453 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \ 4454 VPTESTM_CASE(v16i32, DZ##SUFFIX) \ 4455 VPTESTM_CASE(v8i64, QZ##SUFFIX) 4456 4457 #define VPTESTM_FULL_CASES(SUFFIX) \ 4458 VPTESTM_BROADCAST_CASES(SUFFIX) \ 4459 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \ 4460 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \ 4461 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \ 4462 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \ 4463 VPTESTM_CASE(v64i8, BZ##SUFFIX) \ 4464 VPTESTM_CASE(v32i16, WZ##SUFFIX) 4465 4466 if (FoldedBCast) { 4467 switch (TestVT.SimpleTy) { 4468 VPTESTM_BROADCAST_CASES(rmb) 4469 } 4470 } 4471 4472 if (FoldedLoad) { 4473 switch (TestVT.SimpleTy) { 4474 VPTESTM_FULL_CASES(rm) 4475 } 4476 } 4477 4478 switch (TestVT.SimpleTy) { 4479 VPTESTM_FULL_CASES(rr) 4480 } 4481 4482 #undef VPTESTM_FULL_CASES 4483 #undef VPTESTM_BROADCAST_CASES 4484 #undef VPTESTM_CASE 4485 } 4486 4487 // Try to create VPTESTM instruction. If InMask is not null, it will be used 4488 // to form a masked operation. 4489 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc, 4490 SDValue InMask) { 4491 assert(Subtarget->hasAVX512() && "Expected AVX512!"); 4492 assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 && 4493 "Unexpected VT!"); 4494 4495 // Look for equal and not equal compares. 4496 ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get(); 4497 if (CC != ISD::SETEQ && CC != ISD::SETNE) 4498 return false; 4499 4500 SDValue SetccOp0 = Setcc.getOperand(0); 4501 SDValue SetccOp1 = Setcc.getOperand(1); 4502 4503 // Canonicalize the all zero vector to the RHS. 4504 if (ISD::isBuildVectorAllZeros(SetccOp0.getNode())) 4505 std::swap(SetccOp0, SetccOp1); 4506 4507 // See if we're comparing against zero. 4508 if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode())) 4509 return false; 4510 4511 SDValue N0 = SetccOp0; 4512 4513 MVT CmpVT = N0.getSimpleValueType(); 4514 MVT CmpSVT = CmpVT.getVectorElementType(); 4515 4516 // Start with both operands the same. We'll try to refine this. 4517 SDValue Src0 = N0; 4518 SDValue Src1 = N0; 4519 4520 { 4521 // Look through single use bitcasts. 4522 SDValue N0Temp = N0; 4523 if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse()) 4524 N0Temp = N0.getOperand(0); 4525 4526 // Look for single use AND. 4527 if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) { 4528 Src0 = N0Temp.getOperand(0); 4529 Src1 = N0Temp.getOperand(1); 4530 } 4531 } 4532 4533 // Without VLX we need to widen the operation. 4534 bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector(); 4535 4536 auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L, 4537 SDValue &Base, SDValue &Scale, SDValue &Index, 4538 SDValue &Disp, SDValue &Segment) { 4539 // If we need to widen, we can't fold the load. 4540 if (!Widen) 4541 if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment)) 4542 return true; 4543 4544 // If we didn't fold a load, try to match broadcast. No widening limitation 4545 // for this. But only 32 and 64 bit types are supported. 4546 if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64) 4547 return false; 4548 4549 // Look through single use bitcasts. 4550 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) { 4551 P = L.getNode(); 4552 L = L.getOperand(0); 4553 } 4554 4555 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD) 4556 return false; 4557 4558 auto *MemIntr = cast<MemIntrinsicSDNode>(L); 4559 if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits()) 4560 return false; 4561 4562 return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment); 4563 }; 4564 4565 // We can only fold loads if the sources are unique. 4566 bool CanFoldLoads = Src0 != Src1; 4567 4568 bool FoldedLoad = false; 4569 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 4570 if (CanFoldLoads) { 4571 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2, 4572 Tmp3, Tmp4); 4573 if (!FoldedLoad) { 4574 // And is commutative. 4575 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1, 4576 Tmp2, Tmp3, Tmp4); 4577 if (FoldedLoad) 4578 std::swap(Src0, Src1); 4579 } 4580 } 4581 4582 bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD; 4583 4584 bool IsMasked = InMask.getNode() != nullptr; 4585 4586 SDLoc dl(Root); 4587 4588 MVT ResVT = Setcc.getSimpleValueType(); 4589 MVT MaskVT = ResVT; 4590 if (Widen) { 4591 // Widen the inputs using insert_subreg or copy_to_regclass. 4592 unsigned Scale = CmpVT.is128BitVector() ? 4 : 2; 4593 unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm; 4594 unsigned NumElts = CmpVT.getVectorNumElements() * Scale; 4595 CmpVT = MVT::getVectorVT(CmpSVT, NumElts); 4596 MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 4597 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl, 4598 CmpVT), 0); 4599 Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0); 4600 4601 if (!FoldedBCast) 4602 Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1); 4603 4604 if (IsMasked) { 4605 // Widen the mask. 4606 unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID(); 4607 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32); 4608 InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 4609 dl, MaskVT, InMask, RC), 0); 4610 } 4611 } 4612 4613 bool IsTestN = CC == ISD::SETEQ; 4614 unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast, 4615 IsMasked); 4616 4617 MachineSDNode *CNode; 4618 if (FoldedLoad) { 4619 SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other); 4620 4621 if (IsMasked) { 4622 SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, 4623 Src1.getOperand(0) }; 4624 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 4625 } else { 4626 SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, 4627 Src1.getOperand(0) }; 4628 CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 4629 } 4630 4631 // Update the chain. 4632 ReplaceUses(Src1.getValue(1), SDValue(CNode, 1)); 4633 // Record the mem-refs 4634 CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()}); 4635 } else { 4636 if (IsMasked) 4637 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1); 4638 else 4639 CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1); 4640 } 4641 4642 // If we widened, we need to shrink the mask VT. 4643 if (Widen) { 4644 unsigned RegClass = TLI->getRegClassFor(ResVT)->getID(); 4645 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32); 4646 CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 4647 dl, ResVT, SDValue(CNode, 0), RC); 4648 } 4649 4650 ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0)); 4651 CurDAG->RemoveDeadNode(Root); 4652 return true; 4653 } 4654 4655 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it 4656 // into vpternlog. 4657 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) { 4658 assert(N->getOpcode() == ISD::OR && "Unexpected opcode!"); 4659 4660 MVT NVT = N->getSimpleValueType(0); 4661 4662 // Make sure we support VPTERNLOG. 4663 if (!NVT.isVector() || !Subtarget->hasAVX512()) 4664 return false; 4665 4666 // We need VLX for 128/256-bit. 4667 if (!(Subtarget->hasVLX() || NVT.is512BitVector())) 4668 return false; 4669 4670 SDValue N0 = N->getOperand(0); 4671 SDValue N1 = N->getOperand(1); 4672 4673 // Canonicalize AND to LHS. 4674 if (N1.getOpcode() == ISD::AND) 4675 std::swap(N0, N1); 4676 4677 if (N0.getOpcode() != ISD::AND || 4678 N1.getOpcode() != X86ISD::ANDNP || 4679 !N0.hasOneUse() || !N1.hasOneUse()) 4680 return false; 4681 4682 // ANDN is not commutable, use it to pick down A and C. 4683 SDValue A = N1.getOperand(0); 4684 SDValue C = N1.getOperand(1); 4685 4686 // AND is commutable, if one operand matches A, the other operand is B. 4687 // Otherwise this isn't a match. 4688 SDValue B; 4689 if (N0.getOperand(0) == A) 4690 B = N0.getOperand(1); 4691 else if (N0.getOperand(1) == A) 4692 B = N0.getOperand(0); 4693 else 4694 return false; 4695 4696 SDLoc dl(N); 4697 SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8); 4698 SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm); 4699 ReplaceNode(N, Ternlog.getNode()); 4700 4701 return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(), 4702 Ternlog.getNode(), A, B, C, 0xCA); 4703 } 4704 4705 void X86DAGToDAGISel::Select(SDNode *Node) { 4706 MVT NVT = Node->getSimpleValueType(0); 4707 unsigned Opcode = Node->getOpcode(); 4708 SDLoc dl(Node); 4709 4710 if (Node->isMachineOpcode()) { 4711 LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n'); 4712 Node->setNodeId(-1); 4713 return; // Already selected. 4714 } 4715 4716 switch (Opcode) { 4717 default: break; 4718 case ISD::INTRINSIC_W_CHAIN: { 4719 unsigned IntNo = Node->getConstantOperandVal(1); 4720 switch (IntNo) { 4721 default: break; 4722 case Intrinsic::x86_encodekey128: 4723 case Intrinsic::x86_encodekey256: { 4724 if (!Subtarget->hasKL()) 4725 break; 4726 4727 unsigned Opcode; 4728 switch (IntNo) { 4729 default: llvm_unreachable("Impossible intrinsic"); 4730 case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break; 4731 case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break; 4732 } 4733 4734 SDValue Chain = Node->getOperand(0); 4735 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3), 4736 SDValue()); 4737 if (Opcode == X86::ENCODEKEY256) 4738 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4), 4739 Chain.getValue(1)); 4740 4741 MachineSDNode *Res = CurDAG->getMachineNode( 4742 Opcode, dl, Node->getVTList(), 4743 {Node->getOperand(2), Chain, Chain.getValue(1)}); 4744 ReplaceNode(Node, Res); 4745 return; 4746 } 4747 case Intrinsic::x86_tileloadd64_internal: 4748 case Intrinsic::x86_tileloaddt164_internal: { 4749 if (!Subtarget->hasAMXTILE()) 4750 break; 4751 unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal 4752 ? X86::PTILELOADDV 4753 : X86::PTILELOADDT1V; 4754 // _tile_loadd_internal(row, col, buf, STRIDE) 4755 SDValue Base = Node->getOperand(4); 4756 SDValue Scale = getI8Imm(1, dl); 4757 SDValue Index = Node->getOperand(5); 4758 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32); 4759 SDValue Segment = CurDAG->getRegister(0, MVT::i16); 4760 SDValue Chain = Node->getOperand(0); 4761 MachineSDNode *CNode; 4762 SDValue Ops[] = {Node->getOperand(2), 4763 Node->getOperand(3), 4764 Base, 4765 Scale, 4766 Index, 4767 Disp, 4768 Segment, 4769 Chain}; 4770 CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops); 4771 ReplaceNode(Node, CNode); 4772 return; 4773 } 4774 } 4775 break; 4776 } 4777 case ISD::INTRINSIC_VOID: { 4778 unsigned IntNo = Node->getConstantOperandVal(1); 4779 switch (IntNo) { 4780 default: break; 4781 case Intrinsic::x86_sse3_monitor: 4782 case Intrinsic::x86_monitorx: 4783 case Intrinsic::x86_clzero: { 4784 bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64; 4785 4786 unsigned Opc = 0; 4787 switch (IntNo) { 4788 default: llvm_unreachable("Unexpected intrinsic!"); 4789 case Intrinsic::x86_sse3_monitor: 4790 if (!Subtarget->hasSSE3()) 4791 break; 4792 Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr; 4793 break; 4794 case Intrinsic::x86_monitorx: 4795 if (!Subtarget->hasMWAITX()) 4796 break; 4797 Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr; 4798 break; 4799 case Intrinsic::x86_clzero: 4800 if (!Subtarget->hasCLZERO()) 4801 break; 4802 Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r; 4803 break; 4804 } 4805 4806 if (Opc) { 4807 unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX; 4808 SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg, 4809 Node->getOperand(2), SDValue()); 4810 SDValue InFlag = Chain.getValue(1); 4811 4812 if (IntNo == Intrinsic::x86_sse3_monitor || 4813 IntNo == Intrinsic::x86_monitorx) { 4814 // Copy the other two operands to ECX and EDX. 4815 Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3), 4816 InFlag); 4817 InFlag = Chain.getValue(1); 4818 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4), 4819 InFlag); 4820 InFlag = Chain.getValue(1); 4821 } 4822 4823 MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, 4824 { Chain, InFlag}); 4825 ReplaceNode(Node, CNode); 4826 return; 4827 } 4828 4829 break; 4830 } 4831 case Intrinsic::x86_tilestored64_internal: { 4832 unsigned Opc = X86::PTILESTOREDV; 4833 // _tile_stored_internal(row, col, buf, STRIDE, c) 4834 SDValue Base = Node->getOperand(4); 4835 SDValue Scale = getI8Imm(1, dl); 4836 SDValue Index = Node->getOperand(5); 4837 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32); 4838 SDValue Segment = CurDAG->getRegister(0, MVT::i16); 4839 SDValue Chain = Node->getOperand(0); 4840 MachineSDNode *CNode; 4841 SDValue Ops[] = {Node->getOperand(2), 4842 Node->getOperand(3), 4843 Base, 4844 Scale, 4845 Index, 4846 Disp, 4847 Segment, 4848 Node->getOperand(6), 4849 Chain}; 4850 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); 4851 ReplaceNode(Node, CNode); 4852 return; 4853 } 4854 case Intrinsic::x86_tileloadd64: 4855 case Intrinsic::x86_tileloaddt164: 4856 case Intrinsic::x86_tilestored64: { 4857 if (!Subtarget->hasAMXTILE()) 4858 break; 4859 unsigned Opc; 4860 switch (IntNo) { 4861 default: llvm_unreachable("Unexpected intrinsic!"); 4862 case Intrinsic::x86_tileloadd64: Opc = X86::PTILELOADD; break; 4863 case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break; 4864 case Intrinsic::x86_tilestored64: Opc = X86::PTILESTORED; break; 4865 } 4866 // FIXME: Match displacement and scale. 4867 unsigned TIndex = Node->getConstantOperandVal(2); 4868 SDValue TReg = getI8Imm(TIndex, dl); 4869 SDValue Base = Node->getOperand(3); 4870 SDValue Scale = getI8Imm(1, dl); 4871 SDValue Index = Node->getOperand(4); 4872 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32); 4873 SDValue Segment = CurDAG->getRegister(0, MVT::i16); 4874 SDValue Chain = Node->getOperand(0); 4875 MachineSDNode *CNode; 4876 if (Opc == X86::PTILESTORED) { 4877 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain }; 4878 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); 4879 } else { 4880 SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain }; 4881 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); 4882 } 4883 ReplaceNode(Node, CNode); 4884 return; 4885 } 4886 } 4887 break; 4888 } 4889 case ISD::BRIND: 4890 case X86ISD::NT_BRIND: { 4891 if (Subtarget->isTargetNaCl()) 4892 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We 4893 // leave the instruction alone. 4894 break; 4895 if (Subtarget->isTarget64BitILP32()) { 4896 // Converts a 32-bit register to a 64-bit, zero-extended version of 4897 // it. This is needed because x86-64 can do many things, but jmp %r32 4898 // ain't one of them. 4899 SDValue Target = Node->getOperand(1); 4900 assert(Target.getValueType() == MVT::i32 && "Unexpected VT!"); 4901 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64); 4902 SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other, 4903 Node->getOperand(0), ZextTarget); 4904 ReplaceNode(Node, Brind.getNode()); 4905 SelectCode(ZextTarget.getNode()); 4906 SelectCode(Brind.getNode()); 4907 return; 4908 } 4909 break; 4910 } 4911 case X86ISD::GlobalBaseReg: 4912 ReplaceNode(Node, getGlobalBaseReg()); 4913 return; 4914 4915 case ISD::BITCAST: 4916 // Just drop all 128/256/512-bit bitcasts. 4917 if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() || 4918 NVT == MVT::f128) { 4919 ReplaceUses(SDValue(Node, 0), Node->getOperand(0)); 4920 CurDAG->RemoveDeadNode(Node); 4921 return; 4922 } 4923 break; 4924 4925 case ISD::SRL: 4926 if (matchBitExtract(Node)) 4927 return; 4928 LLVM_FALLTHROUGH; 4929 case ISD::SRA: 4930 case ISD::SHL: 4931 if (tryShiftAmountMod(Node)) 4932 return; 4933 break; 4934 4935 case X86ISD::VPTERNLOG: { 4936 uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue(); 4937 if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0), 4938 Node->getOperand(1), Node->getOperand(2), Imm)) 4939 return; 4940 break; 4941 } 4942 4943 case X86ISD::ANDNP: 4944 if (tryVPTERNLOG(Node)) 4945 return; 4946 break; 4947 4948 case ISD::AND: 4949 if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) { 4950 // Try to form a masked VPTESTM. Operands can be in either order. 4951 SDValue N0 = Node->getOperand(0); 4952 SDValue N1 = Node->getOperand(1); 4953 if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() && 4954 tryVPTESTM(Node, N0, N1)) 4955 return; 4956 if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() && 4957 tryVPTESTM(Node, N1, N0)) 4958 return; 4959 } 4960 4961 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) { 4962 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0)); 4963 CurDAG->RemoveDeadNode(Node); 4964 return; 4965 } 4966 if (matchBitExtract(Node)) 4967 return; 4968 if (AndImmShrink && shrinkAndImmediate(Node)) 4969 return; 4970 4971 LLVM_FALLTHROUGH; 4972 case ISD::OR: 4973 case ISD::XOR: 4974 if (tryShrinkShlLogicImm(Node)) 4975 return; 4976 if (Opcode == ISD::OR && tryMatchBitSelect(Node)) 4977 return; 4978 if (tryVPTERNLOG(Node)) 4979 return; 4980 4981 LLVM_FALLTHROUGH; 4982 case ISD::ADD: 4983 case ISD::SUB: { 4984 // Try to avoid folding immediates with multiple uses for optsize. 4985 // This code tries to select to register form directly to avoid going 4986 // through the isel table which might fold the immediate. We can't change 4987 // the patterns on the add/sub/and/or/xor with immediate paterns in the 4988 // tablegen files to check immediate use count without making the patterns 4989 // unavailable to the fast-isel table. 4990 if (!CurDAG->shouldOptForSize()) 4991 break; 4992 4993 // Only handle i8/i16/i32/i64. 4994 if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64) 4995 break; 4996 4997 SDValue N0 = Node->getOperand(0); 4998 SDValue N1 = Node->getOperand(1); 4999 5000 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); 5001 if (!Cst) 5002 break; 5003 5004 int64_t Val = Cst->getSExtValue(); 5005 5006 // Make sure its an immediate that is considered foldable. 5007 // FIXME: Handle unsigned 32 bit immediates for 64-bit AND. 5008 if (!isInt<8>(Val) && !isInt<32>(Val)) 5009 break; 5010 5011 // If this can match to INC/DEC, let it go. 5012 if (Opcode == ISD::ADD && (Val == 1 || Val == -1)) 5013 break; 5014 5015 // Check if we should avoid folding this immediate. 5016 if (!shouldAvoidImmediateInstFormsForSize(N1.getNode())) 5017 break; 5018 5019 // We should not fold the immediate. So we need a register form instead. 5020 unsigned ROpc, MOpc; 5021 switch (NVT.SimpleTy) { 5022 default: llvm_unreachable("Unexpected VT!"); 5023 case MVT::i8: 5024 switch (Opcode) { 5025 default: llvm_unreachable("Unexpected opcode!"); 5026 case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break; 5027 case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break; 5028 case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break; 5029 case ISD::OR: ROpc = X86::OR8rr; MOpc = X86::OR8rm; break; 5030 case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break; 5031 } 5032 break; 5033 case MVT::i16: 5034 switch (Opcode) { 5035 default: llvm_unreachable("Unexpected opcode!"); 5036 case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break; 5037 case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break; 5038 case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break; 5039 case ISD::OR: ROpc = X86::OR16rr; MOpc = X86::OR16rm; break; 5040 case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break; 5041 } 5042 break; 5043 case MVT::i32: 5044 switch (Opcode) { 5045 default: llvm_unreachable("Unexpected opcode!"); 5046 case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break; 5047 case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break; 5048 case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break; 5049 case ISD::OR: ROpc = X86::OR32rr; MOpc = X86::OR32rm; break; 5050 case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break; 5051 } 5052 break; 5053 case MVT::i64: 5054 switch (Opcode) { 5055 default: llvm_unreachable("Unexpected opcode!"); 5056 case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break; 5057 case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break; 5058 case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break; 5059 case ISD::OR: ROpc = X86::OR64rr; MOpc = X86::OR64rm; break; 5060 case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break; 5061 } 5062 break; 5063 } 5064 5065 // Ok this is a AND/OR/XOR/ADD/SUB with constant. 5066 5067 // If this is a not a subtract, we can still try to fold a load. 5068 if (Opcode != ISD::SUB) { 5069 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5070 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 5071 SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 5072 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other); 5073 MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5074 // Update the chain. 5075 ReplaceUses(N0.getValue(1), SDValue(CNode, 2)); 5076 // Record the mem-refs 5077 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()}); 5078 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 5079 CurDAG->RemoveDeadNode(Node); 5080 return; 5081 } 5082 } 5083 5084 CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1); 5085 return; 5086 } 5087 5088 case X86ISD::SMUL: 5089 // i16/i32/i64 are handled with isel patterns. 5090 if (NVT != MVT::i8) 5091 break; 5092 LLVM_FALLTHROUGH; 5093 case X86ISD::UMUL: { 5094 SDValue N0 = Node->getOperand(0); 5095 SDValue N1 = Node->getOperand(1); 5096 5097 unsigned LoReg, ROpc, MOpc; 5098 switch (NVT.SimpleTy) { 5099 default: llvm_unreachable("Unsupported VT!"); 5100 case MVT::i8: 5101 LoReg = X86::AL; 5102 ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r; 5103 MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m; 5104 break; 5105 case MVT::i16: 5106 LoReg = X86::AX; 5107 ROpc = X86::MUL16r; 5108 MOpc = X86::MUL16m; 5109 break; 5110 case MVT::i32: 5111 LoReg = X86::EAX; 5112 ROpc = X86::MUL32r; 5113 MOpc = X86::MUL32m; 5114 break; 5115 case MVT::i64: 5116 LoReg = X86::RAX; 5117 ROpc = X86::MUL64r; 5118 MOpc = X86::MUL64m; 5119 break; 5120 } 5121 5122 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5123 bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5124 // Multiply is commutative. 5125 if (!FoldedLoad) { 5126 FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5127 if (FoldedLoad) 5128 std::swap(N0, N1); 5129 } 5130 5131 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 5132 N0, SDValue()).getValue(1); 5133 5134 MachineSDNode *CNode; 5135 if (FoldedLoad) { 5136 // i16/i32/i64 use an instruction that produces a low and high result even 5137 // though only the low result is used. 5138 SDVTList VTs; 5139 if (NVT == MVT::i8) 5140 VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other); 5141 else 5142 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other); 5143 5144 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 5145 InFlag }; 5146 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5147 5148 // Update the chain. 5149 ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3)); 5150 // Record the mem-refs 5151 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); 5152 } else { 5153 // i16/i32/i64 use an instruction that produces a low and high result even 5154 // though only the low result is used. 5155 SDVTList VTs; 5156 if (NVT == MVT::i8) 5157 VTs = CurDAG->getVTList(NVT, MVT::i32); 5158 else 5159 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32); 5160 5161 CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag}); 5162 } 5163 5164 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 5165 ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2)); 5166 CurDAG->RemoveDeadNode(Node); 5167 return; 5168 } 5169 5170 case ISD::SMUL_LOHI: 5171 case ISD::UMUL_LOHI: { 5172 SDValue N0 = Node->getOperand(0); 5173 SDValue N1 = Node->getOperand(1); 5174 5175 unsigned Opc, MOpc; 5176 unsigned LoReg, HiReg; 5177 bool IsSigned = Opcode == ISD::SMUL_LOHI; 5178 bool UseMULX = !IsSigned && Subtarget->hasBMI2(); 5179 bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty(); 5180 switch (NVT.SimpleTy) { 5181 default: llvm_unreachable("Unsupported VT!"); 5182 case MVT::i32: 5183 Opc = UseMULXHi ? X86::MULX32Hrr : 5184 UseMULX ? X86::MULX32rr : 5185 IsSigned ? X86::IMUL32r : X86::MUL32r; 5186 MOpc = UseMULXHi ? X86::MULX32Hrm : 5187 UseMULX ? X86::MULX32rm : 5188 IsSigned ? X86::IMUL32m : X86::MUL32m; 5189 LoReg = UseMULX ? X86::EDX : X86::EAX; 5190 HiReg = X86::EDX; 5191 break; 5192 case MVT::i64: 5193 Opc = UseMULXHi ? X86::MULX64Hrr : 5194 UseMULX ? X86::MULX64rr : 5195 IsSigned ? X86::IMUL64r : X86::MUL64r; 5196 MOpc = UseMULXHi ? X86::MULX64Hrm : 5197 UseMULX ? X86::MULX64rm : 5198 IsSigned ? X86::IMUL64m : X86::MUL64m; 5199 LoReg = UseMULX ? X86::RDX : X86::RAX; 5200 HiReg = X86::RDX; 5201 break; 5202 } 5203 5204 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5205 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5206 // Multiply is commmutative. 5207 if (!foldedLoad) { 5208 foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5209 if (foldedLoad) 5210 std::swap(N0, N1); 5211 } 5212 5213 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, 5214 N0, SDValue()).getValue(1); 5215 SDValue ResHi, ResLo; 5216 if (foldedLoad) { 5217 SDValue Chain; 5218 MachineSDNode *CNode = nullptr; 5219 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 5220 InFlag }; 5221 if (UseMULXHi) { 5222 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other); 5223 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5224 ResHi = SDValue(CNode, 0); 5225 Chain = SDValue(CNode, 1); 5226 } else if (UseMULX) { 5227 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other); 5228 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5229 ResHi = SDValue(CNode, 0); 5230 ResLo = SDValue(CNode, 1); 5231 Chain = SDValue(CNode, 2); 5232 } else { 5233 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); 5234 CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); 5235 Chain = SDValue(CNode, 0); 5236 InFlag = SDValue(CNode, 1); 5237 } 5238 5239 // Update the chain. 5240 ReplaceUses(N1.getValue(1), Chain); 5241 // Record the mem-refs 5242 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); 5243 } else { 5244 SDValue Ops[] = { N1, InFlag }; 5245 if (UseMULXHi) { 5246 SDVTList VTs = CurDAG->getVTList(NVT); 5247 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 5248 ResHi = SDValue(CNode, 0); 5249 } else if (UseMULX) { 5250 SDVTList VTs = CurDAG->getVTList(NVT, NVT); 5251 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 5252 ResHi = SDValue(CNode, 0); 5253 ResLo = SDValue(CNode, 1); 5254 } else { 5255 SDVTList VTs = CurDAG->getVTList(MVT::Glue); 5256 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); 5257 InFlag = SDValue(CNode, 0); 5258 } 5259 } 5260 5261 // Copy the low half of the result, if it is needed. 5262 if (!SDValue(Node, 0).use_empty()) { 5263 if (!ResLo) { 5264 assert(LoReg && "Register for low half is not defined!"); 5265 ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, 5266 NVT, InFlag); 5267 InFlag = ResLo.getValue(2); 5268 } 5269 ReplaceUses(SDValue(Node, 0), ResLo); 5270 LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); 5271 dbgs() << '\n'); 5272 } 5273 // Copy the high half of the result, if it is needed. 5274 if (!SDValue(Node, 1).use_empty()) { 5275 if (!ResHi) { 5276 assert(HiReg && "Register for high half is not defined!"); 5277 ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, 5278 NVT, InFlag); 5279 InFlag = ResHi.getValue(2); 5280 } 5281 ReplaceUses(SDValue(Node, 1), ResHi); 5282 LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); 5283 dbgs() << '\n'); 5284 } 5285 5286 CurDAG->RemoveDeadNode(Node); 5287 return; 5288 } 5289 5290 case ISD::SDIVREM: 5291 case ISD::UDIVREM: { 5292 SDValue N0 = Node->getOperand(0); 5293 SDValue N1 = Node->getOperand(1); 5294 5295 unsigned ROpc, MOpc; 5296 bool isSigned = Opcode == ISD::SDIVREM; 5297 if (!isSigned) { 5298 switch (NVT.SimpleTy) { 5299 default: llvm_unreachable("Unsupported VT!"); 5300 case MVT::i8: ROpc = X86::DIV8r; MOpc = X86::DIV8m; break; 5301 case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break; 5302 case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break; 5303 case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break; 5304 } 5305 } else { 5306 switch (NVT.SimpleTy) { 5307 default: llvm_unreachable("Unsupported VT!"); 5308 case MVT::i8: ROpc = X86::IDIV8r; MOpc = X86::IDIV8m; break; 5309 case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break; 5310 case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break; 5311 case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break; 5312 } 5313 } 5314 5315 unsigned LoReg, HiReg, ClrReg; 5316 unsigned SExtOpcode; 5317 switch (NVT.SimpleTy) { 5318 default: llvm_unreachable("Unsupported VT!"); 5319 case MVT::i8: 5320 LoReg = X86::AL; ClrReg = HiReg = X86::AH; 5321 SExtOpcode = 0; // Not used. 5322 break; 5323 case MVT::i16: 5324 LoReg = X86::AX; HiReg = X86::DX; 5325 ClrReg = X86::DX; 5326 SExtOpcode = X86::CWD; 5327 break; 5328 case MVT::i32: 5329 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX; 5330 SExtOpcode = X86::CDQ; 5331 break; 5332 case MVT::i64: 5333 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX; 5334 SExtOpcode = X86::CQO; 5335 break; 5336 } 5337 5338 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5339 bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); 5340 bool signBitIsZero = CurDAG->SignBitIsZero(N0); 5341 5342 SDValue InFlag; 5343 if (NVT == MVT::i8) { 5344 // Special case for div8, just use a move with zero extension to AX to 5345 // clear the upper 8 bits (AH). 5346 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain; 5347 MachineSDNode *Move; 5348 if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 5349 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) }; 5350 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8 5351 : X86::MOVZX16rm8; 5352 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops); 5353 Chain = SDValue(Move, 1); 5354 ReplaceUses(N0.getValue(1), Chain); 5355 // Record the mem-refs 5356 CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()}); 5357 } else { 5358 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8 5359 : X86::MOVZX16rr8; 5360 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0); 5361 Chain = CurDAG->getEntryNode(); 5362 } 5363 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0), 5364 SDValue()); 5365 InFlag = Chain.getValue(1); 5366 } else { 5367 InFlag = 5368 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, 5369 LoReg, N0, SDValue()).getValue(1); 5370 if (isSigned && !signBitIsZero) { 5371 // Sign extend the low part into the high part. 5372 InFlag = 5373 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); 5374 } else { 5375 // Zero out the high part, effectively zero extending the input. 5376 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32); 5377 SDValue ClrNode = 5378 SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0); 5379 switch (NVT.SimpleTy) { 5380 case MVT::i16: 5381 ClrNode = 5382 SDValue(CurDAG->getMachineNode( 5383 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode, 5384 CurDAG->getTargetConstant(X86::sub_16bit, dl, 5385 MVT::i32)), 5386 0); 5387 break; 5388 case MVT::i32: 5389 break; 5390 case MVT::i64: 5391 ClrNode = 5392 SDValue(CurDAG->getMachineNode( 5393 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, 5394 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode, 5395 CurDAG->getTargetConstant(X86::sub_32bit, dl, 5396 MVT::i32)), 5397 0); 5398 break; 5399 default: 5400 llvm_unreachable("Unexpected division source"); 5401 } 5402 5403 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg, 5404 ClrNode, InFlag).getValue(1); 5405 } 5406 } 5407 5408 if (foldedLoad) { 5409 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), 5410 InFlag }; 5411 MachineSDNode *CNode = 5412 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops); 5413 InFlag = SDValue(CNode, 1); 5414 // Update the chain. 5415 ReplaceUses(N1.getValue(1), SDValue(CNode, 0)); 5416 // Record the mem-refs 5417 CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); 5418 } else { 5419 InFlag = 5420 SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0); 5421 } 5422 5423 // Prevent use of AH in a REX instruction by explicitly copying it to 5424 // an ABCD_L register. 5425 // 5426 // The current assumption of the register allocator is that isel 5427 // won't generate explicit references to the GR8_ABCD_H registers. If 5428 // the allocator and/or the backend get enhanced to be more robust in 5429 // that regard, this can be, and should be, removed. 5430 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) { 5431 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8); 5432 unsigned AHExtOpcode = 5433 isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX; 5434 5435 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32, 5436 MVT::Glue, AHCopy, InFlag); 5437 SDValue Result(RNode, 0); 5438 InFlag = SDValue(RNode, 1); 5439 5440 Result = 5441 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result); 5442 5443 ReplaceUses(SDValue(Node, 1), Result); 5444 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); 5445 dbgs() << '\n'); 5446 } 5447 // Copy the division (low) result, if it is needed. 5448 if (!SDValue(Node, 0).use_empty()) { 5449 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 5450 LoReg, NVT, InFlag); 5451 InFlag = Result.getValue(2); 5452 ReplaceUses(SDValue(Node, 0), Result); 5453 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); 5454 dbgs() << '\n'); 5455 } 5456 // Copy the remainder (high) result, if it is needed. 5457 if (!SDValue(Node, 1).use_empty()) { 5458 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, 5459 HiReg, NVT, InFlag); 5460 InFlag = Result.getValue(2); 5461 ReplaceUses(SDValue(Node, 1), Result); 5462 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); 5463 dbgs() << '\n'); 5464 } 5465 CurDAG->RemoveDeadNode(Node); 5466 return; 5467 } 5468 5469 case X86ISD::FCMP: 5470 case X86ISD::STRICT_FCMP: 5471 case X86ISD::STRICT_FCMPS: { 5472 bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP || 5473 Node->getOpcode() == X86ISD::STRICT_FCMPS; 5474 SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0); 5475 SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1); 5476 5477 // Save the original VT of the compare. 5478 MVT CmpVT = N0.getSimpleValueType(); 5479 5480 // Floating point needs special handling if we don't have FCOMI. 5481 if (Subtarget->hasCMov()) 5482 break; 5483 5484 bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS; 5485 5486 unsigned Opc; 5487 switch (CmpVT.SimpleTy) { 5488 default: llvm_unreachable("Unexpected type!"); 5489 case MVT::f32: 5490 Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32; 5491 break; 5492 case MVT::f64: 5493 Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64; 5494 break; 5495 case MVT::f80: 5496 Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80; 5497 break; 5498 } 5499 5500 SDValue Chain = 5501 IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode(); 5502 SDValue Glue; 5503 if (IsStrictCmp) { 5504 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); 5505 Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0); 5506 Glue = Chain.getValue(1); 5507 } else { 5508 Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0); 5509 } 5510 5511 // Move FPSW to AX. 5512 SDValue FNSTSW = 5513 SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0); 5514 5515 // Extract upper 8-bits of AX. 5516 SDValue Extract = 5517 CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW); 5518 5519 // Move AH into flags. 5520 // Some 64-bit targets lack SAHF support, but they do support FCOMI. 5521 assert(Subtarget->hasLAHFSAHF() && 5522 "Target doesn't support SAHF or FCOMI?"); 5523 SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue()); 5524 Chain = AH; 5525 SDValue SAHF = SDValue( 5526 CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0); 5527 5528 if (IsStrictCmp) 5529 ReplaceUses(SDValue(Node, 1), Chain); 5530 5531 ReplaceUses(SDValue(Node, 0), SAHF); 5532 CurDAG->RemoveDeadNode(Node); 5533 return; 5534 } 5535 5536 case X86ISD::CMP: { 5537 SDValue N0 = Node->getOperand(0); 5538 SDValue N1 = Node->getOperand(1); 5539 5540 // Optimizations for TEST compares. 5541 if (!isNullConstant(N1)) 5542 break; 5543 5544 // Save the original VT of the compare. 5545 MVT CmpVT = N0.getSimpleValueType(); 5546 5547 // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed 5548 // by a test instruction. The test should be removed later by 5549 // analyzeCompare if we are using only the zero flag. 5550 // TODO: Should we check the users and use the BEXTR flags directly? 5551 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 5552 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) { 5553 unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr 5554 : X86::TEST32rr; 5555 SDValue BEXTR = SDValue(NewNode, 0); 5556 NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR); 5557 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0)); 5558 CurDAG->RemoveDeadNode(Node); 5559 return; 5560 } 5561 } 5562 5563 // We can peek through truncates, but we need to be careful below. 5564 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse()) 5565 N0 = N0.getOperand(0); 5566 5567 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to 5568 // use a smaller encoding. 5569 // Look past the truncate if CMP is the only use of it. 5570 if (N0.getOpcode() == ISD::AND && 5571 N0.getNode()->hasOneUse() && 5572 N0.getValueType() != MVT::i8) { 5573 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5574 if (!C) break; 5575 uint64_t Mask = C->getZExtValue(); 5576 // We may have looked through a truncate so mask off any bits that 5577 // shouldn't be part of the compare. 5578 Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits()); 5579 5580 // Check if we can replace AND+IMM64 with a shift. This is possible for 5581 // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero 5582 // flag. 5583 if (CmpVT == MVT::i64 && !isInt<32>(Mask) && 5584 onlyUsesZeroFlag(SDValue(Node, 0))) { 5585 if (isMask_64(~Mask)) { 5586 unsigned TrailingZeros = countTrailingZeros(Mask); 5587 SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64); 5588 SDValue Shift = 5589 SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32, 5590 N0.getOperand(0), Imm), 0); 5591 MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl, 5592 MVT::i32, Shift, Shift); 5593 ReplaceNode(Node, Test); 5594 return; 5595 } 5596 if (isMask_64(Mask)) { 5597 unsigned LeadingZeros = countLeadingZeros(Mask); 5598 SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64); 5599 SDValue Shift = 5600 SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32, 5601 N0.getOperand(0), Imm), 0); 5602 MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl, 5603 MVT::i32, Shift, Shift); 5604 ReplaceNode(Node, Test); 5605 return; 5606 } 5607 } 5608 5609 MVT VT; 5610 int SubRegOp; 5611 unsigned ROpc, MOpc; 5612 5613 // For each of these checks we need to be careful if the sign flag is 5614 // being used. It is only safe to use the sign flag in two conditions, 5615 // either the sign bit in the shrunken mask is zero or the final test 5616 // size is equal to the original compare size. 5617 5618 if (isUInt<8>(Mask) && 5619 (!(Mask & 0x80) || CmpVT == MVT::i8 || 5620 hasNoSignFlagUses(SDValue(Node, 0)))) { 5621 // For example, convert "testl %eax, $8" to "testb %al, $8" 5622 VT = MVT::i8; 5623 SubRegOp = X86::sub_8bit; 5624 ROpc = X86::TEST8ri; 5625 MOpc = X86::TEST8mi; 5626 } else if (OptForMinSize && isUInt<16>(Mask) && 5627 (!(Mask & 0x8000) || CmpVT == MVT::i16 || 5628 hasNoSignFlagUses(SDValue(Node, 0)))) { 5629 // For example, "testl %eax, $32776" to "testw %ax, $32776". 5630 // NOTE: We only want to form TESTW instructions if optimizing for 5631 // min size. Otherwise we only save one byte and possibly get a length 5632 // changing prefix penalty in the decoders. 5633 VT = MVT::i16; 5634 SubRegOp = X86::sub_16bit; 5635 ROpc = X86::TEST16ri; 5636 MOpc = X86::TEST16mi; 5637 } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 && 5638 ((!(Mask & 0x80000000) && 5639 // Without minsize 16-bit Cmps can get here so we need to 5640 // be sure we calculate the correct sign flag if needed. 5641 (CmpVT != MVT::i16 || !(Mask & 0x8000))) || 5642 CmpVT == MVT::i32 || 5643 hasNoSignFlagUses(SDValue(Node, 0)))) { 5644 // For example, "testq %rax, $268468232" to "testl %eax, $268468232". 5645 // NOTE: We only want to run that transform if N0 is 32 or 64 bits. 5646 // Otherwize, we find ourselves in a position where we have to do 5647 // promotion. If previous passes did not promote the and, we assume 5648 // they had a good reason not to and do not promote here. 5649 VT = MVT::i32; 5650 SubRegOp = X86::sub_32bit; 5651 ROpc = X86::TEST32ri; 5652 MOpc = X86::TEST32mi; 5653 } else { 5654 // No eligible transformation was found. 5655 break; 5656 } 5657 5658 SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT); 5659 SDValue Reg = N0.getOperand(0); 5660 5661 // Emit a testl or testw. 5662 MachineSDNode *NewNode; 5663 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; 5664 if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) { 5665 if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) { 5666 if (!LoadN->isSimple()) { 5667 unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits(); 5668 if ((MOpc == X86::TEST8mi && NumVolBits != 8) || 5669 (MOpc == X86::TEST16mi && NumVolBits != 16) || 5670 (MOpc == X86::TEST32mi && NumVolBits != 32)) 5671 break; 5672 } 5673 } 5674 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm, 5675 Reg.getOperand(0) }; 5676 NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops); 5677 // Update the chain. 5678 ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1)); 5679 // Record the mem-refs 5680 CurDAG->setNodeMemRefs(NewNode, 5681 {cast<LoadSDNode>(Reg)->getMemOperand()}); 5682 } else { 5683 // Extract the subregister if necessary. 5684 if (N0.getValueType() != VT) 5685 Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg); 5686 5687 NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm); 5688 } 5689 // Replace CMP with TEST. 5690 ReplaceNode(Node, NewNode); 5691 return; 5692 } 5693 break; 5694 } 5695 case X86ISD::PCMPISTR: { 5696 if (!Subtarget->hasSSE42()) 5697 break; 5698 5699 bool NeedIndex = !SDValue(Node, 0).use_empty(); 5700 bool NeedMask = !SDValue(Node, 1).use_empty(); 5701 // We can't fold a load if we are going to make two instructions. 5702 bool MayFoldLoad = !NeedIndex || !NeedMask; 5703 5704 MachineSDNode *CNode; 5705 if (NeedMask) { 5706 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr; 5707 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm; 5708 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node); 5709 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0)); 5710 } 5711 if (NeedIndex || !NeedMask) { 5712 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr; 5713 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm; 5714 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node); 5715 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 5716 } 5717 5718 // Connect the flag usage to the last instruction created. 5719 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1)); 5720 CurDAG->RemoveDeadNode(Node); 5721 return; 5722 } 5723 case X86ISD::PCMPESTR: { 5724 if (!Subtarget->hasSSE42()) 5725 break; 5726 5727 // Copy the two implicit register inputs. 5728 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX, 5729 Node->getOperand(1), 5730 SDValue()).getValue(1); 5731 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX, 5732 Node->getOperand(3), InFlag).getValue(1); 5733 5734 bool NeedIndex = !SDValue(Node, 0).use_empty(); 5735 bool NeedMask = !SDValue(Node, 1).use_empty(); 5736 // We can't fold a load if we are going to make two instructions. 5737 bool MayFoldLoad = !NeedIndex || !NeedMask; 5738 5739 MachineSDNode *CNode; 5740 if (NeedMask) { 5741 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr; 5742 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm; 5743 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node, 5744 InFlag); 5745 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0)); 5746 } 5747 if (NeedIndex || !NeedMask) { 5748 unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr; 5749 unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm; 5750 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag); 5751 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0)); 5752 } 5753 // Connect the flag usage to the last instruction created. 5754 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1)); 5755 CurDAG->RemoveDeadNode(Node); 5756 return; 5757 } 5758 5759 case ISD::SETCC: { 5760 if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue())) 5761 return; 5762 5763 break; 5764 } 5765 5766 case ISD::STORE: 5767 if (foldLoadStoreIntoMemOperand(Node)) 5768 return; 5769 break; 5770 5771 case X86ISD::SETCC_CARRY: { 5772 // We have to do this manually because tblgen will put the eflags copy in 5773 // the wrong place if we use an extract_subreg in the pattern. 5774 MVT VT = Node->getSimpleValueType(0); 5775 5776 // Copy flags to the EFLAGS register and glue it to next node. 5777 SDValue EFLAGS = 5778 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS, 5779 Node->getOperand(1), SDValue()); 5780 5781 // Create a 64-bit instruction if the result is 64-bits otherwise use the 5782 // 32-bit version. 5783 unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r; 5784 MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32; 5785 SDValue Result = SDValue( 5786 CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)), 0); 5787 5788 // For less than 32-bits we need to extract from the 32-bit node. 5789 if (VT == MVT::i8 || VT == MVT::i16) { 5790 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit; 5791 Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result); 5792 } 5793 5794 ReplaceUses(SDValue(Node, 0), Result); 5795 CurDAG->RemoveDeadNode(Node); 5796 return; 5797 } 5798 case X86ISD::SBB: { 5799 if (isNullConstant(Node->getOperand(0)) && 5800 isNullConstant(Node->getOperand(1))) { 5801 MVT VT = Node->getSimpleValueType(0); 5802 5803 // Create zero. 5804 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32); 5805 SDValue Zero = 5806 SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0); 5807 if (VT == MVT::i64) { 5808 Zero = SDValue( 5809 CurDAG->getMachineNode( 5810 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, 5811 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero, 5812 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)), 5813 0); 5814 } 5815 5816 // Copy flags to the EFLAGS register and glue it to next node. 5817 SDValue EFLAGS = 5818 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS, 5819 Node->getOperand(2), SDValue()); 5820 5821 // Create a 64-bit instruction if the result is 64-bits otherwise use the 5822 // 32-bit version. 5823 unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr; 5824 MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32; 5825 VTs = CurDAG->getVTList(SBBVT, MVT::i32); 5826 SDValue Result = 5827 SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {Zero, Zero, EFLAGS, 5828 EFLAGS.getValue(1)}), 5829 0); 5830 5831 // Replace the flag use. 5832 ReplaceUses(SDValue(Node, 1), Result.getValue(1)); 5833 5834 // Replace the result use. 5835 if (!SDValue(Node, 0).use_empty()) { 5836 // For less than 32-bits we need to extract from the 32-bit node. 5837 if (VT == MVT::i8 || VT == MVT::i16) { 5838 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit; 5839 Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result); 5840 } 5841 ReplaceUses(SDValue(Node, 0), Result); 5842 } 5843 5844 CurDAG->RemoveDeadNode(Node); 5845 return; 5846 } 5847 break; 5848 } 5849 case X86ISD::MGATHER: { 5850 auto *Mgt = cast<X86MaskedGatherSDNode>(Node); 5851 SDValue IndexOp = Mgt->getIndex(); 5852 SDValue Mask = Mgt->getMask(); 5853 MVT IndexVT = IndexOp.getSimpleValueType(); 5854 MVT ValueVT = Node->getSimpleValueType(0); 5855 MVT MaskVT = Mask.getSimpleValueType(); 5856 5857 // This is just to prevent crashes if the nodes are malformed somehow. We're 5858 // otherwise only doing loose type checking in here based on type what 5859 // a type constraint would say just like table based isel. 5860 if (!ValueVT.isVector() || !MaskVT.isVector()) 5861 break; 5862 5863 unsigned NumElts = ValueVT.getVectorNumElements(); 5864 MVT ValueSVT = ValueVT.getVectorElementType(); 5865 5866 bool IsFP = ValueSVT.isFloatingPoint(); 5867 unsigned EltSize = ValueSVT.getSizeInBits(); 5868 5869 unsigned Opc = 0; 5870 bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1; 5871 if (AVX512Gather) { 5872 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) 5873 Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm; 5874 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) 5875 Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm; 5876 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32) 5877 Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm; 5878 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) 5879 Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm; 5880 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) 5881 Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm; 5882 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64) 5883 Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm; 5884 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) 5885 Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm; 5886 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) 5887 Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm; 5888 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32) 5889 Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm; 5890 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) 5891 Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm; 5892 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) 5893 Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm; 5894 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64) 5895 Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm; 5896 } else { 5897 assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() && 5898 "Unexpected mask VT!"); 5899 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) 5900 Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm; 5901 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) 5902 Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm; 5903 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) 5904 Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm; 5905 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) 5906 Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm; 5907 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) 5908 Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm; 5909 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) 5910 Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm; 5911 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) 5912 Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm; 5913 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) 5914 Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm; 5915 } 5916 5917 if (!Opc) 5918 break; 5919 5920 SDValue Base, Scale, Index, Disp, Segment; 5921 if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(), 5922 Base, Scale, Index, Disp, Segment)) 5923 break; 5924 5925 SDValue PassThru = Mgt->getPassThru(); 5926 SDValue Chain = Mgt->getChain(); 5927 // Gather instructions have a mask output not in the ISD node. 5928 SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other); 5929 5930 MachineSDNode *NewNode; 5931 if (AVX512Gather) { 5932 SDValue Ops[] = {PassThru, Mask, Base, Scale, 5933 Index, Disp, Segment, Chain}; 5934 NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); 5935 } else { 5936 SDValue Ops[] = {PassThru, Base, Scale, Index, 5937 Disp, Segment, Mask, Chain}; 5938 NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); 5939 } 5940 CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()}); 5941 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0)); 5942 ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2)); 5943 CurDAG->RemoveDeadNode(Node); 5944 return; 5945 } 5946 case X86ISD::MSCATTER: { 5947 auto *Sc = cast<X86MaskedScatterSDNode>(Node); 5948 SDValue Value = Sc->getValue(); 5949 SDValue IndexOp = Sc->getIndex(); 5950 MVT IndexVT = IndexOp.getSimpleValueType(); 5951 MVT ValueVT = Value.getSimpleValueType(); 5952 5953 // This is just to prevent crashes if the nodes are malformed somehow. We're 5954 // otherwise only doing loose type checking in here based on type what 5955 // a type constraint would say just like table based isel. 5956 if (!ValueVT.isVector()) 5957 break; 5958 5959 unsigned NumElts = ValueVT.getVectorNumElements(); 5960 MVT ValueSVT = ValueVT.getVectorElementType(); 5961 5962 bool IsFP = ValueSVT.isFloatingPoint(); 5963 unsigned EltSize = ValueSVT.getSizeInBits(); 5964 5965 unsigned Opc; 5966 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) 5967 Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr; 5968 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) 5969 Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr; 5970 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32) 5971 Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr; 5972 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) 5973 Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr; 5974 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) 5975 Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr; 5976 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64) 5977 Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr; 5978 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) 5979 Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr; 5980 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) 5981 Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr; 5982 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32) 5983 Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr; 5984 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) 5985 Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr; 5986 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) 5987 Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr; 5988 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64) 5989 Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr; 5990 else 5991 break; 5992 5993 SDValue Base, Scale, Index, Disp, Segment; 5994 if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(), 5995 Base, Scale, Index, Disp, Segment)) 5996 break; 5997 5998 SDValue Mask = Sc->getMask(); 5999 SDValue Chain = Sc->getChain(); 6000 // Scatter instructions have a mask output not in the ISD node. 6001 SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other); 6002 SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain}; 6003 6004 MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); 6005 CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()}); 6006 ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1)); 6007 CurDAG->RemoveDeadNode(Node); 6008 return; 6009 } 6010 case ISD::PREALLOCATED_SETUP: { 6011 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>(); 6012 auto CallId = MFI->getPreallocatedIdForCallSite( 6013 cast<SrcValueSDNode>(Node->getOperand(1))->getValue()); 6014 SDValue Chain = Node->getOperand(0); 6015 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32); 6016 MachineSDNode *New = CurDAG->getMachineNode( 6017 TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain); 6018 ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain 6019 CurDAG->RemoveDeadNode(Node); 6020 return; 6021 } 6022 case ISD::PREALLOCATED_ARG: { 6023 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>(); 6024 auto CallId = MFI->getPreallocatedIdForCallSite( 6025 cast<SrcValueSDNode>(Node->getOperand(1))->getValue()); 6026 SDValue Chain = Node->getOperand(0); 6027 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32); 6028 SDValue ArgIndex = Node->getOperand(2); 6029 SDValue Ops[3]; 6030 Ops[0] = CallIdValue; 6031 Ops[1] = ArgIndex; 6032 Ops[2] = Chain; 6033 MachineSDNode *New = CurDAG->getMachineNode( 6034 TargetOpcode::PREALLOCATED_ARG, dl, 6035 CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()), 6036 MVT::Other), 6037 Ops); 6038 ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer 6039 ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain 6040 CurDAG->RemoveDeadNode(Node); 6041 return; 6042 } 6043 case X86ISD::AESENCWIDE128KL: 6044 case X86ISD::AESDECWIDE128KL: 6045 case X86ISD::AESENCWIDE256KL: 6046 case X86ISD::AESDECWIDE256KL: { 6047 if (!Subtarget->hasWIDEKL()) 6048 break; 6049 6050 unsigned Opcode; 6051 switch (Node->getOpcode()) { 6052 default: 6053 llvm_unreachable("Unexpected opcode!"); 6054 case X86ISD::AESENCWIDE128KL: 6055 Opcode = X86::AESENCWIDE128KL; 6056 break; 6057 case X86ISD::AESDECWIDE128KL: 6058 Opcode = X86::AESDECWIDE128KL; 6059 break; 6060 case X86ISD::AESENCWIDE256KL: 6061 Opcode = X86::AESENCWIDE256KL; 6062 break; 6063 case X86ISD::AESDECWIDE256KL: 6064 Opcode = X86::AESDECWIDE256KL; 6065 break; 6066 } 6067 6068 SDValue Chain = Node->getOperand(0); 6069 SDValue Addr = Node->getOperand(1); 6070 6071 SDValue Base, Scale, Index, Disp, Segment; 6072 if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment)) 6073 break; 6074 6075 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2), 6076 SDValue()); 6077 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3), 6078 Chain.getValue(1)); 6079 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4), 6080 Chain.getValue(1)); 6081 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5), 6082 Chain.getValue(1)); 6083 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6), 6084 Chain.getValue(1)); 6085 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7), 6086 Chain.getValue(1)); 6087 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8), 6088 Chain.getValue(1)); 6089 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9), 6090 Chain.getValue(1)); 6091 6092 MachineSDNode *Res = CurDAG->getMachineNode( 6093 Opcode, dl, Node->getVTList(), 6094 {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)}); 6095 CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand()); 6096 ReplaceNode(Node, Res); 6097 return; 6098 } 6099 } 6100 6101 SelectCode(Node); 6102 } 6103 6104 bool X86DAGToDAGISel:: 6105 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, 6106 std::vector<SDValue> &OutOps) { 6107 SDValue Op0, Op1, Op2, Op3, Op4; 6108 switch (ConstraintID) { 6109 default: 6110 llvm_unreachable("Unexpected asm memory constraint"); 6111 case InlineAsm::Constraint_o: // offsetable ?? 6112 case InlineAsm::Constraint_v: // not offsetable ?? 6113 case InlineAsm::Constraint_m: // memory 6114 case InlineAsm::Constraint_X: 6115 if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4)) 6116 return true; 6117 break; 6118 } 6119 6120 OutOps.push_back(Op0); 6121 OutOps.push_back(Op1); 6122 OutOps.push_back(Op2); 6123 OutOps.push_back(Op3); 6124 OutOps.push_back(Op4); 6125 return false; 6126 } 6127 6128 /// This pass converts a legalized DAG into a X86-specific DAG, 6129 /// ready for instruction scheduling. 6130 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, 6131 CodeGenOpt::Level OptLevel) { 6132 return new X86DAGToDAGISel(TM, OptLevel); 6133 } 6134