xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp (revision 8036e7876d23145ca4bce797608e2ffb3c06a870)
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/SelectionDAGISel.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/IR/ConstantRange.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/IntrinsicsX86.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <stdint.h>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "x86-isel"
41 
42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
43 
44 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
45     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
46     cl::Hidden);
47 
48 //===----------------------------------------------------------------------===//
49 //                      Pattern Matcher Implementation
50 //===----------------------------------------------------------------------===//
51 
52 namespace {
53   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
54   /// numbers for the leaves of the matched tree.
55   struct X86ISelAddressMode {
56     enum {
57       RegBase,
58       FrameIndexBase
59     } BaseType;
60 
61     // This is really a union, discriminated by BaseType!
62     SDValue Base_Reg;
63     int Base_FrameIndex;
64 
65     unsigned Scale;
66     SDValue IndexReg;
67     int32_t Disp;
68     SDValue Segment;
69     const GlobalValue *GV;
70     const Constant *CP;
71     const BlockAddress *BlockAddr;
72     const char *ES;
73     MCSymbol *MCSym;
74     int JT;
75     unsigned Align;    // CP alignment.
76     unsigned char SymbolFlags;  // X86II::MO_*
77     bool NegateIndex = false;
78 
79     X86ISelAddressMode()
80         : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
81           Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
82           MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {}
83 
84     bool hasSymbolicDisplacement() const {
85       return GV != nullptr || CP != nullptr || ES != nullptr ||
86              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
87     }
88 
89     bool hasBaseOrIndexReg() const {
90       return BaseType == FrameIndexBase ||
91              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
92     }
93 
94     /// Return true if this addressing mode is already RIP-relative.
95     bool isRIPRelative() const {
96       if (BaseType != RegBase) return false;
97       if (RegisterSDNode *RegNode =
98             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
99         return RegNode->getReg() == X86::RIP;
100       return false;
101     }
102 
103     void setBaseReg(SDValue Reg) {
104       BaseType = RegBase;
105       Base_Reg = Reg;
106     }
107 
108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
109     void dump(SelectionDAG *DAG = nullptr) {
110       dbgs() << "X86ISelAddressMode " << this << '\n';
111       dbgs() << "Base_Reg ";
112       if (Base_Reg.getNode())
113         Base_Reg.getNode()->dump(DAG);
114       else
115         dbgs() << "nul\n";
116       if (BaseType == FrameIndexBase)
117         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
118       dbgs() << " Scale " << Scale << '\n'
119              << "IndexReg ";
120       if (NegateIndex)
121         dbgs() << "negate ";
122       if (IndexReg.getNode())
123         IndexReg.getNode()->dump(DAG);
124       else
125         dbgs() << "nul\n";
126       dbgs() << " Disp " << Disp << '\n'
127              << "GV ";
128       if (GV)
129         GV->dump();
130       else
131         dbgs() << "nul";
132       dbgs() << " CP ";
133       if (CP)
134         CP->dump();
135       else
136         dbgs() << "nul";
137       dbgs() << '\n'
138              << "ES ";
139       if (ES)
140         dbgs() << ES;
141       else
142         dbgs() << "nul";
143       dbgs() << " MCSym ";
144       if (MCSym)
145         dbgs() << MCSym;
146       else
147         dbgs() << "nul";
148       dbgs() << " JT" << JT << " Align" << Align << '\n';
149     }
150 #endif
151   };
152 }
153 
154 namespace {
155   //===--------------------------------------------------------------------===//
156   /// ISel - X86-specific code to select X86 machine instructions for
157   /// SelectionDAG operations.
158   ///
159   class X86DAGToDAGISel final : public SelectionDAGISel {
160     /// Keep a pointer to the X86Subtarget around so that we can
161     /// make the right decision when generating code for different targets.
162     const X86Subtarget *Subtarget;
163 
164     /// If true, selector should try to optimize for code size instead of
165     /// performance.
166     bool OptForSize;
167 
168     /// If true, selector should try to optimize for minimum code size.
169     bool OptForMinSize;
170 
171     /// Disable direct TLS access through segment registers.
172     bool IndirectTlsSegRefs;
173 
174   public:
175     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
176         : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr), OptForSize(false),
177           OptForMinSize(false), IndirectTlsSegRefs(false) {}
178 
179     StringRef getPassName() const override {
180       return "X86 DAG->DAG Instruction Selection";
181     }
182 
183     bool runOnMachineFunction(MachineFunction &MF) override {
184       // Reset the subtarget each time through.
185       Subtarget = &MF.getSubtarget<X86Subtarget>();
186       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
187                              "indirect-tls-seg-refs");
188 
189       // OptFor[Min]Size are used in pattern predicates that isel is matching.
190       OptForSize = MF.getFunction().hasOptSize();
191       OptForMinSize = MF.getFunction().hasMinSize();
192       assert((!OptForMinSize || OptForSize) &&
193              "OptForMinSize implies OptForSize");
194 
195       SelectionDAGISel::runOnMachineFunction(MF);
196       return true;
197     }
198 
199     void EmitFunctionEntryCode() override;
200 
201     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
202 
203     void PreprocessISelDAG() override;
204     void PostprocessISelDAG() override;
205 
206 // Include the pieces autogenerated from the target description.
207 #include "X86GenDAGISel.inc"
208 
209   private:
210     void Select(SDNode *N) override;
211 
212     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
213     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
214     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
215     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
216     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
217     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
218     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
219                                  unsigned Depth);
220     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
221     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
222                     SDValue &Scale, SDValue &Index, SDValue &Disp,
223                     SDValue &Segment);
224     bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
225                           SDValue &Scale, SDValue &Index, SDValue &Disp,
226                           SDValue &Segment);
227     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
228     bool selectLEAAddr(SDValue N, SDValue &Base,
229                        SDValue &Scale, SDValue &Index, SDValue &Disp,
230                        SDValue &Segment);
231     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
232                             SDValue &Scale, SDValue &Index, SDValue &Disp,
233                             SDValue &Segment);
234     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
235                            SDValue &Scale, SDValue &Index, SDValue &Disp,
236                            SDValue &Segment);
237     bool selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N,
238                              SDValue &Base, SDValue &Scale,
239                              SDValue &Index, SDValue &Disp,
240                              SDValue &Segment,
241                              SDValue &NodeWithChain);
242     bool selectRelocImm(SDValue N, SDValue &Op);
243 
244     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
245                      SDValue &Base, SDValue &Scale,
246                      SDValue &Index, SDValue &Disp,
247                      SDValue &Segment);
248 
249     // Convenience method where P is also root.
250     bool tryFoldLoad(SDNode *P, SDValue N,
251                      SDValue &Base, SDValue &Scale,
252                      SDValue &Index, SDValue &Disp,
253                      SDValue &Segment) {
254       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
255     }
256 
257     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
258                           SDValue &Base, SDValue &Scale,
259                           SDValue &Index, SDValue &Disp,
260                           SDValue &Segment);
261 
262     /// Implement addressing mode selection for inline asm expressions.
263     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
264                                       unsigned ConstraintID,
265                                       std::vector<SDValue> &OutOps) override;
266 
267     void emitSpecialCodeForMain();
268 
269     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
270                                    MVT VT, SDValue &Base, SDValue &Scale,
271                                    SDValue &Index, SDValue &Disp,
272                                    SDValue &Segment) {
273       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
274         Base = CurDAG->getTargetFrameIndex(
275             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
276       else if (AM.Base_Reg.getNode())
277         Base = AM.Base_Reg;
278       else
279         Base = CurDAG->getRegister(0, VT);
280 
281       Scale = getI8Imm(AM.Scale, DL);
282 
283       // Negate the index if needed.
284       if (AM.NegateIndex) {
285         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
286         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
287                                                      AM.IndexReg), 0);
288         AM.IndexReg = Neg;
289       }
290 
291       if (AM.IndexReg.getNode())
292         Index = AM.IndexReg;
293       else
294         Index = CurDAG->getRegister(0, VT);
295 
296       // These are 32-bit even in 64-bit mode since RIP-relative offset
297       // is 32-bit.
298       if (AM.GV)
299         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
300                                               MVT::i32, AM.Disp,
301                                               AM.SymbolFlags);
302       else if (AM.CP)
303         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
304                                              AM.Align, AM.Disp, AM.SymbolFlags);
305       else if (AM.ES) {
306         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
307         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
308       } else if (AM.MCSym) {
309         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
310         assert(AM.SymbolFlags == 0 && "oo");
311         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
312       } else if (AM.JT != -1) {
313         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
314         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
315       } else if (AM.BlockAddr)
316         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
317                                              AM.SymbolFlags);
318       else
319         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
320 
321       if (AM.Segment.getNode())
322         Segment = AM.Segment;
323       else
324         Segment = CurDAG->getRegister(0, MVT::i16);
325     }
326 
327     // Utility function to determine whether we should avoid selecting
328     // immediate forms of instructions for better code size or not.
329     // At a high level, we'd like to avoid such instructions when
330     // we have similar constants used within the same basic block
331     // that can be kept in a register.
332     //
333     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
334       uint32_t UseCount = 0;
335 
336       // Do not want to hoist if we're not optimizing for size.
337       // TODO: We'd like to remove this restriction.
338       // See the comment in X86InstrInfo.td for more info.
339       if (!CurDAG->shouldOptForSize())
340         return false;
341 
342       // Walk all the users of the immediate.
343       for (SDNode::use_iterator UI = N->use_begin(),
344            UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
345 
346         SDNode *User = *UI;
347 
348         // This user is already selected. Count it as a legitimate use and
349         // move on.
350         if (User->isMachineOpcode()) {
351           UseCount++;
352           continue;
353         }
354 
355         // We want to count stores of immediates as real uses.
356         if (User->getOpcode() == ISD::STORE &&
357             User->getOperand(1).getNode() == N) {
358           UseCount++;
359           continue;
360         }
361 
362         // We don't currently match users that have > 2 operands (except
363         // for stores, which are handled above)
364         // Those instruction won't match in ISEL, for now, and would
365         // be counted incorrectly.
366         // This may change in the future as we add additional instruction
367         // types.
368         if (User->getNumOperands() != 2)
369           continue;
370 
371         // If this can match to INC/DEC, don't count it as a use.
372         if (User->getOpcode() == ISD::ADD &&
373             (isOneConstant(SDValue(N, 0)) || isAllOnesConstant(SDValue(N, 0))))
374           continue;
375 
376         // Immediates that are used for offsets as part of stack
377         // manipulation should be left alone. These are typically
378         // used to indicate SP offsets for argument passing and
379         // will get pulled into stores/pushes (implicitly).
380         if (User->getOpcode() == X86ISD::ADD ||
381             User->getOpcode() == ISD::ADD    ||
382             User->getOpcode() == X86ISD::SUB ||
383             User->getOpcode() == ISD::SUB) {
384 
385           // Find the other operand of the add/sub.
386           SDValue OtherOp = User->getOperand(0);
387           if (OtherOp.getNode() == N)
388             OtherOp = User->getOperand(1);
389 
390           // Don't count if the other operand is SP.
391           RegisterSDNode *RegNode;
392           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
393               (RegNode = dyn_cast_or_null<RegisterSDNode>(
394                  OtherOp->getOperand(1).getNode())))
395             if ((RegNode->getReg() == X86::ESP) ||
396                 (RegNode->getReg() == X86::RSP))
397               continue;
398         }
399 
400         // ... otherwise, count this and move on.
401         UseCount++;
402       }
403 
404       // If we have more than 1 use, then recommend for hoisting.
405       return (UseCount > 1);
406     }
407 
408     /// Return a target constant with the specified value of type i8.
409     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
410       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
411     }
412 
413     /// Return a target constant with the specified value, of type i32.
414     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
415       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
416     }
417 
418     /// Return a target constant with the specified value, of type i64.
419     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
420       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
421     }
422 
423     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
424                                         const SDLoc &DL) {
425       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
426       uint64_t Index = N->getConstantOperandVal(1);
427       MVT VecVT = N->getOperand(0).getSimpleValueType();
428       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
429     }
430 
431     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
432                                       const SDLoc &DL) {
433       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
434       uint64_t Index = N->getConstantOperandVal(2);
435       MVT VecVT = N->getSimpleValueType(0);
436       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
437     }
438 
439     // Helper to detect unneeded and instructions on shift amounts. Called
440     // from PatFrags in tablegen.
441     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
442       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
443       const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
444 
445       if (Val.countTrailingOnes() >= Width)
446         return true;
447 
448       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
449       return Mask.countTrailingOnes() >= Width;
450     }
451 
452     /// Return an SDNode that returns the value of the global base register.
453     /// Output instructions required to initialize the global base register,
454     /// if necessary.
455     SDNode *getGlobalBaseReg();
456 
457     /// Return a reference to the TargetMachine, casted to the target-specific
458     /// type.
459     const X86TargetMachine &getTargetMachine() const {
460       return static_cast<const X86TargetMachine &>(TM);
461     }
462 
463     /// Return a reference to the TargetInstrInfo, casted to the target-specific
464     /// type.
465     const X86InstrInfo *getInstrInfo() const {
466       return Subtarget->getInstrInfo();
467     }
468 
469     /// Address-mode matching performs shift-of-and to and-of-shift
470     /// reassociation in order to expose more scaled addressing
471     /// opportunities.
472     bool ComplexPatternFuncMutatesDAG() const override {
473       return true;
474     }
475 
476     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
477 
478     /// Returns whether this is a relocatable immediate in the range
479     /// [-2^Width .. 2^Width-1].
480     template <unsigned Width> bool isSExtRelocImm(SDNode *N) const {
481       if (auto *CN = dyn_cast<ConstantSDNode>(N))
482         return isInt<Width>(CN->getSExtValue());
483       return isSExtAbsoluteSymbolRef(Width, N);
484     }
485 
486     // Indicates we should prefer to use a non-temporal load for this load.
487     bool useNonTemporalLoad(LoadSDNode *N) const {
488       if (!N->isNonTemporal())
489         return false;
490 
491       unsigned StoreSize = N->getMemoryVT().getStoreSize();
492 
493       if (N->getAlignment() < StoreSize)
494         return false;
495 
496       switch (StoreSize) {
497       default: llvm_unreachable("Unsupported store size");
498       case 4:
499       case 8:
500         return false;
501       case 16:
502         return Subtarget->hasSSE41();
503       case 32:
504         return Subtarget->hasAVX2();
505       case 64:
506         return Subtarget->hasAVX512();
507       }
508     }
509 
510     bool foldLoadStoreIntoMemOperand(SDNode *Node);
511     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
512     bool matchBitExtract(SDNode *Node);
513     bool shrinkAndImmediate(SDNode *N);
514     bool isMaskZeroExtended(SDNode *N) const;
515     bool tryShiftAmountMod(SDNode *N);
516     bool combineIncDecVector(SDNode *Node);
517     bool tryShrinkShlLogicImm(SDNode *N);
518     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
519     bool tryMatchBitSelect(SDNode *N);
520 
521     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
522                                 const SDLoc &dl, MVT VT, SDNode *Node);
523     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
524                                 const SDLoc &dl, MVT VT, SDNode *Node,
525                                 SDValue &InFlag);
526 
527     bool tryOptimizeRem8Extend(SDNode *N);
528 
529     bool onlyUsesZeroFlag(SDValue Flags) const;
530     bool hasNoSignFlagUses(SDValue Flags) const;
531     bool hasNoCarryFlagUses(SDValue Flags) const;
532   };
533 }
534 
535 
536 // Returns true if this masked compare can be implemented legally with this
537 // type.
538 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
539   unsigned Opcode = N->getOpcode();
540   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::STRICT_CMPM ||
541       Opcode == ISD::SETCC || Opcode == X86ISD::CMPM_SAE ||
542       Opcode == X86ISD::VFPCLASS) {
543     // We can get 256-bit 8 element types here without VLX being enabled. When
544     // this happens we will use 512-bit operations and the mask will not be
545     // zero extended.
546     EVT OpVT = N->getOperand(0).getValueType();
547     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
548     // second operand.
549     if (Opcode == X86ISD::STRICT_CMPM)
550       OpVT = N->getOperand(1).getValueType();
551     if (OpVT.is256BitVector() || OpVT.is128BitVector())
552       return Subtarget->hasVLX();
553 
554     return true;
555   }
556   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
557   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
558       Opcode == X86ISD::FSETCCM_SAE)
559     return true;
560 
561   return false;
562 }
563 
564 // Returns true if we can assume the writer of the mask has zero extended it
565 // for us.
566 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
567   // If this is an AND, check if we have a compare on either side. As long as
568   // one side guarantees the mask is zero extended, the AND will preserve those
569   // zeros.
570   if (N->getOpcode() == ISD::AND)
571     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
572            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
573 
574   return isLegalMaskCompare(N, Subtarget);
575 }
576 
577 bool
578 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
579   if (OptLevel == CodeGenOpt::None) return false;
580 
581   if (!N.hasOneUse())
582     return false;
583 
584   // FIXME: Temporary hack to prevent strict floating point nodes from
585   // folding into masked operations illegally.
586   if (U == Root && Root->getOpcode() == ISD::VSELECT &&
587       N.getOpcode() != ISD::LOAD && N.getOpcode() != X86ISD::VBROADCAST_LOAD)
588     return false;
589 
590   if (N.getOpcode() != ISD::LOAD)
591     return true;
592 
593   // Don't fold non-temporal loads if we have an instruction for them.
594   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
595     return false;
596 
597   // If N is a load, do additional profitability checks.
598   if (U == Root) {
599     switch (U->getOpcode()) {
600     default: break;
601     case X86ISD::ADD:
602     case X86ISD::ADC:
603     case X86ISD::SUB:
604     case X86ISD::SBB:
605     case X86ISD::AND:
606     case X86ISD::XOR:
607     case X86ISD::OR:
608     case ISD::ADD:
609     case ISD::ADDCARRY:
610     case ISD::AND:
611     case ISD::OR:
612     case ISD::XOR: {
613       SDValue Op1 = U->getOperand(1);
614 
615       // If the other operand is a 8-bit immediate we should fold the immediate
616       // instead. This reduces code size.
617       // e.g.
618       // movl 4(%esp), %eax
619       // addl $4, %eax
620       // vs.
621       // movl $4, %eax
622       // addl 4(%esp), %eax
623       // The former is 2 bytes shorter. In case where the increment is 1, then
624       // the saving can be 4 bytes (by using incl %eax).
625       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
626         if (Imm->getAPIntValue().isSignedIntN(8))
627           return false;
628 
629         // If this is a 64-bit AND with an immediate that fits in 32-bits,
630         // prefer using the smaller and over folding the load. This is needed to
631         // make sure immediates created by shrinkAndImmediate are always folded.
632         // Ideally we would narrow the load during DAG combine and get the
633         // best of both worlds.
634         if (U->getOpcode() == ISD::AND &&
635             Imm->getAPIntValue().getBitWidth() == 64 &&
636             Imm->getAPIntValue().isIntN(32))
637           return false;
638 
639         // If this really a zext_inreg that can be represented with a movzx
640         // instruction, prefer that.
641         // TODO: We could shrink the load and fold if it is non-volatile.
642         if (U->getOpcode() == ISD::AND &&
643             (Imm->getAPIntValue() == UINT8_MAX ||
644              Imm->getAPIntValue() == UINT16_MAX ||
645              Imm->getAPIntValue() == UINT32_MAX))
646           return false;
647 
648         // ADD/SUB with can negate the immediate and use the opposite operation
649         // to fit 128 into a sign extended 8 bit immediate.
650         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
651             (-Imm->getAPIntValue()).isSignedIntN(8))
652           return false;
653       }
654 
655       // If the other operand is a TLS address, we should fold it instead.
656       // This produces
657       // movl    %gs:0, %eax
658       // leal    i@NTPOFF(%eax), %eax
659       // instead of
660       // movl    $i@NTPOFF, %eax
661       // addl    %gs:0, %eax
662       // if the block also has an access to a second TLS address this will save
663       // a load.
664       // FIXME: This is probably also true for non-TLS addresses.
665       if (Op1.getOpcode() == X86ISD::Wrapper) {
666         SDValue Val = Op1.getOperand(0);
667         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
668           return false;
669       }
670 
671       // Don't fold load if this matches the BTS/BTR/BTC patterns.
672       // BTS: (or X, (shl 1, n))
673       // BTR: (and X, (rotl -2, n))
674       // BTC: (xor X, (shl 1, n))
675       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
676         if (U->getOperand(0).getOpcode() == ISD::SHL &&
677             isOneConstant(U->getOperand(0).getOperand(0)))
678           return false;
679 
680         if (U->getOperand(1).getOpcode() == ISD::SHL &&
681             isOneConstant(U->getOperand(1).getOperand(0)))
682           return false;
683       }
684       if (U->getOpcode() == ISD::AND) {
685         SDValue U0 = U->getOperand(0);
686         SDValue U1 = U->getOperand(1);
687         if (U0.getOpcode() == ISD::ROTL) {
688           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
689           if (C && C->getSExtValue() == -2)
690             return false;
691         }
692 
693         if (U1.getOpcode() == ISD::ROTL) {
694           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
695           if (C && C->getSExtValue() == -2)
696             return false;
697         }
698       }
699 
700       break;
701     }
702     case ISD::SHL:
703     case ISD::SRA:
704     case ISD::SRL:
705       // Don't fold a load into a shift by immediate. The BMI2 instructions
706       // support folding a load, but not an immediate. The legacy instructions
707       // support folding an immediate, but can't fold a load. Folding an
708       // immediate is preferable to folding a load.
709       if (isa<ConstantSDNode>(U->getOperand(1)))
710         return false;
711 
712       break;
713     }
714   }
715 
716   // Prevent folding a load if this can implemented with an insert_subreg or
717   // a move that implicitly zeroes.
718   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
719       isNullConstant(Root->getOperand(2)) &&
720       (Root->getOperand(0).isUndef() ||
721        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
722     return false;
723 
724   return true;
725 }
726 
727 /// Replace the original chain operand of the call with
728 /// load's chain operand and move load below the call's chain operand.
729 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
730                                SDValue Call, SDValue OrigChain) {
731   SmallVector<SDValue, 8> Ops;
732   SDValue Chain = OrigChain.getOperand(0);
733   if (Chain.getNode() == Load.getNode())
734     Ops.push_back(Load.getOperand(0));
735   else {
736     assert(Chain.getOpcode() == ISD::TokenFactor &&
737            "Unexpected chain operand");
738     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
739       if (Chain.getOperand(i).getNode() == Load.getNode())
740         Ops.push_back(Load.getOperand(0));
741       else
742         Ops.push_back(Chain.getOperand(i));
743     SDValue NewChain =
744       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
745     Ops.clear();
746     Ops.push_back(NewChain);
747   }
748   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
749   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
750   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
751                              Load.getOperand(1), Load.getOperand(2));
752 
753   Ops.clear();
754   Ops.push_back(SDValue(Load.getNode(), 1));
755   Ops.append(Call->op_begin() + 1, Call->op_end());
756   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
757 }
758 
759 /// Return true if call address is a load and it can be
760 /// moved below CALLSEQ_START and the chains leading up to the call.
761 /// Return the CALLSEQ_START by reference as a second output.
762 /// In the case of a tail call, there isn't a callseq node between the call
763 /// chain and the load.
764 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
765   // The transformation is somewhat dangerous if the call's chain was glued to
766   // the call. After MoveBelowOrigChain the load is moved between the call and
767   // the chain, this can create a cycle if the load is not folded. So it is
768   // *really* important that we are sure the load will be folded.
769   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
770     return false;
771   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
772   if (!LD ||
773       !LD->isSimple() ||
774       LD->getAddressingMode() != ISD::UNINDEXED ||
775       LD->getExtensionType() != ISD::NON_EXTLOAD)
776     return false;
777 
778   // Now let's find the callseq_start.
779   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
780     if (!Chain.hasOneUse())
781       return false;
782     Chain = Chain.getOperand(0);
783   }
784 
785   if (!Chain.getNumOperands())
786     return false;
787   // Since we are not checking for AA here, conservatively abort if the chain
788   // writes to memory. It's not safe to move the callee (a load) across a store.
789   if (isa<MemSDNode>(Chain.getNode()) &&
790       cast<MemSDNode>(Chain.getNode())->writeMem())
791     return false;
792   if (Chain.getOperand(0).getNode() == Callee.getNode())
793     return true;
794   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
795       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
796       Callee.getValue(1).hasOneUse())
797     return true;
798   return false;
799 }
800 
801 void X86DAGToDAGISel::PreprocessISelDAG() {
802   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
803        E = CurDAG->allnodes_end(); I != E; ) {
804     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
805 
806     // If this is a target specific AND node with no flag usages, turn it back
807     // into ISD::AND to enable test instruction matching.
808     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
809       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
810                                     N->getOperand(0), N->getOperand(1));
811       --I;
812       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
813       ++I;
814       CurDAG->DeleteNode(N);
815       continue;
816     }
817 
818     switch (N->getOpcode()) {
819     case ISD::FP_ROUND:
820     case ISD::STRICT_FP_ROUND:
821     case ISD::FP_TO_SINT:
822     case ISD::FP_TO_UINT:
823     case ISD::STRICT_FP_TO_SINT:
824     case ISD::STRICT_FP_TO_UINT: {
825       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
826       // don't need 2 sets of patterns.
827       if (!N->getSimpleValueType(0).isVector())
828         break;
829 
830       unsigned NewOpc;
831       switch (N->getOpcode()) {
832       default: llvm_unreachable("Unexpected opcode!");
833       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
834       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
835       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
836       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
837       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
838       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
839       }
840       SDValue Res;
841       if (N->isStrictFPOpcode())
842         Res =
843             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
844                             {N->getOperand(0), N->getOperand(1)});
845       else
846         Res =
847             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
848                             N->getOperand(0));
849       --I;
850       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
851       ++I;
852       CurDAG->DeleteNode(N);
853       continue;
854     }
855     case ISD::SHL:
856     case ISD::SRA:
857     case ISD::SRL: {
858       // Replace vector shifts with their X86 specific equivalent so we don't
859       // need 2 sets of patterns.
860       if (!N->getValueType(0).isVector())
861         break;
862 
863       unsigned NewOpc;
864       switch (N->getOpcode()) {
865       default: llvm_unreachable("Unexpected opcode!");
866       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
867       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
868       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
869       }
870       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
871                                     N->getOperand(0), N->getOperand(1));
872       --I;
873       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
874       ++I;
875       CurDAG->DeleteNode(N);
876       continue;
877     }
878     case ISD::ANY_EXTEND:
879     case ISD::ANY_EXTEND_VECTOR_INREG: {
880       // Replace vector any extend with the zero extend equivalents so we don't
881       // need 2 sets of patterns. Ignore vXi1 extensions.
882       if (!N->getValueType(0).isVector() ||
883           N->getOperand(0).getScalarValueSizeInBits() == 1)
884         break;
885 
886       unsigned NewOpc = N->getOpcode() == ISD::ANY_EXTEND
887                             ? ISD::ZERO_EXTEND
888                             : ISD::ZERO_EXTEND_VECTOR_INREG;
889 
890       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
891                                     N->getOperand(0));
892       --I;
893       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
894       ++I;
895       CurDAG->DeleteNode(N);
896       continue;
897     }
898     case ISD::FCEIL:
899     case ISD::STRICT_FCEIL:
900     case ISD::FFLOOR:
901     case ISD::STRICT_FFLOOR:
902     case ISD::FTRUNC:
903     case ISD::STRICT_FTRUNC:
904     case ISD::FNEARBYINT:
905     case ISD::STRICT_FNEARBYINT:
906     case ISD::FRINT:
907     case ISD::STRICT_FRINT: {
908       // Replace fp rounding with their X86 specific equivalent so we don't
909       // need 2 sets of patterns.
910       unsigned Imm;
911       switch (N->getOpcode()) {
912       default: llvm_unreachable("Unexpected opcode!");
913       case ISD::STRICT_FCEIL:
914       case ISD::FCEIL:      Imm = 0xA; break;
915       case ISD::STRICT_FFLOOR:
916       case ISD::FFLOOR:     Imm = 0x9; break;
917       case ISD::STRICT_FTRUNC:
918       case ISD::FTRUNC:     Imm = 0xB; break;
919       case ISD::STRICT_FNEARBYINT:
920       case ISD::FNEARBYINT: Imm = 0xC; break;
921       case ISD::STRICT_FRINT:
922       case ISD::FRINT:      Imm = 0x4; break;
923       }
924       SDLoc dl(N);
925       bool IsStrict = N->isStrictFPOpcode();
926       SDValue Res;
927       if (IsStrict)
928         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
929                               {N->getValueType(0), MVT::Other},
930                               {N->getOperand(0), N->getOperand(1),
931                                CurDAG->getTargetConstant(Imm, dl, MVT::i8)});
932       else
933         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
934                               N->getOperand(0),
935                               CurDAG->getTargetConstant(Imm, dl, MVT::i8));
936       --I;
937       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
938       ++I;
939       CurDAG->DeleteNode(N);
940       continue;
941     }
942     case X86ISD::FANDN:
943     case X86ISD::FAND:
944     case X86ISD::FOR:
945     case X86ISD::FXOR: {
946       // Widen scalar fp logic ops to vector to reduce isel patterns.
947       // FIXME: Can we do this during lowering/combine.
948       MVT VT = N->getSimpleValueType(0);
949       if (VT.isVector() || VT == MVT::f128)
950         break;
951 
952       MVT VecVT = VT == MVT::f64 ? MVT::v2f64 : MVT::v4f32;
953       SDLoc dl(N);
954       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
955                                     N->getOperand(0));
956       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
957                                     N->getOperand(1));
958 
959       SDValue Res;
960       if (Subtarget->hasSSE2()) {
961         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
962         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
963         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
964         unsigned Opc;
965         switch (N->getOpcode()) {
966         default: llvm_unreachable("Unexpected opcode!");
967         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
968         case X86ISD::FAND:  Opc = ISD::AND;      break;
969         case X86ISD::FOR:   Opc = ISD::OR;       break;
970         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
971         }
972         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
973         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
974       } else {
975         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
976       }
977       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
978                             CurDAG->getIntPtrConstant(0, dl));
979       --I;
980       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
981       ++I;
982       CurDAG->DeleteNode(N);
983       continue;
984     }
985     }
986 
987     if (OptLevel != CodeGenOpt::None &&
988         // Only do this when the target can fold the load into the call or
989         // jmp.
990         !Subtarget->useIndirectThunkCalls() &&
991         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
992          (N->getOpcode() == X86ISD::TC_RETURN &&
993           (Subtarget->is64Bit() ||
994            !getTargetMachine().isPositionIndependent())))) {
995       /// Also try moving call address load from outside callseq_start to just
996       /// before the call to allow it to be folded.
997       ///
998       ///     [Load chain]
999       ///         ^
1000       ///         |
1001       ///       [Load]
1002       ///       ^    ^
1003       ///       |    |
1004       ///      /      \--
1005       ///     /          |
1006       ///[CALLSEQ_START] |
1007       ///     ^          |
1008       ///     |          |
1009       /// [LOAD/C2Reg]   |
1010       ///     |          |
1011       ///      \        /
1012       ///       \      /
1013       ///       [CALL]
1014       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1015       SDValue Chain = N->getOperand(0);
1016       SDValue Load  = N->getOperand(1);
1017       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1018         continue;
1019       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1020       ++NumLoadMoved;
1021       continue;
1022     }
1023 
1024     // Lower fpround and fpextend nodes that target the FP stack to be store and
1025     // load to the stack.  This is a gross hack.  We would like to simply mark
1026     // these as being illegal, but when we do that, legalize produces these when
1027     // it expands calls, then expands these in the same legalize pass.  We would
1028     // like dag combine to be able to hack on these between the call expansion
1029     // and the node legalization.  As such this pass basically does "really
1030     // late" legalization of these inline with the X86 isel pass.
1031     // FIXME: This should only happen when not compiled with -O0.
1032     switch (N->getOpcode()) {
1033     default: continue;
1034     case ISD::FP_ROUND:
1035     case ISD::FP_EXTEND:
1036     {
1037       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1038       MVT DstVT = N->getSimpleValueType(0);
1039 
1040       // If any of the sources are vectors, no fp stack involved.
1041       if (SrcVT.isVector() || DstVT.isVector())
1042         continue;
1043 
1044       // If the source and destination are SSE registers, then this is a legal
1045       // conversion that should not be lowered.
1046       const X86TargetLowering *X86Lowering =
1047           static_cast<const X86TargetLowering *>(TLI);
1048       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1049       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1050       if (SrcIsSSE && DstIsSSE)
1051         continue;
1052 
1053       if (!SrcIsSSE && !DstIsSSE) {
1054         // If this is an FPStack extension, it is a noop.
1055         if (N->getOpcode() == ISD::FP_EXTEND)
1056           continue;
1057         // If this is a value-preserving FPStack truncation, it is a noop.
1058         if (N->getConstantOperandVal(1))
1059           continue;
1060       }
1061 
1062       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1063       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1064       // operations.  Based on this, decide what we want to do.
1065       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1066       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1067       SDLoc dl(N);
1068 
1069       // FIXME: optimize the case where the src/dest is a load or store?
1070 
1071       SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0),
1072                                           MemTmp, MachinePointerInfo(), MemVT);
1073       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
1074                                           MachinePointerInfo(), MemVT);
1075 
1076       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1077       // extload we created.  This will cause general havok on the dag because
1078       // anything below the conversion could be folded into other existing nodes.
1079       // To avoid invalidating 'I', back it up to the convert node.
1080       --I;
1081       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1082       break;
1083     }
1084 
1085     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1086     //dealing with the chain differently, as there is already a preexisting chain.
1087     case ISD::STRICT_FP_ROUND:
1088     case ISD::STRICT_FP_EXTEND:
1089     {
1090       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1091       MVT DstVT = N->getSimpleValueType(0);
1092 
1093       // If any of the sources are vectors, no fp stack involved.
1094       if (SrcVT.isVector() || DstVT.isVector())
1095         continue;
1096 
1097       // If the source and destination are SSE registers, then this is a legal
1098       // conversion that should not be lowered.
1099       const X86TargetLowering *X86Lowering =
1100           static_cast<const X86TargetLowering *>(TLI);
1101       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1102       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1103       if (SrcIsSSE && DstIsSSE)
1104         continue;
1105 
1106       if (!SrcIsSSE && !DstIsSSE) {
1107         // If this is an FPStack extension, it is a noop.
1108         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1109           continue;
1110         // If this is a value-preserving FPStack truncation, it is a noop.
1111         if (N->getConstantOperandVal(2))
1112           continue;
1113       }
1114 
1115       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1116       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1117       // operations.  Based on this, decide what we want to do.
1118       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1119       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1120       SDLoc dl(N);
1121 
1122       // FIXME: optimize the case where the src/dest is a load or store?
1123 
1124       //Since the operation is StrictFP, use the preexisting chain.
1125       SDValue Store, Result;
1126       if (!SrcIsSSE) {
1127         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1128         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1129         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1130                                             MachinePointerInfo(), 0,
1131                                             MachineMemOperand::MOStore);
1132         if (N->getFlags().hasNoFPExcept()) {
1133           SDNodeFlags Flags = Store->getFlags();
1134           Flags.setNoFPExcept(true);
1135           Store->setFlags(Flags);
1136         }
1137       } else {
1138         assert(SrcVT == MemVT && "Unexpected VT!");
1139         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1140                                  MachinePointerInfo());
1141       }
1142 
1143       if (!DstIsSSE) {
1144         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1145         SDValue Ops[] = {Store, MemTmp};
1146         Result = CurDAG->getMemIntrinsicNode(X86ISD::FLD, dl, VTs, Ops, MemVT,
1147                                              MachinePointerInfo(), 0,
1148                                              MachineMemOperand::MOLoad);
1149         if (N->getFlags().hasNoFPExcept()) {
1150           SDNodeFlags Flags = Result->getFlags();
1151           Flags.setNoFPExcept(true);
1152           Result->setFlags(Flags);
1153         }
1154       } else {
1155         assert(DstVT == MemVT && "Unexpected VT!");
1156         Result =
1157             CurDAG->getLoad(DstVT, dl, Store, MemTmp, MachinePointerInfo());
1158       }
1159 
1160       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1161       // extload we created.  This will cause general havok on the dag because
1162       // anything below the conversion could be folded into other existing nodes.
1163       // To avoid invalidating 'I', back it up to the convert node.
1164       --I;
1165       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1166       break;
1167     }
1168     }
1169 
1170 
1171     // Now that we did that, the node is dead.  Increment the iterator to the
1172     // next node to process, then delete N.
1173     ++I;
1174     CurDAG->DeleteNode(N);
1175   }
1176 
1177   // The load+call transform above can leave some dead nodes in the graph. Make
1178   // sure we remove them. Its possible some of the other transforms do to so
1179   // just remove dead nodes unconditionally.
1180   CurDAG->RemoveDeadNodes();
1181 }
1182 
1183 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1184 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1185   unsigned Opc = N->getMachineOpcode();
1186   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1187       Opc != X86::MOVSX64rr8)
1188     return false;
1189 
1190   SDValue N0 = N->getOperand(0);
1191 
1192   // We need to be extracting the lower bit of an extend.
1193   if (!N0.isMachineOpcode() ||
1194       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1195       N0.getConstantOperandVal(1) != X86::sub_8bit)
1196     return false;
1197 
1198   // We're looking for either a movsx or movzx to match the original opcode.
1199   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1200                                                 : X86::MOVSX32rr8_NOREX;
1201   SDValue N00 = N0.getOperand(0);
1202   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1203     return false;
1204 
1205   if (Opc == X86::MOVSX64rr8) {
1206     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1207     // to 64.
1208     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1209                                                    MVT::i64, N00);
1210     ReplaceUses(N, Extend);
1211   } else {
1212     // Ok we can drop this extend and just use the original extend.
1213     ReplaceUses(N, N00.getNode());
1214   }
1215 
1216   return true;
1217 }
1218 
1219 void X86DAGToDAGISel::PostprocessISelDAG() {
1220   // Skip peepholes at -O0.
1221   if (TM.getOptLevel() == CodeGenOpt::None)
1222     return;
1223 
1224   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1225 
1226   bool MadeChange = false;
1227   while (Position != CurDAG->allnodes_begin()) {
1228     SDNode *N = &*--Position;
1229     // Skip dead nodes and any non-machine opcodes.
1230     if (N->use_empty() || !N->isMachineOpcode())
1231       continue;
1232 
1233     if (tryOptimizeRem8Extend(N)) {
1234       MadeChange = true;
1235       continue;
1236     }
1237 
1238     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1239     // the same. Rewrite to remove the AND.
1240     unsigned Opc = N->getMachineOpcode();
1241     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1242          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1243         N->getOperand(0) == N->getOperand(1) &&
1244         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1245         N->getOperand(0).isMachineOpcode()) {
1246       SDValue And = N->getOperand(0);
1247       unsigned N0Opc = And.getMachineOpcode();
1248       if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1249           N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
1250         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1251                                                      MVT::i32,
1252                                                      And.getOperand(0),
1253                                                      And.getOperand(1));
1254         ReplaceUses(N, Test);
1255         MadeChange = true;
1256         continue;
1257       }
1258       if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1259           N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
1260         unsigned NewOpc;
1261         switch (N0Opc) {
1262         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1263         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1264         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1265         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1266         }
1267 
1268         // Need to swap the memory and register operand.
1269         SDValue Ops[] = { And.getOperand(1),
1270                           And.getOperand(2),
1271                           And.getOperand(3),
1272                           And.getOperand(4),
1273                           And.getOperand(5),
1274                           And.getOperand(0),
1275                           And.getOperand(6)  /* Chain */ };
1276         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1277                                                      MVT::i32, MVT::Other, Ops);
1278         ReplaceUses(N, Test);
1279         MadeChange = true;
1280         continue;
1281       }
1282     }
1283 
1284     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1285     // used. We're doing this late so we can prefer to fold the AND into masked
1286     // comparisons. Doing that can be better for the live range of the mask
1287     // register.
1288     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1289          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1290         N->getOperand(0) == N->getOperand(1) &&
1291         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1292         N->getOperand(0).isMachineOpcode() &&
1293         onlyUsesZeroFlag(SDValue(N, 0))) {
1294       SDValue And = N->getOperand(0);
1295       unsigned N0Opc = And.getMachineOpcode();
1296       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1297       // KAND instructions and KTEST use the same ISA feature.
1298       if (N0Opc == X86::KANDBrr ||
1299           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1300           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1301         unsigned NewOpc;
1302         switch (Opc) {
1303         default: llvm_unreachable("Unexpected opcode!");
1304         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1305         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1306         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1307         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1308         }
1309         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1310                                                       MVT::i32,
1311                                                       And.getOperand(0),
1312                                                       And.getOperand(1));
1313         ReplaceUses(N, KTest);
1314         MadeChange = true;
1315         continue;
1316       }
1317     }
1318 
1319     // Attempt to remove vectors moves that were inserted to zero upper bits.
1320     if (Opc != TargetOpcode::SUBREG_TO_REG)
1321       continue;
1322 
1323     unsigned SubRegIdx = N->getConstantOperandVal(2);
1324     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1325       continue;
1326 
1327     SDValue Move = N->getOperand(1);
1328     if (!Move.isMachineOpcode())
1329       continue;
1330 
1331     // Make sure its one of the move opcodes we recognize.
1332     switch (Move.getMachineOpcode()) {
1333     default:
1334       continue;
1335     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1336     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1337     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1338     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1339     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1340     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1341     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1342     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1343     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1344     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1345     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1346     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1347     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1348     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1349       break;
1350     }
1351 
1352     SDValue In = Move.getOperand(0);
1353     if (!In.isMachineOpcode() ||
1354         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1355       continue;
1356 
1357     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1358     // the SHA instructions which use a legacy encoding.
1359     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1360     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1361         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1362         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1363       continue;
1364 
1365     // Producing instruction is another vector instruction. We can drop the
1366     // move.
1367     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1368     MadeChange = true;
1369   }
1370 
1371   if (MadeChange)
1372     CurDAG->RemoveDeadNodes();
1373 }
1374 
1375 
1376 /// Emit any code that needs to be executed only in the main function.
1377 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1378   if (Subtarget->isTargetCygMing()) {
1379     TargetLowering::ArgListTy Args;
1380     auto &DL = CurDAG->getDataLayout();
1381 
1382     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1383     CLI.setChain(CurDAG->getRoot())
1384         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1385                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1386                    std::move(Args));
1387     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1388     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1389     CurDAG->setRoot(Result.second);
1390   }
1391 }
1392 
1393 void X86DAGToDAGISel::EmitFunctionEntryCode() {
1394   // If this is main, emit special code for main.
1395   const Function &F = MF->getFunction();
1396   if (F.hasExternalLinkage() && F.getName() == "main")
1397     emitSpecialCodeForMain();
1398 }
1399 
1400 static bool isDispSafeForFrameIndex(int64_t Val) {
1401   // On 64-bit platforms, we can run into an issue where a frame index
1402   // includes a displacement that, when added to the explicit displacement,
1403   // will overflow the displacement field. Assuming that the frame index
1404   // displacement fits into a 31-bit integer  (which is only slightly more
1405   // aggressive than the current fundamental assumption that it fits into
1406   // a 32-bit integer), a 31-bit disp should always be safe.
1407   return isInt<31>(Val);
1408 }
1409 
1410 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1411                                             X86ISelAddressMode &AM) {
1412   // If there's no offset to fold, we don't need to do any work.
1413   if (Offset == 0)
1414     return false;
1415 
1416   // Cannot combine ExternalSymbol displacements with integer offsets.
1417   if (AM.ES || AM.MCSym)
1418     return true;
1419 
1420   int64_t Val = AM.Disp + Offset;
1421   CodeModel::Model M = TM.getCodeModel();
1422   if (Subtarget->is64Bit()) {
1423     if (!X86::isOffsetSuitableForCodeModel(Val, M,
1424                                            AM.hasSymbolicDisplacement()))
1425       return true;
1426     // In addition to the checks required for a register base, check that
1427     // we do not try to use an unsafe Disp with a frame index.
1428     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1429         !isDispSafeForFrameIndex(Val))
1430       return true;
1431   }
1432   AM.Disp = Val;
1433   return false;
1434 
1435 }
1436 
1437 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
1438   SDValue Address = N->getOperand(1);
1439 
1440   // load gs:0 -> GS segment register.
1441   // load fs:0 -> FS segment register.
1442   //
1443   // This optimization is valid because the GNU TLS model defines that
1444   // gs:0 (or fs:0 on X86-64) contains its own address.
1445   // For more information see http://people.redhat.com/drepper/tls.pdf
1446   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
1447     if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
1448         !IndirectTlsSegRefs &&
1449         (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1450          Subtarget->isTargetFuchsia()))
1451       switch (N->getPointerInfo().getAddrSpace()) {
1452       case 256:
1453         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1454         return false;
1455       case 257:
1456         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1457         return false;
1458       // Address space 258 is not handled here, because it is not used to
1459       // address TLS areas.
1460       }
1461 
1462   return true;
1463 }
1464 
1465 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1466 /// mode. These wrap things that will resolve down into a symbol reference.
1467 /// If no match is possible, this returns true, otherwise it returns false.
1468 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1469   // If the addressing mode already has a symbol as the displacement, we can
1470   // never match another symbol.
1471   if (AM.hasSymbolicDisplacement())
1472     return true;
1473 
1474   bool IsRIPRelTLS = false;
1475   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1476   if (IsRIPRel) {
1477     SDValue Val = N.getOperand(0);
1478     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1479       IsRIPRelTLS = true;
1480   }
1481 
1482   // We can't use an addressing mode in the 64-bit large code model.
1483   // Global TLS addressing is an exception. In the medium code model,
1484   // we use can use a mode when RIP wrappers are present.
1485   // That signifies access to globals that are known to be "near",
1486   // such as the GOT itself.
1487   CodeModel::Model M = TM.getCodeModel();
1488   if (Subtarget->is64Bit() &&
1489       ((M == CodeModel::Large && !IsRIPRelTLS) ||
1490        (M == CodeModel::Medium && !IsRIPRel)))
1491     return true;
1492 
1493   // Base and index reg must be 0 in order to use %rip as base.
1494   if (IsRIPRel && AM.hasBaseOrIndexReg())
1495     return true;
1496 
1497   // Make a local copy in case we can't do this fold.
1498   X86ISelAddressMode Backup = AM;
1499 
1500   int64_t Offset = 0;
1501   SDValue N0 = N.getOperand(0);
1502   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1503     AM.GV = G->getGlobal();
1504     AM.SymbolFlags = G->getTargetFlags();
1505     Offset = G->getOffset();
1506   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1507     AM.CP = CP->getConstVal();
1508     AM.Align = CP->getAlignment();
1509     AM.SymbolFlags = CP->getTargetFlags();
1510     Offset = CP->getOffset();
1511   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1512     AM.ES = S->getSymbol();
1513     AM.SymbolFlags = S->getTargetFlags();
1514   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1515     AM.MCSym = S->getMCSymbol();
1516   } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
1517     AM.JT = J->getIndex();
1518     AM.SymbolFlags = J->getTargetFlags();
1519   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1520     AM.BlockAddr = BA->getBlockAddress();
1521     AM.SymbolFlags = BA->getTargetFlags();
1522     Offset = BA->getOffset();
1523   } else
1524     llvm_unreachable("Unhandled symbol reference node.");
1525 
1526   if (foldOffsetIntoAddress(Offset, AM)) {
1527     AM = Backup;
1528     return true;
1529   }
1530 
1531   if (IsRIPRel)
1532     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1533 
1534   // Commit the changes now that we know this fold is safe.
1535   return false;
1536 }
1537 
1538 /// Add the specified node to the specified addressing mode, returning true if
1539 /// it cannot be done. This just pattern matches for the addressing mode.
1540 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1541   if (matchAddressRecursively(N, AM, 0))
1542     return true;
1543 
1544   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1545   // a smaller encoding and avoids a scaled-index.
1546   if (AM.Scale == 2 &&
1547       AM.BaseType == X86ISelAddressMode::RegBase &&
1548       AM.Base_Reg.getNode() == nullptr) {
1549     AM.Base_Reg = AM.IndexReg;
1550     AM.Scale = 1;
1551   }
1552 
1553   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1554   // because it has a smaller encoding.
1555   // TODO: Which other code models can use this?
1556   switch (TM.getCodeModel()) {
1557     default: break;
1558     case CodeModel::Small:
1559     case CodeModel::Kernel:
1560       if (Subtarget->is64Bit() &&
1561           AM.Scale == 1 &&
1562           AM.BaseType == X86ISelAddressMode::RegBase &&
1563           AM.Base_Reg.getNode() == nullptr &&
1564           AM.IndexReg.getNode() == nullptr &&
1565           AM.SymbolFlags == X86II::MO_NO_FLAG &&
1566           AM.hasSymbolicDisplacement())
1567         AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1568       break;
1569   }
1570 
1571   return false;
1572 }
1573 
1574 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1575                                unsigned Depth) {
1576   // Add an artificial use to this node so that we can keep track of
1577   // it if it gets CSE'd with a different node.
1578   HandleSDNode Handle(N);
1579 
1580   X86ISelAddressMode Backup = AM;
1581   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1582       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1583     return false;
1584   AM = Backup;
1585 
1586   // Try again after commuting the operands.
1587   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) &&
1588       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1589     return false;
1590   AM = Backup;
1591 
1592   // If we couldn't fold both operands into the address at the same time,
1593   // see if we can just put each operand into a register and fold at least
1594   // the add.
1595   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1596       !AM.Base_Reg.getNode() &&
1597       !AM.IndexReg.getNode()) {
1598     N = Handle.getValue();
1599     AM.Base_Reg = N.getOperand(0);
1600     AM.IndexReg = N.getOperand(1);
1601     AM.Scale = 1;
1602     return false;
1603   }
1604   N = Handle.getValue();
1605   return true;
1606 }
1607 
1608 // Insert a node into the DAG at least before the Pos node's position. This
1609 // will reposition the node as needed, and will assign it a node ID that is <=
1610 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1611 // IDs! The selection DAG must no longer depend on their uniqueness when this
1612 // is used.
1613 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1614   if (N->getNodeId() == -1 ||
1615       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1616        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1617     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1618     // Mark Node as invalid for pruning as after this it may be a successor to a
1619     // selected node but otherwise be in the same position of Pos.
1620     // Conservatively mark it with the same -abs(Id) to assure node id
1621     // invariant is preserved.
1622     N->setNodeId(Pos->getNodeId());
1623     SelectionDAGISel::InvalidateNodeId(N.getNode());
1624   }
1625 }
1626 
1627 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1628 // safe. This allows us to convert the shift and and into an h-register
1629 // extract and a scaled index. Returns false if the simplification is
1630 // performed.
1631 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1632                                       uint64_t Mask,
1633                                       SDValue Shift, SDValue X,
1634                                       X86ISelAddressMode &AM) {
1635   if (Shift.getOpcode() != ISD::SRL ||
1636       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1637       !Shift.hasOneUse())
1638     return true;
1639 
1640   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1641   if (ScaleLog <= 0 || ScaleLog >= 4 ||
1642       Mask != (0xffu << ScaleLog))
1643     return true;
1644 
1645   MVT VT = N.getSimpleValueType();
1646   SDLoc DL(N);
1647   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1648   SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1649   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1650   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1651   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1652   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1653 
1654   // Insert the new nodes into the topological ordering. We must do this in
1655   // a valid topological ordering as nothing is going to go back and re-sort
1656   // these nodes. We continually insert before 'N' in sequence as this is
1657   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1658   // hierarchy left to express.
1659   insertDAGNode(DAG, N, Eight);
1660   insertDAGNode(DAG, N, Srl);
1661   insertDAGNode(DAG, N, NewMask);
1662   insertDAGNode(DAG, N, And);
1663   insertDAGNode(DAG, N, ShlCount);
1664   insertDAGNode(DAG, N, Shl);
1665   DAG.ReplaceAllUsesWith(N, Shl);
1666   DAG.RemoveDeadNode(N.getNode());
1667   AM.IndexReg = And;
1668   AM.Scale = (1 << ScaleLog);
1669   return false;
1670 }
1671 
1672 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1673 // allows us to fold the shift into this addressing mode. Returns false if the
1674 // transform succeeded.
1675 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1676                                         X86ISelAddressMode &AM) {
1677   SDValue Shift = N.getOperand(0);
1678 
1679   // Use a signed mask so that shifting right will insert sign bits. These
1680   // bits will be removed when we shift the result left so it doesn't matter
1681   // what we use. This might allow a smaller immediate encoding.
1682   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
1683 
1684   // If we have an any_extend feeding the AND, look through it to see if there
1685   // is a shift behind it. But only if the AND doesn't use the extended bits.
1686   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
1687   bool FoundAnyExtend = false;
1688   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
1689       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
1690       isUInt<32>(Mask)) {
1691     FoundAnyExtend = true;
1692     Shift = Shift.getOperand(0);
1693   }
1694 
1695   if (Shift.getOpcode() != ISD::SHL ||
1696       !isa<ConstantSDNode>(Shift.getOperand(1)))
1697     return true;
1698 
1699   SDValue X = Shift.getOperand(0);
1700 
1701   // Not likely to be profitable if either the AND or SHIFT node has more
1702   // than one use (unless all uses are for address computation). Besides,
1703   // isel mechanism requires their node ids to be reused.
1704   if (!N.hasOneUse() || !Shift.hasOneUse())
1705     return true;
1706 
1707   // Verify that the shift amount is something we can fold.
1708   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1709   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1710     return true;
1711 
1712   MVT VT = N.getSimpleValueType();
1713   SDLoc DL(N);
1714   if (FoundAnyExtend) {
1715     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
1716     insertDAGNode(DAG, N, NewX);
1717     X = NewX;
1718   }
1719 
1720   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
1721   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
1722   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
1723 
1724   // Insert the new nodes into the topological ordering. We must do this in
1725   // a valid topological ordering as nothing is going to go back and re-sort
1726   // these nodes. We continually insert before 'N' in sequence as this is
1727   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1728   // hierarchy left to express.
1729   insertDAGNode(DAG, N, NewMask);
1730   insertDAGNode(DAG, N, NewAnd);
1731   insertDAGNode(DAG, N, NewShift);
1732   DAG.ReplaceAllUsesWith(N, NewShift);
1733   DAG.RemoveDeadNode(N.getNode());
1734 
1735   AM.Scale = 1 << ShiftAmt;
1736   AM.IndexReg = NewAnd;
1737   return false;
1738 }
1739 
1740 // Implement some heroics to detect shifts of masked values where the mask can
1741 // be replaced by extending the shift and undoing that in the addressing mode
1742 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
1743 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
1744 // the addressing mode. This results in code such as:
1745 //
1746 //   int f(short *y, int *lookup_table) {
1747 //     ...
1748 //     return *y + lookup_table[*y >> 11];
1749 //   }
1750 //
1751 // Turning into:
1752 //   movzwl (%rdi), %eax
1753 //   movl %eax, %ecx
1754 //   shrl $11, %ecx
1755 //   addl (%rsi,%rcx,4), %eax
1756 //
1757 // Instead of:
1758 //   movzwl (%rdi), %eax
1759 //   movl %eax, %ecx
1760 //   shrl $9, %ecx
1761 //   andl $124, %rcx
1762 //   addl (%rsi,%rcx), %eax
1763 //
1764 // Note that this function assumes the mask is provided as a mask *after* the
1765 // value is shifted. The input chain may or may not match that, but computing
1766 // such a mask is trivial.
1767 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1768                                     uint64_t Mask,
1769                                     SDValue Shift, SDValue X,
1770                                     X86ISelAddressMode &AM) {
1771   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1772       !isa<ConstantSDNode>(Shift.getOperand(1)))
1773     return true;
1774 
1775   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1776   unsigned MaskLZ = countLeadingZeros(Mask);
1777   unsigned MaskTZ = countTrailingZeros(Mask);
1778 
1779   // The amount of shift we're trying to fit into the addressing mode is taken
1780   // from the trailing zeros of the mask.
1781   unsigned AMShiftAmt = MaskTZ;
1782 
1783   // There is nothing we can do here unless the mask is removing some bits.
1784   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1785   if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
1786 
1787   // We also need to ensure that mask is a continuous run of bits.
1788   if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1789 
1790   // Scale the leading zero count down based on the actual size of the value.
1791   // Also scale it down based on the size of the shift.
1792   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1793   if (MaskLZ < ScaleDown)
1794     return true;
1795   MaskLZ -= ScaleDown;
1796 
1797   // The final check is to ensure that any masked out high bits of X are
1798   // already known to be zero. Otherwise, the mask has a semantic impact
1799   // other than masking out a couple of low bits. Unfortunately, because of
1800   // the mask, zero extensions will be removed from operands in some cases.
1801   // This code works extra hard to look through extensions because we can
1802   // replace them with zero extensions cheaply if necessary.
1803   bool ReplacingAnyExtend = false;
1804   if (X.getOpcode() == ISD::ANY_EXTEND) {
1805     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
1806                           X.getOperand(0).getSimpleValueType().getSizeInBits();
1807     // Assume that we'll replace the any-extend with a zero-extend, and
1808     // narrow the search to the extended value.
1809     X = X.getOperand(0);
1810     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
1811     ReplacingAnyExtend = true;
1812   }
1813   APInt MaskedHighBits =
1814     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
1815   KnownBits Known = DAG.computeKnownBits(X);
1816   if (MaskedHighBits != Known.Zero) return true;
1817 
1818   // We've identified a pattern that can be transformed into a single shift
1819   // and an addressing mode. Make it so.
1820   MVT VT = N.getSimpleValueType();
1821   if (ReplacingAnyExtend) {
1822     assert(X.getValueType() != VT);
1823     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
1824     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
1825     insertDAGNode(DAG, N, NewX);
1826     X = NewX;
1827   }
1828   SDLoc DL(N);
1829   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
1830   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
1831   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
1832   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
1833 
1834   // Insert the new nodes into the topological ordering. We must do this in
1835   // a valid topological ordering as nothing is going to go back and re-sort
1836   // these nodes. We continually insert before 'N' in sequence as this is
1837   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1838   // hierarchy left to express.
1839   insertDAGNode(DAG, N, NewSRLAmt);
1840   insertDAGNode(DAG, N, NewSRL);
1841   insertDAGNode(DAG, N, NewSHLAmt);
1842   insertDAGNode(DAG, N, NewSHL);
1843   DAG.ReplaceAllUsesWith(N, NewSHL);
1844   DAG.RemoveDeadNode(N.getNode());
1845 
1846   AM.Scale = 1 << AMShiftAmt;
1847   AM.IndexReg = NewSRL;
1848   return false;
1849 }
1850 
1851 // Transform "(X >> SHIFT) & (MASK << C1)" to
1852 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
1853 // matched to a BEXTR later. Returns false if the simplification is performed.
1854 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
1855                                    uint64_t Mask,
1856                                    SDValue Shift, SDValue X,
1857                                    X86ISelAddressMode &AM,
1858                                    const X86Subtarget &Subtarget) {
1859   if (Shift.getOpcode() != ISD::SRL ||
1860       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1861       !Shift.hasOneUse() || !N.hasOneUse())
1862     return true;
1863 
1864   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
1865   if (!Subtarget.hasTBM() &&
1866       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
1867     return true;
1868 
1869   // We need to ensure that mask is a continuous run of bits.
1870   if (!isShiftedMask_64(Mask)) return true;
1871 
1872   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1873 
1874   // The amount of shift we're trying to fit into the addressing mode is taken
1875   // from the trailing zeros of the mask.
1876   unsigned AMShiftAmt = countTrailingZeros(Mask);
1877 
1878   // There is nothing we can do here unless the mask is removing some bits.
1879   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1880   if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
1881 
1882   MVT VT = N.getSimpleValueType();
1883   SDLoc DL(N);
1884   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
1885   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
1886   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
1887   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
1888   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
1889   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
1890 
1891   // Insert the new nodes into the topological ordering. We must do this in
1892   // a valid topological ordering as nothing is going to go back and re-sort
1893   // these nodes. We continually insert before 'N' in sequence as this is
1894   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1895   // hierarchy left to express.
1896   insertDAGNode(DAG, N, NewSRLAmt);
1897   insertDAGNode(DAG, N, NewSRL);
1898   insertDAGNode(DAG, N, NewMask);
1899   insertDAGNode(DAG, N, NewAnd);
1900   insertDAGNode(DAG, N, NewSHLAmt);
1901   insertDAGNode(DAG, N, NewSHL);
1902   DAG.ReplaceAllUsesWith(N, NewSHL);
1903   DAG.RemoveDeadNode(N.getNode());
1904 
1905   AM.Scale = 1 << AMShiftAmt;
1906   AM.IndexReg = NewAnd;
1907   return false;
1908 }
1909 
1910 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
1911                                               unsigned Depth) {
1912   SDLoc dl(N);
1913   LLVM_DEBUG({
1914     dbgs() << "MatchAddress: ";
1915     AM.dump(CurDAG);
1916   });
1917   // Limit recursion.
1918   if (Depth > 5)
1919     return matchAddressBase(N, AM);
1920 
1921   // If this is already a %rip relative address, we can only merge immediates
1922   // into it.  Instead of handling this in every case, we handle it here.
1923   // RIP relative addressing: %rip + 32-bit displacement!
1924   if (AM.isRIPRelative()) {
1925     // FIXME: JumpTable and ExternalSymbol address currently don't like
1926     // displacements.  It isn't very important, but this should be fixed for
1927     // consistency.
1928     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
1929       return true;
1930 
1931     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
1932       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
1933         return false;
1934     return true;
1935   }
1936 
1937   switch (N.getOpcode()) {
1938   default: break;
1939   case ISD::LOCAL_RECOVER: {
1940     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
1941       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
1942         // Use the symbol and don't prefix it.
1943         AM.MCSym = ESNode->getMCSymbol();
1944         return false;
1945       }
1946     break;
1947   }
1948   case ISD::Constant: {
1949     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
1950     if (!foldOffsetIntoAddress(Val, AM))
1951       return false;
1952     break;
1953   }
1954 
1955   case X86ISD::Wrapper:
1956   case X86ISD::WrapperRIP:
1957     if (!matchWrapper(N, AM))
1958       return false;
1959     break;
1960 
1961   case ISD::LOAD:
1962     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
1963       return false;
1964     break;
1965 
1966   case ISD::FrameIndex:
1967     if (AM.BaseType == X86ISelAddressMode::RegBase &&
1968         AM.Base_Reg.getNode() == nullptr &&
1969         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1970       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1971       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1972       return false;
1973     }
1974     break;
1975 
1976   case ISD::SHL:
1977     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
1978       break;
1979 
1980     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1981       unsigned Val = CN->getZExtValue();
1982       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1983       // that the base operand remains free for further matching. If
1984       // the base doesn't end up getting used, a post-processing step
1985       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1986       if (Val == 1 || Val == 2 || Val == 3) {
1987         AM.Scale = 1 << Val;
1988         SDValue ShVal = N.getOperand(0);
1989 
1990         // Okay, we know that we have a scale by now.  However, if the scaled
1991         // value is an add of something and a constant, we can fold the
1992         // constant into the disp field here.
1993         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1994           AM.IndexReg = ShVal.getOperand(0);
1995           ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
1996           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1997           if (!foldOffsetIntoAddress(Disp, AM))
1998             return false;
1999         }
2000 
2001         AM.IndexReg = ShVal;
2002         return false;
2003       }
2004     }
2005     break;
2006 
2007   case ISD::SRL: {
2008     // Scale must not be used already.
2009     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2010 
2011     // We only handle up to 64-bit values here as those are what matter for
2012     // addressing mode optimizations.
2013     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2014            "Unexpected value size!");
2015 
2016     SDValue And = N.getOperand(0);
2017     if (And.getOpcode() != ISD::AND) break;
2018     SDValue X = And.getOperand(0);
2019 
2020     // The mask used for the transform is expected to be post-shift, but we
2021     // found the shift first so just apply the shift to the mask before passing
2022     // it down.
2023     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2024         !isa<ConstantSDNode>(And.getOperand(1)))
2025       break;
2026     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2027 
2028     // Try to fold the mask and shift into the scale, and return false if we
2029     // succeed.
2030     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2031       return false;
2032     break;
2033   }
2034 
2035   case ISD::SMUL_LOHI:
2036   case ISD::UMUL_LOHI:
2037     // A mul_lohi where we need the low part can be folded as a plain multiply.
2038     if (N.getResNo() != 0) break;
2039     LLVM_FALLTHROUGH;
2040   case ISD::MUL:
2041   case X86ISD::MUL_IMM:
2042     // X*[3,5,9] -> X+X*[2,4,8]
2043     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2044         AM.Base_Reg.getNode() == nullptr &&
2045         AM.IndexReg.getNode() == nullptr) {
2046       if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2047         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2048             CN->getZExtValue() == 9) {
2049           AM.Scale = unsigned(CN->getZExtValue())-1;
2050 
2051           SDValue MulVal = N.getOperand(0);
2052           SDValue Reg;
2053 
2054           // Okay, we know that we have a scale by now.  However, if the scaled
2055           // value is an add of something and a constant, we can fold the
2056           // constant into the disp field here.
2057           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2058               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2059             Reg = MulVal.getOperand(0);
2060             ConstantSDNode *AddVal =
2061               cast<ConstantSDNode>(MulVal.getOperand(1));
2062             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2063             if (foldOffsetIntoAddress(Disp, AM))
2064               Reg = N.getOperand(0);
2065           } else {
2066             Reg = N.getOperand(0);
2067           }
2068 
2069           AM.IndexReg = AM.Base_Reg = Reg;
2070           return false;
2071         }
2072     }
2073     break;
2074 
2075   case ISD::SUB: {
2076     // Given A-B, if A can be completely folded into the address and
2077     // the index field with the index field unused, use -B as the index.
2078     // This is a win if a has multiple parts that can be folded into
2079     // the address. Also, this saves a mov if the base register has
2080     // other uses, since it avoids a two-address sub instruction, however
2081     // it costs an additional mov if the index register has other uses.
2082 
2083     // Add an artificial use to this node so that we can keep track of
2084     // it if it gets CSE'd with a different node.
2085     HandleSDNode Handle(N);
2086 
2087     // Test if the LHS of the sub can be folded.
2088     X86ISelAddressMode Backup = AM;
2089     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2090       N = Handle.getValue();
2091       AM = Backup;
2092       break;
2093     }
2094     N = Handle.getValue();
2095     // Test if the index field is free for use.
2096     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2097       AM = Backup;
2098       break;
2099     }
2100 
2101     int Cost = 0;
2102     SDValue RHS = N.getOperand(1);
2103     // If the RHS involves a register with multiple uses, this
2104     // transformation incurs an extra mov, due to the neg instruction
2105     // clobbering its operand.
2106     if (!RHS.getNode()->hasOneUse() ||
2107         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2108         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2109         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2110         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2111          RHS.getOperand(0).getValueType() == MVT::i32))
2112       ++Cost;
2113     // If the base is a register with multiple uses, this
2114     // transformation may save a mov.
2115     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2116          !AM.Base_Reg.getNode()->hasOneUse()) ||
2117         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2118       --Cost;
2119     // If the folded LHS was interesting, this transformation saves
2120     // address arithmetic.
2121     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2122         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2123         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2124       --Cost;
2125     // If it doesn't look like it may be an overall win, don't do it.
2126     if (Cost >= 0) {
2127       AM = Backup;
2128       break;
2129     }
2130 
2131     // Ok, the transformation is legal and appears profitable. Go for it.
2132     // Negation will be emitted later to avoid creating dangling nodes if this
2133     // was an unprofitable LEA.
2134     AM.IndexReg = RHS;
2135     AM.NegateIndex = true;
2136     AM.Scale = 1;
2137     return false;
2138   }
2139 
2140   case ISD::ADD:
2141     if (!matchAdd(N, AM, Depth))
2142       return false;
2143     break;
2144 
2145   case ISD::OR:
2146     // We want to look through a transform in InstCombine and DAGCombiner that
2147     // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
2148     // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
2149     // An 'lea' can then be used to match the shift (multiply) and add:
2150     // and $1, %esi
2151     // lea (%rsi, %rdi, 8), %rax
2152     if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
2153         !matchAdd(N, AM, Depth))
2154       return false;
2155     break;
2156 
2157   case ISD::AND: {
2158     // Perform some heroic transforms on an and of a constant-count shift
2159     // with a constant to enable use of the scaled offset field.
2160 
2161     // Scale must not be used already.
2162     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2163 
2164     // We only handle up to 64-bit values here as those are what matter for
2165     // addressing mode optimizations.
2166     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2167            "Unexpected value size!");
2168 
2169     if (!isa<ConstantSDNode>(N.getOperand(1)))
2170       break;
2171 
2172     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2173       SDValue Shift = N.getOperand(0);
2174       SDValue X = Shift.getOperand(0);
2175 
2176       uint64_t Mask = N.getConstantOperandVal(1);
2177 
2178       // Try to fold the mask and shift into an extract and scale.
2179       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2180         return false;
2181 
2182       // Try to fold the mask and shift directly into the scale.
2183       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2184         return false;
2185 
2186       // Try to fold the mask and shift into BEXTR and scale.
2187       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2188         return false;
2189     }
2190 
2191     // Try to swap the mask and shift to place shifts which can be done as
2192     // a scale on the outside of the mask.
2193     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2194       return false;
2195 
2196     break;
2197   }
2198   case ISD::ZERO_EXTEND: {
2199     // Try to widen a zexted shift left to the same size as its use, so we can
2200     // match the shift as a scale factor.
2201     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2202       break;
2203     if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
2204       break;
2205 
2206     // Give up if the shift is not a valid scale factor [1,2,3].
2207     SDValue Shl = N.getOperand(0);
2208     auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
2209     if (!ShAmtC || ShAmtC->getZExtValue() > 3)
2210       break;
2211 
2212     // The narrow shift must only shift out zero bits (it must be 'nuw').
2213     // That makes it safe to widen to the destination type.
2214     APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
2215                                             ShAmtC->getZExtValue());
2216     if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
2217       break;
2218 
2219     // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
2220     MVT VT = N.getSimpleValueType();
2221     SDLoc DL(N);
2222     SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
2223     SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
2224 
2225     // Convert the shift to scale factor.
2226     AM.Scale = 1 << ShAmtC->getZExtValue();
2227     AM.IndexReg = Zext;
2228 
2229     insertDAGNode(*CurDAG, N, Zext);
2230     insertDAGNode(*CurDAG, N, NewShl);
2231     CurDAG->ReplaceAllUsesWith(N, NewShl);
2232     CurDAG->RemoveDeadNode(N.getNode());
2233     return false;
2234   }
2235   }
2236 
2237   return matchAddressBase(N, AM);
2238 }
2239 
2240 /// Helper for MatchAddress. Add the specified node to the
2241 /// specified addressing mode without any further recursion.
2242 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2243   // Is the base register already occupied?
2244   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2245     // If so, check to see if the scale index register is set.
2246     if (!AM.IndexReg.getNode()) {
2247       AM.IndexReg = N;
2248       AM.Scale = 1;
2249       return false;
2250     }
2251 
2252     // Otherwise, we cannot select it.
2253     return true;
2254   }
2255 
2256   // Default, generate it as a register.
2257   AM.BaseType = X86ISelAddressMode::RegBase;
2258   AM.Base_Reg = N;
2259   return false;
2260 }
2261 
2262 /// Helper for selectVectorAddr. Handles things that can be folded into a
2263 /// gather scatter address. The index register and scale should have already
2264 /// been handled.
2265 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2266   // TODO: Support other operations.
2267   switch (N.getOpcode()) {
2268   case ISD::Constant: {
2269     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2270     if (!foldOffsetIntoAddress(Val, AM))
2271       return false;
2272     break;
2273   }
2274   case X86ISD::Wrapper:
2275     if (!matchWrapper(N, AM))
2276       return false;
2277     break;
2278   }
2279 
2280   return matchAddressBase(N, AM);
2281 }
2282 
2283 bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base,
2284                                        SDValue &Scale, SDValue &Index,
2285                                        SDValue &Disp, SDValue &Segment) {
2286   X86ISelAddressMode AM;
2287   auto *Mgs = cast<X86MaskedGatherScatterSDNode>(Parent);
2288   AM.IndexReg = Mgs->getIndex();
2289   AM.Scale = cast<ConstantSDNode>(Mgs->getScale())->getZExtValue();
2290 
2291   unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2292   if (AddrSpace == X86AS::GS)
2293     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2294   if (AddrSpace == X86AS::FS)
2295     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2296   if (AddrSpace == X86AS::SS)
2297     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2298 
2299   SDLoc DL(N);
2300   MVT VT = N.getSimpleValueType();
2301 
2302   // Try to match into the base and displacement fields.
2303   if (matchVectorAddress(N, AM))
2304     return false;
2305 
2306   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2307   return true;
2308 }
2309 
2310 /// Returns true if it is able to pattern match an addressing mode.
2311 /// It returns the operands which make up the maximal addressing mode it can
2312 /// match by reference.
2313 ///
2314 /// Parent is the parent node of the addr operand that is being matched.  It
2315 /// is always a load, store, atomic node, or null.  It is only null when
2316 /// checking memory operands for inline asm nodes.
2317 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2318                                  SDValue &Scale, SDValue &Index,
2319                                  SDValue &Disp, SDValue &Segment) {
2320   X86ISelAddressMode AM;
2321 
2322   if (Parent &&
2323       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2324       // that are not a MemSDNode, and thus don't have proper addrspace info.
2325       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2326       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2327       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2328       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2329       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2330       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2331       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2332     unsigned AddrSpace =
2333       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2334     // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS.
2335     if (AddrSpace == 256)
2336       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2337     if (AddrSpace == 257)
2338       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2339     if (AddrSpace == 258)
2340       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2341   }
2342 
2343   // Save the DL and VT before calling matchAddress, it can invalidate N.
2344   SDLoc DL(N);
2345   MVT VT = N.getSimpleValueType();
2346 
2347   if (matchAddress(N, AM))
2348     return false;
2349 
2350   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2351   return true;
2352 }
2353 
2354 // We can only fold a load if all nodes between it and the root node have a
2355 // single use. If there are additional uses, we could end up duplicating the
2356 // load.
2357 static bool hasSingleUsesFromRoot(SDNode *Root, SDNode *User) {
2358   while (User != Root) {
2359     if (!User->hasOneUse())
2360       return false;
2361     User = *User->use_begin();
2362   }
2363 
2364   return true;
2365 }
2366 
2367 /// Match a scalar SSE load. In particular, we want to match a load whose top
2368 /// elements are either undef or zeros. The load flavor is derived from the
2369 /// type of N, which is either v4f32 or v2f64.
2370 ///
2371 /// We also return:
2372 ///   PatternChainNode: this is the matched node that has a chain input and
2373 ///   output.
2374 bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, SDNode *Parent,
2375                                           SDValue N, SDValue &Base,
2376                                           SDValue &Scale, SDValue &Index,
2377                                           SDValue &Disp, SDValue &Segment,
2378                                           SDValue &PatternNodeWithChain) {
2379   if (!hasSingleUsesFromRoot(Root, Parent))
2380     return false;
2381 
2382   // We can allow a full vector load here since narrowing a load is ok unless
2383   // it's volatile or atomic.
2384   if (ISD::isNON_EXTLoad(N.getNode())) {
2385     LoadSDNode *LD = cast<LoadSDNode>(N);
2386     if (LD->isSimple() &&
2387         IsProfitableToFold(N, LD, Root) &&
2388         IsLegalToFold(N, Parent, Root, OptLevel)) {
2389       PatternNodeWithChain = N;
2390       return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
2391                         Segment);
2392     }
2393   }
2394 
2395   // We can also match the special zero extended load opcode.
2396   if (N.getOpcode() == X86ISD::VZEXT_LOAD) {
2397     PatternNodeWithChain = N;
2398     if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
2399         IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) {
2400       auto *MI = cast<MemIntrinsicSDNode>(PatternNodeWithChain);
2401       return selectAddr(MI, MI->getBasePtr(), Base, Scale, Index, Disp,
2402                         Segment);
2403     }
2404   }
2405 
2406   // Need to make sure that the SCALAR_TO_VECTOR and load are both only used
2407   // once. Otherwise the load might get duplicated and the chain output of the
2408   // duplicate load will not be observed by all dependencies.
2409   if (N.getOpcode() == ISD::SCALAR_TO_VECTOR && N.getNode()->hasOneUse()) {
2410     PatternNodeWithChain = N.getOperand(0);
2411     if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
2412         IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) &&
2413         IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) {
2414       LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
2415       return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp,
2416                         Segment);
2417     }
2418   }
2419 
2420   return false;
2421 }
2422 
2423 
2424 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2425   if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2426     uint64_t ImmVal = CN->getZExtValue();
2427     if (!isUInt<32>(ImmVal))
2428       return false;
2429 
2430     Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64);
2431     return true;
2432   }
2433 
2434   // In static codegen with small code model, we can get the address of a label
2435   // into a register with 'movl'
2436   if (N->getOpcode() != X86ISD::Wrapper)
2437     return false;
2438 
2439   N = N.getOperand(0);
2440 
2441   // At least GNU as does not accept 'movl' for TPOFF relocations.
2442   // FIXME: We could use 'movl' when we know we are targeting MC.
2443   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2444     return false;
2445 
2446   Imm = N;
2447   if (N->getOpcode() != ISD::TargetGlobalAddress)
2448     return TM.getCodeModel() == CodeModel::Small;
2449 
2450   Optional<ConstantRange> CR =
2451       cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
2452   if (!CR)
2453     return TM.getCodeModel() == CodeModel::Small;
2454 
2455   return CR->getUnsignedMax().ult(1ull << 32);
2456 }
2457 
2458 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2459                                          SDValue &Scale, SDValue &Index,
2460                                          SDValue &Disp, SDValue &Segment) {
2461   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2462   SDLoc DL(N);
2463 
2464   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2465     return false;
2466 
2467   RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
2468   if (RN && RN->getReg() == 0)
2469     Base = CurDAG->getRegister(0, MVT::i64);
2470   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2471     // Base could already be %rip, particularly in the x32 ABI.
2472     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2473                                                      MVT::i64), 0);
2474     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2475                                          Base);
2476   }
2477 
2478   RN = dyn_cast<RegisterSDNode>(Index);
2479   if (RN && RN->getReg() == 0)
2480     Index = CurDAG->getRegister(0, MVT::i64);
2481   else {
2482     assert(Index.getValueType() == MVT::i32 &&
2483            "Expect to be extending 32-bit registers for use in LEA");
2484     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2485                                                      MVT::i64), 0);
2486     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2487                                           Index);
2488   }
2489 
2490   return true;
2491 }
2492 
2493 /// Calls SelectAddr and determines if the maximal addressing
2494 /// mode it matches can be cost effectively emitted as an LEA instruction.
2495 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2496                                     SDValue &Base, SDValue &Scale,
2497                                     SDValue &Index, SDValue &Disp,
2498                                     SDValue &Segment) {
2499   X86ISelAddressMode AM;
2500 
2501   // Save the DL and VT before calling matchAddress, it can invalidate N.
2502   SDLoc DL(N);
2503   MVT VT = N.getSimpleValueType();
2504 
2505   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
2506   // segments.
2507   SDValue Copy = AM.Segment;
2508   SDValue T = CurDAG->getRegister(0, MVT::i32);
2509   AM.Segment = T;
2510   if (matchAddress(N, AM))
2511     return false;
2512   assert (T == AM.Segment);
2513   AM.Segment = Copy;
2514 
2515   unsigned Complexity = 0;
2516   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
2517     Complexity = 1;
2518   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2519     Complexity = 4;
2520 
2521   if (AM.IndexReg.getNode())
2522     Complexity++;
2523 
2524   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
2525   // a simple shift.
2526   if (AM.Scale > 1)
2527     Complexity++;
2528 
2529   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
2530   // to a LEA. This is determined with some experimentation but is by no means
2531   // optimal (especially for code size consideration). LEA is nice because of
2532   // its three-address nature. Tweak the cost function again when we can run
2533   // convertToThreeAddress() at register allocation time.
2534   if (AM.hasSymbolicDisplacement()) {
2535     // For X86-64, always use LEA to materialize RIP-relative addresses.
2536     if (Subtarget->is64Bit())
2537       Complexity = 4;
2538     else
2539       Complexity += 2;
2540   }
2541 
2542   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
2543   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
2544   // duplicating flag-producing instructions later in the pipeline.
2545   if (N.getOpcode() == ISD::ADD) {
2546     auto isMathWithFlags = [](SDValue V) {
2547       switch (V.getOpcode()) {
2548       case X86ISD::ADD:
2549       case X86ISD::SUB:
2550       case X86ISD::ADC:
2551       case X86ISD::SBB:
2552       /* TODO: These opcodes can be added safely, but we may want to justify
2553                their inclusion for different reasons (better for reg-alloc).
2554       case X86ISD::SMUL:
2555       case X86ISD::UMUL:
2556       case X86ISD::OR:
2557       case X86ISD::XOR:
2558       case X86ISD::AND:
2559       */
2560         // Value 1 is the flag output of the node - verify it's not dead.
2561         return !SDValue(V.getNode(), 1).use_empty();
2562       default:
2563         return false;
2564       }
2565     };
2566     // TODO: This could be an 'or' rather than 'and' to make the transform more
2567     //       likely to happen. We might want to factor in whether there's a
2568     //       load folding opportunity for the math op that disappears with LEA.
2569     if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1)))
2570       Complexity++;
2571   }
2572 
2573   if (AM.Disp)
2574     Complexity++;
2575 
2576   // If it isn't worth using an LEA, reject it.
2577   if (Complexity <= 2)
2578     return false;
2579 
2580   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2581   return true;
2582 }
2583 
2584 /// This is only run on TargetGlobalTLSAddress nodes.
2585 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
2586                                         SDValue &Scale, SDValue &Index,
2587                                         SDValue &Disp, SDValue &Segment) {
2588   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
2589   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
2590 
2591   X86ISelAddressMode AM;
2592   AM.GV = GA->getGlobal();
2593   AM.Disp += GA->getOffset();
2594   AM.SymbolFlags = GA->getTargetFlags();
2595 
2596   MVT VT = N.getSimpleValueType();
2597   if (VT == MVT::i32) {
2598     AM.Scale = 1;
2599     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
2600   }
2601 
2602   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
2603   return true;
2604 }
2605 
2606 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2607   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2608     Op = CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(CN),
2609                                    N.getValueType());
2610     return true;
2611   }
2612 
2613   // Keep track of the original value type and whether this value was
2614   // truncated. If we see a truncation from pointer type to VT that truncates
2615   // bits that are known to be zero, we can use a narrow reference.
2616   EVT VT = N.getValueType();
2617   bool WasTruncated = false;
2618   if (N.getOpcode() == ISD::TRUNCATE) {
2619     WasTruncated = true;
2620     N = N.getOperand(0);
2621   }
2622 
2623   if (N.getOpcode() != X86ISD::Wrapper)
2624     return false;
2625 
2626   // We can only use non-GlobalValues as immediates if they were not truncated,
2627   // as we do not have any range information. If we have a GlobalValue and the
2628   // address was not truncated, we can select it as an operand directly.
2629   unsigned Opc = N.getOperand(0)->getOpcode();
2630   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2631     Op = N.getOperand(0);
2632     // We can only select the operand directly if we didn't have to look past a
2633     // truncate.
2634     return !WasTruncated;
2635   }
2636 
2637   // Check that the global's range fits into VT.
2638   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2639   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2640   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2641     return false;
2642 
2643   // Okay, we can use a narrow reference.
2644   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2645                                       GA->getOffset(), GA->getTargetFlags());
2646   return true;
2647 }
2648 
2649 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2650                                   SDValue &Base, SDValue &Scale,
2651                                   SDValue &Index, SDValue &Disp,
2652                                   SDValue &Segment) {
2653   assert(Root && P && "Unknown root/parent nodes");
2654   if (!ISD::isNON_EXTLoad(N.getNode()) ||
2655       !IsProfitableToFold(N, P, Root) ||
2656       !IsLegalToFold(N, P, Root, OptLevel))
2657     return false;
2658 
2659   return selectAddr(N.getNode(),
2660                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2661 }
2662 
2663 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
2664                                        SDValue &Base, SDValue &Scale,
2665                                        SDValue &Index, SDValue &Disp,
2666                                        SDValue &Segment) {
2667   assert(Root && P && "Unknown root/parent nodes");
2668   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
2669       !IsProfitableToFold(N, P, Root) ||
2670       !IsLegalToFold(N, P, Root, OptLevel))
2671     return false;
2672 
2673   return selectAddr(N.getNode(),
2674                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2675 }
2676 
2677 /// Return an SDNode that returns the value of the global base register.
2678 /// Output instructions required to initialize the global base register,
2679 /// if necessary.
2680 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2681   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2682   auto &DL = MF->getDataLayout();
2683   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2684 }
2685 
2686 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2687   if (N->getOpcode() == ISD::TRUNCATE)
2688     N = N->getOperand(0).getNode();
2689   if (N->getOpcode() != X86ISD::Wrapper)
2690     return false;
2691 
2692   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2693   if (!GA)
2694     return false;
2695 
2696   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2697   return CR && CR->getSignedMin().sge(-1ull << Width) &&
2698          CR->getSignedMax().slt(1ull << Width);
2699 }
2700 
2701 static X86::CondCode getCondFromNode(SDNode *N) {
2702   assert(N->isMachineOpcode() && "Unexpected node");
2703   X86::CondCode CC = X86::COND_INVALID;
2704   unsigned Opc = N->getMachineOpcode();
2705   if (Opc == X86::JCC_1)
2706     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
2707   else if (Opc == X86::SETCCr)
2708     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
2709   else if (Opc == X86::SETCCm)
2710     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
2711   else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
2712            Opc == X86::CMOV64rr)
2713     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
2714   else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
2715            Opc == X86::CMOV64rm)
2716     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));
2717 
2718   return CC;
2719 }
2720 
2721 /// Test whether the given X86ISD::CMP node has any users that use a flag
2722 /// other than ZF.
2723 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
2724   // Examine each user of the node.
2725   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2726          UI != UE; ++UI) {
2727     // Only check things that use the flags.
2728     if (UI.getUse().getResNo() != Flags.getResNo())
2729       continue;
2730     // Only examine CopyToReg uses that copy to EFLAGS.
2731     if (UI->getOpcode() != ISD::CopyToReg ||
2732         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2733       return false;
2734     // Examine each user of the CopyToReg use.
2735     for (SDNode::use_iterator FlagUI = UI->use_begin(),
2736            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2737       // Only examine the Flag result.
2738       if (FlagUI.getUse().getResNo() != 1) continue;
2739       // Anything unusual: assume conservatively.
2740       if (!FlagUI->isMachineOpcode()) return false;
2741       // Examine the condition code of the user.
2742       X86::CondCode CC = getCondFromNode(*FlagUI);
2743 
2744       switch (CC) {
2745       // Comparisons which only use the zero flag.
2746       case X86::COND_E: case X86::COND_NE:
2747         continue;
2748       // Anything else: assume conservatively.
2749       default:
2750         return false;
2751       }
2752     }
2753   }
2754   return true;
2755 }
2756 
2757 /// Test whether the given X86ISD::CMP node has any uses which require the SF
2758 /// flag to be accurate.
2759 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
2760   // Examine each user of the node.
2761   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2762          UI != UE; ++UI) {
2763     // Only check things that use the flags.
2764     if (UI.getUse().getResNo() != Flags.getResNo())
2765       continue;
2766     // Only examine CopyToReg uses that copy to EFLAGS.
2767     if (UI->getOpcode() != ISD::CopyToReg ||
2768         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2769       return false;
2770     // Examine each user of the CopyToReg use.
2771     for (SDNode::use_iterator FlagUI = UI->use_begin(),
2772            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2773       // Only examine the Flag result.
2774       if (FlagUI.getUse().getResNo() != 1) continue;
2775       // Anything unusual: assume conservatively.
2776       if (!FlagUI->isMachineOpcode()) return false;
2777       // Examine the condition code of the user.
2778       X86::CondCode CC = getCondFromNode(*FlagUI);
2779 
2780       switch (CC) {
2781       // Comparisons which don't examine the SF flag.
2782       case X86::COND_A: case X86::COND_AE:
2783       case X86::COND_B: case X86::COND_BE:
2784       case X86::COND_E: case X86::COND_NE:
2785       case X86::COND_O: case X86::COND_NO:
2786       case X86::COND_P: case X86::COND_NP:
2787         continue;
2788       // Anything else: assume conservatively.
2789       default:
2790         return false;
2791       }
2792     }
2793   }
2794   return true;
2795 }
2796 
2797 static bool mayUseCarryFlag(X86::CondCode CC) {
2798   switch (CC) {
2799   // Comparisons which don't examine the CF flag.
2800   case X86::COND_O: case X86::COND_NO:
2801   case X86::COND_E: case X86::COND_NE:
2802   case X86::COND_S: case X86::COND_NS:
2803   case X86::COND_P: case X86::COND_NP:
2804   case X86::COND_L: case X86::COND_GE:
2805   case X86::COND_G: case X86::COND_LE:
2806     return false;
2807   // Anything else: assume conservatively.
2808   default:
2809     return true;
2810   }
2811 }
2812 
2813 /// Test whether the given node which sets flags has any uses which require the
2814 /// CF flag to be accurate.
2815  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
2816   // Examine each user of the node.
2817   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2818          UI != UE; ++UI) {
2819     // Only check things that use the flags.
2820     if (UI.getUse().getResNo() != Flags.getResNo())
2821       continue;
2822 
2823     unsigned UIOpc = UI->getOpcode();
2824 
2825     if (UIOpc == ISD::CopyToReg) {
2826       // Only examine CopyToReg uses that copy to EFLAGS.
2827       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2828         return false;
2829       // Examine each user of the CopyToReg use.
2830       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
2831            FlagUI != FlagUE; ++FlagUI) {
2832         // Only examine the Flag result.
2833         if (FlagUI.getUse().getResNo() != 1)
2834           continue;
2835         // Anything unusual: assume conservatively.
2836         if (!FlagUI->isMachineOpcode())
2837           return false;
2838         // Examine the condition code of the user.
2839         X86::CondCode CC = getCondFromNode(*FlagUI);
2840 
2841         if (mayUseCarryFlag(CC))
2842           return false;
2843       }
2844 
2845       // This CopyToReg is ok. Move on to the next user.
2846       continue;
2847     }
2848 
2849     // This might be an unselected node. So look for the pre-isel opcodes that
2850     // use flags.
2851     unsigned CCOpNo;
2852     switch (UIOpc) {
2853     default:
2854       // Something unusual. Be conservative.
2855       return false;
2856     case X86ISD::SETCC:       CCOpNo = 0; break;
2857     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
2858     case X86ISD::CMOV:        CCOpNo = 2; break;
2859     case X86ISD::BRCOND:      CCOpNo = 2; break;
2860     }
2861 
2862     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
2863     if (mayUseCarryFlag(CC))
2864       return false;
2865   }
2866   return true;
2867 }
2868 
2869 /// Check whether or not the chain ending in StoreNode is suitable for doing
2870 /// the {load; op; store} to modify transformation.
2871 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
2872                                         SDValue StoredVal, SelectionDAG *CurDAG,
2873                                         unsigned LoadOpNo,
2874                                         LoadSDNode *&LoadNode,
2875                                         SDValue &InputChain) {
2876   // Is the stored value result 0 of the operation?
2877   if (StoredVal.getResNo() != 0) return false;
2878 
2879   // Are there other uses of the operation other than the store?
2880   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
2881 
2882   // Is the store non-extending and non-indexed?
2883   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
2884     return false;
2885 
2886   SDValue Load = StoredVal->getOperand(LoadOpNo);
2887   // Is the stored value a non-extending and non-indexed load?
2888   if (!ISD::isNormalLoad(Load.getNode())) return false;
2889 
2890   // Return LoadNode by reference.
2891   LoadNode = cast<LoadSDNode>(Load);
2892 
2893   // Is store the only read of the loaded value?
2894   if (!Load.hasOneUse())
2895     return false;
2896 
2897   // Is the address of the store the same as the load?
2898   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
2899       LoadNode->getOffset() != StoreNode->getOffset())
2900     return false;
2901 
2902   bool FoundLoad = false;
2903   SmallVector<SDValue, 4> ChainOps;
2904   SmallVector<const SDNode *, 4> LoopWorklist;
2905   SmallPtrSet<const SDNode *, 16> Visited;
2906   const unsigned int Max = 1024;
2907 
2908   //  Visualization of Load-Op-Store fusion:
2909   // -------------------------
2910   // Legend:
2911   //    *-lines = Chain operand dependencies.
2912   //    |-lines = Normal operand dependencies.
2913   //    Dependencies flow down and right. n-suffix references multiple nodes.
2914   //
2915   //        C                        Xn  C
2916   //        *                         *  *
2917   //        *                          * *
2918   //  Xn  A-LD    Yn                    TF         Yn
2919   //   *    * \   |                       *        |
2920   //    *   *  \  |                        *       |
2921   //     *  *   \ |             =>       A--LD_OP_ST
2922   //      * *    \|                                 \
2923   //       TF    OP                                  \
2924   //         *   | \                                  Zn
2925   //          *  |  \
2926   //         A-ST    Zn
2927   //
2928 
2929   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
2930   //                                      #2: Yn -> LD
2931   //                                      #3: ST -> Zn
2932 
2933   // Ensure the transform is safe by checking for the dual
2934   // dependencies to make sure we do not induce a loop.
2935 
2936   // As LD is a predecessor to both OP and ST we can do this by checking:
2937   //  a). if LD is a predecessor to a member of Xn or Yn.
2938   //  b). if a Zn is a predecessor to ST.
2939 
2940   // However, (b) can only occur through being a chain predecessor to
2941   // ST, which is the same as Zn being a member or predecessor of Xn,
2942   // which is a subset of LD being a predecessor of Xn. So it's
2943   // subsumed by check (a).
2944 
2945   SDValue Chain = StoreNode->getChain();
2946 
2947   // Gather X elements in ChainOps.
2948   if (Chain == Load.getValue(1)) {
2949     FoundLoad = true;
2950     ChainOps.push_back(Load.getOperand(0));
2951   } else if (Chain.getOpcode() == ISD::TokenFactor) {
2952     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
2953       SDValue Op = Chain.getOperand(i);
2954       if (Op == Load.getValue(1)) {
2955         FoundLoad = true;
2956         // Drop Load, but keep its chain. No cycle check necessary.
2957         ChainOps.push_back(Load.getOperand(0));
2958         continue;
2959       }
2960       LoopWorklist.push_back(Op.getNode());
2961       ChainOps.push_back(Op);
2962     }
2963   }
2964 
2965   if (!FoundLoad)
2966     return false;
2967 
2968   // Worklist is currently Xn. Add Yn to worklist.
2969   for (SDValue Op : StoredVal->ops())
2970     if (Op.getNode() != LoadNode)
2971       LoopWorklist.push_back(Op.getNode());
2972 
2973   // Check (a) if Load is a predecessor to Xn + Yn
2974   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
2975                                    true))
2976     return false;
2977 
2978   InputChain =
2979       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
2980   return true;
2981 }
2982 
2983 // Change a chain of {load; op; store} of the same value into a simple op
2984 // through memory of that value, if the uses of the modified value and its
2985 // address are suitable.
2986 //
2987 // The tablegen pattern memory operand pattern is currently not able to match
2988 // the case where the EFLAGS on the original operation are used.
2989 //
2990 // To move this to tablegen, we'll need to improve tablegen to allow flags to
2991 // be transferred from a node in the pattern to the result node, probably with
2992 // a new keyword. For example, we have this
2993 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2994 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2995 //   (implicit EFLAGS)]>;
2996 // but maybe need something like this
2997 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2998 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2999 //   (transferrable EFLAGS)]>;
3000 //
3001 // Until then, we manually fold these and instruction select the operation
3002 // here.
3003 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3004   StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
3005   SDValue StoredVal = StoreNode->getOperand(1);
3006   unsigned Opc = StoredVal->getOpcode();
3007 
3008   // Before we try to select anything, make sure this is memory operand size
3009   // and opcode we can handle. Note that this must match the code below that
3010   // actually lowers the opcodes.
3011   EVT MemVT = StoreNode->getMemoryVT();
3012   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3013       MemVT != MVT::i8)
3014     return false;
3015 
3016   bool IsCommutable = false;
3017   bool IsNegate = false;
3018   switch (Opc) {
3019   default:
3020     return false;
3021   case X86ISD::SUB:
3022     IsNegate = isNullConstant(StoredVal.getOperand(0));
3023     break;
3024   case X86ISD::SBB:
3025     break;
3026   case X86ISD::ADD:
3027   case X86ISD::ADC:
3028   case X86ISD::AND:
3029   case X86ISD::OR:
3030   case X86ISD::XOR:
3031     IsCommutable = true;
3032     break;
3033   }
3034 
3035   unsigned LoadOpNo = IsNegate ? 1 : 0;
3036   LoadSDNode *LoadNode = nullptr;
3037   SDValue InputChain;
3038   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3039                                    LoadNode, InputChain)) {
3040     if (!IsCommutable)
3041       return false;
3042 
3043     // This operation is commutable, try the other operand.
3044     LoadOpNo = 1;
3045     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3046                                      LoadNode, InputChain))
3047       return false;
3048   }
3049 
3050   SDValue Base, Scale, Index, Disp, Segment;
3051   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3052                   Segment))
3053     return false;
3054 
3055   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3056                           unsigned Opc8) {
3057     switch (MemVT.getSimpleVT().SimpleTy) {
3058     case MVT::i64:
3059       return Opc64;
3060     case MVT::i32:
3061       return Opc32;
3062     case MVT::i16:
3063       return Opc16;
3064     case MVT::i8:
3065       return Opc8;
3066     default:
3067       llvm_unreachable("Invalid size!");
3068     }
3069   };
3070 
3071   MachineSDNode *Result;
3072   switch (Opc) {
3073   case X86ISD::SUB:
3074     // Handle negate.
3075     if (IsNegate) {
3076       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3077                                      X86::NEG8m);
3078       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3079       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3080                                       MVT::Other, Ops);
3081       break;
3082     }
3083    LLVM_FALLTHROUGH;
3084   case X86ISD::ADD:
3085     // Try to match inc/dec.
3086     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3087       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3088       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3089       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3090       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3091         unsigned NewOpc =
3092           ((Opc == X86ISD::ADD) == IsOne)
3093               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3094               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3095         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3096         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3097                                         MVT::Other, Ops);
3098         break;
3099       }
3100     }
3101     LLVM_FALLTHROUGH;
3102   case X86ISD::ADC:
3103   case X86ISD::SBB:
3104   case X86ISD::AND:
3105   case X86ISD::OR:
3106   case X86ISD::XOR: {
3107     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3108       switch (Opc) {
3109       case X86ISD::ADD:
3110         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3111                             X86::ADD8mr);
3112       case X86ISD::ADC:
3113         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3114                             X86::ADC8mr);
3115       case X86ISD::SUB:
3116         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3117                             X86::SUB8mr);
3118       case X86ISD::SBB:
3119         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3120                             X86::SBB8mr);
3121       case X86ISD::AND:
3122         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3123                             X86::AND8mr);
3124       case X86ISD::OR:
3125         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3126       case X86ISD::XOR:
3127         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3128                             X86::XOR8mr);
3129       default:
3130         llvm_unreachable("Invalid opcode!");
3131       }
3132     };
3133     auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
3134       switch (Opc) {
3135       case X86ISD::ADD:
3136         return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
3137       case X86ISD::ADC:
3138         return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
3139       case X86ISD::SUB:
3140         return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
3141       case X86ISD::SBB:
3142         return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
3143       case X86ISD::AND:
3144         return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
3145       case X86ISD::OR:
3146         return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
3147       case X86ISD::XOR:
3148         return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
3149       default:
3150         llvm_unreachable("Invalid opcode!");
3151       }
3152     };
3153     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3154       switch (Opc) {
3155       case X86ISD::ADD:
3156         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3157                             X86::ADD8mi);
3158       case X86ISD::ADC:
3159         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3160                             X86::ADC8mi);
3161       case X86ISD::SUB:
3162         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3163                             X86::SUB8mi);
3164       case X86ISD::SBB:
3165         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3166                             X86::SBB8mi);
3167       case X86ISD::AND:
3168         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3169                             X86::AND8mi);
3170       case X86ISD::OR:
3171         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3172                             X86::OR8mi);
3173       case X86ISD::XOR:
3174         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3175                             X86::XOR8mi);
3176       default:
3177         llvm_unreachable("Invalid opcode!");
3178       }
3179     };
3180 
3181     unsigned NewOpc = SelectRegOpcode(Opc);
3182     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3183 
3184     // See if the operand is a constant that we can fold into an immediate
3185     // operand.
3186     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3187       int64_t OperandV = OperandC->getSExtValue();
3188 
3189       // Check if we can shrink the operand enough to fit in an immediate (or
3190       // fit into a smaller immediate) by negating it and switching the
3191       // operation.
3192       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3193           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3194            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3195             isInt<32>(-OperandV))) &&
3196           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3197         OperandV = -OperandV;
3198         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3199       }
3200 
3201       // First try to fit this into an Imm8 operand. If it doesn't fit, then try
3202       // the larger immediate operand.
3203       if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
3204         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3205         NewOpc = SelectImm8Opcode(Opc);
3206       } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3207         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3208         NewOpc = SelectImmOpcode(Opc);
3209       }
3210     }
3211 
3212     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3213       SDValue CopyTo =
3214           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3215                                StoredVal.getOperand(2), SDValue());
3216 
3217       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3218                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3219       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3220                                       Ops);
3221     } else {
3222       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3223                              Segment, Operand, InputChain};
3224       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3225                                       Ops);
3226     }
3227     break;
3228   }
3229   default:
3230     llvm_unreachable("Invalid opcode!");
3231   }
3232 
3233   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3234                                  LoadNode->getMemOperand()};
3235   CurDAG->setNodeMemRefs(Result, MemOps);
3236 
3237   // Update Load Chain uses as well.
3238   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3239   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3240   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3241   CurDAG->RemoveDeadNode(Node);
3242   return true;
3243 }
3244 
3245 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3246 // Where Mask is one of the following patterns:
3247 //   a) x &  (1 << nbits) - 1
3248 //   b) x & ~(-1 << nbits)
3249 //   c) x &  (-1 >> (32 - y))
3250 //   d) x << (32 - y) >> (32 - y)
3251 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3252   assert(
3253       (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
3254       "Should be either an and-mask, or right-shift after clearing high bits.");
3255 
3256   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3257   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3258     return false;
3259 
3260   MVT NVT = Node->getSimpleValueType(0);
3261 
3262   // Only supported for 32 and 64 bits.
3263   if (NVT != MVT::i32 && NVT != MVT::i64)
3264     return false;
3265 
3266   SDValue NBits;
3267 
3268   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3269   // Else, if we only have BMI1's BEXTR, we require one-use.
3270   const bool CanHaveExtraUses = Subtarget->hasBMI2();
3271   auto checkUses = [CanHaveExtraUses](SDValue Op, unsigned NUses) {
3272     return CanHaveExtraUses ||
3273            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3274   };
3275   auto checkOneUse = [checkUses](SDValue Op) { return checkUses(Op, 1); };
3276   auto checkTwoUse = [checkUses](SDValue Op) { return checkUses(Op, 2); };
3277 
3278   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3279     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3280       assert(V.getSimpleValueType() == MVT::i32 &&
3281              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3282              "Expected i64 -> i32 truncation");
3283       V = V.getOperand(0);
3284     }
3285     return V;
3286   };
3287 
3288   // a) x & ((1 << nbits) + (-1))
3289   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation,
3290                         &NBits](SDValue Mask) -> bool {
3291     // Match `add`. Must only have one use!
3292     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3293       return false;
3294     // We should be adding all-ones constant (i.e. subtracting one.)
3295     if (!isAllOnesConstant(Mask->getOperand(1)))
3296       return false;
3297     // Match `1 << nbits`. Might be truncated. Must only have one use!
3298     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3299     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3300       return false;
3301     if (!isOneConstant(M0->getOperand(0)))
3302       return false;
3303     NBits = M0->getOperand(1);
3304     return true;
3305   };
3306 
3307   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3308     V = peekThroughOneUseTruncation(V);
3309     return CurDAG->MaskedValueIsAllOnes(
3310         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3311                                 NVT.getSizeInBits()));
3312   };
3313 
3314   // b) x & ~(-1 << nbits)
3315   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3316                         &NBits](SDValue Mask) -> bool {
3317     // Match `~()`. Must only have one use!
3318     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3319       return false;
3320     // The -1 only has to be all-ones for the final Node's NVT.
3321     if (!isAllOnes(Mask->getOperand(1)))
3322       return false;
3323     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3324     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3325     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3326       return false;
3327     // The -1 only has to be all-ones for the final Node's NVT.
3328     if (!isAllOnes(M0->getOperand(0)))
3329       return false;
3330     NBits = M0->getOperand(1);
3331     return true;
3332   };
3333 
3334   // Match potentially-truncated (bitwidth - y)
3335   auto matchShiftAmt = [checkOneUse, &NBits](SDValue ShiftAmt,
3336                                              unsigned Bitwidth) {
3337     // Skip over a truncate of the shift amount.
3338     if (ShiftAmt.getOpcode() == ISD::TRUNCATE) {
3339       ShiftAmt = ShiftAmt.getOperand(0);
3340       // The trunc should have been the only user of the real shift amount.
3341       if (!checkOneUse(ShiftAmt))
3342         return false;
3343     }
3344     // Match the shift amount as: (bitwidth - y). It should go away, too.
3345     if (ShiftAmt.getOpcode() != ISD::SUB)
3346       return false;
3347     auto V0 = dyn_cast<ConstantSDNode>(ShiftAmt.getOperand(0));
3348     if (!V0 || V0->getZExtValue() != Bitwidth)
3349       return false;
3350     NBits = ShiftAmt.getOperand(1);
3351     return true;
3352   };
3353 
3354   // c) x &  (-1 >> (32 - y))
3355   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation,
3356                         matchShiftAmt](SDValue Mask) -> bool {
3357     // The mask itself may be truncated.
3358     Mask = peekThroughOneUseTruncation(Mask);
3359     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3360     // Match `l>>`. Must only have one use!
3361     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3362       return false;
3363     // We should be shifting truly all-ones constant.
3364     if (!isAllOnesConstant(Mask.getOperand(0)))
3365       return false;
3366     SDValue M1 = Mask.getOperand(1);
3367     // The shift amount should not be used externally.
3368     if (!checkOneUse(M1))
3369       return false;
3370     return matchShiftAmt(M1, Bitwidth);
3371   };
3372 
3373   SDValue X;
3374 
3375   // d) x << (32 - y) >> (32 - y)
3376   auto matchPatternD = [checkOneUse, checkTwoUse, matchShiftAmt,
3377                         &X](SDNode *Node) -> bool {
3378     if (Node->getOpcode() != ISD::SRL)
3379       return false;
3380     SDValue N0 = Node->getOperand(0);
3381     if (N0->getOpcode() != ISD::SHL || !checkOneUse(N0))
3382       return false;
3383     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3384     SDValue N1 = Node->getOperand(1);
3385     SDValue N01 = N0->getOperand(1);
3386     // Both of the shifts must be by the exact same value.
3387     // There should not be any uses of the shift amount outside of the pattern.
3388     if (N1 != N01 || !checkTwoUse(N1))
3389       return false;
3390     if (!matchShiftAmt(N1, Bitwidth))
3391       return false;
3392     X = N0->getOperand(0);
3393     return true;
3394   };
3395 
3396   auto matchLowBitMask = [matchPatternA, matchPatternB,
3397                           matchPatternC](SDValue Mask) -> bool {
3398     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3399   };
3400 
3401   if (Node->getOpcode() == ISD::AND) {
3402     X = Node->getOperand(0);
3403     SDValue Mask = Node->getOperand(1);
3404 
3405     if (matchLowBitMask(Mask)) {
3406       // Great.
3407     } else {
3408       std::swap(X, Mask);
3409       if (!matchLowBitMask(Mask))
3410         return false;
3411     }
3412   } else if (!matchPatternD(Node))
3413     return false;
3414 
3415   SDLoc DL(Node);
3416 
3417   // Truncate the shift amount.
3418   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3419   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3420 
3421   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3422   // All the other bits are undefined, we do not care about them.
3423   SDValue ImplDef = SDValue(
3424       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3425   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3426 
3427   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3428   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3429   NBits = SDValue(
3430       CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i32, ImplDef,
3431                              NBits, SRIdxVal), 0);
3432   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3433 
3434   if (Subtarget->hasBMI2()) {
3435     // Great, just emit the the BZHI..
3436     if (NVT != MVT::i32) {
3437       // But have to place the bit count into the wide-enough register first.
3438       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3439       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3440     }
3441 
3442     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3443     ReplaceNode(Node, Extract.getNode());
3444     SelectCode(Extract.getNode());
3445     return true;
3446   }
3447 
3448   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3449   // *logically* shifted (potentially with one-use trunc inbetween),
3450   // and the truncation was the only use of the shift,
3451   // and if so look past one-use truncation.
3452   {
3453     SDValue RealX = peekThroughOneUseTruncation(X);
3454     // FIXME: only if the shift is one-use?
3455     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3456       X = RealX;
3457   }
3458 
3459   MVT XVT = X.getSimpleValueType();
3460 
3461   // Else, emitting BEXTR requires one more step.
3462   // The 'control' of BEXTR has the pattern of:
3463   // [15...8 bit][ 7...0 bit] location
3464   // [ bit count][     shift] name
3465   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3466 
3467   // Shift NBits left by 8 bits, thus producing 'control'.
3468   // This makes the low 8 bits to be zero.
3469   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3470   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3471   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3472 
3473   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3474   // FIXME: only if the shift is one-use?
3475   if (X.getOpcode() == ISD::SRL) {
3476     SDValue ShiftAmt = X.getOperand(1);
3477     X = X.getOperand(0);
3478 
3479     assert(ShiftAmt.getValueType() == MVT::i8 &&
3480            "Expected shift amount to be i8");
3481 
3482     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3483     // We could zext to i16 in some form, but we intentionally don't do that.
3484     SDValue OrigShiftAmt = ShiftAmt;
3485     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3486     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3487 
3488     // And now 'or' these low 8 bits of shift amount into the 'control'.
3489     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
3490     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3491   }
3492 
3493   // But have to place the 'control' into the wide-enough register first.
3494   if (XVT != MVT::i32) {
3495     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
3496     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3497   }
3498 
3499   // And finally, form the BEXTR itself.
3500   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
3501 
3502   // The 'X' was originally truncated. Do that now.
3503   if (XVT != NVT) {
3504     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
3505     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
3506   }
3507 
3508   ReplaceNode(Node, Extract.getNode());
3509   SelectCode(Extract.getNode());
3510 
3511   return true;
3512 }
3513 
3514 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
3515 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
3516   MVT NVT = Node->getSimpleValueType(0);
3517   SDLoc dl(Node);
3518 
3519   SDValue N0 = Node->getOperand(0);
3520   SDValue N1 = Node->getOperand(1);
3521 
3522   // If we have TBM we can use an immediate for the control. If we have BMI
3523   // we should only do this if the BEXTR instruction is implemented well.
3524   // Otherwise moving the control into a register makes this more costly.
3525   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
3526   // hoisting the move immediate would make it worthwhile with a less optimal
3527   // BEXTR?
3528   bool PreferBEXTR =
3529       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
3530   if (!PreferBEXTR && !Subtarget->hasBMI2())
3531     return nullptr;
3532 
3533   // Must have a shift right.
3534   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
3535     return nullptr;
3536 
3537   // Shift can't have additional users.
3538   if (!N0->hasOneUse())
3539     return nullptr;
3540 
3541   // Only supported for 32 and 64 bits.
3542   if (NVT != MVT::i32 && NVT != MVT::i64)
3543     return nullptr;
3544 
3545   // Shift amount and RHS of and must be constant.
3546   ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
3547   ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3548   if (!MaskCst || !ShiftCst)
3549     return nullptr;
3550 
3551   // And RHS must be a mask.
3552   uint64_t Mask = MaskCst->getZExtValue();
3553   if (!isMask_64(Mask))
3554     return nullptr;
3555 
3556   uint64_t Shift = ShiftCst->getZExtValue();
3557   uint64_t MaskSize = countPopulation(Mask);
3558 
3559   // Don't interfere with something that can be handled by extracting AH.
3560   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
3561   if (Shift == 8 && MaskSize == 8)
3562     return nullptr;
3563 
3564   // Make sure we are only using bits that were in the original value, not
3565   // shifted in.
3566   if (Shift + MaskSize > NVT.getSizeInBits())
3567     return nullptr;
3568 
3569   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
3570   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
3571   // does not fit into 32 bits. Load folding is not a sufficient reason.
3572   if (!PreferBEXTR && MaskSize <= 32)
3573     return nullptr;
3574 
3575   SDValue Control;
3576   unsigned ROpc, MOpc;
3577 
3578   if (!PreferBEXTR) {
3579     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
3580     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
3581     // Let's perform the mask first, and apply shift later. Note that we need to
3582     // widen the mask to account for the fact that we'll apply shift afterwards!
3583     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
3584     ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
3585     MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
3586     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3587     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3588   } else {
3589     // The 'control' of BEXTR has the pattern of:
3590     // [15...8 bit][ 7...0 bit] location
3591     // [ bit count][     shift] name
3592     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3593     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
3594     if (Subtarget->hasTBM()) {
3595       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
3596       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
3597     } else {
3598       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
3599       // BMI requires the immediate to placed in a register.
3600       ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
3601       MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
3602       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3603       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3604     }
3605   }
3606 
3607   MachineSDNode *NewNode;
3608   SDValue Input = N0->getOperand(0);
3609   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3610   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3611     SDValue Ops[] = {
3612         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
3613     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
3614     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3615     // Update the chain.
3616     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
3617     // Record the mem-refs
3618     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
3619   } else {
3620     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
3621   }
3622 
3623   if (!PreferBEXTR) {
3624     // We still need to apply the shift.
3625     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
3626     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
3627     NewNode =
3628         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
3629   }
3630 
3631   return NewNode;
3632 }
3633 
3634 // Emit a PCMISTR(I/M) instruction.
3635 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
3636                                              bool MayFoldLoad, const SDLoc &dl,
3637                                              MVT VT, SDNode *Node) {
3638   SDValue N0 = Node->getOperand(0);
3639   SDValue N1 = Node->getOperand(1);
3640   SDValue Imm = Node->getOperand(2);
3641   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3642   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3643 
3644   // Try to fold a load. No need to check alignment.
3645   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3646   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3647     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3648                       N1.getOperand(0) };
3649     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
3650     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3651     // Update the chain.
3652     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
3653     // Record the mem-refs
3654     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3655     return CNode;
3656   }
3657 
3658   SDValue Ops[] = { N0, N1, Imm };
3659   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
3660   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3661   return CNode;
3662 }
3663 
3664 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
3665 // to emit a second instruction after this one. This is needed since we have two
3666 // copyToReg nodes glued before this and we need to continue that glue through.
3667 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
3668                                              bool MayFoldLoad, const SDLoc &dl,
3669                                              MVT VT, SDNode *Node,
3670                                              SDValue &InFlag) {
3671   SDValue N0 = Node->getOperand(0);
3672   SDValue N2 = Node->getOperand(2);
3673   SDValue Imm = Node->getOperand(4);
3674   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3675   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3676 
3677   // Try to fold a load. No need to check alignment.
3678   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3679   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3680     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3681                       N2.getOperand(0), InFlag };
3682     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
3683     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3684     InFlag = SDValue(CNode, 3);
3685     // Update the chain.
3686     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
3687     // Record the mem-refs
3688     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
3689     return CNode;
3690   }
3691 
3692   SDValue Ops[] = { N0, N2, Imm, InFlag };
3693   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
3694   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3695   InFlag = SDValue(CNode, 2);
3696   return CNode;
3697 }
3698 
3699 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3700   EVT VT = N->getValueType(0);
3701 
3702   // Only handle scalar shifts.
3703   if (VT.isVector())
3704     return false;
3705 
3706   // Narrower shifts only mask to 5 bits in hardware.
3707   unsigned Size = VT == MVT::i64 ? 64 : 32;
3708 
3709   SDValue OrigShiftAmt = N->getOperand(1);
3710   SDValue ShiftAmt = OrigShiftAmt;
3711   SDLoc DL(N);
3712 
3713   // Skip over a truncate of the shift amount.
3714   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
3715     ShiftAmt = ShiftAmt->getOperand(0);
3716 
3717   // This function is called after X86DAGToDAGISel::matchBitExtract(),
3718   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
3719 
3720   SDValue NewShiftAmt;
3721   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3722     SDValue Add0 = ShiftAmt->getOperand(0);
3723     SDValue Add1 = ShiftAmt->getOperand(1);
3724     // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3725     // to avoid the ADD/SUB.
3726     if (isa<ConstantSDNode>(Add1) &&
3727         cast<ConstantSDNode>(Add1)->getZExtValue() % Size == 0) {
3728       NewShiftAmt = Add0;
3729     // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
3730     // generate a NEG instead of a SUB of a constant.
3731     } else if (ShiftAmt->getOpcode() == ISD::SUB &&
3732                isa<ConstantSDNode>(Add0) &&
3733                cast<ConstantSDNode>(Add0)->getZExtValue() != 0 &&
3734                cast<ConstantSDNode>(Add0)->getZExtValue() % Size == 0) {
3735       // Insert a negate op.
3736       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
3737       // that uses it that's not a shift.
3738       EVT SubVT = ShiftAmt.getValueType();
3739       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
3740       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, Add1);
3741       NewShiftAmt = Neg;
3742 
3743       // Insert these operands into a valid topological order so they can
3744       // get selected independently.
3745       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
3746       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
3747     } else
3748       return false;
3749   } else
3750     return false;
3751 
3752   if (NewShiftAmt.getValueType() != MVT::i8) {
3753     // Need to truncate the shift amount.
3754     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
3755     // Add to a correct topological ordering.
3756     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3757   }
3758 
3759   // Insert a new mask to keep the shift amount legal. This should be removed
3760   // by isel patterns.
3761   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
3762                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
3763   // Place in a correct topological ordering.
3764   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3765 
3766   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
3767                                                    NewShiftAmt);
3768   if (UpdatedNode != N) {
3769     // If we found an existing node, we should replace ourselves with that node
3770     // and wait for it to be selected after its other users.
3771     ReplaceNode(N, UpdatedNode);
3772     return true;
3773   }
3774 
3775   // If the original shift amount is now dead, delete it so that we don't run
3776   // it through isel.
3777   if (OrigShiftAmt.getNode()->use_empty())
3778     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
3779 
3780   // Now that we've optimized the shift amount, defer to normal isel to get
3781   // load folding and legacy vs BMI2 selection without repeating it here.
3782   SelectCode(N);
3783   return true;
3784 }
3785 
3786 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
3787   MVT NVT = N->getSimpleValueType(0);
3788   unsigned Opcode = N->getOpcode();
3789   SDLoc dl(N);
3790 
3791   // For operations of the form (x << C1) op C2, check if we can use a smaller
3792   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
3793   SDValue Shift = N->getOperand(0);
3794   SDValue N1 = N->getOperand(1);
3795 
3796   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
3797   if (!Cst)
3798     return false;
3799 
3800   int64_t Val = Cst->getSExtValue();
3801 
3802   // If we have an any_extend feeding the AND, look through it to see if there
3803   // is a shift behind it. But only if the AND doesn't use the extended bits.
3804   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
3805   bool FoundAnyExtend = false;
3806   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
3807       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
3808       isUInt<32>(Val)) {
3809     FoundAnyExtend = true;
3810     Shift = Shift.getOperand(0);
3811   }
3812 
3813   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
3814     return false;
3815 
3816   // i8 is unshrinkable, i16 should be promoted to i32.
3817   if (NVT != MVT::i32 && NVT != MVT::i64)
3818     return false;
3819 
3820   ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
3821   if (!ShlCst)
3822     return false;
3823 
3824   uint64_t ShAmt = ShlCst->getZExtValue();
3825 
3826   // Make sure that we don't change the operation by removing bits.
3827   // This only matters for OR and XOR, AND is unaffected.
3828   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
3829   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
3830     return false;
3831 
3832   // Check the minimum bitwidth for the new constant.
3833   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
3834   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
3835     if (Opcode == ISD::AND) {
3836       // AND32ri is the same as AND64ri32 with zext imm.
3837       // Try this before sign extended immediates below.
3838       ShiftedVal = (uint64_t)Val >> ShAmt;
3839       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3840         return true;
3841       // Also swap order when the AND can become MOVZX.
3842       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
3843         return true;
3844     }
3845     ShiftedVal = Val >> ShAmt;
3846     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
3847         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
3848       return true;
3849     if (Opcode != ISD::AND) {
3850       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
3851       ShiftedVal = (uint64_t)Val >> ShAmt;
3852       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3853         return true;
3854     }
3855     return false;
3856   };
3857 
3858   int64_t ShiftedVal;
3859   if (!CanShrinkImmediate(ShiftedVal))
3860     return false;
3861 
3862   // Ok, we can reorder to get a smaller immediate.
3863 
3864   // But, its possible the original immediate allowed an AND to become MOVZX.
3865   // Doing this late due to avoid the MakedValueIsZero call as late as
3866   // possible.
3867   if (Opcode == ISD::AND) {
3868     // Find the smallest zext this could possibly be.
3869     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
3870     ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
3871 
3872     // Figure out which bits need to be zero to achieve that mask.
3873     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
3874                                             ZExtWidth);
3875     NeededMask &= ~Cst->getAPIntValue();
3876 
3877     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
3878       return false;
3879   }
3880 
3881   SDValue X = Shift.getOperand(0);
3882   if (FoundAnyExtend) {
3883     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
3884     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
3885     X = NewX;
3886   }
3887 
3888   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
3889   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
3890   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
3891   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
3892   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
3893                                    Shift.getOperand(1));
3894   ReplaceNode(N, NewSHL.getNode());
3895   SelectCode(NewSHL.getNode());
3896   return true;
3897 }
3898 
3899 /// Convert vector increment or decrement to sub/add with an all-ones constant:
3900 /// add X, <1, 1...> --> sub X, <-1, -1...>
3901 /// sub X, <1, 1...> --> add X, <-1, -1...>
3902 /// The all-ones vector constant can be materialized using a pcmpeq instruction
3903 /// that is commonly recognized as an idiom (has no register dependency), so
3904 /// that's better/smaller than loading a splat 1 constant.
3905 bool X86DAGToDAGISel::combineIncDecVector(SDNode *Node) {
3906   assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB) &&
3907          "Unexpected opcode for increment/decrement transform");
3908 
3909   EVT VT = Node->getValueType(0);
3910   assert(VT.isVector() && "Should only be called for vectors.");
3911 
3912   SDValue X = Node->getOperand(0);
3913   SDValue OneVec = Node->getOperand(1);
3914 
3915   APInt SplatVal;
3916   if (!X86::isConstantSplat(OneVec, SplatVal) || !SplatVal.isOneValue())
3917     return false;
3918 
3919   SDLoc DL(Node);
3920   SDValue OneConstant, AllOnesVec;
3921 
3922   APInt Ones = APInt::getAllOnesValue(32);
3923   assert(VT.getSizeInBits() % 32 == 0 &&
3924          "Expected bit count to be a multiple of 32");
3925   OneConstant = CurDAG->getConstant(Ones, DL, MVT::i32);
3926   insertDAGNode(*CurDAG, X, OneConstant);
3927 
3928   unsigned NumElts = VT.getSizeInBits() / 32;
3929   assert(NumElts > 0 && "Expected to get non-empty vector.");
3930   AllOnesVec = CurDAG->getSplatBuildVector(MVT::getVectorVT(MVT::i32, NumElts),
3931                                            DL, OneConstant);
3932   insertDAGNode(*CurDAG, X, AllOnesVec);
3933 
3934   AllOnesVec = CurDAG->getBitcast(VT, AllOnesVec);
3935   insertDAGNode(*CurDAG, X, AllOnesVec);
3936 
3937   unsigned NewOpcode = Node->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
3938   SDValue NewNode = CurDAG->getNode(NewOpcode, DL, VT, X, AllOnesVec);
3939 
3940   ReplaceNode(Node, NewNode.getNode());
3941   SelectCode(NewNode.getNode());
3942   return true;
3943 }
3944 
3945 /// If the high bits of an 'and' operand are known zero, try setting the
3946 /// high bits of an 'and' constant operand to produce a smaller encoding by
3947 /// creating a small, sign-extended negative immediate rather than a large
3948 /// positive one. This reverses a transform in SimplifyDemandedBits that
3949 /// shrinks mask constants by clearing bits. There is also a possibility that
3950 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
3951 /// case, just replace the 'and'. Return 'true' if the node is replaced.
3952 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
3953   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
3954   // have immediate operands.
3955   MVT VT = And->getSimpleValueType(0);
3956   if (VT != MVT::i32 && VT != MVT::i64)
3957     return false;
3958 
3959   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
3960   if (!And1C)
3961     return false;
3962 
3963   // Bail out if the mask constant is already negative. It's can't shrink more.
3964   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
3965   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
3966   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
3967   // are negative too.
3968   APInt MaskVal = And1C->getAPIntValue();
3969   unsigned MaskLZ = MaskVal.countLeadingZeros();
3970   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
3971     return false;
3972 
3973   // Don't extend into the upper 32 bits of a 64 bit mask.
3974   if (VT == MVT::i64 && MaskLZ >= 32) {
3975     MaskLZ -= 32;
3976     MaskVal = MaskVal.trunc(32);
3977   }
3978 
3979   SDValue And0 = And->getOperand(0);
3980   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
3981   APInt NegMaskVal = MaskVal | HighZeros;
3982 
3983   // If a negative constant would not allow a smaller encoding, there's no need
3984   // to continue. Only change the constant when we know it's a win.
3985   unsigned MinWidth = NegMaskVal.getMinSignedBits();
3986   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
3987     return false;
3988 
3989   // Extend masks if we truncated above.
3990   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
3991     NegMaskVal = NegMaskVal.zext(64);
3992     HighZeros = HighZeros.zext(64);
3993   }
3994 
3995   // The variable operand must be all zeros in the top bits to allow using the
3996   // new, negative constant as the mask.
3997   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
3998     return false;
3999 
4000   // Check if the mask is -1. In that case, this is an unnecessary instruction
4001   // that escaped earlier analysis.
4002   if (NegMaskVal.isAllOnesValue()) {
4003     ReplaceNode(And, And0.getNode());
4004     return true;
4005   }
4006 
4007   // A negative mask allows a smaller encoding. Create a new 'and' node.
4008   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4009   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4010   ReplaceNode(And, NewAnd.getNode());
4011   SelectCode(NewAnd.getNode());
4012   return true;
4013 }
4014 
4015 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4016                               bool FoldedBCast, bool Masked) {
4017   if (Masked) {
4018     if (FoldedLoad) {
4019       switch (TestVT.SimpleTy) {
4020       default: llvm_unreachable("Unexpected VT!");
4021       case MVT::v16i8:
4022         return IsTestN ? X86::VPTESTNMBZ128rmk : X86::VPTESTMBZ128rmk;
4023       case MVT::v8i16:
4024         return IsTestN ? X86::VPTESTNMWZ128rmk : X86::VPTESTMWZ128rmk;
4025       case MVT::v4i32:
4026         return IsTestN ? X86::VPTESTNMDZ128rmk : X86::VPTESTMDZ128rmk;
4027       case MVT::v2i64:
4028         return IsTestN ? X86::VPTESTNMQZ128rmk : X86::VPTESTMQZ128rmk;
4029       case MVT::v32i8:
4030         return IsTestN ? X86::VPTESTNMBZ256rmk : X86::VPTESTMBZ256rmk;
4031       case MVT::v16i16:
4032         return IsTestN ? X86::VPTESTNMWZ256rmk : X86::VPTESTMWZ256rmk;
4033       case MVT::v8i32:
4034         return IsTestN ? X86::VPTESTNMDZ256rmk : X86::VPTESTMDZ256rmk;
4035       case MVT::v4i64:
4036         return IsTestN ? X86::VPTESTNMQZ256rmk : X86::VPTESTMQZ256rmk;
4037       case MVT::v64i8:
4038         return IsTestN ? X86::VPTESTNMBZrmk : X86::VPTESTMBZrmk;
4039       case MVT::v32i16:
4040         return IsTestN ? X86::VPTESTNMWZrmk : X86::VPTESTMWZrmk;
4041       case MVT::v16i32:
4042         return IsTestN ? X86::VPTESTNMDZrmk : X86::VPTESTMDZrmk;
4043       case MVT::v8i64:
4044         return IsTestN ? X86::VPTESTNMQZrmk : X86::VPTESTMQZrmk;
4045       }
4046     }
4047 
4048     if (FoldedBCast) {
4049       switch (TestVT.SimpleTy) {
4050       default: llvm_unreachable("Unexpected VT!");
4051       case MVT::v4i32:
4052         return IsTestN ? X86::VPTESTNMDZ128rmbk : X86::VPTESTMDZ128rmbk;
4053       case MVT::v2i64:
4054         return IsTestN ? X86::VPTESTNMQZ128rmbk : X86::VPTESTMQZ128rmbk;
4055       case MVT::v8i32:
4056         return IsTestN ? X86::VPTESTNMDZ256rmbk : X86::VPTESTMDZ256rmbk;
4057       case MVT::v4i64:
4058         return IsTestN ? X86::VPTESTNMQZ256rmbk : X86::VPTESTMQZ256rmbk;
4059       case MVT::v16i32:
4060         return IsTestN ? X86::VPTESTNMDZrmbk : X86::VPTESTMDZrmbk;
4061       case MVT::v8i64:
4062         return IsTestN ? X86::VPTESTNMQZrmbk : X86::VPTESTMQZrmbk;
4063       }
4064     }
4065 
4066     switch (TestVT.SimpleTy) {
4067     default: llvm_unreachable("Unexpected VT!");
4068     case MVT::v16i8:
4069       return IsTestN ? X86::VPTESTNMBZ128rrk : X86::VPTESTMBZ128rrk;
4070     case MVT::v8i16:
4071       return IsTestN ? X86::VPTESTNMWZ128rrk : X86::VPTESTMWZ128rrk;
4072     case MVT::v4i32:
4073       return IsTestN ? X86::VPTESTNMDZ128rrk : X86::VPTESTMDZ128rrk;
4074     case MVT::v2i64:
4075       return IsTestN ? X86::VPTESTNMQZ128rrk : X86::VPTESTMQZ128rrk;
4076     case MVT::v32i8:
4077       return IsTestN ? X86::VPTESTNMBZ256rrk : X86::VPTESTMBZ256rrk;
4078     case MVT::v16i16:
4079       return IsTestN ? X86::VPTESTNMWZ256rrk : X86::VPTESTMWZ256rrk;
4080     case MVT::v8i32:
4081       return IsTestN ? X86::VPTESTNMDZ256rrk : X86::VPTESTMDZ256rrk;
4082     case MVT::v4i64:
4083       return IsTestN ? X86::VPTESTNMQZ256rrk : X86::VPTESTMQZ256rrk;
4084     case MVT::v64i8:
4085       return IsTestN ? X86::VPTESTNMBZrrk : X86::VPTESTMBZrrk;
4086     case MVT::v32i16:
4087       return IsTestN ? X86::VPTESTNMWZrrk : X86::VPTESTMWZrrk;
4088     case MVT::v16i32:
4089       return IsTestN ? X86::VPTESTNMDZrrk : X86::VPTESTMDZrrk;
4090     case MVT::v8i64:
4091       return IsTestN ? X86::VPTESTNMQZrrk : X86::VPTESTMQZrrk;
4092     }
4093   }
4094 
4095   if (FoldedLoad) {
4096     switch (TestVT.SimpleTy) {
4097     default: llvm_unreachable("Unexpected VT!");
4098     case MVT::v16i8:
4099       return IsTestN ? X86::VPTESTNMBZ128rm : X86::VPTESTMBZ128rm;
4100     case MVT::v8i16:
4101       return IsTestN ? X86::VPTESTNMWZ128rm : X86::VPTESTMWZ128rm;
4102     case MVT::v4i32:
4103       return IsTestN ? X86::VPTESTNMDZ128rm : X86::VPTESTMDZ128rm;
4104     case MVT::v2i64:
4105       return IsTestN ? X86::VPTESTNMQZ128rm : X86::VPTESTMQZ128rm;
4106     case MVT::v32i8:
4107       return IsTestN ? X86::VPTESTNMBZ256rm : X86::VPTESTMBZ256rm;
4108     case MVT::v16i16:
4109       return IsTestN ? X86::VPTESTNMWZ256rm : X86::VPTESTMWZ256rm;
4110     case MVT::v8i32:
4111       return IsTestN ? X86::VPTESTNMDZ256rm : X86::VPTESTMDZ256rm;
4112     case MVT::v4i64:
4113       return IsTestN ? X86::VPTESTNMQZ256rm : X86::VPTESTMQZ256rm;
4114     case MVT::v64i8:
4115       return IsTestN ? X86::VPTESTNMBZrm : X86::VPTESTMBZrm;
4116     case MVT::v32i16:
4117       return IsTestN ? X86::VPTESTNMWZrm : X86::VPTESTMWZrm;
4118     case MVT::v16i32:
4119       return IsTestN ? X86::VPTESTNMDZrm : X86::VPTESTMDZrm;
4120     case MVT::v8i64:
4121       return IsTestN ? X86::VPTESTNMQZrm : X86::VPTESTMQZrm;
4122     }
4123   }
4124 
4125   if (FoldedBCast) {
4126     switch (TestVT.SimpleTy) {
4127     default: llvm_unreachable("Unexpected VT!");
4128     case MVT::v4i32:
4129       return IsTestN ? X86::VPTESTNMDZ128rmb : X86::VPTESTMDZ128rmb;
4130     case MVT::v2i64:
4131       return IsTestN ? X86::VPTESTNMQZ128rmb : X86::VPTESTMQZ128rmb;
4132     case MVT::v8i32:
4133       return IsTestN ? X86::VPTESTNMDZ256rmb : X86::VPTESTMDZ256rmb;
4134     case MVT::v4i64:
4135       return IsTestN ? X86::VPTESTNMQZ256rmb : X86::VPTESTMQZ256rmb;
4136     case MVT::v16i32:
4137       return IsTestN ? X86::VPTESTNMDZrmb : X86::VPTESTMDZrmb;
4138     case MVT::v8i64:
4139       return IsTestN ? X86::VPTESTNMQZrmb : X86::VPTESTMQZrmb;
4140     }
4141   }
4142 
4143   switch (TestVT.SimpleTy) {
4144   default: llvm_unreachable("Unexpected VT!");
4145   case MVT::v16i8:
4146     return IsTestN ? X86::VPTESTNMBZ128rr : X86::VPTESTMBZ128rr;
4147   case MVT::v8i16:
4148     return IsTestN ? X86::VPTESTNMWZ128rr : X86::VPTESTMWZ128rr;
4149   case MVT::v4i32:
4150     return IsTestN ? X86::VPTESTNMDZ128rr : X86::VPTESTMDZ128rr;
4151   case MVT::v2i64:
4152     return IsTestN ? X86::VPTESTNMQZ128rr : X86::VPTESTMQZ128rr;
4153   case MVT::v32i8:
4154     return IsTestN ? X86::VPTESTNMBZ256rr : X86::VPTESTMBZ256rr;
4155   case MVT::v16i16:
4156     return IsTestN ? X86::VPTESTNMWZ256rr : X86::VPTESTMWZ256rr;
4157   case MVT::v8i32:
4158     return IsTestN ? X86::VPTESTNMDZ256rr : X86::VPTESTMDZ256rr;
4159   case MVT::v4i64:
4160     return IsTestN ? X86::VPTESTNMQZ256rr : X86::VPTESTMQZ256rr;
4161   case MVT::v64i8:
4162     return IsTestN ? X86::VPTESTNMBZrr : X86::VPTESTMBZrr;
4163   case MVT::v32i16:
4164     return IsTestN ? X86::VPTESTNMWZrr : X86::VPTESTMWZrr;
4165   case MVT::v16i32:
4166     return IsTestN ? X86::VPTESTNMDZrr : X86::VPTESTMDZrr;
4167   case MVT::v8i64:
4168     return IsTestN ? X86::VPTESTNMQZrr : X86::VPTESTMQZrr;
4169   }
4170 }
4171 
4172 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4173 // to form a masked operation.
4174 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4175                                  SDValue InMask) {
4176   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4177   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4178          "Unexpected VT!");
4179 
4180   // Look for equal and not equal compares.
4181   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4182   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4183     return false;
4184 
4185   SDValue SetccOp0 = Setcc.getOperand(0);
4186   SDValue SetccOp1 = Setcc.getOperand(1);
4187 
4188   // Canonicalize the all zero vector to the RHS.
4189   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4190     std::swap(SetccOp0, SetccOp1);
4191 
4192   // See if we're comparing against zero.
4193   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4194     return false;
4195 
4196   SDValue N0 = SetccOp0;
4197 
4198   MVT CmpVT = N0.getSimpleValueType();
4199   MVT CmpSVT = CmpVT.getVectorElementType();
4200 
4201   // Start with both operands the same. We'll try to refine this.
4202   SDValue Src0 = N0;
4203   SDValue Src1 = N0;
4204 
4205   {
4206     // Look through single use bitcasts.
4207     SDValue N0Temp = N0;
4208     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4209       N0Temp = N0.getOperand(0);
4210 
4211      // Look for single use AND.
4212     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4213       Src0 = N0Temp.getOperand(0);
4214       Src1 = N0Temp.getOperand(1);
4215     }
4216   }
4217 
4218   // Without VLX we need to widen the load.
4219   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4220 
4221   // We can only fold loads if the sources are unique.
4222   bool CanFoldLoads = Src0 != Src1;
4223 
4224   // Try to fold loads unless we need to widen.
4225   bool FoldedLoad = false;
4226   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Load;
4227   if (!Widen && CanFoldLoads) {
4228     Load = Src1;
4229     FoldedLoad = tryFoldLoad(Root, N0.getNode(), Load, Tmp0, Tmp1, Tmp2, Tmp3,
4230                              Tmp4);
4231     if (!FoldedLoad) {
4232       // And is computative.
4233       Load = Src0;
4234       FoldedLoad = tryFoldLoad(Root, N0.getNode(), Load, Tmp0, Tmp1, Tmp2,
4235                                Tmp3, Tmp4);
4236       if (FoldedLoad)
4237         std::swap(Src0, Src1);
4238     }
4239   }
4240 
4241   auto findBroadcastedOp = [](SDValue Src, MVT CmpSVT, SDNode *&Parent) {
4242     // Look through single use bitcasts.
4243     if (Src.getOpcode() == ISD::BITCAST && Src.hasOneUse()) {
4244       Parent = Src.getNode();
4245       Src = Src.getOperand(0);
4246     }
4247 
4248     if (Src.getOpcode() == X86ISD::VBROADCAST_LOAD && Src.hasOneUse()) {
4249       auto *MemIntr = cast<MemIntrinsicSDNode>(Src);
4250       if (MemIntr->getMemoryVT().getSizeInBits() == CmpSVT.getSizeInBits())
4251         return Src;
4252     }
4253 
4254     return SDValue();
4255   };
4256 
4257   // If we didn't fold a load, try to match broadcast. No widening limitation
4258   // for this. But only 32 and 64 bit types are supported.
4259   bool FoldedBCast = false;
4260   if (!FoldedLoad && CanFoldLoads &&
4261       (CmpSVT == MVT::i32 || CmpSVT == MVT::i64)) {
4262     SDNode *ParentNode = N0.getNode();
4263     if ((Load = findBroadcastedOp(Src1, CmpSVT, ParentNode))) {
4264       FoldedBCast = tryFoldBroadcast(Root, ParentNode, Load, Tmp0,
4265                                      Tmp1, Tmp2, Tmp3, Tmp4);
4266     }
4267 
4268     // Try the other operand.
4269     if (!FoldedBCast) {
4270       SDNode *ParentNode = N0.getNode();
4271       if ((Load = findBroadcastedOp(Src0, CmpSVT, ParentNode))) {
4272         FoldedBCast = tryFoldBroadcast(Root, ParentNode, Load, Tmp0,
4273                                        Tmp1, Tmp2, Tmp3, Tmp4);
4274         if (FoldedBCast)
4275           std::swap(Src0, Src1);
4276       }
4277     }
4278   }
4279 
4280   auto getMaskRC = [](MVT MaskVT) {
4281     switch (MaskVT.SimpleTy) {
4282     default: llvm_unreachable("Unexpected VT!");
4283     case MVT::v2i1:  return X86::VK2RegClassID;
4284     case MVT::v4i1:  return X86::VK4RegClassID;
4285     case MVT::v8i1:  return X86::VK8RegClassID;
4286     case MVT::v16i1: return X86::VK16RegClassID;
4287     case MVT::v32i1: return X86::VK32RegClassID;
4288     case MVT::v64i1: return X86::VK64RegClassID;
4289     }
4290   };
4291 
4292   bool IsMasked = InMask.getNode() != nullptr;
4293 
4294   SDLoc dl(Root);
4295 
4296   MVT ResVT = Setcc.getSimpleValueType();
4297   MVT MaskVT = ResVT;
4298   if (Widen) {
4299     // Widen the inputs using insert_subreg or copy_to_regclass.
4300     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4301     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4302     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4303     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4304     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4305     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4306                                                      CmpVT), 0);
4307     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4308 
4309     assert(!FoldedLoad && "Shouldn't have folded the load");
4310     if (!FoldedBCast)
4311       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4312 
4313     if (IsMasked) {
4314       // Widen the mask.
4315       unsigned RegClass = getMaskRC(MaskVT);
4316       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4317       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4318                                               dl, MaskVT, InMask, RC), 0);
4319     }
4320   }
4321 
4322   bool IsTestN = CC == ISD::SETEQ;
4323   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4324                                IsMasked);
4325 
4326   MachineSDNode *CNode;
4327   if (FoldedLoad || FoldedBCast) {
4328     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4329 
4330     if (IsMasked) {
4331       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4332                         Load.getOperand(0) };
4333       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4334     } else {
4335       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4336                         Load.getOperand(0) };
4337       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4338     }
4339 
4340     // Update the chain.
4341     ReplaceUses(Load.getValue(1), SDValue(CNode, 1));
4342     // Record the mem-refs
4343     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Load)->getMemOperand()});
4344   } else {
4345     if (IsMasked)
4346       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4347     else
4348       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4349   }
4350 
4351   // If we widened, we need to shrink the mask VT.
4352   if (Widen) {
4353     unsigned RegClass = getMaskRC(ResVT);
4354     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4355     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4356                                    dl, ResVT, SDValue(CNode, 0), RC);
4357   }
4358 
4359   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4360   CurDAG->RemoveDeadNode(Root);
4361   return true;
4362 }
4363 
4364 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4365 // into vpternlog.
4366 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4367   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4368 
4369   MVT NVT = N->getSimpleValueType(0);
4370 
4371   // Make sure we support VPTERNLOG.
4372   if (!NVT.isVector() || !Subtarget->hasAVX512())
4373     return false;
4374 
4375   // We need VLX for 128/256-bit.
4376   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4377     return false;
4378 
4379   SDValue N0 = N->getOperand(0);
4380   SDValue N1 = N->getOperand(1);
4381 
4382   // Canonicalize AND to LHS.
4383   if (N1.getOpcode() == ISD::AND)
4384     std::swap(N0, N1);
4385 
4386   if (N0.getOpcode() != ISD::AND ||
4387       N1.getOpcode() != X86ISD::ANDNP ||
4388       !N0.hasOneUse() || !N1.hasOneUse())
4389     return false;
4390 
4391   // ANDN is not commutable, use it to pick down A and C.
4392   SDValue A = N1.getOperand(0);
4393   SDValue C = N1.getOperand(1);
4394 
4395   // AND is commutable, if one operand matches A, the other operand is B.
4396   // Otherwise this isn't a match.
4397   SDValue B;
4398   if (N0.getOperand(0) == A)
4399     B = N0.getOperand(1);
4400   else if (N0.getOperand(1) == A)
4401     B = N0.getOperand(0);
4402   else
4403     return false;
4404 
4405   SDLoc dl(N);
4406   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
4407   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
4408   ReplaceNode(N, Ternlog.getNode());
4409   SelectCode(Ternlog.getNode());
4410   return true;
4411 }
4412 
4413 void X86DAGToDAGISel::Select(SDNode *Node) {
4414   MVT NVT = Node->getSimpleValueType(0);
4415   unsigned Opcode = Node->getOpcode();
4416   SDLoc dl(Node);
4417 
4418   if (Node->isMachineOpcode()) {
4419     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
4420     Node->setNodeId(-1);
4421     return;   // Already selected.
4422   }
4423 
4424   switch (Opcode) {
4425   default: break;
4426   case ISD::INTRINSIC_VOID: {
4427     unsigned IntNo = Node->getConstantOperandVal(1);
4428     switch (IntNo) {
4429     default: break;
4430     case Intrinsic::x86_sse3_monitor:
4431     case Intrinsic::x86_monitorx:
4432     case Intrinsic::x86_clzero: {
4433       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
4434 
4435       unsigned Opc = 0;
4436       switch (IntNo) {
4437       default: llvm_unreachable("Unexpected intrinsic!");
4438       case Intrinsic::x86_sse3_monitor:
4439         if (!Subtarget->hasSSE3())
4440           break;
4441         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
4442         break;
4443       case Intrinsic::x86_monitorx:
4444         if (!Subtarget->hasMWAITX())
4445           break;
4446         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
4447         break;
4448       case Intrinsic::x86_clzero:
4449         if (!Subtarget->hasCLZERO())
4450           break;
4451         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
4452         break;
4453       }
4454 
4455       if (Opc) {
4456         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
4457         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
4458                                              Node->getOperand(2), SDValue());
4459         SDValue InFlag = Chain.getValue(1);
4460 
4461         if (IntNo == Intrinsic::x86_sse3_monitor ||
4462             IntNo == Intrinsic::x86_monitorx) {
4463           // Copy the other two operands to ECX and EDX.
4464           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
4465                                        InFlag);
4466           InFlag = Chain.getValue(1);
4467           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
4468                                        InFlag);
4469           InFlag = Chain.getValue(1);
4470         }
4471 
4472         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4473                                                       { Chain, InFlag});
4474         ReplaceNode(Node, CNode);
4475         return;
4476       }
4477 
4478       break;
4479     }
4480     }
4481 
4482     break;
4483   }
4484   case ISD::BRIND: {
4485     if (Subtarget->isTargetNaCl())
4486       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
4487       // leave the instruction alone.
4488       break;
4489     if (Subtarget->isTarget64BitILP32()) {
4490       // Converts a 32-bit register to a 64-bit, zero-extended version of
4491       // it. This is needed because x86-64 can do many things, but jmp %r32
4492       // ain't one of them.
4493       const SDValue &Target = Node->getOperand(1);
4494       assert(Target.getSimpleValueType() == llvm::MVT::i32);
4495       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64));
4496       SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
4497                                       Node->getOperand(0), ZextTarget);
4498       ReplaceNode(Node, Brind.getNode());
4499       SelectCode(ZextTarget.getNode());
4500       SelectCode(Brind.getNode());
4501       return;
4502     }
4503     break;
4504   }
4505   case X86ISD::GlobalBaseReg:
4506     ReplaceNode(Node, getGlobalBaseReg());
4507     return;
4508 
4509   case ISD::BITCAST:
4510     // Just drop all 128/256/512-bit bitcasts.
4511     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
4512         NVT == MVT::f128) {
4513       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
4514       CurDAG->RemoveDeadNode(Node);
4515       return;
4516     }
4517     break;
4518 
4519   case ISD::VSELECT: {
4520     // Replace VSELECT with non-mask conditions with with BLENDV.
4521     if (Node->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
4522       break;
4523 
4524     assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
4525     SDValue Blendv = CurDAG->getNode(
4526         X86ISD::BLENDV, SDLoc(Node), Node->getValueType(0), Node->getOperand(0),
4527         Node->getOperand(1), Node->getOperand(2));
4528     ReplaceNode(Node, Blendv.getNode());
4529     SelectCode(Blendv.getNode());
4530     // We already called ReplaceUses.
4531     return;
4532   }
4533 
4534   case ISD::SRL:
4535     if (matchBitExtract(Node))
4536       return;
4537     LLVM_FALLTHROUGH;
4538   case ISD::SRA:
4539   case ISD::SHL:
4540     if (tryShiftAmountMod(Node))
4541       return;
4542     break;
4543 
4544   case ISD::AND:
4545     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
4546       // Try to form a masked VPTESTM. Operands can be in either order.
4547       SDValue N0 = Node->getOperand(0);
4548       SDValue N1 = Node->getOperand(1);
4549       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
4550           tryVPTESTM(Node, N0, N1))
4551         return;
4552       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
4553           tryVPTESTM(Node, N1, N0))
4554         return;
4555     }
4556 
4557     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
4558       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
4559       CurDAG->RemoveDeadNode(Node);
4560       return;
4561     }
4562     if (matchBitExtract(Node))
4563       return;
4564     if (AndImmShrink && shrinkAndImmediate(Node))
4565       return;
4566 
4567     LLVM_FALLTHROUGH;
4568   case ISD::OR:
4569   case ISD::XOR:
4570     if (tryShrinkShlLogicImm(Node))
4571       return;
4572 
4573     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
4574       return;
4575 
4576     LLVM_FALLTHROUGH;
4577   case ISD::ADD:
4578   case ISD::SUB: {
4579     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && NVT.isVector() &&
4580         combineIncDecVector(Node))
4581       return;
4582 
4583     // Try to avoid folding immediates with multiple uses for optsize.
4584     // This code tries to select to register form directly to avoid going
4585     // through the isel table which might fold the immediate. We can't change
4586     // the patterns on the add/sub/and/or/xor with immediate paterns in the
4587     // tablegen files to check immediate use count without making the patterns
4588     // unavailable to the fast-isel table.
4589     if (!OptForSize)
4590       break;
4591 
4592     // Only handle i8/i16/i32/i64.
4593     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
4594       break;
4595 
4596     SDValue N0 = Node->getOperand(0);
4597     SDValue N1 = Node->getOperand(1);
4598 
4599     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
4600     if (!Cst)
4601       break;
4602 
4603     int64_t Val = Cst->getSExtValue();
4604 
4605     // Make sure its an immediate that is considered foldable.
4606     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
4607     if (!isInt<8>(Val) && !isInt<32>(Val))
4608       break;
4609 
4610     // If this can match to INC/DEC, let it go.
4611     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
4612       break;
4613 
4614     // Check if we should avoid folding this immediate.
4615     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
4616       break;
4617 
4618     // We should not fold the immediate. So we need a register form instead.
4619     unsigned ROpc, MOpc;
4620     switch (NVT.SimpleTy) {
4621     default: llvm_unreachable("Unexpected VT!");
4622     case MVT::i8:
4623       switch (Opcode) {
4624       default: llvm_unreachable("Unexpected opcode!");
4625       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
4626       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
4627       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
4628       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
4629       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
4630       }
4631       break;
4632     case MVT::i16:
4633       switch (Opcode) {
4634       default: llvm_unreachable("Unexpected opcode!");
4635       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
4636       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
4637       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
4638       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
4639       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
4640       }
4641       break;
4642     case MVT::i32:
4643       switch (Opcode) {
4644       default: llvm_unreachable("Unexpected opcode!");
4645       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
4646       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
4647       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
4648       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
4649       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
4650       }
4651       break;
4652     case MVT::i64:
4653       switch (Opcode) {
4654       default: llvm_unreachable("Unexpected opcode!");
4655       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
4656       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
4657       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
4658       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
4659       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
4660       }
4661       break;
4662     }
4663 
4664     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
4665 
4666     // If this is a not a subtract, we can still try to fold a load.
4667     if (Opcode != ISD::SUB) {
4668       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4669       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4670         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
4671         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4672         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4673         // Update the chain.
4674         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
4675         // Record the mem-refs
4676         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
4677         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4678         CurDAG->RemoveDeadNode(Node);
4679         return;
4680       }
4681     }
4682 
4683     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
4684     return;
4685   }
4686 
4687   case X86ISD::SMUL:
4688     // i16/i32/i64 are handled with isel patterns.
4689     if (NVT != MVT::i8)
4690       break;
4691     LLVM_FALLTHROUGH;
4692   case X86ISD::UMUL: {
4693     SDValue N0 = Node->getOperand(0);
4694     SDValue N1 = Node->getOperand(1);
4695 
4696     unsigned LoReg, ROpc, MOpc;
4697     switch (NVT.SimpleTy) {
4698     default: llvm_unreachable("Unsupported VT!");
4699     case MVT::i8:
4700       LoReg = X86::AL;
4701       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
4702       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
4703       break;
4704     case MVT::i16:
4705       LoReg = X86::AX;
4706       ROpc = X86::MUL16r;
4707       MOpc = X86::MUL16m;
4708       break;
4709     case MVT::i32:
4710       LoReg = X86::EAX;
4711       ROpc = X86::MUL32r;
4712       MOpc = X86::MUL32m;
4713       break;
4714     case MVT::i64:
4715       LoReg = X86::RAX;
4716       ROpc = X86::MUL64r;
4717       MOpc = X86::MUL64m;
4718       break;
4719     }
4720 
4721     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4722     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4723     // Multiply is commmutative.
4724     if (!FoldedLoad) {
4725       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4726       if (FoldedLoad)
4727         std::swap(N0, N1);
4728     }
4729 
4730     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
4731                                           N0, SDValue()).getValue(1);
4732 
4733     MachineSDNode *CNode;
4734     if (FoldedLoad) {
4735       // i16/i32/i64 use an instruction that produces a low and high result even
4736       // though only the low result is used.
4737       SDVTList VTs;
4738       if (NVT == MVT::i8)
4739         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4740       else
4741         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
4742 
4743       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
4744                         InFlag };
4745       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4746 
4747       // Update the chain.
4748       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
4749       // Record the mem-refs
4750       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4751     } else {
4752       // i16/i32/i64 use an instruction that produces a low and high result even
4753       // though only the low result is used.
4754       SDVTList VTs;
4755       if (NVT == MVT::i8)
4756         VTs = CurDAG->getVTList(NVT, MVT::i32);
4757       else
4758         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
4759 
4760       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
4761     }
4762 
4763     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4764     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
4765     CurDAG->RemoveDeadNode(Node);
4766     return;
4767   }
4768 
4769   case ISD::SMUL_LOHI:
4770   case ISD::UMUL_LOHI: {
4771     SDValue N0 = Node->getOperand(0);
4772     SDValue N1 = Node->getOperand(1);
4773 
4774     unsigned Opc, MOpc;
4775     bool isSigned = Opcode == ISD::SMUL_LOHI;
4776     if (!isSigned) {
4777       switch (NVT.SimpleTy) {
4778       default: llvm_unreachable("Unsupported VT!");
4779       case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
4780       case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
4781       }
4782     } else {
4783       switch (NVT.SimpleTy) {
4784       default: llvm_unreachable("Unsupported VT!");
4785       case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
4786       case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
4787       }
4788     }
4789 
4790     unsigned SrcReg, LoReg, HiReg;
4791     switch (Opc) {
4792     default: llvm_unreachable("Unknown MUL opcode!");
4793     case X86::IMUL32r:
4794     case X86::MUL32r:
4795       SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
4796       break;
4797     case X86::IMUL64r:
4798     case X86::MUL64r:
4799       SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
4800       break;
4801     }
4802 
4803     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4804     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4805     // Multiply is commmutative.
4806     if (!foldedLoad) {
4807       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4808       if (foldedLoad)
4809         std::swap(N0, N1);
4810     }
4811 
4812     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
4813                                           N0, SDValue()).getValue(1);
4814     if (foldedLoad) {
4815       SDValue Chain;
4816       MachineSDNode *CNode = nullptr;
4817       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
4818                         InFlag };
4819       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
4820       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4821       Chain = SDValue(CNode, 0);
4822       InFlag = SDValue(CNode, 1);
4823 
4824       // Update the chain.
4825       ReplaceUses(N1.getValue(1), Chain);
4826       // Record the mem-refs
4827       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4828     } else {
4829       SDValue Ops[] = { N1, InFlag };
4830       SDVTList VTs = CurDAG->getVTList(MVT::Glue);
4831       SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4832       InFlag = SDValue(CNode, 0);
4833     }
4834 
4835     // Copy the low half of the result, if it is needed.
4836     if (!SDValue(Node, 0).use_empty()) {
4837       assert(LoReg && "Register for low half is not defined!");
4838       SDValue ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
4839                                              NVT, InFlag);
4840       InFlag = ResLo.getValue(2);
4841       ReplaceUses(SDValue(Node, 0), ResLo);
4842       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
4843                  dbgs() << '\n');
4844     }
4845     // Copy the high half of the result, if it is needed.
4846     if (!SDValue(Node, 1).use_empty()) {
4847       assert(HiReg && "Register for high half is not defined!");
4848       SDValue ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
4849                                              NVT, InFlag);
4850       InFlag = ResHi.getValue(2);
4851       ReplaceUses(SDValue(Node, 1), ResHi);
4852       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
4853                  dbgs() << '\n');
4854     }
4855 
4856     CurDAG->RemoveDeadNode(Node);
4857     return;
4858   }
4859 
4860   case ISD::SDIVREM:
4861   case ISD::UDIVREM: {
4862     SDValue N0 = Node->getOperand(0);
4863     SDValue N1 = Node->getOperand(1);
4864 
4865     unsigned Opc, MOpc;
4866     bool isSigned = Opcode == ISD::SDIVREM;
4867     if (!isSigned) {
4868       switch (NVT.SimpleTy) {
4869       default: llvm_unreachable("Unsupported VT!");
4870       case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
4871       case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
4872       case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
4873       case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
4874       }
4875     } else {
4876       switch (NVT.SimpleTy) {
4877       default: llvm_unreachable("Unsupported VT!");
4878       case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
4879       case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
4880       case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
4881       case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
4882       }
4883     }
4884 
4885     unsigned LoReg, HiReg, ClrReg;
4886     unsigned SExtOpcode;
4887     switch (NVT.SimpleTy) {
4888     default: llvm_unreachable("Unsupported VT!");
4889     case MVT::i8:
4890       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
4891       SExtOpcode = 0; // Not used.
4892       break;
4893     case MVT::i16:
4894       LoReg = X86::AX;  HiReg = X86::DX;
4895       ClrReg = X86::DX;
4896       SExtOpcode = X86::CWD;
4897       break;
4898     case MVT::i32:
4899       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
4900       SExtOpcode = X86::CDQ;
4901       break;
4902     case MVT::i64:
4903       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
4904       SExtOpcode = X86::CQO;
4905       break;
4906     }
4907 
4908     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4909     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4910     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
4911 
4912     SDValue InFlag;
4913     if (NVT == MVT::i8) {
4914       // Special case for div8, just use a move with zero extension to AX to
4915       // clear the upper 8 bits (AH).
4916       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
4917       MachineSDNode *Move;
4918       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4919         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
4920         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
4921                                                     : X86::MOVZX16rm8;
4922         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
4923         Chain = SDValue(Move, 1);
4924         ReplaceUses(N0.getValue(1), Chain);
4925         // Record the mem-refs
4926         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
4927       } else {
4928         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
4929                                                     : X86::MOVZX16rr8;
4930         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
4931         Chain = CurDAG->getEntryNode();
4932       }
4933       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
4934                                     SDValue());
4935       InFlag = Chain.getValue(1);
4936     } else {
4937       InFlag =
4938         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
4939                              LoReg, N0, SDValue()).getValue(1);
4940       if (isSigned && !signBitIsZero) {
4941         // Sign extend the low part into the high part.
4942         InFlag =
4943           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
4944       } else {
4945         // Zero out the high part, effectively zero extending the input.
4946         SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
4947         switch (NVT.SimpleTy) {
4948         case MVT::i16:
4949           ClrNode =
4950               SDValue(CurDAG->getMachineNode(
4951                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
4952                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
4953                                                     MVT::i32)),
4954                       0);
4955           break;
4956         case MVT::i32:
4957           break;
4958         case MVT::i64:
4959           ClrNode =
4960               SDValue(CurDAG->getMachineNode(
4961                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
4962                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
4963                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
4964                                                     MVT::i32)),
4965                       0);
4966           break;
4967         default:
4968           llvm_unreachable("Unexpected division source");
4969         }
4970 
4971         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
4972                                       ClrNode, InFlag).getValue(1);
4973       }
4974     }
4975 
4976     if (foldedLoad) {
4977       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
4978                         InFlag };
4979       MachineSDNode *CNode =
4980         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
4981       InFlag = SDValue(CNode, 1);
4982       // Update the chain.
4983       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
4984       // Record the mem-refs
4985       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4986     } else {
4987       InFlag =
4988         SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
4989     }
4990 
4991     // Prevent use of AH in a REX instruction by explicitly copying it to
4992     // an ABCD_L register.
4993     //
4994     // The current assumption of the register allocator is that isel
4995     // won't generate explicit references to the GR8_ABCD_H registers. If
4996     // the allocator and/or the backend get enhanced to be more robust in
4997     // that regard, this can be, and should be, removed.
4998     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
4999       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5000       unsigned AHExtOpcode =
5001           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5002 
5003       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5004                                              MVT::Glue, AHCopy, InFlag);
5005       SDValue Result(RNode, 0);
5006       InFlag = SDValue(RNode, 1);
5007 
5008       Result =
5009           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5010 
5011       ReplaceUses(SDValue(Node, 1), Result);
5012       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5013                  dbgs() << '\n');
5014     }
5015     // Copy the division (low) result, if it is needed.
5016     if (!SDValue(Node, 0).use_empty()) {
5017       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5018                                                 LoReg, NVT, InFlag);
5019       InFlag = Result.getValue(2);
5020       ReplaceUses(SDValue(Node, 0), Result);
5021       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5022                  dbgs() << '\n');
5023     }
5024     // Copy the remainder (high) result, if it is needed.
5025     if (!SDValue(Node, 1).use_empty()) {
5026       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5027                                               HiReg, NVT, InFlag);
5028       InFlag = Result.getValue(2);
5029       ReplaceUses(SDValue(Node, 1), Result);
5030       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5031                  dbgs() << '\n');
5032     }
5033     CurDAG->RemoveDeadNode(Node);
5034     return;
5035   }
5036 
5037   case X86ISD::CMP: {
5038     SDValue N0 = Node->getOperand(0);
5039     SDValue N1 = Node->getOperand(1);
5040 
5041     // Optimizations for TEST compares.
5042     if (!isNullConstant(N1))
5043       break;
5044 
5045     // Save the original VT of the compare.
5046     MVT CmpVT = N0.getSimpleValueType();
5047 
5048     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5049     // by a test instruction. The test should be removed later by
5050     // analyzeCompare if we are using only the zero flag.
5051     // TODO: Should we check the users and use the BEXTR flags directly?
5052     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5053       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5054         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5055                                              : X86::TEST32rr;
5056         SDValue BEXTR = SDValue(NewNode, 0);
5057         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5058         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5059         CurDAG->RemoveDeadNode(Node);
5060         return;
5061       }
5062     }
5063 
5064     // We can peek through truncates, but we need to be careful below.
5065     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5066       N0 = N0.getOperand(0);
5067 
5068     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5069     // use a smaller encoding.
5070     // Look past the truncate if CMP is the only use of it.
5071     if (N0.getOpcode() == ISD::AND &&
5072         N0.getNode()->hasOneUse() &&
5073         N0.getValueType() != MVT::i8) {
5074       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5075       if (!C) break;
5076       uint64_t Mask = C->getZExtValue();
5077 
5078       // Check if we can replace AND+IMM64 with a shift. This is possible for
5079       // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
5080       // flag.
5081       if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
5082           onlyUsesZeroFlag(SDValue(Node, 0))) {
5083         if (isMask_64(~Mask)) {
5084           unsigned TrailingZeros = countTrailingZeros(Mask);
5085           SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
5086           SDValue Shift =
5087             SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
5088                                            N0.getOperand(0), Imm), 0);
5089           MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5090                                                        MVT::i32, Shift, Shift);
5091           ReplaceNode(Node, Test);
5092           return;
5093         }
5094         if (isMask_64(Mask)) {
5095           unsigned LeadingZeros = countLeadingZeros(Mask);
5096           SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
5097           SDValue Shift =
5098             SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
5099                                            N0.getOperand(0), Imm), 0);
5100           MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5101                                                        MVT::i32, Shift, Shift);
5102           ReplaceNode(Node, Test);
5103           return;
5104         }
5105       }
5106 
5107       MVT VT;
5108       int SubRegOp;
5109       unsigned ROpc, MOpc;
5110 
5111       // For each of these checks we need to be careful if the sign flag is
5112       // being used. It is only safe to use the sign flag in two conditions,
5113       // either the sign bit in the shrunken mask is zero or the final test
5114       // size is equal to the original compare size.
5115 
5116       if (isUInt<8>(Mask) &&
5117           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5118            hasNoSignFlagUses(SDValue(Node, 0)))) {
5119         // For example, convert "testl %eax, $8" to "testb %al, $8"
5120         VT = MVT::i8;
5121         SubRegOp = X86::sub_8bit;
5122         ROpc = X86::TEST8ri;
5123         MOpc = X86::TEST8mi;
5124       } else if (OptForMinSize && isUInt<16>(Mask) &&
5125                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5126                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5127         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5128         // NOTE: We only want to form TESTW instructions if optimizing for
5129         // min size. Otherwise we only save one byte and possibly get a length
5130         // changing prefix penalty in the decoders.
5131         VT = MVT::i16;
5132         SubRegOp = X86::sub_16bit;
5133         ROpc = X86::TEST16ri;
5134         MOpc = X86::TEST16mi;
5135       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5136                  ((!(Mask & 0x80000000) &&
5137                    // Without minsize 16-bit Cmps can get here so we need to
5138                    // be sure we calculate the correct sign flag if needed.
5139                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5140                   CmpVT == MVT::i32 ||
5141                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5142         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5143         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5144         // Otherwize, we find ourselves in a position where we have to do
5145         // promotion. If previous passes did not promote the and, we assume
5146         // they had a good reason not to and do not promote here.
5147         VT = MVT::i32;
5148         SubRegOp = X86::sub_32bit;
5149         ROpc = X86::TEST32ri;
5150         MOpc = X86::TEST32mi;
5151       } else {
5152         // No eligible transformation was found.
5153         break;
5154       }
5155 
5156       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
5157       SDValue Reg = N0.getOperand(0);
5158 
5159       // Emit a testl or testw.
5160       MachineSDNode *NewNode;
5161       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5162       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5163         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
5164           if (!LoadN->isSimple()) {
5165             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
5166             if (MOpc == X86::TEST8mi && NumVolBits != 8)
5167               break;
5168             else if (MOpc == X86::TEST16mi && NumVolBits != 16)
5169               break;
5170             else if (MOpc == X86::TEST32mi && NumVolBits != 32)
5171               break;
5172           }
5173         }
5174         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
5175                           Reg.getOperand(0) };
5176         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
5177         // Update the chain.
5178         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
5179         // Record the mem-refs
5180         CurDAG->setNodeMemRefs(NewNode,
5181                                {cast<LoadSDNode>(Reg)->getMemOperand()});
5182       } else {
5183         // Extract the subregister if necessary.
5184         if (N0.getValueType() != VT)
5185           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
5186 
5187         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
5188       }
5189       // Replace CMP with TEST.
5190       ReplaceNode(Node, NewNode);
5191       return;
5192     }
5193     break;
5194   }
5195   case X86ISD::PCMPISTR: {
5196     if (!Subtarget->hasSSE42())
5197       break;
5198 
5199     bool NeedIndex = !SDValue(Node, 0).use_empty();
5200     bool NeedMask = !SDValue(Node, 1).use_empty();
5201     // We can't fold a load if we are going to make two instructions.
5202     bool MayFoldLoad = !NeedIndex || !NeedMask;
5203 
5204     MachineSDNode *CNode;
5205     if (NeedMask) {
5206       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
5207       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
5208       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
5209       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5210     }
5211     if (NeedIndex || !NeedMask) {
5212       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
5213       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
5214       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
5215       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5216     }
5217 
5218     // Connect the flag usage to the last instruction created.
5219     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5220     CurDAG->RemoveDeadNode(Node);
5221     return;
5222   }
5223   case X86ISD::PCMPESTR: {
5224     if (!Subtarget->hasSSE42())
5225       break;
5226 
5227     // Copy the two implicit register inputs.
5228     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
5229                                           Node->getOperand(1),
5230                                           SDValue()).getValue(1);
5231     InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
5232                                   Node->getOperand(3), InFlag).getValue(1);
5233 
5234     bool NeedIndex = !SDValue(Node, 0).use_empty();
5235     bool NeedMask = !SDValue(Node, 1).use_empty();
5236     // We can't fold a load if we are going to make two instructions.
5237     bool MayFoldLoad = !NeedIndex || !NeedMask;
5238 
5239     MachineSDNode *CNode;
5240     if (NeedMask) {
5241       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
5242       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
5243       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
5244                            InFlag);
5245       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5246     }
5247     if (NeedIndex || !NeedMask) {
5248       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
5249       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
5250       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
5251       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5252     }
5253     // Connect the flag usage to the last instruction created.
5254     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5255     CurDAG->RemoveDeadNode(Node);
5256     return;
5257   }
5258 
5259   case ISD::SETCC: {
5260     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
5261       return;
5262 
5263     break;
5264   }
5265 
5266   case ISD::STORE:
5267     if (foldLoadStoreIntoMemOperand(Node))
5268       return;
5269     break;
5270   }
5271 
5272   SelectCode(Node);
5273 }
5274 
5275 bool X86DAGToDAGISel::
5276 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
5277                              std::vector<SDValue> &OutOps) {
5278   SDValue Op0, Op1, Op2, Op3, Op4;
5279   switch (ConstraintID) {
5280   default:
5281     llvm_unreachable("Unexpected asm memory constraint");
5282   case InlineAsm::Constraint_o: // offsetable        ??
5283   case InlineAsm::Constraint_v: // not offsetable    ??
5284   case InlineAsm::Constraint_m: // memory
5285   case InlineAsm::Constraint_X:
5286     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
5287       return true;
5288     break;
5289   }
5290 
5291   OutOps.push_back(Op0);
5292   OutOps.push_back(Op1);
5293   OutOps.push_back(Op2);
5294   OutOps.push_back(Op3);
5295   OutOps.push_back(Op4);
5296   return false;
5297 }
5298 
5299 /// This pass converts a legalized DAG into a X86-specific DAG,
5300 /// ready for instruction scheduling.
5301 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
5302                                      CodeGenOpt::Level OptLevel) {
5303   return new X86DAGToDAGISel(TM, OptLevel);
5304 }
5305