xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp (revision 7ef62cebc2f965b0f640263e179276928885e33d)
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cstdint>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "x86-isel"
38 #define PASS_NAME "X86 DAG->DAG Instruction Selection"
39 
40 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
41 
42 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
43     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
44     cl::Hidden);
45 
46 static cl::opt<bool> EnablePromoteAnyextLoad(
47     "x86-promote-anyext-load", cl::init(true),
48     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
49 
50 extern cl::opt<bool> IndirectBranchTracking;
51 
52 //===----------------------------------------------------------------------===//
53 //                      Pattern Matcher Implementation
54 //===----------------------------------------------------------------------===//
55 
56 namespace {
57   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
58   /// numbers for the leaves of the matched tree.
59   struct X86ISelAddressMode {
60     enum {
61       RegBase,
62       FrameIndexBase
63     } BaseType = RegBase;
64 
65     // This is really a union, discriminated by BaseType!
66     SDValue Base_Reg;
67     int Base_FrameIndex = 0;
68 
69     unsigned Scale = 1;
70     SDValue IndexReg;
71     int32_t Disp = 0;
72     SDValue Segment;
73     const GlobalValue *GV = nullptr;
74     const Constant *CP = nullptr;
75     const BlockAddress *BlockAddr = nullptr;
76     const char *ES = nullptr;
77     MCSymbol *MCSym = nullptr;
78     int JT = -1;
79     Align Alignment;            // CP alignment.
80     unsigned char SymbolFlags = X86II::MO_NO_FLAG;  // X86II::MO_*
81     bool NegateIndex = false;
82 
83     X86ISelAddressMode() = default;
84 
85     bool hasSymbolicDisplacement() const {
86       return GV != nullptr || CP != nullptr || ES != nullptr ||
87              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
88     }
89 
90     bool hasBaseOrIndexReg() const {
91       return BaseType == FrameIndexBase ||
92              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
93     }
94 
95     /// Return true if this addressing mode is already RIP-relative.
96     bool isRIPRelative() const {
97       if (BaseType != RegBase) return false;
98       if (RegisterSDNode *RegNode =
99             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
100         return RegNode->getReg() == X86::RIP;
101       return false;
102     }
103 
104     void setBaseReg(SDValue Reg) {
105       BaseType = RegBase;
106       Base_Reg = Reg;
107     }
108 
109 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
110     void dump(SelectionDAG *DAG = nullptr) {
111       dbgs() << "X86ISelAddressMode " << this << '\n';
112       dbgs() << "Base_Reg ";
113       if (Base_Reg.getNode())
114         Base_Reg.getNode()->dump(DAG);
115       else
116         dbgs() << "nul\n";
117       if (BaseType == FrameIndexBase)
118         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
119       dbgs() << " Scale " << Scale << '\n'
120              << "IndexReg ";
121       if (NegateIndex)
122         dbgs() << "negate ";
123       if (IndexReg.getNode())
124         IndexReg.getNode()->dump(DAG);
125       else
126         dbgs() << "nul\n";
127       dbgs() << " Disp " << Disp << '\n'
128              << "GV ";
129       if (GV)
130         GV->dump();
131       else
132         dbgs() << "nul";
133       dbgs() << " CP ";
134       if (CP)
135         CP->dump();
136       else
137         dbgs() << "nul";
138       dbgs() << '\n'
139              << "ES ";
140       if (ES)
141         dbgs() << ES;
142       else
143         dbgs() << "nul";
144       dbgs() << " MCSym ";
145       if (MCSym)
146         dbgs() << MCSym;
147       else
148         dbgs() << "nul";
149       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
150     }
151 #endif
152   };
153 }
154 
155 namespace {
156   //===--------------------------------------------------------------------===//
157   /// ISel - X86-specific code to select X86 machine instructions for
158   /// SelectionDAG operations.
159   ///
160   class X86DAGToDAGISel final : public SelectionDAGISel {
161     /// Keep a pointer to the X86Subtarget around so that we can
162     /// make the right decision when generating code for different targets.
163     const X86Subtarget *Subtarget;
164 
165     /// If true, selector should try to optimize for minimum code size.
166     bool OptForMinSize;
167 
168     /// Disable direct TLS access through segment registers.
169     bool IndirectTlsSegRefs;
170 
171   public:
172     static char ID;
173 
174     X86DAGToDAGISel() = delete;
175 
176     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
177         : SelectionDAGISel(ID, tm, OptLevel), Subtarget(nullptr),
178           OptForMinSize(false), IndirectTlsSegRefs(false) {}
179 
180     bool runOnMachineFunction(MachineFunction &MF) override {
181       // Reset the subtarget each time through.
182       Subtarget = &MF.getSubtarget<X86Subtarget>();
183       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
184                              "indirect-tls-seg-refs");
185 
186       // OptFor[Min]Size are used in pattern predicates that isel is matching.
187       OptForMinSize = MF.getFunction().hasMinSize();
188       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
189              "OptForMinSize implies OptForSize");
190 
191       SelectionDAGISel::runOnMachineFunction(MF);
192       return true;
193     }
194 
195     void emitFunctionEntryCode() override;
196 
197     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
198 
199     void PreprocessISelDAG() override;
200     void PostprocessISelDAG() override;
201 
202 // Include the pieces autogenerated from the target description.
203 #include "X86GenDAGISel.inc"
204 
205   private:
206     void Select(SDNode *N) override;
207 
208     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
209     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
210                             bool AllowSegmentRegForX32 = false);
211     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
212     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
213     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
214     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
215     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
216                                  unsigned Depth);
217     bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218                                        unsigned Depth);
219     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
220     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
221                     SDValue &Scale, SDValue &Index, SDValue &Disp,
222                     SDValue &Segment);
223     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
224                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
225                           SDValue &Index, SDValue &Disp, SDValue &Segment);
226     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
227     bool selectLEAAddr(SDValue N, SDValue &Base,
228                        SDValue &Scale, SDValue &Index, SDValue &Disp,
229                        SDValue &Segment);
230     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
231                             SDValue &Scale, SDValue &Index, SDValue &Disp,
232                             SDValue &Segment);
233     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
234                            SDValue &Scale, SDValue &Index, SDValue &Disp,
235                            SDValue &Segment);
236     bool selectRelocImm(SDValue N, SDValue &Op);
237 
238     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
239                      SDValue &Base, SDValue &Scale,
240                      SDValue &Index, SDValue &Disp,
241                      SDValue &Segment);
242 
243     // Convenience method where P is also root.
244     bool tryFoldLoad(SDNode *P, SDValue N,
245                      SDValue &Base, SDValue &Scale,
246                      SDValue &Index, SDValue &Disp,
247                      SDValue &Segment) {
248       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
249     }
250 
251     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
252                           SDValue &Base, SDValue &Scale,
253                           SDValue &Index, SDValue &Disp,
254                           SDValue &Segment);
255 
256     bool isProfitableToFormMaskedOp(SDNode *N) const;
257 
258     /// Implement addressing mode selection for inline asm expressions.
259     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
260                                       unsigned ConstraintID,
261                                       std::vector<SDValue> &OutOps) override;
262 
263     void emitSpecialCodeForMain();
264 
265     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
266                                    MVT VT, SDValue &Base, SDValue &Scale,
267                                    SDValue &Index, SDValue &Disp,
268                                    SDValue &Segment) {
269       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
270         Base = CurDAG->getTargetFrameIndex(
271             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
272       else if (AM.Base_Reg.getNode())
273         Base = AM.Base_Reg;
274       else
275         Base = CurDAG->getRegister(0, VT);
276 
277       Scale = getI8Imm(AM.Scale, DL);
278 
279       // Negate the index if needed.
280       if (AM.NegateIndex) {
281         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
282         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
283                                                      AM.IndexReg), 0);
284         AM.IndexReg = Neg;
285       }
286 
287       if (AM.IndexReg.getNode())
288         Index = AM.IndexReg;
289       else
290         Index = CurDAG->getRegister(0, VT);
291 
292       // These are 32-bit even in 64-bit mode since RIP-relative offset
293       // is 32-bit.
294       if (AM.GV)
295         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
296                                               MVT::i32, AM.Disp,
297                                               AM.SymbolFlags);
298       else if (AM.CP)
299         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
300                                              AM.Disp, AM.SymbolFlags);
301       else if (AM.ES) {
302         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
303         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
304       } else if (AM.MCSym) {
305         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
306         assert(AM.SymbolFlags == 0 && "oo");
307         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
308       } else if (AM.JT != -1) {
309         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
310         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
311       } else if (AM.BlockAddr)
312         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
313                                              AM.SymbolFlags);
314       else
315         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
316 
317       if (AM.Segment.getNode())
318         Segment = AM.Segment;
319       else
320         Segment = CurDAG->getRegister(0, MVT::i16);
321     }
322 
323     // Utility function to determine whether we should avoid selecting
324     // immediate forms of instructions for better code size or not.
325     // At a high level, we'd like to avoid such instructions when
326     // we have similar constants used within the same basic block
327     // that can be kept in a register.
328     //
329     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
330       uint32_t UseCount = 0;
331 
332       // Do not want to hoist if we're not optimizing for size.
333       // TODO: We'd like to remove this restriction.
334       // See the comment in X86InstrInfo.td for more info.
335       if (!CurDAG->shouldOptForSize())
336         return false;
337 
338       // Walk all the users of the immediate.
339       for (const SDNode *User : N->uses()) {
340         if (UseCount >= 2)
341           break;
342 
343         // This user is already selected. Count it as a legitimate use and
344         // move on.
345         if (User->isMachineOpcode()) {
346           UseCount++;
347           continue;
348         }
349 
350         // We want to count stores of immediates as real uses.
351         if (User->getOpcode() == ISD::STORE &&
352             User->getOperand(1).getNode() == N) {
353           UseCount++;
354           continue;
355         }
356 
357         // We don't currently match users that have > 2 operands (except
358         // for stores, which are handled above)
359         // Those instruction won't match in ISEL, for now, and would
360         // be counted incorrectly.
361         // This may change in the future as we add additional instruction
362         // types.
363         if (User->getNumOperands() != 2)
364           continue;
365 
366         // If this is a sign-extended 8-bit integer immediate used in an ALU
367         // instruction, there is probably an opcode encoding to save space.
368         auto *C = dyn_cast<ConstantSDNode>(N);
369         if (C && isInt<8>(C->getSExtValue()))
370           continue;
371 
372         // Immediates that are used for offsets as part of stack
373         // manipulation should be left alone. These are typically
374         // used to indicate SP offsets for argument passing and
375         // will get pulled into stores/pushes (implicitly).
376         if (User->getOpcode() == X86ISD::ADD ||
377             User->getOpcode() == ISD::ADD    ||
378             User->getOpcode() == X86ISD::SUB ||
379             User->getOpcode() == ISD::SUB) {
380 
381           // Find the other operand of the add/sub.
382           SDValue OtherOp = User->getOperand(0);
383           if (OtherOp.getNode() == N)
384             OtherOp = User->getOperand(1);
385 
386           // Don't count if the other operand is SP.
387           RegisterSDNode *RegNode;
388           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
389               (RegNode = dyn_cast_or_null<RegisterSDNode>(
390                  OtherOp->getOperand(1).getNode())))
391             if ((RegNode->getReg() == X86::ESP) ||
392                 (RegNode->getReg() == X86::RSP))
393               continue;
394         }
395 
396         // ... otherwise, count this and move on.
397         UseCount++;
398       }
399 
400       // If we have more than 1 use, then recommend for hoisting.
401       return (UseCount > 1);
402     }
403 
404     /// Return a target constant with the specified value of type i8.
405     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
406       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
407     }
408 
409     /// Return a target constant with the specified value, of type i32.
410     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
411       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
412     }
413 
414     /// Return a target constant with the specified value, of type i64.
415     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
416       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
417     }
418 
419     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
420                                         const SDLoc &DL) {
421       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
422       uint64_t Index = N->getConstantOperandVal(1);
423       MVT VecVT = N->getOperand(0).getSimpleValueType();
424       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
425     }
426 
427     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
428                                       const SDLoc &DL) {
429       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
430       uint64_t Index = N->getConstantOperandVal(2);
431       MVT VecVT = N->getSimpleValueType(0);
432       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
433     }
434 
435     SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
436                                                const SDLoc &DL) {
437       assert(VecWidth == 128 && "Unexpected vector width");
438       uint64_t Index = N->getConstantOperandVal(2);
439       MVT VecVT = N->getSimpleValueType(0);
440       uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
441       assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
442       // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
443       // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
444       return getI8Imm(InsertIdx ? 0x02 : 0x30, DL);
445     }
446 
447     SDValue getSBBZero(SDNode *N) {
448       SDLoc dl(N);
449       MVT VT = N->getSimpleValueType(0);
450 
451       // Create zero.
452       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
453       SDValue Zero = SDValue(
454           CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
455       if (VT == MVT::i64) {
456         Zero = SDValue(
457             CurDAG->getMachineNode(
458                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
459                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
460                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
461             0);
462       }
463 
464       // Copy flags to the EFLAGS register and glue it to next node.
465       unsigned Opcode = N->getOpcode();
466       assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) &&
467              "Unexpected opcode for SBB materialization");
468       unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1;
469       SDValue EFLAGS =
470           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
471                                N->getOperand(FlagOpIndex), SDValue());
472 
473       // Create a 64-bit instruction if the result is 64-bits otherwise use the
474       // 32-bit version.
475       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
476       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
477       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
478       return SDValue(
479           CurDAG->getMachineNode(Opc, dl, VTs,
480                                  {Zero, Zero, EFLAGS, EFLAGS.getValue(1)}),
481           0);
482     }
483 
484     // Helper to detect unneeded and instructions on shift amounts. Called
485     // from PatFrags in tablegen.
486     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
487       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
488       const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
489 
490       if (Val.countTrailingOnes() >= Width)
491         return true;
492 
493       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
494       return Mask.countTrailingOnes() >= Width;
495     }
496 
497     /// Return an SDNode that returns the value of the global base register.
498     /// Output instructions required to initialize the global base register,
499     /// if necessary.
500     SDNode *getGlobalBaseReg();
501 
502     /// Return a reference to the TargetMachine, casted to the target-specific
503     /// type.
504     const X86TargetMachine &getTargetMachine() const {
505       return static_cast<const X86TargetMachine &>(TM);
506     }
507 
508     /// Return a reference to the TargetInstrInfo, casted to the target-specific
509     /// type.
510     const X86InstrInfo *getInstrInfo() const {
511       return Subtarget->getInstrInfo();
512     }
513 
514     /// Return a condition code of the given SDNode
515     X86::CondCode getCondFromNode(SDNode *N) const;
516 
517     /// Address-mode matching performs shift-of-and to and-of-shift
518     /// reassociation in order to expose more scaled addressing
519     /// opportunities.
520     bool ComplexPatternFuncMutatesDAG() const override {
521       return true;
522     }
523 
524     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
525 
526     // Indicates we should prefer to use a non-temporal load for this load.
527     bool useNonTemporalLoad(LoadSDNode *N) const {
528       if (!N->isNonTemporal())
529         return false;
530 
531       unsigned StoreSize = N->getMemoryVT().getStoreSize();
532 
533       if (N->getAlign().value() < StoreSize)
534         return false;
535 
536       switch (StoreSize) {
537       default: llvm_unreachable("Unsupported store size");
538       case 4:
539       case 8:
540         return false;
541       case 16:
542         return Subtarget->hasSSE41();
543       case 32:
544         return Subtarget->hasAVX2();
545       case 64:
546         return Subtarget->hasAVX512();
547       }
548     }
549 
550     bool foldLoadStoreIntoMemOperand(SDNode *Node);
551     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
552     bool matchBitExtract(SDNode *Node);
553     bool shrinkAndImmediate(SDNode *N);
554     bool isMaskZeroExtended(SDNode *N) const;
555     bool tryShiftAmountMod(SDNode *N);
556     bool tryShrinkShlLogicImm(SDNode *N);
557     bool tryVPTERNLOG(SDNode *N);
558     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
559                         SDNode *ParentC, SDValue A, SDValue B, SDValue C,
560                         uint8_t Imm);
561     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
562     bool tryMatchBitSelect(SDNode *N);
563 
564     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
565                                 const SDLoc &dl, MVT VT, SDNode *Node);
566     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
567                                 const SDLoc &dl, MVT VT, SDNode *Node,
568                                 SDValue &InFlag);
569 
570     bool tryOptimizeRem8Extend(SDNode *N);
571 
572     bool onlyUsesZeroFlag(SDValue Flags) const;
573     bool hasNoSignFlagUses(SDValue Flags) const;
574     bool hasNoCarryFlagUses(SDValue Flags) const;
575   };
576 }
577 
578 char X86DAGToDAGISel::ID = 0;
579 
580 INITIALIZE_PASS(X86DAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
581 
582 // Returns true if this masked compare can be implemented legally with this
583 // type.
584 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
585   unsigned Opcode = N->getOpcode();
586   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
587       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
588       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
589     // We can get 256-bit 8 element types here without VLX being enabled. When
590     // this happens we will use 512-bit operations and the mask will not be
591     // zero extended.
592     EVT OpVT = N->getOperand(0).getValueType();
593     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
594     // second operand.
595     if (Opcode == X86ISD::STRICT_CMPM)
596       OpVT = N->getOperand(1).getValueType();
597     if (OpVT.is256BitVector() || OpVT.is128BitVector())
598       return Subtarget->hasVLX();
599 
600     return true;
601   }
602   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
603   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
604       Opcode == X86ISD::FSETCCM_SAE)
605     return true;
606 
607   return false;
608 }
609 
610 // Returns true if we can assume the writer of the mask has zero extended it
611 // for us.
612 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
613   // If this is an AND, check if we have a compare on either side. As long as
614   // one side guarantees the mask is zero extended, the AND will preserve those
615   // zeros.
616   if (N->getOpcode() == ISD::AND)
617     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
618            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
619 
620   return isLegalMaskCompare(N, Subtarget);
621 }
622 
623 bool
624 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
625   if (OptLevel == CodeGenOpt::None) return false;
626 
627   if (!N.hasOneUse())
628     return false;
629 
630   if (N.getOpcode() != ISD::LOAD)
631     return true;
632 
633   // Don't fold non-temporal loads if we have an instruction for them.
634   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
635     return false;
636 
637   // If N is a load, do additional profitability checks.
638   if (U == Root) {
639     switch (U->getOpcode()) {
640     default: break;
641     case X86ISD::ADD:
642     case X86ISD::ADC:
643     case X86ISD::SUB:
644     case X86ISD::SBB:
645     case X86ISD::AND:
646     case X86ISD::XOR:
647     case X86ISD::OR:
648     case ISD::ADD:
649     case ISD::ADDCARRY:
650     case ISD::AND:
651     case ISD::OR:
652     case ISD::XOR: {
653       SDValue Op1 = U->getOperand(1);
654 
655       // If the other operand is a 8-bit immediate we should fold the immediate
656       // instead. This reduces code size.
657       // e.g.
658       // movl 4(%esp), %eax
659       // addl $4, %eax
660       // vs.
661       // movl $4, %eax
662       // addl 4(%esp), %eax
663       // The former is 2 bytes shorter. In case where the increment is 1, then
664       // the saving can be 4 bytes (by using incl %eax).
665       if (auto *Imm = dyn_cast<ConstantSDNode>(Op1)) {
666         if (Imm->getAPIntValue().isSignedIntN(8))
667           return false;
668 
669         // If this is a 64-bit AND with an immediate that fits in 32-bits,
670         // prefer using the smaller and over folding the load. This is needed to
671         // make sure immediates created by shrinkAndImmediate are always folded.
672         // Ideally we would narrow the load during DAG combine and get the
673         // best of both worlds.
674         if (U->getOpcode() == ISD::AND &&
675             Imm->getAPIntValue().getBitWidth() == 64 &&
676             Imm->getAPIntValue().isIntN(32))
677           return false;
678 
679         // If this really a zext_inreg that can be represented with a movzx
680         // instruction, prefer that.
681         // TODO: We could shrink the load and fold if it is non-volatile.
682         if (U->getOpcode() == ISD::AND &&
683             (Imm->getAPIntValue() == UINT8_MAX ||
684              Imm->getAPIntValue() == UINT16_MAX ||
685              Imm->getAPIntValue() == UINT32_MAX))
686           return false;
687 
688         // ADD/SUB with can negate the immediate and use the opposite operation
689         // to fit 128 into a sign extended 8 bit immediate.
690         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
691             (-Imm->getAPIntValue()).isSignedIntN(8))
692           return false;
693 
694         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
695             (-Imm->getAPIntValue()).isSignedIntN(8) &&
696             hasNoCarryFlagUses(SDValue(U, 1)))
697           return false;
698       }
699 
700       // If the other operand is a TLS address, we should fold it instead.
701       // This produces
702       // movl    %gs:0, %eax
703       // leal    i@NTPOFF(%eax), %eax
704       // instead of
705       // movl    $i@NTPOFF, %eax
706       // addl    %gs:0, %eax
707       // if the block also has an access to a second TLS address this will save
708       // a load.
709       // FIXME: This is probably also true for non-TLS addresses.
710       if (Op1.getOpcode() == X86ISD::Wrapper) {
711         SDValue Val = Op1.getOperand(0);
712         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
713           return false;
714       }
715 
716       // Don't fold load if this matches the BTS/BTR/BTC patterns.
717       // BTS: (or X, (shl 1, n))
718       // BTR: (and X, (rotl -2, n))
719       // BTC: (xor X, (shl 1, n))
720       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
721         if (U->getOperand(0).getOpcode() == ISD::SHL &&
722             isOneConstant(U->getOperand(0).getOperand(0)))
723           return false;
724 
725         if (U->getOperand(1).getOpcode() == ISD::SHL &&
726             isOneConstant(U->getOperand(1).getOperand(0)))
727           return false;
728       }
729       if (U->getOpcode() == ISD::AND) {
730         SDValue U0 = U->getOperand(0);
731         SDValue U1 = U->getOperand(1);
732         if (U0.getOpcode() == ISD::ROTL) {
733           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
734           if (C && C->getSExtValue() == -2)
735             return false;
736         }
737 
738         if (U1.getOpcode() == ISD::ROTL) {
739           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
740           if (C && C->getSExtValue() == -2)
741             return false;
742         }
743       }
744 
745       break;
746     }
747     case ISD::SHL:
748     case ISD::SRA:
749     case ISD::SRL:
750       // Don't fold a load into a shift by immediate. The BMI2 instructions
751       // support folding a load, but not an immediate. The legacy instructions
752       // support folding an immediate, but can't fold a load. Folding an
753       // immediate is preferable to folding a load.
754       if (isa<ConstantSDNode>(U->getOperand(1)))
755         return false;
756 
757       break;
758     }
759   }
760 
761   // Prevent folding a load if this can implemented with an insert_subreg or
762   // a move that implicitly zeroes.
763   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
764       isNullConstant(Root->getOperand(2)) &&
765       (Root->getOperand(0).isUndef() ||
766        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
767     return false;
768 
769   return true;
770 }
771 
772 // Indicates it is profitable to form an AVX512 masked operation. Returning
773 // false will favor a masked register-register masked move or vblendm and the
774 // operation will be selected separately.
775 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
776   assert(
777       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
778       "Unexpected opcode!");
779 
780   // If the operation has additional users, the operation will be duplicated.
781   // Check the use count to prevent that.
782   // FIXME: Are there cheap opcodes we might want to duplicate?
783   return N->getOperand(1).hasOneUse();
784 }
785 
786 /// Replace the original chain operand of the call with
787 /// load's chain operand and move load below the call's chain operand.
788 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
789                                SDValue Call, SDValue OrigChain) {
790   SmallVector<SDValue, 8> Ops;
791   SDValue Chain = OrigChain.getOperand(0);
792   if (Chain.getNode() == Load.getNode())
793     Ops.push_back(Load.getOperand(0));
794   else {
795     assert(Chain.getOpcode() == ISD::TokenFactor &&
796            "Unexpected chain operand");
797     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
798       if (Chain.getOperand(i).getNode() == Load.getNode())
799         Ops.push_back(Load.getOperand(0));
800       else
801         Ops.push_back(Chain.getOperand(i));
802     SDValue NewChain =
803       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
804     Ops.clear();
805     Ops.push_back(NewChain);
806   }
807   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
808   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
809   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
810                              Load.getOperand(1), Load.getOperand(2));
811 
812   Ops.clear();
813   Ops.push_back(SDValue(Load.getNode(), 1));
814   Ops.append(Call->op_begin() + 1, Call->op_end());
815   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
816 }
817 
818 /// Return true if call address is a load and it can be
819 /// moved below CALLSEQ_START and the chains leading up to the call.
820 /// Return the CALLSEQ_START by reference as a second output.
821 /// In the case of a tail call, there isn't a callseq node between the call
822 /// chain and the load.
823 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
824   // The transformation is somewhat dangerous if the call's chain was glued to
825   // the call. After MoveBelowOrigChain the load is moved between the call and
826   // the chain, this can create a cycle if the load is not folded. So it is
827   // *really* important that we are sure the load will be folded.
828   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
829     return false;
830   auto *LD = dyn_cast<LoadSDNode>(Callee.getNode());
831   if (!LD ||
832       !LD->isSimple() ||
833       LD->getAddressingMode() != ISD::UNINDEXED ||
834       LD->getExtensionType() != ISD::NON_EXTLOAD)
835     return false;
836 
837   // Now let's find the callseq_start.
838   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
839     if (!Chain.hasOneUse())
840       return false;
841     Chain = Chain.getOperand(0);
842   }
843 
844   if (!Chain.getNumOperands())
845     return false;
846   // Since we are not checking for AA here, conservatively abort if the chain
847   // writes to memory. It's not safe to move the callee (a load) across a store.
848   if (isa<MemSDNode>(Chain.getNode()) &&
849       cast<MemSDNode>(Chain.getNode())->writeMem())
850     return false;
851   if (Chain.getOperand(0).getNode() == Callee.getNode())
852     return true;
853   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
854       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
855       Callee.getValue(1).hasOneUse())
856     return true;
857   return false;
858 }
859 
860 static bool isEndbrImm64(uint64_t Imm) {
861 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
862 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
863   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
864     return false;
865 
866   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
867                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
868   int i = 24; // 24bit 0x0F1EFA has matched
869   while (i < 64) {
870     uint8_t Byte = (Imm >> i) & 0xFF;
871     if (Byte == 0xF3)
872       return true;
873     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
874       return false;
875     i += 8;
876   }
877 
878   return false;
879 }
880 
881 void X86DAGToDAGISel::PreprocessISelDAG() {
882   bool MadeChange = false;
883   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
884        E = CurDAG->allnodes_end(); I != E; ) {
885     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
886 
887     // This is for CET enhancement.
888     //
889     // ENDBR32 and ENDBR64 have specific opcodes:
890     // ENDBR32: F3 0F 1E FB
891     // ENDBR64: F3 0F 1E FA
892     // And we want that attackers won’t find unintended ENDBR32/64
893     // opcode matches in the binary
894     // Here’s an example:
895     // If the compiler had to generate asm for the following code:
896     // a = 0xF30F1EFA
897     // it could, for example, generate:
898     // mov 0xF30F1EFA, dword ptr[a]
899     // In such a case, the binary would include a gadget that starts
900     // with a fake ENDBR64 opcode. Therefore, we split such generation
901     // into multiple operations, let it not shows in the binary
902     if (N->getOpcode() == ISD::Constant) {
903       MVT VT = N->getSimpleValueType(0);
904       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
905       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
906       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
907         // Check that the cf-protection-branch is enabled.
908         Metadata *CFProtectionBranch =
909           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
910         if (CFProtectionBranch || IndirectBranchTracking) {
911           SDLoc dl(N);
912           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
913           Complement = CurDAG->getNOT(dl, Complement, VT);
914           --I;
915           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
916           ++I;
917           MadeChange = true;
918           continue;
919         }
920       }
921     }
922 
923     // If this is a target specific AND node with no flag usages, turn it back
924     // into ISD::AND to enable test instruction matching.
925     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
926       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
927                                     N->getOperand(0), N->getOperand(1));
928       --I;
929       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
930       ++I;
931       MadeChange = true;
932       continue;
933     }
934 
935     // Convert vector increment or decrement to sub/add with an all-ones
936     // constant:
937     // add X, <1, 1...> --> sub X, <-1, -1...>
938     // sub X, <1, 1...> --> add X, <-1, -1...>
939     // The all-ones vector constant can be materialized using a pcmpeq
940     // instruction that is commonly recognized as an idiom (has no register
941     // dependency), so that's better/smaller than loading a splat 1 constant.
942     //
943     // But don't do this if it would inhibit a potentially profitable load
944     // folding opportunity for the other operand. That only occurs with the
945     // intersection of:
946     // (1) The other operand (op0) is load foldable.
947     // (2) The op is an add (otherwise, we are *creating* an add and can still
948     //     load fold the other op).
949     // (3) The target has AVX (otherwise, we have a destructive add and can't
950     //     load fold the other op without killing the constant op).
951     // (4) The constant 1 vector has multiple uses (so it is profitable to load
952     //     into a register anyway).
953     auto mayPreventLoadFold = [&]() {
954       return X86::mayFoldLoad(N->getOperand(0), *Subtarget) &&
955              N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
956              !N->getOperand(1).hasOneUse();
957     };
958     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
959         N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) {
960       APInt SplatVal;
961       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
962           SplatVal.isOne()) {
963         SDLoc DL(N);
964 
965         MVT VT = N->getSimpleValueType(0);
966         unsigned NumElts = VT.getSizeInBits() / 32;
967         SDValue AllOnes =
968             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
969         AllOnes = CurDAG->getBitcast(VT, AllOnes);
970 
971         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
972         SDValue Res =
973             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
974         --I;
975         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
976         ++I;
977         MadeChange = true;
978         continue;
979       }
980     }
981 
982     switch (N->getOpcode()) {
983     case X86ISD::VBROADCAST: {
984       MVT VT = N->getSimpleValueType(0);
985       // Emulate v32i16/v64i8 broadcast without BWI.
986       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
987         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
988         SDLoc dl(N);
989         SDValue NarrowBCast =
990             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
991         SDValue Res =
992             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
993                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
994         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
995         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
996                               CurDAG->getIntPtrConstant(Index, dl));
997 
998         --I;
999         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1000         ++I;
1001         MadeChange = true;
1002         continue;
1003       }
1004 
1005       break;
1006     }
1007     case X86ISD::VBROADCAST_LOAD: {
1008       MVT VT = N->getSimpleValueType(0);
1009       // Emulate v32i16/v64i8 broadcast without BWI.
1010       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
1011         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
1012         auto *MemNode = cast<MemSDNode>(N);
1013         SDLoc dl(N);
1014         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
1015         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
1016         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
1017             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
1018             MemNode->getMemOperand());
1019         SDValue Res =
1020             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1021                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1022         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
1023         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1024                               CurDAG->getIntPtrConstant(Index, dl));
1025 
1026         --I;
1027         SDValue To[] = {Res, NarrowBCast.getValue(1)};
1028         CurDAG->ReplaceAllUsesWith(N, To);
1029         ++I;
1030         MadeChange = true;
1031         continue;
1032       }
1033 
1034       break;
1035     }
1036     case ISD::VSELECT: {
1037       // Replace VSELECT with non-mask conditions with with BLENDV.
1038       if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1039         break;
1040 
1041       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
1042       SDValue Blendv =
1043           CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
1044                           N->getOperand(0), N->getOperand(1), N->getOperand(2));
1045       --I;
1046       CurDAG->ReplaceAllUsesWith(N, Blendv.getNode());
1047       ++I;
1048       MadeChange = true;
1049       continue;
1050     }
1051     case ISD::FP_ROUND:
1052     case ISD::STRICT_FP_ROUND:
1053     case ISD::FP_TO_SINT:
1054     case ISD::FP_TO_UINT:
1055     case ISD::STRICT_FP_TO_SINT:
1056     case ISD::STRICT_FP_TO_UINT: {
1057       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
1058       // don't need 2 sets of patterns.
1059       if (!N->getSimpleValueType(0).isVector())
1060         break;
1061 
1062       unsigned NewOpc;
1063       switch (N->getOpcode()) {
1064       default: llvm_unreachable("Unexpected opcode!");
1065       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
1066       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
1067       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
1068       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
1069       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1070       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
1071       }
1072       SDValue Res;
1073       if (N->isStrictFPOpcode())
1074         Res =
1075             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1076                             {N->getOperand(0), N->getOperand(1)});
1077       else
1078         Res =
1079             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1080                             N->getOperand(0));
1081       --I;
1082       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1083       ++I;
1084       MadeChange = true;
1085       continue;
1086     }
1087     case ISD::SHL:
1088     case ISD::SRA:
1089     case ISD::SRL: {
1090       // Replace vector shifts with their X86 specific equivalent so we don't
1091       // need 2 sets of patterns.
1092       if (!N->getValueType(0).isVector())
1093         break;
1094 
1095       unsigned NewOpc;
1096       switch (N->getOpcode()) {
1097       default: llvm_unreachable("Unexpected opcode!");
1098       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1099       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1100       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1101       }
1102       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1103                                     N->getOperand(0), N->getOperand(1));
1104       --I;
1105       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1106       ++I;
1107       MadeChange = true;
1108       continue;
1109     }
1110     case ISD::ANY_EXTEND:
1111     case ISD::ANY_EXTEND_VECTOR_INREG: {
1112       // Replace vector any extend with the zero extend equivalents so we don't
1113       // need 2 sets of patterns. Ignore vXi1 extensions.
1114       if (!N->getValueType(0).isVector())
1115         break;
1116 
1117       unsigned NewOpc;
1118       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1119         assert(N->getOpcode() == ISD::ANY_EXTEND &&
1120                "Unexpected opcode for mask vector!");
1121         NewOpc = ISD::SIGN_EXTEND;
1122       } else {
1123         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1124                               ? ISD::ZERO_EXTEND
1125                               : ISD::ZERO_EXTEND_VECTOR_INREG;
1126       }
1127 
1128       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1129                                     N->getOperand(0));
1130       --I;
1131       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1132       ++I;
1133       MadeChange = true;
1134       continue;
1135     }
1136     case ISD::FCEIL:
1137     case ISD::STRICT_FCEIL:
1138     case ISD::FFLOOR:
1139     case ISD::STRICT_FFLOOR:
1140     case ISD::FTRUNC:
1141     case ISD::STRICT_FTRUNC:
1142     case ISD::FROUNDEVEN:
1143     case ISD::STRICT_FROUNDEVEN:
1144     case ISD::FNEARBYINT:
1145     case ISD::STRICT_FNEARBYINT:
1146     case ISD::FRINT:
1147     case ISD::STRICT_FRINT: {
1148       // Replace fp rounding with their X86 specific equivalent so we don't
1149       // need 2 sets of patterns.
1150       unsigned Imm;
1151       switch (N->getOpcode()) {
1152       default: llvm_unreachable("Unexpected opcode!");
1153       case ISD::STRICT_FCEIL:
1154       case ISD::FCEIL:      Imm = 0xA; break;
1155       case ISD::STRICT_FFLOOR:
1156       case ISD::FFLOOR:     Imm = 0x9; break;
1157       case ISD::STRICT_FTRUNC:
1158       case ISD::FTRUNC:     Imm = 0xB; break;
1159       case ISD::STRICT_FROUNDEVEN:
1160       case ISD::FROUNDEVEN: Imm = 0x8; break;
1161       case ISD::STRICT_FNEARBYINT:
1162       case ISD::FNEARBYINT: Imm = 0xC; break;
1163       case ISD::STRICT_FRINT:
1164       case ISD::FRINT:      Imm = 0x4; break;
1165       }
1166       SDLoc dl(N);
1167       bool IsStrict = N->isStrictFPOpcode();
1168       SDValue Res;
1169       if (IsStrict)
1170         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1171                               {N->getValueType(0), MVT::Other},
1172                               {N->getOperand(0), N->getOperand(1),
1173                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1174       else
1175         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1176                               N->getOperand(0),
1177                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1178       --I;
1179       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1180       ++I;
1181       MadeChange = true;
1182       continue;
1183     }
1184     case X86ISD::FANDN:
1185     case X86ISD::FAND:
1186     case X86ISD::FOR:
1187     case X86ISD::FXOR: {
1188       // Widen scalar fp logic ops to vector to reduce isel patterns.
1189       // FIXME: Can we do this during lowering/combine.
1190       MVT VT = N->getSimpleValueType(0);
1191       if (VT.isVector() || VT == MVT::f128)
1192         break;
1193 
1194       MVT VecVT = VT == MVT::f64   ? MVT::v2f64
1195                   : VT == MVT::f32 ? MVT::v4f32
1196                                    : MVT::v8f16;
1197 
1198       SDLoc dl(N);
1199       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1200                                     N->getOperand(0));
1201       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1202                                     N->getOperand(1));
1203 
1204       SDValue Res;
1205       if (Subtarget->hasSSE2()) {
1206         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1207         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1208         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1209         unsigned Opc;
1210         switch (N->getOpcode()) {
1211         default: llvm_unreachable("Unexpected opcode!");
1212         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1213         case X86ISD::FAND:  Opc = ISD::AND;      break;
1214         case X86ISD::FOR:   Opc = ISD::OR;       break;
1215         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
1216         }
1217         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1218         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1219       } else {
1220         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1221       }
1222       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1223                             CurDAG->getIntPtrConstant(0, dl));
1224       --I;
1225       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1226       ++I;
1227       MadeChange = true;
1228       continue;
1229     }
1230     }
1231 
1232     if (OptLevel != CodeGenOpt::None &&
1233         // Only do this when the target can fold the load into the call or
1234         // jmp.
1235         !Subtarget->useIndirectThunkCalls() &&
1236         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1237          (N->getOpcode() == X86ISD::TC_RETURN &&
1238           (Subtarget->is64Bit() ||
1239            !getTargetMachine().isPositionIndependent())))) {
1240       /// Also try moving call address load from outside callseq_start to just
1241       /// before the call to allow it to be folded.
1242       ///
1243       ///     [Load chain]
1244       ///         ^
1245       ///         |
1246       ///       [Load]
1247       ///       ^    ^
1248       ///       |    |
1249       ///      /      \--
1250       ///     /          |
1251       ///[CALLSEQ_START] |
1252       ///     ^          |
1253       ///     |          |
1254       /// [LOAD/C2Reg]   |
1255       ///     |          |
1256       ///      \        /
1257       ///       \      /
1258       ///       [CALL]
1259       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1260       SDValue Chain = N->getOperand(0);
1261       SDValue Load  = N->getOperand(1);
1262       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1263         continue;
1264       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1265       ++NumLoadMoved;
1266       MadeChange = true;
1267       continue;
1268     }
1269 
1270     // Lower fpround and fpextend nodes that target the FP stack to be store and
1271     // load to the stack.  This is a gross hack.  We would like to simply mark
1272     // these as being illegal, but when we do that, legalize produces these when
1273     // it expands calls, then expands these in the same legalize pass.  We would
1274     // like dag combine to be able to hack on these between the call expansion
1275     // and the node legalization.  As such this pass basically does "really
1276     // late" legalization of these inline with the X86 isel pass.
1277     // FIXME: This should only happen when not compiled with -O0.
1278     switch (N->getOpcode()) {
1279     default: continue;
1280     case ISD::FP_ROUND:
1281     case ISD::FP_EXTEND:
1282     {
1283       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1284       MVT DstVT = N->getSimpleValueType(0);
1285 
1286       // If any of the sources are vectors, no fp stack involved.
1287       if (SrcVT.isVector() || DstVT.isVector())
1288         continue;
1289 
1290       // If the source and destination are SSE registers, then this is a legal
1291       // conversion that should not be lowered.
1292       const X86TargetLowering *X86Lowering =
1293           static_cast<const X86TargetLowering *>(TLI);
1294       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1295       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1296       if (SrcIsSSE && DstIsSSE)
1297         continue;
1298 
1299       if (!SrcIsSSE && !DstIsSSE) {
1300         // If this is an FPStack extension, it is a noop.
1301         if (N->getOpcode() == ISD::FP_EXTEND)
1302           continue;
1303         // If this is a value-preserving FPStack truncation, it is a noop.
1304         if (N->getConstantOperandVal(1))
1305           continue;
1306       }
1307 
1308       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1309       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1310       // operations.  Based on this, decide what we want to do.
1311       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1312       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1313       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1314       MachinePointerInfo MPI =
1315           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1316       SDLoc dl(N);
1317 
1318       // FIXME: optimize the case where the src/dest is a load or store?
1319 
1320       SDValue Store = CurDAG->getTruncStore(
1321           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1322       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1323                                           MemTmp, MPI, MemVT);
1324 
1325       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1326       // extload we created.  This will cause general havok on the dag because
1327       // anything below the conversion could be folded into other existing nodes.
1328       // To avoid invalidating 'I', back it up to the convert node.
1329       --I;
1330       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1331       break;
1332     }
1333 
1334     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1335     //dealing with the chain differently, as there is already a preexisting chain.
1336     case ISD::STRICT_FP_ROUND:
1337     case ISD::STRICT_FP_EXTEND:
1338     {
1339       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1340       MVT DstVT = N->getSimpleValueType(0);
1341 
1342       // If any of the sources are vectors, no fp stack involved.
1343       if (SrcVT.isVector() || DstVT.isVector())
1344         continue;
1345 
1346       // If the source and destination are SSE registers, then this is a legal
1347       // conversion that should not be lowered.
1348       const X86TargetLowering *X86Lowering =
1349           static_cast<const X86TargetLowering *>(TLI);
1350       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1351       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1352       if (SrcIsSSE && DstIsSSE)
1353         continue;
1354 
1355       if (!SrcIsSSE && !DstIsSSE) {
1356         // If this is an FPStack extension, it is a noop.
1357         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1358           continue;
1359         // If this is a value-preserving FPStack truncation, it is a noop.
1360         if (N->getConstantOperandVal(2))
1361           continue;
1362       }
1363 
1364       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1365       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1366       // operations.  Based on this, decide what we want to do.
1367       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1368       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1369       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1370       MachinePointerInfo MPI =
1371           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1372       SDLoc dl(N);
1373 
1374       // FIXME: optimize the case where the src/dest is a load or store?
1375 
1376       //Since the operation is StrictFP, use the preexisting chain.
1377       SDValue Store, Result;
1378       if (!SrcIsSSE) {
1379         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1380         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1381         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1382                                             MPI, /*Align*/ std::nullopt,
1383                                             MachineMemOperand::MOStore);
1384         if (N->getFlags().hasNoFPExcept()) {
1385           SDNodeFlags Flags = Store->getFlags();
1386           Flags.setNoFPExcept(true);
1387           Store->setFlags(Flags);
1388         }
1389       } else {
1390         assert(SrcVT == MemVT && "Unexpected VT!");
1391         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1392                                  MPI);
1393       }
1394 
1395       if (!DstIsSSE) {
1396         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1397         SDValue Ops[] = {Store, MemTmp};
1398         Result = CurDAG->getMemIntrinsicNode(
1399             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1400             /*Align*/ std::nullopt, MachineMemOperand::MOLoad);
1401         if (N->getFlags().hasNoFPExcept()) {
1402           SDNodeFlags Flags = Result->getFlags();
1403           Flags.setNoFPExcept(true);
1404           Result->setFlags(Flags);
1405         }
1406       } else {
1407         assert(DstVT == MemVT && "Unexpected VT!");
1408         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1409       }
1410 
1411       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1412       // extload we created.  This will cause general havok on the dag because
1413       // anything below the conversion could be folded into other existing nodes.
1414       // To avoid invalidating 'I', back it up to the convert node.
1415       --I;
1416       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1417       break;
1418     }
1419     }
1420 
1421 
1422     // Now that we did that, the node is dead.  Increment the iterator to the
1423     // next node to process, then delete N.
1424     ++I;
1425     MadeChange = true;
1426   }
1427 
1428   // Remove any dead nodes that may have been left behind.
1429   if (MadeChange)
1430     CurDAG->RemoveDeadNodes();
1431 }
1432 
1433 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1434 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1435   unsigned Opc = N->getMachineOpcode();
1436   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1437       Opc != X86::MOVSX64rr8)
1438     return false;
1439 
1440   SDValue N0 = N->getOperand(0);
1441 
1442   // We need to be extracting the lower bit of an extend.
1443   if (!N0.isMachineOpcode() ||
1444       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1445       N0.getConstantOperandVal(1) != X86::sub_8bit)
1446     return false;
1447 
1448   // We're looking for either a movsx or movzx to match the original opcode.
1449   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1450                                                 : X86::MOVSX32rr8_NOREX;
1451   SDValue N00 = N0.getOperand(0);
1452   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1453     return false;
1454 
1455   if (Opc == X86::MOVSX64rr8) {
1456     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1457     // to 64.
1458     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1459                                                    MVT::i64, N00);
1460     ReplaceUses(N, Extend);
1461   } else {
1462     // Ok we can drop this extend and just use the original extend.
1463     ReplaceUses(N, N00.getNode());
1464   }
1465 
1466   return true;
1467 }
1468 
1469 void X86DAGToDAGISel::PostprocessISelDAG() {
1470   // Skip peepholes at -O0.
1471   if (TM.getOptLevel() == CodeGenOpt::None)
1472     return;
1473 
1474   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1475 
1476   bool MadeChange = false;
1477   while (Position != CurDAG->allnodes_begin()) {
1478     SDNode *N = &*--Position;
1479     // Skip dead nodes and any non-machine opcodes.
1480     if (N->use_empty() || !N->isMachineOpcode())
1481       continue;
1482 
1483     if (tryOptimizeRem8Extend(N)) {
1484       MadeChange = true;
1485       continue;
1486     }
1487 
1488     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1489     // the same. Rewrite to remove the AND.
1490     unsigned Opc = N->getMachineOpcode();
1491     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1492          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1493         N->getOperand(0) == N->getOperand(1) &&
1494         N->getOperand(0)->hasNUsesOfValue(2, N->getOperand(0).getResNo()) &&
1495         N->getOperand(0).isMachineOpcode()) {
1496       SDValue And = N->getOperand(0);
1497       unsigned N0Opc = And.getMachineOpcode();
1498       if ((N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1499            N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) &&
1500           !And->hasAnyUseOfValue(1)) {
1501         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1502                                                      MVT::i32,
1503                                                      And.getOperand(0),
1504                                                      And.getOperand(1));
1505         ReplaceUses(N, Test);
1506         MadeChange = true;
1507         continue;
1508       }
1509       if ((N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1510            N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) &&
1511           !And->hasAnyUseOfValue(1)) {
1512         unsigned NewOpc;
1513         switch (N0Opc) {
1514         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1515         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1516         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1517         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1518         }
1519 
1520         // Need to swap the memory and register operand.
1521         SDValue Ops[] = { And.getOperand(1),
1522                           And.getOperand(2),
1523                           And.getOperand(3),
1524                           And.getOperand(4),
1525                           And.getOperand(5),
1526                           And.getOperand(0),
1527                           And.getOperand(6)  /* Chain */ };
1528         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1529                                                      MVT::i32, MVT::Other, Ops);
1530         CurDAG->setNodeMemRefs(
1531             Test, cast<MachineSDNode>(And.getNode())->memoperands());
1532         ReplaceUses(And.getValue(2), SDValue(Test, 1));
1533         ReplaceUses(SDValue(N, 0), SDValue(Test, 0));
1534         MadeChange = true;
1535         continue;
1536       }
1537     }
1538 
1539     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1540     // used. We're doing this late so we can prefer to fold the AND into masked
1541     // comparisons. Doing that can be better for the live range of the mask
1542     // register.
1543     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1544          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1545         N->getOperand(0) == N->getOperand(1) &&
1546         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1547         N->getOperand(0).isMachineOpcode() &&
1548         onlyUsesZeroFlag(SDValue(N, 0))) {
1549       SDValue And = N->getOperand(0);
1550       unsigned N0Opc = And.getMachineOpcode();
1551       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1552       // KAND instructions and KTEST use the same ISA feature.
1553       if (N0Opc == X86::KANDBrr ||
1554           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1555           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1556         unsigned NewOpc;
1557         switch (Opc) {
1558         default: llvm_unreachable("Unexpected opcode!");
1559         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1560         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1561         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1562         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1563         }
1564         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1565                                                       MVT::i32,
1566                                                       And.getOperand(0),
1567                                                       And.getOperand(1));
1568         ReplaceUses(N, KTest);
1569         MadeChange = true;
1570         continue;
1571       }
1572     }
1573 
1574     // Attempt to remove vectors moves that were inserted to zero upper bits.
1575     if (Opc != TargetOpcode::SUBREG_TO_REG)
1576       continue;
1577 
1578     unsigned SubRegIdx = N->getConstantOperandVal(2);
1579     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1580       continue;
1581 
1582     SDValue Move = N->getOperand(1);
1583     if (!Move.isMachineOpcode())
1584       continue;
1585 
1586     // Make sure its one of the move opcodes we recognize.
1587     switch (Move.getMachineOpcode()) {
1588     default:
1589       continue;
1590     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1591     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1592     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1593     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1594     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1595     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1596     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1597     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1598     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1599     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1600     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1601     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1602     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1603     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1604       break;
1605     }
1606 
1607     SDValue In = Move.getOperand(0);
1608     if (!In.isMachineOpcode() ||
1609         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1610       continue;
1611 
1612     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1613     // the SHA instructions which use a legacy encoding.
1614     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1615     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1616         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1617         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1618       continue;
1619 
1620     // Producing instruction is another vector instruction. We can drop the
1621     // move.
1622     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1623     MadeChange = true;
1624   }
1625 
1626   if (MadeChange)
1627     CurDAG->RemoveDeadNodes();
1628 }
1629 
1630 
1631 /// Emit any code that needs to be executed only in the main function.
1632 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1633   if (Subtarget->isTargetCygMing()) {
1634     TargetLowering::ArgListTy Args;
1635     auto &DL = CurDAG->getDataLayout();
1636 
1637     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1638     CLI.setChain(CurDAG->getRoot())
1639         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1640                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1641                    std::move(Args));
1642     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1643     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1644     CurDAG->setRoot(Result.second);
1645   }
1646 }
1647 
1648 void X86DAGToDAGISel::emitFunctionEntryCode() {
1649   // If this is main, emit special code for main.
1650   const Function &F = MF->getFunction();
1651   if (F.hasExternalLinkage() && F.getName() == "main")
1652     emitSpecialCodeForMain();
1653 }
1654 
1655 static bool isDispSafeForFrameIndex(int64_t Val) {
1656   // On 64-bit platforms, we can run into an issue where a frame index
1657   // includes a displacement that, when added to the explicit displacement,
1658   // will overflow the displacement field. Assuming that the frame index
1659   // displacement fits into a 31-bit integer  (which is only slightly more
1660   // aggressive than the current fundamental assumption that it fits into
1661   // a 32-bit integer), a 31-bit disp should always be safe.
1662   return isInt<31>(Val);
1663 }
1664 
1665 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1666                                             X86ISelAddressMode &AM) {
1667   // We may have already matched a displacement and the caller just added the
1668   // symbolic displacement. So we still need to do the checks even if Offset
1669   // is zero.
1670 
1671   int64_t Val = AM.Disp + Offset;
1672 
1673   // Cannot combine ExternalSymbol displacements with integer offsets.
1674   if (Val != 0 && (AM.ES || AM.MCSym))
1675     return true;
1676 
1677   CodeModel::Model M = TM.getCodeModel();
1678   if (Subtarget->is64Bit()) {
1679     if (Val != 0 &&
1680         !X86::isOffsetSuitableForCodeModel(Val, M,
1681                                            AM.hasSymbolicDisplacement()))
1682       return true;
1683     // In addition to the checks required for a register base, check that
1684     // we do not try to use an unsafe Disp with a frame index.
1685     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1686         !isDispSafeForFrameIndex(Val))
1687       return true;
1688   }
1689   AM.Disp = Val;
1690   return false;
1691 
1692 }
1693 
1694 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1695                                          bool AllowSegmentRegForX32) {
1696   SDValue Address = N->getOperand(1);
1697 
1698   // load gs:0 -> GS segment register.
1699   // load fs:0 -> FS segment register.
1700   //
1701   // This optimization is generally valid because the GNU TLS model defines that
1702   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1703   // with 32-bit registers, as we get in ILP32 mode, those registers are first
1704   // zero-extended to 64 bits and then added it to the base address, which gives
1705   // unwanted results when the register holds a negative value.
1706   // For more information see http://people.redhat.com/drepper/tls.pdf
1707   if (auto *C = dyn_cast<ConstantSDNode>(Address)) {
1708     if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
1709         !IndirectTlsSegRefs &&
1710         (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1711          Subtarget->isTargetFuchsia())) {
1712       if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1713         return true;
1714       switch (N->getPointerInfo().getAddrSpace()) {
1715       case X86AS::GS:
1716         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1717         return false;
1718       case X86AS::FS:
1719         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1720         return false;
1721       // Address space X86AS::SS is not handled here, because it is not used to
1722       // address TLS areas.
1723       }
1724     }
1725   }
1726 
1727   return true;
1728 }
1729 
1730 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1731 /// mode. These wrap things that will resolve down into a symbol reference.
1732 /// If no match is possible, this returns true, otherwise it returns false.
1733 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1734   // If the addressing mode already has a symbol as the displacement, we can
1735   // never match another symbol.
1736   if (AM.hasSymbolicDisplacement())
1737     return true;
1738 
1739   bool IsRIPRelTLS = false;
1740   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1741   if (IsRIPRel) {
1742     SDValue Val = N.getOperand(0);
1743     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1744       IsRIPRelTLS = true;
1745   }
1746 
1747   // We can't use an addressing mode in the 64-bit large code model.
1748   // Global TLS addressing is an exception. In the medium code model,
1749   // we use can use a mode when RIP wrappers are present.
1750   // That signifies access to globals that are known to be "near",
1751   // such as the GOT itself.
1752   CodeModel::Model M = TM.getCodeModel();
1753   if (Subtarget->is64Bit() &&
1754       ((M == CodeModel::Large && !IsRIPRelTLS) ||
1755        (M == CodeModel::Medium && !IsRIPRel)))
1756     return true;
1757 
1758   // Base and index reg must be 0 in order to use %rip as base.
1759   if (IsRIPRel && AM.hasBaseOrIndexReg())
1760     return true;
1761 
1762   // Make a local copy in case we can't do this fold.
1763   X86ISelAddressMode Backup = AM;
1764 
1765   int64_t Offset = 0;
1766   SDValue N0 = N.getOperand(0);
1767   if (auto *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1768     AM.GV = G->getGlobal();
1769     AM.SymbolFlags = G->getTargetFlags();
1770     Offset = G->getOffset();
1771   } else if (auto *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1772     AM.CP = CP->getConstVal();
1773     AM.Alignment = CP->getAlign();
1774     AM.SymbolFlags = CP->getTargetFlags();
1775     Offset = CP->getOffset();
1776   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1777     AM.ES = S->getSymbol();
1778     AM.SymbolFlags = S->getTargetFlags();
1779   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1780     AM.MCSym = S->getMCSymbol();
1781   } else if (auto *J = dyn_cast<JumpTableSDNode>(N0)) {
1782     AM.JT = J->getIndex();
1783     AM.SymbolFlags = J->getTargetFlags();
1784   } else if (auto *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1785     AM.BlockAddr = BA->getBlockAddress();
1786     AM.SymbolFlags = BA->getTargetFlags();
1787     Offset = BA->getOffset();
1788   } else
1789     llvm_unreachable("Unhandled symbol reference node.");
1790 
1791   if (foldOffsetIntoAddress(Offset, AM)) {
1792     AM = Backup;
1793     return true;
1794   }
1795 
1796   if (IsRIPRel)
1797     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1798 
1799   // Commit the changes now that we know this fold is safe.
1800   return false;
1801 }
1802 
1803 /// Add the specified node to the specified addressing mode, returning true if
1804 /// it cannot be done. This just pattern matches for the addressing mode.
1805 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1806   if (matchAddressRecursively(N, AM, 0))
1807     return true;
1808 
1809   // Post-processing: Make a second attempt to fold a load, if we now know
1810   // that there will not be any other register. This is only performed for
1811   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1812   // any foldable load the first time.
1813   if (Subtarget->isTarget64BitILP32() &&
1814       AM.BaseType == X86ISelAddressMode::RegBase &&
1815       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1816     SDValue Save_Base_Reg = AM.Base_Reg;
1817     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1818       AM.Base_Reg = SDValue();
1819       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1820         AM.Base_Reg = Save_Base_Reg;
1821     }
1822   }
1823 
1824   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1825   // a smaller encoding and avoids a scaled-index.
1826   if (AM.Scale == 2 &&
1827       AM.BaseType == X86ISelAddressMode::RegBase &&
1828       AM.Base_Reg.getNode() == nullptr) {
1829     AM.Base_Reg = AM.IndexReg;
1830     AM.Scale = 1;
1831   }
1832 
1833   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1834   // because it has a smaller encoding.
1835   // TODO: Which other code models can use this?
1836   switch (TM.getCodeModel()) {
1837     default: break;
1838     case CodeModel::Small:
1839     case CodeModel::Kernel:
1840       if (Subtarget->is64Bit() &&
1841           AM.Scale == 1 &&
1842           AM.BaseType == X86ISelAddressMode::RegBase &&
1843           AM.Base_Reg.getNode() == nullptr &&
1844           AM.IndexReg.getNode() == nullptr &&
1845           AM.SymbolFlags == X86II::MO_NO_FLAG &&
1846           AM.hasSymbolicDisplacement())
1847         AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1848       break;
1849   }
1850 
1851   return false;
1852 }
1853 
1854 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1855                                unsigned Depth) {
1856   // Add an artificial use to this node so that we can keep track of
1857   // it if it gets CSE'd with a different node.
1858   HandleSDNode Handle(N);
1859 
1860   X86ISelAddressMode Backup = AM;
1861   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1862       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1863     return false;
1864   AM = Backup;
1865 
1866   // Try again after commutating the operands.
1867   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1868                                Depth + 1) &&
1869       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1870     return false;
1871   AM = Backup;
1872 
1873   // If we couldn't fold both operands into the address at the same time,
1874   // see if we can just put each operand into a register and fold at least
1875   // the add.
1876   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1877       !AM.Base_Reg.getNode() &&
1878       !AM.IndexReg.getNode()) {
1879     N = Handle.getValue();
1880     AM.Base_Reg = N.getOperand(0);
1881     AM.IndexReg = N.getOperand(1);
1882     AM.Scale = 1;
1883     return false;
1884   }
1885   N = Handle.getValue();
1886   return true;
1887 }
1888 
1889 // Insert a node into the DAG at least before the Pos node's position. This
1890 // will reposition the node as needed, and will assign it a node ID that is <=
1891 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1892 // IDs! The selection DAG must no longer depend on their uniqueness when this
1893 // is used.
1894 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1895   if (N->getNodeId() == -1 ||
1896       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1897        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1898     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1899     // Mark Node as invalid for pruning as after this it may be a successor to a
1900     // selected node but otherwise be in the same position of Pos.
1901     // Conservatively mark it with the same -abs(Id) to assure node id
1902     // invariant is preserved.
1903     N->setNodeId(Pos->getNodeId());
1904     SelectionDAGISel::InvalidateNodeId(N.getNode());
1905   }
1906 }
1907 
1908 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1909 // safe. This allows us to convert the shift and and into an h-register
1910 // extract and a scaled index. Returns false if the simplification is
1911 // performed.
1912 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1913                                       uint64_t Mask,
1914                                       SDValue Shift, SDValue X,
1915                                       X86ISelAddressMode &AM) {
1916   if (Shift.getOpcode() != ISD::SRL ||
1917       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1918       !Shift.hasOneUse())
1919     return true;
1920 
1921   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1922   if (ScaleLog <= 0 || ScaleLog >= 4 ||
1923       Mask != (0xffu << ScaleLog))
1924     return true;
1925 
1926   MVT VT = N.getSimpleValueType();
1927   SDLoc DL(N);
1928   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1929   SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1930   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1931   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1932   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1933   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1934 
1935   // Insert the new nodes into the topological ordering. We must do this in
1936   // a valid topological ordering as nothing is going to go back and re-sort
1937   // these nodes. We continually insert before 'N' in sequence as this is
1938   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1939   // hierarchy left to express.
1940   insertDAGNode(DAG, N, Eight);
1941   insertDAGNode(DAG, N, Srl);
1942   insertDAGNode(DAG, N, NewMask);
1943   insertDAGNode(DAG, N, And);
1944   insertDAGNode(DAG, N, ShlCount);
1945   insertDAGNode(DAG, N, Shl);
1946   DAG.ReplaceAllUsesWith(N, Shl);
1947   DAG.RemoveDeadNode(N.getNode());
1948   AM.IndexReg = And;
1949   AM.Scale = (1 << ScaleLog);
1950   return false;
1951 }
1952 
1953 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1954 // allows us to fold the shift into this addressing mode. Returns false if the
1955 // transform succeeded.
1956 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1957                                         X86ISelAddressMode &AM) {
1958   SDValue Shift = N.getOperand(0);
1959 
1960   // Use a signed mask so that shifting right will insert sign bits. These
1961   // bits will be removed when we shift the result left so it doesn't matter
1962   // what we use. This might allow a smaller immediate encoding.
1963   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
1964 
1965   // If we have an any_extend feeding the AND, look through it to see if there
1966   // is a shift behind it. But only if the AND doesn't use the extended bits.
1967   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
1968   bool FoundAnyExtend = false;
1969   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
1970       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
1971       isUInt<32>(Mask)) {
1972     FoundAnyExtend = true;
1973     Shift = Shift.getOperand(0);
1974   }
1975 
1976   if (Shift.getOpcode() != ISD::SHL ||
1977       !isa<ConstantSDNode>(Shift.getOperand(1)))
1978     return true;
1979 
1980   SDValue X = Shift.getOperand(0);
1981 
1982   // Not likely to be profitable if either the AND or SHIFT node has more
1983   // than one use (unless all uses are for address computation). Besides,
1984   // isel mechanism requires their node ids to be reused.
1985   if (!N.hasOneUse() || !Shift.hasOneUse())
1986     return true;
1987 
1988   // Verify that the shift amount is something we can fold.
1989   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1990   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1991     return true;
1992 
1993   MVT VT = N.getSimpleValueType();
1994   SDLoc DL(N);
1995   if (FoundAnyExtend) {
1996     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
1997     insertDAGNode(DAG, N, NewX);
1998     X = NewX;
1999   }
2000 
2001   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
2002   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
2003   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
2004 
2005   // Insert the new nodes into the topological ordering. We must do this in
2006   // a valid topological ordering as nothing is going to go back and re-sort
2007   // these nodes. We continually insert before 'N' in sequence as this is
2008   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2009   // hierarchy left to express.
2010   insertDAGNode(DAG, N, NewMask);
2011   insertDAGNode(DAG, N, NewAnd);
2012   insertDAGNode(DAG, N, NewShift);
2013   DAG.ReplaceAllUsesWith(N, NewShift);
2014   DAG.RemoveDeadNode(N.getNode());
2015 
2016   AM.Scale = 1 << ShiftAmt;
2017   AM.IndexReg = NewAnd;
2018   return false;
2019 }
2020 
2021 // Implement some heroics to detect shifts of masked values where the mask can
2022 // be replaced by extending the shift and undoing that in the addressing mode
2023 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
2024 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
2025 // the addressing mode. This results in code such as:
2026 //
2027 //   int f(short *y, int *lookup_table) {
2028 //     ...
2029 //     return *y + lookup_table[*y >> 11];
2030 //   }
2031 //
2032 // Turning into:
2033 //   movzwl (%rdi), %eax
2034 //   movl %eax, %ecx
2035 //   shrl $11, %ecx
2036 //   addl (%rsi,%rcx,4), %eax
2037 //
2038 // Instead of:
2039 //   movzwl (%rdi), %eax
2040 //   movl %eax, %ecx
2041 //   shrl $9, %ecx
2042 //   andl $124, %rcx
2043 //   addl (%rsi,%rcx), %eax
2044 //
2045 // Note that this function assumes the mask is provided as a mask *after* the
2046 // value is shifted. The input chain may or may not match that, but computing
2047 // such a mask is trivial.
2048 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
2049                                     uint64_t Mask,
2050                                     SDValue Shift, SDValue X,
2051                                     X86ISelAddressMode &AM) {
2052   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
2053       !isa<ConstantSDNode>(Shift.getOperand(1)))
2054     return true;
2055 
2056   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2057   unsigned MaskLZ = countLeadingZeros(Mask);
2058   unsigned MaskTZ = countTrailingZeros(Mask);
2059 
2060   // The amount of shift we're trying to fit into the addressing mode is taken
2061   // from the trailing zeros of the mask.
2062   unsigned AMShiftAmt = MaskTZ;
2063 
2064   // There is nothing we can do here unless the mask is removing some bits.
2065   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2066   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2067 
2068   // We also need to ensure that mask is a continuous run of bits.
2069   if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
2070 
2071   // Scale the leading zero count down based on the actual size of the value.
2072   // Also scale it down based on the size of the shift.
2073   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
2074   if (MaskLZ < ScaleDown)
2075     return true;
2076   MaskLZ -= ScaleDown;
2077 
2078   // The final check is to ensure that any masked out high bits of X are
2079   // already known to be zero. Otherwise, the mask has a semantic impact
2080   // other than masking out a couple of low bits. Unfortunately, because of
2081   // the mask, zero extensions will be removed from operands in some cases.
2082   // This code works extra hard to look through extensions because we can
2083   // replace them with zero extensions cheaply if necessary.
2084   bool ReplacingAnyExtend = false;
2085   if (X.getOpcode() == ISD::ANY_EXTEND) {
2086     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2087                           X.getOperand(0).getSimpleValueType().getSizeInBits();
2088     // Assume that we'll replace the any-extend with a zero-extend, and
2089     // narrow the search to the extended value.
2090     X = X.getOperand(0);
2091     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2092     ReplacingAnyExtend = true;
2093   }
2094   APInt MaskedHighBits =
2095     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2096   KnownBits Known = DAG.computeKnownBits(X);
2097   if (MaskedHighBits != Known.Zero) return true;
2098 
2099   // We've identified a pattern that can be transformed into a single shift
2100   // and an addressing mode. Make it so.
2101   MVT VT = N.getSimpleValueType();
2102   if (ReplacingAnyExtend) {
2103     assert(X.getValueType() != VT);
2104     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2105     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2106     insertDAGNode(DAG, N, NewX);
2107     X = NewX;
2108   }
2109   SDLoc DL(N);
2110   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2111   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2112   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2113   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
2114 
2115   // Insert the new nodes into the topological ordering. We must do this in
2116   // a valid topological ordering as nothing is going to go back and re-sort
2117   // these nodes. We continually insert before 'N' in sequence as this is
2118   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2119   // hierarchy left to express.
2120   insertDAGNode(DAG, N, NewSRLAmt);
2121   insertDAGNode(DAG, N, NewSRL);
2122   insertDAGNode(DAG, N, NewSHLAmt);
2123   insertDAGNode(DAG, N, NewSHL);
2124   DAG.ReplaceAllUsesWith(N, NewSHL);
2125   DAG.RemoveDeadNode(N.getNode());
2126 
2127   AM.Scale = 1 << AMShiftAmt;
2128   AM.IndexReg = NewSRL;
2129   return false;
2130 }
2131 
2132 // Transform "(X >> SHIFT) & (MASK << C1)" to
2133 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2134 // matched to a BEXTR later. Returns false if the simplification is performed.
2135 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2136                                    uint64_t Mask,
2137                                    SDValue Shift, SDValue X,
2138                                    X86ISelAddressMode &AM,
2139                                    const X86Subtarget &Subtarget) {
2140   if (Shift.getOpcode() != ISD::SRL ||
2141       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2142       !Shift.hasOneUse() || !N.hasOneUse())
2143     return true;
2144 
2145   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2146   if (!Subtarget.hasTBM() &&
2147       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2148     return true;
2149 
2150   // We need to ensure that mask is a continuous run of bits.
2151   if (!isShiftedMask_64(Mask)) return true;
2152 
2153   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2154 
2155   // The amount of shift we're trying to fit into the addressing mode is taken
2156   // from the trailing zeros of the mask.
2157   unsigned AMShiftAmt = countTrailingZeros(Mask);
2158 
2159   // There is nothing we can do here unless the mask is removing some bits.
2160   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2161   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2162 
2163   MVT VT = N.getSimpleValueType();
2164   SDLoc DL(N);
2165   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2166   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2167   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
2168   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
2169   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2170   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
2171 
2172   // Insert the new nodes into the topological ordering. We must do this in
2173   // a valid topological ordering as nothing is going to go back and re-sort
2174   // these nodes. We continually insert before 'N' in sequence as this is
2175   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2176   // hierarchy left to express.
2177   insertDAGNode(DAG, N, NewSRLAmt);
2178   insertDAGNode(DAG, N, NewSRL);
2179   insertDAGNode(DAG, N, NewMask);
2180   insertDAGNode(DAG, N, NewAnd);
2181   insertDAGNode(DAG, N, NewSHLAmt);
2182   insertDAGNode(DAG, N, NewSHL);
2183   DAG.ReplaceAllUsesWith(N, NewSHL);
2184   DAG.RemoveDeadNode(N.getNode());
2185 
2186   AM.Scale = 1 << AMShiftAmt;
2187   AM.IndexReg = NewAnd;
2188   return false;
2189 }
2190 
2191 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2192                                               unsigned Depth) {
2193   SDLoc dl(N);
2194   LLVM_DEBUG({
2195     dbgs() << "MatchAddress: ";
2196     AM.dump(CurDAG);
2197   });
2198   // Limit recursion.
2199   if (Depth > 5)
2200     return matchAddressBase(N, AM);
2201 
2202   // If this is already a %rip relative address, we can only merge immediates
2203   // into it.  Instead of handling this in every case, we handle it here.
2204   // RIP relative addressing: %rip + 32-bit displacement!
2205   if (AM.isRIPRelative()) {
2206     // FIXME: JumpTable and ExternalSymbol address currently don't like
2207     // displacements.  It isn't very important, but this should be fixed for
2208     // consistency.
2209     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2210       return true;
2211 
2212     if (auto *Cst = dyn_cast<ConstantSDNode>(N))
2213       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2214         return false;
2215     return true;
2216   }
2217 
2218   switch (N.getOpcode()) {
2219   default: break;
2220   case ISD::LOCAL_RECOVER: {
2221     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2222       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2223         // Use the symbol and don't prefix it.
2224         AM.MCSym = ESNode->getMCSymbol();
2225         return false;
2226       }
2227     break;
2228   }
2229   case ISD::Constant: {
2230     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2231     if (!foldOffsetIntoAddress(Val, AM))
2232       return false;
2233     break;
2234   }
2235 
2236   case X86ISD::Wrapper:
2237   case X86ISD::WrapperRIP:
2238     if (!matchWrapper(N, AM))
2239       return false;
2240     break;
2241 
2242   case ISD::LOAD:
2243     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2244       return false;
2245     break;
2246 
2247   case ISD::FrameIndex:
2248     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2249         AM.Base_Reg.getNode() == nullptr &&
2250         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2251       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2252       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2253       return false;
2254     }
2255     break;
2256 
2257   case ISD::SHL:
2258     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2259       break;
2260 
2261     if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2262       unsigned Val = CN->getZExtValue();
2263       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2264       // that the base operand remains free for further matching. If
2265       // the base doesn't end up getting used, a post-processing step
2266       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2267       if (Val == 1 || Val == 2 || Val == 3) {
2268         AM.Scale = 1 << Val;
2269         SDValue ShVal = N.getOperand(0);
2270 
2271         // Okay, we know that we have a scale by now.  However, if the scaled
2272         // value is an add of something and a constant, we can fold the
2273         // constant into the disp field here.
2274         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
2275           AM.IndexReg = ShVal.getOperand(0);
2276           auto *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
2277           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
2278           if (!foldOffsetIntoAddress(Disp, AM))
2279             return false;
2280         }
2281 
2282         AM.IndexReg = ShVal;
2283         return false;
2284       }
2285     }
2286     break;
2287 
2288   case ISD::SRL: {
2289     // Scale must not be used already.
2290     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2291 
2292     // We only handle up to 64-bit values here as those are what matter for
2293     // addressing mode optimizations.
2294     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2295            "Unexpected value size!");
2296 
2297     SDValue And = N.getOperand(0);
2298     if (And.getOpcode() != ISD::AND) break;
2299     SDValue X = And.getOperand(0);
2300 
2301     // The mask used for the transform is expected to be post-shift, but we
2302     // found the shift first so just apply the shift to the mask before passing
2303     // it down.
2304     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2305         !isa<ConstantSDNode>(And.getOperand(1)))
2306       break;
2307     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2308 
2309     // Try to fold the mask and shift into the scale, and return false if we
2310     // succeed.
2311     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2312       return false;
2313     break;
2314   }
2315 
2316   case ISD::SMUL_LOHI:
2317   case ISD::UMUL_LOHI:
2318     // A mul_lohi where we need the low part can be folded as a plain multiply.
2319     if (N.getResNo() != 0) break;
2320     [[fallthrough]];
2321   case ISD::MUL:
2322   case X86ISD::MUL_IMM:
2323     // X*[3,5,9] -> X+X*[2,4,8]
2324     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2325         AM.Base_Reg.getNode() == nullptr &&
2326         AM.IndexReg.getNode() == nullptr) {
2327       if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2328         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2329             CN->getZExtValue() == 9) {
2330           AM.Scale = unsigned(CN->getZExtValue())-1;
2331 
2332           SDValue MulVal = N.getOperand(0);
2333           SDValue Reg;
2334 
2335           // Okay, we know that we have a scale by now.  However, if the scaled
2336           // value is an add of something and a constant, we can fold the
2337           // constant into the disp field here.
2338           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2339               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2340             Reg = MulVal.getOperand(0);
2341             auto *AddVal = cast<ConstantSDNode>(MulVal.getOperand(1));
2342             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2343             if (foldOffsetIntoAddress(Disp, AM))
2344               Reg = N.getOperand(0);
2345           } else {
2346             Reg = N.getOperand(0);
2347           }
2348 
2349           AM.IndexReg = AM.Base_Reg = Reg;
2350           return false;
2351         }
2352     }
2353     break;
2354 
2355   case ISD::SUB: {
2356     // Given A-B, if A can be completely folded into the address and
2357     // the index field with the index field unused, use -B as the index.
2358     // This is a win if a has multiple parts that can be folded into
2359     // the address. Also, this saves a mov if the base register has
2360     // other uses, since it avoids a two-address sub instruction, however
2361     // it costs an additional mov if the index register has other uses.
2362 
2363     // Add an artificial use to this node so that we can keep track of
2364     // it if it gets CSE'd with a different node.
2365     HandleSDNode Handle(N);
2366 
2367     // Test if the LHS of the sub can be folded.
2368     X86ISelAddressMode Backup = AM;
2369     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2370       N = Handle.getValue();
2371       AM = Backup;
2372       break;
2373     }
2374     N = Handle.getValue();
2375     // Test if the index field is free for use.
2376     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2377       AM = Backup;
2378       break;
2379     }
2380 
2381     int Cost = 0;
2382     SDValue RHS = N.getOperand(1);
2383     // If the RHS involves a register with multiple uses, this
2384     // transformation incurs an extra mov, due to the neg instruction
2385     // clobbering its operand.
2386     if (!RHS.getNode()->hasOneUse() ||
2387         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2388         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2389         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2390         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2391          RHS.getOperand(0).getValueType() == MVT::i32))
2392       ++Cost;
2393     // If the base is a register with multiple uses, this
2394     // transformation may save a mov.
2395     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2396          !AM.Base_Reg.getNode()->hasOneUse()) ||
2397         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2398       --Cost;
2399     // If the folded LHS was interesting, this transformation saves
2400     // address arithmetic.
2401     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2402         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2403         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2404       --Cost;
2405     // If it doesn't look like it may be an overall win, don't do it.
2406     if (Cost >= 0) {
2407       AM = Backup;
2408       break;
2409     }
2410 
2411     // Ok, the transformation is legal and appears profitable. Go for it.
2412     // Negation will be emitted later to avoid creating dangling nodes if this
2413     // was an unprofitable LEA.
2414     AM.IndexReg = RHS;
2415     AM.NegateIndex = true;
2416     AM.Scale = 1;
2417     return false;
2418   }
2419 
2420   case ISD::ADD:
2421     if (!matchAdd(N, AM, Depth))
2422       return false;
2423     break;
2424 
2425   case ISD::OR:
2426     // We want to look through a transform in InstCombine and DAGCombiner that
2427     // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
2428     // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
2429     // An 'lea' can then be used to match the shift (multiply) and add:
2430     // and $1, %esi
2431     // lea (%rsi, %rdi, 8), %rax
2432     if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
2433         !matchAdd(N, AM, Depth))
2434       return false;
2435     break;
2436 
2437   case ISD::XOR:
2438     // We want to look through a transform in InstCombine that
2439     // turns 'add' with min_signed_val into 'xor', so we can treat this 'xor'
2440     // exactly like an 'add'.
2441     if (isMinSignedConstant(N.getOperand(1)) && !matchAdd(N, AM, Depth))
2442       return false;
2443     break;
2444 
2445   case ISD::AND: {
2446     // Perform some heroic transforms on an and of a constant-count shift
2447     // with a constant to enable use of the scaled offset field.
2448 
2449     // Scale must not be used already.
2450     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2451 
2452     // We only handle up to 64-bit values here as those are what matter for
2453     // addressing mode optimizations.
2454     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2455            "Unexpected value size!");
2456 
2457     if (!isa<ConstantSDNode>(N.getOperand(1)))
2458       break;
2459 
2460     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2461       SDValue Shift = N.getOperand(0);
2462       SDValue X = Shift.getOperand(0);
2463 
2464       uint64_t Mask = N.getConstantOperandVal(1);
2465 
2466       // Try to fold the mask and shift into an extract and scale.
2467       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2468         return false;
2469 
2470       // Try to fold the mask and shift directly into the scale.
2471       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2472         return false;
2473 
2474       // Try to fold the mask and shift into BEXTR and scale.
2475       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2476         return false;
2477     }
2478 
2479     // Try to swap the mask and shift to place shifts which can be done as
2480     // a scale on the outside of the mask.
2481     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2482       return false;
2483 
2484     break;
2485   }
2486   case ISD::ZERO_EXTEND: {
2487     // Try to widen a zexted shift left to the same size as its use, so we can
2488     // match the shift as a scale factor.
2489     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2490       break;
2491     if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
2492       break;
2493 
2494     // Give up if the shift is not a valid scale factor [1,2,3].
2495     SDValue Shl = N.getOperand(0);
2496     auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
2497     if (!ShAmtC || ShAmtC->getZExtValue() > 3)
2498       break;
2499 
2500     // The narrow shift must only shift out zero bits (it must be 'nuw').
2501     // That makes it safe to widen to the destination type.
2502     APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
2503                                             ShAmtC->getZExtValue());
2504     if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
2505       break;
2506 
2507     // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
2508     MVT VT = N.getSimpleValueType();
2509     SDLoc DL(N);
2510     SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
2511     SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
2512 
2513     // Convert the shift to scale factor.
2514     AM.Scale = 1 << ShAmtC->getZExtValue();
2515     AM.IndexReg = Zext;
2516 
2517     insertDAGNode(*CurDAG, N, Zext);
2518     insertDAGNode(*CurDAG, N, NewShl);
2519     CurDAG->ReplaceAllUsesWith(N, NewShl);
2520     CurDAG->RemoveDeadNode(N.getNode());
2521     return false;
2522   }
2523   }
2524 
2525   return matchAddressBase(N, AM);
2526 }
2527 
2528 /// Helper for MatchAddress. Add the specified node to the
2529 /// specified addressing mode without any further recursion.
2530 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2531   // Is the base register already occupied?
2532   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2533     // If so, check to see if the scale index register is set.
2534     if (!AM.IndexReg.getNode()) {
2535       AM.IndexReg = N;
2536       AM.Scale = 1;
2537       return false;
2538     }
2539 
2540     // Otherwise, we cannot select it.
2541     return true;
2542   }
2543 
2544   // Default, generate it as a register.
2545   AM.BaseType = X86ISelAddressMode::RegBase;
2546   AM.Base_Reg = N;
2547   return false;
2548 }
2549 
2550 bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
2551                                                     X86ISelAddressMode &AM,
2552                                                     unsigned Depth) {
2553   SDLoc dl(N);
2554   LLVM_DEBUG({
2555     dbgs() << "MatchVectorAddress: ";
2556     AM.dump(CurDAG);
2557   });
2558   // Limit recursion.
2559   if (Depth > 5)
2560     return matchAddressBase(N, AM);
2561 
2562   // TODO: Support other operations.
2563   switch (N.getOpcode()) {
2564   case ISD::Constant: {
2565     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2566     if (!foldOffsetIntoAddress(Val, AM))
2567       return false;
2568     break;
2569   }
2570   case X86ISD::Wrapper:
2571     if (!matchWrapper(N, AM))
2572       return false;
2573     break;
2574   case ISD::ADD: {
2575     // Add an artificial use to this node so that we can keep track of
2576     // it if it gets CSE'd with a different node.
2577     HandleSDNode Handle(N);
2578 
2579     X86ISelAddressMode Backup = AM;
2580     if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) &&
2581         !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2582                                        Depth + 1))
2583       return false;
2584     AM = Backup;
2585 
2586     // Try again after commuting the operands.
2587     if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2588                                        Depth + 1) &&
2589         !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM,
2590                                        Depth + 1))
2591       return false;
2592     AM = Backup;
2593 
2594     N = Handle.getValue();
2595     break;
2596   }
2597   }
2598 
2599   return matchAddressBase(N, AM);
2600 }
2601 
2602 /// Helper for selectVectorAddr. Handles things that can be folded into a
2603 /// gather/scatter address. The index register and scale should have already
2604 /// been handled.
2605 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2606   return matchVectorAddressRecursively(N, AM, 0);
2607 }
2608 
2609 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2610                                        SDValue IndexOp, SDValue ScaleOp,
2611                                        SDValue &Base, SDValue &Scale,
2612                                        SDValue &Index, SDValue &Disp,
2613                                        SDValue &Segment) {
2614   X86ISelAddressMode AM;
2615   AM.IndexReg = IndexOp;
2616   AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
2617 
2618   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2619   if (AddrSpace == X86AS::GS)
2620     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2621   if (AddrSpace == X86AS::FS)
2622     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2623   if (AddrSpace == X86AS::SS)
2624     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2625 
2626   SDLoc DL(BasePtr);
2627   MVT VT = BasePtr.getSimpleValueType();
2628 
2629   // Try to match into the base and displacement fields.
2630   if (matchVectorAddress(BasePtr, AM))
2631     return false;
2632 
2633   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2634   return true;
2635 }
2636 
2637 /// Returns true if it is able to pattern match an addressing mode.
2638 /// It returns the operands which make up the maximal addressing mode it can
2639 /// match by reference.
2640 ///
2641 /// Parent is the parent node of the addr operand that is being matched.  It
2642 /// is always a load, store, atomic node, or null.  It is only null when
2643 /// checking memory operands for inline asm nodes.
2644 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2645                                  SDValue &Scale, SDValue &Index,
2646                                  SDValue &Disp, SDValue &Segment) {
2647   X86ISelAddressMode AM;
2648 
2649   if (Parent &&
2650       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2651       // that are not a MemSDNode, and thus don't have proper addrspace info.
2652       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2653       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2654       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2655       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2656       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2657       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2658       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2659     unsigned AddrSpace =
2660       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2661     if (AddrSpace == X86AS::GS)
2662       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2663     if (AddrSpace == X86AS::FS)
2664       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2665     if (AddrSpace == X86AS::SS)
2666       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2667   }
2668 
2669   // Save the DL and VT before calling matchAddress, it can invalidate N.
2670   SDLoc DL(N);
2671   MVT VT = N.getSimpleValueType();
2672 
2673   if (matchAddress(N, AM))
2674     return false;
2675 
2676   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2677   return true;
2678 }
2679 
2680 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2681   // In static codegen with small code model, we can get the address of a label
2682   // into a register with 'movl'
2683   if (N->getOpcode() != X86ISD::Wrapper)
2684     return false;
2685 
2686   N = N.getOperand(0);
2687 
2688   // At least GNU as does not accept 'movl' for TPOFF relocations.
2689   // FIXME: We could use 'movl' when we know we are targeting MC.
2690   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2691     return false;
2692 
2693   Imm = N;
2694   if (N->getOpcode() != ISD::TargetGlobalAddress)
2695     return TM.getCodeModel() == CodeModel::Small;
2696 
2697   std::optional<ConstantRange> CR =
2698       cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
2699   if (!CR)
2700     return TM.getCodeModel() == CodeModel::Small;
2701 
2702   return CR->getUnsignedMax().ult(1ull << 32);
2703 }
2704 
2705 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2706                                          SDValue &Scale, SDValue &Index,
2707                                          SDValue &Disp, SDValue &Segment) {
2708   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2709   SDLoc DL(N);
2710 
2711   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2712     return false;
2713 
2714   auto *RN = dyn_cast<RegisterSDNode>(Base);
2715   if (RN && RN->getReg() == 0)
2716     Base = CurDAG->getRegister(0, MVT::i64);
2717   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2718     // Base could already be %rip, particularly in the x32 ABI.
2719     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2720                                                      MVT::i64), 0);
2721     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2722                                          Base);
2723   }
2724 
2725   RN = dyn_cast<RegisterSDNode>(Index);
2726   if (RN && RN->getReg() == 0)
2727     Index = CurDAG->getRegister(0, MVT::i64);
2728   else {
2729     assert(Index.getValueType() == MVT::i32 &&
2730            "Expect to be extending 32-bit registers for use in LEA");
2731     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2732                                                      MVT::i64), 0);
2733     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2734                                           Index);
2735   }
2736 
2737   return true;
2738 }
2739 
2740 /// Calls SelectAddr and determines if the maximal addressing
2741 /// mode it matches can be cost effectively emitted as an LEA instruction.
2742 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2743                                     SDValue &Base, SDValue &Scale,
2744                                     SDValue &Index, SDValue &Disp,
2745                                     SDValue &Segment) {
2746   X86ISelAddressMode AM;
2747 
2748   // Save the DL and VT before calling matchAddress, it can invalidate N.
2749   SDLoc DL(N);
2750   MVT VT = N.getSimpleValueType();
2751 
2752   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
2753   // segments.
2754   SDValue Copy = AM.Segment;
2755   SDValue T = CurDAG->getRegister(0, MVT::i32);
2756   AM.Segment = T;
2757   if (matchAddress(N, AM))
2758     return false;
2759   assert (T == AM.Segment);
2760   AM.Segment = Copy;
2761 
2762   unsigned Complexity = 0;
2763   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
2764     Complexity = 1;
2765   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2766     Complexity = 4;
2767 
2768   if (AM.IndexReg.getNode())
2769     Complexity++;
2770 
2771   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
2772   // a simple shift.
2773   if (AM.Scale > 1)
2774     Complexity++;
2775 
2776   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
2777   // to a LEA. This is determined with some experimentation but is by no means
2778   // optimal (especially for code size consideration). LEA is nice because of
2779   // its three-address nature. Tweak the cost function again when we can run
2780   // convertToThreeAddress() at register allocation time.
2781   if (AM.hasSymbolicDisplacement()) {
2782     // For X86-64, always use LEA to materialize RIP-relative addresses.
2783     if (Subtarget->is64Bit())
2784       Complexity = 4;
2785     else
2786       Complexity += 2;
2787   }
2788 
2789   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
2790   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
2791   // duplicating flag-producing instructions later in the pipeline.
2792   if (N.getOpcode() == ISD::ADD) {
2793     auto isMathWithFlags = [](SDValue V) {
2794       switch (V.getOpcode()) {
2795       case X86ISD::ADD:
2796       case X86ISD::SUB:
2797       case X86ISD::ADC:
2798       case X86ISD::SBB:
2799       case X86ISD::SMUL:
2800       case X86ISD::UMUL:
2801       /* TODO: These opcodes can be added safely, but we may want to justify
2802                their inclusion for different reasons (better for reg-alloc).
2803       case X86ISD::OR:
2804       case X86ISD::XOR:
2805       case X86ISD::AND:
2806       */
2807         // Value 1 is the flag output of the node - verify it's not dead.
2808         return !SDValue(V.getNode(), 1).use_empty();
2809       default:
2810         return false;
2811       }
2812     };
2813     // TODO: We might want to factor in whether there's a load folding
2814     // opportunity for the math op that disappears with LEA.
2815     if (isMathWithFlags(N.getOperand(0)) || isMathWithFlags(N.getOperand(1)))
2816       Complexity++;
2817   }
2818 
2819   if (AM.Disp)
2820     Complexity++;
2821 
2822   // If it isn't worth using an LEA, reject it.
2823   if (Complexity <= 2)
2824     return false;
2825 
2826   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2827   return true;
2828 }
2829 
2830 /// This is only run on TargetGlobalTLSAddress nodes.
2831 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
2832                                         SDValue &Scale, SDValue &Index,
2833                                         SDValue &Disp, SDValue &Segment) {
2834   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
2835   auto *GA = cast<GlobalAddressSDNode>(N);
2836 
2837   X86ISelAddressMode AM;
2838   AM.GV = GA->getGlobal();
2839   AM.Disp += GA->getOffset();
2840   AM.SymbolFlags = GA->getTargetFlags();
2841 
2842   if (Subtarget->is32Bit()) {
2843     AM.Scale = 1;
2844     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
2845   }
2846 
2847   MVT VT = N.getSimpleValueType();
2848   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
2849   return true;
2850 }
2851 
2852 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2853   // Keep track of the original value type and whether this value was
2854   // truncated. If we see a truncation from pointer type to VT that truncates
2855   // bits that are known to be zero, we can use a narrow reference.
2856   EVT VT = N.getValueType();
2857   bool WasTruncated = false;
2858   if (N.getOpcode() == ISD::TRUNCATE) {
2859     WasTruncated = true;
2860     N = N.getOperand(0);
2861   }
2862 
2863   if (N.getOpcode() != X86ISD::Wrapper)
2864     return false;
2865 
2866   // We can only use non-GlobalValues as immediates if they were not truncated,
2867   // as we do not have any range information. If we have a GlobalValue and the
2868   // address was not truncated, we can select it as an operand directly.
2869   unsigned Opc = N.getOperand(0)->getOpcode();
2870   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2871     Op = N.getOperand(0);
2872     // We can only select the operand directly if we didn't have to look past a
2873     // truncate.
2874     return !WasTruncated;
2875   }
2876 
2877   // Check that the global's range fits into VT.
2878   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2879   std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2880   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2881     return false;
2882 
2883   // Okay, we can use a narrow reference.
2884   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2885                                       GA->getOffset(), GA->getTargetFlags());
2886   return true;
2887 }
2888 
2889 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2890                                   SDValue &Base, SDValue &Scale,
2891                                   SDValue &Index, SDValue &Disp,
2892                                   SDValue &Segment) {
2893   assert(Root && P && "Unknown root/parent nodes");
2894   if (!ISD::isNON_EXTLoad(N.getNode()) ||
2895       !IsProfitableToFold(N, P, Root) ||
2896       !IsLegalToFold(N, P, Root, OptLevel))
2897     return false;
2898 
2899   return selectAddr(N.getNode(),
2900                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2901 }
2902 
2903 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
2904                                        SDValue &Base, SDValue &Scale,
2905                                        SDValue &Index, SDValue &Disp,
2906                                        SDValue &Segment) {
2907   assert(Root && P && "Unknown root/parent nodes");
2908   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
2909       !IsProfitableToFold(N, P, Root) ||
2910       !IsLegalToFold(N, P, Root, OptLevel))
2911     return false;
2912 
2913   return selectAddr(N.getNode(),
2914                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2915 }
2916 
2917 /// Return an SDNode that returns the value of the global base register.
2918 /// Output instructions required to initialize the global base register,
2919 /// if necessary.
2920 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2921   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2922   auto &DL = MF->getDataLayout();
2923   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2924 }
2925 
2926 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2927   if (N->getOpcode() == ISD::TRUNCATE)
2928     N = N->getOperand(0).getNode();
2929   if (N->getOpcode() != X86ISD::Wrapper)
2930     return false;
2931 
2932   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2933   if (!GA)
2934     return false;
2935 
2936   std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2937   if (!CR)
2938     return Width == 32 && TM.getCodeModel() == CodeModel::Small;
2939 
2940   return CR->getSignedMin().sge(-1ull << Width) &&
2941          CR->getSignedMax().slt(1ull << Width);
2942 }
2943 
2944 X86::CondCode X86DAGToDAGISel::getCondFromNode(SDNode *N) const {
2945   assert(N->isMachineOpcode() && "Unexpected node");
2946   unsigned Opc = N->getMachineOpcode();
2947   const MCInstrDesc &MCID = getInstrInfo()->get(Opc);
2948   int CondNo = X86::getCondSrcNoFromDesc(MCID);
2949   if (CondNo < 0)
2950     return X86::COND_INVALID;
2951 
2952   return static_cast<X86::CondCode>(N->getConstantOperandVal(CondNo));
2953 }
2954 
2955 /// Test whether the given X86ISD::CMP node has any users that use a flag
2956 /// other than ZF.
2957 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
2958   // Examine each user of the node.
2959   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2960          UI != UE; ++UI) {
2961     // Only check things that use the flags.
2962     if (UI.getUse().getResNo() != Flags.getResNo())
2963       continue;
2964     // Only examine CopyToReg uses that copy to EFLAGS.
2965     if (UI->getOpcode() != ISD::CopyToReg ||
2966         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2967       return false;
2968     // Examine each user of the CopyToReg use.
2969     for (SDNode::use_iterator FlagUI = UI->use_begin(),
2970            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2971       // Only examine the Flag result.
2972       if (FlagUI.getUse().getResNo() != 1) continue;
2973       // Anything unusual: assume conservatively.
2974       if (!FlagUI->isMachineOpcode()) return false;
2975       // Examine the condition code of the user.
2976       X86::CondCode CC = getCondFromNode(*FlagUI);
2977 
2978       switch (CC) {
2979       // Comparisons which only use the zero flag.
2980       case X86::COND_E: case X86::COND_NE:
2981         continue;
2982       // Anything else: assume conservatively.
2983       default:
2984         return false;
2985       }
2986     }
2987   }
2988   return true;
2989 }
2990 
2991 /// Test whether the given X86ISD::CMP node has any uses which require the SF
2992 /// flag to be accurate.
2993 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
2994   // Examine each user of the node.
2995   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2996          UI != UE; ++UI) {
2997     // Only check things that use the flags.
2998     if (UI.getUse().getResNo() != Flags.getResNo())
2999       continue;
3000     // Only examine CopyToReg uses that copy to EFLAGS.
3001     if (UI->getOpcode() != ISD::CopyToReg ||
3002         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3003       return false;
3004     // Examine each user of the CopyToReg use.
3005     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3006            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3007       // Only examine the Flag result.
3008       if (FlagUI.getUse().getResNo() != 1) continue;
3009       // Anything unusual: assume conservatively.
3010       if (!FlagUI->isMachineOpcode()) return false;
3011       // Examine the condition code of the user.
3012       X86::CondCode CC = getCondFromNode(*FlagUI);
3013 
3014       switch (CC) {
3015       // Comparisons which don't examine the SF flag.
3016       case X86::COND_A: case X86::COND_AE:
3017       case X86::COND_B: case X86::COND_BE:
3018       case X86::COND_E: case X86::COND_NE:
3019       case X86::COND_O: case X86::COND_NO:
3020       case X86::COND_P: case X86::COND_NP:
3021         continue;
3022       // Anything else: assume conservatively.
3023       default:
3024         return false;
3025       }
3026     }
3027   }
3028   return true;
3029 }
3030 
3031 static bool mayUseCarryFlag(X86::CondCode CC) {
3032   switch (CC) {
3033   // Comparisons which don't examine the CF flag.
3034   case X86::COND_O: case X86::COND_NO:
3035   case X86::COND_E: case X86::COND_NE:
3036   case X86::COND_S: case X86::COND_NS:
3037   case X86::COND_P: case X86::COND_NP:
3038   case X86::COND_L: case X86::COND_GE:
3039   case X86::COND_G: case X86::COND_LE:
3040     return false;
3041   // Anything else: assume conservatively.
3042   default:
3043     return true;
3044   }
3045 }
3046 
3047 /// Test whether the given node which sets flags has any uses which require the
3048 /// CF flag to be accurate.
3049  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
3050   // Examine each user of the node.
3051   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3052          UI != UE; ++UI) {
3053     // Only check things that use the flags.
3054     if (UI.getUse().getResNo() != Flags.getResNo())
3055       continue;
3056 
3057     unsigned UIOpc = UI->getOpcode();
3058 
3059     if (UIOpc == ISD::CopyToReg) {
3060       // Only examine CopyToReg uses that copy to EFLAGS.
3061       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3062         return false;
3063       // Examine each user of the CopyToReg use.
3064       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
3065            FlagUI != FlagUE; ++FlagUI) {
3066         // Only examine the Flag result.
3067         if (FlagUI.getUse().getResNo() != 1)
3068           continue;
3069         // Anything unusual: assume conservatively.
3070         if (!FlagUI->isMachineOpcode())
3071           return false;
3072         // Examine the condition code of the user.
3073         X86::CondCode CC = getCondFromNode(*FlagUI);
3074 
3075         if (mayUseCarryFlag(CC))
3076           return false;
3077       }
3078 
3079       // This CopyToReg is ok. Move on to the next user.
3080       continue;
3081     }
3082 
3083     // This might be an unselected node. So look for the pre-isel opcodes that
3084     // use flags.
3085     unsigned CCOpNo;
3086     switch (UIOpc) {
3087     default:
3088       // Something unusual. Be conservative.
3089       return false;
3090     case X86ISD::SETCC:       CCOpNo = 0; break;
3091     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
3092     case X86ISD::CMOV:        CCOpNo = 2; break;
3093     case X86ISD::BRCOND:      CCOpNo = 2; break;
3094     }
3095 
3096     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
3097     if (mayUseCarryFlag(CC))
3098       return false;
3099   }
3100   return true;
3101 }
3102 
3103 /// Check whether or not the chain ending in StoreNode is suitable for doing
3104 /// the {load; op; store} to modify transformation.
3105 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
3106                                         SDValue StoredVal, SelectionDAG *CurDAG,
3107                                         unsigned LoadOpNo,
3108                                         LoadSDNode *&LoadNode,
3109                                         SDValue &InputChain) {
3110   // Is the stored value result 0 of the operation?
3111   if (StoredVal.getResNo() != 0) return false;
3112 
3113   // Are there other uses of the operation other than the store?
3114   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3115 
3116   // Is the store non-extending and non-indexed?
3117   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3118     return false;
3119 
3120   SDValue Load = StoredVal->getOperand(LoadOpNo);
3121   // Is the stored value a non-extending and non-indexed load?
3122   if (!ISD::isNormalLoad(Load.getNode())) return false;
3123 
3124   // Return LoadNode by reference.
3125   LoadNode = cast<LoadSDNode>(Load);
3126 
3127   // Is store the only read of the loaded value?
3128   if (!Load.hasOneUse())
3129     return false;
3130 
3131   // Is the address of the store the same as the load?
3132   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3133       LoadNode->getOffset() != StoreNode->getOffset())
3134     return false;
3135 
3136   bool FoundLoad = false;
3137   SmallVector<SDValue, 4> ChainOps;
3138   SmallVector<const SDNode *, 4> LoopWorklist;
3139   SmallPtrSet<const SDNode *, 16> Visited;
3140   const unsigned int Max = 1024;
3141 
3142   //  Visualization of Load-Op-Store fusion:
3143   // -------------------------
3144   // Legend:
3145   //    *-lines = Chain operand dependencies.
3146   //    |-lines = Normal operand dependencies.
3147   //    Dependencies flow down and right. n-suffix references multiple nodes.
3148   //
3149   //        C                        Xn  C
3150   //        *                         *  *
3151   //        *                          * *
3152   //  Xn  A-LD    Yn                    TF         Yn
3153   //   *    * \   |                       *        |
3154   //    *   *  \  |                        *       |
3155   //     *  *   \ |             =>       A--LD_OP_ST
3156   //      * *    \|                                 \
3157   //       TF    OP                                  \
3158   //         *   | \                                  Zn
3159   //          *  |  \
3160   //         A-ST    Zn
3161   //
3162 
3163   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3164   //                                      #2: Yn -> LD
3165   //                                      #3: ST -> Zn
3166 
3167   // Ensure the transform is safe by checking for the dual
3168   // dependencies to make sure we do not induce a loop.
3169 
3170   // As LD is a predecessor to both OP and ST we can do this by checking:
3171   //  a). if LD is a predecessor to a member of Xn or Yn.
3172   //  b). if a Zn is a predecessor to ST.
3173 
3174   // However, (b) can only occur through being a chain predecessor to
3175   // ST, which is the same as Zn being a member or predecessor of Xn,
3176   // which is a subset of LD being a predecessor of Xn. So it's
3177   // subsumed by check (a).
3178 
3179   SDValue Chain = StoreNode->getChain();
3180 
3181   // Gather X elements in ChainOps.
3182   if (Chain == Load.getValue(1)) {
3183     FoundLoad = true;
3184     ChainOps.push_back(Load.getOperand(0));
3185   } else if (Chain.getOpcode() == ISD::TokenFactor) {
3186     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3187       SDValue Op = Chain.getOperand(i);
3188       if (Op == Load.getValue(1)) {
3189         FoundLoad = true;
3190         // Drop Load, but keep its chain. No cycle check necessary.
3191         ChainOps.push_back(Load.getOperand(0));
3192         continue;
3193       }
3194       LoopWorklist.push_back(Op.getNode());
3195       ChainOps.push_back(Op);
3196     }
3197   }
3198 
3199   if (!FoundLoad)
3200     return false;
3201 
3202   // Worklist is currently Xn. Add Yn to worklist.
3203   for (SDValue Op : StoredVal->ops())
3204     if (Op.getNode() != LoadNode)
3205       LoopWorklist.push_back(Op.getNode());
3206 
3207   // Check (a) if Load is a predecessor to Xn + Yn
3208   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3209                                    true))
3210     return false;
3211 
3212   InputChain =
3213       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3214   return true;
3215 }
3216 
3217 // Change a chain of {load; op; store} of the same value into a simple op
3218 // through memory of that value, if the uses of the modified value and its
3219 // address are suitable.
3220 //
3221 // The tablegen pattern memory operand pattern is currently not able to match
3222 // the case where the EFLAGS on the original operation are used.
3223 //
3224 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3225 // be transferred from a node in the pattern to the result node, probably with
3226 // a new keyword. For example, we have this
3227 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3228 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3229 //   (implicit EFLAGS)]>;
3230 // but maybe need something like this
3231 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3232 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3233 //   (transferrable EFLAGS)]>;
3234 //
3235 // Until then, we manually fold these and instruction select the operation
3236 // here.
3237 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3238   auto *StoreNode = cast<StoreSDNode>(Node);
3239   SDValue StoredVal = StoreNode->getOperand(1);
3240   unsigned Opc = StoredVal->getOpcode();
3241 
3242   // Before we try to select anything, make sure this is memory operand size
3243   // and opcode we can handle. Note that this must match the code below that
3244   // actually lowers the opcodes.
3245   EVT MemVT = StoreNode->getMemoryVT();
3246   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3247       MemVT != MVT::i8)
3248     return false;
3249 
3250   bool IsCommutable = false;
3251   bool IsNegate = false;
3252   switch (Opc) {
3253   default:
3254     return false;
3255   case X86ISD::SUB:
3256     IsNegate = isNullConstant(StoredVal.getOperand(0));
3257     break;
3258   case X86ISD::SBB:
3259     break;
3260   case X86ISD::ADD:
3261   case X86ISD::ADC:
3262   case X86ISD::AND:
3263   case X86ISD::OR:
3264   case X86ISD::XOR:
3265     IsCommutable = true;
3266     break;
3267   }
3268 
3269   unsigned LoadOpNo = IsNegate ? 1 : 0;
3270   LoadSDNode *LoadNode = nullptr;
3271   SDValue InputChain;
3272   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3273                                    LoadNode, InputChain)) {
3274     if (!IsCommutable)
3275       return false;
3276 
3277     // This operation is commutable, try the other operand.
3278     LoadOpNo = 1;
3279     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3280                                      LoadNode, InputChain))
3281       return false;
3282   }
3283 
3284   SDValue Base, Scale, Index, Disp, Segment;
3285   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3286                   Segment))
3287     return false;
3288 
3289   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3290                           unsigned Opc8) {
3291     switch (MemVT.getSimpleVT().SimpleTy) {
3292     case MVT::i64:
3293       return Opc64;
3294     case MVT::i32:
3295       return Opc32;
3296     case MVT::i16:
3297       return Opc16;
3298     case MVT::i8:
3299       return Opc8;
3300     default:
3301       llvm_unreachable("Invalid size!");
3302     }
3303   };
3304 
3305   MachineSDNode *Result;
3306   switch (Opc) {
3307   case X86ISD::SUB:
3308     // Handle negate.
3309     if (IsNegate) {
3310       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3311                                      X86::NEG8m);
3312       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3313       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3314                                       MVT::Other, Ops);
3315       break;
3316     }
3317    [[fallthrough]];
3318   case X86ISD::ADD:
3319     // Try to match inc/dec.
3320     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3321       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3322       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3323       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3324       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3325         unsigned NewOpc =
3326           ((Opc == X86ISD::ADD) == IsOne)
3327               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3328               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3329         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3330         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3331                                         MVT::Other, Ops);
3332         break;
3333       }
3334     }
3335     [[fallthrough]];
3336   case X86ISD::ADC:
3337   case X86ISD::SBB:
3338   case X86ISD::AND:
3339   case X86ISD::OR:
3340   case X86ISD::XOR: {
3341     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3342       switch (Opc) {
3343       case X86ISD::ADD:
3344         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3345                             X86::ADD8mr);
3346       case X86ISD::ADC:
3347         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3348                             X86::ADC8mr);
3349       case X86ISD::SUB:
3350         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3351                             X86::SUB8mr);
3352       case X86ISD::SBB:
3353         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3354                             X86::SBB8mr);
3355       case X86ISD::AND:
3356         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3357                             X86::AND8mr);
3358       case X86ISD::OR:
3359         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3360       case X86ISD::XOR:
3361         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3362                             X86::XOR8mr);
3363       default:
3364         llvm_unreachable("Invalid opcode!");
3365       }
3366     };
3367     auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
3368       switch (Opc) {
3369       case X86ISD::ADD:
3370         return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
3371       case X86ISD::ADC:
3372         return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
3373       case X86ISD::SUB:
3374         return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
3375       case X86ISD::SBB:
3376         return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
3377       case X86ISD::AND:
3378         return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
3379       case X86ISD::OR:
3380         return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
3381       case X86ISD::XOR:
3382         return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
3383       default:
3384         llvm_unreachable("Invalid opcode!");
3385       }
3386     };
3387     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3388       switch (Opc) {
3389       case X86ISD::ADD:
3390         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3391                             X86::ADD8mi);
3392       case X86ISD::ADC:
3393         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3394                             X86::ADC8mi);
3395       case X86ISD::SUB:
3396         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3397                             X86::SUB8mi);
3398       case X86ISD::SBB:
3399         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3400                             X86::SBB8mi);
3401       case X86ISD::AND:
3402         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3403                             X86::AND8mi);
3404       case X86ISD::OR:
3405         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3406                             X86::OR8mi);
3407       case X86ISD::XOR:
3408         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3409                             X86::XOR8mi);
3410       default:
3411         llvm_unreachable("Invalid opcode!");
3412       }
3413     };
3414 
3415     unsigned NewOpc = SelectRegOpcode(Opc);
3416     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3417 
3418     // See if the operand is a constant that we can fold into an immediate
3419     // operand.
3420     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3421       int64_t OperandV = OperandC->getSExtValue();
3422 
3423       // Check if we can shrink the operand enough to fit in an immediate (or
3424       // fit into a smaller immediate) by negating it and switching the
3425       // operation.
3426       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3427           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3428            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3429             isInt<32>(-OperandV))) &&
3430           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3431         OperandV = -OperandV;
3432         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3433       }
3434 
3435       // First try to fit this into an Imm8 operand. If it doesn't fit, then try
3436       // the larger immediate operand.
3437       if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
3438         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3439         NewOpc = SelectImm8Opcode(Opc);
3440       } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3441         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3442         NewOpc = SelectImmOpcode(Opc);
3443       }
3444     }
3445 
3446     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3447       SDValue CopyTo =
3448           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3449                                StoredVal.getOperand(2), SDValue());
3450 
3451       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3452                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3453       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3454                                       Ops);
3455     } else {
3456       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3457                              Segment, Operand, InputChain};
3458       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3459                                       Ops);
3460     }
3461     break;
3462   }
3463   default:
3464     llvm_unreachable("Invalid opcode!");
3465   }
3466 
3467   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3468                                  LoadNode->getMemOperand()};
3469   CurDAG->setNodeMemRefs(Result, MemOps);
3470 
3471   // Update Load Chain uses as well.
3472   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3473   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3474   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3475   CurDAG->RemoveDeadNode(Node);
3476   return true;
3477 }
3478 
3479 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3480 // Where Mask is one of the following patterns:
3481 //   a) x &  (1 << nbits) - 1
3482 //   b) x & ~(-1 << nbits)
3483 //   c) x &  (-1 >> (32 - y))
3484 //   d) x << (32 - y) >> (32 - y)
3485 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3486   assert(
3487       (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
3488       "Should be either an and-mask, or right-shift after clearing high bits.");
3489 
3490   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3491   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3492     return false;
3493 
3494   MVT NVT = Node->getSimpleValueType(0);
3495 
3496   // Only supported for 32 and 64 bits.
3497   if (NVT != MVT::i32 && NVT != MVT::i64)
3498     return false;
3499 
3500   SDValue NBits;
3501   bool NegateNBits;
3502 
3503   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3504   // Else, if we only have BMI1's BEXTR, we require one-use.
3505   const bool AllowExtraUsesByDefault = Subtarget->hasBMI2();
3506   auto checkUses = [AllowExtraUsesByDefault](
3507                        SDValue Op, unsigned NUses,
3508                        std::optional<bool> AllowExtraUses) {
3509     return AllowExtraUses.value_or(AllowExtraUsesByDefault) ||
3510            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3511   };
3512   auto checkOneUse = [checkUses](SDValue Op,
3513                                  std::optional<bool> AllowExtraUses =
3514                                      std::nullopt) {
3515     return checkUses(Op, 1, AllowExtraUses);
3516   };
3517   auto checkTwoUse = [checkUses](SDValue Op,
3518                                  std::optional<bool> AllowExtraUses =
3519                                      std::nullopt) {
3520     return checkUses(Op, 2, AllowExtraUses);
3521   };
3522 
3523   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3524     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3525       assert(V.getSimpleValueType() == MVT::i32 &&
3526              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3527              "Expected i64 -> i32 truncation");
3528       V = V.getOperand(0);
3529     }
3530     return V;
3531   };
3532 
3533   // a) x & ((1 << nbits) + (-1))
3534   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits,
3535                         &NegateNBits](SDValue Mask) -> bool {
3536     // Match `add`. Must only have one use!
3537     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3538       return false;
3539     // We should be adding all-ones constant (i.e. subtracting one.)
3540     if (!isAllOnesConstant(Mask->getOperand(1)))
3541       return false;
3542     // Match `1 << nbits`. Might be truncated. Must only have one use!
3543     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3544     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3545       return false;
3546     if (!isOneConstant(M0->getOperand(0)))
3547       return false;
3548     NBits = M0->getOperand(1);
3549     NegateNBits = false;
3550     return true;
3551   };
3552 
3553   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3554     V = peekThroughOneUseTruncation(V);
3555     return CurDAG->MaskedValueIsAllOnes(
3556         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3557                                 NVT.getSizeInBits()));
3558   };
3559 
3560   // b) x & ~(-1 << nbits)
3561   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3562                         &NBits, &NegateNBits](SDValue Mask) -> bool {
3563     // Match `~()`. Must only have one use!
3564     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3565       return false;
3566     // The -1 only has to be all-ones for the final Node's NVT.
3567     if (!isAllOnes(Mask->getOperand(1)))
3568       return false;
3569     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3570     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3571     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3572       return false;
3573     // The -1 only has to be all-ones for the final Node's NVT.
3574     if (!isAllOnes(M0->getOperand(0)))
3575       return false;
3576     NBits = M0->getOperand(1);
3577     NegateNBits = false;
3578     return true;
3579   };
3580 
3581   // Try to match potentially-truncated shift amount as `(bitwidth - y)`,
3582   // or leave the shift amount as-is, but then we'll have to negate it.
3583   auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt,
3584                                                      unsigned Bitwidth) {
3585     NBits = ShiftAmt;
3586     NegateNBits = true;
3587     // Skip over a truncate of the shift amount, if any.
3588     if (NBits.getOpcode() == ISD::TRUNCATE)
3589       NBits = NBits.getOperand(0);
3590     // Try to match the shift amount as (bitwidth - y). It should go away, too.
3591     // If it doesn't match, that's fine, we'll just negate it ourselves.
3592     if (NBits.getOpcode() != ISD::SUB)
3593       return;
3594     auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0));
3595     if (!V0 || V0->getZExtValue() != Bitwidth)
3596       return;
3597     NBits = NBits.getOperand(1);
3598     NegateNBits = false;
3599   };
3600 
3601   // c) x &  (-1 >> z)  but then we'll have to subtract z from bitwidth
3602   //   or
3603   // c) x &  (-1 >> (32 - y))
3604   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits,
3605                         canonicalizeShiftAmt](SDValue Mask) -> bool {
3606     // The mask itself may be truncated.
3607     Mask = peekThroughOneUseTruncation(Mask);
3608     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3609     // Match `l>>`. Must only have one use!
3610     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3611       return false;
3612     // We should be shifting truly all-ones constant.
3613     if (!isAllOnesConstant(Mask.getOperand(0)))
3614       return false;
3615     SDValue M1 = Mask.getOperand(1);
3616     // The shift amount should not be used externally.
3617     if (!checkOneUse(M1))
3618       return false;
3619     canonicalizeShiftAmt(M1, Bitwidth);
3620     // Pattern c. is non-canonical, and is expanded into pattern d. iff there
3621     // is no extra use of the mask. Clearly, there was one since we are here.
3622     // But at the same time, if we need to negate the shift amount,
3623     // then we don't want the mask to stick around, else it's unprofitable.
3624     return !NegateNBits;
3625   };
3626 
3627   SDValue X;
3628 
3629   // d) x << z >> z  but then we'll have to subtract z from bitwidth
3630   //   or
3631   // d) x << (32 - y) >> (32 - y)
3632   auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt,
3633                         AllowExtraUsesByDefault, &NegateNBits,
3634                         &X](SDNode *Node) -> bool {
3635     if (Node->getOpcode() != ISD::SRL)
3636       return false;
3637     SDValue N0 = Node->getOperand(0);
3638     if (N0->getOpcode() != ISD::SHL)
3639       return false;
3640     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3641     SDValue N1 = Node->getOperand(1);
3642     SDValue N01 = N0->getOperand(1);
3643     // Both of the shifts must be by the exact same value.
3644     if (N1 != N01)
3645       return false;
3646     canonicalizeShiftAmt(N1, Bitwidth);
3647     // There should not be any external uses of the inner shift / shift amount.
3648     // Note that while we are generally okay with external uses given BMI2,
3649     // iff we need to negate the shift amount, we are not okay with extra uses.
3650     const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits;
3651     if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses))
3652       return false;
3653     X = N0->getOperand(0);
3654     return true;
3655   };
3656 
3657   auto matchLowBitMask = [matchPatternA, matchPatternB,
3658                           matchPatternC](SDValue Mask) -> bool {
3659     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3660   };
3661 
3662   if (Node->getOpcode() == ISD::AND) {
3663     X = Node->getOperand(0);
3664     SDValue Mask = Node->getOperand(1);
3665 
3666     if (matchLowBitMask(Mask)) {
3667       // Great.
3668     } else {
3669       std::swap(X, Mask);
3670       if (!matchLowBitMask(Mask))
3671         return false;
3672     }
3673   } else if (!matchPatternD(Node))
3674     return false;
3675 
3676   // If we need to negate the shift amount, require BMI2 BZHI support.
3677   // It's just too unprofitable for BMI1 BEXTR.
3678   if (NegateNBits && !Subtarget->hasBMI2())
3679     return false;
3680 
3681   SDLoc DL(Node);
3682 
3683   // Truncate the shift amount.
3684   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3685   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3686 
3687   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3688   // All the other bits are undefined, we do not care about them.
3689   SDValue ImplDef = SDValue(
3690       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3691   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3692 
3693   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3694   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3695   NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
3696                                          MVT::i32, ImplDef, NBits, SRIdxVal),
3697                   0);
3698   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3699 
3700   // We might have matched the amount of high bits to be cleared,
3701   // but we want the amount of low bits to be kept, so negate it then.
3702   if (NegateNBits) {
3703     SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32);
3704     insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC);
3705 
3706     NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits);
3707     insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3708   }
3709 
3710   if (Subtarget->hasBMI2()) {
3711     // Great, just emit the the BZHI..
3712     if (NVT != MVT::i32) {
3713       // But have to place the bit count into the wide-enough register first.
3714       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3715       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3716     }
3717 
3718     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3719     ReplaceNode(Node, Extract.getNode());
3720     SelectCode(Extract.getNode());
3721     return true;
3722   }
3723 
3724   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3725   // *logically* shifted (potentially with one-use trunc inbetween),
3726   // and the truncation was the only use of the shift,
3727   // and if so look past one-use truncation.
3728   {
3729     SDValue RealX = peekThroughOneUseTruncation(X);
3730     // FIXME: only if the shift is one-use?
3731     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3732       X = RealX;
3733   }
3734 
3735   MVT XVT = X.getSimpleValueType();
3736 
3737   // Else, emitting BEXTR requires one more step.
3738   // The 'control' of BEXTR has the pattern of:
3739   // [15...8 bit][ 7...0 bit] location
3740   // [ bit count][     shift] name
3741   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3742 
3743   // Shift NBits left by 8 bits, thus producing 'control'.
3744   // This makes the low 8 bits to be zero.
3745   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3746   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3747   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3748   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3749 
3750   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3751   // FIXME: only if the shift is one-use?
3752   if (X.getOpcode() == ISD::SRL) {
3753     SDValue ShiftAmt = X.getOperand(1);
3754     X = X.getOperand(0);
3755 
3756     assert(ShiftAmt.getValueType() == MVT::i8 &&
3757            "Expected shift amount to be i8");
3758 
3759     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3760     // We could zext to i16 in some form, but we intentionally don't do that.
3761     SDValue OrigShiftAmt = ShiftAmt;
3762     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3763     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3764 
3765     // And now 'or' these low 8 bits of shift amount into the 'control'.
3766     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
3767     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3768   }
3769 
3770   // But have to place the 'control' into the wide-enough register first.
3771   if (XVT != MVT::i32) {
3772     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
3773     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3774   }
3775 
3776   // And finally, form the BEXTR itself.
3777   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
3778 
3779   // The 'X' was originally truncated. Do that now.
3780   if (XVT != NVT) {
3781     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
3782     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
3783   }
3784 
3785   ReplaceNode(Node, Extract.getNode());
3786   SelectCode(Extract.getNode());
3787 
3788   return true;
3789 }
3790 
3791 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
3792 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
3793   MVT NVT = Node->getSimpleValueType(0);
3794   SDLoc dl(Node);
3795 
3796   SDValue N0 = Node->getOperand(0);
3797   SDValue N1 = Node->getOperand(1);
3798 
3799   // If we have TBM we can use an immediate for the control. If we have BMI
3800   // we should only do this if the BEXTR instruction is implemented well.
3801   // Otherwise moving the control into a register makes this more costly.
3802   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
3803   // hoisting the move immediate would make it worthwhile with a less optimal
3804   // BEXTR?
3805   bool PreferBEXTR =
3806       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
3807   if (!PreferBEXTR && !Subtarget->hasBMI2())
3808     return nullptr;
3809 
3810   // Must have a shift right.
3811   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
3812     return nullptr;
3813 
3814   // Shift can't have additional users.
3815   if (!N0->hasOneUse())
3816     return nullptr;
3817 
3818   // Only supported for 32 and 64 bits.
3819   if (NVT != MVT::i32 && NVT != MVT::i64)
3820     return nullptr;
3821 
3822   // Shift amount and RHS of and must be constant.
3823   auto *MaskCst = dyn_cast<ConstantSDNode>(N1);
3824   auto *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3825   if (!MaskCst || !ShiftCst)
3826     return nullptr;
3827 
3828   // And RHS must be a mask.
3829   uint64_t Mask = MaskCst->getZExtValue();
3830   if (!isMask_64(Mask))
3831     return nullptr;
3832 
3833   uint64_t Shift = ShiftCst->getZExtValue();
3834   uint64_t MaskSize = llvm::popcount(Mask);
3835 
3836   // Don't interfere with something that can be handled by extracting AH.
3837   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
3838   if (Shift == 8 && MaskSize == 8)
3839     return nullptr;
3840 
3841   // Make sure we are only using bits that were in the original value, not
3842   // shifted in.
3843   if (Shift + MaskSize > NVT.getSizeInBits())
3844     return nullptr;
3845 
3846   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
3847   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
3848   // does not fit into 32 bits. Load folding is not a sufficient reason.
3849   if (!PreferBEXTR && MaskSize <= 32)
3850     return nullptr;
3851 
3852   SDValue Control;
3853   unsigned ROpc, MOpc;
3854 
3855   if (!PreferBEXTR) {
3856     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
3857     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
3858     // Let's perform the mask first, and apply shift later. Note that we need to
3859     // widen the mask to account for the fact that we'll apply shift afterwards!
3860     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
3861     ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
3862     MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
3863     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3864     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3865   } else {
3866     // The 'control' of BEXTR has the pattern of:
3867     // [15...8 bit][ 7...0 bit] location
3868     // [ bit count][     shift] name
3869     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3870     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
3871     if (Subtarget->hasTBM()) {
3872       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
3873       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
3874     } else {
3875       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
3876       // BMI requires the immediate to placed in a register.
3877       ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
3878       MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
3879       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3880       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3881     }
3882   }
3883 
3884   MachineSDNode *NewNode;
3885   SDValue Input = N0->getOperand(0);
3886   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3887   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3888     SDValue Ops[] = {
3889         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
3890     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
3891     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3892     // Update the chain.
3893     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
3894     // Record the mem-refs
3895     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
3896   } else {
3897     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
3898   }
3899 
3900   if (!PreferBEXTR) {
3901     // We still need to apply the shift.
3902     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
3903     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
3904     NewNode =
3905         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
3906   }
3907 
3908   return NewNode;
3909 }
3910 
3911 // Emit a PCMISTR(I/M) instruction.
3912 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
3913                                              bool MayFoldLoad, const SDLoc &dl,
3914                                              MVT VT, SDNode *Node) {
3915   SDValue N0 = Node->getOperand(0);
3916   SDValue N1 = Node->getOperand(1);
3917   SDValue Imm = Node->getOperand(2);
3918   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3919   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3920 
3921   // Try to fold a load. No need to check alignment.
3922   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3923   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3924     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3925                       N1.getOperand(0) };
3926     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
3927     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3928     // Update the chain.
3929     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
3930     // Record the mem-refs
3931     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3932     return CNode;
3933   }
3934 
3935   SDValue Ops[] = { N0, N1, Imm };
3936   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
3937   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3938   return CNode;
3939 }
3940 
3941 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
3942 // to emit a second instruction after this one. This is needed since we have two
3943 // copyToReg nodes glued before this and we need to continue that glue through.
3944 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
3945                                              bool MayFoldLoad, const SDLoc &dl,
3946                                              MVT VT, SDNode *Node,
3947                                              SDValue &InFlag) {
3948   SDValue N0 = Node->getOperand(0);
3949   SDValue N2 = Node->getOperand(2);
3950   SDValue Imm = Node->getOperand(4);
3951   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3952   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3953 
3954   // Try to fold a load. No need to check alignment.
3955   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3956   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3957     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3958                       N2.getOperand(0), InFlag };
3959     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
3960     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3961     InFlag = SDValue(CNode, 3);
3962     // Update the chain.
3963     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
3964     // Record the mem-refs
3965     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
3966     return CNode;
3967   }
3968 
3969   SDValue Ops[] = { N0, N2, Imm, InFlag };
3970   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
3971   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3972   InFlag = SDValue(CNode, 2);
3973   return CNode;
3974 }
3975 
3976 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3977   EVT VT = N->getValueType(0);
3978 
3979   // Only handle scalar shifts.
3980   if (VT.isVector())
3981     return false;
3982 
3983   // Narrower shifts only mask to 5 bits in hardware.
3984   unsigned Size = VT == MVT::i64 ? 64 : 32;
3985 
3986   SDValue OrigShiftAmt = N->getOperand(1);
3987   SDValue ShiftAmt = OrigShiftAmt;
3988   SDLoc DL(N);
3989 
3990   // Skip over a truncate of the shift amount.
3991   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
3992     ShiftAmt = ShiftAmt->getOperand(0);
3993 
3994   // This function is called after X86DAGToDAGISel::matchBitExtract(),
3995   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
3996 
3997   SDValue NewShiftAmt;
3998   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB ||
3999       ShiftAmt->getOpcode() == ISD::XOR) {
4000     SDValue Add0 = ShiftAmt->getOperand(0);
4001     SDValue Add1 = ShiftAmt->getOperand(1);
4002     auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
4003     auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
4004     // If we are shifting by X+/-/^N where N == 0 mod Size, then just shift by X
4005     // to avoid the ADD/SUB/XOR.
4006     if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
4007       NewShiftAmt = Add0;
4008 
4009     } else if (ShiftAmt->getOpcode() != ISD::ADD &&
4010                ((Add0C && Add0C->getAPIntValue().urem(Size) == Size - 1) ||
4011                 (Add1C && Add1C->getAPIntValue().urem(Size) == Size - 1))) {
4012       // If we are doing a NOT on just the lower bits with (Size*N-1) -/^ X
4013       // we can replace it with a NOT. In the XOR case it may save some code
4014       // size, in the SUB case it also may save a move.
4015       assert(Add0C == nullptr || Add1C == nullptr);
4016 
4017       // We can only do N-X, not X-N
4018       if (ShiftAmt->getOpcode() == ISD::SUB && Add0C == nullptr)
4019         return false;
4020 
4021       EVT OpVT = ShiftAmt.getValueType();
4022 
4023       SDValue AllOnes = CurDAG->getAllOnesConstant(DL, OpVT);
4024       NewShiftAmt = CurDAG->getNode(ISD::XOR, DL, OpVT,
4025                                     Add0C == nullptr ? Add0 : Add1, AllOnes);
4026       insertDAGNode(*CurDAG, OrigShiftAmt, AllOnes);
4027       insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4028       // If we are shifting by N-X where N == 0 mod Size, then just shift by
4029       // -X to generate a NEG instead of a SUB of a constant.
4030     } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
4031                Add0C->getZExtValue() != 0) {
4032       EVT SubVT = ShiftAmt.getValueType();
4033       SDValue X;
4034       if (Add0C->getZExtValue() % Size == 0)
4035         X = Add1;
4036       else if (ShiftAmt.hasOneUse() && Size == 64 &&
4037                Add0C->getZExtValue() % 32 == 0) {
4038         // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
4039         // This is mainly beneficial if we already compute (x+n*32).
4040         if (Add1.getOpcode() == ISD::TRUNCATE) {
4041           Add1 = Add1.getOperand(0);
4042           SubVT = Add1.getValueType();
4043         }
4044         if (Add0.getValueType() != SubVT) {
4045           Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
4046           insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
4047         }
4048 
4049         X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
4050         insertDAGNode(*CurDAG, OrigShiftAmt, X);
4051       } else
4052         return false;
4053       // Insert a negate op.
4054       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
4055       // that uses it that's not a shift.
4056       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
4057       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
4058       NewShiftAmt = Neg;
4059 
4060       // Insert these operands into a valid topological order so they can
4061       // get selected independently.
4062       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
4063       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
4064     } else
4065       return false;
4066   } else
4067     return false;
4068 
4069   if (NewShiftAmt.getValueType() != MVT::i8) {
4070     // Need to truncate the shift amount.
4071     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
4072     // Add to a correct topological ordering.
4073     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4074   }
4075 
4076   // Insert a new mask to keep the shift amount legal. This should be removed
4077   // by isel patterns.
4078   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
4079                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
4080   // Place in a correct topological ordering.
4081   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4082 
4083   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
4084                                                    NewShiftAmt);
4085   if (UpdatedNode != N) {
4086     // If we found an existing node, we should replace ourselves with that node
4087     // and wait for it to be selected after its other users.
4088     ReplaceNode(N, UpdatedNode);
4089     return true;
4090   }
4091 
4092   // If the original shift amount is now dead, delete it so that we don't run
4093   // it through isel.
4094   if (OrigShiftAmt.getNode()->use_empty())
4095     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
4096 
4097   // Now that we've optimized the shift amount, defer to normal isel to get
4098   // load folding and legacy vs BMI2 selection without repeating it here.
4099   SelectCode(N);
4100   return true;
4101 }
4102 
4103 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
4104   MVT NVT = N->getSimpleValueType(0);
4105   unsigned Opcode = N->getOpcode();
4106   SDLoc dl(N);
4107 
4108   // For operations of the form (x << C1) op C2, check if we can use a smaller
4109   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
4110   SDValue Shift = N->getOperand(0);
4111   SDValue N1 = N->getOperand(1);
4112 
4113   auto *Cst = dyn_cast<ConstantSDNode>(N1);
4114   if (!Cst)
4115     return false;
4116 
4117   int64_t Val = Cst->getSExtValue();
4118 
4119   // If we have an any_extend feeding the AND, look through it to see if there
4120   // is a shift behind it. But only if the AND doesn't use the extended bits.
4121   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
4122   bool FoundAnyExtend = false;
4123   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
4124       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
4125       isUInt<32>(Val)) {
4126     FoundAnyExtend = true;
4127     Shift = Shift.getOperand(0);
4128   }
4129 
4130   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
4131     return false;
4132 
4133   // i8 is unshrinkable, i16 should be promoted to i32.
4134   if (NVT != MVT::i32 && NVT != MVT::i64)
4135     return false;
4136 
4137   auto *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
4138   if (!ShlCst)
4139     return false;
4140 
4141   uint64_t ShAmt = ShlCst->getZExtValue();
4142 
4143   // Make sure that we don't change the operation by removing bits.
4144   // This only matters for OR and XOR, AND is unaffected.
4145   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
4146   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
4147     return false;
4148 
4149   // Check the minimum bitwidth for the new constant.
4150   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
4151   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
4152     if (Opcode == ISD::AND) {
4153       // AND32ri is the same as AND64ri32 with zext imm.
4154       // Try this before sign extended immediates below.
4155       ShiftedVal = (uint64_t)Val >> ShAmt;
4156       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4157         return true;
4158       // Also swap order when the AND can become MOVZX.
4159       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
4160         return true;
4161     }
4162     ShiftedVal = Val >> ShAmt;
4163     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
4164         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
4165       return true;
4166     if (Opcode != ISD::AND) {
4167       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
4168       ShiftedVal = (uint64_t)Val >> ShAmt;
4169       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4170         return true;
4171     }
4172     return false;
4173   };
4174 
4175   int64_t ShiftedVal;
4176   if (!CanShrinkImmediate(ShiftedVal))
4177     return false;
4178 
4179   // Ok, we can reorder to get a smaller immediate.
4180 
4181   // But, its possible the original immediate allowed an AND to become MOVZX.
4182   // Doing this late due to avoid the MakedValueIsZero call as late as
4183   // possible.
4184   if (Opcode == ISD::AND) {
4185     // Find the smallest zext this could possibly be.
4186     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4187     ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
4188 
4189     // Figure out which bits need to be zero to achieve that mask.
4190     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
4191                                             ZExtWidth);
4192     NeededMask &= ~Cst->getAPIntValue();
4193 
4194     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4195       return false;
4196   }
4197 
4198   SDValue X = Shift.getOperand(0);
4199   if (FoundAnyExtend) {
4200     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4201     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4202     X = NewX;
4203   }
4204 
4205   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4206   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4207   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4208   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4209   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4210                                    Shift.getOperand(1));
4211   ReplaceNode(N, NewSHL.getNode());
4212   SelectCode(NewSHL.getNode());
4213   return true;
4214 }
4215 
4216 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4217                                      SDNode *ParentB, SDNode *ParentC,
4218                                      SDValue A, SDValue B, SDValue C,
4219                                      uint8_t Imm) {
4220   assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) &&
4221          C.isOperandOf(ParentC) && "Incorrect parent node");
4222 
4223   auto tryFoldLoadOrBCast =
4224       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4225              SDValue &Index, SDValue &Disp, SDValue &Segment) {
4226         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4227           return true;
4228 
4229         // Not a load, check for broadcast which may be behind a bitcast.
4230         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4231           P = L.getNode();
4232           L = L.getOperand(0);
4233         }
4234 
4235         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4236           return false;
4237 
4238         // Only 32 and 64 bit broadcasts are supported.
4239         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4240         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4241         if (Size != 32 && Size != 64)
4242           return false;
4243 
4244         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4245       };
4246 
4247   bool FoldedLoad = false;
4248   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4249   if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4250     FoldedLoad = true;
4251   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4252                                 Tmp4)) {
4253     FoldedLoad = true;
4254     std::swap(A, C);
4255     // Swap bits 1/4 and 3/6.
4256     uint8_t OldImm = Imm;
4257     Imm = OldImm & 0xa5;
4258     if (OldImm & 0x02) Imm |= 0x10;
4259     if (OldImm & 0x10) Imm |= 0x02;
4260     if (OldImm & 0x08) Imm |= 0x40;
4261     if (OldImm & 0x40) Imm |= 0x08;
4262   } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3,
4263                                 Tmp4)) {
4264     FoldedLoad = true;
4265     std::swap(B, C);
4266     // Swap bits 1/2 and 5/6.
4267     uint8_t OldImm = Imm;
4268     Imm = OldImm & 0x99;
4269     if (OldImm & 0x02) Imm |= 0x04;
4270     if (OldImm & 0x04) Imm |= 0x02;
4271     if (OldImm & 0x20) Imm |= 0x40;
4272     if (OldImm & 0x40) Imm |= 0x20;
4273   }
4274 
4275   SDLoc DL(Root);
4276 
4277   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4278 
4279   MVT NVT = Root->getSimpleValueType(0);
4280 
4281   MachineSDNode *MNode;
4282   if (FoldedLoad) {
4283     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4284 
4285     unsigned Opc;
4286     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4287       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4288       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4289       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4290 
4291       bool UseD = EltSize == 32;
4292       if (NVT.is128BitVector())
4293         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4294       else if (NVT.is256BitVector())
4295         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4296       else if (NVT.is512BitVector())
4297         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4298       else
4299         llvm_unreachable("Unexpected vector size!");
4300     } else {
4301       bool UseD = NVT.getVectorElementType() == MVT::i32;
4302       if (NVT.is128BitVector())
4303         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4304       else if (NVT.is256BitVector())
4305         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4306       else if (NVT.is512BitVector())
4307         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4308       else
4309         llvm_unreachable("Unexpected vector size!");
4310     }
4311 
4312     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4313     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4314 
4315     // Update the chain.
4316     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4317     // Record the mem-refs
4318     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4319   } else {
4320     bool UseD = NVT.getVectorElementType() == MVT::i32;
4321     unsigned Opc;
4322     if (NVT.is128BitVector())
4323       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4324     else if (NVT.is256BitVector())
4325       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4326     else if (NVT.is512BitVector())
4327       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4328     else
4329       llvm_unreachable("Unexpected vector size!");
4330 
4331     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4332   }
4333 
4334   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4335   CurDAG->RemoveDeadNode(Root);
4336   return true;
4337 }
4338 
4339 // Try to match two logic ops to a VPTERNLOG.
4340 // FIXME: Handle more complex patterns that use an operand more than once?
4341 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4342   MVT NVT = N->getSimpleValueType(0);
4343 
4344   // Make sure we support VPTERNLOG.
4345   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4346       NVT.getVectorElementType() == MVT::i1)
4347     return false;
4348 
4349   // We need VLX for 128/256-bit.
4350   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4351     return false;
4352 
4353   SDValue N0 = N->getOperand(0);
4354   SDValue N1 = N->getOperand(1);
4355 
4356   auto getFoldableLogicOp = [](SDValue Op) {
4357     // Peek through single use bitcast.
4358     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4359       Op = Op.getOperand(0);
4360 
4361     if (!Op.hasOneUse())
4362       return SDValue();
4363 
4364     unsigned Opc = Op.getOpcode();
4365     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4366         Opc == X86ISD::ANDNP)
4367       return Op;
4368 
4369     return SDValue();
4370   };
4371 
4372   SDValue A, FoldableOp;
4373   if ((FoldableOp = getFoldableLogicOp(N1))) {
4374     A = N0;
4375   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4376     A = N1;
4377   } else
4378     return false;
4379 
4380   SDValue B = FoldableOp.getOperand(0);
4381   SDValue C = FoldableOp.getOperand(1);
4382   SDNode *ParentA = N;
4383   SDNode *ParentB = FoldableOp.getNode();
4384   SDNode *ParentC = FoldableOp.getNode();
4385 
4386   // We can build the appropriate control immediate by performing the logic
4387   // operation we're matching using these constants for A, B, and C.
4388   uint8_t TernlogMagicA = 0xf0;
4389   uint8_t TernlogMagicB = 0xcc;
4390   uint8_t TernlogMagicC = 0xaa;
4391 
4392   // Some of the inputs may be inverted, peek through them and invert the
4393   // magic values accordingly.
4394   // TODO: There may be a bitcast before the xor that we should peek through.
4395   auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) {
4396     if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() &&
4397         ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) {
4398       Magic = ~Magic;
4399       Parent = Op.getNode();
4400       Op = Op.getOperand(0);
4401     }
4402   };
4403 
4404   PeekThroughNot(A, ParentA, TernlogMagicA);
4405   PeekThroughNot(B, ParentB, TernlogMagicB);
4406   PeekThroughNot(C, ParentC, TernlogMagicC);
4407 
4408   uint8_t Imm;
4409   switch (FoldableOp.getOpcode()) {
4410   default: llvm_unreachable("Unexpected opcode!");
4411   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
4412   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
4413   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
4414   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4415   }
4416 
4417   switch (N->getOpcode()) {
4418   default: llvm_unreachable("Unexpected opcode!");
4419   case X86ISD::ANDNP:
4420     if (A == N0)
4421       Imm &= ~TernlogMagicA;
4422     else
4423       Imm = ~(Imm) & TernlogMagicA;
4424     break;
4425   case ISD::AND: Imm &= TernlogMagicA; break;
4426   case ISD::OR:  Imm |= TernlogMagicA; break;
4427   case ISD::XOR: Imm ^= TernlogMagicA; break;
4428   }
4429 
4430   return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm);
4431 }
4432 
4433 /// If the high bits of an 'and' operand are known zero, try setting the
4434 /// high bits of an 'and' constant operand to produce a smaller encoding by
4435 /// creating a small, sign-extended negative immediate rather than a large
4436 /// positive one. This reverses a transform in SimplifyDemandedBits that
4437 /// shrinks mask constants by clearing bits. There is also a possibility that
4438 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4439 /// case, just replace the 'and'. Return 'true' if the node is replaced.
4440 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4441   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4442   // have immediate operands.
4443   MVT VT = And->getSimpleValueType(0);
4444   if (VT != MVT::i32 && VT != MVT::i64)
4445     return false;
4446 
4447   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4448   if (!And1C)
4449     return false;
4450 
4451   // Bail out if the mask constant is already negative. It's can't shrink more.
4452   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4453   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4454   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4455   // are negative too.
4456   APInt MaskVal = And1C->getAPIntValue();
4457   unsigned MaskLZ = MaskVal.countLeadingZeros();
4458   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4459     return false;
4460 
4461   // Don't extend into the upper 32 bits of a 64 bit mask.
4462   if (VT == MVT::i64 && MaskLZ >= 32) {
4463     MaskLZ -= 32;
4464     MaskVal = MaskVal.trunc(32);
4465   }
4466 
4467   SDValue And0 = And->getOperand(0);
4468   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4469   APInt NegMaskVal = MaskVal | HighZeros;
4470 
4471   // If a negative constant would not allow a smaller encoding, there's no need
4472   // to continue. Only change the constant when we know it's a win.
4473   unsigned MinWidth = NegMaskVal.getMinSignedBits();
4474   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
4475     return false;
4476 
4477   // Extend masks if we truncated above.
4478   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4479     NegMaskVal = NegMaskVal.zext(64);
4480     HighZeros = HighZeros.zext(64);
4481   }
4482 
4483   // The variable operand must be all zeros in the top bits to allow using the
4484   // new, negative constant as the mask.
4485   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4486     return false;
4487 
4488   // Check if the mask is -1. In that case, this is an unnecessary instruction
4489   // that escaped earlier analysis.
4490   if (NegMaskVal.isAllOnes()) {
4491     ReplaceNode(And, And0.getNode());
4492     return true;
4493   }
4494 
4495   // A negative mask allows a smaller encoding. Create a new 'and' node.
4496   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4497   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4498   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4499   ReplaceNode(And, NewAnd.getNode());
4500   SelectCode(NewAnd.getNode());
4501   return true;
4502 }
4503 
4504 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4505                               bool FoldedBCast, bool Masked) {
4506 #define VPTESTM_CASE(VT, SUFFIX) \
4507 case MVT::VT: \
4508   if (Masked) \
4509     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4510   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4511 
4512 
4513 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4514 default: llvm_unreachable("Unexpected VT!"); \
4515 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4516 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4517 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4518 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4519 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4520 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4521 
4522 #define VPTESTM_FULL_CASES(SUFFIX) \
4523 VPTESTM_BROADCAST_CASES(SUFFIX) \
4524 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4525 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4526 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4527 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4528 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4529 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4530 
4531   if (FoldedBCast) {
4532     switch (TestVT.SimpleTy) {
4533     VPTESTM_BROADCAST_CASES(rmb)
4534     }
4535   }
4536 
4537   if (FoldedLoad) {
4538     switch (TestVT.SimpleTy) {
4539     VPTESTM_FULL_CASES(rm)
4540     }
4541   }
4542 
4543   switch (TestVT.SimpleTy) {
4544   VPTESTM_FULL_CASES(rr)
4545   }
4546 
4547 #undef VPTESTM_FULL_CASES
4548 #undef VPTESTM_BROADCAST_CASES
4549 #undef VPTESTM_CASE
4550 }
4551 
4552 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4553 // to form a masked operation.
4554 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4555                                  SDValue InMask) {
4556   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4557   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4558          "Unexpected VT!");
4559 
4560   // Look for equal and not equal compares.
4561   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4562   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4563     return false;
4564 
4565   SDValue SetccOp0 = Setcc.getOperand(0);
4566   SDValue SetccOp1 = Setcc.getOperand(1);
4567 
4568   // Canonicalize the all zero vector to the RHS.
4569   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4570     std::swap(SetccOp0, SetccOp1);
4571 
4572   // See if we're comparing against zero.
4573   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4574     return false;
4575 
4576   SDValue N0 = SetccOp0;
4577 
4578   MVT CmpVT = N0.getSimpleValueType();
4579   MVT CmpSVT = CmpVT.getVectorElementType();
4580 
4581   // Start with both operands the same. We'll try to refine this.
4582   SDValue Src0 = N0;
4583   SDValue Src1 = N0;
4584 
4585   {
4586     // Look through single use bitcasts.
4587     SDValue N0Temp = N0;
4588     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4589       N0Temp = N0.getOperand(0);
4590 
4591      // Look for single use AND.
4592     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4593       Src0 = N0Temp.getOperand(0);
4594       Src1 = N0Temp.getOperand(1);
4595     }
4596   }
4597 
4598   // Without VLX we need to widen the operation.
4599   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4600 
4601   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4602                                 SDValue &Base, SDValue &Scale, SDValue &Index,
4603                                 SDValue &Disp, SDValue &Segment) {
4604     // If we need to widen, we can't fold the load.
4605     if (!Widen)
4606       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4607         return true;
4608 
4609     // If we didn't fold a load, try to match broadcast. No widening limitation
4610     // for this. But only 32 and 64 bit types are supported.
4611     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4612       return false;
4613 
4614     // Look through single use bitcasts.
4615     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4616       P = L.getNode();
4617       L = L.getOperand(0);
4618     }
4619 
4620     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4621       return false;
4622 
4623     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4624     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4625       return false;
4626 
4627     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4628   };
4629 
4630   // We can only fold loads if the sources are unique.
4631   bool CanFoldLoads = Src0 != Src1;
4632 
4633   bool FoldedLoad = false;
4634   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4635   if (CanFoldLoads) {
4636     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4637                                     Tmp3, Tmp4);
4638     if (!FoldedLoad) {
4639       // And is commutative.
4640       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4641                                       Tmp2, Tmp3, Tmp4);
4642       if (FoldedLoad)
4643         std::swap(Src0, Src1);
4644     }
4645   }
4646 
4647   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4648 
4649   bool IsMasked = InMask.getNode() != nullptr;
4650 
4651   SDLoc dl(Root);
4652 
4653   MVT ResVT = Setcc.getSimpleValueType();
4654   MVT MaskVT = ResVT;
4655   if (Widen) {
4656     // Widen the inputs using insert_subreg or copy_to_regclass.
4657     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4658     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4659     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4660     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4661     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4662     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4663                                                      CmpVT), 0);
4664     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4665 
4666     if (!FoldedBCast)
4667       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4668 
4669     if (IsMasked) {
4670       // Widen the mask.
4671       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4672       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4673       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4674                                               dl, MaskVT, InMask, RC), 0);
4675     }
4676   }
4677 
4678   bool IsTestN = CC == ISD::SETEQ;
4679   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4680                                IsMasked);
4681 
4682   MachineSDNode *CNode;
4683   if (FoldedLoad) {
4684     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4685 
4686     if (IsMasked) {
4687       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4688                         Src1.getOperand(0) };
4689       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4690     } else {
4691       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4692                         Src1.getOperand(0) };
4693       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4694     }
4695 
4696     // Update the chain.
4697     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4698     // Record the mem-refs
4699     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4700   } else {
4701     if (IsMasked)
4702       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4703     else
4704       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4705   }
4706 
4707   // If we widened, we need to shrink the mask VT.
4708   if (Widen) {
4709     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4710     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4711     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4712                                    dl, ResVT, SDValue(CNode, 0), RC);
4713   }
4714 
4715   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4716   CurDAG->RemoveDeadNode(Root);
4717   return true;
4718 }
4719 
4720 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4721 // into vpternlog.
4722 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4723   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4724 
4725   MVT NVT = N->getSimpleValueType(0);
4726 
4727   // Make sure we support VPTERNLOG.
4728   if (!NVT.isVector() || !Subtarget->hasAVX512())
4729     return false;
4730 
4731   // We need VLX for 128/256-bit.
4732   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4733     return false;
4734 
4735   SDValue N0 = N->getOperand(0);
4736   SDValue N1 = N->getOperand(1);
4737 
4738   // Canonicalize AND to LHS.
4739   if (N1.getOpcode() == ISD::AND)
4740     std::swap(N0, N1);
4741 
4742   if (N0.getOpcode() != ISD::AND ||
4743       N1.getOpcode() != X86ISD::ANDNP ||
4744       !N0.hasOneUse() || !N1.hasOneUse())
4745     return false;
4746 
4747   // ANDN is not commutable, use it to pick down A and C.
4748   SDValue A = N1.getOperand(0);
4749   SDValue C = N1.getOperand(1);
4750 
4751   // AND is commutable, if one operand matches A, the other operand is B.
4752   // Otherwise this isn't a match.
4753   SDValue B;
4754   if (N0.getOperand(0) == A)
4755     B = N0.getOperand(1);
4756   else if (N0.getOperand(1) == A)
4757     B = N0.getOperand(0);
4758   else
4759     return false;
4760 
4761   SDLoc dl(N);
4762   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
4763   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
4764   ReplaceNode(N, Ternlog.getNode());
4765 
4766   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
4767                         Ternlog.getNode(), A, B, C, 0xCA);
4768 }
4769 
4770 void X86DAGToDAGISel::Select(SDNode *Node) {
4771   MVT NVT = Node->getSimpleValueType(0);
4772   unsigned Opcode = Node->getOpcode();
4773   SDLoc dl(Node);
4774 
4775   if (Node->isMachineOpcode()) {
4776     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
4777     Node->setNodeId(-1);
4778     return;   // Already selected.
4779   }
4780 
4781   switch (Opcode) {
4782   default: break;
4783   case ISD::INTRINSIC_W_CHAIN: {
4784     unsigned IntNo = Node->getConstantOperandVal(1);
4785     switch (IntNo) {
4786     default: break;
4787     case Intrinsic::x86_encodekey128:
4788     case Intrinsic::x86_encodekey256: {
4789       if (!Subtarget->hasKL())
4790         break;
4791 
4792       unsigned Opcode;
4793       switch (IntNo) {
4794       default: llvm_unreachable("Impossible intrinsic");
4795       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
4796       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
4797       }
4798 
4799       SDValue Chain = Node->getOperand(0);
4800       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
4801                                    SDValue());
4802       if (Opcode == X86::ENCODEKEY256)
4803         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
4804                                      Chain.getValue(1));
4805 
4806       MachineSDNode *Res = CurDAG->getMachineNode(
4807           Opcode, dl, Node->getVTList(),
4808           {Node->getOperand(2), Chain, Chain.getValue(1)});
4809       ReplaceNode(Node, Res);
4810       return;
4811     }
4812     case Intrinsic::x86_tileloadd64_internal:
4813     case Intrinsic::x86_tileloaddt164_internal: {
4814       if (!Subtarget->hasAMXTILE())
4815         break;
4816       unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
4817                          ? X86::PTILELOADDV
4818                          : X86::PTILELOADDT1V;
4819       // _tile_loadd_internal(row, col, buf, STRIDE)
4820       SDValue Base = Node->getOperand(4);
4821       SDValue Scale = getI8Imm(1, dl);
4822       SDValue Index = Node->getOperand(5);
4823       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4824       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4825       SDValue Chain = Node->getOperand(0);
4826       MachineSDNode *CNode;
4827       SDValue Ops[] = {Node->getOperand(2),
4828                        Node->getOperand(3),
4829                        Base,
4830                        Scale,
4831                        Index,
4832                        Disp,
4833                        Segment,
4834                        Chain};
4835       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
4836       ReplaceNode(Node, CNode);
4837       return;
4838     }
4839     }
4840     break;
4841   }
4842   case ISD::INTRINSIC_VOID: {
4843     unsigned IntNo = Node->getConstantOperandVal(1);
4844     switch (IntNo) {
4845     default: break;
4846     case Intrinsic::x86_sse3_monitor:
4847     case Intrinsic::x86_monitorx:
4848     case Intrinsic::x86_clzero: {
4849       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
4850 
4851       unsigned Opc = 0;
4852       switch (IntNo) {
4853       default: llvm_unreachable("Unexpected intrinsic!");
4854       case Intrinsic::x86_sse3_monitor:
4855         if (!Subtarget->hasSSE3())
4856           break;
4857         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
4858         break;
4859       case Intrinsic::x86_monitorx:
4860         if (!Subtarget->hasMWAITX())
4861           break;
4862         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
4863         break;
4864       case Intrinsic::x86_clzero:
4865         if (!Subtarget->hasCLZERO())
4866           break;
4867         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
4868         break;
4869       }
4870 
4871       if (Opc) {
4872         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
4873         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
4874                                              Node->getOperand(2), SDValue());
4875         SDValue InFlag = Chain.getValue(1);
4876 
4877         if (IntNo == Intrinsic::x86_sse3_monitor ||
4878             IntNo == Intrinsic::x86_monitorx) {
4879           // Copy the other two operands to ECX and EDX.
4880           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
4881                                        InFlag);
4882           InFlag = Chain.getValue(1);
4883           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
4884                                        InFlag);
4885           InFlag = Chain.getValue(1);
4886         }
4887 
4888         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4889                                                       { Chain, InFlag});
4890         ReplaceNode(Node, CNode);
4891         return;
4892       }
4893 
4894       break;
4895     }
4896     case Intrinsic::x86_tilestored64_internal: {
4897       unsigned Opc = X86::PTILESTOREDV;
4898       // _tile_stored_internal(row, col, buf, STRIDE, c)
4899       SDValue Base = Node->getOperand(4);
4900       SDValue Scale = getI8Imm(1, dl);
4901       SDValue Index = Node->getOperand(5);
4902       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4903       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4904       SDValue Chain = Node->getOperand(0);
4905       MachineSDNode *CNode;
4906       SDValue Ops[] = {Node->getOperand(2),
4907                        Node->getOperand(3),
4908                        Base,
4909                        Scale,
4910                        Index,
4911                        Disp,
4912                        Segment,
4913                        Node->getOperand(6),
4914                        Chain};
4915       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4916       ReplaceNode(Node, CNode);
4917       return;
4918     }
4919     case Intrinsic::x86_tileloadd64:
4920     case Intrinsic::x86_tileloaddt164:
4921     case Intrinsic::x86_tilestored64: {
4922       if (!Subtarget->hasAMXTILE())
4923         break;
4924       unsigned Opc;
4925       switch (IntNo) {
4926       default: llvm_unreachable("Unexpected intrinsic!");
4927       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
4928       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
4929       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
4930       }
4931       // FIXME: Match displacement and scale.
4932       unsigned TIndex = Node->getConstantOperandVal(2);
4933       SDValue TReg = getI8Imm(TIndex, dl);
4934       SDValue Base = Node->getOperand(3);
4935       SDValue Scale = getI8Imm(1, dl);
4936       SDValue Index = Node->getOperand(4);
4937       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4938       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4939       SDValue Chain = Node->getOperand(0);
4940       MachineSDNode *CNode;
4941       if (Opc == X86::PTILESTORED) {
4942         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
4943         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4944       } else {
4945         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
4946         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4947       }
4948       ReplaceNode(Node, CNode);
4949       return;
4950     }
4951     }
4952     break;
4953   }
4954   case ISD::BRIND:
4955   case X86ISD::NT_BRIND: {
4956     if (Subtarget->isTargetNaCl())
4957       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
4958       // leave the instruction alone.
4959       break;
4960     if (Subtarget->isTarget64BitILP32()) {
4961       // Converts a 32-bit register to a 64-bit, zero-extended version of
4962       // it. This is needed because x86-64 can do many things, but jmp %r32
4963       // ain't one of them.
4964       SDValue Target = Node->getOperand(1);
4965       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
4966       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
4967       SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
4968                                       Node->getOperand(0), ZextTarget);
4969       ReplaceNode(Node, Brind.getNode());
4970       SelectCode(ZextTarget.getNode());
4971       SelectCode(Brind.getNode());
4972       return;
4973     }
4974     break;
4975   }
4976   case X86ISD::GlobalBaseReg:
4977     ReplaceNode(Node, getGlobalBaseReg());
4978     return;
4979 
4980   case ISD::BITCAST:
4981     // Just drop all 128/256/512-bit bitcasts.
4982     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
4983         NVT == MVT::f128) {
4984       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
4985       CurDAG->RemoveDeadNode(Node);
4986       return;
4987     }
4988     break;
4989 
4990   case ISD::SRL:
4991     if (matchBitExtract(Node))
4992       return;
4993     [[fallthrough]];
4994   case ISD::SRA:
4995   case ISD::SHL:
4996     if (tryShiftAmountMod(Node))
4997       return;
4998     break;
4999 
5000   case X86ISD::VPTERNLOG: {
5001     uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue();
5002     if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0),
5003                        Node->getOperand(1), Node->getOperand(2), Imm))
5004       return;
5005     break;
5006   }
5007 
5008   case X86ISD::ANDNP:
5009     if (tryVPTERNLOG(Node))
5010       return;
5011     break;
5012 
5013   case ISD::AND:
5014     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
5015       // Try to form a masked VPTESTM. Operands can be in either order.
5016       SDValue N0 = Node->getOperand(0);
5017       SDValue N1 = Node->getOperand(1);
5018       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
5019           tryVPTESTM(Node, N0, N1))
5020         return;
5021       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
5022           tryVPTESTM(Node, N1, N0))
5023         return;
5024     }
5025 
5026     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
5027       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5028       CurDAG->RemoveDeadNode(Node);
5029       return;
5030     }
5031     if (matchBitExtract(Node))
5032       return;
5033     if (AndImmShrink && shrinkAndImmediate(Node))
5034       return;
5035 
5036     [[fallthrough]];
5037   case ISD::OR:
5038   case ISD::XOR:
5039     if (tryShrinkShlLogicImm(Node))
5040       return;
5041     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
5042       return;
5043     if (tryVPTERNLOG(Node))
5044       return;
5045 
5046     [[fallthrough]];
5047   case ISD::ADD:
5048   case ISD::SUB: {
5049     // Try to avoid folding immediates with multiple uses for optsize.
5050     // This code tries to select to register form directly to avoid going
5051     // through the isel table which might fold the immediate. We can't change
5052     // the patterns on the add/sub/and/or/xor with immediate paterns in the
5053     // tablegen files to check immediate use count without making the patterns
5054     // unavailable to the fast-isel table.
5055     if (!CurDAG->shouldOptForSize())
5056       break;
5057 
5058     // Only handle i8/i16/i32/i64.
5059     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
5060       break;
5061 
5062     SDValue N0 = Node->getOperand(0);
5063     SDValue N1 = Node->getOperand(1);
5064 
5065     auto *Cst = dyn_cast<ConstantSDNode>(N1);
5066     if (!Cst)
5067       break;
5068 
5069     int64_t Val = Cst->getSExtValue();
5070 
5071     // Make sure its an immediate that is considered foldable.
5072     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
5073     if (!isInt<8>(Val) && !isInt<32>(Val))
5074       break;
5075 
5076     // If this can match to INC/DEC, let it go.
5077     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
5078       break;
5079 
5080     // Check if we should avoid folding this immediate.
5081     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
5082       break;
5083 
5084     // We should not fold the immediate. So we need a register form instead.
5085     unsigned ROpc, MOpc;
5086     switch (NVT.SimpleTy) {
5087     default: llvm_unreachable("Unexpected VT!");
5088     case MVT::i8:
5089       switch (Opcode) {
5090       default: llvm_unreachable("Unexpected opcode!");
5091       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
5092       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
5093       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
5094       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
5095       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
5096       }
5097       break;
5098     case MVT::i16:
5099       switch (Opcode) {
5100       default: llvm_unreachable("Unexpected opcode!");
5101       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
5102       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
5103       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
5104       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
5105       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
5106       }
5107       break;
5108     case MVT::i32:
5109       switch (Opcode) {
5110       default: llvm_unreachable("Unexpected opcode!");
5111       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
5112       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
5113       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
5114       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
5115       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
5116       }
5117       break;
5118     case MVT::i64:
5119       switch (Opcode) {
5120       default: llvm_unreachable("Unexpected opcode!");
5121       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
5122       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
5123       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
5124       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
5125       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
5126       }
5127       break;
5128     }
5129 
5130     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
5131 
5132     // If this is a not a subtract, we can still try to fold a load.
5133     if (Opcode != ISD::SUB) {
5134       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5135       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5136         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5137         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5138         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5139         // Update the chain.
5140         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
5141         // Record the mem-refs
5142         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
5143         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5144         CurDAG->RemoveDeadNode(Node);
5145         return;
5146       }
5147     }
5148 
5149     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
5150     return;
5151   }
5152 
5153   case X86ISD::SMUL:
5154     // i16/i32/i64 are handled with isel patterns.
5155     if (NVT != MVT::i8)
5156       break;
5157     [[fallthrough]];
5158   case X86ISD::UMUL: {
5159     SDValue N0 = Node->getOperand(0);
5160     SDValue N1 = Node->getOperand(1);
5161 
5162     unsigned LoReg, ROpc, MOpc;
5163     switch (NVT.SimpleTy) {
5164     default: llvm_unreachable("Unsupported VT!");
5165     case MVT::i8:
5166       LoReg = X86::AL;
5167       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
5168       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
5169       break;
5170     case MVT::i16:
5171       LoReg = X86::AX;
5172       ROpc = X86::MUL16r;
5173       MOpc = X86::MUL16m;
5174       break;
5175     case MVT::i32:
5176       LoReg = X86::EAX;
5177       ROpc = X86::MUL32r;
5178       MOpc = X86::MUL32m;
5179       break;
5180     case MVT::i64:
5181       LoReg = X86::RAX;
5182       ROpc = X86::MUL64r;
5183       MOpc = X86::MUL64m;
5184       break;
5185     }
5186 
5187     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5188     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5189     // Multiply is commutative.
5190     if (!FoldedLoad) {
5191       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5192       if (FoldedLoad)
5193         std::swap(N0, N1);
5194     }
5195 
5196     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5197                                           N0, SDValue()).getValue(1);
5198 
5199     MachineSDNode *CNode;
5200     if (FoldedLoad) {
5201       // i16/i32/i64 use an instruction that produces a low and high result even
5202       // though only the low result is used.
5203       SDVTList VTs;
5204       if (NVT == MVT::i8)
5205         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5206       else
5207         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5208 
5209       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5210                         InFlag };
5211       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5212 
5213       // Update the chain.
5214       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5215       // Record the mem-refs
5216       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5217     } else {
5218       // i16/i32/i64 use an instruction that produces a low and high result even
5219       // though only the low result is used.
5220       SDVTList VTs;
5221       if (NVT == MVT::i8)
5222         VTs = CurDAG->getVTList(NVT, MVT::i32);
5223       else
5224         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5225 
5226       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
5227     }
5228 
5229     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5230     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5231     CurDAG->RemoveDeadNode(Node);
5232     return;
5233   }
5234 
5235   case ISD::SMUL_LOHI:
5236   case ISD::UMUL_LOHI: {
5237     SDValue N0 = Node->getOperand(0);
5238     SDValue N1 = Node->getOperand(1);
5239 
5240     unsigned Opc, MOpc;
5241     unsigned LoReg, HiReg;
5242     bool IsSigned = Opcode == ISD::SMUL_LOHI;
5243     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5244     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5245     switch (NVT.SimpleTy) {
5246     default: llvm_unreachable("Unsupported VT!");
5247     case MVT::i32:
5248       Opc  = UseMULXHi ? X86::MULX32Hrr :
5249              UseMULX ? X86::MULX32rr :
5250              IsSigned ? X86::IMUL32r : X86::MUL32r;
5251       MOpc = UseMULXHi ? X86::MULX32Hrm :
5252              UseMULX ? X86::MULX32rm :
5253              IsSigned ? X86::IMUL32m : X86::MUL32m;
5254       LoReg = UseMULX ? X86::EDX : X86::EAX;
5255       HiReg = X86::EDX;
5256       break;
5257     case MVT::i64:
5258       Opc  = UseMULXHi ? X86::MULX64Hrr :
5259              UseMULX ? X86::MULX64rr :
5260              IsSigned ? X86::IMUL64r : X86::MUL64r;
5261       MOpc = UseMULXHi ? X86::MULX64Hrm :
5262              UseMULX ? X86::MULX64rm :
5263              IsSigned ? X86::IMUL64m : X86::MUL64m;
5264       LoReg = UseMULX ? X86::RDX : X86::RAX;
5265       HiReg = X86::RDX;
5266       break;
5267     }
5268 
5269     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5270     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5271     // Multiply is commutative.
5272     if (!foldedLoad) {
5273       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5274       if (foldedLoad)
5275         std::swap(N0, N1);
5276     }
5277 
5278     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5279                                           N0, SDValue()).getValue(1);
5280     SDValue ResHi, ResLo;
5281     if (foldedLoad) {
5282       SDValue Chain;
5283       MachineSDNode *CNode = nullptr;
5284       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5285                         InFlag };
5286       if (UseMULXHi) {
5287         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5288         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5289         ResHi = SDValue(CNode, 0);
5290         Chain = SDValue(CNode, 1);
5291       } else if (UseMULX) {
5292         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5293         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5294         ResHi = SDValue(CNode, 0);
5295         ResLo = SDValue(CNode, 1);
5296         Chain = SDValue(CNode, 2);
5297       } else {
5298         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5299         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5300         Chain = SDValue(CNode, 0);
5301         InFlag = SDValue(CNode, 1);
5302       }
5303 
5304       // Update the chain.
5305       ReplaceUses(N1.getValue(1), Chain);
5306       // Record the mem-refs
5307       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5308     } else {
5309       SDValue Ops[] = { N1, InFlag };
5310       if (UseMULXHi) {
5311         SDVTList VTs = CurDAG->getVTList(NVT);
5312         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5313         ResHi = SDValue(CNode, 0);
5314       } else if (UseMULX) {
5315         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5316         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5317         ResHi = SDValue(CNode, 0);
5318         ResLo = SDValue(CNode, 1);
5319       } else {
5320         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5321         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5322         InFlag = SDValue(CNode, 0);
5323       }
5324     }
5325 
5326     // Copy the low half of the result, if it is needed.
5327     if (!SDValue(Node, 0).use_empty()) {
5328       if (!ResLo) {
5329         assert(LoReg && "Register for low half is not defined!");
5330         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5331                                        NVT, InFlag);
5332         InFlag = ResLo.getValue(2);
5333       }
5334       ReplaceUses(SDValue(Node, 0), ResLo);
5335       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5336                  dbgs() << '\n');
5337     }
5338     // Copy the high half of the result, if it is needed.
5339     if (!SDValue(Node, 1).use_empty()) {
5340       if (!ResHi) {
5341         assert(HiReg && "Register for high half is not defined!");
5342         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5343                                        NVT, InFlag);
5344         InFlag = ResHi.getValue(2);
5345       }
5346       ReplaceUses(SDValue(Node, 1), ResHi);
5347       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5348                  dbgs() << '\n');
5349     }
5350 
5351     CurDAG->RemoveDeadNode(Node);
5352     return;
5353   }
5354 
5355   case ISD::SDIVREM:
5356   case ISD::UDIVREM: {
5357     SDValue N0 = Node->getOperand(0);
5358     SDValue N1 = Node->getOperand(1);
5359 
5360     unsigned ROpc, MOpc;
5361     bool isSigned = Opcode == ISD::SDIVREM;
5362     if (!isSigned) {
5363       switch (NVT.SimpleTy) {
5364       default: llvm_unreachable("Unsupported VT!");
5365       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
5366       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5367       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5368       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5369       }
5370     } else {
5371       switch (NVT.SimpleTy) {
5372       default: llvm_unreachable("Unsupported VT!");
5373       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
5374       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5375       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5376       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5377       }
5378     }
5379 
5380     unsigned LoReg, HiReg, ClrReg;
5381     unsigned SExtOpcode;
5382     switch (NVT.SimpleTy) {
5383     default: llvm_unreachable("Unsupported VT!");
5384     case MVT::i8:
5385       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
5386       SExtOpcode = 0; // Not used.
5387       break;
5388     case MVT::i16:
5389       LoReg = X86::AX;  HiReg = X86::DX;
5390       ClrReg = X86::DX;
5391       SExtOpcode = X86::CWD;
5392       break;
5393     case MVT::i32:
5394       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5395       SExtOpcode = X86::CDQ;
5396       break;
5397     case MVT::i64:
5398       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5399       SExtOpcode = X86::CQO;
5400       break;
5401     }
5402 
5403     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5404     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5405     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5406 
5407     SDValue InFlag;
5408     if (NVT == MVT::i8) {
5409       // Special case for div8, just use a move with zero extension to AX to
5410       // clear the upper 8 bits (AH).
5411       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5412       MachineSDNode *Move;
5413       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5414         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5415         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5416                                                     : X86::MOVZX16rm8;
5417         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5418         Chain = SDValue(Move, 1);
5419         ReplaceUses(N0.getValue(1), Chain);
5420         // Record the mem-refs
5421         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5422       } else {
5423         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5424                                                     : X86::MOVZX16rr8;
5425         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5426         Chain = CurDAG->getEntryNode();
5427       }
5428       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5429                                     SDValue());
5430       InFlag = Chain.getValue(1);
5431     } else {
5432       InFlag =
5433         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5434                              LoReg, N0, SDValue()).getValue(1);
5435       if (isSigned && !signBitIsZero) {
5436         // Sign extend the low part into the high part.
5437         InFlag =
5438           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
5439       } else {
5440         // Zero out the high part, effectively zero extending the input.
5441         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5442         SDValue ClrNode = SDValue(
5443             CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
5444         switch (NVT.SimpleTy) {
5445         case MVT::i16:
5446           ClrNode =
5447               SDValue(CurDAG->getMachineNode(
5448                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5449                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
5450                                                     MVT::i32)),
5451                       0);
5452           break;
5453         case MVT::i32:
5454           break;
5455         case MVT::i64:
5456           ClrNode =
5457               SDValue(CurDAG->getMachineNode(
5458                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5459                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5460                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
5461                                                     MVT::i32)),
5462                       0);
5463           break;
5464         default:
5465           llvm_unreachable("Unexpected division source");
5466         }
5467 
5468         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5469                                       ClrNode, InFlag).getValue(1);
5470       }
5471     }
5472 
5473     if (foldedLoad) {
5474       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5475                         InFlag };
5476       MachineSDNode *CNode =
5477         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5478       InFlag = SDValue(CNode, 1);
5479       // Update the chain.
5480       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5481       // Record the mem-refs
5482       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5483     } else {
5484       InFlag =
5485         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0);
5486     }
5487 
5488     // Prevent use of AH in a REX instruction by explicitly copying it to
5489     // an ABCD_L register.
5490     //
5491     // The current assumption of the register allocator is that isel
5492     // won't generate explicit references to the GR8_ABCD_H registers. If
5493     // the allocator and/or the backend get enhanced to be more robust in
5494     // that regard, this can be, and should be, removed.
5495     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5496       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5497       unsigned AHExtOpcode =
5498           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5499 
5500       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5501                                              MVT::Glue, AHCopy, InFlag);
5502       SDValue Result(RNode, 0);
5503       InFlag = SDValue(RNode, 1);
5504 
5505       Result =
5506           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5507 
5508       ReplaceUses(SDValue(Node, 1), Result);
5509       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5510                  dbgs() << '\n');
5511     }
5512     // Copy the division (low) result, if it is needed.
5513     if (!SDValue(Node, 0).use_empty()) {
5514       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5515                                                 LoReg, NVT, InFlag);
5516       InFlag = Result.getValue(2);
5517       ReplaceUses(SDValue(Node, 0), Result);
5518       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5519                  dbgs() << '\n');
5520     }
5521     // Copy the remainder (high) result, if it is needed.
5522     if (!SDValue(Node, 1).use_empty()) {
5523       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5524                                               HiReg, NVT, InFlag);
5525       InFlag = Result.getValue(2);
5526       ReplaceUses(SDValue(Node, 1), Result);
5527       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5528                  dbgs() << '\n');
5529     }
5530     CurDAG->RemoveDeadNode(Node);
5531     return;
5532   }
5533 
5534   case X86ISD::FCMP:
5535   case X86ISD::STRICT_FCMP:
5536   case X86ISD::STRICT_FCMPS: {
5537     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5538                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
5539     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5540     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5541 
5542     // Save the original VT of the compare.
5543     MVT CmpVT = N0.getSimpleValueType();
5544 
5545     // Floating point needs special handling if we don't have FCOMI.
5546     if (Subtarget->canUseCMOV())
5547       break;
5548 
5549     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5550 
5551     unsigned Opc;
5552     switch (CmpVT.SimpleTy) {
5553     default: llvm_unreachable("Unexpected type!");
5554     case MVT::f32:
5555       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5556       break;
5557     case MVT::f64:
5558       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5559       break;
5560     case MVT::f80:
5561       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5562       break;
5563     }
5564 
5565     SDValue Chain =
5566         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5567     SDValue Glue;
5568     if (IsStrictCmp) {
5569       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5570       Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5571       Glue = Chain.getValue(1);
5572     } else {
5573       Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5574     }
5575 
5576     // Move FPSW to AX.
5577     SDValue FNSTSW =
5578         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5579 
5580     // Extract upper 8-bits of AX.
5581     SDValue Extract =
5582         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5583 
5584     // Move AH into flags.
5585     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5586     assert(Subtarget->canUseLAHFSAHF() &&
5587            "Target doesn't support SAHF or FCOMI?");
5588     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5589     Chain = AH;
5590     SDValue SAHF = SDValue(
5591         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5592 
5593     if (IsStrictCmp)
5594       ReplaceUses(SDValue(Node, 1), Chain);
5595 
5596     ReplaceUses(SDValue(Node, 0), SAHF);
5597     CurDAG->RemoveDeadNode(Node);
5598     return;
5599   }
5600 
5601   case X86ISD::CMP: {
5602     SDValue N0 = Node->getOperand(0);
5603     SDValue N1 = Node->getOperand(1);
5604 
5605     // Optimizations for TEST compares.
5606     if (!isNullConstant(N1))
5607       break;
5608 
5609     // Save the original VT of the compare.
5610     MVT CmpVT = N0.getSimpleValueType();
5611 
5612     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5613     // by a test instruction. The test should be removed later by
5614     // analyzeCompare if we are using only the zero flag.
5615     // TODO: Should we check the users and use the BEXTR flags directly?
5616     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5617       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5618         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5619                                              : X86::TEST32rr;
5620         SDValue BEXTR = SDValue(NewNode, 0);
5621         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5622         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5623         CurDAG->RemoveDeadNode(Node);
5624         return;
5625       }
5626     }
5627 
5628     // We can peek through truncates, but we need to be careful below.
5629     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5630       N0 = N0.getOperand(0);
5631 
5632     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5633     // use a smaller encoding.
5634     // Look past the truncate if CMP is the only use of it.
5635     if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5636         N0.getValueType() != MVT::i8) {
5637       auto *MaskC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5638       if (!MaskC)
5639         break;
5640 
5641       // We may have looked through a truncate so mask off any bits that
5642       // shouldn't be part of the compare.
5643       uint64_t Mask = MaskC->getZExtValue();
5644       Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
5645 
5646       // Check if we can replace AND+IMM{32,64} with a shift. This is possible
5647       // for masks like 0xFF000000 or 0x00FFFFFF and if we care only about the
5648       // zero flag.
5649       if (CmpVT == MVT::i64 && !isInt<8>(Mask) && isShiftedMask_64(Mask) &&
5650           onlyUsesZeroFlag(SDValue(Node, 0))) {
5651         unsigned ShiftOpcode = ISD::DELETED_NODE;
5652         unsigned ShiftAmt;
5653         unsigned SubRegIdx;
5654         MVT SubRegVT;
5655         unsigned TestOpcode;
5656         unsigned LeadingZeros = countLeadingZeros(Mask);
5657         unsigned TrailingZeros = countTrailingZeros(Mask);
5658 
5659         // With leading/trailing zeros, the transform is profitable if we can
5660         // eliminate a movabsq or shrink a 32-bit immediate to 8-bit without
5661         // incurring any extra register moves.
5662         bool SavesBytes = !isInt<32>(Mask) || N0.getOperand(0).hasOneUse();
5663         if (LeadingZeros == 0 && SavesBytes) {
5664           // If the mask covers the most significant bit, then we can replace
5665           // TEST+AND with a SHR and check eflags.
5666           // This emits a redundant TEST which is subsequently eliminated.
5667           ShiftOpcode = X86::SHR64ri;
5668           ShiftAmt = TrailingZeros;
5669           SubRegIdx = 0;
5670           TestOpcode = X86::TEST64rr;
5671         } else if (TrailingZeros == 0 && SavesBytes) {
5672           // If the mask covers the least significant bit, then we can replace
5673           // TEST+AND with a SHL and check eflags.
5674           // This emits a redundant TEST which is subsequently eliminated.
5675           ShiftOpcode = X86::SHL64ri;
5676           ShiftAmt = LeadingZeros;
5677           SubRegIdx = 0;
5678           TestOpcode = X86::TEST64rr;
5679         } else if (MaskC->hasOneUse() && !isInt<32>(Mask)) {
5680           // If the shifted mask extends into the high half and is 8/16/32 bits
5681           // wide, then replace it with a SHR and a TEST8rr/TEST16rr/TEST32rr.
5682           unsigned PopCount = 64 - LeadingZeros - TrailingZeros;
5683           if (PopCount == 8) {
5684             ShiftOpcode = X86::SHR64ri;
5685             ShiftAmt = TrailingZeros;
5686             SubRegIdx = X86::sub_8bit;
5687             SubRegVT = MVT::i8;
5688             TestOpcode = X86::TEST8rr;
5689           } else if (PopCount == 16) {
5690             ShiftOpcode = X86::SHR64ri;
5691             ShiftAmt = TrailingZeros;
5692             SubRegIdx = X86::sub_16bit;
5693             SubRegVT = MVT::i16;
5694             TestOpcode = X86::TEST16rr;
5695           } else if (PopCount == 32) {
5696             ShiftOpcode = X86::SHR64ri;
5697             ShiftAmt = TrailingZeros;
5698             SubRegIdx = X86::sub_32bit;
5699             SubRegVT = MVT::i32;
5700             TestOpcode = X86::TEST32rr;
5701           }
5702         }
5703         if (ShiftOpcode != ISD::DELETED_NODE) {
5704           SDValue ShiftC = CurDAG->getTargetConstant(ShiftAmt, dl, MVT::i64);
5705           SDValue Shift = SDValue(
5706               CurDAG->getMachineNode(ShiftOpcode, dl, MVT::i64, MVT::i32,
5707                                      N0.getOperand(0), ShiftC),
5708               0);
5709           if (SubRegIdx != 0) {
5710             Shift =
5711                 CurDAG->getTargetExtractSubreg(SubRegIdx, dl, SubRegVT, Shift);
5712           }
5713           MachineSDNode *Test =
5714               CurDAG->getMachineNode(TestOpcode, dl, MVT::i32, Shift, Shift);
5715           ReplaceNode(Node, Test);
5716           return;
5717         }
5718       }
5719 
5720       MVT VT;
5721       int SubRegOp;
5722       unsigned ROpc, MOpc;
5723 
5724       // For each of these checks we need to be careful if the sign flag is
5725       // being used. It is only safe to use the sign flag in two conditions,
5726       // either the sign bit in the shrunken mask is zero or the final test
5727       // size is equal to the original compare size.
5728 
5729       if (isUInt<8>(Mask) &&
5730           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5731            hasNoSignFlagUses(SDValue(Node, 0)))) {
5732         // For example, convert "testl %eax, $8" to "testb %al, $8"
5733         VT = MVT::i8;
5734         SubRegOp = X86::sub_8bit;
5735         ROpc = X86::TEST8ri;
5736         MOpc = X86::TEST8mi;
5737       } else if (OptForMinSize && isUInt<16>(Mask) &&
5738                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5739                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5740         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5741         // NOTE: We only want to form TESTW instructions if optimizing for
5742         // min size. Otherwise we only save one byte and possibly get a length
5743         // changing prefix penalty in the decoders.
5744         VT = MVT::i16;
5745         SubRegOp = X86::sub_16bit;
5746         ROpc = X86::TEST16ri;
5747         MOpc = X86::TEST16mi;
5748       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5749                  ((!(Mask & 0x80000000) &&
5750                    // Without minsize 16-bit Cmps can get here so we need to
5751                    // be sure we calculate the correct sign flag if needed.
5752                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5753                   CmpVT == MVT::i32 ||
5754                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5755         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5756         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5757         // Otherwize, we find ourselves in a position where we have to do
5758         // promotion. If previous passes did not promote the and, we assume
5759         // they had a good reason not to and do not promote here.
5760         VT = MVT::i32;
5761         SubRegOp = X86::sub_32bit;
5762         ROpc = X86::TEST32ri;
5763         MOpc = X86::TEST32mi;
5764       } else {
5765         // No eligible transformation was found.
5766         break;
5767       }
5768 
5769       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
5770       SDValue Reg = N0.getOperand(0);
5771 
5772       // Emit a testl or testw.
5773       MachineSDNode *NewNode;
5774       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5775       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5776         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
5777           if (!LoadN->isSimple()) {
5778             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
5779             if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
5780                 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
5781                 (MOpc == X86::TEST32mi && NumVolBits != 32))
5782               break;
5783           }
5784         }
5785         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
5786                           Reg.getOperand(0) };
5787         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
5788         // Update the chain.
5789         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
5790         // Record the mem-refs
5791         CurDAG->setNodeMemRefs(NewNode,
5792                                {cast<LoadSDNode>(Reg)->getMemOperand()});
5793       } else {
5794         // Extract the subregister if necessary.
5795         if (N0.getValueType() != VT)
5796           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
5797 
5798         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
5799       }
5800       // Replace CMP with TEST.
5801       ReplaceNode(Node, NewNode);
5802       return;
5803     }
5804     break;
5805   }
5806   case X86ISD::PCMPISTR: {
5807     if (!Subtarget->hasSSE42())
5808       break;
5809 
5810     bool NeedIndex = !SDValue(Node, 0).use_empty();
5811     bool NeedMask = !SDValue(Node, 1).use_empty();
5812     // We can't fold a load if we are going to make two instructions.
5813     bool MayFoldLoad = !NeedIndex || !NeedMask;
5814 
5815     MachineSDNode *CNode;
5816     if (NeedMask) {
5817       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
5818       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
5819       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
5820       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5821     }
5822     if (NeedIndex || !NeedMask) {
5823       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
5824       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
5825       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
5826       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5827     }
5828 
5829     // Connect the flag usage to the last instruction created.
5830     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5831     CurDAG->RemoveDeadNode(Node);
5832     return;
5833   }
5834   case X86ISD::PCMPESTR: {
5835     if (!Subtarget->hasSSE42())
5836       break;
5837 
5838     // Copy the two implicit register inputs.
5839     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
5840                                           Node->getOperand(1),
5841                                           SDValue()).getValue(1);
5842     InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
5843                                   Node->getOperand(3), InFlag).getValue(1);
5844 
5845     bool NeedIndex = !SDValue(Node, 0).use_empty();
5846     bool NeedMask = !SDValue(Node, 1).use_empty();
5847     // We can't fold a load if we are going to make two instructions.
5848     bool MayFoldLoad = !NeedIndex || !NeedMask;
5849 
5850     MachineSDNode *CNode;
5851     if (NeedMask) {
5852       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
5853       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
5854       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
5855                            InFlag);
5856       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5857     }
5858     if (NeedIndex || !NeedMask) {
5859       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
5860       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
5861       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
5862       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5863     }
5864     // Connect the flag usage to the last instruction created.
5865     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5866     CurDAG->RemoveDeadNode(Node);
5867     return;
5868   }
5869 
5870   case ISD::SETCC: {
5871     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
5872       return;
5873 
5874     break;
5875   }
5876 
5877   case ISD::STORE:
5878     if (foldLoadStoreIntoMemOperand(Node))
5879       return;
5880     break;
5881 
5882   case X86ISD::SETCC_CARRY: {
5883     MVT VT = Node->getSimpleValueType(0);
5884     SDValue Result;
5885     if (Subtarget->hasSBBDepBreaking()) {
5886       // We have to do this manually because tblgen will put the eflags copy in
5887       // the wrong place if we use an extract_subreg in the pattern.
5888       // Copy flags to the EFLAGS register and glue it to next node.
5889       SDValue EFLAGS =
5890           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5891                                Node->getOperand(1), SDValue());
5892 
5893       // Create a 64-bit instruction if the result is 64-bits otherwise use the
5894       // 32-bit version.
5895       unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
5896       MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5897       Result = SDValue(
5898           CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)),
5899           0);
5900     } else {
5901       // The target does not recognize sbb with the same reg operand as a
5902       // no-source idiom, so we explicitly zero the input values.
5903       Result = getSBBZero(Node);
5904     }
5905 
5906     // For less than 32-bits we need to extract from the 32-bit node.
5907     if (VT == MVT::i8 || VT == MVT::i16) {
5908       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5909       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5910     }
5911 
5912     ReplaceUses(SDValue(Node, 0), Result);
5913     CurDAG->RemoveDeadNode(Node);
5914     return;
5915   }
5916   case X86ISD::SBB: {
5917     if (isNullConstant(Node->getOperand(0)) &&
5918         isNullConstant(Node->getOperand(1))) {
5919       SDValue Result = getSBBZero(Node);
5920 
5921       // Replace the flag use.
5922       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
5923 
5924       // Replace the result use.
5925       if (!SDValue(Node, 0).use_empty()) {
5926         // For less than 32-bits we need to extract from the 32-bit node.
5927         MVT VT = Node->getSimpleValueType(0);
5928         if (VT == MVT::i8 || VT == MVT::i16) {
5929           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5930           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5931         }
5932         ReplaceUses(SDValue(Node, 0), Result);
5933       }
5934 
5935       CurDAG->RemoveDeadNode(Node);
5936       return;
5937     }
5938     break;
5939   }
5940   case X86ISD::MGATHER: {
5941     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
5942     SDValue IndexOp = Mgt->getIndex();
5943     SDValue Mask = Mgt->getMask();
5944     MVT IndexVT = IndexOp.getSimpleValueType();
5945     MVT ValueVT = Node->getSimpleValueType(0);
5946     MVT MaskVT = Mask.getSimpleValueType();
5947 
5948     // This is just to prevent crashes if the nodes are malformed somehow. We're
5949     // otherwise only doing loose type checking in here based on type what
5950     // a type constraint would say just like table based isel.
5951     if (!ValueVT.isVector() || !MaskVT.isVector())
5952       break;
5953 
5954     unsigned NumElts = ValueVT.getVectorNumElements();
5955     MVT ValueSVT = ValueVT.getVectorElementType();
5956 
5957     bool IsFP = ValueSVT.isFloatingPoint();
5958     unsigned EltSize = ValueSVT.getSizeInBits();
5959 
5960     unsigned Opc = 0;
5961     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
5962     if (AVX512Gather) {
5963       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5964         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
5965       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5966         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
5967       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5968         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
5969       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5970         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
5971       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5972         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
5973       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5974         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
5975       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5976         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
5977       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5978         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
5979       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5980         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
5981       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5982         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
5983       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5984         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
5985       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5986         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
5987     } else {
5988       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
5989              "Unexpected mask VT!");
5990       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5991         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
5992       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5993         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
5994       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5995         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
5996       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5997         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
5998       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5999         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
6000       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6001         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
6002       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6003         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
6004       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6005         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
6006     }
6007 
6008     if (!Opc)
6009       break;
6010 
6011     SDValue Base, Scale, Index, Disp, Segment;
6012     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
6013                           Base, Scale, Index, Disp, Segment))
6014       break;
6015 
6016     SDValue PassThru = Mgt->getPassThru();
6017     SDValue Chain = Mgt->getChain();
6018     // Gather instructions have a mask output not in the ISD node.
6019     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
6020 
6021     MachineSDNode *NewNode;
6022     if (AVX512Gather) {
6023       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
6024                        Index,    Disp, Segment, Chain};
6025       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6026     } else {
6027       SDValue Ops[] = {PassThru, Base,    Scale, Index,
6028                        Disp,     Segment, Mask,  Chain};
6029       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6030     }
6031     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
6032     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
6033     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
6034     CurDAG->RemoveDeadNode(Node);
6035     return;
6036   }
6037   case X86ISD::MSCATTER: {
6038     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
6039     SDValue Value = Sc->getValue();
6040     SDValue IndexOp = Sc->getIndex();
6041     MVT IndexVT = IndexOp.getSimpleValueType();
6042     MVT ValueVT = Value.getSimpleValueType();
6043 
6044     // This is just to prevent crashes if the nodes are malformed somehow. We're
6045     // otherwise only doing loose type checking in here based on type what
6046     // a type constraint would say just like table based isel.
6047     if (!ValueVT.isVector())
6048       break;
6049 
6050     unsigned NumElts = ValueVT.getVectorNumElements();
6051     MVT ValueSVT = ValueVT.getVectorElementType();
6052 
6053     bool IsFP = ValueSVT.isFloatingPoint();
6054     unsigned EltSize = ValueSVT.getSizeInBits();
6055 
6056     unsigned Opc;
6057     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6058       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
6059     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6060       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
6061     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6062       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
6063     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6064       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
6065     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6066       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
6067     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6068       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
6069     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6070       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
6071     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6072       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
6073     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6074       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
6075     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6076       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
6077     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6078       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
6079     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6080       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
6081     else
6082       break;
6083 
6084     SDValue Base, Scale, Index, Disp, Segment;
6085     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
6086                           Base, Scale, Index, Disp, Segment))
6087       break;
6088 
6089     SDValue Mask = Sc->getMask();
6090     SDValue Chain = Sc->getChain();
6091     // Scatter instructions have a mask output not in the ISD node.
6092     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
6093     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
6094 
6095     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6096     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
6097     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
6098     CurDAG->RemoveDeadNode(Node);
6099     return;
6100   }
6101   case ISD::PREALLOCATED_SETUP: {
6102     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6103     auto CallId = MFI->getPreallocatedIdForCallSite(
6104         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6105     SDValue Chain = Node->getOperand(0);
6106     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6107     MachineSDNode *New = CurDAG->getMachineNode(
6108         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
6109     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
6110     CurDAG->RemoveDeadNode(Node);
6111     return;
6112   }
6113   case ISD::PREALLOCATED_ARG: {
6114     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6115     auto CallId = MFI->getPreallocatedIdForCallSite(
6116         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6117     SDValue Chain = Node->getOperand(0);
6118     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6119     SDValue ArgIndex = Node->getOperand(2);
6120     SDValue Ops[3];
6121     Ops[0] = CallIdValue;
6122     Ops[1] = ArgIndex;
6123     Ops[2] = Chain;
6124     MachineSDNode *New = CurDAG->getMachineNode(
6125         TargetOpcode::PREALLOCATED_ARG, dl,
6126         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
6127                           MVT::Other),
6128         Ops);
6129     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
6130     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
6131     CurDAG->RemoveDeadNode(Node);
6132     return;
6133   }
6134   case X86ISD::AESENCWIDE128KL:
6135   case X86ISD::AESDECWIDE128KL:
6136   case X86ISD::AESENCWIDE256KL:
6137   case X86ISD::AESDECWIDE256KL: {
6138     if (!Subtarget->hasWIDEKL())
6139       break;
6140 
6141     unsigned Opcode;
6142     switch (Node->getOpcode()) {
6143     default:
6144       llvm_unreachable("Unexpected opcode!");
6145     case X86ISD::AESENCWIDE128KL:
6146       Opcode = X86::AESENCWIDE128KL;
6147       break;
6148     case X86ISD::AESDECWIDE128KL:
6149       Opcode = X86::AESDECWIDE128KL;
6150       break;
6151     case X86ISD::AESENCWIDE256KL:
6152       Opcode = X86::AESENCWIDE256KL;
6153       break;
6154     case X86ISD::AESDECWIDE256KL:
6155       Opcode = X86::AESDECWIDE256KL;
6156       break;
6157     }
6158 
6159     SDValue Chain = Node->getOperand(0);
6160     SDValue Addr = Node->getOperand(1);
6161 
6162     SDValue Base, Scale, Index, Disp, Segment;
6163     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
6164       break;
6165 
6166     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
6167                                  SDValue());
6168     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
6169                                  Chain.getValue(1));
6170     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
6171                                  Chain.getValue(1));
6172     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
6173                                  Chain.getValue(1));
6174     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
6175                                  Chain.getValue(1));
6176     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
6177                                  Chain.getValue(1));
6178     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
6179                                  Chain.getValue(1));
6180     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
6181                                  Chain.getValue(1));
6182 
6183     MachineSDNode *Res = CurDAG->getMachineNode(
6184         Opcode, dl, Node->getVTList(),
6185         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
6186     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
6187     ReplaceNode(Node, Res);
6188     return;
6189   }
6190   }
6191 
6192   SelectCode(Node);
6193 }
6194 
6195 bool X86DAGToDAGISel::
6196 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
6197                              std::vector<SDValue> &OutOps) {
6198   SDValue Op0, Op1, Op2, Op3, Op4;
6199   switch (ConstraintID) {
6200   default:
6201     llvm_unreachable("Unexpected asm memory constraint");
6202   case InlineAsm::Constraint_o: // offsetable        ??
6203   case InlineAsm::Constraint_v: // not offsetable    ??
6204   case InlineAsm::Constraint_m: // memory
6205   case InlineAsm::Constraint_X:
6206   case InlineAsm::Constraint_p: // address
6207     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
6208       return true;
6209     break;
6210   }
6211 
6212   OutOps.push_back(Op0);
6213   OutOps.push_back(Op1);
6214   OutOps.push_back(Op2);
6215   OutOps.push_back(Op3);
6216   OutOps.push_back(Op4);
6217   return false;
6218 }
6219 
6220 /// This pass converts a legalized DAG into a X86-specific DAG,
6221 /// ready for instruction scheduling.
6222 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6223                                      CodeGenOpt::Level OptLevel) {
6224   return new X86DAGToDAGISel(TM, OptLevel);
6225 }
6226