xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <stdint.h>
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "x86-isel"
37 
38 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
39 
40 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
41     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
42     cl::Hidden);
43 
44 static cl::opt<bool> EnablePromoteAnyextLoad(
45     "x86-promote-anyext-load", cl::init(true),
46     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
47 
48 extern cl::opt<bool> IndirectBranchTracking;
49 
50 //===----------------------------------------------------------------------===//
51 //                      Pattern Matcher Implementation
52 //===----------------------------------------------------------------------===//
53 
54 namespace {
55   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
56   /// numbers for the leaves of the matched tree.
57   struct X86ISelAddressMode {
58     enum {
59       RegBase,
60       FrameIndexBase
61     } BaseType;
62 
63     // This is really a union, discriminated by BaseType!
64     SDValue Base_Reg;
65     int Base_FrameIndex;
66 
67     unsigned Scale;
68     SDValue IndexReg;
69     int32_t Disp;
70     SDValue Segment;
71     const GlobalValue *GV;
72     const Constant *CP;
73     const BlockAddress *BlockAddr;
74     const char *ES;
75     MCSymbol *MCSym;
76     int JT;
77     Align Alignment;            // CP alignment.
78     unsigned char SymbolFlags;  // X86II::MO_*
79     bool NegateIndex = false;
80 
81     X86ISelAddressMode()
82         : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
83           Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
84           MCSym(nullptr), JT(-1), SymbolFlags(X86II::MO_NO_FLAG) {}
85 
86     bool hasSymbolicDisplacement() const {
87       return GV != nullptr || CP != nullptr || ES != nullptr ||
88              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
89     }
90 
91     bool hasBaseOrIndexReg() const {
92       return BaseType == FrameIndexBase ||
93              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
94     }
95 
96     /// Return true if this addressing mode is already RIP-relative.
97     bool isRIPRelative() const {
98       if (BaseType != RegBase) return false;
99       if (RegisterSDNode *RegNode =
100             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
101         return RegNode->getReg() == X86::RIP;
102       return false;
103     }
104 
105     void setBaseReg(SDValue Reg) {
106       BaseType = RegBase;
107       Base_Reg = Reg;
108     }
109 
110 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
111     void dump(SelectionDAG *DAG = nullptr) {
112       dbgs() << "X86ISelAddressMode " << this << '\n';
113       dbgs() << "Base_Reg ";
114       if (Base_Reg.getNode())
115         Base_Reg.getNode()->dump(DAG);
116       else
117         dbgs() << "nul\n";
118       if (BaseType == FrameIndexBase)
119         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
120       dbgs() << " Scale " << Scale << '\n'
121              << "IndexReg ";
122       if (NegateIndex)
123         dbgs() << "negate ";
124       if (IndexReg.getNode())
125         IndexReg.getNode()->dump(DAG);
126       else
127         dbgs() << "nul\n";
128       dbgs() << " Disp " << Disp << '\n'
129              << "GV ";
130       if (GV)
131         GV->dump();
132       else
133         dbgs() << "nul";
134       dbgs() << " CP ";
135       if (CP)
136         CP->dump();
137       else
138         dbgs() << "nul";
139       dbgs() << '\n'
140              << "ES ";
141       if (ES)
142         dbgs() << ES;
143       else
144         dbgs() << "nul";
145       dbgs() << " MCSym ";
146       if (MCSym)
147         dbgs() << MCSym;
148       else
149         dbgs() << "nul";
150       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
151     }
152 #endif
153   };
154 }
155 
156 namespace {
157   //===--------------------------------------------------------------------===//
158   /// ISel - X86-specific code to select X86 machine instructions for
159   /// SelectionDAG operations.
160   ///
161   class X86DAGToDAGISel final : public SelectionDAGISel {
162     /// Keep a pointer to the X86Subtarget around so that we can
163     /// make the right decision when generating code for different targets.
164     const X86Subtarget *Subtarget;
165 
166     /// If true, selector should try to optimize for minimum code size.
167     bool OptForMinSize;
168 
169     /// Disable direct TLS access through segment registers.
170     bool IndirectTlsSegRefs;
171 
172   public:
173     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
174         : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
175           OptForMinSize(false), IndirectTlsSegRefs(false) {}
176 
177     StringRef getPassName() const override {
178       return "X86 DAG->DAG Instruction Selection";
179     }
180 
181     bool runOnMachineFunction(MachineFunction &MF) override {
182       // Reset the subtarget each time through.
183       Subtarget = &MF.getSubtarget<X86Subtarget>();
184       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
185                              "indirect-tls-seg-refs");
186 
187       // OptFor[Min]Size are used in pattern predicates that isel is matching.
188       OptForMinSize = MF.getFunction().hasMinSize();
189       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
190              "OptForMinSize implies OptForSize");
191 
192       SelectionDAGISel::runOnMachineFunction(MF);
193       return true;
194     }
195 
196     void emitFunctionEntryCode() override;
197 
198     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
199 
200     void PreprocessISelDAG() override;
201     void PostprocessISelDAG() override;
202 
203 // Include the pieces autogenerated from the target description.
204 #include "X86GenDAGISel.inc"
205 
206   private:
207     void Select(SDNode *N) override;
208 
209     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
210     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
211                             bool AllowSegmentRegForX32 = false);
212     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
213     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
214     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
215     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
216     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
217                                  unsigned Depth);
218     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
219     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
220                     SDValue &Scale, SDValue &Index, SDValue &Disp,
221                     SDValue &Segment);
222     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
223                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
224                           SDValue &Index, SDValue &Disp, SDValue &Segment);
225     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
226     bool selectLEAAddr(SDValue N, SDValue &Base,
227                        SDValue &Scale, SDValue &Index, SDValue &Disp,
228                        SDValue &Segment);
229     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
230                             SDValue &Scale, SDValue &Index, SDValue &Disp,
231                             SDValue &Segment);
232     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
233                            SDValue &Scale, SDValue &Index, SDValue &Disp,
234                            SDValue &Segment);
235     bool selectRelocImm(SDValue N, SDValue &Op);
236 
237     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
238                      SDValue &Base, SDValue &Scale,
239                      SDValue &Index, SDValue &Disp,
240                      SDValue &Segment);
241 
242     // Convenience method where P is also root.
243     bool tryFoldLoad(SDNode *P, SDValue N,
244                      SDValue &Base, SDValue &Scale,
245                      SDValue &Index, SDValue &Disp,
246                      SDValue &Segment) {
247       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
248     }
249 
250     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
251                           SDValue &Base, SDValue &Scale,
252                           SDValue &Index, SDValue &Disp,
253                           SDValue &Segment);
254 
255     bool isProfitableToFormMaskedOp(SDNode *N) const;
256 
257     /// Implement addressing mode selection for inline asm expressions.
258     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
259                                       unsigned ConstraintID,
260                                       std::vector<SDValue> &OutOps) override;
261 
262     void emitSpecialCodeForMain();
263 
264     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
265                                    MVT VT, SDValue &Base, SDValue &Scale,
266                                    SDValue &Index, SDValue &Disp,
267                                    SDValue &Segment) {
268       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
269         Base = CurDAG->getTargetFrameIndex(
270             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
271       else if (AM.Base_Reg.getNode())
272         Base = AM.Base_Reg;
273       else
274         Base = CurDAG->getRegister(0, VT);
275 
276       Scale = getI8Imm(AM.Scale, DL);
277 
278       // Negate the index if needed.
279       if (AM.NegateIndex) {
280         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
281         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
282                                                      AM.IndexReg), 0);
283         AM.IndexReg = Neg;
284       }
285 
286       if (AM.IndexReg.getNode())
287         Index = AM.IndexReg;
288       else
289         Index = CurDAG->getRegister(0, VT);
290 
291       // These are 32-bit even in 64-bit mode since RIP-relative offset
292       // is 32-bit.
293       if (AM.GV)
294         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
295                                               MVT::i32, AM.Disp,
296                                               AM.SymbolFlags);
297       else if (AM.CP)
298         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
299                                              AM.Disp, AM.SymbolFlags);
300       else if (AM.ES) {
301         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
302         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
303       } else if (AM.MCSym) {
304         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
305         assert(AM.SymbolFlags == 0 && "oo");
306         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
307       } else if (AM.JT != -1) {
308         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
309         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
310       } else if (AM.BlockAddr)
311         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
312                                              AM.SymbolFlags);
313       else
314         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
315 
316       if (AM.Segment.getNode())
317         Segment = AM.Segment;
318       else
319         Segment = CurDAG->getRegister(0, MVT::i16);
320     }
321 
322     // Utility function to determine whether we should avoid selecting
323     // immediate forms of instructions for better code size or not.
324     // At a high level, we'd like to avoid such instructions when
325     // we have similar constants used within the same basic block
326     // that can be kept in a register.
327     //
328     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
329       uint32_t UseCount = 0;
330 
331       // Do not want to hoist if we're not optimizing for size.
332       // TODO: We'd like to remove this restriction.
333       // See the comment in X86InstrInfo.td for more info.
334       if (!CurDAG->shouldOptForSize())
335         return false;
336 
337       // Walk all the users of the immediate.
338       for (SDNode::use_iterator UI = N->use_begin(),
339            UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
340 
341         SDNode *User = *UI;
342 
343         // This user is already selected. Count it as a legitimate use and
344         // move on.
345         if (User->isMachineOpcode()) {
346           UseCount++;
347           continue;
348         }
349 
350         // We want to count stores of immediates as real uses.
351         if (User->getOpcode() == ISD::STORE &&
352             User->getOperand(1).getNode() == N) {
353           UseCount++;
354           continue;
355         }
356 
357         // We don't currently match users that have > 2 operands (except
358         // for stores, which are handled above)
359         // Those instruction won't match in ISEL, for now, and would
360         // be counted incorrectly.
361         // This may change in the future as we add additional instruction
362         // types.
363         if (User->getNumOperands() != 2)
364           continue;
365 
366         // If this is a sign-extended 8-bit integer immediate used in an ALU
367         // instruction, there is probably an opcode encoding to save space.
368         auto *C = dyn_cast<ConstantSDNode>(N);
369         if (C && isInt<8>(C->getSExtValue()))
370           continue;
371 
372         // Immediates that are used for offsets as part of stack
373         // manipulation should be left alone. These are typically
374         // used to indicate SP offsets for argument passing and
375         // will get pulled into stores/pushes (implicitly).
376         if (User->getOpcode() == X86ISD::ADD ||
377             User->getOpcode() == ISD::ADD    ||
378             User->getOpcode() == X86ISD::SUB ||
379             User->getOpcode() == ISD::SUB) {
380 
381           // Find the other operand of the add/sub.
382           SDValue OtherOp = User->getOperand(0);
383           if (OtherOp.getNode() == N)
384             OtherOp = User->getOperand(1);
385 
386           // Don't count if the other operand is SP.
387           RegisterSDNode *RegNode;
388           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
389               (RegNode = dyn_cast_or_null<RegisterSDNode>(
390                  OtherOp->getOperand(1).getNode())))
391             if ((RegNode->getReg() == X86::ESP) ||
392                 (RegNode->getReg() == X86::RSP))
393               continue;
394         }
395 
396         // ... otherwise, count this and move on.
397         UseCount++;
398       }
399 
400       // If we have more than 1 use, then recommend for hoisting.
401       return (UseCount > 1);
402     }
403 
404     /// Return a target constant with the specified value of type i8.
405     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
406       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
407     }
408 
409     /// Return a target constant with the specified value, of type i32.
410     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
411       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
412     }
413 
414     /// Return a target constant with the specified value, of type i64.
415     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
416       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
417     }
418 
419     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
420                                         const SDLoc &DL) {
421       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
422       uint64_t Index = N->getConstantOperandVal(1);
423       MVT VecVT = N->getOperand(0).getSimpleValueType();
424       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
425     }
426 
427     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
428                                       const SDLoc &DL) {
429       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
430       uint64_t Index = N->getConstantOperandVal(2);
431       MVT VecVT = N->getSimpleValueType(0);
432       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
433     }
434 
435     // Helper to detect unneeded and instructions on shift amounts. Called
436     // from PatFrags in tablegen.
437     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
438       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
439       const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
440 
441       if (Val.countTrailingOnes() >= Width)
442         return true;
443 
444       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
445       return Mask.countTrailingOnes() >= Width;
446     }
447 
448     /// Return an SDNode that returns the value of the global base register.
449     /// Output instructions required to initialize the global base register,
450     /// if necessary.
451     SDNode *getGlobalBaseReg();
452 
453     /// Return a reference to the TargetMachine, casted to the target-specific
454     /// type.
455     const X86TargetMachine &getTargetMachine() const {
456       return static_cast<const X86TargetMachine &>(TM);
457     }
458 
459     /// Return a reference to the TargetInstrInfo, casted to the target-specific
460     /// type.
461     const X86InstrInfo *getInstrInfo() const {
462       return Subtarget->getInstrInfo();
463     }
464 
465     /// Address-mode matching performs shift-of-and to and-of-shift
466     /// reassociation in order to expose more scaled addressing
467     /// opportunities.
468     bool ComplexPatternFuncMutatesDAG() const override {
469       return true;
470     }
471 
472     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
473 
474     // Indicates we should prefer to use a non-temporal load for this load.
475     bool useNonTemporalLoad(LoadSDNode *N) const {
476       if (!N->isNonTemporal())
477         return false;
478 
479       unsigned StoreSize = N->getMemoryVT().getStoreSize();
480 
481       if (N->getAlignment() < StoreSize)
482         return false;
483 
484       switch (StoreSize) {
485       default: llvm_unreachable("Unsupported store size");
486       case 4:
487       case 8:
488         return false;
489       case 16:
490         return Subtarget->hasSSE41();
491       case 32:
492         return Subtarget->hasAVX2();
493       case 64:
494         return Subtarget->hasAVX512();
495       }
496     }
497 
498     bool foldLoadStoreIntoMemOperand(SDNode *Node);
499     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
500     bool matchBitExtract(SDNode *Node);
501     bool shrinkAndImmediate(SDNode *N);
502     bool isMaskZeroExtended(SDNode *N) const;
503     bool tryShiftAmountMod(SDNode *N);
504     bool tryShrinkShlLogicImm(SDNode *N);
505     bool tryVPTERNLOG(SDNode *N);
506     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentBC,
507                         SDValue A, SDValue B, SDValue C, uint8_t Imm);
508     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
509     bool tryMatchBitSelect(SDNode *N);
510 
511     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
512                                 const SDLoc &dl, MVT VT, SDNode *Node);
513     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
514                                 const SDLoc &dl, MVT VT, SDNode *Node,
515                                 SDValue &InFlag);
516 
517     bool tryOptimizeRem8Extend(SDNode *N);
518 
519     bool onlyUsesZeroFlag(SDValue Flags) const;
520     bool hasNoSignFlagUses(SDValue Flags) const;
521     bool hasNoCarryFlagUses(SDValue Flags) const;
522   };
523 }
524 
525 
526 // Returns true if this masked compare can be implemented legally with this
527 // type.
528 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
529   unsigned Opcode = N->getOpcode();
530   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
531       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
532       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
533     // We can get 256-bit 8 element types here without VLX being enabled. When
534     // this happens we will use 512-bit operations and the mask will not be
535     // zero extended.
536     EVT OpVT = N->getOperand(0).getValueType();
537     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
538     // second operand.
539     if (Opcode == X86ISD::STRICT_CMPM)
540       OpVT = N->getOperand(1).getValueType();
541     if (OpVT.is256BitVector() || OpVT.is128BitVector())
542       return Subtarget->hasVLX();
543 
544     return true;
545   }
546   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
547   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
548       Opcode == X86ISD::FSETCCM_SAE)
549     return true;
550 
551   return false;
552 }
553 
554 // Returns true if we can assume the writer of the mask has zero extended it
555 // for us.
556 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
557   // If this is an AND, check if we have a compare on either side. As long as
558   // one side guarantees the mask is zero extended, the AND will preserve those
559   // zeros.
560   if (N->getOpcode() == ISD::AND)
561     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
562            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
563 
564   return isLegalMaskCompare(N, Subtarget);
565 }
566 
567 bool
568 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
569   if (OptLevel == CodeGenOpt::None) return false;
570 
571   if (!N.hasOneUse())
572     return false;
573 
574   if (N.getOpcode() != ISD::LOAD)
575     return true;
576 
577   // Don't fold non-temporal loads if we have an instruction for them.
578   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
579     return false;
580 
581   // If N is a load, do additional profitability checks.
582   if (U == Root) {
583     switch (U->getOpcode()) {
584     default: break;
585     case X86ISD::ADD:
586     case X86ISD::ADC:
587     case X86ISD::SUB:
588     case X86ISD::SBB:
589     case X86ISD::AND:
590     case X86ISD::XOR:
591     case X86ISD::OR:
592     case ISD::ADD:
593     case ISD::ADDCARRY:
594     case ISD::AND:
595     case ISD::OR:
596     case ISD::XOR: {
597       SDValue Op1 = U->getOperand(1);
598 
599       // If the other operand is a 8-bit immediate we should fold the immediate
600       // instead. This reduces code size.
601       // e.g.
602       // movl 4(%esp), %eax
603       // addl $4, %eax
604       // vs.
605       // movl $4, %eax
606       // addl 4(%esp), %eax
607       // The former is 2 bytes shorter. In case where the increment is 1, then
608       // the saving can be 4 bytes (by using incl %eax).
609       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
610         if (Imm->getAPIntValue().isSignedIntN(8))
611           return false;
612 
613         // If this is a 64-bit AND with an immediate that fits in 32-bits,
614         // prefer using the smaller and over folding the load. This is needed to
615         // make sure immediates created by shrinkAndImmediate are always folded.
616         // Ideally we would narrow the load during DAG combine and get the
617         // best of both worlds.
618         if (U->getOpcode() == ISD::AND &&
619             Imm->getAPIntValue().getBitWidth() == 64 &&
620             Imm->getAPIntValue().isIntN(32))
621           return false;
622 
623         // If this really a zext_inreg that can be represented with a movzx
624         // instruction, prefer that.
625         // TODO: We could shrink the load and fold if it is non-volatile.
626         if (U->getOpcode() == ISD::AND &&
627             (Imm->getAPIntValue() == UINT8_MAX ||
628              Imm->getAPIntValue() == UINT16_MAX ||
629              Imm->getAPIntValue() == UINT32_MAX))
630           return false;
631 
632         // ADD/SUB with can negate the immediate and use the opposite operation
633         // to fit 128 into a sign extended 8 bit immediate.
634         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
635             (-Imm->getAPIntValue()).isSignedIntN(8))
636           return false;
637 
638         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
639             (-Imm->getAPIntValue()).isSignedIntN(8) &&
640             hasNoCarryFlagUses(SDValue(U, 1)))
641           return false;
642       }
643 
644       // If the other operand is a TLS address, we should fold it instead.
645       // This produces
646       // movl    %gs:0, %eax
647       // leal    i@NTPOFF(%eax), %eax
648       // instead of
649       // movl    $i@NTPOFF, %eax
650       // addl    %gs:0, %eax
651       // if the block also has an access to a second TLS address this will save
652       // a load.
653       // FIXME: This is probably also true for non-TLS addresses.
654       if (Op1.getOpcode() == X86ISD::Wrapper) {
655         SDValue Val = Op1.getOperand(0);
656         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
657           return false;
658       }
659 
660       // Don't fold load if this matches the BTS/BTR/BTC patterns.
661       // BTS: (or X, (shl 1, n))
662       // BTR: (and X, (rotl -2, n))
663       // BTC: (xor X, (shl 1, n))
664       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
665         if (U->getOperand(0).getOpcode() == ISD::SHL &&
666             isOneConstant(U->getOperand(0).getOperand(0)))
667           return false;
668 
669         if (U->getOperand(1).getOpcode() == ISD::SHL &&
670             isOneConstant(U->getOperand(1).getOperand(0)))
671           return false;
672       }
673       if (U->getOpcode() == ISD::AND) {
674         SDValue U0 = U->getOperand(0);
675         SDValue U1 = U->getOperand(1);
676         if (U0.getOpcode() == ISD::ROTL) {
677           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
678           if (C && C->getSExtValue() == -2)
679             return false;
680         }
681 
682         if (U1.getOpcode() == ISD::ROTL) {
683           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
684           if (C && C->getSExtValue() == -2)
685             return false;
686         }
687       }
688 
689       break;
690     }
691     case ISD::SHL:
692     case ISD::SRA:
693     case ISD::SRL:
694       // Don't fold a load into a shift by immediate. The BMI2 instructions
695       // support folding a load, but not an immediate. The legacy instructions
696       // support folding an immediate, but can't fold a load. Folding an
697       // immediate is preferable to folding a load.
698       if (isa<ConstantSDNode>(U->getOperand(1)))
699         return false;
700 
701       break;
702     }
703   }
704 
705   // Prevent folding a load if this can implemented with an insert_subreg or
706   // a move that implicitly zeroes.
707   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
708       isNullConstant(Root->getOperand(2)) &&
709       (Root->getOperand(0).isUndef() ||
710        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
711     return false;
712 
713   return true;
714 }
715 
716 // Indicates it is profitable to form an AVX512 masked operation. Returning
717 // false will favor a masked register-register masked move or vblendm and the
718 // operation will be selected separately.
719 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
720   assert(
721       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
722       "Unexpected opcode!");
723 
724   // If the operation has additional users, the operation will be duplicated.
725   // Check the use count to prevent that.
726   // FIXME: Are there cheap opcodes we might want to duplicate?
727   return N->getOperand(1).hasOneUse();
728 }
729 
730 /// Replace the original chain operand of the call with
731 /// load's chain operand and move load below the call's chain operand.
732 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
733                                SDValue Call, SDValue OrigChain) {
734   SmallVector<SDValue, 8> Ops;
735   SDValue Chain = OrigChain.getOperand(0);
736   if (Chain.getNode() == Load.getNode())
737     Ops.push_back(Load.getOperand(0));
738   else {
739     assert(Chain.getOpcode() == ISD::TokenFactor &&
740            "Unexpected chain operand");
741     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
742       if (Chain.getOperand(i).getNode() == Load.getNode())
743         Ops.push_back(Load.getOperand(0));
744       else
745         Ops.push_back(Chain.getOperand(i));
746     SDValue NewChain =
747       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
748     Ops.clear();
749     Ops.push_back(NewChain);
750   }
751   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
752   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
753   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
754                              Load.getOperand(1), Load.getOperand(2));
755 
756   Ops.clear();
757   Ops.push_back(SDValue(Load.getNode(), 1));
758   Ops.append(Call->op_begin() + 1, Call->op_end());
759   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
760 }
761 
762 /// Return true if call address is a load and it can be
763 /// moved below CALLSEQ_START and the chains leading up to the call.
764 /// Return the CALLSEQ_START by reference as a second output.
765 /// In the case of a tail call, there isn't a callseq node between the call
766 /// chain and the load.
767 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
768   // The transformation is somewhat dangerous if the call's chain was glued to
769   // the call. After MoveBelowOrigChain the load is moved between the call and
770   // the chain, this can create a cycle if the load is not folded. So it is
771   // *really* important that we are sure the load will be folded.
772   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
773     return false;
774   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
775   if (!LD ||
776       !LD->isSimple() ||
777       LD->getAddressingMode() != ISD::UNINDEXED ||
778       LD->getExtensionType() != ISD::NON_EXTLOAD)
779     return false;
780 
781   // Now let's find the callseq_start.
782   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
783     if (!Chain.hasOneUse())
784       return false;
785     Chain = Chain.getOperand(0);
786   }
787 
788   if (!Chain.getNumOperands())
789     return false;
790   // Since we are not checking for AA here, conservatively abort if the chain
791   // writes to memory. It's not safe to move the callee (a load) across a store.
792   if (isa<MemSDNode>(Chain.getNode()) &&
793       cast<MemSDNode>(Chain.getNode())->writeMem())
794     return false;
795   if (Chain.getOperand(0).getNode() == Callee.getNode())
796     return true;
797   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
798       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
799       Callee.getValue(1).hasOneUse())
800     return true;
801   return false;
802 }
803 
804 static bool isEndbrImm64(uint64_t Imm) {
805 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
806 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
807   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
808     return false;
809 
810   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
811                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
812   int i = 24; // 24bit 0x0F1EFA has matched
813   while (i < 64) {
814     uint8_t Byte = (Imm >> i) & 0xFF;
815     if (Byte == 0xF3)
816       return true;
817     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
818       return false;
819     i += 8;
820   }
821 
822   return false;
823 }
824 
825 void X86DAGToDAGISel::PreprocessISelDAG() {
826   bool MadeChange = false;
827   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
828        E = CurDAG->allnodes_end(); I != E; ) {
829     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
830 
831     // This is for CET enhancement.
832     //
833     // ENDBR32 and ENDBR64 have specific opcodes:
834     // ENDBR32: F3 0F 1E FB
835     // ENDBR64: F3 0F 1E FA
836     // And we want that attackers won’t find unintended ENDBR32/64
837     // opcode matches in the binary
838     // Here’s an example:
839     // If the compiler had to generate asm for the following code:
840     // a = 0xF30F1EFA
841     // it could, for example, generate:
842     // mov 0xF30F1EFA, dword ptr[a]
843     // In such a case, the binary would include a gadget that starts
844     // with a fake ENDBR64 opcode. Therefore, we split such generation
845     // into multiple operations, let it not shows in the binary
846     if (N->getOpcode() == ISD::Constant) {
847       MVT VT = N->getSimpleValueType(0);
848       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
849       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
850       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
851         // Check that the cf-protection-branch is enabled.
852         Metadata *CFProtectionBranch =
853           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
854         if (CFProtectionBranch || IndirectBranchTracking) {
855           SDLoc dl(N);
856           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
857           Complement = CurDAG->getNOT(dl, Complement, VT);
858           --I;
859           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
860           ++I;
861           MadeChange = true;
862           continue;
863         }
864       }
865     }
866 
867     // If this is a target specific AND node with no flag usages, turn it back
868     // into ISD::AND to enable test instruction matching.
869     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
870       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
871                                     N->getOperand(0), N->getOperand(1));
872       --I;
873       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
874       ++I;
875       MadeChange = true;
876       continue;
877     }
878 
879     /// Convert vector increment or decrement to sub/add with an all-ones
880     /// constant:
881     /// add X, <1, 1...> --> sub X, <-1, -1...>
882     /// sub X, <1, 1...> --> add X, <-1, -1...>
883     /// The all-ones vector constant can be materialized using a pcmpeq
884     /// instruction that is commonly recognized as an idiom (has no register
885     /// dependency), so that's better/smaller than loading a splat 1 constant.
886     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
887         N->getSimpleValueType(0).isVector()) {
888 
889       APInt SplatVal;
890       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
891           SplatVal.isOneValue()) {
892         SDLoc DL(N);
893 
894         MVT VT = N->getSimpleValueType(0);
895         unsigned NumElts = VT.getSizeInBits() / 32;
896         SDValue AllOnes =
897             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
898         AllOnes = CurDAG->getBitcast(VT, AllOnes);
899 
900         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
901         SDValue Res =
902             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
903         --I;
904         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
905         ++I;
906         MadeChange = true;
907         continue;
908       }
909     }
910 
911     switch (N->getOpcode()) {
912     case X86ISD::VBROADCAST: {
913       MVT VT = N->getSimpleValueType(0);
914       // Emulate v32i16/v64i8 broadcast without BWI.
915       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
916         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
917         SDLoc dl(N);
918         SDValue NarrowBCast =
919             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
920         SDValue Res =
921             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
922                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
923         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
924         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
925                               CurDAG->getIntPtrConstant(Index, dl));
926 
927         --I;
928         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
929         ++I;
930         MadeChange = true;
931         continue;
932       }
933 
934       break;
935     }
936     case X86ISD::VBROADCAST_LOAD: {
937       MVT VT = N->getSimpleValueType(0);
938       // Emulate v32i16/v64i8 broadcast without BWI.
939       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
940         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
941         auto *MemNode = cast<MemSDNode>(N);
942         SDLoc dl(N);
943         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
944         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
945         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
946             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
947             MemNode->getMemOperand());
948         SDValue Res =
949             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
950                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
951         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
952         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
953                               CurDAG->getIntPtrConstant(Index, dl));
954 
955         --I;
956         SDValue To[] = {Res, NarrowBCast.getValue(1)};
957         CurDAG->ReplaceAllUsesWith(N, To);
958         ++I;
959         MadeChange = true;
960         continue;
961       }
962 
963       break;
964     }
965     case ISD::VSELECT: {
966       // Replace VSELECT with non-mask conditions with with BLENDV.
967       if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
968         break;
969 
970       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
971       SDValue Blendv =
972           CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
973                           N->getOperand(0), N->getOperand(1), N->getOperand(2));
974       --I;
975       CurDAG->ReplaceAllUsesWith(N, Blendv.getNode());
976       ++I;
977       MadeChange = true;
978       continue;
979     }
980     case ISD::FP_ROUND:
981     case ISD::STRICT_FP_ROUND:
982     case ISD::FP_TO_SINT:
983     case ISD::FP_TO_UINT:
984     case ISD::STRICT_FP_TO_SINT:
985     case ISD::STRICT_FP_TO_UINT: {
986       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
987       // don't need 2 sets of patterns.
988       if (!N->getSimpleValueType(0).isVector())
989         break;
990 
991       unsigned NewOpc;
992       switch (N->getOpcode()) {
993       default: llvm_unreachable("Unexpected opcode!");
994       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
995       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
996       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
997       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
998       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
999       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
1000       }
1001       SDValue Res;
1002       if (N->isStrictFPOpcode())
1003         Res =
1004             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1005                             {N->getOperand(0), N->getOperand(1)});
1006       else
1007         Res =
1008             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1009                             N->getOperand(0));
1010       --I;
1011       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1012       ++I;
1013       MadeChange = true;
1014       continue;
1015     }
1016     case ISD::SHL:
1017     case ISD::SRA:
1018     case ISD::SRL: {
1019       // Replace vector shifts with their X86 specific equivalent so we don't
1020       // need 2 sets of patterns.
1021       if (!N->getValueType(0).isVector())
1022         break;
1023 
1024       unsigned NewOpc;
1025       switch (N->getOpcode()) {
1026       default: llvm_unreachable("Unexpected opcode!");
1027       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1028       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1029       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1030       }
1031       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1032                                     N->getOperand(0), N->getOperand(1));
1033       --I;
1034       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1035       ++I;
1036       MadeChange = true;
1037       continue;
1038     }
1039     case ISD::ANY_EXTEND:
1040     case ISD::ANY_EXTEND_VECTOR_INREG: {
1041       // Replace vector any extend with the zero extend equivalents so we don't
1042       // need 2 sets of patterns. Ignore vXi1 extensions.
1043       if (!N->getValueType(0).isVector())
1044         break;
1045 
1046       unsigned NewOpc;
1047       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1048         assert(N->getOpcode() == ISD::ANY_EXTEND &&
1049                "Unexpected opcode for mask vector!");
1050         NewOpc = ISD::SIGN_EXTEND;
1051       } else {
1052         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1053                               ? ISD::ZERO_EXTEND
1054                               : ISD::ZERO_EXTEND_VECTOR_INREG;
1055       }
1056 
1057       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1058                                     N->getOperand(0));
1059       --I;
1060       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1061       ++I;
1062       MadeChange = true;
1063       continue;
1064     }
1065     case ISD::FCEIL:
1066     case ISD::STRICT_FCEIL:
1067     case ISD::FFLOOR:
1068     case ISD::STRICT_FFLOOR:
1069     case ISD::FTRUNC:
1070     case ISD::STRICT_FTRUNC:
1071     case ISD::FROUNDEVEN:
1072     case ISD::STRICT_FROUNDEVEN:
1073     case ISD::FNEARBYINT:
1074     case ISD::STRICT_FNEARBYINT:
1075     case ISD::FRINT:
1076     case ISD::STRICT_FRINT: {
1077       // Replace fp rounding with their X86 specific equivalent so we don't
1078       // need 2 sets of patterns.
1079       unsigned Imm;
1080       switch (N->getOpcode()) {
1081       default: llvm_unreachable("Unexpected opcode!");
1082       case ISD::STRICT_FCEIL:
1083       case ISD::FCEIL:      Imm = 0xA; break;
1084       case ISD::STRICT_FFLOOR:
1085       case ISD::FFLOOR:     Imm = 0x9; break;
1086       case ISD::STRICT_FTRUNC:
1087       case ISD::FTRUNC:     Imm = 0xB; break;
1088       case ISD::STRICT_FROUNDEVEN:
1089       case ISD::FROUNDEVEN: Imm = 0x8; break;
1090       case ISD::STRICT_FNEARBYINT:
1091       case ISD::FNEARBYINT: Imm = 0xC; break;
1092       case ISD::STRICT_FRINT:
1093       case ISD::FRINT:      Imm = 0x4; break;
1094       }
1095       SDLoc dl(N);
1096       bool IsStrict = N->isStrictFPOpcode();
1097       SDValue Res;
1098       if (IsStrict)
1099         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1100                               {N->getValueType(0), MVT::Other},
1101                               {N->getOperand(0), N->getOperand(1),
1102                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1103       else
1104         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1105                               N->getOperand(0),
1106                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1107       --I;
1108       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1109       ++I;
1110       MadeChange = true;
1111       continue;
1112     }
1113     case X86ISD::FANDN:
1114     case X86ISD::FAND:
1115     case X86ISD::FOR:
1116     case X86ISD::FXOR: {
1117       // Widen scalar fp logic ops to vector to reduce isel patterns.
1118       // FIXME: Can we do this during lowering/combine.
1119       MVT VT = N->getSimpleValueType(0);
1120       if (VT.isVector() || VT == MVT::f128)
1121         break;
1122 
1123       MVT VecVT = VT == MVT::f64 ? MVT::v2f64 : MVT::v4f32;
1124       SDLoc dl(N);
1125       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1126                                     N->getOperand(0));
1127       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1128                                     N->getOperand(1));
1129 
1130       SDValue Res;
1131       if (Subtarget->hasSSE2()) {
1132         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1133         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1134         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1135         unsigned Opc;
1136         switch (N->getOpcode()) {
1137         default: llvm_unreachable("Unexpected opcode!");
1138         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1139         case X86ISD::FAND:  Opc = ISD::AND;      break;
1140         case X86ISD::FOR:   Opc = ISD::OR;       break;
1141         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
1142         }
1143         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1144         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1145       } else {
1146         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1147       }
1148       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1149                             CurDAG->getIntPtrConstant(0, dl));
1150       --I;
1151       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1152       ++I;
1153       MadeChange = true;
1154       continue;
1155     }
1156     }
1157 
1158     if (OptLevel != CodeGenOpt::None &&
1159         // Only do this when the target can fold the load into the call or
1160         // jmp.
1161         !Subtarget->useIndirectThunkCalls() &&
1162         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1163          (N->getOpcode() == X86ISD::TC_RETURN &&
1164           (Subtarget->is64Bit() ||
1165            !getTargetMachine().isPositionIndependent())))) {
1166       /// Also try moving call address load from outside callseq_start to just
1167       /// before the call to allow it to be folded.
1168       ///
1169       ///     [Load chain]
1170       ///         ^
1171       ///         |
1172       ///       [Load]
1173       ///       ^    ^
1174       ///       |    |
1175       ///      /      \--
1176       ///     /          |
1177       ///[CALLSEQ_START] |
1178       ///     ^          |
1179       ///     |          |
1180       /// [LOAD/C2Reg]   |
1181       ///     |          |
1182       ///      \        /
1183       ///       \      /
1184       ///       [CALL]
1185       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1186       SDValue Chain = N->getOperand(0);
1187       SDValue Load  = N->getOperand(1);
1188       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1189         continue;
1190       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1191       ++NumLoadMoved;
1192       MadeChange = true;
1193       continue;
1194     }
1195 
1196     // Lower fpround and fpextend nodes that target the FP stack to be store and
1197     // load to the stack.  This is a gross hack.  We would like to simply mark
1198     // these as being illegal, but when we do that, legalize produces these when
1199     // it expands calls, then expands these in the same legalize pass.  We would
1200     // like dag combine to be able to hack on these between the call expansion
1201     // and the node legalization.  As such this pass basically does "really
1202     // late" legalization of these inline with the X86 isel pass.
1203     // FIXME: This should only happen when not compiled with -O0.
1204     switch (N->getOpcode()) {
1205     default: continue;
1206     case ISD::FP_ROUND:
1207     case ISD::FP_EXTEND:
1208     {
1209       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1210       MVT DstVT = N->getSimpleValueType(0);
1211 
1212       // If any of the sources are vectors, no fp stack involved.
1213       if (SrcVT.isVector() || DstVT.isVector())
1214         continue;
1215 
1216       // If the source and destination are SSE registers, then this is a legal
1217       // conversion that should not be lowered.
1218       const X86TargetLowering *X86Lowering =
1219           static_cast<const X86TargetLowering *>(TLI);
1220       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1221       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1222       if (SrcIsSSE && DstIsSSE)
1223         continue;
1224 
1225       if (!SrcIsSSE && !DstIsSSE) {
1226         // If this is an FPStack extension, it is a noop.
1227         if (N->getOpcode() == ISD::FP_EXTEND)
1228           continue;
1229         // If this is a value-preserving FPStack truncation, it is a noop.
1230         if (N->getConstantOperandVal(1))
1231           continue;
1232       }
1233 
1234       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1235       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1236       // operations.  Based on this, decide what we want to do.
1237       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1238       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1239       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1240       MachinePointerInfo MPI =
1241           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1242       SDLoc dl(N);
1243 
1244       // FIXME: optimize the case where the src/dest is a load or store?
1245 
1246       SDValue Store = CurDAG->getTruncStore(
1247           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1248       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1249                                           MemTmp, MPI, MemVT);
1250 
1251       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1252       // extload we created.  This will cause general havok on the dag because
1253       // anything below the conversion could be folded into other existing nodes.
1254       // To avoid invalidating 'I', back it up to the convert node.
1255       --I;
1256       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1257       break;
1258     }
1259 
1260     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1261     //dealing with the chain differently, as there is already a preexisting chain.
1262     case ISD::STRICT_FP_ROUND:
1263     case ISD::STRICT_FP_EXTEND:
1264     {
1265       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1266       MVT DstVT = N->getSimpleValueType(0);
1267 
1268       // If any of the sources are vectors, no fp stack involved.
1269       if (SrcVT.isVector() || DstVT.isVector())
1270         continue;
1271 
1272       // If the source and destination are SSE registers, then this is a legal
1273       // conversion that should not be lowered.
1274       const X86TargetLowering *X86Lowering =
1275           static_cast<const X86TargetLowering *>(TLI);
1276       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1277       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1278       if (SrcIsSSE && DstIsSSE)
1279         continue;
1280 
1281       if (!SrcIsSSE && !DstIsSSE) {
1282         // If this is an FPStack extension, it is a noop.
1283         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1284           continue;
1285         // If this is a value-preserving FPStack truncation, it is a noop.
1286         if (N->getConstantOperandVal(2))
1287           continue;
1288       }
1289 
1290       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1291       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1292       // operations.  Based on this, decide what we want to do.
1293       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1294       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1295       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1296       MachinePointerInfo MPI =
1297           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1298       SDLoc dl(N);
1299 
1300       // FIXME: optimize the case where the src/dest is a load or store?
1301 
1302       //Since the operation is StrictFP, use the preexisting chain.
1303       SDValue Store, Result;
1304       if (!SrcIsSSE) {
1305         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1306         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1307         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1308                                             MPI, /*Align*/ None,
1309                                             MachineMemOperand::MOStore);
1310         if (N->getFlags().hasNoFPExcept()) {
1311           SDNodeFlags Flags = Store->getFlags();
1312           Flags.setNoFPExcept(true);
1313           Store->setFlags(Flags);
1314         }
1315       } else {
1316         assert(SrcVT == MemVT && "Unexpected VT!");
1317         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1318                                  MPI);
1319       }
1320 
1321       if (!DstIsSSE) {
1322         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1323         SDValue Ops[] = {Store, MemTmp};
1324         Result = CurDAG->getMemIntrinsicNode(
1325             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1326             /*Align*/ None, MachineMemOperand::MOLoad);
1327         if (N->getFlags().hasNoFPExcept()) {
1328           SDNodeFlags Flags = Result->getFlags();
1329           Flags.setNoFPExcept(true);
1330           Result->setFlags(Flags);
1331         }
1332       } else {
1333         assert(DstVT == MemVT && "Unexpected VT!");
1334         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1335       }
1336 
1337       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1338       // extload we created.  This will cause general havok on the dag because
1339       // anything below the conversion could be folded into other existing nodes.
1340       // To avoid invalidating 'I', back it up to the convert node.
1341       --I;
1342       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1343       break;
1344     }
1345     }
1346 
1347 
1348     // Now that we did that, the node is dead.  Increment the iterator to the
1349     // next node to process, then delete N.
1350     ++I;
1351     MadeChange = true;
1352   }
1353 
1354   // Remove any dead nodes that may have been left behind.
1355   if (MadeChange)
1356     CurDAG->RemoveDeadNodes();
1357 }
1358 
1359 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1360 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1361   unsigned Opc = N->getMachineOpcode();
1362   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1363       Opc != X86::MOVSX64rr8)
1364     return false;
1365 
1366   SDValue N0 = N->getOperand(0);
1367 
1368   // We need to be extracting the lower bit of an extend.
1369   if (!N0.isMachineOpcode() ||
1370       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1371       N0.getConstantOperandVal(1) != X86::sub_8bit)
1372     return false;
1373 
1374   // We're looking for either a movsx or movzx to match the original opcode.
1375   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1376                                                 : X86::MOVSX32rr8_NOREX;
1377   SDValue N00 = N0.getOperand(0);
1378   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1379     return false;
1380 
1381   if (Opc == X86::MOVSX64rr8) {
1382     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1383     // to 64.
1384     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1385                                                    MVT::i64, N00);
1386     ReplaceUses(N, Extend);
1387   } else {
1388     // Ok we can drop this extend and just use the original extend.
1389     ReplaceUses(N, N00.getNode());
1390   }
1391 
1392   return true;
1393 }
1394 
1395 void X86DAGToDAGISel::PostprocessISelDAG() {
1396   // Skip peepholes at -O0.
1397   if (TM.getOptLevel() == CodeGenOpt::None)
1398     return;
1399 
1400   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1401 
1402   bool MadeChange = false;
1403   while (Position != CurDAG->allnodes_begin()) {
1404     SDNode *N = &*--Position;
1405     // Skip dead nodes and any non-machine opcodes.
1406     if (N->use_empty() || !N->isMachineOpcode())
1407       continue;
1408 
1409     if (tryOptimizeRem8Extend(N)) {
1410       MadeChange = true;
1411       continue;
1412     }
1413 
1414     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1415     // the same. Rewrite to remove the AND.
1416     unsigned Opc = N->getMachineOpcode();
1417     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1418          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1419         N->getOperand(0) == N->getOperand(1) &&
1420         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1421         N->getOperand(0).isMachineOpcode()) {
1422       SDValue And = N->getOperand(0);
1423       unsigned N0Opc = And.getMachineOpcode();
1424       if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1425           N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
1426         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1427                                                      MVT::i32,
1428                                                      And.getOperand(0),
1429                                                      And.getOperand(1));
1430         ReplaceUses(N, Test);
1431         MadeChange = true;
1432         continue;
1433       }
1434       if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1435           N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
1436         unsigned NewOpc;
1437         switch (N0Opc) {
1438         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1439         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1440         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1441         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1442         }
1443 
1444         // Need to swap the memory and register operand.
1445         SDValue Ops[] = { And.getOperand(1),
1446                           And.getOperand(2),
1447                           And.getOperand(3),
1448                           And.getOperand(4),
1449                           And.getOperand(5),
1450                           And.getOperand(0),
1451                           And.getOperand(6)  /* Chain */ };
1452         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1453                                                      MVT::i32, MVT::Other, Ops);
1454         CurDAG->setNodeMemRefs(
1455             Test, cast<MachineSDNode>(And.getNode())->memoperands());
1456         ReplaceUses(N, Test);
1457         MadeChange = true;
1458         continue;
1459       }
1460     }
1461 
1462     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1463     // used. We're doing this late so we can prefer to fold the AND into masked
1464     // comparisons. Doing that can be better for the live range of the mask
1465     // register.
1466     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1467          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1468         N->getOperand(0) == N->getOperand(1) &&
1469         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1470         N->getOperand(0).isMachineOpcode() &&
1471         onlyUsesZeroFlag(SDValue(N, 0))) {
1472       SDValue And = N->getOperand(0);
1473       unsigned N0Opc = And.getMachineOpcode();
1474       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1475       // KAND instructions and KTEST use the same ISA feature.
1476       if (N0Opc == X86::KANDBrr ||
1477           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1478           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1479         unsigned NewOpc;
1480         switch (Opc) {
1481         default: llvm_unreachable("Unexpected opcode!");
1482         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1483         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1484         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1485         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1486         }
1487         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1488                                                       MVT::i32,
1489                                                       And.getOperand(0),
1490                                                       And.getOperand(1));
1491         ReplaceUses(N, KTest);
1492         MadeChange = true;
1493         continue;
1494       }
1495     }
1496 
1497     // Attempt to remove vectors moves that were inserted to zero upper bits.
1498     if (Opc != TargetOpcode::SUBREG_TO_REG)
1499       continue;
1500 
1501     unsigned SubRegIdx = N->getConstantOperandVal(2);
1502     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1503       continue;
1504 
1505     SDValue Move = N->getOperand(1);
1506     if (!Move.isMachineOpcode())
1507       continue;
1508 
1509     // Make sure its one of the move opcodes we recognize.
1510     switch (Move.getMachineOpcode()) {
1511     default:
1512       continue;
1513     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1514     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1515     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1516     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1517     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1518     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1519     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1520     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1521     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1522     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1523     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1524     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1525     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1526     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1527       break;
1528     }
1529 
1530     SDValue In = Move.getOperand(0);
1531     if (!In.isMachineOpcode() ||
1532         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1533       continue;
1534 
1535     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1536     // the SHA instructions which use a legacy encoding.
1537     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1538     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1539         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1540         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1541       continue;
1542 
1543     // Producing instruction is another vector instruction. We can drop the
1544     // move.
1545     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1546     MadeChange = true;
1547   }
1548 
1549   if (MadeChange)
1550     CurDAG->RemoveDeadNodes();
1551 }
1552 
1553 
1554 /// Emit any code that needs to be executed only in the main function.
1555 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1556   if (Subtarget->isTargetCygMing()) {
1557     TargetLowering::ArgListTy Args;
1558     auto &DL = CurDAG->getDataLayout();
1559 
1560     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1561     CLI.setChain(CurDAG->getRoot())
1562         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1563                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1564                    std::move(Args));
1565     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1566     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1567     CurDAG->setRoot(Result.second);
1568   }
1569 }
1570 
1571 void X86DAGToDAGISel::emitFunctionEntryCode() {
1572   // If this is main, emit special code for main.
1573   const Function &F = MF->getFunction();
1574   if (F.hasExternalLinkage() && F.getName() == "main")
1575     emitSpecialCodeForMain();
1576 }
1577 
1578 static bool isDispSafeForFrameIndex(int64_t Val) {
1579   // On 64-bit platforms, we can run into an issue where a frame index
1580   // includes a displacement that, when added to the explicit displacement,
1581   // will overflow the displacement field. Assuming that the frame index
1582   // displacement fits into a 31-bit integer  (which is only slightly more
1583   // aggressive than the current fundamental assumption that it fits into
1584   // a 32-bit integer), a 31-bit disp should always be safe.
1585   return isInt<31>(Val);
1586 }
1587 
1588 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1589                                             X86ISelAddressMode &AM) {
1590   // We may have already matched a displacement and the caller just added the
1591   // symbolic displacement. So we still need to do the checks even if Offset
1592   // is zero.
1593 
1594   int64_t Val = AM.Disp + Offset;
1595 
1596   // Cannot combine ExternalSymbol displacements with integer offsets.
1597   if (Val != 0 && (AM.ES || AM.MCSym))
1598     return true;
1599 
1600   CodeModel::Model M = TM.getCodeModel();
1601   if (Subtarget->is64Bit()) {
1602     if (Val != 0 &&
1603         !X86::isOffsetSuitableForCodeModel(Val, M,
1604                                            AM.hasSymbolicDisplacement()))
1605       return true;
1606     // In addition to the checks required for a register base, check that
1607     // we do not try to use an unsafe Disp with a frame index.
1608     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1609         !isDispSafeForFrameIndex(Val))
1610       return true;
1611   }
1612   AM.Disp = Val;
1613   return false;
1614 
1615 }
1616 
1617 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1618                                          bool AllowSegmentRegForX32) {
1619   SDValue Address = N->getOperand(1);
1620 
1621   // load gs:0 -> GS segment register.
1622   // load fs:0 -> FS segment register.
1623   //
1624   // This optimization is generally valid because the GNU TLS model defines that
1625   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1626   // with 32-bit registers, as we get in ILP32 mode, those registers are first
1627   // zero-extended to 64 bits and then added it to the base address, which gives
1628   // unwanted results when the register holds a negative value.
1629   // For more information see http://people.redhat.com/drepper/tls.pdf
1630   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) {
1631     if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
1632         !IndirectTlsSegRefs &&
1633         (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1634          Subtarget->isTargetFuchsia())) {
1635       if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1636         return true;
1637       switch (N->getPointerInfo().getAddrSpace()) {
1638       case X86AS::GS:
1639         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1640         return false;
1641       case X86AS::FS:
1642         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1643         return false;
1644       // Address space X86AS::SS is not handled here, because it is not used to
1645       // address TLS areas.
1646       }
1647     }
1648   }
1649 
1650   return true;
1651 }
1652 
1653 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1654 /// mode. These wrap things that will resolve down into a symbol reference.
1655 /// If no match is possible, this returns true, otherwise it returns false.
1656 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1657   // If the addressing mode already has a symbol as the displacement, we can
1658   // never match another symbol.
1659   if (AM.hasSymbolicDisplacement())
1660     return true;
1661 
1662   bool IsRIPRelTLS = false;
1663   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1664   if (IsRIPRel) {
1665     SDValue Val = N.getOperand(0);
1666     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1667       IsRIPRelTLS = true;
1668   }
1669 
1670   // We can't use an addressing mode in the 64-bit large code model.
1671   // Global TLS addressing is an exception. In the medium code model,
1672   // we use can use a mode when RIP wrappers are present.
1673   // That signifies access to globals that are known to be "near",
1674   // such as the GOT itself.
1675   CodeModel::Model M = TM.getCodeModel();
1676   if (Subtarget->is64Bit() &&
1677       ((M == CodeModel::Large && !IsRIPRelTLS) ||
1678        (M == CodeModel::Medium && !IsRIPRel)))
1679     return true;
1680 
1681   // Base and index reg must be 0 in order to use %rip as base.
1682   if (IsRIPRel && AM.hasBaseOrIndexReg())
1683     return true;
1684 
1685   // Make a local copy in case we can't do this fold.
1686   X86ISelAddressMode Backup = AM;
1687 
1688   int64_t Offset = 0;
1689   SDValue N0 = N.getOperand(0);
1690   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1691     AM.GV = G->getGlobal();
1692     AM.SymbolFlags = G->getTargetFlags();
1693     Offset = G->getOffset();
1694   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1695     AM.CP = CP->getConstVal();
1696     AM.Alignment = CP->getAlign();
1697     AM.SymbolFlags = CP->getTargetFlags();
1698     Offset = CP->getOffset();
1699   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1700     AM.ES = S->getSymbol();
1701     AM.SymbolFlags = S->getTargetFlags();
1702   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1703     AM.MCSym = S->getMCSymbol();
1704   } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
1705     AM.JT = J->getIndex();
1706     AM.SymbolFlags = J->getTargetFlags();
1707   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1708     AM.BlockAddr = BA->getBlockAddress();
1709     AM.SymbolFlags = BA->getTargetFlags();
1710     Offset = BA->getOffset();
1711   } else
1712     llvm_unreachable("Unhandled symbol reference node.");
1713 
1714   if (foldOffsetIntoAddress(Offset, AM)) {
1715     AM = Backup;
1716     return true;
1717   }
1718 
1719   if (IsRIPRel)
1720     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1721 
1722   // Commit the changes now that we know this fold is safe.
1723   return false;
1724 }
1725 
1726 /// Add the specified node to the specified addressing mode, returning true if
1727 /// it cannot be done. This just pattern matches for the addressing mode.
1728 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1729   if (matchAddressRecursively(N, AM, 0))
1730     return true;
1731 
1732   // Post-processing: Make a second attempt to fold a load, if we now know
1733   // that there will not be any other register. This is only performed for
1734   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1735   // any foldable load the first time.
1736   if (Subtarget->isTarget64BitILP32() &&
1737       AM.BaseType == X86ISelAddressMode::RegBase &&
1738       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1739     SDValue Save_Base_Reg = AM.Base_Reg;
1740     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1741       AM.Base_Reg = SDValue();
1742       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1743         AM.Base_Reg = Save_Base_Reg;
1744     }
1745   }
1746 
1747   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1748   // a smaller encoding and avoids a scaled-index.
1749   if (AM.Scale == 2 &&
1750       AM.BaseType == X86ISelAddressMode::RegBase &&
1751       AM.Base_Reg.getNode() == nullptr) {
1752     AM.Base_Reg = AM.IndexReg;
1753     AM.Scale = 1;
1754   }
1755 
1756   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1757   // because it has a smaller encoding.
1758   // TODO: Which other code models can use this?
1759   switch (TM.getCodeModel()) {
1760     default: break;
1761     case CodeModel::Small:
1762     case CodeModel::Kernel:
1763       if (Subtarget->is64Bit() &&
1764           AM.Scale == 1 &&
1765           AM.BaseType == X86ISelAddressMode::RegBase &&
1766           AM.Base_Reg.getNode() == nullptr &&
1767           AM.IndexReg.getNode() == nullptr &&
1768           AM.SymbolFlags == X86II::MO_NO_FLAG &&
1769           AM.hasSymbolicDisplacement())
1770         AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1771       break;
1772   }
1773 
1774   return false;
1775 }
1776 
1777 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1778                                unsigned Depth) {
1779   // Add an artificial use to this node so that we can keep track of
1780   // it if it gets CSE'd with a different node.
1781   HandleSDNode Handle(N);
1782 
1783   X86ISelAddressMode Backup = AM;
1784   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1785       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1786     return false;
1787   AM = Backup;
1788 
1789   // Try again after commutating the operands.
1790   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1791                                Depth + 1) &&
1792       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1793     return false;
1794   AM = Backup;
1795 
1796   // If we couldn't fold both operands into the address at the same time,
1797   // see if we can just put each operand into a register and fold at least
1798   // the add.
1799   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1800       !AM.Base_Reg.getNode() &&
1801       !AM.IndexReg.getNode()) {
1802     N = Handle.getValue();
1803     AM.Base_Reg = N.getOperand(0);
1804     AM.IndexReg = N.getOperand(1);
1805     AM.Scale = 1;
1806     return false;
1807   }
1808   N = Handle.getValue();
1809   return true;
1810 }
1811 
1812 // Insert a node into the DAG at least before the Pos node's position. This
1813 // will reposition the node as needed, and will assign it a node ID that is <=
1814 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1815 // IDs! The selection DAG must no longer depend on their uniqueness when this
1816 // is used.
1817 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1818   if (N->getNodeId() == -1 ||
1819       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1820        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1821     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1822     // Mark Node as invalid for pruning as after this it may be a successor to a
1823     // selected node but otherwise be in the same position of Pos.
1824     // Conservatively mark it with the same -abs(Id) to assure node id
1825     // invariant is preserved.
1826     N->setNodeId(Pos->getNodeId());
1827     SelectionDAGISel::InvalidateNodeId(N.getNode());
1828   }
1829 }
1830 
1831 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1832 // safe. This allows us to convert the shift and and into an h-register
1833 // extract and a scaled index. Returns false if the simplification is
1834 // performed.
1835 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1836                                       uint64_t Mask,
1837                                       SDValue Shift, SDValue X,
1838                                       X86ISelAddressMode &AM) {
1839   if (Shift.getOpcode() != ISD::SRL ||
1840       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1841       !Shift.hasOneUse())
1842     return true;
1843 
1844   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1845   if (ScaleLog <= 0 || ScaleLog >= 4 ||
1846       Mask != (0xffu << ScaleLog))
1847     return true;
1848 
1849   MVT VT = N.getSimpleValueType();
1850   SDLoc DL(N);
1851   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1852   SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1853   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1854   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1855   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1856   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1857 
1858   // Insert the new nodes into the topological ordering. We must do this in
1859   // a valid topological ordering as nothing is going to go back and re-sort
1860   // these nodes. We continually insert before 'N' in sequence as this is
1861   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1862   // hierarchy left to express.
1863   insertDAGNode(DAG, N, Eight);
1864   insertDAGNode(DAG, N, Srl);
1865   insertDAGNode(DAG, N, NewMask);
1866   insertDAGNode(DAG, N, And);
1867   insertDAGNode(DAG, N, ShlCount);
1868   insertDAGNode(DAG, N, Shl);
1869   DAG.ReplaceAllUsesWith(N, Shl);
1870   DAG.RemoveDeadNode(N.getNode());
1871   AM.IndexReg = And;
1872   AM.Scale = (1 << ScaleLog);
1873   return false;
1874 }
1875 
1876 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1877 // allows us to fold the shift into this addressing mode. Returns false if the
1878 // transform succeeded.
1879 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1880                                         X86ISelAddressMode &AM) {
1881   SDValue Shift = N.getOperand(0);
1882 
1883   // Use a signed mask so that shifting right will insert sign bits. These
1884   // bits will be removed when we shift the result left so it doesn't matter
1885   // what we use. This might allow a smaller immediate encoding.
1886   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
1887 
1888   // If we have an any_extend feeding the AND, look through it to see if there
1889   // is a shift behind it. But only if the AND doesn't use the extended bits.
1890   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
1891   bool FoundAnyExtend = false;
1892   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
1893       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
1894       isUInt<32>(Mask)) {
1895     FoundAnyExtend = true;
1896     Shift = Shift.getOperand(0);
1897   }
1898 
1899   if (Shift.getOpcode() != ISD::SHL ||
1900       !isa<ConstantSDNode>(Shift.getOperand(1)))
1901     return true;
1902 
1903   SDValue X = Shift.getOperand(0);
1904 
1905   // Not likely to be profitable if either the AND or SHIFT node has more
1906   // than one use (unless all uses are for address computation). Besides,
1907   // isel mechanism requires their node ids to be reused.
1908   if (!N.hasOneUse() || !Shift.hasOneUse())
1909     return true;
1910 
1911   // Verify that the shift amount is something we can fold.
1912   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1913   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1914     return true;
1915 
1916   MVT VT = N.getSimpleValueType();
1917   SDLoc DL(N);
1918   if (FoundAnyExtend) {
1919     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
1920     insertDAGNode(DAG, N, NewX);
1921     X = NewX;
1922   }
1923 
1924   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
1925   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
1926   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
1927 
1928   // Insert the new nodes into the topological ordering. We must do this in
1929   // a valid topological ordering as nothing is going to go back and re-sort
1930   // these nodes. We continually insert before 'N' in sequence as this is
1931   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1932   // hierarchy left to express.
1933   insertDAGNode(DAG, N, NewMask);
1934   insertDAGNode(DAG, N, NewAnd);
1935   insertDAGNode(DAG, N, NewShift);
1936   DAG.ReplaceAllUsesWith(N, NewShift);
1937   DAG.RemoveDeadNode(N.getNode());
1938 
1939   AM.Scale = 1 << ShiftAmt;
1940   AM.IndexReg = NewAnd;
1941   return false;
1942 }
1943 
1944 // Implement some heroics to detect shifts of masked values where the mask can
1945 // be replaced by extending the shift and undoing that in the addressing mode
1946 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
1947 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
1948 // the addressing mode. This results in code such as:
1949 //
1950 //   int f(short *y, int *lookup_table) {
1951 //     ...
1952 //     return *y + lookup_table[*y >> 11];
1953 //   }
1954 //
1955 // Turning into:
1956 //   movzwl (%rdi), %eax
1957 //   movl %eax, %ecx
1958 //   shrl $11, %ecx
1959 //   addl (%rsi,%rcx,4), %eax
1960 //
1961 // Instead of:
1962 //   movzwl (%rdi), %eax
1963 //   movl %eax, %ecx
1964 //   shrl $9, %ecx
1965 //   andl $124, %rcx
1966 //   addl (%rsi,%rcx), %eax
1967 //
1968 // Note that this function assumes the mask is provided as a mask *after* the
1969 // value is shifted. The input chain may or may not match that, but computing
1970 // such a mask is trivial.
1971 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1972                                     uint64_t Mask,
1973                                     SDValue Shift, SDValue X,
1974                                     X86ISelAddressMode &AM) {
1975   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1976       !isa<ConstantSDNode>(Shift.getOperand(1)))
1977     return true;
1978 
1979   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1980   unsigned MaskLZ = countLeadingZeros(Mask);
1981   unsigned MaskTZ = countTrailingZeros(Mask);
1982 
1983   // The amount of shift we're trying to fit into the addressing mode is taken
1984   // from the trailing zeros of the mask.
1985   unsigned AMShiftAmt = MaskTZ;
1986 
1987   // There is nothing we can do here unless the mask is removing some bits.
1988   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1989   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
1990 
1991   // We also need to ensure that mask is a continuous run of bits.
1992   if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1993 
1994   // Scale the leading zero count down based on the actual size of the value.
1995   // Also scale it down based on the size of the shift.
1996   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1997   if (MaskLZ < ScaleDown)
1998     return true;
1999   MaskLZ -= ScaleDown;
2000 
2001   // The final check is to ensure that any masked out high bits of X are
2002   // already known to be zero. Otherwise, the mask has a semantic impact
2003   // other than masking out a couple of low bits. Unfortunately, because of
2004   // the mask, zero extensions will be removed from operands in some cases.
2005   // This code works extra hard to look through extensions because we can
2006   // replace them with zero extensions cheaply if necessary.
2007   bool ReplacingAnyExtend = false;
2008   if (X.getOpcode() == ISD::ANY_EXTEND) {
2009     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2010                           X.getOperand(0).getSimpleValueType().getSizeInBits();
2011     // Assume that we'll replace the any-extend with a zero-extend, and
2012     // narrow the search to the extended value.
2013     X = X.getOperand(0);
2014     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2015     ReplacingAnyExtend = true;
2016   }
2017   APInt MaskedHighBits =
2018     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2019   KnownBits Known = DAG.computeKnownBits(X);
2020   if (MaskedHighBits != Known.Zero) return true;
2021 
2022   // We've identified a pattern that can be transformed into a single shift
2023   // and an addressing mode. Make it so.
2024   MVT VT = N.getSimpleValueType();
2025   if (ReplacingAnyExtend) {
2026     assert(X.getValueType() != VT);
2027     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2028     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2029     insertDAGNode(DAG, N, NewX);
2030     X = NewX;
2031   }
2032   SDLoc DL(N);
2033   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2034   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2035   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2036   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
2037 
2038   // Insert the new nodes into the topological ordering. We must do this in
2039   // a valid topological ordering as nothing is going to go back and re-sort
2040   // these nodes. We continually insert before 'N' in sequence as this is
2041   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2042   // hierarchy left to express.
2043   insertDAGNode(DAG, N, NewSRLAmt);
2044   insertDAGNode(DAG, N, NewSRL);
2045   insertDAGNode(DAG, N, NewSHLAmt);
2046   insertDAGNode(DAG, N, NewSHL);
2047   DAG.ReplaceAllUsesWith(N, NewSHL);
2048   DAG.RemoveDeadNode(N.getNode());
2049 
2050   AM.Scale = 1 << AMShiftAmt;
2051   AM.IndexReg = NewSRL;
2052   return false;
2053 }
2054 
2055 // Transform "(X >> SHIFT) & (MASK << C1)" to
2056 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2057 // matched to a BEXTR later. Returns false if the simplification is performed.
2058 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2059                                    uint64_t Mask,
2060                                    SDValue Shift, SDValue X,
2061                                    X86ISelAddressMode &AM,
2062                                    const X86Subtarget &Subtarget) {
2063   if (Shift.getOpcode() != ISD::SRL ||
2064       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2065       !Shift.hasOneUse() || !N.hasOneUse())
2066     return true;
2067 
2068   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2069   if (!Subtarget.hasTBM() &&
2070       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2071     return true;
2072 
2073   // We need to ensure that mask is a continuous run of bits.
2074   if (!isShiftedMask_64(Mask)) return true;
2075 
2076   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2077 
2078   // The amount of shift we're trying to fit into the addressing mode is taken
2079   // from the trailing zeros of the mask.
2080   unsigned AMShiftAmt = countTrailingZeros(Mask);
2081 
2082   // There is nothing we can do here unless the mask is removing some bits.
2083   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2084   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2085 
2086   MVT VT = N.getSimpleValueType();
2087   SDLoc DL(N);
2088   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2089   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2090   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
2091   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
2092   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2093   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
2094 
2095   // Insert the new nodes into the topological ordering. We must do this in
2096   // a valid topological ordering as nothing is going to go back and re-sort
2097   // these nodes. We continually insert before 'N' in sequence as this is
2098   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2099   // hierarchy left to express.
2100   insertDAGNode(DAG, N, NewSRLAmt);
2101   insertDAGNode(DAG, N, NewSRL);
2102   insertDAGNode(DAG, N, NewMask);
2103   insertDAGNode(DAG, N, NewAnd);
2104   insertDAGNode(DAG, N, NewSHLAmt);
2105   insertDAGNode(DAG, N, NewSHL);
2106   DAG.ReplaceAllUsesWith(N, NewSHL);
2107   DAG.RemoveDeadNode(N.getNode());
2108 
2109   AM.Scale = 1 << AMShiftAmt;
2110   AM.IndexReg = NewAnd;
2111   return false;
2112 }
2113 
2114 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2115                                               unsigned Depth) {
2116   SDLoc dl(N);
2117   LLVM_DEBUG({
2118     dbgs() << "MatchAddress: ";
2119     AM.dump(CurDAG);
2120   });
2121   // Limit recursion.
2122   if (Depth > 5)
2123     return matchAddressBase(N, AM);
2124 
2125   // If this is already a %rip relative address, we can only merge immediates
2126   // into it.  Instead of handling this in every case, we handle it here.
2127   // RIP relative addressing: %rip + 32-bit displacement!
2128   if (AM.isRIPRelative()) {
2129     // FIXME: JumpTable and ExternalSymbol address currently don't like
2130     // displacements.  It isn't very important, but this should be fixed for
2131     // consistency.
2132     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2133       return true;
2134 
2135     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
2136       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2137         return false;
2138     return true;
2139   }
2140 
2141   switch (N.getOpcode()) {
2142   default: break;
2143   case ISD::LOCAL_RECOVER: {
2144     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2145       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2146         // Use the symbol and don't prefix it.
2147         AM.MCSym = ESNode->getMCSymbol();
2148         return false;
2149       }
2150     break;
2151   }
2152   case ISD::Constant: {
2153     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2154     if (!foldOffsetIntoAddress(Val, AM))
2155       return false;
2156     break;
2157   }
2158 
2159   case X86ISD::Wrapper:
2160   case X86ISD::WrapperRIP:
2161     if (!matchWrapper(N, AM))
2162       return false;
2163     break;
2164 
2165   case ISD::LOAD:
2166     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2167       return false;
2168     break;
2169 
2170   case ISD::FrameIndex:
2171     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2172         AM.Base_Reg.getNode() == nullptr &&
2173         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2174       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2175       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2176       return false;
2177     }
2178     break;
2179 
2180   case ISD::SHL:
2181     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2182       break;
2183 
2184     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2185       unsigned Val = CN->getZExtValue();
2186       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2187       // that the base operand remains free for further matching. If
2188       // the base doesn't end up getting used, a post-processing step
2189       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2190       if (Val == 1 || Val == 2 || Val == 3) {
2191         AM.Scale = 1 << Val;
2192         SDValue ShVal = N.getOperand(0);
2193 
2194         // Okay, we know that we have a scale by now.  However, if the scaled
2195         // value is an add of something and a constant, we can fold the
2196         // constant into the disp field here.
2197         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
2198           AM.IndexReg = ShVal.getOperand(0);
2199           ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
2200           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
2201           if (!foldOffsetIntoAddress(Disp, AM))
2202             return false;
2203         }
2204 
2205         AM.IndexReg = ShVal;
2206         return false;
2207       }
2208     }
2209     break;
2210 
2211   case ISD::SRL: {
2212     // Scale must not be used already.
2213     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2214 
2215     // We only handle up to 64-bit values here as those are what matter for
2216     // addressing mode optimizations.
2217     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2218            "Unexpected value size!");
2219 
2220     SDValue And = N.getOperand(0);
2221     if (And.getOpcode() != ISD::AND) break;
2222     SDValue X = And.getOperand(0);
2223 
2224     // The mask used for the transform is expected to be post-shift, but we
2225     // found the shift first so just apply the shift to the mask before passing
2226     // it down.
2227     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2228         !isa<ConstantSDNode>(And.getOperand(1)))
2229       break;
2230     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2231 
2232     // Try to fold the mask and shift into the scale, and return false if we
2233     // succeed.
2234     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2235       return false;
2236     break;
2237   }
2238 
2239   case ISD::SMUL_LOHI:
2240   case ISD::UMUL_LOHI:
2241     // A mul_lohi where we need the low part can be folded as a plain multiply.
2242     if (N.getResNo() != 0) break;
2243     LLVM_FALLTHROUGH;
2244   case ISD::MUL:
2245   case X86ISD::MUL_IMM:
2246     // X*[3,5,9] -> X+X*[2,4,8]
2247     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2248         AM.Base_Reg.getNode() == nullptr &&
2249         AM.IndexReg.getNode() == nullptr) {
2250       if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2251         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2252             CN->getZExtValue() == 9) {
2253           AM.Scale = unsigned(CN->getZExtValue())-1;
2254 
2255           SDValue MulVal = N.getOperand(0);
2256           SDValue Reg;
2257 
2258           // Okay, we know that we have a scale by now.  However, if the scaled
2259           // value is an add of something and a constant, we can fold the
2260           // constant into the disp field here.
2261           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2262               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2263             Reg = MulVal.getOperand(0);
2264             ConstantSDNode *AddVal =
2265               cast<ConstantSDNode>(MulVal.getOperand(1));
2266             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2267             if (foldOffsetIntoAddress(Disp, AM))
2268               Reg = N.getOperand(0);
2269           } else {
2270             Reg = N.getOperand(0);
2271           }
2272 
2273           AM.IndexReg = AM.Base_Reg = Reg;
2274           return false;
2275         }
2276     }
2277     break;
2278 
2279   case ISD::SUB: {
2280     // Given A-B, if A can be completely folded into the address and
2281     // the index field with the index field unused, use -B as the index.
2282     // This is a win if a has multiple parts that can be folded into
2283     // the address. Also, this saves a mov if the base register has
2284     // other uses, since it avoids a two-address sub instruction, however
2285     // it costs an additional mov if the index register has other uses.
2286 
2287     // Add an artificial use to this node so that we can keep track of
2288     // it if it gets CSE'd with a different node.
2289     HandleSDNode Handle(N);
2290 
2291     // Test if the LHS of the sub can be folded.
2292     X86ISelAddressMode Backup = AM;
2293     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2294       N = Handle.getValue();
2295       AM = Backup;
2296       break;
2297     }
2298     N = Handle.getValue();
2299     // Test if the index field is free for use.
2300     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2301       AM = Backup;
2302       break;
2303     }
2304 
2305     int Cost = 0;
2306     SDValue RHS = N.getOperand(1);
2307     // If the RHS involves a register with multiple uses, this
2308     // transformation incurs an extra mov, due to the neg instruction
2309     // clobbering its operand.
2310     if (!RHS.getNode()->hasOneUse() ||
2311         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2312         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2313         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2314         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2315          RHS.getOperand(0).getValueType() == MVT::i32))
2316       ++Cost;
2317     // If the base is a register with multiple uses, this
2318     // transformation may save a mov.
2319     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2320          !AM.Base_Reg.getNode()->hasOneUse()) ||
2321         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2322       --Cost;
2323     // If the folded LHS was interesting, this transformation saves
2324     // address arithmetic.
2325     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2326         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2327         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2328       --Cost;
2329     // If it doesn't look like it may be an overall win, don't do it.
2330     if (Cost >= 0) {
2331       AM = Backup;
2332       break;
2333     }
2334 
2335     // Ok, the transformation is legal and appears profitable. Go for it.
2336     // Negation will be emitted later to avoid creating dangling nodes if this
2337     // was an unprofitable LEA.
2338     AM.IndexReg = RHS;
2339     AM.NegateIndex = true;
2340     AM.Scale = 1;
2341     return false;
2342   }
2343 
2344   case ISD::ADD:
2345     if (!matchAdd(N, AM, Depth))
2346       return false;
2347     break;
2348 
2349   case ISD::OR:
2350     // We want to look through a transform in InstCombine and DAGCombiner that
2351     // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
2352     // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
2353     // An 'lea' can then be used to match the shift (multiply) and add:
2354     // and $1, %esi
2355     // lea (%rsi, %rdi, 8), %rax
2356     if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
2357         !matchAdd(N, AM, Depth))
2358       return false;
2359     break;
2360 
2361   case ISD::AND: {
2362     // Perform some heroic transforms on an and of a constant-count shift
2363     // with a constant to enable use of the scaled offset field.
2364 
2365     // Scale must not be used already.
2366     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2367 
2368     // We only handle up to 64-bit values here as those are what matter for
2369     // addressing mode optimizations.
2370     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2371            "Unexpected value size!");
2372 
2373     if (!isa<ConstantSDNode>(N.getOperand(1)))
2374       break;
2375 
2376     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2377       SDValue Shift = N.getOperand(0);
2378       SDValue X = Shift.getOperand(0);
2379 
2380       uint64_t Mask = N.getConstantOperandVal(1);
2381 
2382       // Try to fold the mask and shift into an extract and scale.
2383       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2384         return false;
2385 
2386       // Try to fold the mask and shift directly into the scale.
2387       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2388         return false;
2389 
2390       // Try to fold the mask and shift into BEXTR and scale.
2391       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2392         return false;
2393     }
2394 
2395     // Try to swap the mask and shift to place shifts which can be done as
2396     // a scale on the outside of the mask.
2397     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2398       return false;
2399 
2400     break;
2401   }
2402   case ISD::ZERO_EXTEND: {
2403     // Try to widen a zexted shift left to the same size as its use, so we can
2404     // match the shift as a scale factor.
2405     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2406       break;
2407     if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
2408       break;
2409 
2410     // Give up if the shift is not a valid scale factor [1,2,3].
2411     SDValue Shl = N.getOperand(0);
2412     auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
2413     if (!ShAmtC || ShAmtC->getZExtValue() > 3)
2414       break;
2415 
2416     // The narrow shift must only shift out zero bits (it must be 'nuw').
2417     // That makes it safe to widen to the destination type.
2418     APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
2419                                             ShAmtC->getZExtValue());
2420     if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
2421       break;
2422 
2423     // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
2424     MVT VT = N.getSimpleValueType();
2425     SDLoc DL(N);
2426     SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
2427     SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
2428 
2429     // Convert the shift to scale factor.
2430     AM.Scale = 1 << ShAmtC->getZExtValue();
2431     AM.IndexReg = Zext;
2432 
2433     insertDAGNode(*CurDAG, N, Zext);
2434     insertDAGNode(*CurDAG, N, NewShl);
2435     CurDAG->ReplaceAllUsesWith(N, NewShl);
2436     CurDAG->RemoveDeadNode(N.getNode());
2437     return false;
2438   }
2439   }
2440 
2441   return matchAddressBase(N, AM);
2442 }
2443 
2444 /// Helper for MatchAddress. Add the specified node to the
2445 /// specified addressing mode without any further recursion.
2446 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2447   // Is the base register already occupied?
2448   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2449     // If so, check to see if the scale index register is set.
2450     if (!AM.IndexReg.getNode()) {
2451       AM.IndexReg = N;
2452       AM.Scale = 1;
2453       return false;
2454     }
2455 
2456     // Otherwise, we cannot select it.
2457     return true;
2458   }
2459 
2460   // Default, generate it as a register.
2461   AM.BaseType = X86ISelAddressMode::RegBase;
2462   AM.Base_Reg = N;
2463   return false;
2464 }
2465 
2466 /// Helper for selectVectorAddr. Handles things that can be folded into a
2467 /// gather scatter address. The index register and scale should have already
2468 /// been handled.
2469 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2470   // TODO: Support other operations.
2471   switch (N.getOpcode()) {
2472   case ISD::Constant: {
2473     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2474     if (!foldOffsetIntoAddress(Val, AM))
2475       return false;
2476     break;
2477   }
2478   case X86ISD::Wrapper:
2479     if (!matchWrapper(N, AM))
2480       return false;
2481     break;
2482   }
2483 
2484   return matchAddressBase(N, AM);
2485 }
2486 
2487 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2488                                        SDValue IndexOp, SDValue ScaleOp,
2489                                        SDValue &Base, SDValue &Scale,
2490                                        SDValue &Index, SDValue &Disp,
2491                                        SDValue &Segment) {
2492   X86ISelAddressMode AM;
2493   AM.IndexReg = IndexOp;
2494   AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
2495 
2496   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2497   if (AddrSpace == X86AS::GS)
2498     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2499   if (AddrSpace == X86AS::FS)
2500     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2501   if (AddrSpace == X86AS::SS)
2502     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2503 
2504   SDLoc DL(BasePtr);
2505   MVT VT = BasePtr.getSimpleValueType();
2506 
2507   // Try to match into the base and displacement fields.
2508   if (matchVectorAddress(BasePtr, AM))
2509     return false;
2510 
2511   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2512   return true;
2513 }
2514 
2515 /// Returns true if it is able to pattern match an addressing mode.
2516 /// It returns the operands which make up the maximal addressing mode it can
2517 /// match by reference.
2518 ///
2519 /// Parent is the parent node of the addr operand that is being matched.  It
2520 /// is always a load, store, atomic node, or null.  It is only null when
2521 /// checking memory operands for inline asm nodes.
2522 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2523                                  SDValue &Scale, SDValue &Index,
2524                                  SDValue &Disp, SDValue &Segment) {
2525   X86ISelAddressMode AM;
2526 
2527   if (Parent &&
2528       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2529       // that are not a MemSDNode, and thus don't have proper addrspace info.
2530       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2531       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2532       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2533       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2534       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2535       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2536       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2537     unsigned AddrSpace =
2538       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2539     if (AddrSpace == X86AS::GS)
2540       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2541     if (AddrSpace == X86AS::FS)
2542       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2543     if (AddrSpace == X86AS::SS)
2544       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2545   }
2546 
2547   // Save the DL and VT before calling matchAddress, it can invalidate N.
2548   SDLoc DL(N);
2549   MVT VT = N.getSimpleValueType();
2550 
2551   if (matchAddress(N, AM))
2552     return false;
2553 
2554   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2555   return true;
2556 }
2557 
2558 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2559   // In static codegen with small code model, we can get the address of a label
2560   // into a register with 'movl'
2561   if (N->getOpcode() != X86ISD::Wrapper)
2562     return false;
2563 
2564   N = N.getOperand(0);
2565 
2566   // At least GNU as does not accept 'movl' for TPOFF relocations.
2567   // FIXME: We could use 'movl' when we know we are targeting MC.
2568   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2569     return false;
2570 
2571   Imm = N;
2572   if (N->getOpcode() != ISD::TargetGlobalAddress)
2573     return TM.getCodeModel() == CodeModel::Small;
2574 
2575   Optional<ConstantRange> CR =
2576       cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
2577   if (!CR)
2578     return TM.getCodeModel() == CodeModel::Small;
2579 
2580   return CR->getUnsignedMax().ult(1ull << 32);
2581 }
2582 
2583 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2584                                          SDValue &Scale, SDValue &Index,
2585                                          SDValue &Disp, SDValue &Segment) {
2586   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2587   SDLoc DL(N);
2588 
2589   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2590     return false;
2591 
2592   RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
2593   if (RN && RN->getReg() == 0)
2594     Base = CurDAG->getRegister(0, MVT::i64);
2595   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2596     // Base could already be %rip, particularly in the x32 ABI.
2597     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2598                                                      MVT::i64), 0);
2599     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2600                                          Base);
2601   }
2602 
2603   RN = dyn_cast<RegisterSDNode>(Index);
2604   if (RN && RN->getReg() == 0)
2605     Index = CurDAG->getRegister(0, MVT::i64);
2606   else {
2607     assert(Index.getValueType() == MVT::i32 &&
2608            "Expect to be extending 32-bit registers for use in LEA");
2609     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2610                                                      MVT::i64), 0);
2611     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2612                                           Index);
2613   }
2614 
2615   return true;
2616 }
2617 
2618 /// Calls SelectAddr and determines if the maximal addressing
2619 /// mode it matches can be cost effectively emitted as an LEA instruction.
2620 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2621                                     SDValue &Base, SDValue &Scale,
2622                                     SDValue &Index, SDValue &Disp,
2623                                     SDValue &Segment) {
2624   X86ISelAddressMode AM;
2625 
2626   // Save the DL and VT before calling matchAddress, it can invalidate N.
2627   SDLoc DL(N);
2628   MVT VT = N.getSimpleValueType();
2629 
2630   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
2631   // segments.
2632   SDValue Copy = AM.Segment;
2633   SDValue T = CurDAG->getRegister(0, MVT::i32);
2634   AM.Segment = T;
2635   if (matchAddress(N, AM))
2636     return false;
2637   assert (T == AM.Segment);
2638   AM.Segment = Copy;
2639 
2640   unsigned Complexity = 0;
2641   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
2642     Complexity = 1;
2643   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2644     Complexity = 4;
2645 
2646   if (AM.IndexReg.getNode())
2647     Complexity++;
2648 
2649   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
2650   // a simple shift.
2651   if (AM.Scale > 1)
2652     Complexity++;
2653 
2654   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
2655   // to a LEA. This is determined with some experimentation but is by no means
2656   // optimal (especially for code size consideration). LEA is nice because of
2657   // its three-address nature. Tweak the cost function again when we can run
2658   // convertToThreeAddress() at register allocation time.
2659   if (AM.hasSymbolicDisplacement()) {
2660     // For X86-64, always use LEA to materialize RIP-relative addresses.
2661     if (Subtarget->is64Bit())
2662       Complexity = 4;
2663     else
2664       Complexity += 2;
2665   }
2666 
2667   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
2668   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
2669   // duplicating flag-producing instructions later in the pipeline.
2670   if (N.getOpcode() == ISD::ADD) {
2671     auto isMathWithFlags = [](SDValue V) {
2672       switch (V.getOpcode()) {
2673       case X86ISD::ADD:
2674       case X86ISD::SUB:
2675       case X86ISD::ADC:
2676       case X86ISD::SBB:
2677       /* TODO: These opcodes can be added safely, but we may want to justify
2678                their inclusion for different reasons (better for reg-alloc).
2679       case X86ISD::SMUL:
2680       case X86ISD::UMUL:
2681       case X86ISD::OR:
2682       case X86ISD::XOR:
2683       case X86ISD::AND:
2684       */
2685         // Value 1 is the flag output of the node - verify it's not dead.
2686         return !SDValue(V.getNode(), 1).use_empty();
2687       default:
2688         return false;
2689       }
2690     };
2691     // TODO: This could be an 'or' rather than 'and' to make the transform more
2692     //       likely to happen. We might want to factor in whether there's a
2693     //       load folding opportunity for the math op that disappears with LEA.
2694     if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1)))
2695       Complexity++;
2696   }
2697 
2698   if (AM.Disp)
2699     Complexity++;
2700 
2701   // If it isn't worth using an LEA, reject it.
2702   if (Complexity <= 2)
2703     return false;
2704 
2705   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2706   return true;
2707 }
2708 
2709 /// This is only run on TargetGlobalTLSAddress nodes.
2710 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
2711                                         SDValue &Scale, SDValue &Index,
2712                                         SDValue &Disp, SDValue &Segment) {
2713   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
2714   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
2715 
2716   X86ISelAddressMode AM;
2717   AM.GV = GA->getGlobal();
2718   AM.Disp += GA->getOffset();
2719   AM.SymbolFlags = GA->getTargetFlags();
2720 
2721   if (Subtarget->is32Bit()) {
2722     AM.Scale = 1;
2723     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
2724   }
2725 
2726   MVT VT = N.getSimpleValueType();
2727   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
2728   return true;
2729 }
2730 
2731 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2732   // Keep track of the original value type and whether this value was
2733   // truncated. If we see a truncation from pointer type to VT that truncates
2734   // bits that are known to be zero, we can use a narrow reference.
2735   EVT VT = N.getValueType();
2736   bool WasTruncated = false;
2737   if (N.getOpcode() == ISD::TRUNCATE) {
2738     WasTruncated = true;
2739     N = N.getOperand(0);
2740   }
2741 
2742   if (N.getOpcode() != X86ISD::Wrapper)
2743     return false;
2744 
2745   // We can only use non-GlobalValues as immediates if they were not truncated,
2746   // as we do not have any range information. If we have a GlobalValue and the
2747   // address was not truncated, we can select it as an operand directly.
2748   unsigned Opc = N.getOperand(0)->getOpcode();
2749   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2750     Op = N.getOperand(0);
2751     // We can only select the operand directly if we didn't have to look past a
2752     // truncate.
2753     return !WasTruncated;
2754   }
2755 
2756   // Check that the global's range fits into VT.
2757   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2758   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2759   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2760     return false;
2761 
2762   // Okay, we can use a narrow reference.
2763   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2764                                       GA->getOffset(), GA->getTargetFlags());
2765   return true;
2766 }
2767 
2768 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2769                                   SDValue &Base, SDValue &Scale,
2770                                   SDValue &Index, SDValue &Disp,
2771                                   SDValue &Segment) {
2772   assert(Root && P && "Unknown root/parent nodes");
2773   if (!ISD::isNON_EXTLoad(N.getNode()) ||
2774       !IsProfitableToFold(N, P, Root) ||
2775       !IsLegalToFold(N, P, Root, OptLevel))
2776     return false;
2777 
2778   return selectAddr(N.getNode(),
2779                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2780 }
2781 
2782 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
2783                                        SDValue &Base, SDValue &Scale,
2784                                        SDValue &Index, SDValue &Disp,
2785                                        SDValue &Segment) {
2786   assert(Root && P && "Unknown root/parent nodes");
2787   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
2788       !IsProfitableToFold(N, P, Root) ||
2789       !IsLegalToFold(N, P, Root, OptLevel))
2790     return false;
2791 
2792   return selectAddr(N.getNode(),
2793                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2794 }
2795 
2796 /// Return an SDNode that returns the value of the global base register.
2797 /// Output instructions required to initialize the global base register,
2798 /// if necessary.
2799 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2800   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2801   auto &DL = MF->getDataLayout();
2802   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2803 }
2804 
2805 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2806   if (N->getOpcode() == ISD::TRUNCATE)
2807     N = N->getOperand(0).getNode();
2808   if (N->getOpcode() != X86ISD::Wrapper)
2809     return false;
2810 
2811   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2812   if (!GA)
2813     return false;
2814 
2815   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2816   if (!CR)
2817     return Width == 32 && TM.getCodeModel() == CodeModel::Small;
2818 
2819   return CR->getSignedMin().sge(-1ull << Width) &&
2820          CR->getSignedMax().slt(1ull << Width);
2821 }
2822 
2823 static X86::CondCode getCondFromNode(SDNode *N) {
2824   assert(N->isMachineOpcode() && "Unexpected node");
2825   X86::CondCode CC = X86::COND_INVALID;
2826   unsigned Opc = N->getMachineOpcode();
2827   if (Opc == X86::JCC_1)
2828     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
2829   else if (Opc == X86::SETCCr)
2830     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
2831   else if (Opc == X86::SETCCm)
2832     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
2833   else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
2834            Opc == X86::CMOV64rr)
2835     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
2836   else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
2837            Opc == X86::CMOV64rm)
2838     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));
2839 
2840   return CC;
2841 }
2842 
2843 /// Test whether the given X86ISD::CMP node has any users that use a flag
2844 /// other than ZF.
2845 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
2846   // Examine each user of the node.
2847   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2848          UI != UE; ++UI) {
2849     // Only check things that use the flags.
2850     if (UI.getUse().getResNo() != Flags.getResNo())
2851       continue;
2852     // Only examine CopyToReg uses that copy to EFLAGS.
2853     if (UI->getOpcode() != ISD::CopyToReg ||
2854         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2855       return false;
2856     // Examine each user of the CopyToReg use.
2857     for (SDNode::use_iterator FlagUI = UI->use_begin(),
2858            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2859       // Only examine the Flag result.
2860       if (FlagUI.getUse().getResNo() != 1) continue;
2861       // Anything unusual: assume conservatively.
2862       if (!FlagUI->isMachineOpcode()) return false;
2863       // Examine the condition code of the user.
2864       X86::CondCode CC = getCondFromNode(*FlagUI);
2865 
2866       switch (CC) {
2867       // Comparisons which only use the zero flag.
2868       case X86::COND_E: case X86::COND_NE:
2869         continue;
2870       // Anything else: assume conservatively.
2871       default:
2872         return false;
2873       }
2874     }
2875   }
2876   return true;
2877 }
2878 
2879 /// Test whether the given X86ISD::CMP node has any uses which require the SF
2880 /// flag to be accurate.
2881 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
2882   // Examine each user of the node.
2883   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2884          UI != UE; ++UI) {
2885     // Only check things that use the flags.
2886     if (UI.getUse().getResNo() != Flags.getResNo())
2887       continue;
2888     // Only examine CopyToReg uses that copy to EFLAGS.
2889     if (UI->getOpcode() != ISD::CopyToReg ||
2890         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2891       return false;
2892     // Examine each user of the CopyToReg use.
2893     for (SDNode::use_iterator FlagUI = UI->use_begin(),
2894            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2895       // Only examine the Flag result.
2896       if (FlagUI.getUse().getResNo() != 1) continue;
2897       // Anything unusual: assume conservatively.
2898       if (!FlagUI->isMachineOpcode()) return false;
2899       // Examine the condition code of the user.
2900       X86::CondCode CC = getCondFromNode(*FlagUI);
2901 
2902       switch (CC) {
2903       // Comparisons which don't examine the SF flag.
2904       case X86::COND_A: case X86::COND_AE:
2905       case X86::COND_B: case X86::COND_BE:
2906       case X86::COND_E: case X86::COND_NE:
2907       case X86::COND_O: case X86::COND_NO:
2908       case X86::COND_P: case X86::COND_NP:
2909         continue;
2910       // Anything else: assume conservatively.
2911       default:
2912         return false;
2913       }
2914     }
2915   }
2916   return true;
2917 }
2918 
2919 static bool mayUseCarryFlag(X86::CondCode CC) {
2920   switch (CC) {
2921   // Comparisons which don't examine the CF flag.
2922   case X86::COND_O: case X86::COND_NO:
2923   case X86::COND_E: case X86::COND_NE:
2924   case X86::COND_S: case X86::COND_NS:
2925   case X86::COND_P: case X86::COND_NP:
2926   case X86::COND_L: case X86::COND_GE:
2927   case X86::COND_G: case X86::COND_LE:
2928     return false;
2929   // Anything else: assume conservatively.
2930   default:
2931     return true;
2932   }
2933 }
2934 
2935 /// Test whether the given node which sets flags has any uses which require the
2936 /// CF flag to be accurate.
2937  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
2938   // Examine each user of the node.
2939   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2940          UI != UE; ++UI) {
2941     // Only check things that use the flags.
2942     if (UI.getUse().getResNo() != Flags.getResNo())
2943       continue;
2944 
2945     unsigned UIOpc = UI->getOpcode();
2946 
2947     if (UIOpc == ISD::CopyToReg) {
2948       // Only examine CopyToReg uses that copy to EFLAGS.
2949       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2950         return false;
2951       // Examine each user of the CopyToReg use.
2952       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
2953            FlagUI != FlagUE; ++FlagUI) {
2954         // Only examine the Flag result.
2955         if (FlagUI.getUse().getResNo() != 1)
2956           continue;
2957         // Anything unusual: assume conservatively.
2958         if (!FlagUI->isMachineOpcode())
2959           return false;
2960         // Examine the condition code of the user.
2961         X86::CondCode CC = getCondFromNode(*FlagUI);
2962 
2963         if (mayUseCarryFlag(CC))
2964           return false;
2965       }
2966 
2967       // This CopyToReg is ok. Move on to the next user.
2968       continue;
2969     }
2970 
2971     // This might be an unselected node. So look for the pre-isel opcodes that
2972     // use flags.
2973     unsigned CCOpNo;
2974     switch (UIOpc) {
2975     default:
2976       // Something unusual. Be conservative.
2977       return false;
2978     case X86ISD::SETCC:       CCOpNo = 0; break;
2979     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
2980     case X86ISD::CMOV:        CCOpNo = 2; break;
2981     case X86ISD::BRCOND:      CCOpNo = 2; break;
2982     }
2983 
2984     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
2985     if (mayUseCarryFlag(CC))
2986       return false;
2987   }
2988   return true;
2989 }
2990 
2991 /// Check whether or not the chain ending in StoreNode is suitable for doing
2992 /// the {load; op; store} to modify transformation.
2993 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
2994                                         SDValue StoredVal, SelectionDAG *CurDAG,
2995                                         unsigned LoadOpNo,
2996                                         LoadSDNode *&LoadNode,
2997                                         SDValue &InputChain) {
2998   // Is the stored value result 0 of the operation?
2999   if (StoredVal.getResNo() != 0) return false;
3000 
3001   // Are there other uses of the operation other than the store?
3002   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3003 
3004   // Is the store non-extending and non-indexed?
3005   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3006     return false;
3007 
3008   SDValue Load = StoredVal->getOperand(LoadOpNo);
3009   // Is the stored value a non-extending and non-indexed load?
3010   if (!ISD::isNormalLoad(Load.getNode())) return false;
3011 
3012   // Return LoadNode by reference.
3013   LoadNode = cast<LoadSDNode>(Load);
3014 
3015   // Is store the only read of the loaded value?
3016   if (!Load.hasOneUse())
3017     return false;
3018 
3019   // Is the address of the store the same as the load?
3020   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3021       LoadNode->getOffset() != StoreNode->getOffset())
3022     return false;
3023 
3024   bool FoundLoad = false;
3025   SmallVector<SDValue, 4> ChainOps;
3026   SmallVector<const SDNode *, 4> LoopWorklist;
3027   SmallPtrSet<const SDNode *, 16> Visited;
3028   const unsigned int Max = 1024;
3029 
3030   //  Visualization of Load-Op-Store fusion:
3031   // -------------------------
3032   // Legend:
3033   //    *-lines = Chain operand dependencies.
3034   //    |-lines = Normal operand dependencies.
3035   //    Dependencies flow down and right. n-suffix references multiple nodes.
3036   //
3037   //        C                        Xn  C
3038   //        *                         *  *
3039   //        *                          * *
3040   //  Xn  A-LD    Yn                    TF         Yn
3041   //   *    * \   |                       *        |
3042   //    *   *  \  |                        *       |
3043   //     *  *   \ |             =>       A--LD_OP_ST
3044   //      * *    \|                                 \
3045   //       TF    OP                                  \
3046   //         *   | \                                  Zn
3047   //          *  |  \
3048   //         A-ST    Zn
3049   //
3050 
3051   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3052   //                                      #2: Yn -> LD
3053   //                                      #3: ST -> Zn
3054 
3055   // Ensure the transform is safe by checking for the dual
3056   // dependencies to make sure we do not induce a loop.
3057 
3058   // As LD is a predecessor to both OP and ST we can do this by checking:
3059   //  a). if LD is a predecessor to a member of Xn or Yn.
3060   //  b). if a Zn is a predecessor to ST.
3061 
3062   // However, (b) can only occur through being a chain predecessor to
3063   // ST, which is the same as Zn being a member or predecessor of Xn,
3064   // which is a subset of LD being a predecessor of Xn. So it's
3065   // subsumed by check (a).
3066 
3067   SDValue Chain = StoreNode->getChain();
3068 
3069   // Gather X elements in ChainOps.
3070   if (Chain == Load.getValue(1)) {
3071     FoundLoad = true;
3072     ChainOps.push_back(Load.getOperand(0));
3073   } else if (Chain.getOpcode() == ISD::TokenFactor) {
3074     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3075       SDValue Op = Chain.getOperand(i);
3076       if (Op == Load.getValue(1)) {
3077         FoundLoad = true;
3078         // Drop Load, but keep its chain. No cycle check necessary.
3079         ChainOps.push_back(Load.getOperand(0));
3080         continue;
3081       }
3082       LoopWorklist.push_back(Op.getNode());
3083       ChainOps.push_back(Op);
3084     }
3085   }
3086 
3087   if (!FoundLoad)
3088     return false;
3089 
3090   // Worklist is currently Xn. Add Yn to worklist.
3091   for (SDValue Op : StoredVal->ops())
3092     if (Op.getNode() != LoadNode)
3093       LoopWorklist.push_back(Op.getNode());
3094 
3095   // Check (a) if Load is a predecessor to Xn + Yn
3096   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3097                                    true))
3098     return false;
3099 
3100   InputChain =
3101       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3102   return true;
3103 }
3104 
3105 // Change a chain of {load; op; store} of the same value into a simple op
3106 // through memory of that value, if the uses of the modified value and its
3107 // address are suitable.
3108 //
3109 // The tablegen pattern memory operand pattern is currently not able to match
3110 // the case where the EFLAGS on the original operation are used.
3111 //
3112 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3113 // be transferred from a node in the pattern to the result node, probably with
3114 // a new keyword. For example, we have this
3115 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3116 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3117 //   (implicit EFLAGS)]>;
3118 // but maybe need something like this
3119 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3120 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3121 //   (transferrable EFLAGS)]>;
3122 //
3123 // Until then, we manually fold these and instruction select the operation
3124 // here.
3125 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3126   StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
3127   SDValue StoredVal = StoreNode->getOperand(1);
3128   unsigned Opc = StoredVal->getOpcode();
3129 
3130   // Before we try to select anything, make sure this is memory operand size
3131   // and opcode we can handle. Note that this must match the code below that
3132   // actually lowers the opcodes.
3133   EVT MemVT = StoreNode->getMemoryVT();
3134   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3135       MemVT != MVT::i8)
3136     return false;
3137 
3138   bool IsCommutable = false;
3139   bool IsNegate = false;
3140   switch (Opc) {
3141   default:
3142     return false;
3143   case X86ISD::SUB:
3144     IsNegate = isNullConstant(StoredVal.getOperand(0));
3145     break;
3146   case X86ISD::SBB:
3147     break;
3148   case X86ISD::ADD:
3149   case X86ISD::ADC:
3150   case X86ISD::AND:
3151   case X86ISD::OR:
3152   case X86ISD::XOR:
3153     IsCommutable = true;
3154     break;
3155   }
3156 
3157   unsigned LoadOpNo = IsNegate ? 1 : 0;
3158   LoadSDNode *LoadNode = nullptr;
3159   SDValue InputChain;
3160   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3161                                    LoadNode, InputChain)) {
3162     if (!IsCommutable)
3163       return false;
3164 
3165     // This operation is commutable, try the other operand.
3166     LoadOpNo = 1;
3167     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3168                                      LoadNode, InputChain))
3169       return false;
3170   }
3171 
3172   SDValue Base, Scale, Index, Disp, Segment;
3173   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3174                   Segment))
3175     return false;
3176 
3177   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3178                           unsigned Opc8) {
3179     switch (MemVT.getSimpleVT().SimpleTy) {
3180     case MVT::i64:
3181       return Opc64;
3182     case MVT::i32:
3183       return Opc32;
3184     case MVT::i16:
3185       return Opc16;
3186     case MVT::i8:
3187       return Opc8;
3188     default:
3189       llvm_unreachable("Invalid size!");
3190     }
3191   };
3192 
3193   MachineSDNode *Result;
3194   switch (Opc) {
3195   case X86ISD::SUB:
3196     // Handle negate.
3197     if (IsNegate) {
3198       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3199                                      X86::NEG8m);
3200       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3201       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3202                                       MVT::Other, Ops);
3203       break;
3204     }
3205    LLVM_FALLTHROUGH;
3206   case X86ISD::ADD:
3207     // Try to match inc/dec.
3208     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3209       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3210       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3211       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3212       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3213         unsigned NewOpc =
3214           ((Opc == X86ISD::ADD) == IsOne)
3215               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3216               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3217         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3218         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3219                                         MVT::Other, Ops);
3220         break;
3221       }
3222     }
3223     LLVM_FALLTHROUGH;
3224   case X86ISD::ADC:
3225   case X86ISD::SBB:
3226   case X86ISD::AND:
3227   case X86ISD::OR:
3228   case X86ISD::XOR: {
3229     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3230       switch (Opc) {
3231       case X86ISD::ADD:
3232         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3233                             X86::ADD8mr);
3234       case X86ISD::ADC:
3235         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3236                             X86::ADC8mr);
3237       case X86ISD::SUB:
3238         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3239                             X86::SUB8mr);
3240       case X86ISD::SBB:
3241         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3242                             X86::SBB8mr);
3243       case X86ISD::AND:
3244         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3245                             X86::AND8mr);
3246       case X86ISD::OR:
3247         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3248       case X86ISD::XOR:
3249         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3250                             X86::XOR8mr);
3251       default:
3252         llvm_unreachable("Invalid opcode!");
3253       }
3254     };
3255     auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
3256       switch (Opc) {
3257       case X86ISD::ADD:
3258         return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
3259       case X86ISD::ADC:
3260         return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
3261       case X86ISD::SUB:
3262         return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
3263       case X86ISD::SBB:
3264         return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
3265       case X86ISD::AND:
3266         return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
3267       case X86ISD::OR:
3268         return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
3269       case X86ISD::XOR:
3270         return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
3271       default:
3272         llvm_unreachable("Invalid opcode!");
3273       }
3274     };
3275     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3276       switch (Opc) {
3277       case X86ISD::ADD:
3278         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3279                             X86::ADD8mi);
3280       case X86ISD::ADC:
3281         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3282                             X86::ADC8mi);
3283       case X86ISD::SUB:
3284         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3285                             X86::SUB8mi);
3286       case X86ISD::SBB:
3287         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3288                             X86::SBB8mi);
3289       case X86ISD::AND:
3290         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3291                             X86::AND8mi);
3292       case X86ISD::OR:
3293         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3294                             X86::OR8mi);
3295       case X86ISD::XOR:
3296         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3297                             X86::XOR8mi);
3298       default:
3299         llvm_unreachable("Invalid opcode!");
3300       }
3301     };
3302 
3303     unsigned NewOpc = SelectRegOpcode(Opc);
3304     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3305 
3306     // See if the operand is a constant that we can fold into an immediate
3307     // operand.
3308     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3309       int64_t OperandV = OperandC->getSExtValue();
3310 
3311       // Check if we can shrink the operand enough to fit in an immediate (or
3312       // fit into a smaller immediate) by negating it and switching the
3313       // operation.
3314       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3315           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3316            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3317             isInt<32>(-OperandV))) &&
3318           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3319         OperandV = -OperandV;
3320         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3321       }
3322 
3323       // First try to fit this into an Imm8 operand. If it doesn't fit, then try
3324       // the larger immediate operand.
3325       if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
3326         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3327         NewOpc = SelectImm8Opcode(Opc);
3328       } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3329         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3330         NewOpc = SelectImmOpcode(Opc);
3331       }
3332     }
3333 
3334     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3335       SDValue CopyTo =
3336           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3337                                StoredVal.getOperand(2), SDValue());
3338 
3339       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3340                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3341       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3342                                       Ops);
3343     } else {
3344       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3345                              Segment, Operand, InputChain};
3346       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3347                                       Ops);
3348     }
3349     break;
3350   }
3351   default:
3352     llvm_unreachable("Invalid opcode!");
3353   }
3354 
3355   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3356                                  LoadNode->getMemOperand()};
3357   CurDAG->setNodeMemRefs(Result, MemOps);
3358 
3359   // Update Load Chain uses as well.
3360   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3361   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3362   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3363   CurDAG->RemoveDeadNode(Node);
3364   return true;
3365 }
3366 
3367 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3368 // Where Mask is one of the following patterns:
3369 //   a) x &  (1 << nbits) - 1
3370 //   b) x & ~(-1 << nbits)
3371 //   c) x &  (-1 >> (32 - y))
3372 //   d) x << (32 - y) >> (32 - y)
3373 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3374   assert(
3375       (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
3376       "Should be either an and-mask, or right-shift after clearing high bits.");
3377 
3378   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3379   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3380     return false;
3381 
3382   MVT NVT = Node->getSimpleValueType(0);
3383 
3384   // Only supported for 32 and 64 bits.
3385   if (NVT != MVT::i32 && NVT != MVT::i64)
3386     return false;
3387 
3388   SDValue NBits;
3389 
3390   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3391   // Else, if we only have BMI1's BEXTR, we require one-use.
3392   const bool CanHaveExtraUses = Subtarget->hasBMI2();
3393   auto checkUses = [CanHaveExtraUses](SDValue Op, unsigned NUses) {
3394     return CanHaveExtraUses ||
3395            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3396   };
3397   auto checkOneUse = [checkUses](SDValue Op) { return checkUses(Op, 1); };
3398   auto checkTwoUse = [checkUses](SDValue Op) { return checkUses(Op, 2); };
3399 
3400   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3401     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3402       assert(V.getSimpleValueType() == MVT::i32 &&
3403              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3404              "Expected i64 -> i32 truncation");
3405       V = V.getOperand(0);
3406     }
3407     return V;
3408   };
3409 
3410   // a) x & ((1 << nbits) + (-1))
3411   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation,
3412                         &NBits](SDValue Mask) -> bool {
3413     // Match `add`. Must only have one use!
3414     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3415       return false;
3416     // We should be adding all-ones constant (i.e. subtracting one.)
3417     if (!isAllOnesConstant(Mask->getOperand(1)))
3418       return false;
3419     // Match `1 << nbits`. Might be truncated. Must only have one use!
3420     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3421     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3422       return false;
3423     if (!isOneConstant(M0->getOperand(0)))
3424       return false;
3425     NBits = M0->getOperand(1);
3426     return true;
3427   };
3428 
3429   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3430     V = peekThroughOneUseTruncation(V);
3431     return CurDAG->MaskedValueIsAllOnes(
3432         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3433                                 NVT.getSizeInBits()));
3434   };
3435 
3436   // b) x & ~(-1 << nbits)
3437   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3438                         &NBits](SDValue Mask) -> bool {
3439     // Match `~()`. Must only have one use!
3440     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3441       return false;
3442     // The -1 only has to be all-ones for the final Node's NVT.
3443     if (!isAllOnes(Mask->getOperand(1)))
3444       return false;
3445     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3446     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3447     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3448       return false;
3449     // The -1 only has to be all-ones for the final Node's NVT.
3450     if (!isAllOnes(M0->getOperand(0)))
3451       return false;
3452     NBits = M0->getOperand(1);
3453     return true;
3454   };
3455 
3456   // Match potentially-truncated (bitwidth - y)
3457   auto matchShiftAmt = [checkOneUse, &NBits](SDValue ShiftAmt,
3458                                              unsigned Bitwidth) {
3459     // Skip over a truncate of the shift amount.
3460     if (ShiftAmt.getOpcode() == ISD::TRUNCATE) {
3461       ShiftAmt = ShiftAmt.getOperand(0);
3462       // The trunc should have been the only user of the real shift amount.
3463       if (!checkOneUse(ShiftAmt))
3464         return false;
3465     }
3466     // Match the shift amount as: (bitwidth - y). It should go away, too.
3467     if (ShiftAmt.getOpcode() != ISD::SUB)
3468       return false;
3469     auto *V0 = dyn_cast<ConstantSDNode>(ShiftAmt.getOperand(0));
3470     if (!V0 || V0->getZExtValue() != Bitwidth)
3471       return false;
3472     NBits = ShiftAmt.getOperand(1);
3473     return true;
3474   };
3475 
3476   // c) x &  (-1 >> (32 - y))
3477   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation,
3478                         matchShiftAmt](SDValue Mask) -> bool {
3479     // The mask itself may be truncated.
3480     Mask = peekThroughOneUseTruncation(Mask);
3481     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3482     // Match `l>>`. Must only have one use!
3483     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3484       return false;
3485     // We should be shifting truly all-ones constant.
3486     if (!isAllOnesConstant(Mask.getOperand(0)))
3487       return false;
3488     SDValue M1 = Mask.getOperand(1);
3489     // The shift amount should not be used externally.
3490     if (!checkOneUse(M1))
3491       return false;
3492     return matchShiftAmt(M1, Bitwidth);
3493   };
3494 
3495   SDValue X;
3496 
3497   // d) x << (32 - y) >> (32 - y)
3498   auto matchPatternD = [checkOneUse, checkTwoUse, matchShiftAmt,
3499                         &X](SDNode *Node) -> bool {
3500     if (Node->getOpcode() != ISD::SRL)
3501       return false;
3502     SDValue N0 = Node->getOperand(0);
3503     if (N0->getOpcode() != ISD::SHL || !checkOneUse(N0))
3504       return false;
3505     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3506     SDValue N1 = Node->getOperand(1);
3507     SDValue N01 = N0->getOperand(1);
3508     // Both of the shifts must be by the exact same value.
3509     // There should not be any uses of the shift amount outside of the pattern.
3510     if (N1 != N01 || !checkTwoUse(N1))
3511       return false;
3512     if (!matchShiftAmt(N1, Bitwidth))
3513       return false;
3514     X = N0->getOperand(0);
3515     return true;
3516   };
3517 
3518   auto matchLowBitMask = [matchPatternA, matchPatternB,
3519                           matchPatternC](SDValue Mask) -> bool {
3520     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3521   };
3522 
3523   if (Node->getOpcode() == ISD::AND) {
3524     X = Node->getOperand(0);
3525     SDValue Mask = Node->getOperand(1);
3526 
3527     if (matchLowBitMask(Mask)) {
3528       // Great.
3529     } else {
3530       std::swap(X, Mask);
3531       if (!matchLowBitMask(Mask))
3532         return false;
3533     }
3534   } else if (!matchPatternD(Node))
3535     return false;
3536 
3537   SDLoc DL(Node);
3538 
3539   // Truncate the shift amount.
3540   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3541   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3542 
3543   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3544   // All the other bits are undefined, we do not care about them.
3545   SDValue ImplDef = SDValue(
3546       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3547   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3548 
3549   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3550   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3551   NBits = SDValue(
3552       CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i32, ImplDef,
3553                              NBits, SRIdxVal), 0);
3554   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3555 
3556   if (Subtarget->hasBMI2()) {
3557     // Great, just emit the the BZHI..
3558     if (NVT != MVT::i32) {
3559       // But have to place the bit count into the wide-enough register first.
3560       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3561       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3562     }
3563 
3564     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3565     ReplaceNode(Node, Extract.getNode());
3566     SelectCode(Extract.getNode());
3567     return true;
3568   }
3569 
3570   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3571   // *logically* shifted (potentially with one-use trunc inbetween),
3572   // and the truncation was the only use of the shift,
3573   // and if so look past one-use truncation.
3574   {
3575     SDValue RealX = peekThroughOneUseTruncation(X);
3576     // FIXME: only if the shift is one-use?
3577     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3578       X = RealX;
3579   }
3580 
3581   MVT XVT = X.getSimpleValueType();
3582 
3583   // Else, emitting BEXTR requires one more step.
3584   // The 'control' of BEXTR has the pattern of:
3585   // [15...8 bit][ 7...0 bit] location
3586   // [ bit count][     shift] name
3587   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3588 
3589   // Shift NBits left by 8 bits, thus producing 'control'.
3590   // This makes the low 8 bits to be zero.
3591   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3592   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3593   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3594   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3595 
3596   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3597   // FIXME: only if the shift is one-use?
3598   if (X.getOpcode() == ISD::SRL) {
3599     SDValue ShiftAmt = X.getOperand(1);
3600     X = X.getOperand(0);
3601 
3602     assert(ShiftAmt.getValueType() == MVT::i8 &&
3603            "Expected shift amount to be i8");
3604 
3605     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3606     // We could zext to i16 in some form, but we intentionally don't do that.
3607     SDValue OrigShiftAmt = ShiftAmt;
3608     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3609     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3610 
3611     // And now 'or' these low 8 bits of shift amount into the 'control'.
3612     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
3613     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3614   }
3615 
3616   // But have to place the 'control' into the wide-enough register first.
3617   if (XVT != MVT::i32) {
3618     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
3619     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3620   }
3621 
3622   // And finally, form the BEXTR itself.
3623   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
3624 
3625   // The 'X' was originally truncated. Do that now.
3626   if (XVT != NVT) {
3627     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
3628     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
3629   }
3630 
3631   ReplaceNode(Node, Extract.getNode());
3632   SelectCode(Extract.getNode());
3633 
3634   return true;
3635 }
3636 
3637 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
3638 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
3639   MVT NVT = Node->getSimpleValueType(0);
3640   SDLoc dl(Node);
3641 
3642   SDValue N0 = Node->getOperand(0);
3643   SDValue N1 = Node->getOperand(1);
3644 
3645   // If we have TBM we can use an immediate for the control. If we have BMI
3646   // we should only do this if the BEXTR instruction is implemented well.
3647   // Otherwise moving the control into a register makes this more costly.
3648   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
3649   // hoisting the move immediate would make it worthwhile with a less optimal
3650   // BEXTR?
3651   bool PreferBEXTR =
3652       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
3653   if (!PreferBEXTR && !Subtarget->hasBMI2())
3654     return nullptr;
3655 
3656   // Must have a shift right.
3657   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
3658     return nullptr;
3659 
3660   // Shift can't have additional users.
3661   if (!N0->hasOneUse())
3662     return nullptr;
3663 
3664   // Only supported for 32 and 64 bits.
3665   if (NVT != MVT::i32 && NVT != MVT::i64)
3666     return nullptr;
3667 
3668   // Shift amount and RHS of and must be constant.
3669   ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
3670   ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3671   if (!MaskCst || !ShiftCst)
3672     return nullptr;
3673 
3674   // And RHS must be a mask.
3675   uint64_t Mask = MaskCst->getZExtValue();
3676   if (!isMask_64(Mask))
3677     return nullptr;
3678 
3679   uint64_t Shift = ShiftCst->getZExtValue();
3680   uint64_t MaskSize = countPopulation(Mask);
3681 
3682   // Don't interfere with something that can be handled by extracting AH.
3683   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
3684   if (Shift == 8 && MaskSize == 8)
3685     return nullptr;
3686 
3687   // Make sure we are only using bits that were in the original value, not
3688   // shifted in.
3689   if (Shift + MaskSize > NVT.getSizeInBits())
3690     return nullptr;
3691 
3692   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
3693   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
3694   // does not fit into 32 bits. Load folding is not a sufficient reason.
3695   if (!PreferBEXTR && MaskSize <= 32)
3696     return nullptr;
3697 
3698   SDValue Control;
3699   unsigned ROpc, MOpc;
3700 
3701   if (!PreferBEXTR) {
3702     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
3703     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
3704     // Let's perform the mask first, and apply shift later. Note that we need to
3705     // widen the mask to account for the fact that we'll apply shift afterwards!
3706     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
3707     ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
3708     MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
3709     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3710     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3711   } else {
3712     // The 'control' of BEXTR has the pattern of:
3713     // [15...8 bit][ 7...0 bit] location
3714     // [ bit count][     shift] name
3715     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3716     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
3717     if (Subtarget->hasTBM()) {
3718       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
3719       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
3720     } else {
3721       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
3722       // BMI requires the immediate to placed in a register.
3723       ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
3724       MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
3725       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3726       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3727     }
3728   }
3729 
3730   MachineSDNode *NewNode;
3731   SDValue Input = N0->getOperand(0);
3732   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3733   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3734     SDValue Ops[] = {
3735         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
3736     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
3737     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3738     // Update the chain.
3739     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
3740     // Record the mem-refs
3741     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
3742   } else {
3743     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
3744   }
3745 
3746   if (!PreferBEXTR) {
3747     // We still need to apply the shift.
3748     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
3749     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
3750     NewNode =
3751         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
3752   }
3753 
3754   return NewNode;
3755 }
3756 
3757 // Emit a PCMISTR(I/M) instruction.
3758 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
3759                                              bool MayFoldLoad, const SDLoc &dl,
3760                                              MVT VT, SDNode *Node) {
3761   SDValue N0 = Node->getOperand(0);
3762   SDValue N1 = Node->getOperand(1);
3763   SDValue Imm = Node->getOperand(2);
3764   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3765   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3766 
3767   // Try to fold a load. No need to check alignment.
3768   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3769   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3770     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3771                       N1.getOperand(0) };
3772     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
3773     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3774     // Update the chain.
3775     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
3776     // Record the mem-refs
3777     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3778     return CNode;
3779   }
3780 
3781   SDValue Ops[] = { N0, N1, Imm };
3782   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
3783   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3784   return CNode;
3785 }
3786 
3787 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
3788 // to emit a second instruction after this one. This is needed since we have two
3789 // copyToReg nodes glued before this and we need to continue that glue through.
3790 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
3791                                              bool MayFoldLoad, const SDLoc &dl,
3792                                              MVT VT, SDNode *Node,
3793                                              SDValue &InFlag) {
3794   SDValue N0 = Node->getOperand(0);
3795   SDValue N2 = Node->getOperand(2);
3796   SDValue Imm = Node->getOperand(4);
3797   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3798   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3799 
3800   // Try to fold a load. No need to check alignment.
3801   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3802   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3803     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3804                       N2.getOperand(0), InFlag };
3805     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
3806     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3807     InFlag = SDValue(CNode, 3);
3808     // Update the chain.
3809     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
3810     // Record the mem-refs
3811     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
3812     return CNode;
3813   }
3814 
3815   SDValue Ops[] = { N0, N2, Imm, InFlag };
3816   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
3817   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3818   InFlag = SDValue(CNode, 2);
3819   return CNode;
3820 }
3821 
3822 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3823   EVT VT = N->getValueType(0);
3824 
3825   // Only handle scalar shifts.
3826   if (VT.isVector())
3827     return false;
3828 
3829   // Narrower shifts only mask to 5 bits in hardware.
3830   unsigned Size = VT == MVT::i64 ? 64 : 32;
3831 
3832   SDValue OrigShiftAmt = N->getOperand(1);
3833   SDValue ShiftAmt = OrigShiftAmt;
3834   SDLoc DL(N);
3835 
3836   // Skip over a truncate of the shift amount.
3837   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
3838     ShiftAmt = ShiftAmt->getOperand(0);
3839 
3840   // This function is called after X86DAGToDAGISel::matchBitExtract(),
3841   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
3842 
3843   SDValue NewShiftAmt;
3844   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3845     SDValue Add0 = ShiftAmt->getOperand(0);
3846     SDValue Add1 = ShiftAmt->getOperand(1);
3847     // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3848     // to avoid the ADD/SUB.
3849     if (isa<ConstantSDNode>(Add1) &&
3850         cast<ConstantSDNode>(Add1)->getZExtValue() % Size == 0) {
3851       NewShiftAmt = Add0;
3852     // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
3853     // generate a NEG instead of a SUB of a constant.
3854     } else if (ShiftAmt->getOpcode() == ISD::SUB &&
3855                isa<ConstantSDNode>(Add0) &&
3856                cast<ConstantSDNode>(Add0)->getZExtValue() != 0 &&
3857                cast<ConstantSDNode>(Add0)->getZExtValue() % Size == 0) {
3858       // Insert a negate op.
3859       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
3860       // that uses it that's not a shift.
3861       EVT SubVT = ShiftAmt.getValueType();
3862       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
3863       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, Add1);
3864       NewShiftAmt = Neg;
3865 
3866       // Insert these operands into a valid topological order so they can
3867       // get selected independently.
3868       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
3869       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
3870     } else
3871       return false;
3872   } else
3873     return false;
3874 
3875   if (NewShiftAmt.getValueType() != MVT::i8) {
3876     // Need to truncate the shift amount.
3877     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
3878     // Add to a correct topological ordering.
3879     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3880   }
3881 
3882   // Insert a new mask to keep the shift amount legal. This should be removed
3883   // by isel patterns.
3884   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
3885                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
3886   // Place in a correct topological ordering.
3887   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3888 
3889   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
3890                                                    NewShiftAmt);
3891   if (UpdatedNode != N) {
3892     // If we found an existing node, we should replace ourselves with that node
3893     // and wait for it to be selected after its other users.
3894     ReplaceNode(N, UpdatedNode);
3895     return true;
3896   }
3897 
3898   // If the original shift amount is now dead, delete it so that we don't run
3899   // it through isel.
3900   if (OrigShiftAmt.getNode()->use_empty())
3901     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
3902 
3903   // Now that we've optimized the shift amount, defer to normal isel to get
3904   // load folding and legacy vs BMI2 selection without repeating it here.
3905   SelectCode(N);
3906   return true;
3907 }
3908 
3909 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
3910   MVT NVT = N->getSimpleValueType(0);
3911   unsigned Opcode = N->getOpcode();
3912   SDLoc dl(N);
3913 
3914   // For operations of the form (x << C1) op C2, check if we can use a smaller
3915   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
3916   SDValue Shift = N->getOperand(0);
3917   SDValue N1 = N->getOperand(1);
3918 
3919   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
3920   if (!Cst)
3921     return false;
3922 
3923   int64_t Val = Cst->getSExtValue();
3924 
3925   // If we have an any_extend feeding the AND, look through it to see if there
3926   // is a shift behind it. But only if the AND doesn't use the extended bits.
3927   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
3928   bool FoundAnyExtend = false;
3929   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
3930       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
3931       isUInt<32>(Val)) {
3932     FoundAnyExtend = true;
3933     Shift = Shift.getOperand(0);
3934   }
3935 
3936   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
3937     return false;
3938 
3939   // i8 is unshrinkable, i16 should be promoted to i32.
3940   if (NVT != MVT::i32 && NVT != MVT::i64)
3941     return false;
3942 
3943   ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
3944   if (!ShlCst)
3945     return false;
3946 
3947   uint64_t ShAmt = ShlCst->getZExtValue();
3948 
3949   // Make sure that we don't change the operation by removing bits.
3950   // This only matters for OR and XOR, AND is unaffected.
3951   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
3952   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
3953     return false;
3954 
3955   // Check the minimum bitwidth for the new constant.
3956   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
3957   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
3958     if (Opcode == ISD::AND) {
3959       // AND32ri is the same as AND64ri32 with zext imm.
3960       // Try this before sign extended immediates below.
3961       ShiftedVal = (uint64_t)Val >> ShAmt;
3962       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3963         return true;
3964       // Also swap order when the AND can become MOVZX.
3965       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
3966         return true;
3967     }
3968     ShiftedVal = Val >> ShAmt;
3969     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
3970         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
3971       return true;
3972     if (Opcode != ISD::AND) {
3973       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
3974       ShiftedVal = (uint64_t)Val >> ShAmt;
3975       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3976         return true;
3977     }
3978     return false;
3979   };
3980 
3981   int64_t ShiftedVal;
3982   if (!CanShrinkImmediate(ShiftedVal))
3983     return false;
3984 
3985   // Ok, we can reorder to get a smaller immediate.
3986 
3987   // But, its possible the original immediate allowed an AND to become MOVZX.
3988   // Doing this late due to avoid the MakedValueIsZero call as late as
3989   // possible.
3990   if (Opcode == ISD::AND) {
3991     // Find the smallest zext this could possibly be.
3992     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
3993     ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
3994 
3995     // Figure out which bits need to be zero to achieve that mask.
3996     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
3997                                             ZExtWidth);
3998     NeededMask &= ~Cst->getAPIntValue();
3999 
4000     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4001       return false;
4002   }
4003 
4004   SDValue X = Shift.getOperand(0);
4005   if (FoundAnyExtend) {
4006     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4007     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4008     X = NewX;
4009   }
4010 
4011   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4012   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4013   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4014   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4015   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4016                                    Shift.getOperand(1));
4017   ReplaceNode(N, NewSHL.getNode());
4018   SelectCode(NewSHL.getNode());
4019   return true;
4020 }
4021 
4022 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4023                                      SDNode *ParentBC, SDValue A, SDValue B,
4024                                      SDValue C, uint8_t Imm) {
4025   assert(A.isOperandOf(ParentA));
4026   assert(B.isOperandOf(ParentBC));
4027   assert(C.isOperandOf(ParentBC));
4028 
4029   auto tryFoldLoadOrBCast =
4030       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4031              SDValue &Index, SDValue &Disp, SDValue &Segment) {
4032         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4033           return true;
4034 
4035         // Not a load, check for broadcast which may be behind a bitcast.
4036         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4037           P = L.getNode();
4038           L = L.getOperand(0);
4039         }
4040 
4041         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4042           return false;
4043 
4044         // Only 32 and 64 bit broadcasts are supported.
4045         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4046         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4047         if (Size != 32 && Size != 64)
4048           return false;
4049 
4050         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4051       };
4052 
4053   bool FoldedLoad = false;
4054   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4055   if (tryFoldLoadOrBCast(Root, ParentBC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4056     FoldedLoad = true;
4057   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4058                                 Tmp4)) {
4059     FoldedLoad = true;
4060     std::swap(A, C);
4061     // Swap bits 1/4 and 3/6.
4062     uint8_t OldImm = Imm;
4063     Imm = OldImm & 0xa5;
4064     if (OldImm & 0x02) Imm |= 0x10;
4065     if (OldImm & 0x10) Imm |= 0x02;
4066     if (OldImm & 0x08) Imm |= 0x40;
4067     if (OldImm & 0x40) Imm |= 0x08;
4068   } else if (tryFoldLoadOrBCast(Root, ParentBC, B, Tmp0, Tmp1, Tmp2, Tmp3,
4069                                 Tmp4)) {
4070     FoldedLoad = true;
4071     std::swap(B, C);
4072     // Swap bits 1/2 and 5/6.
4073     uint8_t OldImm = Imm;
4074     Imm = OldImm & 0x99;
4075     if (OldImm & 0x02) Imm |= 0x04;
4076     if (OldImm & 0x04) Imm |= 0x02;
4077     if (OldImm & 0x20) Imm |= 0x40;
4078     if (OldImm & 0x40) Imm |= 0x20;
4079   }
4080 
4081   SDLoc DL(Root);
4082 
4083   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4084 
4085   MVT NVT = Root->getSimpleValueType(0);
4086 
4087   MachineSDNode *MNode;
4088   if (FoldedLoad) {
4089     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4090 
4091     unsigned Opc;
4092     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4093       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4094       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4095       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4096 
4097       bool UseD = EltSize == 32;
4098       if (NVT.is128BitVector())
4099         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4100       else if (NVT.is256BitVector())
4101         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4102       else if (NVT.is512BitVector())
4103         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4104       else
4105         llvm_unreachable("Unexpected vector size!");
4106     } else {
4107       bool UseD = NVT.getVectorElementType() == MVT::i32;
4108       if (NVT.is128BitVector())
4109         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4110       else if (NVT.is256BitVector())
4111         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4112       else if (NVT.is512BitVector())
4113         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4114       else
4115         llvm_unreachable("Unexpected vector size!");
4116     }
4117 
4118     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4119     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4120 
4121     // Update the chain.
4122     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4123     // Record the mem-refs
4124     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4125   } else {
4126     bool UseD = NVT.getVectorElementType() == MVT::i32;
4127     unsigned Opc;
4128     if (NVT.is128BitVector())
4129       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4130     else if (NVT.is256BitVector())
4131       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4132     else if (NVT.is512BitVector())
4133       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4134     else
4135       llvm_unreachable("Unexpected vector size!");
4136 
4137     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4138   }
4139 
4140   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4141   CurDAG->RemoveDeadNode(Root);
4142   return true;
4143 }
4144 
4145 // Try to match two logic ops to a VPTERNLOG.
4146 // FIXME: Handle inverted inputs?
4147 // FIXME: Handle more complex patterns that use an operand more than once?
4148 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4149   MVT NVT = N->getSimpleValueType(0);
4150 
4151   // Make sure we support VPTERNLOG.
4152   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4153       NVT.getVectorElementType() == MVT::i1)
4154     return false;
4155 
4156   // We need VLX for 128/256-bit.
4157   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4158     return false;
4159 
4160   SDValue N0 = N->getOperand(0);
4161   SDValue N1 = N->getOperand(1);
4162 
4163   auto getFoldableLogicOp = [](SDValue Op) {
4164     // Peek through single use bitcast.
4165     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4166       Op = Op.getOperand(0);
4167 
4168     if (!Op.hasOneUse())
4169       return SDValue();
4170 
4171     unsigned Opc = Op.getOpcode();
4172     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4173         Opc == X86ISD::ANDNP)
4174       return Op;
4175 
4176     return SDValue();
4177   };
4178 
4179   SDValue A, FoldableOp;
4180   if ((FoldableOp = getFoldableLogicOp(N1))) {
4181     A = N0;
4182   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4183     A = N1;
4184   } else
4185     return false;
4186 
4187   SDValue B = FoldableOp.getOperand(0);
4188   SDValue C = FoldableOp.getOperand(1);
4189 
4190   // We can build the appropriate control immediate by performing the logic
4191   // operation we're matching using these constants for A, B, and C.
4192   const uint8_t TernlogMagicA = 0xf0;
4193   const uint8_t TernlogMagicB = 0xcc;
4194   const uint8_t TernlogMagicC = 0xaa;
4195 
4196   uint8_t Imm;
4197   switch (FoldableOp.getOpcode()) {
4198   default: llvm_unreachable("Unexpected opcode!");
4199   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
4200   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
4201   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
4202   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4203   }
4204 
4205   switch (N->getOpcode()) {
4206   default: llvm_unreachable("Unexpected opcode!");
4207   case X86ISD::ANDNP:
4208     if (A == N0)
4209       Imm &= ~TernlogMagicA;
4210     else
4211       Imm = ~(Imm) & TernlogMagicA;
4212     break;
4213   case ISD::AND: Imm &= TernlogMagicA; break;
4214   case ISD::OR:  Imm |= TernlogMagicA; break;
4215   case ISD::XOR: Imm ^= TernlogMagicA; break;
4216   }
4217 
4218   return matchVPTERNLOG(N, N, FoldableOp.getNode(), A, B, C, Imm);
4219 }
4220 
4221 /// If the high bits of an 'and' operand are known zero, try setting the
4222 /// high bits of an 'and' constant operand to produce a smaller encoding by
4223 /// creating a small, sign-extended negative immediate rather than a large
4224 /// positive one. This reverses a transform in SimplifyDemandedBits that
4225 /// shrinks mask constants by clearing bits. There is also a possibility that
4226 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4227 /// case, just replace the 'and'. Return 'true' if the node is replaced.
4228 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4229   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4230   // have immediate operands.
4231   MVT VT = And->getSimpleValueType(0);
4232   if (VT != MVT::i32 && VT != MVT::i64)
4233     return false;
4234 
4235   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4236   if (!And1C)
4237     return false;
4238 
4239   // Bail out if the mask constant is already negative. It's can't shrink more.
4240   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4241   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4242   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4243   // are negative too.
4244   APInt MaskVal = And1C->getAPIntValue();
4245   unsigned MaskLZ = MaskVal.countLeadingZeros();
4246   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4247     return false;
4248 
4249   // Don't extend into the upper 32 bits of a 64 bit mask.
4250   if (VT == MVT::i64 && MaskLZ >= 32) {
4251     MaskLZ -= 32;
4252     MaskVal = MaskVal.trunc(32);
4253   }
4254 
4255   SDValue And0 = And->getOperand(0);
4256   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4257   APInt NegMaskVal = MaskVal | HighZeros;
4258 
4259   // If a negative constant would not allow a smaller encoding, there's no need
4260   // to continue. Only change the constant when we know it's a win.
4261   unsigned MinWidth = NegMaskVal.getMinSignedBits();
4262   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
4263     return false;
4264 
4265   // Extend masks if we truncated above.
4266   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4267     NegMaskVal = NegMaskVal.zext(64);
4268     HighZeros = HighZeros.zext(64);
4269   }
4270 
4271   // The variable operand must be all zeros in the top bits to allow using the
4272   // new, negative constant as the mask.
4273   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4274     return false;
4275 
4276   // Check if the mask is -1. In that case, this is an unnecessary instruction
4277   // that escaped earlier analysis.
4278   if (NegMaskVal.isAllOnesValue()) {
4279     ReplaceNode(And, And0.getNode());
4280     return true;
4281   }
4282 
4283   // A negative mask allows a smaller encoding. Create a new 'and' node.
4284   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4285   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4286   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4287   ReplaceNode(And, NewAnd.getNode());
4288   SelectCode(NewAnd.getNode());
4289   return true;
4290 }
4291 
4292 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4293                               bool FoldedBCast, bool Masked) {
4294 #define VPTESTM_CASE(VT, SUFFIX) \
4295 case MVT::VT: \
4296   if (Masked) \
4297     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4298   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4299 
4300 
4301 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4302 default: llvm_unreachable("Unexpected VT!"); \
4303 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4304 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4305 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4306 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4307 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4308 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4309 
4310 #define VPTESTM_FULL_CASES(SUFFIX) \
4311 VPTESTM_BROADCAST_CASES(SUFFIX) \
4312 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4313 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4314 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4315 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4316 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4317 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4318 
4319   if (FoldedBCast) {
4320     switch (TestVT.SimpleTy) {
4321     VPTESTM_BROADCAST_CASES(rmb)
4322     }
4323   }
4324 
4325   if (FoldedLoad) {
4326     switch (TestVT.SimpleTy) {
4327     VPTESTM_FULL_CASES(rm)
4328     }
4329   }
4330 
4331   switch (TestVT.SimpleTy) {
4332   VPTESTM_FULL_CASES(rr)
4333   }
4334 
4335 #undef VPTESTM_FULL_CASES
4336 #undef VPTESTM_BROADCAST_CASES
4337 #undef VPTESTM_CASE
4338 }
4339 
4340 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4341 // to form a masked operation.
4342 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4343                                  SDValue InMask) {
4344   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4345   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4346          "Unexpected VT!");
4347 
4348   // Look for equal and not equal compares.
4349   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4350   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4351     return false;
4352 
4353   SDValue SetccOp0 = Setcc.getOperand(0);
4354   SDValue SetccOp1 = Setcc.getOperand(1);
4355 
4356   // Canonicalize the all zero vector to the RHS.
4357   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4358     std::swap(SetccOp0, SetccOp1);
4359 
4360   // See if we're comparing against zero.
4361   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4362     return false;
4363 
4364   SDValue N0 = SetccOp0;
4365 
4366   MVT CmpVT = N0.getSimpleValueType();
4367   MVT CmpSVT = CmpVT.getVectorElementType();
4368 
4369   // Start with both operands the same. We'll try to refine this.
4370   SDValue Src0 = N0;
4371   SDValue Src1 = N0;
4372 
4373   {
4374     // Look through single use bitcasts.
4375     SDValue N0Temp = N0;
4376     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4377       N0Temp = N0.getOperand(0);
4378 
4379      // Look for single use AND.
4380     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4381       Src0 = N0Temp.getOperand(0);
4382       Src1 = N0Temp.getOperand(1);
4383     }
4384   }
4385 
4386   // Without VLX we need to widen the operation.
4387   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4388 
4389   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4390                                 SDValue &Base, SDValue &Scale, SDValue &Index,
4391                                 SDValue &Disp, SDValue &Segment) {
4392     // If we need to widen, we can't fold the load.
4393     if (!Widen)
4394       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4395         return true;
4396 
4397     // If we didn't fold a load, try to match broadcast. No widening limitation
4398     // for this. But only 32 and 64 bit types are supported.
4399     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4400       return false;
4401 
4402     // Look through single use bitcasts.
4403     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4404       P = L.getNode();
4405       L = L.getOperand(0);
4406     }
4407 
4408     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4409       return false;
4410 
4411     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4412     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4413       return false;
4414 
4415     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4416   };
4417 
4418   // We can only fold loads if the sources are unique.
4419   bool CanFoldLoads = Src0 != Src1;
4420 
4421   bool FoldedLoad = false;
4422   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4423   if (CanFoldLoads) {
4424     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4425                                     Tmp3, Tmp4);
4426     if (!FoldedLoad) {
4427       // And is commutative.
4428       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4429                                       Tmp2, Tmp3, Tmp4);
4430       if (FoldedLoad)
4431         std::swap(Src0, Src1);
4432     }
4433   }
4434 
4435   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4436 
4437   bool IsMasked = InMask.getNode() != nullptr;
4438 
4439   SDLoc dl(Root);
4440 
4441   MVT ResVT = Setcc.getSimpleValueType();
4442   MVT MaskVT = ResVT;
4443   if (Widen) {
4444     // Widen the inputs using insert_subreg or copy_to_regclass.
4445     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4446     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4447     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4448     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4449     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4450     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4451                                                      CmpVT), 0);
4452     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4453 
4454     if (!FoldedBCast)
4455       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4456 
4457     if (IsMasked) {
4458       // Widen the mask.
4459       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4460       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4461       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4462                                               dl, MaskVT, InMask, RC), 0);
4463     }
4464   }
4465 
4466   bool IsTestN = CC == ISD::SETEQ;
4467   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4468                                IsMasked);
4469 
4470   MachineSDNode *CNode;
4471   if (FoldedLoad) {
4472     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4473 
4474     if (IsMasked) {
4475       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4476                         Src1.getOperand(0) };
4477       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4478     } else {
4479       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4480                         Src1.getOperand(0) };
4481       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4482     }
4483 
4484     // Update the chain.
4485     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4486     // Record the mem-refs
4487     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4488   } else {
4489     if (IsMasked)
4490       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4491     else
4492       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4493   }
4494 
4495   // If we widened, we need to shrink the mask VT.
4496   if (Widen) {
4497     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4498     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4499     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4500                                    dl, ResVT, SDValue(CNode, 0), RC);
4501   }
4502 
4503   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4504   CurDAG->RemoveDeadNode(Root);
4505   return true;
4506 }
4507 
4508 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4509 // into vpternlog.
4510 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4511   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4512 
4513   MVT NVT = N->getSimpleValueType(0);
4514 
4515   // Make sure we support VPTERNLOG.
4516   if (!NVT.isVector() || !Subtarget->hasAVX512())
4517     return false;
4518 
4519   // We need VLX for 128/256-bit.
4520   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4521     return false;
4522 
4523   SDValue N0 = N->getOperand(0);
4524   SDValue N1 = N->getOperand(1);
4525 
4526   // Canonicalize AND to LHS.
4527   if (N1.getOpcode() == ISD::AND)
4528     std::swap(N0, N1);
4529 
4530   if (N0.getOpcode() != ISD::AND ||
4531       N1.getOpcode() != X86ISD::ANDNP ||
4532       !N0.hasOneUse() || !N1.hasOneUse())
4533     return false;
4534 
4535   // ANDN is not commutable, use it to pick down A and C.
4536   SDValue A = N1.getOperand(0);
4537   SDValue C = N1.getOperand(1);
4538 
4539   // AND is commutable, if one operand matches A, the other operand is B.
4540   // Otherwise this isn't a match.
4541   SDValue B;
4542   if (N0.getOperand(0) == A)
4543     B = N0.getOperand(1);
4544   else if (N0.getOperand(1) == A)
4545     B = N0.getOperand(0);
4546   else
4547     return false;
4548 
4549   SDLoc dl(N);
4550   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
4551   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
4552   ReplaceNode(N, Ternlog.getNode());
4553 
4554   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
4555                         A, B, C, 0xCA);
4556 }
4557 
4558 void X86DAGToDAGISel::Select(SDNode *Node) {
4559   MVT NVT = Node->getSimpleValueType(0);
4560   unsigned Opcode = Node->getOpcode();
4561   SDLoc dl(Node);
4562 
4563   if (Node->isMachineOpcode()) {
4564     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
4565     Node->setNodeId(-1);
4566     return;   // Already selected.
4567   }
4568 
4569   switch (Opcode) {
4570   default: break;
4571   case ISD::INTRINSIC_W_CHAIN: {
4572     unsigned IntNo = Node->getConstantOperandVal(1);
4573     switch (IntNo) {
4574     default: break;
4575     case Intrinsic::x86_encodekey128:
4576     case Intrinsic::x86_encodekey256: {
4577       if (!Subtarget->hasKL())
4578         break;
4579 
4580       unsigned Opcode;
4581       switch (IntNo) {
4582       default: llvm_unreachable("Impossible intrinsic");
4583       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
4584       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
4585       }
4586 
4587       SDValue Chain = Node->getOperand(0);
4588       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
4589                                    SDValue());
4590       if (Opcode == X86::ENCODEKEY256)
4591         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
4592                                      Chain.getValue(1));
4593 
4594       MachineSDNode *Res = CurDAG->getMachineNode(
4595           Opcode, dl, Node->getVTList(),
4596           {Node->getOperand(2), Chain, Chain.getValue(1)});
4597       ReplaceNode(Node, Res);
4598       return;
4599     }
4600     case Intrinsic::x86_tileloadd64_internal: {
4601       if (!Subtarget->hasAMXTILE())
4602         break;
4603       unsigned Opc = X86::PTILELOADDV;
4604       // _tile_loadd_internal(row, col, buf, STRIDE)
4605       SDValue Base = Node->getOperand(4);
4606       SDValue Scale = getI8Imm(1, dl);
4607       SDValue Index = Node->getOperand(5);
4608       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4609       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4610       SDValue CFG = CurDAG->getRegister(0, MVT::Untyped);
4611       SDValue Chain = Node->getOperand(0);
4612       MachineSDNode *CNode;
4613       SDValue Ops[] = {Node->getOperand(2),
4614                        Node->getOperand(3),
4615                        Base,
4616                        Scale,
4617                        Index,
4618                        Disp,
4619                        Segment,
4620                        CFG,
4621                        Chain};
4622       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
4623       ReplaceNode(Node, CNode);
4624       return;
4625     }
4626     case Intrinsic::x86_tdpbssd_internal: {
4627       if (!Subtarget->hasAMXTILE())
4628         break;
4629       SDValue Chain = Node->getOperand(0);
4630       unsigned Opc = X86::PTDPBSSDV;
4631       SDValue CFG = CurDAG->getRegister(0, MVT::Untyped);
4632       SDValue Ops[] = {Node->getOperand(2),
4633                        Node->getOperand(3),
4634                        Node->getOperand(4),
4635                        Node->getOperand(5),
4636                        Node->getOperand(6),
4637                        Node->getOperand(7),
4638                        CFG,
4639                        Chain};
4640       MachineSDNode *CNode =
4641           CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
4642       ReplaceNode(Node, CNode);
4643       return;
4644     }
4645     case Intrinsic::x86_tilezero_internal: {
4646       if (!Subtarget->hasAMXTILE())
4647         break;
4648       unsigned Opc = X86::PTILEZEROV;
4649       SDValue Chain = Node->getOperand(0);
4650       SDValue CFG = CurDAG->getRegister(0, MVT::Untyped);
4651       SDValue Ops[] = {Node->getOperand(2), Node->getOperand(3), CFG, Chain};
4652       MachineSDNode *CNode =
4653           CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
4654       ReplaceNode(Node, CNode);
4655       return;
4656     }
4657     }
4658     break;
4659   }
4660   case ISD::INTRINSIC_VOID: {
4661     unsigned IntNo = Node->getConstantOperandVal(1);
4662     switch (IntNo) {
4663     default: break;
4664     case Intrinsic::x86_sse3_monitor:
4665     case Intrinsic::x86_monitorx:
4666     case Intrinsic::x86_clzero: {
4667       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
4668 
4669       unsigned Opc = 0;
4670       switch (IntNo) {
4671       default: llvm_unreachable("Unexpected intrinsic!");
4672       case Intrinsic::x86_sse3_monitor:
4673         if (!Subtarget->hasSSE3())
4674           break;
4675         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
4676         break;
4677       case Intrinsic::x86_monitorx:
4678         if (!Subtarget->hasMWAITX())
4679           break;
4680         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
4681         break;
4682       case Intrinsic::x86_clzero:
4683         if (!Subtarget->hasCLZERO())
4684           break;
4685         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
4686         break;
4687       }
4688 
4689       if (Opc) {
4690         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
4691         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
4692                                              Node->getOperand(2), SDValue());
4693         SDValue InFlag = Chain.getValue(1);
4694 
4695         if (IntNo == Intrinsic::x86_sse3_monitor ||
4696             IntNo == Intrinsic::x86_monitorx) {
4697           // Copy the other two operands to ECX and EDX.
4698           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
4699                                        InFlag);
4700           InFlag = Chain.getValue(1);
4701           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
4702                                        InFlag);
4703           InFlag = Chain.getValue(1);
4704         }
4705 
4706         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4707                                                       { Chain, InFlag});
4708         ReplaceNode(Node, CNode);
4709         return;
4710       }
4711 
4712       break;
4713     }
4714     case Intrinsic::x86_tilestored64_internal: {
4715       unsigned Opc = X86::PTILESTOREDV;
4716       // _tile_stored_internal(row, col, buf, STRIDE, c)
4717       SDValue Base = Node->getOperand(4);
4718       SDValue Scale = getI8Imm(1, dl);
4719       SDValue Index = Node->getOperand(5);
4720       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4721       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4722       SDValue CFG = CurDAG->getRegister(0, MVT::Untyped);
4723       SDValue Chain = Node->getOperand(0);
4724       MachineSDNode *CNode;
4725       SDValue Ops[] = {Node->getOperand(2),
4726                        Node->getOperand(3),
4727                        Base,
4728                        Scale,
4729                        Index,
4730                        Disp,
4731                        Segment,
4732                        Node->getOperand(6),
4733                        CFG,
4734                        Chain};
4735       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4736       ReplaceNode(Node, CNode);
4737       return;
4738     }
4739     case Intrinsic::x86_tileloadd64:
4740     case Intrinsic::x86_tileloaddt164:
4741     case Intrinsic::x86_tilestored64: {
4742       if (!Subtarget->hasAMXTILE())
4743         break;
4744       unsigned Opc;
4745       switch (IntNo) {
4746       default: llvm_unreachable("Unexpected intrinsic!");
4747       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
4748       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
4749       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
4750       }
4751       // FIXME: Match displacement and scale.
4752       unsigned TIndex = Node->getConstantOperandVal(2);
4753       SDValue TReg = getI8Imm(TIndex, dl);
4754       SDValue Base = Node->getOperand(3);
4755       SDValue Scale = getI8Imm(1, dl);
4756       SDValue Index = Node->getOperand(4);
4757       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4758       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4759       SDValue Chain = Node->getOperand(0);
4760       MachineSDNode *CNode;
4761       if (Opc == X86::PTILESTORED) {
4762         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
4763         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4764       } else {
4765         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
4766         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4767       }
4768       ReplaceNode(Node, CNode);
4769       return;
4770     }
4771     }
4772     break;
4773   }
4774   case ISD::BRIND: {
4775     if (Subtarget->isTargetNaCl())
4776       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
4777       // leave the instruction alone.
4778       break;
4779     if (Subtarget->isTarget64BitILP32()) {
4780       // Converts a 32-bit register to a 64-bit, zero-extended version of
4781       // it. This is needed because x86-64 can do many things, but jmp %r32
4782       // ain't one of them.
4783       SDValue Target = Node->getOperand(1);
4784       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
4785       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
4786       SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other,
4787                                       Node->getOperand(0), ZextTarget);
4788       ReplaceNode(Node, Brind.getNode());
4789       SelectCode(ZextTarget.getNode());
4790       SelectCode(Brind.getNode());
4791       return;
4792     }
4793     break;
4794   }
4795   case X86ISD::GlobalBaseReg:
4796     ReplaceNode(Node, getGlobalBaseReg());
4797     return;
4798 
4799   case ISD::BITCAST:
4800     // Just drop all 128/256/512-bit bitcasts.
4801     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
4802         NVT == MVT::f128) {
4803       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
4804       CurDAG->RemoveDeadNode(Node);
4805       return;
4806     }
4807     break;
4808 
4809   case ISD::SRL:
4810     if (matchBitExtract(Node))
4811       return;
4812     LLVM_FALLTHROUGH;
4813   case ISD::SRA:
4814   case ISD::SHL:
4815     if (tryShiftAmountMod(Node))
4816       return;
4817     break;
4818 
4819   case X86ISD::VPTERNLOG: {
4820     uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue();
4821     if (matchVPTERNLOG(Node, Node, Node, Node->getOperand(0),
4822                        Node->getOperand(1), Node->getOperand(2), Imm))
4823       return;
4824     break;
4825   }
4826 
4827   case X86ISD::ANDNP:
4828     if (tryVPTERNLOG(Node))
4829       return;
4830     break;
4831 
4832   case ISD::AND:
4833     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
4834       // Try to form a masked VPTESTM. Operands can be in either order.
4835       SDValue N0 = Node->getOperand(0);
4836       SDValue N1 = Node->getOperand(1);
4837       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
4838           tryVPTESTM(Node, N0, N1))
4839         return;
4840       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
4841           tryVPTESTM(Node, N1, N0))
4842         return;
4843     }
4844 
4845     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
4846       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
4847       CurDAG->RemoveDeadNode(Node);
4848       return;
4849     }
4850     if (matchBitExtract(Node))
4851       return;
4852     if (AndImmShrink && shrinkAndImmediate(Node))
4853       return;
4854 
4855     LLVM_FALLTHROUGH;
4856   case ISD::OR:
4857   case ISD::XOR:
4858     if (tryShrinkShlLogicImm(Node))
4859       return;
4860     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
4861       return;
4862     if (tryVPTERNLOG(Node))
4863       return;
4864 
4865     LLVM_FALLTHROUGH;
4866   case ISD::ADD:
4867   case ISD::SUB: {
4868     // Try to avoid folding immediates with multiple uses for optsize.
4869     // This code tries to select to register form directly to avoid going
4870     // through the isel table which might fold the immediate. We can't change
4871     // the patterns on the add/sub/and/or/xor with immediate paterns in the
4872     // tablegen files to check immediate use count without making the patterns
4873     // unavailable to the fast-isel table.
4874     if (!CurDAG->shouldOptForSize())
4875       break;
4876 
4877     // Only handle i8/i16/i32/i64.
4878     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
4879       break;
4880 
4881     SDValue N0 = Node->getOperand(0);
4882     SDValue N1 = Node->getOperand(1);
4883 
4884     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
4885     if (!Cst)
4886       break;
4887 
4888     int64_t Val = Cst->getSExtValue();
4889 
4890     // Make sure its an immediate that is considered foldable.
4891     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
4892     if (!isInt<8>(Val) && !isInt<32>(Val))
4893       break;
4894 
4895     // If this can match to INC/DEC, let it go.
4896     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
4897       break;
4898 
4899     // Check if we should avoid folding this immediate.
4900     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
4901       break;
4902 
4903     // We should not fold the immediate. So we need a register form instead.
4904     unsigned ROpc, MOpc;
4905     switch (NVT.SimpleTy) {
4906     default: llvm_unreachable("Unexpected VT!");
4907     case MVT::i8:
4908       switch (Opcode) {
4909       default: llvm_unreachable("Unexpected opcode!");
4910       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
4911       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
4912       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
4913       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
4914       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
4915       }
4916       break;
4917     case MVT::i16:
4918       switch (Opcode) {
4919       default: llvm_unreachable("Unexpected opcode!");
4920       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
4921       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
4922       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
4923       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
4924       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
4925       }
4926       break;
4927     case MVT::i32:
4928       switch (Opcode) {
4929       default: llvm_unreachable("Unexpected opcode!");
4930       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
4931       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
4932       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
4933       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
4934       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
4935       }
4936       break;
4937     case MVT::i64:
4938       switch (Opcode) {
4939       default: llvm_unreachable("Unexpected opcode!");
4940       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
4941       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
4942       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
4943       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
4944       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
4945       }
4946       break;
4947     }
4948 
4949     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
4950 
4951     // If this is a not a subtract, we can still try to fold a load.
4952     if (Opcode != ISD::SUB) {
4953       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4954       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4955         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
4956         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4957         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4958         // Update the chain.
4959         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
4960         // Record the mem-refs
4961         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
4962         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4963         CurDAG->RemoveDeadNode(Node);
4964         return;
4965       }
4966     }
4967 
4968     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
4969     return;
4970   }
4971 
4972   case X86ISD::SMUL:
4973     // i16/i32/i64 are handled with isel patterns.
4974     if (NVT != MVT::i8)
4975       break;
4976     LLVM_FALLTHROUGH;
4977   case X86ISD::UMUL: {
4978     SDValue N0 = Node->getOperand(0);
4979     SDValue N1 = Node->getOperand(1);
4980 
4981     unsigned LoReg, ROpc, MOpc;
4982     switch (NVT.SimpleTy) {
4983     default: llvm_unreachable("Unsupported VT!");
4984     case MVT::i8:
4985       LoReg = X86::AL;
4986       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
4987       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
4988       break;
4989     case MVT::i16:
4990       LoReg = X86::AX;
4991       ROpc = X86::MUL16r;
4992       MOpc = X86::MUL16m;
4993       break;
4994     case MVT::i32:
4995       LoReg = X86::EAX;
4996       ROpc = X86::MUL32r;
4997       MOpc = X86::MUL32m;
4998       break;
4999     case MVT::i64:
5000       LoReg = X86::RAX;
5001       ROpc = X86::MUL64r;
5002       MOpc = X86::MUL64m;
5003       break;
5004     }
5005 
5006     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5007     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5008     // Multiply is commutative.
5009     if (!FoldedLoad) {
5010       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5011       if (FoldedLoad)
5012         std::swap(N0, N1);
5013     }
5014 
5015     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5016                                           N0, SDValue()).getValue(1);
5017 
5018     MachineSDNode *CNode;
5019     if (FoldedLoad) {
5020       // i16/i32/i64 use an instruction that produces a low and high result even
5021       // though only the low result is used.
5022       SDVTList VTs;
5023       if (NVT == MVT::i8)
5024         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5025       else
5026         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5027 
5028       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5029                         InFlag };
5030       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5031 
5032       // Update the chain.
5033       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5034       // Record the mem-refs
5035       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5036     } else {
5037       // i16/i32/i64 use an instruction that produces a low and high result even
5038       // though only the low result is used.
5039       SDVTList VTs;
5040       if (NVT == MVT::i8)
5041         VTs = CurDAG->getVTList(NVT, MVT::i32);
5042       else
5043         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5044 
5045       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
5046     }
5047 
5048     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5049     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5050     CurDAG->RemoveDeadNode(Node);
5051     return;
5052   }
5053 
5054   case ISD::SMUL_LOHI:
5055   case ISD::UMUL_LOHI: {
5056     SDValue N0 = Node->getOperand(0);
5057     SDValue N1 = Node->getOperand(1);
5058 
5059     unsigned Opc, MOpc;
5060     unsigned LoReg, HiReg;
5061     bool IsSigned = Opcode == ISD::SMUL_LOHI;
5062     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5063     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5064     switch (NVT.SimpleTy) {
5065     default: llvm_unreachable("Unsupported VT!");
5066     case MVT::i32:
5067       Opc  = UseMULXHi ? X86::MULX32Hrr :
5068              UseMULX ? X86::MULX32rr :
5069              IsSigned ? X86::IMUL32r : X86::MUL32r;
5070       MOpc = UseMULXHi ? X86::MULX32Hrm :
5071              UseMULX ? X86::MULX32rm :
5072              IsSigned ? X86::IMUL32m : X86::MUL32m;
5073       LoReg = UseMULX ? X86::EDX : X86::EAX;
5074       HiReg = X86::EDX;
5075       break;
5076     case MVT::i64:
5077       Opc  = UseMULXHi ? X86::MULX64Hrr :
5078              UseMULX ? X86::MULX64rr :
5079              IsSigned ? X86::IMUL64r : X86::MUL64r;
5080       MOpc = UseMULXHi ? X86::MULX64Hrm :
5081              UseMULX ? X86::MULX64rm :
5082              IsSigned ? X86::IMUL64m : X86::MUL64m;
5083       LoReg = UseMULX ? X86::RDX : X86::RAX;
5084       HiReg = X86::RDX;
5085       break;
5086     }
5087 
5088     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5089     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5090     // Multiply is commmutative.
5091     if (!foldedLoad) {
5092       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5093       if (foldedLoad)
5094         std::swap(N0, N1);
5095     }
5096 
5097     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5098                                           N0, SDValue()).getValue(1);
5099     SDValue ResHi, ResLo;
5100     if (foldedLoad) {
5101       SDValue Chain;
5102       MachineSDNode *CNode = nullptr;
5103       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5104                         InFlag };
5105       if (UseMULXHi) {
5106         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5107         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5108         ResHi = SDValue(CNode, 0);
5109         Chain = SDValue(CNode, 1);
5110       } else if (UseMULX) {
5111         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5112         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5113         ResHi = SDValue(CNode, 0);
5114         ResLo = SDValue(CNode, 1);
5115         Chain = SDValue(CNode, 2);
5116       } else {
5117         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5118         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5119         Chain = SDValue(CNode, 0);
5120         InFlag = SDValue(CNode, 1);
5121       }
5122 
5123       // Update the chain.
5124       ReplaceUses(N1.getValue(1), Chain);
5125       // Record the mem-refs
5126       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5127     } else {
5128       SDValue Ops[] = { N1, InFlag };
5129       if (UseMULXHi) {
5130         SDVTList VTs = CurDAG->getVTList(NVT);
5131         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5132         ResHi = SDValue(CNode, 0);
5133       } else if (UseMULX) {
5134         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5135         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5136         ResHi = SDValue(CNode, 0);
5137         ResLo = SDValue(CNode, 1);
5138       } else {
5139         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5140         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5141         InFlag = SDValue(CNode, 0);
5142       }
5143     }
5144 
5145     // Copy the low half of the result, if it is needed.
5146     if (!SDValue(Node, 0).use_empty()) {
5147       if (!ResLo) {
5148         assert(LoReg && "Register for low half is not defined!");
5149         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5150                                        NVT, InFlag);
5151         InFlag = ResLo.getValue(2);
5152       }
5153       ReplaceUses(SDValue(Node, 0), ResLo);
5154       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5155                  dbgs() << '\n');
5156     }
5157     // Copy the high half of the result, if it is needed.
5158     if (!SDValue(Node, 1).use_empty()) {
5159       if (!ResHi) {
5160         assert(HiReg && "Register for high half is not defined!");
5161         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5162                                        NVT, InFlag);
5163         InFlag = ResHi.getValue(2);
5164       }
5165       ReplaceUses(SDValue(Node, 1), ResHi);
5166       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5167                  dbgs() << '\n');
5168     }
5169 
5170     CurDAG->RemoveDeadNode(Node);
5171     return;
5172   }
5173 
5174   case ISD::SDIVREM:
5175   case ISD::UDIVREM: {
5176     SDValue N0 = Node->getOperand(0);
5177     SDValue N1 = Node->getOperand(1);
5178 
5179     unsigned ROpc, MOpc;
5180     bool isSigned = Opcode == ISD::SDIVREM;
5181     if (!isSigned) {
5182       switch (NVT.SimpleTy) {
5183       default: llvm_unreachable("Unsupported VT!");
5184       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
5185       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5186       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5187       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5188       }
5189     } else {
5190       switch (NVT.SimpleTy) {
5191       default: llvm_unreachable("Unsupported VT!");
5192       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
5193       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5194       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5195       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5196       }
5197     }
5198 
5199     unsigned LoReg, HiReg, ClrReg;
5200     unsigned SExtOpcode;
5201     switch (NVT.SimpleTy) {
5202     default: llvm_unreachable("Unsupported VT!");
5203     case MVT::i8:
5204       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
5205       SExtOpcode = 0; // Not used.
5206       break;
5207     case MVT::i16:
5208       LoReg = X86::AX;  HiReg = X86::DX;
5209       ClrReg = X86::DX;
5210       SExtOpcode = X86::CWD;
5211       break;
5212     case MVT::i32:
5213       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5214       SExtOpcode = X86::CDQ;
5215       break;
5216     case MVT::i64:
5217       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5218       SExtOpcode = X86::CQO;
5219       break;
5220     }
5221 
5222     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5223     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5224     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5225 
5226     SDValue InFlag;
5227     if (NVT == MVT::i8) {
5228       // Special case for div8, just use a move with zero extension to AX to
5229       // clear the upper 8 bits (AH).
5230       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5231       MachineSDNode *Move;
5232       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5233         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5234         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5235                                                     : X86::MOVZX16rm8;
5236         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5237         Chain = SDValue(Move, 1);
5238         ReplaceUses(N0.getValue(1), Chain);
5239         // Record the mem-refs
5240         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5241       } else {
5242         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5243                                                     : X86::MOVZX16rr8;
5244         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5245         Chain = CurDAG->getEntryNode();
5246       }
5247       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5248                                     SDValue());
5249       InFlag = Chain.getValue(1);
5250     } else {
5251       InFlag =
5252         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5253                              LoReg, N0, SDValue()).getValue(1);
5254       if (isSigned && !signBitIsZero) {
5255         // Sign extend the low part into the high part.
5256         InFlag =
5257           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
5258       } else {
5259         // Zero out the high part, effectively zero extending the input.
5260         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5261         SDValue ClrNode =
5262             SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5263         switch (NVT.SimpleTy) {
5264         case MVT::i16:
5265           ClrNode =
5266               SDValue(CurDAG->getMachineNode(
5267                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5268                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
5269                                                     MVT::i32)),
5270                       0);
5271           break;
5272         case MVT::i32:
5273           break;
5274         case MVT::i64:
5275           ClrNode =
5276               SDValue(CurDAG->getMachineNode(
5277                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5278                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5279                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
5280                                                     MVT::i32)),
5281                       0);
5282           break;
5283         default:
5284           llvm_unreachable("Unexpected division source");
5285         }
5286 
5287         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5288                                       ClrNode, InFlag).getValue(1);
5289       }
5290     }
5291 
5292     if (foldedLoad) {
5293       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5294                         InFlag };
5295       MachineSDNode *CNode =
5296         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5297       InFlag = SDValue(CNode, 1);
5298       // Update the chain.
5299       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5300       // Record the mem-refs
5301       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5302     } else {
5303       InFlag =
5304         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0);
5305     }
5306 
5307     // Prevent use of AH in a REX instruction by explicitly copying it to
5308     // an ABCD_L register.
5309     //
5310     // The current assumption of the register allocator is that isel
5311     // won't generate explicit references to the GR8_ABCD_H registers. If
5312     // the allocator and/or the backend get enhanced to be more robust in
5313     // that regard, this can be, and should be, removed.
5314     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5315       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5316       unsigned AHExtOpcode =
5317           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5318 
5319       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5320                                              MVT::Glue, AHCopy, InFlag);
5321       SDValue Result(RNode, 0);
5322       InFlag = SDValue(RNode, 1);
5323 
5324       Result =
5325           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5326 
5327       ReplaceUses(SDValue(Node, 1), Result);
5328       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5329                  dbgs() << '\n');
5330     }
5331     // Copy the division (low) result, if it is needed.
5332     if (!SDValue(Node, 0).use_empty()) {
5333       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5334                                                 LoReg, NVT, InFlag);
5335       InFlag = Result.getValue(2);
5336       ReplaceUses(SDValue(Node, 0), Result);
5337       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5338                  dbgs() << '\n');
5339     }
5340     // Copy the remainder (high) result, if it is needed.
5341     if (!SDValue(Node, 1).use_empty()) {
5342       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5343                                               HiReg, NVT, InFlag);
5344       InFlag = Result.getValue(2);
5345       ReplaceUses(SDValue(Node, 1), Result);
5346       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5347                  dbgs() << '\n');
5348     }
5349     CurDAG->RemoveDeadNode(Node);
5350     return;
5351   }
5352 
5353   case X86ISD::FCMP:
5354   case X86ISD::STRICT_FCMP:
5355   case X86ISD::STRICT_FCMPS: {
5356     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5357                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
5358     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5359     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5360 
5361     // Save the original VT of the compare.
5362     MVT CmpVT = N0.getSimpleValueType();
5363 
5364     // Floating point needs special handling if we don't have FCOMI.
5365     if (Subtarget->hasCMov())
5366       break;
5367 
5368     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5369 
5370     unsigned Opc;
5371     switch (CmpVT.SimpleTy) {
5372     default: llvm_unreachable("Unexpected type!");
5373     case MVT::f32:
5374       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5375       break;
5376     case MVT::f64:
5377       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5378       break;
5379     case MVT::f80:
5380       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5381       break;
5382     }
5383 
5384     SDValue Cmp;
5385     SDValue Chain =
5386         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5387     if (IsStrictCmp) {
5388       SDVTList VTs = CurDAG->getVTList(MVT::i16, MVT::Other);
5389       Cmp = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5390       Chain = Cmp.getValue(1);
5391     } else {
5392       Cmp = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i16, N0, N1), 0);
5393     }
5394 
5395     // Move FPSW to AX.
5396     SDValue FPSW = CurDAG->getCopyToReg(Chain, dl, X86::FPSW, Cmp, SDValue());
5397     Chain = FPSW;
5398     SDValue FNSTSW =
5399         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, FPSW,
5400                                        FPSW.getValue(1)),
5401                 0);
5402 
5403     // Extract upper 8-bits of AX.
5404     SDValue Extract =
5405         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5406 
5407     // Move AH into flags.
5408     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5409     assert(Subtarget->hasLAHFSAHF() &&
5410            "Target doesn't support SAHF or FCOMI?");
5411     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5412     Chain = AH;
5413     SDValue SAHF = SDValue(
5414         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5415 
5416     if (IsStrictCmp)
5417       ReplaceUses(SDValue(Node, 1), Chain);
5418 
5419     ReplaceUses(SDValue(Node, 0), SAHF);
5420     CurDAG->RemoveDeadNode(Node);
5421     return;
5422   }
5423 
5424   case X86ISD::CMP: {
5425     SDValue N0 = Node->getOperand(0);
5426     SDValue N1 = Node->getOperand(1);
5427 
5428     // Optimizations for TEST compares.
5429     if (!isNullConstant(N1))
5430       break;
5431 
5432     // Save the original VT of the compare.
5433     MVT CmpVT = N0.getSimpleValueType();
5434 
5435     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5436     // by a test instruction. The test should be removed later by
5437     // analyzeCompare if we are using only the zero flag.
5438     // TODO: Should we check the users and use the BEXTR flags directly?
5439     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5440       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5441         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5442                                              : X86::TEST32rr;
5443         SDValue BEXTR = SDValue(NewNode, 0);
5444         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5445         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5446         CurDAG->RemoveDeadNode(Node);
5447         return;
5448       }
5449     }
5450 
5451     // We can peek through truncates, but we need to be careful below.
5452     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5453       N0 = N0.getOperand(0);
5454 
5455     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5456     // use a smaller encoding.
5457     // Look past the truncate if CMP is the only use of it.
5458     if (N0.getOpcode() == ISD::AND &&
5459         N0.getNode()->hasOneUse() &&
5460         N0.getValueType() != MVT::i8) {
5461       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5462       if (!C) break;
5463       uint64_t Mask = C->getZExtValue();
5464 
5465       // Check if we can replace AND+IMM64 with a shift. This is possible for
5466       // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
5467       // flag.
5468       if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
5469           onlyUsesZeroFlag(SDValue(Node, 0))) {
5470         if (isMask_64(~Mask)) {
5471           unsigned TrailingZeros = countTrailingZeros(Mask);
5472           SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
5473           SDValue Shift =
5474             SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
5475                                            N0.getOperand(0), Imm), 0);
5476           MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5477                                                        MVT::i32, Shift, Shift);
5478           ReplaceNode(Node, Test);
5479           return;
5480         }
5481         if (isMask_64(Mask)) {
5482           unsigned LeadingZeros = countLeadingZeros(Mask);
5483           SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
5484           SDValue Shift =
5485             SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
5486                                            N0.getOperand(0), Imm), 0);
5487           MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5488                                                        MVT::i32, Shift, Shift);
5489           ReplaceNode(Node, Test);
5490           return;
5491         }
5492       }
5493 
5494       MVT VT;
5495       int SubRegOp;
5496       unsigned ROpc, MOpc;
5497 
5498       // For each of these checks we need to be careful if the sign flag is
5499       // being used. It is only safe to use the sign flag in two conditions,
5500       // either the sign bit in the shrunken mask is zero or the final test
5501       // size is equal to the original compare size.
5502 
5503       if (isUInt<8>(Mask) &&
5504           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5505            hasNoSignFlagUses(SDValue(Node, 0)))) {
5506         // For example, convert "testl %eax, $8" to "testb %al, $8"
5507         VT = MVT::i8;
5508         SubRegOp = X86::sub_8bit;
5509         ROpc = X86::TEST8ri;
5510         MOpc = X86::TEST8mi;
5511       } else if (OptForMinSize && isUInt<16>(Mask) &&
5512                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5513                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5514         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5515         // NOTE: We only want to form TESTW instructions if optimizing for
5516         // min size. Otherwise we only save one byte and possibly get a length
5517         // changing prefix penalty in the decoders.
5518         VT = MVT::i16;
5519         SubRegOp = X86::sub_16bit;
5520         ROpc = X86::TEST16ri;
5521         MOpc = X86::TEST16mi;
5522       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5523                  ((!(Mask & 0x80000000) &&
5524                    // Without minsize 16-bit Cmps can get here so we need to
5525                    // be sure we calculate the correct sign flag if needed.
5526                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5527                   CmpVT == MVT::i32 ||
5528                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5529         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5530         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5531         // Otherwize, we find ourselves in a position where we have to do
5532         // promotion. If previous passes did not promote the and, we assume
5533         // they had a good reason not to and do not promote here.
5534         VT = MVT::i32;
5535         SubRegOp = X86::sub_32bit;
5536         ROpc = X86::TEST32ri;
5537         MOpc = X86::TEST32mi;
5538       } else {
5539         // No eligible transformation was found.
5540         break;
5541       }
5542 
5543       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
5544       SDValue Reg = N0.getOperand(0);
5545 
5546       // Emit a testl or testw.
5547       MachineSDNode *NewNode;
5548       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5549       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5550         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
5551           if (!LoadN->isSimple()) {
5552             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
5553             if (MOpc == X86::TEST8mi && NumVolBits != 8)
5554               break;
5555             else if (MOpc == X86::TEST16mi && NumVolBits != 16)
5556               break;
5557             else if (MOpc == X86::TEST32mi && NumVolBits != 32)
5558               break;
5559           }
5560         }
5561         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
5562                           Reg.getOperand(0) };
5563         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
5564         // Update the chain.
5565         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
5566         // Record the mem-refs
5567         CurDAG->setNodeMemRefs(NewNode,
5568                                {cast<LoadSDNode>(Reg)->getMemOperand()});
5569       } else {
5570         // Extract the subregister if necessary.
5571         if (N0.getValueType() != VT)
5572           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
5573 
5574         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
5575       }
5576       // Replace CMP with TEST.
5577       ReplaceNode(Node, NewNode);
5578       return;
5579     }
5580     break;
5581   }
5582   case X86ISD::PCMPISTR: {
5583     if (!Subtarget->hasSSE42())
5584       break;
5585 
5586     bool NeedIndex = !SDValue(Node, 0).use_empty();
5587     bool NeedMask = !SDValue(Node, 1).use_empty();
5588     // We can't fold a load if we are going to make two instructions.
5589     bool MayFoldLoad = !NeedIndex || !NeedMask;
5590 
5591     MachineSDNode *CNode;
5592     if (NeedMask) {
5593       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
5594       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
5595       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
5596       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5597     }
5598     if (NeedIndex || !NeedMask) {
5599       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
5600       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
5601       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
5602       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5603     }
5604 
5605     // Connect the flag usage to the last instruction created.
5606     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5607     CurDAG->RemoveDeadNode(Node);
5608     return;
5609   }
5610   case X86ISD::PCMPESTR: {
5611     if (!Subtarget->hasSSE42())
5612       break;
5613 
5614     // Copy the two implicit register inputs.
5615     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
5616                                           Node->getOperand(1),
5617                                           SDValue()).getValue(1);
5618     InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
5619                                   Node->getOperand(3), InFlag).getValue(1);
5620 
5621     bool NeedIndex = !SDValue(Node, 0).use_empty();
5622     bool NeedMask = !SDValue(Node, 1).use_empty();
5623     // We can't fold a load if we are going to make two instructions.
5624     bool MayFoldLoad = !NeedIndex || !NeedMask;
5625 
5626     MachineSDNode *CNode;
5627     if (NeedMask) {
5628       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
5629       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
5630       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
5631                            InFlag);
5632       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5633     }
5634     if (NeedIndex || !NeedMask) {
5635       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
5636       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
5637       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
5638       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5639     }
5640     // Connect the flag usage to the last instruction created.
5641     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5642     CurDAG->RemoveDeadNode(Node);
5643     return;
5644   }
5645 
5646   case ISD::SETCC: {
5647     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
5648       return;
5649 
5650     break;
5651   }
5652 
5653   case ISD::STORE:
5654     if (foldLoadStoreIntoMemOperand(Node))
5655       return;
5656     break;
5657 
5658   case X86ISD::SETCC_CARRY: {
5659     // We have to do this manually because tblgen will put the eflags copy in
5660     // the wrong place if we use an extract_subreg in the pattern.
5661     MVT VT = Node->getSimpleValueType(0);
5662 
5663     // Copy flags to the EFLAGS register and glue it to next node.
5664     SDValue EFLAGS =
5665         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5666                              Node->getOperand(1), SDValue());
5667 
5668     // Create a 64-bit instruction if the result is 64-bits otherwise use the
5669     // 32-bit version.
5670     unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
5671     MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5672     SDValue Result = SDValue(
5673         CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)), 0);
5674 
5675     // For less than 32-bits we need to extract from the 32-bit node.
5676     if (VT == MVT::i8 || VT == MVT::i16) {
5677       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5678       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5679     }
5680 
5681     ReplaceUses(SDValue(Node, 0), Result);
5682     CurDAG->RemoveDeadNode(Node);
5683     return;
5684   }
5685   case X86ISD::SBB: {
5686     if (isNullConstant(Node->getOperand(0)) &&
5687         isNullConstant(Node->getOperand(1))) {
5688       MVT VT = Node->getSimpleValueType(0);
5689 
5690       // Create zero.
5691       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5692       SDValue Zero =
5693           SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5694       if (VT == MVT::i64) {
5695         Zero = SDValue(
5696             CurDAG->getMachineNode(
5697                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5698                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
5699                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
5700             0);
5701       }
5702 
5703       // Copy flags to the EFLAGS register and glue it to next node.
5704       SDValue EFLAGS =
5705           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5706                                Node->getOperand(2), SDValue());
5707 
5708       // Create a 64-bit instruction if the result is 64-bits otherwise use the
5709       // 32-bit version.
5710       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
5711       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5712       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
5713       SDValue Result =
5714           SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {Zero, Zero, EFLAGS,
5715                                          EFLAGS.getValue(1)}),
5716                   0);
5717 
5718       // Replace the flag use.
5719       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
5720 
5721       // Replace the result use.
5722       if (!SDValue(Node, 0).use_empty()) {
5723         // For less than 32-bits we need to extract from the 32-bit node.
5724         if (VT == MVT::i8 || VT == MVT::i16) {
5725           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5726           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5727         }
5728         ReplaceUses(SDValue(Node, 0), Result);
5729       }
5730 
5731       CurDAG->RemoveDeadNode(Node);
5732       return;
5733     }
5734     break;
5735   }
5736   case X86ISD::MGATHER: {
5737     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
5738     SDValue IndexOp = Mgt->getIndex();
5739     SDValue Mask = Mgt->getMask();
5740     MVT IndexVT = IndexOp.getSimpleValueType();
5741     MVT ValueVT = Node->getSimpleValueType(0);
5742     MVT MaskVT = Mask.getSimpleValueType();
5743 
5744     // This is just to prevent crashes if the nodes are malformed somehow. We're
5745     // otherwise only doing loose type checking in here based on type what
5746     // a type constraint would say just like table based isel.
5747     if (!ValueVT.isVector() || !MaskVT.isVector())
5748       break;
5749 
5750     unsigned NumElts = ValueVT.getVectorNumElements();
5751     MVT ValueSVT = ValueVT.getVectorElementType();
5752 
5753     bool IsFP = ValueSVT.isFloatingPoint();
5754     unsigned EltSize = ValueSVT.getSizeInBits();
5755 
5756     unsigned Opc = 0;
5757     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
5758     if (AVX512Gather) {
5759       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5760         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
5761       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5762         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
5763       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5764         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
5765       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5766         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
5767       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5768         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
5769       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5770         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
5771       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5772         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
5773       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5774         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
5775       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5776         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
5777       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5778         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
5779       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5780         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
5781       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5782         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
5783     } else {
5784       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
5785              "Unexpected mask VT!");
5786       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5787         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
5788       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5789         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
5790       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5791         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
5792       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5793         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
5794       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5795         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
5796       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5797         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
5798       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5799         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
5800       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5801         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
5802     }
5803 
5804     if (!Opc)
5805       break;
5806 
5807     SDValue Base, Scale, Index, Disp, Segment;
5808     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
5809                           Base, Scale, Index, Disp, Segment))
5810       break;
5811 
5812     SDValue PassThru = Mgt->getPassThru();
5813     SDValue Chain = Mgt->getChain();
5814     // Gather instructions have a mask output not in the ISD node.
5815     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
5816 
5817     MachineSDNode *NewNode;
5818     if (AVX512Gather) {
5819       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
5820                        Index,    Disp, Segment, Chain};
5821       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5822     } else {
5823       SDValue Ops[] = {PassThru, Base,    Scale, Index,
5824                        Disp,     Segment, Mask,  Chain};
5825       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5826     }
5827     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
5828     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5829     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
5830     CurDAG->RemoveDeadNode(Node);
5831     return;
5832   }
5833   case X86ISD::MSCATTER: {
5834     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
5835     SDValue Value = Sc->getValue();
5836     SDValue IndexOp = Sc->getIndex();
5837     MVT IndexVT = IndexOp.getSimpleValueType();
5838     MVT ValueVT = Value.getSimpleValueType();
5839 
5840     // This is just to prevent crashes if the nodes are malformed somehow. We're
5841     // otherwise only doing loose type checking in here based on type what
5842     // a type constraint would say just like table based isel.
5843     if (!ValueVT.isVector())
5844       break;
5845 
5846     unsigned NumElts = ValueVT.getVectorNumElements();
5847     MVT ValueSVT = ValueVT.getVectorElementType();
5848 
5849     bool IsFP = ValueSVT.isFloatingPoint();
5850     unsigned EltSize = ValueSVT.getSizeInBits();
5851 
5852     unsigned Opc;
5853     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5854       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
5855     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5856       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
5857     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5858       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
5859     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5860       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
5861     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5862       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
5863     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5864       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
5865     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5866       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
5867     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5868       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
5869     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5870       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
5871     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5872       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
5873     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5874       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
5875     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5876       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
5877     else
5878       break;
5879 
5880     SDValue Base, Scale, Index, Disp, Segment;
5881     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
5882                           Base, Scale, Index, Disp, Segment))
5883       break;
5884 
5885     SDValue Mask = Sc->getMask();
5886     SDValue Chain = Sc->getChain();
5887     // Scatter instructions have a mask output not in the ISD node.
5888     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
5889     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
5890 
5891     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5892     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
5893     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
5894     CurDAG->RemoveDeadNode(Node);
5895     return;
5896   }
5897   case ISD::PREALLOCATED_SETUP: {
5898     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
5899     auto CallId = MFI->getPreallocatedIdForCallSite(
5900         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
5901     SDValue Chain = Node->getOperand(0);
5902     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
5903     MachineSDNode *New = CurDAG->getMachineNode(
5904         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
5905     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
5906     CurDAG->RemoveDeadNode(Node);
5907     return;
5908   }
5909   case ISD::PREALLOCATED_ARG: {
5910     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
5911     auto CallId = MFI->getPreallocatedIdForCallSite(
5912         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
5913     SDValue Chain = Node->getOperand(0);
5914     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
5915     SDValue ArgIndex = Node->getOperand(2);
5916     SDValue Ops[3];
5917     Ops[0] = CallIdValue;
5918     Ops[1] = ArgIndex;
5919     Ops[2] = Chain;
5920     MachineSDNode *New = CurDAG->getMachineNode(
5921         TargetOpcode::PREALLOCATED_ARG, dl,
5922         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
5923                           MVT::Other),
5924         Ops);
5925     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
5926     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
5927     CurDAG->RemoveDeadNode(Node);
5928     return;
5929   }
5930   case X86ISD::AESENCWIDE128KL:
5931   case X86ISD::AESDECWIDE128KL:
5932   case X86ISD::AESENCWIDE256KL:
5933   case X86ISD::AESDECWIDE256KL: {
5934     if (!Subtarget->hasWIDEKL())
5935       break;
5936 
5937     unsigned Opcode;
5938     switch (Node->getOpcode()) {
5939     default:
5940       llvm_unreachable("Unexpected opcode!");
5941     case X86ISD::AESENCWIDE128KL:
5942       Opcode = X86::AESENCWIDE128KL;
5943       break;
5944     case X86ISD::AESDECWIDE128KL:
5945       Opcode = X86::AESDECWIDE128KL;
5946       break;
5947     case X86ISD::AESENCWIDE256KL:
5948       Opcode = X86::AESENCWIDE256KL;
5949       break;
5950     case X86ISD::AESDECWIDE256KL:
5951       Opcode = X86::AESDECWIDE256KL;
5952       break;
5953     }
5954 
5955     SDValue Chain = Node->getOperand(0);
5956     SDValue Addr = Node->getOperand(1);
5957 
5958     SDValue Base, Scale, Index, Disp, Segment;
5959     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
5960       break;
5961 
5962     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
5963                                  SDValue());
5964     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
5965                                  Chain.getValue(1));
5966     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
5967                                  Chain.getValue(1));
5968     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
5969                                  Chain.getValue(1));
5970     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
5971                                  Chain.getValue(1));
5972     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
5973                                  Chain.getValue(1));
5974     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
5975                                  Chain.getValue(1));
5976     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
5977                                  Chain.getValue(1));
5978 
5979     MachineSDNode *Res = CurDAG->getMachineNode(
5980         Opcode, dl, Node->getVTList(),
5981         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
5982     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
5983     ReplaceNode(Node, Res);
5984     return;
5985   }
5986   }
5987 
5988   SelectCode(Node);
5989 }
5990 
5991 bool X86DAGToDAGISel::
5992 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
5993                              std::vector<SDValue> &OutOps) {
5994   SDValue Op0, Op1, Op2, Op3, Op4;
5995   switch (ConstraintID) {
5996   default:
5997     llvm_unreachable("Unexpected asm memory constraint");
5998   case InlineAsm::Constraint_o: // offsetable        ??
5999   case InlineAsm::Constraint_v: // not offsetable    ??
6000   case InlineAsm::Constraint_m: // memory
6001   case InlineAsm::Constraint_X:
6002     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
6003       return true;
6004     break;
6005   }
6006 
6007   OutOps.push_back(Op0);
6008   OutOps.push_back(Op1);
6009   OutOps.push_back(Op2);
6010   OutOps.push_back(Op3);
6011   OutOps.push_back(Op4);
6012   return false;
6013 }
6014 
6015 /// This pass converts a legalized DAG into a X86-specific DAG,
6016 /// ready for instruction scheduling.
6017 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6018                                      CodeGenOpt::Level OptLevel) {
6019   return new X86DAGToDAGISel(TM, OptLevel);
6020 }
6021