xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cstdint>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "x86-isel"
38 
39 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
40 
41 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
42     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
43     cl::Hidden);
44 
45 static cl::opt<bool> EnablePromoteAnyextLoad(
46     "x86-promote-anyext-load", cl::init(true),
47     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
48 
49 extern cl::opt<bool> IndirectBranchTracking;
50 
51 //===----------------------------------------------------------------------===//
52 //                      Pattern Matcher Implementation
53 //===----------------------------------------------------------------------===//
54 
55 namespace {
56   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
57   /// numbers for the leaves of the matched tree.
58   struct X86ISelAddressMode {
59     enum {
60       RegBase,
61       FrameIndexBase
62     } BaseType = RegBase;
63 
64     // This is really a union, discriminated by BaseType!
65     SDValue Base_Reg;
66     int Base_FrameIndex = 0;
67 
68     unsigned Scale = 1;
69     SDValue IndexReg;
70     int32_t Disp = 0;
71     SDValue Segment;
72     const GlobalValue *GV = nullptr;
73     const Constant *CP = nullptr;
74     const BlockAddress *BlockAddr = nullptr;
75     const char *ES = nullptr;
76     MCSymbol *MCSym = nullptr;
77     int JT = -1;
78     Align Alignment;            // CP alignment.
79     unsigned char SymbolFlags = X86II::MO_NO_FLAG;  // X86II::MO_*
80     bool NegateIndex = false;
81 
82     X86ISelAddressMode() = default;
83 
84     bool hasSymbolicDisplacement() const {
85       return GV != nullptr || CP != nullptr || ES != nullptr ||
86              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
87     }
88 
89     bool hasBaseOrIndexReg() const {
90       return BaseType == FrameIndexBase ||
91              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
92     }
93 
94     /// Return true if this addressing mode is already RIP-relative.
95     bool isRIPRelative() const {
96       if (BaseType != RegBase) return false;
97       if (RegisterSDNode *RegNode =
98             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
99         return RegNode->getReg() == X86::RIP;
100       return false;
101     }
102 
103     void setBaseReg(SDValue Reg) {
104       BaseType = RegBase;
105       Base_Reg = Reg;
106     }
107 
108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
109     void dump(SelectionDAG *DAG = nullptr) {
110       dbgs() << "X86ISelAddressMode " << this << '\n';
111       dbgs() << "Base_Reg ";
112       if (Base_Reg.getNode())
113         Base_Reg.getNode()->dump(DAG);
114       else
115         dbgs() << "nul\n";
116       if (BaseType == FrameIndexBase)
117         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
118       dbgs() << " Scale " << Scale << '\n'
119              << "IndexReg ";
120       if (NegateIndex)
121         dbgs() << "negate ";
122       if (IndexReg.getNode())
123         IndexReg.getNode()->dump(DAG);
124       else
125         dbgs() << "nul\n";
126       dbgs() << " Disp " << Disp << '\n'
127              << "GV ";
128       if (GV)
129         GV->dump();
130       else
131         dbgs() << "nul";
132       dbgs() << " CP ";
133       if (CP)
134         CP->dump();
135       else
136         dbgs() << "nul";
137       dbgs() << '\n'
138              << "ES ";
139       if (ES)
140         dbgs() << ES;
141       else
142         dbgs() << "nul";
143       dbgs() << " MCSym ";
144       if (MCSym)
145         dbgs() << MCSym;
146       else
147         dbgs() << "nul";
148       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
149     }
150 #endif
151   };
152 }
153 
154 namespace {
155   //===--------------------------------------------------------------------===//
156   /// ISel - X86-specific code to select X86 machine instructions for
157   /// SelectionDAG operations.
158   ///
159   class X86DAGToDAGISel final : public SelectionDAGISel {
160     /// Keep a pointer to the X86Subtarget around so that we can
161     /// make the right decision when generating code for different targets.
162     const X86Subtarget *Subtarget;
163 
164     /// If true, selector should try to optimize for minimum code size.
165     bool OptForMinSize;
166 
167     /// Disable direct TLS access through segment registers.
168     bool IndirectTlsSegRefs;
169 
170   public:
171     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
172         : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
173           OptForMinSize(false), IndirectTlsSegRefs(false) {}
174 
175     StringRef getPassName() const override {
176       return "X86 DAG->DAG Instruction Selection";
177     }
178 
179     bool runOnMachineFunction(MachineFunction &MF) override {
180       // Reset the subtarget each time through.
181       Subtarget = &MF.getSubtarget<X86Subtarget>();
182       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
183                              "indirect-tls-seg-refs");
184 
185       // OptFor[Min]Size are used in pattern predicates that isel is matching.
186       OptForMinSize = MF.getFunction().hasMinSize();
187       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
188              "OptForMinSize implies OptForSize");
189 
190       SelectionDAGISel::runOnMachineFunction(MF);
191       return true;
192     }
193 
194     void emitFunctionEntryCode() override;
195 
196     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
197 
198     void PreprocessISelDAG() override;
199     void PostprocessISelDAG() override;
200 
201 // Include the pieces autogenerated from the target description.
202 #include "X86GenDAGISel.inc"
203 
204   private:
205     void Select(SDNode *N) override;
206 
207     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
208     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
209                             bool AllowSegmentRegForX32 = false);
210     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
211     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
212     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
213     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
214     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
215                                  unsigned Depth);
216     bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
217                                        unsigned Depth);
218     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
219     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
220                     SDValue &Scale, SDValue &Index, SDValue &Disp,
221                     SDValue &Segment);
222     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
223                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
224                           SDValue &Index, SDValue &Disp, SDValue &Segment);
225     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
226     bool selectLEAAddr(SDValue N, SDValue &Base,
227                        SDValue &Scale, SDValue &Index, SDValue &Disp,
228                        SDValue &Segment);
229     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
230                             SDValue &Scale, SDValue &Index, SDValue &Disp,
231                             SDValue &Segment);
232     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
233                            SDValue &Scale, SDValue &Index, SDValue &Disp,
234                            SDValue &Segment);
235     bool selectRelocImm(SDValue N, SDValue &Op);
236 
237     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
238                      SDValue &Base, SDValue &Scale,
239                      SDValue &Index, SDValue &Disp,
240                      SDValue &Segment);
241 
242     // Convenience method where P is also root.
243     bool tryFoldLoad(SDNode *P, SDValue N,
244                      SDValue &Base, SDValue &Scale,
245                      SDValue &Index, SDValue &Disp,
246                      SDValue &Segment) {
247       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
248     }
249 
250     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
251                           SDValue &Base, SDValue &Scale,
252                           SDValue &Index, SDValue &Disp,
253                           SDValue &Segment);
254 
255     bool isProfitableToFormMaskedOp(SDNode *N) const;
256 
257     /// Implement addressing mode selection for inline asm expressions.
258     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
259                                       unsigned ConstraintID,
260                                       std::vector<SDValue> &OutOps) override;
261 
262     void emitSpecialCodeForMain();
263 
264     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
265                                    MVT VT, SDValue &Base, SDValue &Scale,
266                                    SDValue &Index, SDValue &Disp,
267                                    SDValue &Segment) {
268       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
269         Base = CurDAG->getTargetFrameIndex(
270             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
271       else if (AM.Base_Reg.getNode())
272         Base = AM.Base_Reg;
273       else
274         Base = CurDAG->getRegister(0, VT);
275 
276       Scale = getI8Imm(AM.Scale, DL);
277 
278       // Negate the index if needed.
279       if (AM.NegateIndex) {
280         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
281         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
282                                                      AM.IndexReg), 0);
283         AM.IndexReg = Neg;
284       }
285 
286       if (AM.IndexReg.getNode())
287         Index = AM.IndexReg;
288       else
289         Index = CurDAG->getRegister(0, VT);
290 
291       // These are 32-bit even in 64-bit mode since RIP-relative offset
292       // is 32-bit.
293       if (AM.GV)
294         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
295                                               MVT::i32, AM.Disp,
296                                               AM.SymbolFlags);
297       else if (AM.CP)
298         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
299                                              AM.Disp, AM.SymbolFlags);
300       else if (AM.ES) {
301         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
302         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
303       } else if (AM.MCSym) {
304         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
305         assert(AM.SymbolFlags == 0 && "oo");
306         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
307       } else if (AM.JT != -1) {
308         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
309         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
310       } else if (AM.BlockAddr)
311         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
312                                              AM.SymbolFlags);
313       else
314         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
315 
316       if (AM.Segment.getNode())
317         Segment = AM.Segment;
318       else
319         Segment = CurDAG->getRegister(0, MVT::i16);
320     }
321 
322     // Utility function to determine whether we should avoid selecting
323     // immediate forms of instructions for better code size or not.
324     // At a high level, we'd like to avoid such instructions when
325     // we have similar constants used within the same basic block
326     // that can be kept in a register.
327     //
328     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
329       uint32_t UseCount = 0;
330 
331       // Do not want to hoist if we're not optimizing for size.
332       // TODO: We'd like to remove this restriction.
333       // See the comment in X86InstrInfo.td for more info.
334       if (!CurDAG->shouldOptForSize())
335         return false;
336 
337       // Walk all the users of the immediate.
338       for (const SDNode *User : N->uses()) {
339         if (UseCount >= 2)
340           break;
341 
342         // This user is already selected. Count it as a legitimate use and
343         // move on.
344         if (User->isMachineOpcode()) {
345           UseCount++;
346           continue;
347         }
348 
349         // We want to count stores of immediates as real uses.
350         if (User->getOpcode() == ISD::STORE &&
351             User->getOperand(1).getNode() == N) {
352           UseCount++;
353           continue;
354         }
355 
356         // We don't currently match users that have > 2 operands (except
357         // for stores, which are handled above)
358         // Those instruction won't match in ISEL, for now, and would
359         // be counted incorrectly.
360         // This may change in the future as we add additional instruction
361         // types.
362         if (User->getNumOperands() != 2)
363           continue;
364 
365         // If this is a sign-extended 8-bit integer immediate used in an ALU
366         // instruction, there is probably an opcode encoding to save space.
367         auto *C = dyn_cast<ConstantSDNode>(N);
368         if (C && isInt<8>(C->getSExtValue()))
369           continue;
370 
371         // Immediates that are used for offsets as part of stack
372         // manipulation should be left alone. These are typically
373         // used to indicate SP offsets for argument passing and
374         // will get pulled into stores/pushes (implicitly).
375         if (User->getOpcode() == X86ISD::ADD ||
376             User->getOpcode() == ISD::ADD    ||
377             User->getOpcode() == X86ISD::SUB ||
378             User->getOpcode() == ISD::SUB) {
379 
380           // Find the other operand of the add/sub.
381           SDValue OtherOp = User->getOperand(0);
382           if (OtherOp.getNode() == N)
383             OtherOp = User->getOperand(1);
384 
385           // Don't count if the other operand is SP.
386           RegisterSDNode *RegNode;
387           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
388               (RegNode = dyn_cast_or_null<RegisterSDNode>(
389                  OtherOp->getOperand(1).getNode())))
390             if ((RegNode->getReg() == X86::ESP) ||
391                 (RegNode->getReg() == X86::RSP))
392               continue;
393         }
394 
395         // ... otherwise, count this and move on.
396         UseCount++;
397       }
398 
399       // If we have more than 1 use, then recommend for hoisting.
400       return (UseCount > 1);
401     }
402 
403     /// Return a target constant with the specified value of type i8.
404     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
405       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
406     }
407 
408     /// Return a target constant with the specified value, of type i32.
409     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
410       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
411     }
412 
413     /// Return a target constant with the specified value, of type i64.
414     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
415       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
416     }
417 
418     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
419                                         const SDLoc &DL) {
420       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
421       uint64_t Index = N->getConstantOperandVal(1);
422       MVT VecVT = N->getOperand(0).getSimpleValueType();
423       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
424     }
425 
426     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
427                                       const SDLoc &DL) {
428       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
429       uint64_t Index = N->getConstantOperandVal(2);
430       MVT VecVT = N->getSimpleValueType(0);
431       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
432     }
433 
434     SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
435                                                const SDLoc &DL) {
436       assert(VecWidth == 128 && "Unexpected vector width");
437       uint64_t Index = N->getConstantOperandVal(2);
438       MVT VecVT = N->getSimpleValueType(0);
439       uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
440       assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
441       // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
442       // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
443       return getI8Imm(InsertIdx ? 0x02 : 0x30, DL);
444     }
445 
446     SDValue getSBBZero(SDNode *N) {
447       SDLoc dl(N);
448       MVT VT = N->getSimpleValueType(0);
449 
450       // Create zero.
451       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
452       SDValue Zero =
453           SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
454       if (VT == MVT::i64) {
455         Zero = SDValue(
456             CurDAG->getMachineNode(
457                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
458                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
459                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
460             0);
461       }
462 
463       // Copy flags to the EFLAGS register and glue it to next node.
464       unsigned Opcode = N->getOpcode();
465       assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) &&
466              "Unexpected opcode for SBB materialization");
467       unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1;
468       SDValue EFLAGS =
469           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
470                                N->getOperand(FlagOpIndex), SDValue());
471 
472       // Create a 64-bit instruction if the result is 64-bits otherwise use the
473       // 32-bit version.
474       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
475       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
476       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
477       return SDValue(
478           CurDAG->getMachineNode(Opc, dl, VTs,
479                                  {Zero, Zero, EFLAGS, EFLAGS.getValue(1)}),
480           0);
481     }
482 
483     // Helper to detect unneeded and instructions on shift amounts. Called
484     // from PatFrags in tablegen.
485     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
486       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
487       const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
488 
489       if (Val.countTrailingOnes() >= Width)
490         return true;
491 
492       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
493       return Mask.countTrailingOnes() >= Width;
494     }
495 
496     /// Return an SDNode that returns the value of the global base register.
497     /// Output instructions required to initialize the global base register,
498     /// if necessary.
499     SDNode *getGlobalBaseReg();
500 
501     /// Return a reference to the TargetMachine, casted to the target-specific
502     /// type.
503     const X86TargetMachine &getTargetMachine() const {
504       return static_cast<const X86TargetMachine &>(TM);
505     }
506 
507     /// Return a reference to the TargetInstrInfo, casted to the target-specific
508     /// type.
509     const X86InstrInfo *getInstrInfo() const {
510       return Subtarget->getInstrInfo();
511     }
512 
513     /// Return a condition code of the given SDNode
514     X86::CondCode getCondFromNode(SDNode *N) const;
515 
516     /// Address-mode matching performs shift-of-and to and-of-shift
517     /// reassociation in order to expose more scaled addressing
518     /// opportunities.
519     bool ComplexPatternFuncMutatesDAG() const override {
520       return true;
521     }
522 
523     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
524 
525     // Indicates we should prefer to use a non-temporal load for this load.
526     bool useNonTemporalLoad(LoadSDNode *N) const {
527       if (!N->isNonTemporal())
528         return false;
529 
530       unsigned StoreSize = N->getMemoryVT().getStoreSize();
531 
532       if (N->getAlign().value() < StoreSize)
533         return false;
534 
535       switch (StoreSize) {
536       default: llvm_unreachable("Unsupported store size");
537       case 4:
538       case 8:
539         return false;
540       case 16:
541         return Subtarget->hasSSE41();
542       case 32:
543         return Subtarget->hasAVX2();
544       case 64:
545         return Subtarget->hasAVX512();
546       }
547     }
548 
549     bool foldLoadStoreIntoMemOperand(SDNode *Node);
550     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
551     bool matchBitExtract(SDNode *Node);
552     bool shrinkAndImmediate(SDNode *N);
553     bool isMaskZeroExtended(SDNode *N) const;
554     bool tryShiftAmountMod(SDNode *N);
555     bool tryShrinkShlLogicImm(SDNode *N);
556     bool tryVPTERNLOG(SDNode *N);
557     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
558                         SDNode *ParentC, SDValue A, SDValue B, SDValue C,
559                         uint8_t Imm);
560     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
561     bool tryMatchBitSelect(SDNode *N);
562 
563     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
564                                 const SDLoc &dl, MVT VT, SDNode *Node);
565     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
566                                 const SDLoc &dl, MVT VT, SDNode *Node,
567                                 SDValue &InFlag);
568 
569     bool tryOptimizeRem8Extend(SDNode *N);
570 
571     bool onlyUsesZeroFlag(SDValue Flags) const;
572     bool hasNoSignFlagUses(SDValue Flags) const;
573     bool hasNoCarryFlagUses(SDValue Flags) const;
574   };
575 }
576 
577 
578 // Returns true if this masked compare can be implemented legally with this
579 // type.
580 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
581   unsigned Opcode = N->getOpcode();
582   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
583       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
584       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
585     // We can get 256-bit 8 element types here without VLX being enabled. When
586     // this happens we will use 512-bit operations and the mask will not be
587     // zero extended.
588     EVT OpVT = N->getOperand(0).getValueType();
589     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
590     // second operand.
591     if (Opcode == X86ISD::STRICT_CMPM)
592       OpVT = N->getOperand(1).getValueType();
593     if (OpVT.is256BitVector() || OpVT.is128BitVector())
594       return Subtarget->hasVLX();
595 
596     return true;
597   }
598   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
599   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
600       Opcode == X86ISD::FSETCCM_SAE)
601     return true;
602 
603   return false;
604 }
605 
606 // Returns true if we can assume the writer of the mask has zero extended it
607 // for us.
608 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
609   // If this is an AND, check if we have a compare on either side. As long as
610   // one side guarantees the mask is zero extended, the AND will preserve those
611   // zeros.
612   if (N->getOpcode() == ISD::AND)
613     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
614            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
615 
616   return isLegalMaskCompare(N, Subtarget);
617 }
618 
619 bool
620 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
621   if (OptLevel == CodeGenOpt::None) return false;
622 
623   if (!N.hasOneUse())
624     return false;
625 
626   if (N.getOpcode() != ISD::LOAD)
627     return true;
628 
629   // Don't fold non-temporal loads if we have an instruction for them.
630   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
631     return false;
632 
633   // If N is a load, do additional profitability checks.
634   if (U == Root) {
635     switch (U->getOpcode()) {
636     default: break;
637     case X86ISD::ADD:
638     case X86ISD::ADC:
639     case X86ISD::SUB:
640     case X86ISD::SBB:
641     case X86ISD::AND:
642     case X86ISD::XOR:
643     case X86ISD::OR:
644     case ISD::ADD:
645     case ISD::ADDCARRY:
646     case ISD::AND:
647     case ISD::OR:
648     case ISD::XOR: {
649       SDValue Op1 = U->getOperand(1);
650 
651       // If the other operand is a 8-bit immediate we should fold the immediate
652       // instead. This reduces code size.
653       // e.g.
654       // movl 4(%esp), %eax
655       // addl $4, %eax
656       // vs.
657       // movl $4, %eax
658       // addl 4(%esp), %eax
659       // The former is 2 bytes shorter. In case where the increment is 1, then
660       // the saving can be 4 bytes (by using incl %eax).
661       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
662         if (Imm->getAPIntValue().isSignedIntN(8))
663           return false;
664 
665         // If this is a 64-bit AND with an immediate that fits in 32-bits,
666         // prefer using the smaller and over folding the load. This is needed to
667         // make sure immediates created by shrinkAndImmediate are always folded.
668         // Ideally we would narrow the load during DAG combine and get the
669         // best of both worlds.
670         if (U->getOpcode() == ISD::AND &&
671             Imm->getAPIntValue().getBitWidth() == 64 &&
672             Imm->getAPIntValue().isIntN(32))
673           return false;
674 
675         // If this really a zext_inreg that can be represented with a movzx
676         // instruction, prefer that.
677         // TODO: We could shrink the load and fold if it is non-volatile.
678         if (U->getOpcode() == ISD::AND &&
679             (Imm->getAPIntValue() == UINT8_MAX ||
680              Imm->getAPIntValue() == UINT16_MAX ||
681              Imm->getAPIntValue() == UINT32_MAX))
682           return false;
683 
684         // ADD/SUB with can negate the immediate and use the opposite operation
685         // to fit 128 into a sign extended 8 bit immediate.
686         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
687             (-Imm->getAPIntValue()).isSignedIntN(8))
688           return false;
689 
690         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
691             (-Imm->getAPIntValue()).isSignedIntN(8) &&
692             hasNoCarryFlagUses(SDValue(U, 1)))
693           return false;
694       }
695 
696       // If the other operand is a TLS address, we should fold it instead.
697       // This produces
698       // movl    %gs:0, %eax
699       // leal    i@NTPOFF(%eax), %eax
700       // instead of
701       // movl    $i@NTPOFF, %eax
702       // addl    %gs:0, %eax
703       // if the block also has an access to a second TLS address this will save
704       // a load.
705       // FIXME: This is probably also true for non-TLS addresses.
706       if (Op1.getOpcode() == X86ISD::Wrapper) {
707         SDValue Val = Op1.getOperand(0);
708         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
709           return false;
710       }
711 
712       // Don't fold load if this matches the BTS/BTR/BTC patterns.
713       // BTS: (or X, (shl 1, n))
714       // BTR: (and X, (rotl -2, n))
715       // BTC: (xor X, (shl 1, n))
716       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
717         if (U->getOperand(0).getOpcode() == ISD::SHL &&
718             isOneConstant(U->getOperand(0).getOperand(0)))
719           return false;
720 
721         if (U->getOperand(1).getOpcode() == ISD::SHL &&
722             isOneConstant(U->getOperand(1).getOperand(0)))
723           return false;
724       }
725       if (U->getOpcode() == ISD::AND) {
726         SDValue U0 = U->getOperand(0);
727         SDValue U1 = U->getOperand(1);
728         if (U0.getOpcode() == ISD::ROTL) {
729           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
730           if (C && C->getSExtValue() == -2)
731             return false;
732         }
733 
734         if (U1.getOpcode() == ISD::ROTL) {
735           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
736           if (C && C->getSExtValue() == -2)
737             return false;
738         }
739       }
740 
741       break;
742     }
743     case ISD::SHL:
744     case ISD::SRA:
745     case ISD::SRL:
746       // Don't fold a load into a shift by immediate. The BMI2 instructions
747       // support folding a load, but not an immediate. The legacy instructions
748       // support folding an immediate, but can't fold a load. Folding an
749       // immediate is preferable to folding a load.
750       if (isa<ConstantSDNode>(U->getOperand(1)))
751         return false;
752 
753       break;
754     }
755   }
756 
757   // Prevent folding a load if this can implemented with an insert_subreg or
758   // a move that implicitly zeroes.
759   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
760       isNullConstant(Root->getOperand(2)) &&
761       (Root->getOperand(0).isUndef() ||
762        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
763     return false;
764 
765   return true;
766 }
767 
768 // Indicates it is profitable to form an AVX512 masked operation. Returning
769 // false will favor a masked register-register masked move or vblendm and the
770 // operation will be selected separately.
771 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
772   assert(
773       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
774       "Unexpected opcode!");
775 
776   // If the operation has additional users, the operation will be duplicated.
777   // Check the use count to prevent that.
778   // FIXME: Are there cheap opcodes we might want to duplicate?
779   return N->getOperand(1).hasOneUse();
780 }
781 
782 /// Replace the original chain operand of the call with
783 /// load's chain operand and move load below the call's chain operand.
784 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
785                                SDValue Call, SDValue OrigChain) {
786   SmallVector<SDValue, 8> Ops;
787   SDValue Chain = OrigChain.getOperand(0);
788   if (Chain.getNode() == Load.getNode())
789     Ops.push_back(Load.getOperand(0));
790   else {
791     assert(Chain.getOpcode() == ISD::TokenFactor &&
792            "Unexpected chain operand");
793     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
794       if (Chain.getOperand(i).getNode() == Load.getNode())
795         Ops.push_back(Load.getOperand(0));
796       else
797         Ops.push_back(Chain.getOperand(i));
798     SDValue NewChain =
799       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
800     Ops.clear();
801     Ops.push_back(NewChain);
802   }
803   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
804   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
805   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
806                              Load.getOperand(1), Load.getOperand(2));
807 
808   Ops.clear();
809   Ops.push_back(SDValue(Load.getNode(), 1));
810   Ops.append(Call->op_begin() + 1, Call->op_end());
811   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
812 }
813 
814 /// Return true if call address is a load and it can be
815 /// moved below CALLSEQ_START and the chains leading up to the call.
816 /// Return the CALLSEQ_START by reference as a second output.
817 /// In the case of a tail call, there isn't a callseq node between the call
818 /// chain and the load.
819 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
820   // The transformation is somewhat dangerous if the call's chain was glued to
821   // the call. After MoveBelowOrigChain the load is moved between the call and
822   // the chain, this can create a cycle if the load is not folded. So it is
823   // *really* important that we are sure the load will be folded.
824   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
825     return false;
826   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
827   if (!LD ||
828       !LD->isSimple() ||
829       LD->getAddressingMode() != ISD::UNINDEXED ||
830       LD->getExtensionType() != ISD::NON_EXTLOAD)
831     return false;
832 
833   // Now let's find the callseq_start.
834   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
835     if (!Chain.hasOneUse())
836       return false;
837     Chain = Chain.getOperand(0);
838   }
839 
840   if (!Chain.getNumOperands())
841     return false;
842   // Since we are not checking for AA here, conservatively abort if the chain
843   // writes to memory. It's not safe to move the callee (a load) across a store.
844   if (isa<MemSDNode>(Chain.getNode()) &&
845       cast<MemSDNode>(Chain.getNode())->writeMem())
846     return false;
847   if (Chain.getOperand(0).getNode() == Callee.getNode())
848     return true;
849   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
850       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
851       Callee.getValue(1).hasOneUse())
852     return true;
853   return false;
854 }
855 
856 static bool isEndbrImm64(uint64_t Imm) {
857 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
858 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
859   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
860     return false;
861 
862   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
863                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
864   int i = 24; // 24bit 0x0F1EFA has matched
865   while (i < 64) {
866     uint8_t Byte = (Imm >> i) & 0xFF;
867     if (Byte == 0xF3)
868       return true;
869     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
870       return false;
871     i += 8;
872   }
873 
874   return false;
875 }
876 
877 void X86DAGToDAGISel::PreprocessISelDAG() {
878   bool MadeChange = false;
879   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
880        E = CurDAG->allnodes_end(); I != E; ) {
881     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
882 
883     // This is for CET enhancement.
884     //
885     // ENDBR32 and ENDBR64 have specific opcodes:
886     // ENDBR32: F3 0F 1E FB
887     // ENDBR64: F3 0F 1E FA
888     // And we want that attackers won’t find unintended ENDBR32/64
889     // opcode matches in the binary
890     // Here’s an example:
891     // If the compiler had to generate asm for the following code:
892     // a = 0xF30F1EFA
893     // it could, for example, generate:
894     // mov 0xF30F1EFA, dword ptr[a]
895     // In such a case, the binary would include a gadget that starts
896     // with a fake ENDBR64 opcode. Therefore, we split such generation
897     // into multiple operations, let it not shows in the binary
898     if (N->getOpcode() == ISD::Constant) {
899       MVT VT = N->getSimpleValueType(0);
900       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
901       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
902       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
903         // Check that the cf-protection-branch is enabled.
904         Metadata *CFProtectionBranch =
905           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
906         if (CFProtectionBranch || IndirectBranchTracking) {
907           SDLoc dl(N);
908           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
909           Complement = CurDAG->getNOT(dl, Complement, VT);
910           --I;
911           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
912           ++I;
913           MadeChange = true;
914           continue;
915         }
916       }
917     }
918 
919     // If this is a target specific AND node with no flag usages, turn it back
920     // into ISD::AND to enable test instruction matching.
921     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
922       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
923                                     N->getOperand(0), N->getOperand(1));
924       --I;
925       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
926       ++I;
927       MadeChange = true;
928       continue;
929     }
930 
931     // Convert vector increment or decrement to sub/add with an all-ones
932     // constant:
933     // add X, <1, 1...> --> sub X, <-1, -1...>
934     // sub X, <1, 1...> --> add X, <-1, -1...>
935     // The all-ones vector constant can be materialized using a pcmpeq
936     // instruction that is commonly recognized as an idiom (has no register
937     // dependency), so that's better/smaller than loading a splat 1 constant.
938     //
939     // But don't do this if it would inhibit a potentially profitable load
940     // folding opportunity for the other operand. That only occurs with the
941     // intersection of:
942     // (1) The other operand (op0) is load foldable.
943     // (2) The op is an add (otherwise, we are *creating* an add and can still
944     //     load fold the other op).
945     // (3) The target has AVX (otherwise, we have a destructive add and can't
946     //     load fold the other op without killing the constant op).
947     // (4) The constant 1 vector has multiple uses (so it is profitable to load
948     //     into a register anyway).
949     auto mayPreventLoadFold = [&]() {
950       return X86::mayFoldLoad(N->getOperand(0), *Subtarget) &&
951              N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
952              !N->getOperand(1).hasOneUse();
953     };
954     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
955         N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) {
956       APInt SplatVal;
957       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
958           SplatVal.isOne()) {
959         SDLoc DL(N);
960 
961         MVT VT = N->getSimpleValueType(0);
962         unsigned NumElts = VT.getSizeInBits() / 32;
963         SDValue AllOnes =
964             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
965         AllOnes = CurDAG->getBitcast(VT, AllOnes);
966 
967         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
968         SDValue Res =
969             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
970         --I;
971         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
972         ++I;
973         MadeChange = true;
974         continue;
975       }
976     }
977 
978     switch (N->getOpcode()) {
979     case X86ISD::VBROADCAST: {
980       MVT VT = N->getSimpleValueType(0);
981       // Emulate v32i16/v64i8 broadcast without BWI.
982       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
983         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
984         SDLoc dl(N);
985         SDValue NarrowBCast =
986             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
987         SDValue Res =
988             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
989                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
990         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
991         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
992                               CurDAG->getIntPtrConstant(Index, dl));
993 
994         --I;
995         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
996         ++I;
997         MadeChange = true;
998         continue;
999       }
1000 
1001       break;
1002     }
1003     case X86ISD::VBROADCAST_LOAD: {
1004       MVT VT = N->getSimpleValueType(0);
1005       // Emulate v32i16/v64i8 broadcast without BWI.
1006       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
1007         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
1008         auto *MemNode = cast<MemSDNode>(N);
1009         SDLoc dl(N);
1010         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
1011         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
1012         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
1013             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
1014             MemNode->getMemOperand());
1015         SDValue Res =
1016             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1017                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1018         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
1019         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1020                               CurDAG->getIntPtrConstant(Index, dl));
1021 
1022         --I;
1023         SDValue To[] = {Res, NarrowBCast.getValue(1)};
1024         CurDAG->ReplaceAllUsesWith(N, To);
1025         ++I;
1026         MadeChange = true;
1027         continue;
1028       }
1029 
1030       break;
1031     }
1032     case ISD::VSELECT: {
1033       // Replace VSELECT with non-mask conditions with with BLENDV.
1034       if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
1035         break;
1036 
1037       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
1038       SDValue Blendv =
1039           CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
1040                           N->getOperand(0), N->getOperand(1), N->getOperand(2));
1041       --I;
1042       CurDAG->ReplaceAllUsesWith(N, Blendv.getNode());
1043       ++I;
1044       MadeChange = true;
1045       continue;
1046     }
1047     case ISD::FP_ROUND:
1048     case ISD::STRICT_FP_ROUND:
1049     case ISD::FP_TO_SINT:
1050     case ISD::FP_TO_UINT:
1051     case ISD::STRICT_FP_TO_SINT:
1052     case ISD::STRICT_FP_TO_UINT: {
1053       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
1054       // don't need 2 sets of patterns.
1055       if (!N->getSimpleValueType(0).isVector())
1056         break;
1057 
1058       unsigned NewOpc;
1059       switch (N->getOpcode()) {
1060       default: llvm_unreachable("Unexpected opcode!");
1061       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
1062       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
1063       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
1064       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
1065       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1066       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
1067       }
1068       SDValue Res;
1069       if (N->isStrictFPOpcode())
1070         Res =
1071             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1072                             {N->getOperand(0), N->getOperand(1)});
1073       else
1074         Res =
1075             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1076                             N->getOperand(0));
1077       --I;
1078       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1079       ++I;
1080       MadeChange = true;
1081       continue;
1082     }
1083     case ISD::SHL:
1084     case ISD::SRA:
1085     case ISD::SRL: {
1086       // Replace vector shifts with their X86 specific equivalent so we don't
1087       // need 2 sets of patterns.
1088       if (!N->getValueType(0).isVector())
1089         break;
1090 
1091       unsigned NewOpc;
1092       switch (N->getOpcode()) {
1093       default: llvm_unreachable("Unexpected opcode!");
1094       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1095       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1096       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1097       }
1098       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1099                                     N->getOperand(0), N->getOperand(1));
1100       --I;
1101       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1102       ++I;
1103       MadeChange = true;
1104       continue;
1105     }
1106     case ISD::ANY_EXTEND:
1107     case ISD::ANY_EXTEND_VECTOR_INREG: {
1108       // Replace vector any extend with the zero extend equivalents so we don't
1109       // need 2 sets of patterns. Ignore vXi1 extensions.
1110       if (!N->getValueType(0).isVector())
1111         break;
1112 
1113       unsigned NewOpc;
1114       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1115         assert(N->getOpcode() == ISD::ANY_EXTEND &&
1116                "Unexpected opcode for mask vector!");
1117         NewOpc = ISD::SIGN_EXTEND;
1118       } else {
1119         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1120                               ? ISD::ZERO_EXTEND
1121                               : ISD::ZERO_EXTEND_VECTOR_INREG;
1122       }
1123 
1124       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1125                                     N->getOperand(0));
1126       --I;
1127       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1128       ++I;
1129       MadeChange = true;
1130       continue;
1131     }
1132     case ISD::FCEIL:
1133     case ISD::STRICT_FCEIL:
1134     case ISD::FFLOOR:
1135     case ISD::STRICT_FFLOOR:
1136     case ISD::FTRUNC:
1137     case ISD::STRICT_FTRUNC:
1138     case ISD::FROUNDEVEN:
1139     case ISD::STRICT_FROUNDEVEN:
1140     case ISD::FNEARBYINT:
1141     case ISD::STRICT_FNEARBYINT:
1142     case ISD::FRINT:
1143     case ISD::STRICT_FRINT: {
1144       // Replace fp rounding with their X86 specific equivalent so we don't
1145       // need 2 sets of patterns.
1146       unsigned Imm;
1147       switch (N->getOpcode()) {
1148       default: llvm_unreachable("Unexpected opcode!");
1149       case ISD::STRICT_FCEIL:
1150       case ISD::FCEIL:      Imm = 0xA; break;
1151       case ISD::STRICT_FFLOOR:
1152       case ISD::FFLOOR:     Imm = 0x9; break;
1153       case ISD::STRICT_FTRUNC:
1154       case ISD::FTRUNC:     Imm = 0xB; break;
1155       case ISD::STRICT_FROUNDEVEN:
1156       case ISD::FROUNDEVEN: Imm = 0x8; break;
1157       case ISD::STRICT_FNEARBYINT:
1158       case ISD::FNEARBYINT: Imm = 0xC; break;
1159       case ISD::STRICT_FRINT:
1160       case ISD::FRINT:      Imm = 0x4; break;
1161       }
1162       SDLoc dl(N);
1163       bool IsStrict = N->isStrictFPOpcode();
1164       SDValue Res;
1165       if (IsStrict)
1166         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1167                               {N->getValueType(0), MVT::Other},
1168                               {N->getOperand(0), N->getOperand(1),
1169                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1170       else
1171         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1172                               N->getOperand(0),
1173                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1174       --I;
1175       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1176       ++I;
1177       MadeChange = true;
1178       continue;
1179     }
1180     case X86ISD::FANDN:
1181     case X86ISD::FAND:
1182     case X86ISD::FOR:
1183     case X86ISD::FXOR: {
1184       // Widen scalar fp logic ops to vector to reduce isel patterns.
1185       // FIXME: Can we do this during lowering/combine.
1186       MVT VT = N->getSimpleValueType(0);
1187       if (VT.isVector() || VT == MVT::f128)
1188         break;
1189 
1190       MVT VecVT = VT == MVT::f64   ? MVT::v2f64
1191                   : VT == MVT::f32 ? MVT::v4f32
1192                                    : MVT::v8f16;
1193 
1194       SDLoc dl(N);
1195       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1196                                     N->getOperand(0));
1197       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1198                                     N->getOperand(1));
1199 
1200       SDValue Res;
1201       if (Subtarget->hasSSE2()) {
1202         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1203         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1204         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1205         unsigned Opc;
1206         switch (N->getOpcode()) {
1207         default: llvm_unreachable("Unexpected opcode!");
1208         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1209         case X86ISD::FAND:  Opc = ISD::AND;      break;
1210         case X86ISD::FOR:   Opc = ISD::OR;       break;
1211         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
1212         }
1213         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1214         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1215       } else {
1216         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1217       }
1218       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1219                             CurDAG->getIntPtrConstant(0, dl));
1220       --I;
1221       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1222       ++I;
1223       MadeChange = true;
1224       continue;
1225     }
1226     }
1227 
1228     if (OptLevel != CodeGenOpt::None &&
1229         // Only do this when the target can fold the load into the call or
1230         // jmp.
1231         !Subtarget->useIndirectThunkCalls() &&
1232         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1233          (N->getOpcode() == X86ISD::TC_RETURN &&
1234           (Subtarget->is64Bit() ||
1235            !getTargetMachine().isPositionIndependent())))) {
1236       /// Also try moving call address load from outside callseq_start to just
1237       /// before the call to allow it to be folded.
1238       ///
1239       ///     [Load chain]
1240       ///         ^
1241       ///         |
1242       ///       [Load]
1243       ///       ^    ^
1244       ///       |    |
1245       ///      /      \--
1246       ///     /          |
1247       ///[CALLSEQ_START] |
1248       ///     ^          |
1249       ///     |          |
1250       /// [LOAD/C2Reg]   |
1251       ///     |          |
1252       ///      \        /
1253       ///       \      /
1254       ///       [CALL]
1255       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1256       SDValue Chain = N->getOperand(0);
1257       SDValue Load  = N->getOperand(1);
1258       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1259         continue;
1260       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1261       ++NumLoadMoved;
1262       MadeChange = true;
1263       continue;
1264     }
1265 
1266     // Lower fpround and fpextend nodes that target the FP stack to be store and
1267     // load to the stack.  This is a gross hack.  We would like to simply mark
1268     // these as being illegal, but when we do that, legalize produces these when
1269     // it expands calls, then expands these in the same legalize pass.  We would
1270     // like dag combine to be able to hack on these between the call expansion
1271     // and the node legalization.  As such this pass basically does "really
1272     // late" legalization of these inline with the X86 isel pass.
1273     // FIXME: This should only happen when not compiled with -O0.
1274     switch (N->getOpcode()) {
1275     default: continue;
1276     case ISD::FP_ROUND:
1277     case ISD::FP_EXTEND:
1278     {
1279       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1280       MVT DstVT = N->getSimpleValueType(0);
1281 
1282       // If any of the sources are vectors, no fp stack involved.
1283       if (SrcVT.isVector() || DstVT.isVector())
1284         continue;
1285 
1286       // If the source and destination are SSE registers, then this is a legal
1287       // conversion that should not be lowered.
1288       const X86TargetLowering *X86Lowering =
1289           static_cast<const X86TargetLowering *>(TLI);
1290       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1291       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1292       if (SrcIsSSE && DstIsSSE)
1293         continue;
1294 
1295       if (!SrcIsSSE && !DstIsSSE) {
1296         // If this is an FPStack extension, it is a noop.
1297         if (N->getOpcode() == ISD::FP_EXTEND)
1298           continue;
1299         // If this is a value-preserving FPStack truncation, it is a noop.
1300         if (N->getConstantOperandVal(1))
1301           continue;
1302       }
1303 
1304       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1305       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1306       // operations.  Based on this, decide what we want to do.
1307       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1308       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1309       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1310       MachinePointerInfo MPI =
1311           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1312       SDLoc dl(N);
1313 
1314       // FIXME: optimize the case where the src/dest is a load or store?
1315 
1316       SDValue Store = CurDAG->getTruncStore(
1317           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1318       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1319                                           MemTmp, MPI, MemVT);
1320 
1321       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1322       // extload we created.  This will cause general havok on the dag because
1323       // anything below the conversion could be folded into other existing nodes.
1324       // To avoid invalidating 'I', back it up to the convert node.
1325       --I;
1326       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1327       break;
1328     }
1329 
1330     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1331     //dealing with the chain differently, as there is already a preexisting chain.
1332     case ISD::STRICT_FP_ROUND:
1333     case ISD::STRICT_FP_EXTEND:
1334     {
1335       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1336       MVT DstVT = N->getSimpleValueType(0);
1337 
1338       // If any of the sources are vectors, no fp stack involved.
1339       if (SrcVT.isVector() || DstVT.isVector())
1340         continue;
1341 
1342       // If the source and destination are SSE registers, then this is a legal
1343       // conversion that should not be lowered.
1344       const X86TargetLowering *X86Lowering =
1345           static_cast<const X86TargetLowering *>(TLI);
1346       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1347       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1348       if (SrcIsSSE && DstIsSSE)
1349         continue;
1350 
1351       if (!SrcIsSSE && !DstIsSSE) {
1352         // If this is an FPStack extension, it is a noop.
1353         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1354           continue;
1355         // If this is a value-preserving FPStack truncation, it is a noop.
1356         if (N->getConstantOperandVal(2))
1357           continue;
1358       }
1359 
1360       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1361       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1362       // operations.  Based on this, decide what we want to do.
1363       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1364       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1365       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1366       MachinePointerInfo MPI =
1367           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1368       SDLoc dl(N);
1369 
1370       // FIXME: optimize the case where the src/dest is a load or store?
1371 
1372       //Since the operation is StrictFP, use the preexisting chain.
1373       SDValue Store, Result;
1374       if (!SrcIsSSE) {
1375         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1376         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1377         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1378                                             MPI, /*Align*/ None,
1379                                             MachineMemOperand::MOStore);
1380         if (N->getFlags().hasNoFPExcept()) {
1381           SDNodeFlags Flags = Store->getFlags();
1382           Flags.setNoFPExcept(true);
1383           Store->setFlags(Flags);
1384         }
1385       } else {
1386         assert(SrcVT == MemVT && "Unexpected VT!");
1387         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1388                                  MPI);
1389       }
1390 
1391       if (!DstIsSSE) {
1392         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1393         SDValue Ops[] = {Store, MemTmp};
1394         Result = CurDAG->getMemIntrinsicNode(
1395             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1396             /*Align*/ None, MachineMemOperand::MOLoad);
1397         if (N->getFlags().hasNoFPExcept()) {
1398           SDNodeFlags Flags = Result->getFlags();
1399           Flags.setNoFPExcept(true);
1400           Result->setFlags(Flags);
1401         }
1402       } else {
1403         assert(DstVT == MemVT && "Unexpected VT!");
1404         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1405       }
1406 
1407       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1408       // extload we created.  This will cause general havok on the dag because
1409       // anything below the conversion could be folded into other existing nodes.
1410       // To avoid invalidating 'I', back it up to the convert node.
1411       --I;
1412       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1413       break;
1414     }
1415     }
1416 
1417 
1418     // Now that we did that, the node is dead.  Increment the iterator to the
1419     // next node to process, then delete N.
1420     ++I;
1421     MadeChange = true;
1422   }
1423 
1424   // Remove any dead nodes that may have been left behind.
1425   if (MadeChange)
1426     CurDAG->RemoveDeadNodes();
1427 }
1428 
1429 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1430 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1431   unsigned Opc = N->getMachineOpcode();
1432   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1433       Opc != X86::MOVSX64rr8)
1434     return false;
1435 
1436   SDValue N0 = N->getOperand(0);
1437 
1438   // We need to be extracting the lower bit of an extend.
1439   if (!N0.isMachineOpcode() ||
1440       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1441       N0.getConstantOperandVal(1) != X86::sub_8bit)
1442     return false;
1443 
1444   // We're looking for either a movsx or movzx to match the original opcode.
1445   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1446                                                 : X86::MOVSX32rr8_NOREX;
1447   SDValue N00 = N0.getOperand(0);
1448   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1449     return false;
1450 
1451   if (Opc == X86::MOVSX64rr8) {
1452     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1453     // to 64.
1454     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1455                                                    MVT::i64, N00);
1456     ReplaceUses(N, Extend);
1457   } else {
1458     // Ok we can drop this extend and just use the original extend.
1459     ReplaceUses(N, N00.getNode());
1460   }
1461 
1462   return true;
1463 }
1464 
1465 void X86DAGToDAGISel::PostprocessISelDAG() {
1466   // Skip peepholes at -O0.
1467   if (TM.getOptLevel() == CodeGenOpt::None)
1468     return;
1469 
1470   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1471 
1472   bool MadeChange = false;
1473   while (Position != CurDAG->allnodes_begin()) {
1474     SDNode *N = &*--Position;
1475     // Skip dead nodes and any non-machine opcodes.
1476     if (N->use_empty() || !N->isMachineOpcode())
1477       continue;
1478 
1479     if (tryOptimizeRem8Extend(N)) {
1480       MadeChange = true;
1481       continue;
1482     }
1483 
1484     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1485     // the same. Rewrite to remove the AND.
1486     unsigned Opc = N->getMachineOpcode();
1487     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1488          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1489         N->getOperand(0) == N->getOperand(1) &&
1490         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1491         N->getOperand(0).isMachineOpcode()) {
1492       SDValue And = N->getOperand(0);
1493       unsigned N0Opc = And.getMachineOpcode();
1494       if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1495           N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
1496         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1497                                                      MVT::i32,
1498                                                      And.getOperand(0),
1499                                                      And.getOperand(1));
1500         ReplaceUses(N, Test);
1501         MadeChange = true;
1502         continue;
1503       }
1504       if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1505           N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
1506         unsigned NewOpc;
1507         switch (N0Opc) {
1508         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1509         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1510         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1511         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1512         }
1513 
1514         // Need to swap the memory and register operand.
1515         SDValue Ops[] = { And.getOperand(1),
1516                           And.getOperand(2),
1517                           And.getOperand(3),
1518                           And.getOperand(4),
1519                           And.getOperand(5),
1520                           And.getOperand(0),
1521                           And.getOperand(6)  /* Chain */ };
1522         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1523                                                      MVT::i32, MVT::Other, Ops);
1524         CurDAG->setNodeMemRefs(
1525             Test, cast<MachineSDNode>(And.getNode())->memoperands());
1526         ReplaceUses(N, Test);
1527         MadeChange = true;
1528         continue;
1529       }
1530     }
1531 
1532     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1533     // used. We're doing this late so we can prefer to fold the AND into masked
1534     // comparisons. Doing that can be better for the live range of the mask
1535     // register.
1536     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1537          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1538         N->getOperand(0) == N->getOperand(1) &&
1539         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1540         N->getOperand(0).isMachineOpcode() &&
1541         onlyUsesZeroFlag(SDValue(N, 0))) {
1542       SDValue And = N->getOperand(0);
1543       unsigned N0Opc = And.getMachineOpcode();
1544       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1545       // KAND instructions and KTEST use the same ISA feature.
1546       if (N0Opc == X86::KANDBrr ||
1547           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1548           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1549         unsigned NewOpc;
1550         switch (Opc) {
1551         default: llvm_unreachable("Unexpected opcode!");
1552         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1553         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1554         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1555         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1556         }
1557         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1558                                                       MVT::i32,
1559                                                       And.getOperand(0),
1560                                                       And.getOperand(1));
1561         ReplaceUses(N, KTest);
1562         MadeChange = true;
1563         continue;
1564       }
1565     }
1566 
1567     // Attempt to remove vectors moves that were inserted to zero upper bits.
1568     if (Opc != TargetOpcode::SUBREG_TO_REG)
1569       continue;
1570 
1571     unsigned SubRegIdx = N->getConstantOperandVal(2);
1572     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1573       continue;
1574 
1575     SDValue Move = N->getOperand(1);
1576     if (!Move.isMachineOpcode())
1577       continue;
1578 
1579     // Make sure its one of the move opcodes we recognize.
1580     switch (Move.getMachineOpcode()) {
1581     default:
1582       continue;
1583     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1584     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1585     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1586     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1587     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1588     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1589     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1590     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1591     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1592     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1593     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1594     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1595     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1596     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1597       break;
1598     }
1599 
1600     SDValue In = Move.getOperand(0);
1601     if (!In.isMachineOpcode() ||
1602         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1603       continue;
1604 
1605     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1606     // the SHA instructions which use a legacy encoding.
1607     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1608     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1609         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1610         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1611       continue;
1612 
1613     // Producing instruction is another vector instruction. We can drop the
1614     // move.
1615     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1616     MadeChange = true;
1617   }
1618 
1619   if (MadeChange)
1620     CurDAG->RemoveDeadNodes();
1621 }
1622 
1623 
1624 /// Emit any code that needs to be executed only in the main function.
1625 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1626   if (Subtarget->isTargetCygMing()) {
1627     TargetLowering::ArgListTy Args;
1628     auto &DL = CurDAG->getDataLayout();
1629 
1630     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1631     CLI.setChain(CurDAG->getRoot())
1632         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1633                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1634                    std::move(Args));
1635     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1636     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1637     CurDAG->setRoot(Result.second);
1638   }
1639 }
1640 
1641 void X86DAGToDAGISel::emitFunctionEntryCode() {
1642   // If this is main, emit special code for main.
1643   const Function &F = MF->getFunction();
1644   if (F.hasExternalLinkage() && F.getName() == "main")
1645     emitSpecialCodeForMain();
1646 }
1647 
1648 static bool isDispSafeForFrameIndex(int64_t Val) {
1649   // On 64-bit platforms, we can run into an issue where a frame index
1650   // includes a displacement that, when added to the explicit displacement,
1651   // will overflow the displacement field. Assuming that the frame index
1652   // displacement fits into a 31-bit integer  (which is only slightly more
1653   // aggressive than the current fundamental assumption that it fits into
1654   // a 32-bit integer), a 31-bit disp should always be safe.
1655   return isInt<31>(Val);
1656 }
1657 
1658 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1659                                             X86ISelAddressMode &AM) {
1660   // We may have already matched a displacement and the caller just added the
1661   // symbolic displacement. So we still need to do the checks even if Offset
1662   // is zero.
1663 
1664   int64_t Val = AM.Disp + Offset;
1665 
1666   // Cannot combine ExternalSymbol displacements with integer offsets.
1667   if (Val != 0 && (AM.ES || AM.MCSym))
1668     return true;
1669 
1670   CodeModel::Model M = TM.getCodeModel();
1671   if (Subtarget->is64Bit()) {
1672     if (Val != 0 &&
1673         !X86::isOffsetSuitableForCodeModel(Val, M,
1674                                            AM.hasSymbolicDisplacement()))
1675       return true;
1676     // In addition to the checks required for a register base, check that
1677     // we do not try to use an unsafe Disp with a frame index.
1678     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1679         !isDispSafeForFrameIndex(Val))
1680       return true;
1681   }
1682   AM.Disp = Val;
1683   return false;
1684 
1685 }
1686 
1687 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1688                                          bool AllowSegmentRegForX32) {
1689   SDValue Address = N->getOperand(1);
1690 
1691   // load gs:0 -> GS segment register.
1692   // load fs:0 -> FS segment register.
1693   //
1694   // This optimization is generally valid because the GNU TLS model defines that
1695   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1696   // with 32-bit registers, as we get in ILP32 mode, those registers are first
1697   // zero-extended to 64 bits and then added it to the base address, which gives
1698   // unwanted results when the register holds a negative value.
1699   // For more information see http://people.redhat.com/drepper/tls.pdf
1700   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) {
1701     if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
1702         !IndirectTlsSegRefs &&
1703         (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1704          Subtarget->isTargetFuchsia())) {
1705       if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1706         return true;
1707       switch (N->getPointerInfo().getAddrSpace()) {
1708       case X86AS::GS:
1709         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1710         return false;
1711       case X86AS::FS:
1712         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1713         return false;
1714       // Address space X86AS::SS is not handled here, because it is not used to
1715       // address TLS areas.
1716       }
1717     }
1718   }
1719 
1720   return true;
1721 }
1722 
1723 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1724 /// mode. These wrap things that will resolve down into a symbol reference.
1725 /// If no match is possible, this returns true, otherwise it returns false.
1726 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1727   // If the addressing mode already has a symbol as the displacement, we can
1728   // never match another symbol.
1729   if (AM.hasSymbolicDisplacement())
1730     return true;
1731 
1732   bool IsRIPRelTLS = false;
1733   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1734   if (IsRIPRel) {
1735     SDValue Val = N.getOperand(0);
1736     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1737       IsRIPRelTLS = true;
1738   }
1739 
1740   // We can't use an addressing mode in the 64-bit large code model.
1741   // Global TLS addressing is an exception. In the medium code model,
1742   // we use can use a mode when RIP wrappers are present.
1743   // That signifies access to globals that are known to be "near",
1744   // such as the GOT itself.
1745   CodeModel::Model M = TM.getCodeModel();
1746   if (Subtarget->is64Bit() &&
1747       ((M == CodeModel::Large && !IsRIPRelTLS) ||
1748        (M == CodeModel::Medium && !IsRIPRel)))
1749     return true;
1750 
1751   // Base and index reg must be 0 in order to use %rip as base.
1752   if (IsRIPRel && AM.hasBaseOrIndexReg())
1753     return true;
1754 
1755   // Make a local copy in case we can't do this fold.
1756   X86ISelAddressMode Backup = AM;
1757 
1758   int64_t Offset = 0;
1759   SDValue N0 = N.getOperand(0);
1760   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1761     AM.GV = G->getGlobal();
1762     AM.SymbolFlags = G->getTargetFlags();
1763     Offset = G->getOffset();
1764   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1765     AM.CP = CP->getConstVal();
1766     AM.Alignment = CP->getAlign();
1767     AM.SymbolFlags = CP->getTargetFlags();
1768     Offset = CP->getOffset();
1769   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1770     AM.ES = S->getSymbol();
1771     AM.SymbolFlags = S->getTargetFlags();
1772   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1773     AM.MCSym = S->getMCSymbol();
1774   } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
1775     AM.JT = J->getIndex();
1776     AM.SymbolFlags = J->getTargetFlags();
1777   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1778     AM.BlockAddr = BA->getBlockAddress();
1779     AM.SymbolFlags = BA->getTargetFlags();
1780     Offset = BA->getOffset();
1781   } else
1782     llvm_unreachable("Unhandled symbol reference node.");
1783 
1784   if (foldOffsetIntoAddress(Offset, AM)) {
1785     AM = Backup;
1786     return true;
1787   }
1788 
1789   if (IsRIPRel)
1790     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1791 
1792   // Commit the changes now that we know this fold is safe.
1793   return false;
1794 }
1795 
1796 /// Add the specified node to the specified addressing mode, returning true if
1797 /// it cannot be done. This just pattern matches for the addressing mode.
1798 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1799   if (matchAddressRecursively(N, AM, 0))
1800     return true;
1801 
1802   // Post-processing: Make a second attempt to fold a load, if we now know
1803   // that there will not be any other register. This is only performed for
1804   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1805   // any foldable load the first time.
1806   if (Subtarget->isTarget64BitILP32() &&
1807       AM.BaseType == X86ISelAddressMode::RegBase &&
1808       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1809     SDValue Save_Base_Reg = AM.Base_Reg;
1810     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1811       AM.Base_Reg = SDValue();
1812       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1813         AM.Base_Reg = Save_Base_Reg;
1814     }
1815   }
1816 
1817   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1818   // a smaller encoding and avoids a scaled-index.
1819   if (AM.Scale == 2 &&
1820       AM.BaseType == X86ISelAddressMode::RegBase &&
1821       AM.Base_Reg.getNode() == nullptr) {
1822     AM.Base_Reg = AM.IndexReg;
1823     AM.Scale = 1;
1824   }
1825 
1826   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1827   // because it has a smaller encoding.
1828   // TODO: Which other code models can use this?
1829   switch (TM.getCodeModel()) {
1830     default: break;
1831     case CodeModel::Small:
1832     case CodeModel::Kernel:
1833       if (Subtarget->is64Bit() &&
1834           AM.Scale == 1 &&
1835           AM.BaseType == X86ISelAddressMode::RegBase &&
1836           AM.Base_Reg.getNode() == nullptr &&
1837           AM.IndexReg.getNode() == nullptr &&
1838           AM.SymbolFlags == X86II::MO_NO_FLAG &&
1839           AM.hasSymbolicDisplacement())
1840         AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1841       break;
1842   }
1843 
1844   return false;
1845 }
1846 
1847 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1848                                unsigned Depth) {
1849   // Add an artificial use to this node so that we can keep track of
1850   // it if it gets CSE'd with a different node.
1851   HandleSDNode Handle(N);
1852 
1853   X86ISelAddressMode Backup = AM;
1854   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1855       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1856     return false;
1857   AM = Backup;
1858 
1859   // Try again after commutating the operands.
1860   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1861                                Depth + 1) &&
1862       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1863     return false;
1864   AM = Backup;
1865 
1866   // If we couldn't fold both operands into the address at the same time,
1867   // see if we can just put each operand into a register and fold at least
1868   // the add.
1869   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1870       !AM.Base_Reg.getNode() &&
1871       !AM.IndexReg.getNode()) {
1872     N = Handle.getValue();
1873     AM.Base_Reg = N.getOperand(0);
1874     AM.IndexReg = N.getOperand(1);
1875     AM.Scale = 1;
1876     return false;
1877   }
1878   N = Handle.getValue();
1879   return true;
1880 }
1881 
1882 // Insert a node into the DAG at least before the Pos node's position. This
1883 // will reposition the node as needed, and will assign it a node ID that is <=
1884 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1885 // IDs! The selection DAG must no longer depend on their uniqueness when this
1886 // is used.
1887 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1888   if (N->getNodeId() == -1 ||
1889       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1890        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1891     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1892     // Mark Node as invalid for pruning as after this it may be a successor to a
1893     // selected node but otherwise be in the same position of Pos.
1894     // Conservatively mark it with the same -abs(Id) to assure node id
1895     // invariant is preserved.
1896     N->setNodeId(Pos->getNodeId());
1897     SelectionDAGISel::InvalidateNodeId(N.getNode());
1898   }
1899 }
1900 
1901 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1902 // safe. This allows us to convert the shift and and into an h-register
1903 // extract and a scaled index. Returns false if the simplification is
1904 // performed.
1905 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1906                                       uint64_t Mask,
1907                                       SDValue Shift, SDValue X,
1908                                       X86ISelAddressMode &AM) {
1909   if (Shift.getOpcode() != ISD::SRL ||
1910       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1911       !Shift.hasOneUse())
1912     return true;
1913 
1914   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1915   if (ScaleLog <= 0 || ScaleLog >= 4 ||
1916       Mask != (0xffu << ScaleLog))
1917     return true;
1918 
1919   MVT VT = N.getSimpleValueType();
1920   SDLoc DL(N);
1921   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1922   SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1923   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1924   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1925   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1926   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1927 
1928   // Insert the new nodes into the topological ordering. We must do this in
1929   // a valid topological ordering as nothing is going to go back and re-sort
1930   // these nodes. We continually insert before 'N' in sequence as this is
1931   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1932   // hierarchy left to express.
1933   insertDAGNode(DAG, N, Eight);
1934   insertDAGNode(DAG, N, Srl);
1935   insertDAGNode(DAG, N, NewMask);
1936   insertDAGNode(DAG, N, And);
1937   insertDAGNode(DAG, N, ShlCount);
1938   insertDAGNode(DAG, N, Shl);
1939   DAG.ReplaceAllUsesWith(N, Shl);
1940   DAG.RemoveDeadNode(N.getNode());
1941   AM.IndexReg = And;
1942   AM.Scale = (1 << ScaleLog);
1943   return false;
1944 }
1945 
1946 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1947 // allows us to fold the shift into this addressing mode. Returns false if the
1948 // transform succeeded.
1949 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1950                                         X86ISelAddressMode &AM) {
1951   SDValue Shift = N.getOperand(0);
1952 
1953   // Use a signed mask so that shifting right will insert sign bits. These
1954   // bits will be removed when we shift the result left so it doesn't matter
1955   // what we use. This might allow a smaller immediate encoding.
1956   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
1957 
1958   // If we have an any_extend feeding the AND, look through it to see if there
1959   // is a shift behind it. But only if the AND doesn't use the extended bits.
1960   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
1961   bool FoundAnyExtend = false;
1962   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
1963       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
1964       isUInt<32>(Mask)) {
1965     FoundAnyExtend = true;
1966     Shift = Shift.getOperand(0);
1967   }
1968 
1969   if (Shift.getOpcode() != ISD::SHL ||
1970       !isa<ConstantSDNode>(Shift.getOperand(1)))
1971     return true;
1972 
1973   SDValue X = Shift.getOperand(0);
1974 
1975   // Not likely to be profitable if either the AND or SHIFT node has more
1976   // than one use (unless all uses are for address computation). Besides,
1977   // isel mechanism requires their node ids to be reused.
1978   if (!N.hasOneUse() || !Shift.hasOneUse())
1979     return true;
1980 
1981   // Verify that the shift amount is something we can fold.
1982   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1983   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1984     return true;
1985 
1986   MVT VT = N.getSimpleValueType();
1987   SDLoc DL(N);
1988   if (FoundAnyExtend) {
1989     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
1990     insertDAGNode(DAG, N, NewX);
1991     X = NewX;
1992   }
1993 
1994   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
1995   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
1996   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
1997 
1998   // Insert the new nodes into the topological ordering. We must do this in
1999   // a valid topological ordering as nothing is going to go back and re-sort
2000   // these nodes. We continually insert before 'N' in sequence as this is
2001   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2002   // hierarchy left to express.
2003   insertDAGNode(DAG, N, NewMask);
2004   insertDAGNode(DAG, N, NewAnd);
2005   insertDAGNode(DAG, N, NewShift);
2006   DAG.ReplaceAllUsesWith(N, NewShift);
2007   DAG.RemoveDeadNode(N.getNode());
2008 
2009   AM.Scale = 1 << ShiftAmt;
2010   AM.IndexReg = NewAnd;
2011   return false;
2012 }
2013 
2014 // Implement some heroics to detect shifts of masked values where the mask can
2015 // be replaced by extending the shift and undoing that in the addressing mode
2016 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
2017 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
2018 // the addressing mode. This results in code such as:
2019 //
2020 //   int f(short *y, int *lookup_table) {
2021 //     ...
2022 //     return *y + lookup_table[*y >> 11];
2023 //   }
2024 //
2025 // Turning into:
2026 //   movzwl (%rdi), %eax
2027 //   movl %eax, %ecx
2028 //   shrl $11, %ecx
2029 //   addl (%rsi,%rcx,4), %eax
2030 //
2031 // Instead of:
2032 //   movzwl (%rdi), %eax
2033 //   movl %eax, %ecx
2034 //   shrl $9, %ecx
2035 //   andl $124, %rcx
2036 //   addl (%rsi,%rcx), %eax
2037 //
2038 // Note that this function assumes the mask is provided as a mask *after* the
2039 // value is shifted. The input chain may or may not match that, but computing
2040 // such a mask is trivial.
2041 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
2042                                     uint64_t Mask,
2043                                     SDValue Shift, SDValue X,
2044                                     X86ISelAddressMode &AM) {
2045   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
2046       !isa<ConstantSDNode>(Shift.getOperand(1)))
2047     return true;
2048 
2049   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2050   unsigned MaskLZ = countLeadingZeros(Mask);
2051   unsigned MaskTZ = countTrailingZeros(Mask);
2052 
2053   // The amount of shift we're trying to fit into the addressing mode is taken
2054   // from the trailing zeros of the mask.
2055   unsigned AMShiftAmt = MaskTZ;
2056 
2057   // There is nothing we can do here unless the mask is removing some bits.
2058   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2059   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2060 
2061   // We also need to ensure that mask is a continuous run of bits.
2062   if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
2063 
2064   // Scale the leading zero count down based on the actual size of the value.
2065   // Also scale it down based on the size of the shift.
2066   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
2067   if (MaskLZ < ScaleDown)
2068     return true;
2069   MaskLZ -= ScaleDown;
2070 
2071   // The final check is to ensure that any masked out high bits of X are
2072   // already known to be zero. Otherwise, the mask has a semantic impact
2073   // other than masking out a couple of low bits. Unfortunately, because of
2074   // the mask, zero extensions will be removed from operands in some cases.
2075   // This code works extra hard to look through extensions because we can
2076   // replace them with zero extensions cheaply if necessary.
2077   bool ReplacingAnyExtend = false;
2078   if (X.getOpcode() == ISD::ANY_EXTEND) {
2079     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2080                           X.getOperand(0).getSimpleValueType().getSizeInBits();
2081     // Assume that we'll replace the any-extend with a zero-extend, and
2082     // narrow the search to the extended value.
2083     X = X.getOperand(0);
2084     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2085     ReplacingAnyExtend = true;
2086   }
2087   APInt MaskedHighBits =
2088     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2089   KnownBits Known = DAG.computeKnownBits(X);
2090   if (MaskedHighBits != Known.Zero) return true;
2091 
2092   // We've identified a pattern that can be transformed into a single shift
2093   // and an addressing mode. Make it so.
2094   MVT VT = N.getSimpleValueType();
2095   if (ReplacingAnyExtend) {
2096     assert(X.getValueType() != VT);
2097     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2098     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2099     insertDAGNode(DAG, N, NewX);
2100     X = NewX;
2101   }
2102   SDLoc DL(N);
2103   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2104   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2105   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2106   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
2107 
2108   // Insert the new nodes into the topological ordering. We must do this in
2109   // a valid topological ordering as nothing is going to go back and re-sort
2110   // these nodes. We continually insert before 'N' in sequence as this is
2111   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2112   // hierarchy left to express.
2113   insertDAGNode(DAG, N, NewSRLAmt);
2114   insertDAGNode(DAG, N, NewSRL);
2115   insertDAGNode(DAG, N, NewSHLAmt);
2116   insertDAGNode(DAG, N, NewSHL);
2117   DAG.ReplaceAllUsesWith(N, NewSHL);
2118   DAG.RemoveDeadNode(N.getNode());
2119 
2120   AM.Scale = 1 << AMShiftAmt;
2121   AM.IndexReg = NewSRL;
2122   return false;
2123 }
2124 
2125 // Transform "(X >> SHIFT) & (MASK << C1)" to
2126 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2127 // matched to a BEXTR later. Returns false if the simplification is performed.
2128 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2129                                    uint64_t Mask,
2130                                    SDValue Shift, SDValue X,
2131                                    X86ISelAddressMode &AM,
2132                                    const X86Subtarget &Subtarget) {
2133   if (Shift.getOpcode() != ISD::SRL ||
2134       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2135       !Shift.hasOneUse() || !N.hasOneUse())
2136     return true;
2137 
2138   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2139   if (!Subtarget.hasTBM() &&
2140       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2141     return true;
2142 
2143   // We need to ensure that mask is a continuous run of bits.
2144   if (!isShiftedMask_64(Mask)) return true;
2145 
2146   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2147 
2148   // The amount of shift we're trying to fit into the addressing mode is taken
2149   // from the trailing zeros of the mask.
2150   unsigned AMShiftAmt = countTrailingZeros(Mask);
2151 
2152   // There is nothing we can do here unless the mask is removing some bits.
2153   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2154   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2155 
2156   MVT VT = N.getSimpleValueType();
2157   SDLoc DL(N);
2158   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2159   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2160   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
2161   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
2162   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2163   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
2164 
2165   // Insert the new nodes into the topological ordering. We must do this in
2166   // a valid topological ordering as nothing is going to go back and re-sort
2167   // these nodes. We continually insert before 'N' in sequence as this is
2168   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2169   // hierarchy left to express.
2170   insertDAGNode(DAG, N, NewSRLAmt);
2171   insertDAGNode(DAG, N, NewSRL);
2172   insertDAGNode(DAG, N, NewMask);
2173   insertDAGNode(DAG, N, NewAnd);
2174   insertDAGNode(DAG, N, NewSHLAmt);
2175   insertDAGNode(DAG, N, NewSHL);
2176   DAG.ReplaceAllUsesWith(N, NewSHL);
2177   DAG.RemoveDeadNode(N.getNode());
2178 
2179   AM.Scale = 1 << AMShiftAmt;
2180   AM.IndexReg = NewAnd;
2181   return false;
2182 }
2183 
2184 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2185                                               unsigned Depth) {
2186   SDLoc dl(N);
2187   LLVM_DEBUG({
2188     dbgs() << "MatchAddress: ";
2189     AM.dump(CurDAG);
2190   });
2191   // Limit recursion.
2192   if (Depth > 5)
2193     return matchAddressBase(N, AM);
2194 
2195   // If this is already a %rip relative address, we can only merge immediates
2196   // into it.  Instead of handling this in every case, we handle it here.
2197   // RIP relative addressing: %rip + 32-bit displacement!
2198   if (AM.isRIPRelative()) {
2199     // FIXME: JumpTable and ExternalSymbol address currently don't like
2200     // displacements.  It isn't very important, but this should be fixed for
2201     // consistency.
2202     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2203       return true;
2204 
2205     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
2206       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2207         return false;
2208     return true;
2209   }
2210 
2211   switch (N.getOpcode()) {
2212   default: break;
2213   case ISD::LOCAL_RECOVER: {
2214     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2215       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2216         // Use the symbol and don't prefix it.
2217         AM.MCSym = ESNode->getMCSymbol();
2218         return false;
2219       }
2220     break;
2221   }
2222   case ISD::Constant: {
2223     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2224     if (!foldOffsetIntoAddress(Val, AM))
2225       return false;
2226     break;
2227   }
2228 
2229   case X86ISD::Wrapper:
2230   case X86ISD::WrapperRIP:
2231     if (!matchWrapper(N, AM))
2232       return false;
2233     break;
2234 
2235   case ISD::LOAD:
2236     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2237       return false;
2238     break;
2239 
2240   case ISD::FrameIndex:
2241     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2242         AM.Base_Reg.getNode() == nullptr &&
2243         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2244       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2245       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2246       return false;
2247     }
2248     break;
2249 
2250   case ISD::SHL:
2251     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2252       break;
2253 
2254     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2255       unsigned Val = CN->getZExtValue();
2256       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2257       // that the base operand remains free for further matching. If
2258       // the base doesn't end up getting used, a post-processing step
2259       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2260       if (Val == 1 || Val == 2 || Val == 3) {
2261         AM.Scale = 1 << Val;
2262         SDValue ShVal = N.getOperand(0);
2263 
2264         // Okay, we know that we have a scale by now.  However, if the scaled
2265         // value is an add of something and a constant, we can fold the
2266         // constant into the disp field here.
2267         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
2268           AM.IndexReg = ShVal.getOperand(0);
2269           ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
2270           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
2271           if (!foldOffsetIntoAddress(Disp, AM))
2272             return false;
2273         }
2274 
2275         AM.IndexReg = ShVal;
2276         return false;
2277       }
2278     }
2279     break;
2280 
2281   case ISD::SRL: {
2282     // Scale must not be used already.
2283     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2284 
2285     // We only handle up to 64-bit values here as those are what matter for
2286     // addressing mode optimizations.
2287     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2288            "Unexpected value size!");
2289 
2290     SDValue And = N.getOperand(0);
2291     if (And.getOpcode() != ISD::AND) break;
2292     SDValue X = And.getOperand(0);
2293 
2294     // The mask used for the transform is expected to be post-shift, but we
2295     // found the shift first so just apply the shift to the mask before passing
2296     // it down.
2297     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2298         !isa<ConstantSDNode>(And.getOperand(1)))
2299       break;
2300     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2301 
2302     // Try to fold the mask and shift into the scale, and return false if we
2303     // succeed.
2304     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2305       return false;
2306     break;
2307   }
2308 
2309   case ISD::SMUL_LOHI:
2310   case ISD::UMUL_LOHI:
2311     // A mul_lohi where we need the low part can be folded as a plain multiply.
2312     if (N.getResNo() != 0) break;
2313     LLVM_FALLTHROUGH;
2314   case ISD::MUL:
2315   case X86ISD::MUL_IMM:
2316     // X*[3,5,9] -> X+X*[2,4,8]
2317     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2318         AM.Base_Reg.getNode() == nullptr &&
2319         AM.IndexReg.getNode() == nullptr) {
2320       if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2321         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2322             CN->getZExtValue() == 9) {
2323           AM.Scale = unsigned(CN->getZExtValue())-1;
2324 
2325           SDValue MulVal = N.getOperand(0);
2326           SDValue Reg;
2327 
2328           // Okay, we know that we have a scale by now.  However, if the scaled
2329           // value is an add of something and a constant, we can fold the
2330           // constant into the disp field here.
2331           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2332               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2333             Reg = MulVal.getOperand(0);
2334             ConstantSDNode *AddVal =
2335               cast<ConstantSDNode>(MulVal.getOperand(1));
2336             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2337             if (foldOffsetIntoAddress(Disp, AM))
2338               Reg = N.getOperand(0);
2339           } else {
2340             Reg = N.getOperand(0);
2341           }
2342 
2343           AM.IndexReg = AM.Base_Reg = Reg;
2344           return false;
2345         }
2346     }
2347     break;
2348 
2349   case ISD::SUB: {
2350     // Given A-B, if A can be completely folded into the address and
2351     // the index field with the index field unused, use -B as the index.
2352     // This is a win if a has multiple parts that can be folded into
2353     // the address. Also, this saves a mov if the base register has
2354     // other uses, since it avoids a two-address sub instruction, however
2355     // it costs an additional mov if the index register has other uses.
2356 
2357     // Add an artificial use to this node so that we can keep track of
2358     // it if it gets CSE'd with a different node.
2359     HandleSDNode Handle(N);
2360 
2361     // Test if the LHS of the sub can be folded.
2362     X86ISelAddressMode Backup = AM;
2363     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2364       N = Handle.getValue();
2365       AM = Backup;
2366       break;
2367     }
2368     N = Handle.getValue();
2369     // Test if the index field is free for use.
2370     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2371       AM = Backup;
2372       break;
2373     }
2374 
2375     int Cost = 0;
2376     SDValue RHS = N.getOperand(1);
2377     // If the RHS involves a register with multiple uses, this
2378     // transformation incurs an extra mov, due to the neg instruction
2379     // clobbering its operand.
2380     if (!RHS.getNode()->hasOneUse() ||
2381         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2382         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2383         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2384         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2385          RHS.getOperand(0).getValueType() == MVT::i32))
2386       ++Cost;
2387     // If the base is a register with multiple uses, this
2388     // transformation may save a mov.
2389     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2390          !AM.Base_Reg.getNode()->hasOneUse()) ||
2391         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2392       --Cost;
2393     // If the folded LHS was interesting, this transformation saves
2394     // address arithmetic.
2395     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2396         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2397         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2398       --Cost;
2399     // If it doesn't look like it may be an overall win, don't do it.
2400     if (Cost >= 0) {
2401       AM = Backup;
2402       break;
2403     }
2404 
2405     // Ok, the transformation is legal and appears profitable. Go for it.
2406     // Negation will be emitted later to avoid creating dangling nodes if this
2407     // was an unprofitable LEA.
2408     AM.IndexReg = RHS;
2409     AM.NegateIndex = true;
2410     AM.Scale = 1;
2411     return false;
2412   }
2413 
2414   case ISD::ADD:
2415     if (!matchAdd(N, AM, Depth))
2416       return false;
2417     break;
2418 
2419   case ISD::OR:
2420     // We want to look through a transform in InstCombine and DAGCombiner that
2421     // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
2422     // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
2423     // An 'lea' can then be used to match the shift (multiply) and add:
2424     // and $1, %esi
2425     // lea (%rsi, %rdi, 8), %rax
2426     if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
2427         !matchAdd(N, AM, Depth))
2428       return false;
2429     break;
2430 
2431   case ISD::XOR:
2432     // We want to look through a transform in InstCombine that
2433     // turns 'add' with min_signed_val into 'xor', so we can treat this 'xor'
2434     // exactly like an 'add'.
2435     if (isMinSignedConstant(N.getOperand(1)) && !matchAdd(N, AM, Depth))
2436       return false;
2437     break;
2438 
2439   case ISD::AND: {
2440     // Perform some heroic transforms on an and of a constant-count shift
2441     // with a constant to enable use of the scaled offset field.
2442 
2443     // Scale must not be used already.
2444     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2445 
2446     // We only handle up to 64-bit values here as those are what matter for
2447     // addressing mode optimizations.
2448     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2449            "Unexpected value size!");
2450 
2451     if (!isa<ConstantSDNode>(N.getOperand(1)))
2452       break;
2453 
2454     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2455       SDValue Shift = N.getOperand(0);
2456       SDValue X = Shift.getOperand(0);
2457 
2458       uint64_t Mask = N.getConstantOperandVal(1);
2459 
2460       // Try to fold the mask and shift into an extract and scale.
2461       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2462         return false;
2463 
2464       // Try to fold the mask and shift directly into the scale.
2465       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2466         return false;
2467 
2468       // Try to fold the mask and shift into BEXTR and scale.
2469       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2470         return false;
2471     }
2472 
2473     // Try to swap the mask and shift to place shifts which can be done as
2474     // a scale on the outside of the mask.
2475     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2476       return false;
2477 
2478     break;
2479   }
2480   case ISD::ZERO_EXTEND: {
2481     // Try to widen a zexted shift left to the same size as its use, so we can
2482     // match the shift as a scale factor.
2483     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2484       break;
2485     if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
2486       break;
2487 
2488     // Give up if the shift is not a valid scale factor [1,2,3].
2489     SDValue Shl = N.getOperand(0);
2490     auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
2491     if (!ShAmtC || ShAmtC->getZExtValue() > 3)
2492       break;
2493 
2494     // The narrow shift must only shift out zero bits (it must be 'nuw').
2495     // That makes it safe to widen to the destination type.
2496     APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
2497                                             ShAmtC->getZExtValue());
2498     if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
2499       break;
2500 
2501     // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
2502     MVT VT = N.getSimpleValueType();
2503     SDLoc DL(N);
2504     SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
2505     SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
2506 
2507     // Convert the shift to scale factor.
2508     AM.Scale = 1 << ShAmtC->getZExtValue();
2509     AM.IndexReg = Zext;
2510 
2511     insertDAGNode(*CurDAG, N, Zext);
2512     insertDAGNode(*CurDAG, N, NewShl);
2513     CurDAG->ReplaceAllUsesWith(N, NewShl);
2514     CurDAG->RemoveDeadNode(N.getNode());
2515     return false;
2516   }
2517   }
2518 
2519   return matchAddressBase(N, AM);
2520 }
2521 
2522 /// Helper for MatchAddress. Add the specified node to the
2523 /// specified addressing mode without any further recursion.
2524 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2525   // Is the base register already occupied?
2526   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2527     // If so, check to see if the scale index register is set.
2528     if (!AM.IndexReg.getNode()) {
2529       AM.IndexReg = N;
2530       AM.Scale = 1;
2531       return false;
2532     }
2533 
2534     // Otherwise, we cannot select it.
2535     return true;
2536   }
2537 
2538   // Default, generate it as a register.
2539   AM.BaseType = X86ISelAddressMode::RegBase;
2540   AM.Base_Reg = N;
2541   return false;
2542 }
2543 
2544 bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
2545                                                     X86ISelAddressMode &AM,
2546                                                     unsigned Depth) {
2547   SDLoc dl(N);
2548   LLVM_DEBUG({
2549     dbgs() << "MatchVectorAddress: ";
2550     AM.dump(CurDAG);
2551   });
2552   // Limit recursion.
2553   if (Depth > 5)
2554     return matchAddressBase(N, AM);
2555 
2556   // TODO: Support other operations.
2557   switch (N.getOpcode()) {
2558   case ISD::Constant: {
2559     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2560     if (!foldOffsetIntoAddress(Val, AM))
2561       return false;
2562     break;
2563   }
2564   case X86ISD::Wrapper:
2565     if (!matchWrapper(N, AM))
2566       return false;
2567     break;
2568   case ISD::ADD: {
2569     // Add an artificial use to this node so that we can keep track of
2570     // it if it gets CSE'd with a different node.
2571     HandleSDNode Handle(N);
2572 
2573     X86ISelAddressMode Backup = AM;
2574     if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) &&
2575         !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2576                                        Depth + 1))
2577       return false;
2578     AM = Backup;
2579 
2580     // Try again after commuting the operands.
2581     if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2582                                        Depth + 1) &&
2583         !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM,
2584                                        Depth + 1))
2585       return false;
2586     AM = Backup;
2587 
2588     N = Handle.getValue();
2589     break;
2590   }
2591   }
2592 
2593   return matchAddressBase(N, AM);
2594 }
2595 
2596 /// Helper for selectVectorAddr. Handles things that can be folded into a
2597 /// gather/scatter address. The index register and scale should have already
2598 /// been handled.
2599 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2600   return matchVectorAddressRecursively(N, AM, 0);
2601 }
2602 
2603 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2604                                        SDValue IndexOp, SDValue ScaleOp,
2605                                        SDValue &Base, SDValue &Scale,
2606                                        SDValue &Index, SDValue &Disp,
2607                                        SDValue &Segment) {
2608   X86ISelAddressMode AM;
2609   AM.IndexReg = IndexOp;
2610   AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
2611 
2612   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2613   if (AddrSpace == X86AS::GS)
2614     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2615   if (AddrSpace == X86AS::FS)
2616     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2617   if (AddrSpace == X86AS::SS)
2618     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2619 
2620   SDLoc DL(BasePtr);
2621   MVT VT = BasePtr.getSimpleValueType();
2622 
2623   // Try to match into the base and displacement fields.
2624   if (matchVectorAddress(BasePtr, AM))
2625     return false;
2626 
2627   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2628   return true;
2629 }
2630 
2631 /// Returns true if it is able to pattern match an addressing mode.
2632 /// It returns the operands which make up the maximal addressing mode it can
2633 /// match by reference.
2634 ///
2635 /// Parent is the parent node of the addr operand that is being matched.  It
2636 /// is always a load, store, atomic node, or null.  It is only null when
2637 /// checking memory operands for inline asm nodes.
2638 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2639                                  SDValue &Scale, SDValue &Index,
2640                                  SDValue &Disp, SDValue &Segment) {
2641   X86ISelAddressMode AM;
2642 
2643   if (Parent &&
2644       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2645       // that are not a MemSDNode, and thus don't have proper addrspace info.
2646       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2647       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2648       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2649       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2650       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2651       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2652       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2653     unsigned AddrSpace =
2654       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2655     if (AddrSpace == X86AS::GS)
2656       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2657     if (AddrSpace == X86AS::FS)
2658       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2659     if (AddrSpace == X86AS::SS)
2660       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2661   }
2662 
2663   // Save the DL and VT before calling matchAddress, it can invalidate N.
2664   SDLoc DL(N);
2665   MVT VT = N.getSimpleValueType();
2666 
2667   if (matchAddress(N, AM))
2668     return false;
2669 
2670   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2671   return true;
2672 }
2673 
2674 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2675   // In static codegen with small code model, we can get the address of a label
2676   // into a register with 'movl'
2677   if (N->getOpcode() != X86ISD::Wrapper)
2678     return false;
2679 
2680   N = N.getOperand(0);
2681 
2682   // At least GNU as does not accept 'movl' for TPOFF relocations.
2683   // FIXME: We could use 'movl' when we know we are targeting MC.
2684   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2685     return false;
2686 
2687   Imm = N;
2688   if (N->getOpcode() != ISD::TargetGlobalAddress)
2689     return TM.getCodeModel() == CodeModel::Small;
2690 
2691   Optional<ConstantRange> CR =
2692       cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
2693   if (!CR)
2694     return TM.getCodeModel() == CodeModel::Small;
2695 
2696   return CR->getUnsignedMax().ult(1ull << 32);
2697 }
2698 
2699 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2700                                          SDValue &Scale, SDValue &Index,
2701                                          SDValue &Disp, SDValue &Segment) {
2702   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2703   SDLoc DL(N);
2704 
2705   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2706     return false;
2707 
2708   RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
2709   if (RN && RN->getReg() == 0)
2710     Base = CurDAG->getRegister(0, MVT::i64);
2711   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2712     // Base could already be %rip, particularly in the x32 ABI.
2713     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2714                                                      MVT::i64), 0);
2715     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2716                                          Base);
2717   }
2718 
2719   RN = dyn_cast<RegisterSDNode>(Index);
2720   if (RN && RN->getReg() == 0)
2721     Index = CurDAG->getRegister(0, MVT::i64);
2722   else {
2723     assert(Index.getValueType() == MVT::i32 &&
2724            "Expect to be extending 32-bit registers for use in LEA");
2725     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2726                                                      MVT::i64), 0);
2727     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2728                                           Index);
2729   }
2730 
2731   return true;
2732 }
2733 
2734 /// Calls SelectAddr and determines if the maximal addressing
2735 /// mode it matches can be cost effectively emitted as an LEA instruction.
2736 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2737                                     SDValue &Base, SDValue &Scale,
2738                                     SDValue &Index, SDValue &Disp,
2739                                     SDValue &Segment) {
2740   X86ISelAddressMode AM;
2741 
2742   // Save the DL and VT before calling matchAddress, it can invalidate N.
2743   SDLoc DL(N);
2744   MVT VT = N.getSimpleValueType();
2745 
2746   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
2747   // segments.
2748   SDValue Copy = AM.Segment;
2749   SDValue T = CurDAG->getRegister(0, MVT::i32);
2750   AM.Segment = T;
2751   if (matchAddress(N, AM))
2752     return false;
2753   assert (T == AM.Segment);
2754   AM.Segment = Copy;
2755 
2756   unsigned Complexity = 0;
2757   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
2758     Complexity = 1;
2759   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2760     Complexity = 4;
2761 
2762   if (AM.IndexReg.getNode())
2763     Complexity++;
2764 
2765   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
2766   // a simple shift.
2767   if (AM.Scale > 1)
2768     Complexity++;
2769 
2770   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
2771   // to a LEA. This is determined with some experimentation but is by no means
2772   // optimal (especially for code size consideration). LEA is nice because of
2773   // its three-address nature. Tweak the cost function again when we can run
2774   // convertToThreeAddress() at register allocation time.
2775   if (AM.hasSymbolicDisplacement()) {
2776     // For X86-64, always use LEA to materialize RIP-relative addresses.
2777     if (Subtarget->is64Bit())
2778       Complexity = 4;
2779     else
2780       Complexity += 2;
2781   }
2782 
2783   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
2784   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
2785   // duplicating flag-producing instructions later in the pipeline.
2786   if (N.getOpcode() == ISD::ADD) {
2787     auto isMathWithFlags = [](SDValue V) {
2788       switch (V.getOpcode()) {
2789       case X86ISD::ADD:
2790       case X86ISD::SUB:
2791       case X86ISD::ADC:
2792       case X86ISD::SBB:
2793       case X86ISD::SMUL:
2794       case X86ISD::UMUL:
2795       /* TODO: These opcodes can be added safely, but we may want to justify
2796                their inclusion for different reasons (better for reg-alloc).
2797       case X86ISD::OR:
2798       case X86ISD::XOR:
2799       case X86ISD::AND:
2800       */
2801         // Value 1 is the flag output of the node - verify it's not dead.
2802         return !SDValue(V.getNode(), 1).use_empty();
2803       default:
2804         return false;
2805       }
2806     };
2807     // TODO: We might want to factor in whether there's a load folding
2808     // opportunity for the math op that disappears with LEA.
2809     if (isMathWithFlags(N.getOperand(0)) || isMathWithFlags(N.getOperand(1)))
2810       Complexity++;
2811   }
2812 
2813   if (AM.Disp)
2814     Complexity++;
2815 
2816   // If it isn't worth using an LEA, reject it.
2817   if (Complexity <= 2)
2818     return false;
2819 
2820   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2821   return true;
2822 }
2823 
2824 /// This is only run on TargetGlobalTLSAddress nodes.
2825 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
2826                                         SDValue &Scale, SDValue &Index,
2827                                         SDValue &Disp, SDValue &Segment) {
2828   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
2829   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
2830 
2831   X86ISelAddressMode AM;
2832   AM.GV = GA->getGlobal();
2833   AM.Disp += GA->getOffset();
2834   AM.SymbolFlags = GA->getTargetFlags();
2835 
2836   if (Subtarget->is32Bit()) {
2837     AM.Scale = 1;
2838     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
2839   }
2840 
2841   MVT VT = N.getSimpleValueType();
2842   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
2843   return true;
2844 }
2845 
2846 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2847   // Keep track of the original value type and whether this value was
2848   // truncated. If we see a truncation from pointer type to VT that truncates
2849   // bits that are known to be zero, we can use a narrow reference.
2850   EVT VT = N.getValueType();
2851   bool WasTruncated = false;
2852   if (N.getOpcode() == ISD::TRUNCATE) {
2853     WasTruncated = true;
2854     N = N.getOperand(0);
2855   }
2856 
2857   if (N.getOpcode() != X86ISD::Wrapper)
2858     return false;
2859 
2860   // We can only use non-GlobalValues as immediates if they were not truncated,
2861   // as we do not have any range information. If we have a GlobalValue and the
2862   // address was not truncated, we can select it as an operand directly.
2863   unsigned Opc = N.getOperand(0)->getOpcode();
2864   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2865     Op = N.getOperand(0);
2866     // We can only select the operand directly if we didn't have to look past a
2867     // truncate.
2868     return !WasTruncated;
2869   }
2870 
2871   // Check that the global's range fits into VT.
2872   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2873   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2874   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2875     return false;
2876 
2877   // Okay, we can use a narrow reference.
2878   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2879                                       GA->getOffset(), GA->getTargetFlags());
2880   return true;
2881 }
2882 
2883 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2884                                   SDValue &Base, SDValue &Scale,
2885                                   SDValue &Index, SDValue &Disp,
2886                                   SDValue &Segment) {
2887   assert(Root && P && "Unknown root/parent nodes");
2888   if (!ISD::isNON_EXTLoad(N.getNode()) ||
2889       !IsProfitableToFold(N, P, Root) ||
2890       !IsLegalToFold(N, P, Root, OptLevel))
2891     return false;
2892 
2893   return selectAddr(N.getNode(),
2894                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2895 }
2896 
2897 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
2898                                        SDValue &Base, SDValue &Scale,
2899                                        SDValue &Index, SDValue &Disp,
2900                                        SDValue &Segment) {
2901   assert(Root && P && "Unknown root/parent nodes");
2902   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
2903       !IsProfitableToFold(N, P, Root) ||
2904       !IsLegalToFold(N, P, Root, OptLevel))
2905     return false;
2906 
2907   return selectAddr(N.getNode(),
2908                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2909 }
2910 
2911 /// Return an SDNode that returns the value of the global base register.
2912 /// Output instructions required to initialize the global base register,
2913 /// if necessary.
2914 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2915   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2916   auto &DL = MF->getDataLayout();
2917   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2918 }
2919 
2920 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2921   if (N->getOpcode() == ISD::TRUNCATE)
2922     N = N->getOperand(0).getNode();
2923   if (N->getOpcode() != X86ISD::Wrapper)
2924     return false;
2925 
2926   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2927   if (!GA)
2928     return false;
2929 
2930   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2931   if (!CR)
2932     return Width == 32 && TM.getCodeModel() == CodeModel::Small;
2933 
2934   return CR->getSignedMin().sge(-1ull << Width) &&
2935          CR->getSignedMax().slt(1ull << Width);
2936 }
2937 
2938 X86::CondCode X86DAGToDAGISel::getCondFromNode(SDNode *N) const {
2939   assert(N->isMachineOpcode() && "Unexpected node");
2940   unsigned Opc = N->getMachineOpcode();
2941   const MCInstrDesc &MCID = getInstrInfo()->get(Opc);
2942   int CondNo = X86::getCondSrcNoFromDesc(MCID);
2943   if (CondNo < 0)
2944     return X86::COND_INVALID;
2945 
2946   return static_cast<X86::CondCode>(N->getConstantOperandVal(CondNo));
2947 }
2948 
2949 /// Test whether the given X86ISD::CMP node has any users that use a flag
2950 /// other than ZF.
2951 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
2952   // Examine each user of the node.
2953   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2954          UI != UE; ++UI) {
2955     // Only check things that use the flags.
2956     if (UI.getUse().getResNo() != Flags.getResNo())
2957       continue;
2958     // Only examine CopyToReg uses that copy to EFLAGS.
2959     if (UI->getOpcode() != ISD::CopyToReg ||
2960         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2961       return false;
2962     // Examine each user of the CopyToReg use.
2963     for (SDNode::use_iterator FlagUI = UI->use_begin(),
2964            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2965       // Only examine the Flag result.
2966       if (FlagUI.getUse().getResNo() != 1) continue;
2967       // Anything unusual: assume conservatively.
2968       if (!FlagUI->isMachineOpcode()) return false;
2969       // Examine the condition code of the user.
2970       X86::CondCode CC = getCondFromNode(*FlagUI);
2971 
2972       switch (CC) {
2973       // Comparisons which only use the zero flag.
2974       case X86::COND_E: case X86::COND_NE:
2975         continue;
2976       // Anything else: assume conservatively.
2977       default:
2978         return false;
2979       }
2980     }
2981   }
2982   return true;
2983 }
2984 
2985 /// Test whether the given X86ISD::CMP node has any uses which require the SF
2986 /// flag to be accurate.
2987 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
2988   // Examine each user of the node.
2989   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2990          UI != UE; ++UI) {
2991     // Only check things that use the flags.
2992     if (UI.getUse().getResNo() != Flags.getResNo())
2993       continue;
2994     // Only examine CopyToReg uses that copy to EFLAGS.
2995     if (UI->getOpcode() != ISD::CopyToReg ||
2996         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2997       return false;
2998     // Examine each user of the CopyToReg use.
2999     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3000            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3001       // Only examine the Flag result.
3002       if (FlagUI.getUse().getResNo() != 1) continue;
3003       // Anything unusual: assume conservatively.
3004       if (!FlagUI->isMachineOpcode()) return false;
3005       // Examine the condition code of the user.
3006       X86::CondCode CC = getCondFromNode(*FlagUI);
3007 
3008       switch (CC) {
3009       // Comparisons which don't examine the SF flag.
3010       case X86::COND_A: case X86::COND_AE:
3011       case X86::COND_B: case X86::COND_BE:
3012       case X86::COND_E: case X86::COND_NE:
3013       case X86::COND_O: case X86::COND_NO:
3014       case X86::COND_P: case X86::COND_NP:
3015         continue;
3016       // Anything else: assume conservatively.
3017       default:
3018         return false;
3019       }
3020     }
3021   }
3022   return true;
3023 }
3024 
3025 static bool mayUseCarryFlag(X86::CondCode CC) {
3026   switch (CC) {
3027   // Comparisons which don't examine the CF flag.
3028   case X86::COND_O: case X86::COND_NO:
3029   case X86::COND_E: case X86::COND_NE:
3030   case X86::COND_S: case X86::COND_NS:
3031   case X86::COND_P: case X86::COND_NP:
3032   case X86::COND_L: case X86::COND_GE:
3033   case X86::COND_G: case X86::COND_LE:
3034     return false;
3035   // Anything else: assume conservatively.
3036   default:
3037     return true;
3038   }
3039 }
3040 
3041 /// Test whether the given node which sets flags has any uses which require the
3042 /// CF flag to be accurate.
3043  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
3044   // Examine each user of the node.
3045   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3046          UI != UE; ++UI) {
3047     // Only check things that use the flags.
3048     if (UI.getUse().getResNo() != Flags.getResNo())
3049       continue;
3050 
3051     unsigned UIOpc = UI->getOpcode();
3052 
3053     if (UIOpc == ISD::CopyToReg) {
3054       // Only examine CopyToReg uses that copy to EFLAGS.
3055       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3056         return false;
3057       // Examine each user of the CopyToReg use.
3058       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
3059            FlagUI != FlagUE; ++FlagUI) {
3060         // Only examine the Flag result.
3061         if (FlagUI.getUse().getResNo() != 1)
3062           continue;
3063         // Anything unusual: assume conservatively.
3064         if (!FlagUI->isMachineOpcode())
3065           return false;
3066         // Examine the condition code of the user.
3067         X86::CondCode CC = getCondFromNode(*FlagUI);
3068 
3069         if (mayUseCarryFlag(CC))
3070           return false;
3071       }
3072 
3073       // This CopyToReg is ok. Move on to the next user.
3074       continue;
3075     }
3076 
3077     // This might be an unselected node. So look for the pre-isel opcodes that
3078     // use flags.
3079     unsigned CCOpNo;
3080     switch (UIOpc) {
3081     default:
3082       // Something unusual. Be conservative.
3083       return false;
3084     case X86ISD::SETCC:       CCOpNo = 0; break;
3085     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
3086     case X86ISD::CMOV:        CCOpNo = 2; break;
3087     case X86ISD::BRCOND:      CCOpNo = 2; break;
3088     }
3089 
3090     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
3091     if (mayUseCarryFlag(CC))
3092       return false;
3093   }
3094   return true;
3095 }
3096 
3097 /// Check whether or not the chain ending in StoreNode is suitable for doing
3098 /// the {load; op; store} to modify transformation.
3099 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
3100                                         SDValue StoredVal, SelectionDAG *CurDAG,
3101                                         unsigned LoadOpNo,
3102                                         LoadSDNode *&LoadNode,
3103                                         SDValue &InputChain) {
3104   // Is the stored value result 0 of the operation?
3105   if (StoredVal.getResNo() != 0) return false;
3106 
3107   // Are there other uses of the operation other than the store?
3108   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3109 
3110   // Is the store non-extending and non-indexed?
3111   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3112     return false;
3113 
3114   SDValue Load = StoredVal->getOperand(LoadOpNo);
3115   // Is the stored value a non-extending and non-indexed load?
3116   if (!ISD::isNormalLoad(Load.getNode())) return false;
3117 
3118   // Return LoadNode by reference.
3119   LoadNode = cast<LoadSDNode>(Load);
3120 
3121   // Is store the only read of the loaded value?
3122   if (!Load.hasOneUse())
3123     return false;
3124 
3125   // Is the address of the store the same as the load?
3126   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3127       LoadNode->getOffset() != StoreNode->getOffset())
3128     return false;
3129 
3130   bool FoundLoad = false;
3131   SmallVector<SDValue, 4> ChainOps;
3132   SmallVector<const SDNode *, 4> LoopWorklist;
3133   SmallPtrSet<const SDNode *, 16> Visited;
3134   const unsigned int Max = 1024;
3135 
3136   //  Visualization of Load-Op-Store fusion:
3137   // -------------------------
3138   // Legend:
3139   //    *-lines = Chain operand dependencies.
3140   //    |-lines = Normal operand dependencies.
3141   //    Dependencies flow down and right. n-suffix references multiple nodes.
3142   //
3143   //        C                        Xn  C
3144   //        *                         *  *
3145   //        *                          * *
3146   //  Xn  A-LD    Yn                    TF         Yn
3147   //   *    * \   |                       *        |
3148   //    *   *  \  |                        *       |
3149   //     *  *   \ |             =>       A--LD_OP_ST
3150   //      * *    \|                                 \
3151   //       TF    OP                                  \
3152   //         *   | \                                  Zn
3153   //          *  |  \
3154   //         A-ST    Zn
3155   //
3156 
3157   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3158   //                                      #2: Yn -> LD
3159   //                                      #3: ST -> Zn
3160 
3161   // Ensure the transform is safe by checking for the dual
3162   // dependencies to make sure we do not induce a loop.
3163 
3164   // As LD is a predecessor to both OP and ST we can do this by checking:
3165   //  a). if LD is a predecessor to a member of Xn or Yn.
3166   //  b). if a Zn is a predecessor to ST.
3167 
3168   // However, (b) can only occur through being a chain predecessor to
3169   // ST, which is the same as Zn being a member or predecessor of Xn,
3170   // which is a subset of LD being a predecessor of Xn. So it's
3171   // subsumed by check (a).
3172 
3173   SDValue Chain = StoreNode->getChain();
3174 
3175   // Gather X elements in ChainOps.
3176   if (Chain == Load.getValue(1)) {
3177     FoundLoad = true;
3178     ChainOps.push_back(Load.getOperand(0));
3179   } else if (Chain.getOpcode() == ISD::TokenFactor) {
3180     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3181       SDValue Op = Chain.getOperand(i);
3182       if (Op == Load.getValue(1)) {
3183         FoundLoad = true;
3184         // Drop Load, but keep its chain. No cycle check necessary.
3185         ChainOps.push_back(Load.getOperand(0));
3186         continue;
3187       }
3188       LoopWorklist.push_back(Op.getNode());
3189       ChainOps.push_back(Op);
3190     }
3191   }
3192 
3193   if (!FoundLoad)
3194     return false;
3195 
3196   // Worklist is currently Xn. Add Yn to worklist.
3197   for (SDValue Op : StoredVal->ops())
3198     if (Op.getNode() != LoadNode)
3199       LoopWorklist.push_back(Op.getNode());
3200 
3201   // Check (a) if Load is a predecessor to Xn + Yn
3202   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3203                                    true))
3204     return false;
3205 
3206   InputChain =
3207       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3208   return true;
3209 }
3210 
3211 // Change a chain of {load; op; store} of the same value into a simple op
3212 // through memory of that value, if the uses of the modified value and its
3213 // address are suitable.
3214 //
3215 // The tablegen pattern memory operand pattern is currently not able to match
3216 // the case where the EFLAGS on the original operation are used.
3217 //
3218 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3219 // be transferred from a node in the pattern to the result node, probably with
3220 // a new keyword. For example, we have this
3221 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3222 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3223 //   (implicit EFLAGS)]>;
3224 // but maybe need something like this
3225 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3226 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3227 //   (transferrable EFLAGS)]>;
3228 //
3229 // Until then, we manually fold these and instruction select the operation
3230 // here.
3231 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3232   StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
3233   SDValue StoredVal = StoreNode->getOperand(1);
3234   unsigned Opc = StoredVal->getOpcode();
3235 
3236   // Before we try to select anything, make sure this is memory operand size
3237   // and opcode we can handle. Note that this must match the code below that
3238   // actually lowers the opcodes.
3239   EVT MemVT = StoreNode->getMemoryVT();
3240   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3241       MemVT != MVT::i8)
3242     return false;
3243 
3244   bool IsCommutable = false;
3245   bool IsNegate = false;
3246   switch (Opc) {
3247   default:
3248     return false;
3249   case X86ISD::SUB:
3250     IsNegate = isNullConstant(StoredVal.getOperand(0));
3251     break;
3252   case X86ISD::SBB:
3253     break;
3254   case X86ISD::ADD:
3255   case X86ISD::ADC:
3256   case X86ISD::AND:
3257   case X86ISD::OR:
3258   case X86ISD::XOR:
3259     IsCommutable = true;
3260     break;
3261   }
3262 
3263   unsigned LoadOpNo = IsNegate ? 1 : 0;
3264   LoadSDNode *LoadNode = nullptr;
3265   SDValue InputChain;
3266   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3267                                    LoadNode, InputChain)) {
3268     if (!IsCommutable)
3269       return false;
3270 
3271     // This operation is commutable, try the other operand.
3272     LoadOpNo = 1;
3273     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3274                                      LoadNode, InputChain))
3275       return false;
3276   }
3277 
3278   SDValue Base, Scale, Index, Disp, Segment;
3279   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3280                   Segment))
3281     return false;
3282 
3283   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3284                           unsigned Opc8) {
3285     switch (MemVT.getSimpleVT().SimpleTy) {
3286     case MVT::i64:
3287       return Opc64;
3288     case MVT::i32:
3289       return Opc32;
3290     case MVT::i16:
3291       return Opc16;
3292     case MVT::i8:
3293       return Opc8;
3294     default:
3295       llvm_unreachable("Invalid size!");
3296     }
3297   };
3298 
3299   MachineSDNode *Result;
3300   switch (Opc) {
3301   case X86ISD::SUB:
3302     // Handle negate.
3303     if (IsNegate) {
3304       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3305                                      X86::NEG8m);
3306       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3307       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3308                                       MVT::Other, Ops);
3309       break;
3310     }
3311    LLVM_FALLTHROUGH;
3312   case X86ISD::ADD:
3313     // Try to match inc/dec.
3314     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3315       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3316       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3317       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3318       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3319         unsigned NewOpc =
3320           ((Opc == X86ISD::ADD) == IsOne)
3321               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3322               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3323         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3324         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3325                                         MVT::Other, Ops);
3326         break;
3327       }
3328     }
3329     LLVM_FALLTHROUGH;
3330   case X86ISD::ADC:
3331   case X86ISD::SBB:
3332   case X86ISD::AND:
3333   case X86ISD::OR:
3334   case X86ISD::XOR: {
3335     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3336       switch (Opc) {
3337       case X86ISD::ADD:
3338         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3339                             X86::ADD8mr);
3340       case X86ISD::ADC:
3341         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3342                             X86::ADC8mr);
3343       case X86ISD::SUB:
3344         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3345                             X86::SUB8mr);
3346       case X86ISD::SBB:
3347         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3348                             X86::SBB8mr);
3349       case X86ISD::AND:
3350         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3351                             X86::AND8mr);
3352       case X86ISD::OR:
3353         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3354       case X86ISD::XOR:
3355         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3356                             X86::XOR8mr);
3357       default:
3358         llvm_unreachable("Invalid opcode!");
3359       }
3360     };
3361     auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
3362       switch (Opc) {
3363       case X86ISD::ADD:
3364         return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
3365       case X86ISD::ADC:
3366         return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
3367       case X86ISD::SUB:
3368         return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
3369       case X86ISD::SBB:
3370         return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
3371       case X86ISD::AND:
3372         return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
3373       case X86ISD::OR:
3374         return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
3375       case X86ISD::XOR:
3376         return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
3377       default:
3378         llvm_unreachable("Invalid opcode!");
3379       }
3380     };
3381     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3382       switch (Opc) {
3383       case X86ISD::ADD:
3384         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3385                             X86::ADD8mi);
3386       case X86ISD::ADC:
3387         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3388                             X86::ADC8mi);
3389       case X86ISD::SUB:
3390         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3391                             X86::SUB8mi);
3392       case X86ISD::SBB:
3393         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3394                             X86::SBB8mi);
3395       case X86ISD::AND:
3396         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3397                             X86::AND8mi);
3398       case X86ISD::OR:
3399         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3400                             X86::OR8mi);
3401       case X86ISD::XOR:
3402         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3403                             X86::XOR8mi);
3404       default:
3405         llvm_unreachable("Invalid opcode!");
3406       }
3407     };
3408 
3409     unsigned NewOpc = SelectRegOpcode(Opc);
3410     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3411 
3412     // See if the operand is a constant that we can fold into an immediate
3413     // operand.
3414     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3415       int64_t OperandV = OperandC->getSExtValue();
3416 
3417       // Check if we can shrink the operand enough to fit in an immediate (or
3418       // fit into a smaller immediate) by negating it and switching the
3419       // operation.
3420       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3421           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3422            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3423             isInt<32>(-OperandV))) &&
3424           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3425         OperandV = -OperandV;
3426         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3427       }
3428 
3429       // First try to fit this into an Imm8 operand. If it doesn't fit, then try
3430       // the larger immediate operand.
3431       if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
3432         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3433         NewOpc = SelectImm8Opcode(Opc);
3434       } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3435         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3436         NewOpc = SelectImmOpcode(Opc);
3437       }
3438     }
3439 
3440     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3441       SDValue CopyTo =
3442           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3443                                StoredVal.getOperand(2), SDValue());
3444 
3445       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3446                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3447       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3448                                       Ops);
3449     } else {
3450       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3451                              Segment, Operand, InputChain};
3452       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3453                                       Ops);
3454     }
3455     break;
3456   }
3457   default:
3458     llvm_unreachable("Invalid opcode!");
3459   }
3460 
3461   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3462                                  LoadNode->getMemOperand()};
3463   CurDAG->setNodeMemRefs(Result, MemOps);
3464 
3465   // Update Load Chain uses as well.
3466   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3467   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3468   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3469   CurDAG->RemoveDeadNode(Node);
3470   return true;
3471 }
3472 
3473 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3474 // Where Mask is one of the following patterns:
3475 //   a) x &  (1 << nbits) - 1
3476 //   b) x & ~(-1 << nbits)
3477 //   c) x &  (-1 >> (32 - y))
3478 //   d) x << (32 - y) >> (32 - y)
3479 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3480   assert(
3481       (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
3482       "Should be either an and-mask, or right-shift after clearing high bits.");
3483 
3484   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3485   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3486     return false;
3487 
3488   MVT NVT = Node->getSimpleValueType(0);
3489 
3490   // Only supported for 32 and 64 bits.
3491   if (NVT != MVT::i32 && NVT != MVT::i64)
3492     return false;
3493 
3494   SDValue NBits;
3495   bool NegateNBits;
3496 
3497   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3498   // Else, if we only have BMI1's BEXTR, we require one-use.
3499   const bool AllowExtraUsesByDefault = Subtarget->hasBMI2();
3500   auto checkUses = [AllowExtraUsesByDefault](SDValue Op, unsigned NUses,
3501                                              Optional<bool> AllowExtraUses) {
3502     return AllowExtraUses.value_or(AllowExtraUsesByDefault) ||
3503            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3504   };
3505   auto checkOneUse = [checkUses](SDValue Op,
3506                                  Optional<bool> AllowExtraUses = None) {
3507     return checkUses(Op, 1, AllowExtraUses);
3508   };
3509   auto checkTwoUse = [checkUses](SDValue Op,
3510                                  Optional<bool> AllowExtraUses = None) {
3511     return checkUses(Op, 2, AllowExtraUses);
3512   };
3513 
3514   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3515     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3516       assert(V.getSimpleValueType() == MVT::i32 &&
3517              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3518              "Expected i64 -> i32 truncation");
3519       V = V.getOperand(0);
3520     }
3521     return V;
3522   };
3523 
3524   // a) x & ((1 << nbits) + (-1))
3525   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits,
3526                         &NegateNBits](SDValue Mask) -> bool {
3527     // Match `add`. Must only have one use!
3528     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3529       return false;
3530     // We should be adding all-ones constant (i.e. subtracting one.)
3531     if (!isAllOnesConstant(Mask->getOperand(1)))
3532       return false;
3533     // Match `1 << nbits`. Might be truncated. Must only have one use!
3534     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3535     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3536       return false;
3537     if (!isOneConstant(M0->getOperand(0)))
3538       return false;
3539     NBits = M0->getOperand(1);
3540     NegateNBits = false;
3541     return true;
3542   };
3543 
3544   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3545     V = peekThroughOneUseTruncation(V);
3546     return CurDAG->MaskedValueIsAllOnes(
3547         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3548                                 NVT.getSizeInBits()));
3549   };
3550 
3551   // b) x & ~(-1 << nbits)
3552   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3553                         &NBits, &NegateNBits](SDValue Mask) -> bool {
3554     // Match `~()`. Must only have one use!
3555     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3556       return false;
3557     // The -1 only has to be all-ones for the final Node's NVT.
3558     if (!isAllOnes(Mask->getOperand(1)))
3559       return false;
3560     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3561     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3562     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3563       return false;
3564     // The -1 only has to be all-ones for the final Node's NVT.
3565     if (!isAllOnes(M0->getOperand(0)))
3566       return false;
3567     NBits = M0->getOperand(1);
3568     NegateNBits = false;
3569     return true;
3570   };
3571 
3572   // Try to match potentially-truncated shift amount as `(bitwidth - y)`,
3573   // or leave the shift amount as-is, but then we'll have to negate it.
3574   auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt,
3575                                                      unsigned Bitwidth) {
3576     NBits = ShiftAmt;
3577     NegateNBits = true;
3578     // Skip over a truncate of the shift amount, if any.
3579     if (NBits.getOpcode() == ISD::TRUNCATE)
3580       NBits = NBits.getOperand(0);
3581     // Try to match the shift amount as (bitwidth - y). It should go away, too.
3582     // If it doesn't match, that's fine, we'll just negate it ourselves.
3583     if (NBits.getOpcode() != ISD::SUB)
3584       return;
3585     auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0));
3586     if (!V0 || V0->getZExtValue() != Bitwidth)
3587       return;
3588     NBits = NBits.getOperand(1);
3589     NegateNBits = false;
3590   };
3591 
3592   // c) x &  (-1 >> z)  but then we'll have to subtract z from bitwidth
3593   //   or
3594   // c) x &  (-1 >> (32 - y))
3595   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits,
3596                         canonicalizeShiftAmt](SDValue Mask) -> bool {
3597     // The mask itself may be truncated.
3598     Mask = peekThroughOneUseTruncation(Mask);
3599     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3600     // Match `l>>`. Must only have one use!
3601     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3602       return false;
3603     // We should be shifting truly all-ones constant.
3604     if (!isAllOnesConstant(Mask.getOperand(0)))
3605       return false;
3606     SDValue M1 = Mask.getOperand(1);
3607     // The shift amount should not be used externally.
3608     if (!checkOneUse(M1))
3609       return false;
3610     canonicalizeShiftAmt(M1, Bitwidth);
3611     // Pattern c. is non-canonical, and is expanded into pattern d. iff there
3612     // is no extra use of the mask. Clearly, there was one since we are here.
3613     // But at the same time, if we need to negate the shift amount,
3614     // then we don't want the mask to stick around, else it's unprofitable.
3615     return !NegateNBits;
3616   };
3617 
3618   SDValue X;
3619 
3620   // d) x << z >> z  but then we'll have to subtract z from bitwidth
3621   //   or
3622   // d) x << (32 - y) >> (32 - y)
3623   auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt,
3624                         AllowExtraUsesByDefault, &NegateNBits,
3625                         &X](SDNode *Node) -> bool {
3626     if (Node->getOpcode() != ISD::SRL)
3627       return false;
3628     SDValue N0 = Node->getOperand(0);
3629     if (N0->getOpcode() != ISD::SHL)
3630       return false;
3631     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3632     SDValue N1 = Node->getOperand(1);
3633     SDValue N01 = N0->getOperand(1);
3634     // Both of the shifts must be by the exact same value.
3635     if (N1 != N01)
3636       return false;
3637     canonicalizeShiftAmt(N1, Bitwidth);
3638     // There should not be any external uses of the inner shift / shift amount.
3639     // Note that while we are generally okay with external uses given BMI2,
3640     // iff we need to negate the shift amount, we are not okay with extra uses.
3641     const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits;
3642     if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses))
3643       return false;
3644     X = N0->getOperand(0);
3645     return true;
3646   };
3647 
3648   auto matchLowBitMask = [matchPatternA, matchPatternB,
3649                           matchPatternC](SDValue Mask) -> bool {
3650     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3651   };
3652 
3653   if (Node->getOpcode() == ISD::AND) {
3654     X = Node->getOperand(0);
3655     SDValue Mask = Node->getOperand(1);
3656 
3657     if (matchLowBitMask(Mask)) {
3658       // Great.
3659     } else {
3660       std::swap(X, Mask);
3661       if (!matchLowBitMask(Mask))
3662         return false;
3663     }
3664   } else if (!matchPatternD(Node))
3665     return false;
3666 
3667   // If we need to negate the shift amount, require BMI2 BZHI support.
3668   // It's just too unprofitable for BMI1 BEXTR.
3669   if (NegateNBits && !Subtarget->hasBMI2())
3670     return false;
3671 
3672   SDLoc DL(Node);
3673 
3674   // Truncate the shift amount.
3675   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3676   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3677 
3678   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3679   // All the other bits are undefined, we do not care about them.
3680   SDValue ImplDef = SDValue(
3681       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3682   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3683 
3684   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3685   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3686   NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
3687                                          MVT::i32, ImplDef, NBits, SRIdxVal),
3688                   0);
3689   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3690 
3691   // We might have matched the amount of high bits to be cleared,
3692   // but we want the amount of low bits to be kept, so negate it then.
3693   if (NegateNBits) {
3694     SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32);
3695     insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC);
3696 
3697     NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits);
3698     insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3699   }
3700 
3701   if (Subtarget->hasBMI2()) {
3702     // Great, just emit the the BZHI..
3703     if (NVT != MVT::i32) {
3704       // But have to place the bit count into the wide-enough register first.
3705       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3706       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3707     }
3708 
3709     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3710     ReplaceNode(Node, Extract.getNode());
3711     SelectCode(Extract.getNode());
3712     return true;
3713   }
3714 
3715   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3716   // *logically* shifted (potentially with one-use trunc inbetween),
3717   // and the truncation was the only use of the shift,
3718   // and if so look past one-use truncation.
3719   {
3720     SDValue RealX = peekThroughOneUseTruncation(X);
3721     // FIXME: only if the shift is one-use?
3722     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3723       X = RealX;
3724   }
3725 
3726   MVT XVT = X.getSimpleValueType();
3727 
3728   // Else, emitting BEXTR requires one more step.
3729   // The 'control' of BEXTR has the pattern of:
3730   // [15...8 bit][ 7...0 bit] location
3731   // [ bit count][     shift] name
3732   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3733 
3734   // Shift NBits left by 8 bits, thus producing 'control'.
3735   // This makes the low 8 bits to be zero.
3736   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3737   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3738   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3739   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3740 
3741   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3742   // FIXME: only if the shift is one-use?
3743   if (X.getOpcode() == ISD::SRL) {
3744     SDValue ShiftAmt = X.getOperand(1);
3745     X = X.getOperand(0);
3746 
3747     assert(ShiftAmt.getValueType() == MVT::i8 &&
3748            "Expected shift amount to be i8");
3749 
3750     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3751     // We could zext to i16 in some form, but we intentionally don't do that.
3752     SDValue OrigShiftAmt = ShiftAmt;
3753     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3754     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3755 
3756     // And now 'or' these low 8 bits of shift amount into the 'control'.
3757     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
3758     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3759   }
3760 
3761   // But have to place the 'control' into the wide-enough register first.
3762   if (XVT != MVT::i32) {
3763     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
3764     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3765   }
3766 
3767   // And finally, form the BEXTR itself.
3768   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
3769 
3770   // The 'X' was originally truncated. Do that now.
3771   if (XVT != NVT) {
3772     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
3773     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
3774   }
3775 
3776   ReplaceNode(Node, Extract.getNode());
3777   SelectCode(Extract.getNode());
3778 
3779   return true;
3780 }
3781 
3782 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
3783 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
3784   MVT NVT = Node->getSimpleValueType(0);
3785   SDLoc dl(Node);
3786 
3787   SDValue N0 = Node->getOperand(0);
3788   SDValue N1 = Node->getOperand(1);
3789 
3790   // If we have TBM we can use an immediate for the control. If we have BMI
3791   // we should only do this if the BEXTR instruction is implemented well.
3792   // Otherwise moving the control into a register makes this more costly.
3793   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
3794   // hoisting the move immediate would make it worthwhile with a less optimal
3795   // BEXTR?
3796   bool PreferBEXTR =
3797       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
3798   if (!PreferBEXTR && !Subtarget->hasBMI2())
3799     return nullptr;
3800 
3801   // Must have a shift right.
3802   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
3803     return nullptr;
3804 
3805   // Shift can't have additional users.
3806   if (!N0->hasOneUse())
3807     return nullptr;
3808 
3809   // Only supported for 32 and 64 bits.
3810   if (NVT != MVT::i32 && NVT != MVT::i64)
3811     return nullptr;
3812 
3813   // Shift amount and RHS of and must be constant.
3814   ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
3815   ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3816   if (!MaskCst || !ShiftCst)
3817     return nullptr;
3818 
3819   // And RHS must be a mask.
3820   uint64_t Mask = MaskCst->getZExtValue();
3821   if (!isMask_64(Mask))
3822     return nullptr;
3823 
3824   uint64_t Shift = ShiftCst->getZExtValue();
3825   uint64_t MaskSize = countPopulation(Mask);
3826 
3827   // Don't interfere with something that can be handled by extracting AH.
3828   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
3829   if (Shift == 8 && MaskSize == 8)
3830     return nullptr;
3831 
3832   // Make sure we are only using bits that were in the original value, not
3833   // shifted in.
3834   if (Shift + MaskSize > NVT.getSizeInBits())
3835     return nullptr;
3836 
3837   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
3838   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
3839   // does not fit into 32 bits. Load folding is not a sufficient reason.
3840   if (!PreferBEXTR && MaskSize <= 32)
3841     return nullptr;
3842 
3843   SDValue Control;
3844   unsigned ROpc, MOpc;
3845 
3846   if (!PreferBEXTR) {
3847     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
3848     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
3849     // Let's perform the mask first, and apply shift later. Note that we need to
3850     // widen the mask to account for the fact that we'll apply shift afterwards!
3851     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
3852     ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
3853     MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
3854     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3855     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3856   } else {
3857     // The 'control' of BEXTR has the pattern of:
3858     // [15...8 bit][ 7...0 bit] location
3859     // [ bit count][     shift] name
3860     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3861     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
3862     if (Subtarget->hasTBM()) {
3863       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
3864       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
3865     } else {
3866       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
3867       // BMI requires the immediate to placed in a register.
3868       ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
3869       MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
3870       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3871       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3872     }
3873   }
3874 
3875   MachineSDNode *NewNode;
3876   SDValue Input = N0->getOperand(0);
3877   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3878   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3879     SDValue Ops[] = {
3880         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
3881     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
3882     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3883     // Update the chain.
3884     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
3885     // Record the mem-refs
3886     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
3887   } else {
3888     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
3889   }
3890 
3891   if (!PreferBEXTR) {
3892     // We still need to apply the shift.
3893     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
3894     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
3895     NewNode =
3896         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
3897   }
3898 
3899   return NewNode;
3900 }
3901 
3902 // Emit a PCMISTR(I/M) instruction.
3903 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
3904                                              bool MayFoldLoad, const SDLoc &dl,
3905                                              MVT VT, SDNode *Node) {
3906   SDValue N0 = Node->getOperand(0);
3907   SDValue N1 = Node->getOperand(1);
3908   SDValue Imm = Node->getOperand(2);
3909   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3910   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3911 
3912   // Try to fold a load. No need to check alignment.
3913   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3914   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3915     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3916                       N1.getOperand(0) };
3917     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
3918     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3919     // Update the chain.
3920     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
3921     // Record the mem-refs
3922     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3923     return CNode;
3924   }
3925 
3926   SDValue Ops[] = { N0, N1, Imm };
3927   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
3928   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3929   return CNode;
3930 }
3931 
3932 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
3933 // to emit a second instruction after this one. This is needed since we have two
3934 // copyToReg nodes glued before this and we need to continue that glue through.
3935 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
3936                                              bool MayFoldLoad, const SDLoc &dl,
3937                                              MVT VT, SDNode *Node,
3938                                              SDValue &InFlag) {
3939   SDValue N0 = Node->getOperand(0);
3940   SDValue N2 = Node->getOperand(2);
3941   SDValue Imm = Node->getOperand(4);
3942   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3943   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3944 
3945   // Try to fold a load. No need to check alignment.
3946   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3947   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3948     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3949                       N2.getOperand(0), InFlag };
3950     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
3951     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3952     InFlag = SDValue(CNode, 3);
3953     // Update the chain.
3954     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
3955     // Record the mem-refs
3956     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
3957     return CNode;
3958   }
3959 
3960   SDValue Ops[] = { N0, N2, Imm, InFlag };
3961   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
3962   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3963   InFlag = SDValue(CNode, 2);
3964   return CNode;
3965 }
3966 
3967 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3968   EVT VT = N->getValueType(0);
3969 
3970   // Only handle scalar shifts.
3971   if (VT.isVector())
3972     return false;
3973 
3974   // Narrower shifts only mask to 5 bits in hardware.
3975   unsigned Size = VT == MVT::i64 ? 64 : 32;
3976 
3977   SDValue OrigShiftAmt = N->getOperand(1);
3978   SDValue ShiftAmt = OrigShiftAmt;
3979   SDLoc DL(N);
3980 
3981   // Skip over a truncate of the shift amount.
3982   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
3983     ShiftAmt = ShiftAmt->getOperand(0);
3984 
3985   // This function is called after X86DAGToDAGISel::matchBitExtract(),
3986   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
3987 
3988   SDValue NewShiftAmt;
3989   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3990     SDValue Add0 = ShiftAmt->getOperand(0);
3991     SDValue Add1 = ShiftAmt->getOperand(1);
3992     auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
3993     auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
3994     // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3995     // to avoid the ADD/SUB.
3996     if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
3997       NewShiftAmt = Add0;
3998       // If we are shifting by N-X where N == 0 mod Size, then just shift by -X
3999       // to generate a NEG instead of a SUB of a constant.
4000     } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
4001                Add0C->getZExtValue() != 0) {
4002       EVT SubVT = ShiftAmt.getValueType();
4003       SDValue X;
4004       if (Add0C->getZExtValue() % Size == 0)
4005         X = Add1;
4006       else if (ShiftAmt.hasOneUse() && Size == 64 &&
4007                Add0C->getZExtValue() % 32 == 0) {
4008         // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
4009         // This is mainly beneficial if we already compute (x+n*32).
4010         if (Add1.getOpcode() == ISD::TRUNCATE) {
4011           Add1 = Add1.getOperand(0);
4012           SubVT = Add1.getValueType();
4013         }
4014         if (Add0.getValueType() != SubVT) {
4015           Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
4016           insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
4017         }
4018 
4019         X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
4020         insertDAGNode(*CurDAG, OrigShiftAmt, X);
4021       } else
4022         return false;
4023       // Insert a negate op.
4024       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
4025       // that uses it that's not a shift.
4026       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
4027       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
4028       NewShiftAmt = Neg;
4029 
4030       // Insert these operands into a valid topological order so they can
4031       // get selected independently.
4032       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
4033       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
4034     } else
4035       return false;
4036   } else
4037     return false;
4038 
4039   if (NewShiftAmt.getValueType() != MVT::i8) {
4040     // Need to truncate the shift amount.
4041     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
4042     // Add to a correct topological ordering.
4043     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4044   }
4045 
4046   // Insert a new mask to keep the shift amount legal. This should be removed
4047   // by isel patterns.
4048   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
4049                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
4050   // Place in a correct topological ordering.
4051   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4052 
4053   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
4054                                                    NewShiftAmt);
4055   if (UpdatedNode != N) {
4056     // If we found an existing node, we should replace ourselves with that node
4057     // and wait for it to be selected after its other users.
4058     ReplaceNode(N, UpdatedNode);
4059     return true;
4060   }
4061 
4062   // If the original shift amount is now dead, delete it so that we don't run
4063   // it through isel.
4064   if (OrigShiftAmt.getNode()->use_empty())
4065     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
4066 
4067   // Now that we've optimized the shift amount, defer to normal isel to get
4068   // load folding and legacy vs BMI2 selection without repeating it here.
4069   SelectCode(N);
4070   return true;
4071 }
4072 
4073 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
4074   MVT NVT = N->getSimpleValueType(0);
4075   unsigned Opcode = N->getOpcode();
4076   SDLoc dl(N);
4077 
4078   // For operations of the form (x << C1) op C2, check if we can use a smaller
4079   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
4080   SDValue Shift = N->getOperand(0);
4081   SDValue N1 = N->getOperand(1);
4082 
4083   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
4084   if (!Cst)
4085     return false;
4086 
4087   int64_t Val = Cst->getSExtValue();
4088 
4089   // If we have an any_extend feeding the AND, look through it to see if there
4090   // is a shift behind it. But only if the AND doesn't use the extended bits.
4091   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
4092   bool FoundAnyExtend = false;
4093   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
4094       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
4095       isUInt<32>(Val)) {
4096     FoundAnyExtend = true;
4097     Shift = Shift.getOperand(0);
4098   }
4099 
4100   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
4101     return false;
4102 
4103   // i8 is unshrinkable, i16 should be promoted to i32.
4104   if (NVT != MVT::i32 && NVT != MVT::i64)
4105     return false;
4106 
4107   ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
4108   if (!ShlCst)
4109     return false;
4110 
4111   uint64_t ShAmt = ShlCst->getZExtValue();
4112 
4113   // Make sure that we don't change the operation by removing bits.
4114   // This only matters for OR and XOR, AND is unaffected.
4115   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
4116   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
4117     return false;
4118 
4119   // Check the minimum bitwidth for the new constant.
4120   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
4121   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
4122     if (Opcode == ISD::AND) {
4123       // AND32ri is the same as AND64ri32 with zext imm.
4124       // Try this before sign extended immediates below.
4125       ShiftedVal = (uint64_t)Val >> ShAmt;
4126       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4127         return true;
4128       // Also swap order when the AND can become MOVZX.
4129       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
4130         return true;
4131     }
4132     ShiftedVal = Val >> ShAmt;
4133     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
4134         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
4135       return true;
4136     if (Opcode != ISD::AND) {
4137       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
4138       ShiftedVal = (uint64_t)Val >> ShAmt;
4139       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4140         return true;
4141     }
4142     return false;
4143   };
4144 
4145   int64_t ShiftedVal;
4146   if (!CanShrinkImmediate(ShiftedVal))
4147     return false;
4148 
4149   // Ok, we can reorder to get a smaller immediate.
4150 
4151   // But, its possible the original immediate allowed an AND to become MOVZX.
4152   // Doing this late due to avoid the MakedValueIsZero call as late as
4153   // possible.
4154   if (Opcode == ISD::AND) {
4155     // Find the smallest zext this could possibly be.
4156     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4157     ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
4158 
4159     // Figure out which bits need to be zero to achieve that mask.
4160     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
4161                                             ZExtWidth);
4162     NeededMask &= ~Cst->getAPIntValue();
4163 
4164     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4165       return false;
4166   }
4167 
4168   SDValue X = Shift.getOperand(0);
4169   if (FoundAnyExtend) {
4170     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4171     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4172     X = NewX;
4173   }
4174 
4175   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4176   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4177   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4178   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4179   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4180                                    Shift.getOperand(1));
4181   ReplaceNode(N, NewSHL.getNode());
4182   SelectCode(NewSHL.getNode());
4183   return true;
4184 }
4185 
4186 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4187                                      SDNode *ParentB, SDNode *ParentC,
4188                                      SDValue A, SDValue B, SDValue C,
4189                                      uint8_t Imm) {
4190   assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) &&
4191          C.isOperandOf(ParentC) && "Incorrect parent node");
4192 
4193   auto tryFoldLoadOrBCast =
4194       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4195              SDValue &Index, SDValue &Disp, SDValue &Segment) {
4196         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4197           return true;
4198 
4199         // Not a load, check for broadcast which may be behind a bitcast.
4200         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4201           P = L.getNode();
4202           L = L.getOperand(0);
4203         }
4204 
4205         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4206           return false;
4207 
4208         // Only 32 and 64 bit broadcasts are supported.
4209         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4210         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4211         if (Size != 32 && Size != 64)
4212           return false;
4213 
4214         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4215       };
4216 
4217   bool FoldedLoad = false;
4218   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4219   if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4220     FoldedLoad = true;
4221   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4222                                 Tmp4)) {
4223     FoldedLoad = true;
4224     std::swap(A, C);
4225     // Swap bits 1/4 and 3/6.
4226     uint8_t OldImm = Imm;
4227     Imm = OldImm & 0xa5;
4228     if (OldImm & 0x02) Imm |= 0x10;
4229     if (OldImm & 0x10) Imm |= 0x02;
4230     if (OldImm & 0x08) Imm |= 0x40;
4231     if (OldImm & 0x40) Imm |= 0x08;
4232   } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3,
4233                                 Tmp4)) {
4234     FoldedLoad = true;
4235     std::swap(B, C);
4236     // Swap bits 1/2 and 5/6.
4237     uint8_t OldImm = Imm;
4238     Imm = OldImm & 0x99;
4239     if (OldImm & 0x02) Imm |= 0x04;
4240     if (OldImm & 0x04) Imm |= 0x02;
4241     if (OldImm & 0x20) Imm |= 0x40;
4242     if (OldImm & 0x40) Imm |= 0x20;
4243   }
4244 
4245   SDLoc DL(Root);
4246 
4247   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4248 
4249   MVT NVT = Root->getSimpleValueType(0);
4250 
4251   MachineSDNode *MNode;
4252   if (FoldedLoad) {
4253     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4254 
4255     unsigned Opc;
4256     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4257       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4258       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4259       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4260 
4261       bool UseD = EltSize == 32;
4262       if (NVT.is128BitVector())
4263         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4264       else if (NVT.is256BitVector())
4265         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4266       else if (NVT.is512BitVector())
4267         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4268       else
4269         llvm_unreachable("Unexpected vector size!");
4270     } else {
4271       bool UseD = NVT.getVectorElementType() == MVT::i32;
4272       if (NVT.is128BitVector())
4273         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4274       else if (NVT.is256BitVector())
4275         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4276       else if (NVT.is512BitVector())
4277         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4278       else
4279         llvm_unreachable("Unexpected vector size!");
4280     }
4281 
4282     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4283     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4284 
4285     // Update the chain.
4286     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4287     // Record the mem-refs
4288     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4289   } else {
4290     bool UseD = NVT.getVectorElementType() == MVT::i32;
4291     unsigned Opc;
4292     if (NVT.is128BitVector())
4293       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4294     else if (NVT.is256BitVector())
4295       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4296     else if (NVT.is512BitVector())
4297       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4298     else
4299       llvm_unreachable("Unexpected vector size!");
4300 
4301     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4302   }
4303 
4304   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4305   CurDAG->RemoveDeadNode(Root);
4306   return true;
4307 }
4308 
4309 // Try to match two logic ops to a VPTERNLOG.
4310 // FIXME: Handle more complex patterns that use an operand more than once?
4311 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4312   MVT NVT = N->getSimpleValueType(0);
4313 
4314   // Make sure we support VPTERNLOG.
4315   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4316       NVT.getVectorElementType() == MVT::i1)
4317     return false;
4318 
4319   // We need VLX for 128/256-bit.
4320   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4321     return false;
4322 
4323   SDValue N0 = N->getOperand(0);
4324   SDValue N1 = N->getOperand(1);
4325 
4326   auto getFoldableLogicOp = [](SDValue Op) {
4327     // Peek through single use bitcast.
4328     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4329       Op = Op.getOperand(0);
4330 
4331     if (!Op.hasOneUse())
4332       return SDValue();
4333 
4334     unsigned Opc = Op.getOpcode();
4335     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4336         Opc == X86ISD::ANDNP)
4337       return Op;
4338 
4339     return SDValue();
4340   };
4341 
4342   SDValue A, FoldableOp;
4343   if ((FoldableOp = getFoldableLogicOp(N1))) {
4344     A = N0;
4345   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4346     A = N1;
4347   } else
4348     return false;
4349 
4350   SDValue B = FoldableOp.getOperand(0);
4351   SDValue C = FoldableOp.getOperand(1);
4352   SDNode *ParentA = N;
4353   SDNode *ParentB = FoldableOp.getNode();
4354   SDNode *ParentC = FoldableOp.getNode();
4355 
4356   // We can build the appropriate control immediate by performing the logic
4357   // operation we're matching using these constants for A, B, and C.
4358   uint8_t TernlogMagicA = 0xf0;
4359   uint8_t TernlogMagicB = 0xcc;
4360   uint8_t TernlogMagicC = 0xaa;
4361 
4362   // Some of the inputs may be inverted, peek through them and invert the
4363   // magic values accordingly.
4364   // TODO: There may be a bitcast before the xor that we should peek through.
4365   auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) {
4366     if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() &&
4367         ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) {
4368       Magic = ~Magic;
4369       Parent = Op.getNode();
4370       Op = Op.getOperand(0);
4371     }
4372   };
4373 
4374   PeekThroughNot(A, ParentA, TernlogMagicA);
4375   PeekThroughNot(B, ParentB, TernlogMagicB);
4376   PeekThroughNot(C, ParentC, TernlogMagicC);
4377 
4378   uint8_t Imm;
4379   switch (FoldableOp.getOpcode()) {
4380   default: llvm_unreachable("Unexpected opcode!");
4381   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
4382   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
4383   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
4384   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4385   }
4386 
4387   switch (N->getOpcode()) {
4388   default: llvm_unreachable("Unexpected opcode!");
4389   case X86ISD::ANDNP:
4390     if (A == N0)
4391       Imm &= ~TernlogMagicA;
4392     else
4393       Imm = ~(Imm) & TernlogMagicA;
4394     break;
4395   case ISD::AND: Imm &= TernlogMagicA; break;
4396   case ISD::OR:  Imm |= TernlogMagicA; break;
4397   case ISD::XOR: Imm ^= TernlogMagicA; break;
4398   }
4399 
4400   return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm);
4401 }
4402 
4403 /// If the high bits of an 'and' operand are known zero, try setting the
4404 /// high bits of an 'and' constant operand to produce a smaller encoding by
4405 /// creating a small, sign-extended negative immediate rather than a large
4406 /// positive one. This reverses a transform in SimplifyDemandedBits that
4407 /// shrinks mask constants by clearing bits. There is also a possibility that
4408 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4409 /// case, just replace the 'and'. Return 'true' if the node is replaced.
4410 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4411   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4412   // have immediate operands.
4413   MVT VT = And->getSimpleValueType(0);
4414   if (VT != MVT::i32 && VT != MVT::i64)
4415     return false;
4416 
4417   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4418   if (!And1C)
4419     return false;
4420 
4421   // Bail out if the mask constant is already negative. It's can't shrink more.
4422   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4423   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4424   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4425   // are negative too.
4426   APInt MaskVal = And1C->getAPIntValue();
4427   unsigned MaskLZ = MaskVal.countLeadingZeros();
4428   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4429     return false;
4430 
4431   // Don't extend into the upper 32 bits of a 64 bit mask.
4432   if (VT == MVT::i64 && MaskLZ >= 32) {
4433     MaskLZ -= 32;
4434     MaskVal = MaskVal.trunc(32);
4435   }
4436 
4437   SDValue And0 = And->getOperand(0);
4438   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4439   APInt NegMaskVal = MaskVal | HighZeros;
4440 
4441   // If a negative constant would not allow a smaller encoding, there's no need
4442   // to continue. Only change the constant when we know it's a win.
4443   unsigned MinWidth = NegMaskVal.getMinSignedBits();
4444   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
4445     return false;
4446 
4447   // Extend masks if we truncated above.
4448   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4449     NegMaskVal = NegMaskVal.zext(64);
4450     HighZeros = HighZeros.zext(64);
4451   }
4452 
4453   // The variable operand must be all zeros in the top bits to allow using the
4454   // new, negative constant as the mask.
4455   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4456     return false;
4457 
4458   // Check if the mask is -1. In that case, this is an unnecessary instruction
4459   // that escaped earlier analysis.
4460   if (NegMaskVal.isAllOnes()) {
4461     ReplaceNode(And, And0.getNode());
4462     return true;
4463   }
4464 
4465   // A negative mask allows a smaller encoding. Create a new 'and' node.
4466   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4467   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4468   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4469   ReplaceNode(And, NewAnd.getNode());
4470   SelectCode(NewAnd.getNode());
4471   return true;
4472 }
4473 
4474 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4475                               bool FoldedBCast, bool Masked) {
4476 #define VPTESTM_CASE(VT, SUFFIX) \
4477 case MVT::VT: \
4478   if (Masked) \
4479     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4480   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4481 
4482 
4483 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4484 default: llvm_unreachable("Unexpected VT!"); \
4485 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4486 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4487 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4488 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4489 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4490 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4491 
4492 #define VPTESTM_FULL_CASES(SUFFIX) \
4493 VPTESTM_BROADCAST_CASES(SUFFIX) \
4494 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4495 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4496 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4497 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4498 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4499 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4500 
4501   if (FoldedBCast) {
4502     switch (TestVT.SimpleTy) {
4503     VPTESTM_BROADCAST_CASES(rmb)
4504     }
4505   }
4506 
4507   if (FoldedLoad) {
4508     switch (TestVT.SimpleTy) {
4509     VPTESTM_FULL_CASES(rm)
4510     }
4511   }
4512 
4513   switch (TestVT.SimpleTy) {
4514   VPTESTM_FULL_CASES(rr)
4515   }
4516 
4517 #undef VPTESTM_FULL_CASES
4518 #undef VPTESTM_BROADCAST_CASES
4519 #undef VPTESTM_CASE
4520 }
4521 
4522 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4523 // to form a masked operation.
4524 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4525                                  SDValue InMask) {
4526   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4527   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4528          "Unexpected VT!");
4529 
4530   // Look for equal and not equal compares.
4531   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4532   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4533     return false;
4534 
4535   SDValue SetccOp0 = Setcc.getOperand(0);
4536   SDValue SetccOp1 = Setcc.getOperand(1);
4537 
4538   // Canonicalize the all zero vector to the RHS.
4539   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4540     std::swap(SetccOp0, SetccOp1);
4541 
4542   // See if we're comparing against zero.
4543   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4544     return false;
4545 
4546   SDValue N0 = SetccOp0;
4547 
4548   MVT CmpVT = N0.getSimpleValueType();
4549   MVT CmpSVT = CmpVT.getVectorElementType();
4550 
4551   // Start with both operands the same. We'll try to refine this.
4552   SDValue Src0 = N0;
4553   SDValue Src1 = N0;
4554 
4555   {
4556     // Look through single use bitcasts.
4557     SDValue N0Temp = N0;
4558     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4559       N0Temp = N0.getOperand(0);
4560 
4561      // Look for single use AND.
4562     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4563       Src0 = N0Temp.getOperand(0);
4564       Src1 = N0Temp.getOperand(1);
4565     }
4566   }
4567 
4568   // Without VLX we need to widen the operation.
4569   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4570 
4571   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4572                                 SDValue &Base, SDValue &Scale, SDValue &Index,
4573                                 SDValue &Disp, SDValue &Segment) {
4574     // If we need to widen, we can't fold the load.
4575     if (!Widen)
4576       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4577         return true;
4578 
4579     // If we didn't fold a load, try to match broadcast. No widening limitation
4580     // for this. But only 32 and 64 bit types are supported.
4581     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4582       return false;
4583 
4584     // Look through single use bitcasts.
4585     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4586       P = L.getNode();
4587       L = L.getOperand(0);
4588     }
4589 
4590     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4591       return false;
4592 
4593     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4594     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4595       return false;
4596 
4597     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4598   };
4599 
4600   // We can only fold loads if the sources are unique.
4601   bool CanFoldLoads = Src0 != Src1;
4602 
4603   bool FoldedLoad = false;
4604   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4605   if (CanFoldLoads) {
4606     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4607                                     Tmp3, Tmp4);
4608     if (!FoldedLoad) {
4609       // And is commutative.
4610       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4611                                       Tmp2, Tmp3, Tmp4);
4612       if (FoldedLoad)
4613         std::swap(Src0, Src1);
4614     }
4615   }
4616 
4617   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4618 
4619   bool IsMasked = InMask.getNode() != nullptr;
4620 
4621   SDLoc dl(Root);
4622 
4623   MVT ResVT = Setcc.getSimpleValueType();
4624   MVT MaskVT = ResVT;
4625   if (Widen) {
4626     // Widen the inputs using insert_subreg or copy_to_regclass.
4627     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4628     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4629     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4630     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4631     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4632     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4633                                                      CmpVT), 0);
4634     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4635 
4636     if (!FoldedBCast)
4637       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4638 
4639     if (IsMasked) {
4640       // Widen the mask.
4641       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4642       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4643       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4644                                               dl, MaskVT, InMask, RC), 0);
4645     }
4646   }
4647 
4648   bool IsTestN = CC == ISD::SETEQ;
4649   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4650                                IsMasked);
4651 
4652   MachineSDNode *CNode;
4653   if (FoldedLoad) {
4654     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4655 
4656     if (IsMasked) {
4657       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4658                         Src1.getOperand(0) };
4659       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4660     } else {
4661       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4662                         Src1.getOperand(0) };
4663       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4664     }
4665 
4666     // Update the chain.
4667     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4668     // Record the mem-refs
4669     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4670   } else {
4671     if (IsMasked)
4672       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4673     else
4674       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4675   }
4676 
4677   // If we widened, we need to shrink the mask VT.
4678   if (Widen) {
4679     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4680     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4681     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4682                                    dl, ResVT, SDValue(CNode, 0), RC);
4683   }
4684 
4685   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4686   CurDAG->RemoveDeadNode(Root);
4687   return true;
4688 }
4689 
4690 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4691 // into vpternlog.
4692 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4693   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4694 
4695   MVT NVT = N->getSimpleValueType(0);
4696 
4697   // Make sure we support VPTERNLOG.
4698   if (!NVT.isVector() || !Subtarget->hasAVX512())
4699     return false;
4700 
4701   // We need VLX for 128/256-bit.
4702   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4703     return false;
4704 
4705   SDValue N0 = N->getOperand(0);
4706   SDValue N1 = N->getOperand(1);
4707 
4708   // Canonicalize AND to LHS.
4709   if (N1.getOpcode() == ISD::AND)
4710     std::swap(N0, N1);
4711 
4712   if (N0.getOpcode() != ISD::AND ||
4713       N1.getOpcode() != X86ISD::ANDNP ||
4714       !N0.hasOneUse() || !N1.hasOneUse())
4715     return false;
4716 
4717   // ANDN is not commutable, use it to pick down A and C.
4718   SDValue A = N1.getOperand(0);
4719   SDValue C = N1.getOperand(1);
4720 
4721   // AND is commutable, if one operand matches A, the other operand is B.
4722   // Otherwise this isn't a match.
4723   SDValue B;
4724   if (N0.getOperand(0) == A)
4725     B = N0.getOperand(1);
4726   else if (N0.getOperand(1) == A)
4727     B = N0.getOperand(0);
4728   else
4729     return false;
4730 
4731   SDLoc dl(N);
4732   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
4733   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
4734   ReplaceNode(N, Ternlog.getNode());
4735 
4736   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
4737                         Ternlog.getNode(), A, B, C, 0xCA);
4738 }
4739 
4740 void X86DAGToDAGISel::Select(SDNode *Node) {
4741   MVT NVT = Node->getSimpleValueType(0);
4742   unsigned Opcode = Node->getOpcode();
4743   SDLoc dl(Node);
4744 
4745   if (Node->isMachineOpcode()) {
4746     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
4747     Node->setNodeId(-1);
4748     return;   // Already selected.
4749   }
4750 
4751   switch (Opcode) {
4752   default: break;
4753   case ISD::INTRINSIC_W_CHAIN: {
4754     unsigned IntNo = Node->getConstantOperandVal(1);
4755     switch (IntNo) {
4756     default: break;
4757     case Intrinsic::x86_encodekey128:
4758     case Intrinsic::x86_encodekey256: {
4759       if (!Subtarget->hasKL())
4760         break;
4761 
4762       unsigned Opcode;
4763       switch (IntNo) {
4764       default: llvm_unreachable("Impossible intrinsic");
4765       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
4766       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
4767       }
4768 
4769       SDValue Chain = Node->getOperand(0);
4770       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
4771                                    SDValue());
4772       if (Opcode == X86::ENCODEKEY256)
4773         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
4774                                      Chain.getValue(1));
4775 
4776       MachineSDNode *Res = CurDAG->getMachineNode(
4777           Opcode, dl, Node->getVTList(),
4778           {Node->getOperand(2), Chain, Chain.getValue(1)});
4779       ReplaceNode(Node, Res);
4780       return;
4781     }
4782     case Intrinsic::x86_tileloadd64_internal:
4783     case Intrinsic::x86_tileloaddt164_internal: {
4784       if (!Subtarget->hasAMXTILE())
4785         break;
4786       unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
4787                          ? X86::PTILELOADDV
4788                          : X86::PTILELOADDT1V;
4789       // _tile_loadd_internal(row, col, buf, STRIDE)
4790       SDValue Base = Node->getOperand(4);
4791       SDValue Scale = getI8Imm(1, dl);
4792       SDValue Index = Node->getOperand(5);
4793       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4794       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4795       SDValue Chain = Node->getOperand(0);
4796       MachineSDNode *CNode;
4797       SDValue Ops[] = {Node->getOperand(2),
4798                        Node->getOperand(3),
4799                        Base,
4800                        Scale,
4801                        Index,
4802                        Disp,
4803                        Segment,
4804                        Chain};
4805       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
4806       ReplaceNode(Node, CNode);
4807       return;
4808     }
4809     }
4810     break;
4811   }
4812   case ISD::INTRINSIC_VOID: {
4813     unsigned IntNo = Node->getConstantOperandVal(1);
4814     switch (IntNo) {
4815     default: break;
4816     case Intrinsic::x86_sse3_monitor:
4817     case Intrinsic::x86_monitorx:
4818     case Intrinsic::x86_clzero: {
4819       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
4820 
4821       unsigned Opc = 0;
4822       switch (IntNo) {
4823       default: llvm_unreachable("Unexpected intrinsic!");
4824       case Intrinsic::x86_sse3_monitor:
4825         if (!Subtarget->hasSSE3())
4826           break;
4827         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
4828         break;
4829       case Intrinsic::x86_monitorx:
4830         if (!Subtarget->hasMWAITX())
4831           break;
4832         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
4833         break;
4834       case Intrinsic::x86_clzero:
4835         if (!Subtarget->hasCLZERO())
4836           break;
4837         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
4838         break;
4839       }
4840 
4841       if (Opc) {
4842         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
4843         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
4844                                              Node->getOperand(2), SDValue());
4845         SDValue InFlag = Chain.getValue(1);
4846 
4847         if (IntNo == Intrinsic::x86_sse3_monitor ||
4848             IntNo == Intrinsic::x86_monitorx) {
4849           // Copy the other two operands to ECX and EDX.
4850           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
4851                                        InFlag);
4852           InFlag = Chain.getValue(1);
4853           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
4854                                        InFlag);
4855           InFlag = Chain.getValue(1);
4856         }
4857 
4858         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4859                                                       { Chain, InFlag});
4860         ReplaceNode(Node, CNode);
4861         return;
4862       }
4863 
4864       break;
4865     }
4866     case Intrinsic::x86_tilestored64_internal: {
4867       unsigned Opc = X86::PTILESTOREDV;
4868       // _tile_stored_internal(row, col, buf, STRIDE, c)
4869       SDValue Base = Node->getOperand(4);
4870       SDValue Scale = getI8Imm(1, dl);
4871       SDValue Index = Node->getOperand(5);
4872       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4873       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4874       SDValue Chain = Node->getOperand(0);
4875       MachineSDNode *CNode;
4876       SDValue Ops[] = {Node->getOperand(2),
4877                        Node->getOperand(3),
4878                        Base,
4879                        Scale,
4880                        Index,
4881                        Disp,
4882                        Segment,
4883                        Node->getOperand(6),
4884                        Chain};
4885       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4886       ReplaceNode(Node, CNode);
4887       return;
4888     }
4889     case Intrinsic::x86_tileloadd64:
4890     case Intrinsic::x86_tileloaddt164:
4891     case Intrinsic::x86_tilestored64: {
4892       if (!Subtarget->hasAMXTILE())
4893         break;
4894       unsigned Opc;
4895       switch (IntNo) {
4896       default: llvm_unreachable("Unexpected intrinsic!");
4897       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
4898       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
4899       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
4900       }
4901       // FIXME: Match displacement and scale.
4902       unsigned TIndex = Node->getConstantOperandVal(2);
4903       SDValue TReg = getI8Imm(TIndex, dl);
4904       SDValue Base = Node->getOperand(3);
4905       SDValue Scale = getI8Imm(1, dl);
4906       SDValue Index = Node->getOperand(4);
4907       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4908       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4909       SDValue Chain = Node->getOperand(0);
4910       MachineSDNode *CNode;
4911       if (Opc == X86::PTILESTORED) {
4912         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
4913         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4914       } else {
4915         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
4916         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4917       }
4918       ReplaceNode(Node, CNode);
4919       return;
4920     }
4921     }
4922     break;
4923   }
4924   case ISD::BRIND:
4925   case X86ISD::NT_BRIND: {
4926     if (Subtarget->isTargetNaCl())
4927       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
4928       // leave the instruction alone.
4929       break;
4930     if (Subtarget->isTarget64BitILP32()) {
4931       // Converts a 32-bit register to a 64-bit, zero-extended version of
4932       // it. This is needed because x86-64 can do many things, but jmp %r32
4933       // ain't one of them.
4934       SDValue Target = Node->getOperand(1);
4935       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
4936       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
4937       SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
4938                                       Node->getOperand(0), ZextTarget);
4939       ReplaceNode(Node, Brind.getNode());
4940       SelectCode(ZextTarget.getNode());
4941       SelectCode(Brind.getNode());
4942       return;
4943     }
4944     break;
4945   }
4946   case X86ISD::GlobalBaseReg:
4947     ReplaceNode(Node, getGlobalBaseReg());
4948     return;
4949 
4950   case ISD::BITCAST:
4951     // Just drop all 128/256/512-bit bitcasts.
4952     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
4953         NVT == MVT::f128) {
4954       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
4955       CurDAG->RemoveDeadNode(Node);
4956       return;
4957     }
4958     break;
4959 
4960   case ISD::SRL:
4961     if (matchBitExtract(Node))
4962       return;
4963     LLVM_FALLTHROUGH;
4964   case ISD::SRA:
4965   case ISD::SHL:
4966     if (tryShiftAmountMod(Node))
4967       return;
4968     break;
4969 
4970   case X86ISD::VPTERNLOG: {
4971     uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue();
4972     if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0),
4973                        Node->getOperand(1), Node->getOperand(2), Imm))
4974       return;
4975     break;
4976   }
4977 
4978   case X86ISD::ANDNP:
4979     if (tryVPTERNLOG(Node))
4980       return;
4981     break;
4982 
4983   case ISD::AND:
4984     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
4985       // Try to form a masked VPTESTM. Operands can be in either order.
4986       SDValue N0 = Node->getOperand(0);
4987       SDValue N1 = Node->getOperand(1);
4988       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
4989           tryVPTESTM(Node, N0, N1))
4990         return;
4991       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
4992           tryVPTESTM(Node, N1, N0))
4993         return;
4994     }
4995 
4996     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
4997       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
4998       CurDAG->RemoveDeadNode(Node);
4999       return;
5000     }
5001     if (matchBitExtract(Node))
5002       return;
5003     if (AndImmShrink && shrinkAndImmediate(Node))
5004       return;
5005 
5006     LLVM_FALLTHROUGH;
5007   case ISD::OR:
5008   case ISD::XOR:
5009     if (tryShrinkShlLogicImm(Node))
5010       return;
5011     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
5012       return;
5013     if (tryVPTERNLOG(Node))
5014       return;
5015 
5016     LLVM_FALLTHROUGH;
5017   case ISD::ADD:
5018   case ISD::SUB: {
5019     // Try to avoid folding immediates with multiple uses for optsize.
5020     // This code tries to select to register form directly to avoid going
5021     // through the isel table which might fold the immediate. We can't change
5022     // the patterns on the add/sub/and/or/xor with immediate paterns in the
5023     // tablegen files to check immediate use count without making the patterns
5024     // unavailable to the fast-isel table.
5025     if (!CurDAG->shouldOptForSize())
5026       break;
5027 
5028     // Only handle i8/i16/i32/i64.
5029     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
5030       break;
5031 
5032     SDValue N0 = Node->getOperand(0);
5033     SDValue N1 = Node->getOperand(1);
5034 
5035     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
5036     if (!Cst)
5037       break;
5038 
5039     int64_t Val = Cst->getSExtValue();
5040 
5041     // Make sure its an immediate that is considered foldable.
5042     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
5043     if (!isInt<8>(Val) && !isInt<32>(Val))
5044       break;
5045 
5046     // If this can match to INC/DEC, let it go.
5047     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
5048       break;
5049 
5050     // Check if we should avoid folding this immediate.
5051     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
5052       break;
5053 
5054     // We should not fold the immediate. So we need a register form instead.
5055     unsigned ROpc, MOpc;
5056     switch (NVT.SimpleTy) {
5057     default: llvm_unreachable("Unexpected VT!");
5058     case MVT::i8:
5059       switch (Opcode) {
5060       default: llvm_unreachable("Unexpected opcode!");
5061       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
5062       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
5063       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
5064       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
5065       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
5066       }
5067       break;
5068     case MVT::i16:
5069       switch (Opcode) {
5070       default: llvm_unreachable("Unexpected opcode!");
5071       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
5072       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
5073       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
5074       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
5075       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
5076       }
5077       break;
5078     case MVT::i32:
5079       switch (Opcode) {
5080       default: llvm_unreachable("Unexpected opcode!");
5081       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
5082       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
5083       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
5084       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
5085       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
5086       }
5087       break;
5088     case MVT::i64:
5089       switch (Opcode) {
5090       default: llvm_unreachable("Unexpected opcode!");
5091       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
5092       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
5093       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
5094       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
5095       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
5096       }
5097       break;
5098     }
5099 
5100     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
5101 
5102     // If this is a not a subtract, we can still try to fold a load.
5103     if (Opcode != ISD::SUB) {
5104       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5105       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5106         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5107         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5108         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5109         // Update the chain.
5110         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
5111         // Record the mem-refs
5112         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
5113         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5114         CurDAG->RemoveDeadNode(Node);
5115         return;
5116       }
5117     }
5118 
5119     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
5120     return;
5121   }
5122 
5123   case X86ISD::SMUL:
5124     // i16/i32/i64 are handled with isel patterns.
5125     if (NVT != MVT::i8)
5126       break;
5127     LLVM_FALLTHROUGH;
5128   case X86ISD::UMUL: {
5129     SDValue N0 = Node->getOperand(0);
5130     SDValue N1 = Node->getOperand(1);
5131 
5132     unsigned LoReg, ROpc, MOpc;
5133     switch (NVT.SimpleTy) {
5134     default: llvm_unreachable("Unsupported VT!");
5135     case MVT::i8:
5136       LoReg = X86::AL;
5137       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
5138       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
5139       break;
5140     case MVT::i16:
5141       LoReg = X86::AX;
5142       ROpc = X86::MUL16r;
5143       MOpc = X86::MUL16m;
5144       break;
5145     case MVT::i32:
5146       LoReg = X86::EAX;
5147       ROpc = X86::MUL32r;
5148       MOpc = X86::MUL32m;
5149       break;
5150     case MVT::i64:
5151       LoReg = X86::RAX;
5152       ROpc = X86::MUL64r;
5153       MOpc = X86::MUL64m;
5154       break;
5155     }
5156 
5157     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5158     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5159     // Multiply is commutative.
5160     if (!FoldedLoad) {
5161       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5162       if (FoldedLoad)
5163         std::swap(N0, N1);
5164     }
5165 
5166     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5167                                           N0, SDValue()).getValue(1);
5168 
5169     MachineSDNode *CNode;
5170     if (FoldedLoad) {
5171       // i16/i32/i64 use an instruction that produces a low and high result even
5172       // though only the low result is used.
5173       SDVTList VTs;
5174       if (NVT == MVT::i8)
5175         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5176       else
5177         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5178 
5179       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5180                         InFlag };
5181       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5182 
5183       // Update the chain.
5184       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5185       // Record the mem-refs
5186       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5187     } else {
5188       // i16/i32/i64 use an instruction that produces a low and high result even
5189       // though only the low result is used.
5190       SDVTList VTs;
5191       if (NVT == MVT::i8)
5192         VTs = CurDAG->getVTList(NVT, MVT::i32);
5193       else
5194         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5195 
5196       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
5197     }
5198 
5199     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5200     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5201     CurDAG->RemoveDeadNode(Node);
5202     return;
5203   }
5204 
5205   case ISD::SMUL_LOHI:
5206   case ISD::UMUL_LOHI: {
5207     SDValue N0 = Node->getOperand(0);
5208     SDValue N1 = Node->getOperand(1);
5209 
5210     unsigned Opc, MOpc;
5211     unsigned LoReg, HiReg;
5212     bool IsSigned = Opcode == ISD::SMUL_LOHI;
5213     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5214     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5215     switch (NVT.SimpleTy) {
5216     default: llvm_unreachable("Unsupported VT!");
5217     case MVT::i32:
5218       Opc  = UseMULXHi ? X86::MULX32Hrr :
5219              UseMULX ? X86::MULX32rr :
5220              IsSigned ? X86::IMUL32r : X86::MUL32r;
5221       MOpc = UseMULXHi ? X86::MULX32Hrm :
5222              UseMULX ? X86::MULX32rm :
5223              IsSigned ? X86::IMUL32m : X86::MUL32m;
5224       LoReg = UseMULX ? X86::EDX : X86::EAX;
5225       HiReg = X86::EDX;
5226       break;
5227     case MVT::i64:
5228       Opc  = UseMULXHi ? X86::MULX64Hrr :
5229              UseMULX ? X86::MULX64rr :
5230              IsSigned ? X86::IMUL64r : X86::MUL64r;
5231       MOpc = UseMULXHi ? X86::MULX64Hrm :
5232              UseMULX ? X86::MULX64rm :
5233              IsSigned ? X86::IMUL64m : X86::MUL64m;
5234       LoReg = UseMULX ? X86::RDX : X86::RAX;
5235       HiReg = X86::RDX;
5236       break;
5237     }
5238 
5239     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5240     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5241     // Multiply is commmutative.
5242     if (!foldedLoad) {
5243       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5244       if (foldedLoad)
5245         std::swap(N0, N1);
5246     }
5247 
5248     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5249                                           N0, SDValue()).getValue(1);
5250     SDValue ResHi, ResLo;
5251     if (foldedLoad) {
5252       SDValue Chain;
5253       MachineSDNode *CNode = nullptr;
5254       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5255                         InFlag };
5256       if (UseMULXHi) {
5257         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5258         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5259         ResHi = SDValue(CNode, 0);
5260         Chain = SDValue(CNode, 1);
5261       } else if (UseMULX) {
5262         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5263         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5264         ResHi = SDValue(CNode, 0);
5265         ResLo = SDValue(CNode, 1);
5266         Chain = SDValue(CNode, 2);
5267       } else {
5268         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5269         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5270         Chain = SDValue(CNode, 0);
5271         InFlag = SDValue(CNode, 1);
5272       }
5273 
5274       // Update the chain.
5275       ReplaceUses(N1.getValue(1), Chain);
5276       // Record the mem-refs
5277       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5278     } else {
5279       SDValue Ops[] = { N1, InFlag };
5280       if (UseMULXHi) {
5281         SDVTList VTs = CurDAG->getVTList(NVT);
5282         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5283         ResHi = SDValue(CNode, 0);
5284       } else if (UseMULX) {
5285         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5286         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5287         ResHi = SDValue(CNode, 0);
5288         ResLo = SDValue(CNode, 1);
5289       } else {
5290         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5291         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5292         InFlag = SDValue(CNode, 0);
5293       }
5294     }
5295 
5296     // Copy the low half of the result, if it is needed.
5297     if (!SDValue(Node, 0).use_empty()) {
5298       if (!ResLo) {
5299         assert(LoReg && "Register for low half is not defined!");
5300         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5301                                        NVT, InFlag);
5302         InFlag = ResLo.getValue(2);
5303       }
5304       ReplaceUses(SDValue(Node, 0), ResLo);
5305       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5306                  dbgs() << '\n');
5307     }
5308     // Copy the high half of the result, if it is needed.
5309     if (!SDValue(Node, 1).use_empty()) {
5310       if (!ResHi) {
5311         assert(HiReg && "Register for high half is not defined!");
5312         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5313                                        NVT, InFlag);
5314         InFlag = ResHi.getValue(2);
5315       }
5316       ReplaceUses(SDValue(Node, 1), ResHi);
5317       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5318                  dbgs() << '\n');
5319     }
5320 
5321     CurDAG->RemoveDeadNode(Node);
5322     return;
5323   }
5324 
5325   case ISD::SDIVREM:
5326   case ISD::UDIVREM: {
5327     SDValue N0 = Node->getOperand(0);
5328     SDValue N1 = Node->getOperand(1);
5329 
5330     unsigned ROpc, MOpc;
5331     bool isSigned = Opcode == ISD::SDIVREM;
5332     if (!isSigned) {
5333       switch (NVT.SimpleTy) {
5334       default: llvm_unreachable("Unsupported VT!");
5335       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
5336       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5337       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5338       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5339       }
5340     } else {
5341       switch (NVT.SimpleTy) {
5342       default: llvm_unreachable("Unsupported VT!");
5343       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
5344       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5345       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5346       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5347       }
5348     }
5349 
5350     unsigned LoReg, HiReg, ClrReg;
5351     unsigned SExtOpcode;
5352     switch (NVT.SimpleTy) {
5353     default: llvm_unreachable("Unsupported VT!");
5354     case MVT::i8:
5355       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
5356       SExtOpcode = 0; // Not used.
5357       break;
5358     case MVT::i16:
5359       LoReg = X86::AX;  HiReg = X86::DX;
5360       ClrReg = X86::DX;
5361       SExtOpcode = X86::CWD;
5362       break;
5363     case MVT::i32:
5364       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5365       SExtOpcode = X86::CDQ;
5366       break;
5367     case MVT::i64:
5368       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5369       SExtOpcode = X86::CQO;
5370       break;
5371     }
5372 
5373     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5374     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5375     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5376 
5377     SDValue InFlag;
5378     if (NVT == MVT::i8) {
5379       // Special case for div8, just use a move with zero extension to AX to
5380       // clear the upper 8 bits (AH).
5381       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5382       MachineSDNode *Move;
5383       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5384         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5385         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5386                                                     : X86::MOVZX16rm8;
5387         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5388         Chain = SDValue(Move, 1);
5389         ReplaceUses(N0.getValue(1), Chain);
5390         // Record the mem-refs
5391         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5392       } else {
5393         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5394                                                     : X86::MOVZX16rr8;
5395         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5396         Chain = CurDAG->getEntryNode();
5397       }
5398       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5399                                     SDValue());
5400       InFlag = Chain.getValue(1);
5401     } else {
5402       InFlag =
5403         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5404                              LoReg, N0, SDValue()).getValue(1);
5405       if (isSigned && !signBitIsZero) {
5406         // Sign extend the low part into the high part.
5407         InFlag =
5408           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
5409       } else {
5410         // Zero out the high part, effectively zero extending the input.
5411         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5412         SDValue ClrNode =
5413             SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5414         switch (NVT.SimpleTy) {
5415         case MVT::i16:
5416           ClrNode =
5417               SDValue(CurDAG->getMachineNode(
5418                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5419                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
5420                                                     MVT::i32)),
5421                       0);
5422           break;
5423         case MVT::i32:
5424           break;
5425         case MVT::i64:
5426           ClrNode =
5427               SDValue(CurDAG->getMachineNode(
5428                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5429                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5430                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
5431                                                     MVT::i32)),
5432                       0);
5433           break;
5434         default:
5435           llvm_unreachable("Unexpected division source");
5436         }
5437 
5438         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5439                                       ClrNode, InFlag).getValue(1);
5440       }
5441     }
5442 
5443     if (foldedLoad) {
5444       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5445                         InFlag };
5446       MachineSDNode *CNode =
5447         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5448       InFlag = SDValue(CNode, 1);
5449       // Update the chain.
5450       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5451       // Record the mem-refs
5452       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5453     } else {
5454       InFlag =
5455         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0);
5456     }
5457 
5458     // Prevent use of AH in a REX instruction by explicitly copying it to
5459     // an ABCD_L register.
5460     //
5461     // The current assumption of the register allocator is that isel
5462     // won't generate explicit references to the GR8_ABCD_H registers. If
5463     // the allocator and/or the backend get enhanced to be more robust in
5464     // that regard, this can be, and should be, removed.
5465     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5466       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5467       unsigned AHExtOpcode =
5468           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5469 
5470       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5471                                              MVT::Glue, AHCopy, InFlag);
5472       SDValue Result(RNode, 0);
5473       InFlag = SDValue(RNode, 1);
5474 
5475       Result =
5476           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5477 
5478       ReplaceUses(SDValue(Node, 1), Result);
5479       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5480                  dbgs() << '\n');
5481     }
5482     // Copy the division (low) result, if it is needed.
5483     if (!SDValue(Node, 0).use_empty()) {
5484       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5485                                                 LoReg, NVT, InFlag);
5486       InFlag = Result.getValue(2);
5487       ReplaceUses(SDValue(Node, 0), Result);
5488       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5489                  dbgs() << '\n');
5490     }
5491     // Copy the remainder (high) result, if it is needed.
5492     if (!SDValue(Node, 1).use_empty()) {
5493       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5494                                               HiReg, NVT, InFlag);
5495       InFlag = Result.getValue(2);
5496       ReplaceUses(SDValue(Node, 1), Result);
5497       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5498                  dbgs() << '\n');
5499     }
5500     CurDAG->RemoveDeadNode(Node);
5501     return;
5502   }
5503 
5504   case X86ISD::FCMP:
5505   case X86ISD::STRICT_FCMP:
5506   case X86ISD::STRICT_FCMPS: {
5507     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5508                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
5509     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5510     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5511 
5512     // Save the original VT of the compare.
5513     MVT CmpVT = N0.getSimpleValueType();
5514 
5515     // Floating point needs special handling if we don't have FCOMI.
5516     if (Subtarget->canUseCMOV())
5517       break;
5518 
5519     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5520 
5521     unsigned Opc;
5522     switch (CmpVT.SimpleTy) {
5523     default: llvm_unreachable("Unexpected type!");
5524     case MVT::f32:
5525       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5526       break;
5527     case MVT::f64:
5528       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5529       break;
5530     case MVT::f80:
5531       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5532       break;
5533     }
5534 
5535     SDValue Chain =
5536         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5537     SDValue Glue;
5538     if (IsStrictCmp) {
5539       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5540       Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5541       Glue = Chain.getValue(1);
5542     } else {
5543       Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5544     }
5545 
5546     // Move FPSW to AX.
5547     SDValue FNSTSW =
5548         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5549 
5550     // Extract upper 8-bits of AX.
5551     SDValue Extract =
5552         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5553 
5554     // Move AH into flags.
5555     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5556     assert(Subtarget->canUseLAHFSAHF() &&
5557            "Target doesn't support SAHF or FCOMI?");
5558     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5559     Chain = AH;
5560     SDValue SAHF = SDValue(
5561         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5562 
5563     if (IsStrictCmp)
5564       ReplaceUses(SDValue(Node, 1), Chain);
5565 
5566     ReplaceUses(SDValue(Node, 0), SAHF);
5567     CurDAG->RemoveDeadNode(Node);
5568     return;
5569   }
5570 
5571   case X86ISD::CMP: {
5572     SDValue N0 = Node->getOperand(0);
5573     SDValue N1 = Node->getOperand(1);
5574 
5575     // Optimizations for TEST compares.
5576     if (!isNullConstant(N1))
5577       break;
5578 
5579     // Save the original VT of the compare.
5580     MVT CmpVT = N0.getSimpleValueType();
5581 
5582     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5583     // by a test instruction. The test should be removed later by
5584     // analyzeCompare if we are using only the zero flag.
5585     // TODO: Should we check the users and use the BEXTR flags directly?
5586     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5587       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5588         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5589                                              : X86::TEST32rr;
5590         SDValue BEXTR = SDValue(NewNode, 0);
5591         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5592         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5593         CurDAG->RemoveDeadNode(Node);
5594         return;
5595       }
5596     }
5597 
5598     // We can peek through truncates, but we need to be careful below.
5599     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5600       N0 = N0.getOperand(0);
5601 
5602     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5603     // use a smaller encoding.
5604     // Look past the truncate if CMP is the only use of it.
5605     if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5606         N0.getValueType() != MVT::i8) {
5607       auto *MaskC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5608       if (!MaskC)
5609         break;
5610 
5611       // We may have looked through a truncate so mask off any bits that
5612       // shouldn't be part of the compare.
5613       uint64_t Mask = MaskC->getZExtValue();
5614       Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
5615 
5616       // Check if we can replace AND+IMM{32,64} with a shift. This is possible
5617       // for masks like 0xFF000000 or 0x00FFFFFF and if we care only about the
5618       // zero flag.
5619       if (CmpVT == MVT::i64 && !isInt<8>(Mask) && isShiftedMask_64(Mask) &&
5620           onlyUsesZeroFlag(SDValue(Node, 0))) {
5621         unsigned ShiftOpcode = ISD::DELETED_NODE;
5622         unsigned ShiftAmt;
5623         unsigned SubRegIdx;
5624         MVT SubRegVT;
5625         unsigned TestOpcode;
5626         unsigned LeadingZeros = countLeadingZeros(Mask);
5627         unsigned TrailingZeros = countTrailingZeros(Mask);
5628 
5629         // With leading/trailing zeros, the transform is profitable if we can
5630         // eliminate a movabsq or shrink a 32-bit immediate to 8-bit without
5631         // incurring any extra register moves.
5632         bool SavesBytes = !isInt<32>(Mask) || N0.getOperand(0).hasOneUse();
5633         if (LeadingZeros == 0 && SavesBytes) {
5634           // If the mask covers the most significant bit, then we can replace
5635           // TEST+AND with a SHR and check eflags.
5636           // This emits a redundant TEST which is subsequently eliminated.
5637           ShiftOpcode = X86::SHR64ri;
5638           ShiftAmt = TrailingZeros;
5639           SubRegIdx = 0;
5640           TestOpcode = X86::TEST64rr;
5641         } else if (TrailingZeros == 0 && SavesBytes) {
5642           // If the mask covers the least significant bit, then we can replace
5643           // TEST+AND with a SHL and check eflags.
5644           // This emits a redundant TEST which is subsequently eliminated.
5645           ShiftOpcode = X86::SHL64ri;
5646           ShiftAmt = LeadingZeros;
5647           SubRegIdx = 0;
5648           TestOpcode = X86::TEST64rr;
5649         } else if (MaskC->hasOneUse() && !isInt<32>(Mask)) {
5650           // If the shifted mask extends into the high half and is 8/16/32 bits
5651           // wide, then replace it with a SHR and a TEST8rr/TEST16rr/TEST32rr.
5652           unsigned PopCount = 64 - LeadingZeros - TrailingZeros;
5653           if (PopCount == 8) {
5654             ShiftOpcode = X86::SHR64ri;
5655             ShiftAmt = TrailingZeros;
5656             SubRegIdx = X86::sub_8bit;
5657             SubRegVT = MVT::i8;
5658             TestOpcode = X86::TEST8rr;
5659           } else if (PopCount == 16) {
5660             ShiftOpcode = X86::SHR64ri;
5661             ShiftAmt = TrailingZeros;
5662             SubRegIdx = X86::sub_16bit;
5663             SubRegVT = MVT::i16;
5664             TestOpcode = X86::TEST16rr;
5665           } else if (PopCount == 32) {
5666             ShiftOpcode = X86::SHR64ri;
5667             ShiftAmt = TrailingZeros;
5668             SubRegIdx = X86::sub_32bit;
5669             SubRegVT = MVT::i32;
5670             TestOpcode = X86::TEST32rr;
5671           }
5672         }
5673         if (ShiftOpcode != ISD::DELETED_NODE) {
5674           SDValue ShiftC = CurDAG->getTargetConstant(ShiftAmt, dl, MVT::i64);
5675           SDValue Shift = SDValue(
5676               CurDAG->getMachineNode(ShiftOpcode, dl, MVT::i64, MVT::i32,
5677                                      N0.getOperand(0), ShiftC),
5678               0);
5679           if (SubRegIdx != 0) {
5680             Shift =
5681                 CurDAG->getTargetExtractSubreg(SubRegIdx, dl, SubRegVT, Shift);
5682           }
5683           MachineSDNode *Test =
5684               CurDAG->getMachineNode(TestOpcode, dl, MVT::i32, Shift, Shift);
5685           ReplaceNode(Node, Test);
5686           return;
5687         }
5688       }
5689 
5690       MVT VT;
5691       int SubRegOp;
5692       unsigned ROpc, MOpc;
5693 
5694       // For each of these checks we need to be careful if the sign flag is
5695       // being used. It is only safe to use the sign flag in two conditions,
5696       // either the sign bit in the shrunken mask is zero or the final test
5697       // size is equal to the original compare size.
5698 
5699       if (isUInt<8>(Mask) &&
5700           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5701            hasNoSignFlagUses(SDValue(Node, 0)))) {
5702         // For example, convert "testl %eax, $8" to "testb %al, $8"
5703         VT = MVT::i8;
5704         SubRegOp = X86::sub_8bit;
5705         ROpc = X86::TEST8ri;
5706         MOpc = X86::TEST8mi;
5707       } else if (OptForMinSize && isUInt<16>(Mask) &&
5708                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5709                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5710         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5711         // NOTE: We only want to form TESTW instructions if optimizing for
5712         // min size. Otherwise we only save one byte and possibly get a length
5713         // changing prefix penalty in the decoders.
5714         VT = MVT::i16;
5715         SubRegOp = X86::sub_16bit;
5716         ROpc = X86::TEST16ri;
5717         MOpc = X86::TEST16mi;
5718       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5719                  ((!(Mask & 0x80000000) &&
5720                    // Without minsize 16-bit Cmps can get here so we need to
5721                    // be sure we calculate the correct sign flag if needed.
5722                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5723                   CmpVT == MVT::i32 ||
5724                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5725         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5726         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5727         // Otherwize, we find ourselves in a position where we have to do
5728         // promotion. If previous passes did not promote the and, we assume
5729         // they had a good reason not to and do not promote here.
5730         VT = MVT::i32;
5731         SubRegOp = X86::sub_32bit;
5732         ROpc = X86::TEST32ri;
5733         MOpc = X86::TEST32mi;
5734       } else {
5735         // No eligible transformation was found.
5736         break;
5737       }
5738 
5739       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
5740       SDValue Reg = N0.getOperand(0);
5741 
5742       // Emit a testl or testw.
5743       MachineSDNode *NewNode;
5744       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5745       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5746         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
5747           if (!LoadN->isSimple()) {
5748             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
5749             if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
5750                 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
5751                 (MOpc == X86::TEST32mi && NumVolBits != 32))
5752               break;
5753           }
5754         }
5755         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
5756                           Reg.getOperand(0) };
5757         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
5758         // Update the chain.
5759         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
5760         // Record the mem-refs
5761         CurDAG->setNodeMemRefs(NewNode,
5762                                {cast<LoadSDNode>(Reg)->getMemOperand()});
5763       } else {
5764         // Extract the subregister if necessary.
5765         if (N0.getValueType() != VT)
5766           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
5767 
5768         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
5769       }
5770       // Replace CMP with TEST.
5771       ReplaceNode(Node, NewNode);
5772       return;
5773     }
5774     break;
5775   }
5776   case X86ISD::PCMPISTR: {
5777     if (!Subtarget->hasSSE42())
5778       break;
5779 
5780     bool NeedIndex = !SDValue(Node, 0).use_empty();
5781     bool NeedMask = !SDValue(Node, 1).use_empty();
5782     // We can't fold a load if we are going to make two instructions.
5783     bool MayFoldLoad = !NeedIndex || !NeedMask;
5784 
5785     MachineSDNode *CNode;
5786     if (NeedMask) {
5787       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
5788       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
5789       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
5790       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5791     }
5792     if (NeedIndex || !NeedMask) {
5793       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
5794       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
5795       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
5796       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5797     }
5798 
5799     // Connect the flag usage to the last instruction created.
5800     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5801     CurDAG->RemoveDeadNode(Node);
5802     return;
5803   }
5804   case X86ISD::PCMPESTR: {
5805     if (!Subtarget->hasSSE42())
5806       break;
5807 
5808     // Copy the two implicit register inputs.
5809     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
5810                                           Node->getOperand(1),
5811                                           SDValue()).getValue(1);
5812     InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
5813                                   Node->getOperand(3), InFlag).getValue(1);
5814 
5815     bool NeedIndex = !SDValue(Node, 0).use_empty();
5816     bool NeedMask = !SDValue(Node, 1).use_empty();
5817     // We can't fold a load if we are going to make two instructions.
5818     bool MayFoldLoad = !NeedIndex || !NeedMask;
5819 
5820     MachineSDNode *CNode;
5821     if (NeedMask) {
5822       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
5823       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
5824       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
5825                            InFlag);
5826       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5827     }
5828     if (NeedIndex || !NeedMask) {
5829       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
5830       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
5831       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
5832       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5833     }
5834     // Connect the flag usage to the last instruction created.
5835     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5836     CurDAG->RemoveDeadNode(Node);
5837     return;
5838   }
5839 
5840   case ISD::SETCC: {
5841     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
5842       return;
5843 
5844     break;
5845   }
5846 
5847   case ISD::STORE:
5848     if (foldLoadStoreIntoMemOperand(Node))
5849       return;
5850     break;
5851 
5852   case X86ISD::SETCC_CARRY: {
5853     MVT VT = Node->getSimpleValueType(0);
5854     SDValue Result;
5855     if (Subtarget->hasSBBDepBreaking()) {
5856       // We have to do this manually because tblgen will put the eflags copy in
5857       // the wrong place if we use an extract_subreg in the pattern.
5858       // Copy flags to the EFLAGS register and glue it to next node.
5859       SDValue EFLAGS =
5860           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5861                                Node->getOperand(1), SDValue());
5862 
5863       // Create a 64-bit instruction if the result is 64-bits otherwise use the
5864       // 32-bit version.
5865       unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
5866       MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5867       Result = SDValue(
5868           CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)),
5869           0);
5870     } else {
5871       // The target does not recognize sbb with the same reg operand as a
5872       // no-source idiom, so we explicitly zero the input values.
5873       Result = getSBBZero(Node);
5874     }
5875 
5876     // For less than 32-bits we need to extract from the 32-bit node.
5877     if (VT == MVT::i8 || VT == MVT::i16) {
5878       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5879       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5880     }
5881 
5882     ReplaceUses(SDValue(Node, 0), Result);
5883     CurDAG->RemoveDeadNode(Node);
5884     return;
5885   }
5886   case X86ISD::SBB: {
5887     if (isNullConstant(Node->getOperand(0)) &&
5888         isNullConstant(Node->getOperand(1))) {
5889       SDValue Result = getSBBZero(Node);
5890 
5891       // Replace the flag use.
5892       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
5893 
5894       // Replace the result use.
5895       if (!SDValue(Node, 0).use_empty()) {
5896         // For less than 32-bits we need to extract from the 32-bit node.
5897         MVT VT = Node->getSimpleValueType(0);
5898         if (VT == MVT::i8 || VT == MVT::i16) {
5899           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5900           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5901         }
5902         ReplaceUses(SDValue(Node, 0), Result);
5903       }
5904 
5905       CurDAG->RemoveDeadNode(Node);
5906       return;
5907     }
5908     break;
5909   }
5910   case X86ISD::MGATHER: {
5911     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
5912     SDValue IndexOp = Mgt->getIndex();
5913     SDValue Mask = Mgt->getMask();
5914     MVT IndexVT = IndexOp.getSimpleValueType();
5915     MVT ValueVT = Node->getSimpleValueType(0);
5916     MVT MaskVT = Mask.getSimpleValueType();
5917 
5918     // This is just to prevent crashes if the nodes are malformed somehow. We're
5919     // otherwise only doing loose type checking in here based on type what
5920     // a type constraint would say just like table based isel.
5921     if (!ValueVT.isVector() || !MaskVT.isVector())
5922       break;
5923 
5924     unsigned NumElts = ValueVT.getVectorNumElements();
5925     MVT ValueSVT = ValueVT.getVectorElementType();
5926 
5927     bool IsFP = ValueSVT.isFloatingPoint();
5928     unsigned EltSize = ValueSVT.getSizeInBits();
5929 
5930     unsigned Opc = 0;
5931     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
5932     if (AVX512Gather) {
5933       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5934         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
5935       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5936         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
5937       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5938         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
5939       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5940         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
5941       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5942         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
5943       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5944         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
5945       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5946         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
5947       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5948         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
5949       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5950         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
5951       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5952         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
5953       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5954         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
5955       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5956         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
5957     } else {
5958       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
5959              "Unexpected mask VT!");
5960       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5961         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
5962       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5963         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
5964       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5965         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
5966       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5967         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
5968       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5969         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
5970       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5971         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
5972       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5973         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
5974       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5975         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
5976     }
5977 
5978     if (!Opc)
5979       break;
5980 
5981     SDValue Base, Scale, Index, Disp, Segment;
5982     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
5983                           Base, Scale, Index, Disp, Segment))
5984       break;
5985 
5986     SDValue PassThru = Mgt->getPassThru();
5987     SDValue Chain = Mgt->getChain();
5988     // Gather instructions have a mask output not in the ISD node.
5989     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
5990 
5991     MachineSDNode *NewNode;
5992     if (AVX512Gather) {
5993       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
5994                        Index,    Disp, Segment, Chain};
5995       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5996     } else {
5997       SDValue Ops[] = {PassThru, Base,    Scale, Index,
5998                        Disp,     Segment, Mask,  Chain};
5999       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6000     }
6001     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
6002     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
6003     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
6004     CurDAG->RemoveDeadNode(Node);
6005     return;
6006   }
6007   case X86ISD::MSCATTER: {
6008     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
6009     SDValue Value = Sc->getValue();
6010     SDValue IndexOp = Sc->getIndex();
6011     MVT IndexVT = IndexOp.getSimpleValueType();
6012     MVT ValueVT = Value.getSimpleValueType();
6013 
6014     // This is just to prevent crashes if the nodes are malformed somehow. We're
6015     // otherwise only doing loose type checking in here based on type what
6016     // a type constraint would say just like table based isel.
6017     if (!ValueVT.isVector())
6018       break;
6019 
6020     unsigned NumElts = ValueVT.getVectorNumElements();
6021     MVT ValueSVT = ValueVT.getVectorElementType();
6022 
6023     bool IsFP = ValueSVT.isFloatingPoint();
6024     unsigned EltSize = ValueSVT.getSizeInBits();
6025 
6026     unsigned Opc;
6027     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6028       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
6029     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6030       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
6031     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6032       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
6033     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6034       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
6035     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6036       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
6037     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6038       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
6039     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6040       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
6041     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6042       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
6043     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6044       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
6045     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6046       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
6047     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6048       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
6049     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6050       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
6051     else
6052       break;
6053 
6054     SDValue Base, Scale, Index, Disp, Segment;
6055     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
6056                           Base, Scale, Index, Disp, Segment))
6057       break;
6058 
6059     SDValue Mask = Sc->getMask();
6060     SDValue Chain = Sc->getChain();
6061     // Scatter instructions have a mask output not in the ISD node.
6062     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
6063     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
6064 
6065     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6066     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
6067     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
6068     CurDAG->RemoveDeadNode(Node);
6069     return;
6070   }
6071   case ISD::PREALLOCATED_SETUP: {
6072     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6073     auto CallId = MFI->getPreallocatedIdForCallSite(
6074         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6075     SDValue Chain = Node->getOperand(0);
6076     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6077     MachineSDNode *New = CurDAG->getMachineNode(
6078         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
6079     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
6080     CurDAG->RemoveDeadNode(Node);
6081     return;
6082   }
6083   case ISD::PREALLOCATED_ARG: {
6084     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6085     auto CallId = MFI->getPreallocatedIdForCallSite(
6086         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6087     SDValue Chain = Node->getOperand(0);
6088     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6089     SDValue ArgIndex = Node->getOperand(2);
6090     SDValue Ops[3];
6091     Ops[0] = CallIdValue;
6092     Ops[1] = ArgIndex;
6093     Ops[2] = Chain;
6094     MachineSDNode *New = CurDAG->getMachineNode(
6095         TargetOpcode::PREALLOCATED_ARG, dl,
6096         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
6097                           MVT::Other),
6098         Ops);
6099     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
6100     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
6101     CurDAG->RemoveDeadNode(Node);
6102     return;
6103   }
6104   case X86ISD::AESENCWIDE128KL:
6105   case X86ISD::AESDECWIDE128KL:
6106   case X86ISD::AESENCWIDE256KL:
6107   case X86ISD::AESDECWIDE256KL: {
6108     if (!Subtarget->hasWIDEKL())
6109       break;
6110 
6111     unsigned Opcode;
6112     switch (Node->getOpcode()) {
6113     default:
6114       llvm_unreachable("Unexpected opcode!");
6115     case X86ISD::AESENCWIDE128KL:
6116       Opcode = X86::AESENCWIDE128KL;
6117       break;
6118     case X86ISD::AESDECWIDE128KL:
6119       Opcode = X86::AESDECWIDE128KL;
6120       break;
6121     case X86ISD::AESENCWIDE256KL:
6122       Opcode = X86::AESENCWIDE256KL;
6123       break;
6124     case X86ISD::AESDECWIDE256KL:
6125       Opcode = X86::AESDECWIDE256KL;
6126       break;
6127     }
6128 
6129     SDValue Chain = Node->getOperand(0);
6130     SDValue Addr = Node->getOperand(1);
6131 
6132     SDValue Base, Scale, Index, Disp, Segment;
6133     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
6134       break;
6135 
6136     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
6137                                  SDValue());
6138     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
6139                                  Chain.getValue(1));
6140     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
6141                                  Chain.getValue(1));
6142     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
6143                                  Chain.getValue(1));
6144     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
6145                                  Chain.getValue(1));
6146     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
6147                                  Chain.getValue(1));
6148     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
6149                                  Chain.getValue(1));
6150     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
6151                                  Chain.getValue(1));
6152 
6153     MachineSDNode *Res = CurDAG->getMachineNode(
6154         Opcode, dl, Node->getVTList(),
6155         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
6156     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
6157     ReplaceNode(Node, Res);
6158     return;
6159   }
6160   }
6161 
6162   SelectCode(Node);
6163 }
6164 
6165 bool X86DAGToDAGISel::
6166 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
6167                              std::vector<SDValue> &OutOps) {
6168   SDValue Op0, Op1, Op2, Op3, Op4;
6169   switch (ConstraintID) {
6170   default:
6171     llvm_unreachable("Unexpected asm memory constraint");
6172   case InlineAsm::Constraint_o: // offsetable        ??
6173   case InlineAsm::Constraint_v: // not offsetable    ??
6174   case InlineAsm::Constraint_m: // memory
6175   case InlineAsm::Constraint_X:
6176   case InlineAsm::Constraint_p: // address
6177     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
6178       return true;
6179     break;
6180   }
6181 
6182   OutOps.push_back(Op0);
6183   OutOps.push_back(Op1);
6184   OutOps.push_back(Op2);
6185   OutOps.push_back(Op3);
6186   OutOps.push_back(Op4);
6187   return false;
6188 }
6189 
6190 /// This pass converts a legalized DAG into a X86-specific DAG,
6191 /// ready for instruction scheduling.
6192 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6193                                      CodeGenOpt::Level OptLevel) {
6194   return new X86DAGToDAGISel(TM, OptLevel);
6195 }
6196