xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cstdint>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "x86-isel"
38 #define PASS_NAME "X86 DAG->DAG Instruction Selection"
39 
40 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
41 
42 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
43     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
44     cl::Hidden);
45 
46 static cl::opt<bool> EnablePromoteAnyextLoad(
47     "x86-promote-anyext-load", cl::init(true),
48     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
49 
50 extern cl::opt<bool> IndirectBranchTracking;
51 
52 //===----------------------------------------------------------------------===//
53 //                      Pattern Matcher Implementation
54 //===----------------------------------------------------------------------===//
55 
56 namespace {
57   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
58   /// numbers for the leaves of the matched tree.
59   struct X86ISelAddressMode {
60     enum {
61       RegBase,
62       FrameIndexBase
63     } BaseType = RegBase;
64 
65     // This is really a union, discriminated by BaseType!
66     SDValue Base_Reg;
67     int Base_FrameIndex = 0;
68 
69     unsigned Scale = 1;
70     SDValue IndexReg;
71     int32_t Disp = 0;
72     SDValue Segment;
73     const GlobalValue *GV = nullptr;
74     const Constant *CP = nullptr;
75     const BlockAddress *BlockAddr = nullptr;
76     const char *ES = nullptr;
77     MCSymbol *MCSym = nullptr;
78     int JT = -1;
79     Align Alignment;            // CP alignment.
80     unsigned char SymbolFlags = X86II::MO_NO_FLAG;  // X86II::MO_*
81     bool NegateIndex = false;
82 
83     X86ISelAddressMode() = default;
84 
85     bool hasSymbolicDisplacement() const {
86       return GV != nullptr || CP != nullptr || ES != nullptr ||
87              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
88     }
89 
90     bool hasBaseOrIndexReg() const {
91       return BaseType == FrameIndexBase ||
92              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
93     }
94 
95     /// Return true if this addressing mode is already RIP-relative.
96     bool isRIPRelative() const {
97       if (BaseType != RegBase) return false;
98       if (RegisterSDNode *RegNode =
99             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
100         return RegNode->getReg() == X86::RIP;
101       return false;
102     }
103 
104     void setBaseReg(SDValue Reg) {
105       BaseType = RegBase;
106       Base_Reg = Reg;
107     }
108 
109 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
110     void dump(SelectionDAG *DAG = nullptr) {
111       dbgs() << "X86ISelAddressMode " << this << '\n';
112       dbgs() << "Base_Reg ";
113       if (Base_Reg.getNode())
114         Base_Reg.getNode()->dump(DAG);
115       else
116         dbgs() << "nul\n";
117       if (BaseType == FrameIndexBase)
118         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
119       dbgs() << " Scale " << Scale << '\n'
120              << "IndexReg ";
121       if (NegateIndex)
122         dbgs() << "negate ";
123       if (IndexReg.getNode())
124         IndexReg.getNode()->dump(DAG);
125       else
126         dbgs() << "nul\n";
127       dbgs() << " Disp " << Disp << '\n'
128              << "GV ";
129       if (GV)
130         GV->dump();
131       else
132         dbgs() << "nul";
133       dbgs() << " CP ";
134       if (CP)
135         CP->dump();
136       else
137         dbgs() << "nul";
138       dbgs() << '\n'
139              << "ES ";
140       if (ES)
141         dbgs() << ES;
142       else
143         dbgs() << "nul";
144       dbgs() << " MCSym ";
145       if (MCSym)
146         dbgs() << MCSym;
147       else
148         dbgs() << "nul";
149       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
150     }
151 #endif
152   };
153 }
154 
155 namespace {
156   //===--------------------------------------------------------------------===//
157   /// ISel - X86-specific code to select X86 machine instructions for
158   /// SelectionDAG operations.
159   ///
160   class X86DAGToDAGISel final : public SelectionDAGISel {
161     /// Keep a pointer to the X86Subtarget around so that we can
162     /// make the right decision when generating code for different targets.
163     const X86Subtarget *Subtarget;
164 
165     /// If true, selector should try to optimize for minimum code size.
166     bool OptForMinSize;
167 
168     /// Disable direct TLS access through segment registers.
169     bool IndirectTlsSegRefs;
170 
171   public:
172     static char ID;
173 
174     X86DAGToDAGISel() = delete;
175 
176     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOptLevel OptLevel)
177         : SelectionDAGISel(ID, tm, OptLevel), Subtarget(nullptr),
178           OptForMinSize(false), IndirectTlsSegRefs(false) {}
179 
180     bool runOnMachineFunction(MachineFunction &MF) override {
181       // Reset the subtarget each time through.
182       Subtarget = &MF.getSubtarget<X86Subtarget>();
183       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
184                              "indirect-tls-seg-refs");
185 
186       // OptFor[Min]Size are used in pattern predicates that isel is matching.
187       OptForMinSize = MF.getFunction().hasMinSize();
188       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
189              "OptForMinSize implies OptForSize");
190 
191       SelectionDAGISel::runOnMachineFunction(MF);
192       return true;
193     }
194 
195     void emitFunctionEntryCode() override;
196 
197     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
198 
199     void PreprocessISelDAG() override;
200     void PostprocessISelDAG() override;
201 
202 // Include the pieces autogenerated from the target description.
203 #include "X86GenDAGISel.inc"
204 
205   private:
206     void Select(SDNode *N) override;
207 
208     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
209     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
210                             bool AllowSegmentRegForX32 = false);
211     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
212     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
213     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
214     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
215     SDValue matchIndexRecursively(SDValue N, X86ISelAddressMode &AM,
216                                   unsigned Depth);
217     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218                                  unsigned Depth);
219     bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
220                                        unsigned Depth);
221     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
222     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
223                     SDValue &Scale, SDValue &Index, SDValue &Disp,
224                     SDValue &Segment);
225     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
226                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
227                           SDValue &Index, SDValue &Disp, SDValue &Segment);
228     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
229     bool selectLEAAddr(SDValue N, SDValue &Base,
230                        SDValue &Scale, SDValue &Index, SDValue &Disp,
231                        SDValue &Segment);
232     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
233                             SDValue &Scale, SDValue &Index, SDValue &Disp,
234                             SDValue &Segment);
235     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
236                            SDValue &Scale, SDValue &Index, SDValue &Disp,
237                            SDValue &Segment);
238     bool selectRelocImm(SDValue N, SDValue &Op);
239 
240     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
241                      SDValue &Base, SDValue &Scale,
242                      SDValue &Index, SDValue &Disp,
243                      SDValue &Segment);
244 
245     // Convenience method where P is also root.
246     bool tryFoldLoad(SDNode *P, SDValue N,
247                      SDValue &Base, SDValue &Scale,
248                      SDValue &Index, SDValue &Disp,
249                      SDValue &Segment) {
250       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
251     }
252 
253     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
254                           SDValue &Base, SDValue &Scale,
255                           SDValue &Index, SDValue &Disp,
256                           SDValue &Segment);
257 
258     bool isProfitableToFormMaskedOp(SDNode *N) const;
259 
260     /// Implement addressing mode selection for inline asm expressions.
261     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
262                                       InlineAsm::ConstraintCode ConstraintID,
263                                       std::vector<SDValue> &OutOps) override;
264 
265     void emitSpecialCodeForMain();
266 
267     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
268                                    MVT VT, SDValue &Base, SDValue &Scale,
269                                    SDValue &Index, SDValue &Disp,
270                                    SDValue &Segment) {
271       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
272         Base = CurDAG->getTargetFrameIndex(
273             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
274       else if (AM.Base_Reg.getNode())
275         Base = AM.Base_Reg;
276       else
277         Base = CurDAG->getRegister(0, VT);
278 
279       Scale = getI8Imm(AM.Scale, DL);
280 
281       // Negate the index if needed.
282       if (AM.NegateIndex) {
283         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
284         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
285                                                      AM.IndexReg), 0);
286         AM.IndexReg = Neg;
287       }
288 
289       if (AM.IndexReg.getNode())
290         Index = AM.IndexReg;
291       else
292         Index = CurDAG->getRegister(0, VT);
293 
294       // These are 32-bit even in 64-bit mode since RIP-relative offset
295       // is 32-bit.
296       if (AM.GV)
297         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
298                                               MVT::i32, AM.Disp,
299                                               AM.SymbolFlags);
300       else if (AM.CP)
301         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
302                                              AM.Disp, AM.SymbolFlags);
303       else if (AM.ES) {
304         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
305         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
306       } else if (AM.MCSym) {
307         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
308         assert(AM.SymbolFlags == 0 && "oo");
309         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
310       } else if (AM.JT != -1) {
311         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
312         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
313       } else if (AM.BlockAddr)
314         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
315                                              AM.SymbolFlags);
316       else
317         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
318 
319       if (AM.Segment.getNode())
320         Segment = AM.Segment;
321       else
322         Segment = CurDAG->getRegister(0, MVT::i16);
323     }
324 
325     // Utility function to determine whether we should avoid selecting
326     // immediate forms of instructions for better code size or not.
327     // At a high level, we'd like to avoid such instructions when
328     // we have similar constants used within the same basic block
329     // that can be kept in a register.
330     //
331     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
332       uint32_t UseCount = 0;
333 
334       // Do not want to hoist if we're not optimizing for size.
335       // TODO: We'd like to remove this restriction.
336       // See the comment in X86InstrInfo.td for more info.
337       if (!CurDAG->shouldOptForSize())
338         return false;
339 
340       // Walk all the users of the immediate.
341       for (const SDNode *User : N->uses()) {
342         if (UseCount >= 2)
343           break;
344 
345         // This user is already selected. Count it as a legitimate use and
346         // move on.
347         if (User->isMachineOpcode()) {
348           UseCount++;
349           continue;
350         }
351 
352         // We want to count stores of immediates as real uses.
353         if (User->getOpcode() == ISD::STORE &&
354             User->getOperand(1).getNode() == N) {
355           UseCount++;
356           continue;
357         }
358 
359         // We don't currently match users that have > 2 operands (except
360         // for stores, which are handled above)
361         // Those instruction won't match in ISEL, for now, and would
362         // be counted incorrectly.
363         // This may change in the future as we add additional instruction
364         // types.
365         if (User->getNumOperands() != 2)
366           continue;
367 
368         // If this is a sign-extended 8-bit integer immediate used in an ALU
369         // instruction, there is probably an opcode encoding to save space.
370         auto *C = dyn_cast<ConstantSDNode>(N);
371         if (C && isInt<8>(C->getSExtValue()))
372           continue;
373 
374         // Immediates that are used for offsets as part of stack
375         // manipulation should be left alone. These are typically
376         // used to indicate SP offsets for argument passing and
377         // will get pulled into stores/pushes (implicitly).
378         if (User->getOpcode() == X86ISD::ADD ||
379             User->getOpcode() == ISD::ADD    ||
380             User->getOpcode() == X86ISD::SUB ||
381             User->getOpcode() == ISD::SUB) {
382 
383           // Find the other operand of the add/sub.
384           SDValue OtherOp = User->getOperand(0);
385           if (OtherOp.getNode() == N)
386             OtherOp = User->getOperand(1);
387 
388           // Don't count if the other operand is SP.
389           RegisterSDNode *RegNode;
390           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
391               (RegNode = dyn_cast_or_null<RegisterSDNode>(
392                  OtherOp->getOperand(1).getNode())))
393             if ((RegNode->getReg() == X86::ESP) ||
394                 (RegNode->getReg() == X86::RSP))
395               continue;
396         }
397 
398         // ... otherwise, count this and move on.
399         UseCount++;
400       }
401 
402       // If we have more than 1 use, then recommend for hoisting.
403       return (UseCount > 1);
404     }
405 
406     /// Return a target constant with the specified value of type i8.
407     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
408       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
409     }
410 
411     /// Return a target constant with the specified value, of type i32.
412     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
413       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
414     }
415 
416     /// Return a target constant with the specified value, of type i64.
417     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
418       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
419     }
420 
421     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
422                                         const SDLoc &DL) {
423       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
424       uint64_t Index = N->getConstantOperandVal(1);
425       MVT VecVT = N->getOperand(0).getSimpleValueType();
426       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
427     }
428 
429     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
430                                       const SDLoc &DL) {
431       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
432       uint64_t Index = N->getConstantOperandVal(2);
433       MVT VecVT = N->getSimpleValueType(0);
434       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
435     }
436 
437     SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
438                                                const SDLoc &DL) {
439       assert(VecWidth == 128 && "Unexpected vector width");
440       uint64_t Index = N->getConstantOperandVal(2);
441       MVT VecVT = N->getSimpleValueType(0);
442       uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
443       assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
444       // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
445       // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
446       return getI8Imm(InsertIdx ? 0x02 : 0x30, DL);
447     }
448 
449     SDValue getSBBZero(SDNode *N) {
450       SDLoc dl(N);
451       MVT VT = N->getSimpleValueType(0);
452 
453       // Create zero.
454       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
455       SDValue Zero = SDValue(
456           CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
457       if (VT == MVT::i64) {
458         Zero = SDValue(
459             CurDAG->getMachineNode(
460                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
461                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
462                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
463             0);
464       }
465 
466       // Copy flags to the EFLAGS register and glue it to next node.
467       unsigned Opcode = N->getOpcode();
468       assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) &&
469              "Unexpected opcode for SBB materialization");
470       unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1;
471       SDValue EFLAGS =
472           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
473                                N->getOperand(FlagOpIndex), SDValue());
474 
475       // Create a 64-bit instruction if the result is 64-bits otherwise use the
476       // 32-bit version.
477       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
478       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
479       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
480       return SDValue(
481           CurDAG->getMachineNode(Opc, dl, VTs,
482                                  {Zero, Zero, EFLAGS, EFLAGS.getValue(1)}),
483           0);
484     }
485 
486     // Helper to detect unneeded and instructions on shift amounts. Called
487     // from PatFrags in tablegen.
488     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
489       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
490       const APInt &Val = N->getConstantOperandAPInt(1);
491 
492       if (Val.countr_one() >= Width)
493         return true;
494 
495       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
496       return Mask.countr_one() >= Width;
497     }
498 
499     /// Return an SDNode that returns the value of the global base register.
500     /// Output instructions required to initialize the global base register,
501     /// if necessary.
502     SDNode *getGlobalBaseReg();
503 
504     /// Return a reference to the TargetMachine, casted to the target-specific
505     /// type.
506     const X86TargetMachine &getTargetMachine() const {
507       return static_cast<const X86TargetMachine &>(TM);
508     }
509 
510     /// Return a reference to the TargetInstrInfo, casted to the target-specific
511     /// type.
512     const X86InstrInfo *getInstrInfo() const {
513       return Subtarget->getInstrInfo();
514     }
515 
516     /// Return a condition code of the given SDNode
517     X86::CondCode getCondFromNode(SDNode *N) const;
518 
519     /// Address-mode matching performs shift-of-and to and-of-shift
520     /// reassociation in order to expose more scaled addressing
521     /// opportunities.
522     bool ComplexPatternFuncMutatesDAG() const override {
523       return true;
524     }
525 
526     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
527 
528     // Indicates we should prefer to use a non-temporal load for this load.
529     bool useNonTemporalLoad(LoadSDNode *N) const {
530       if (!N->isNonTemporal())
531         return false;
532 
533       unsigned StoreSize = N->getMemoryVT().getStoreSize();
534 
535       if (N->getAlign().value() < StoreSize)
536         return false;
537 
538       switch (StoreSize) {
539       default: llvm_unreachable("Unsupported store size");
540       case 4:
541       case 8:
542         return false;
543       case 16:
544         return Subtarget->hasSSE41();
545       case 32:
546         return Subtarget->hasAVX2();
547       case 64:
548         return Subtarget->hasAVX512();
549       }
550     }
551 
552     bool foldLoadStoreIntoMemOperand(SDNode *Node);
553     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
554     bool matchBitExtract(SDNode *Node);
555     bool shrinkAndImmediate(SDNode *N);
556     bool isMaskZeroExtended(SDNode *N) const;
557     bool tryShiftAmountMod(SDNode *N);
558     bool tryShrinkShlLogicImm(SDNode *N);
559     bool tryVPTERNLOG(SDNode *N);
560     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
561                         SDNode *ParentC, SDValue A, SDValue B, SDValue C,
562                         uint8_t Imm);
563     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
564     bool tryMatchBitSelect(SDNode *N);
565 
566     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
567                                 const SDLoc &dl, MVT VT, SDNode *Node);
568     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
569                                 const SDLoc &dl, MVT VT, SDNode *Node,
570                                 SDValue &InGlue);
571 
572     bool tryOptimizeRem8Extend(SDNode *N);
573 
574     bool onlyUsesZeroFlag(SDValue Flags) const;
575     bool hasNoSignFlagUses(SDValue Flags) const;
576     bool hasNoCarryFlagUses(SDValue Flags) const;
577   };
578 }
579 
580 char X86DAGToDAGISel::ID = 0;
581 
582 INITIALIZE_PASS(X86DAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
583 
584 // Returns true if this masked compare can be implemented legally with this
585 // type.
586 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
587   unsigned Opcode = N->getOpcode();
588   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
589       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
590       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
591     // We can get 256-bit 8 element types here without VLX being enabled. When
592     // this happens we will use 512-bit operations and the mask will not be
593     // zero extended.
594     EVT OpVT = N->getOperand(0).getValueType();
595     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
596     // second operand.
597     if (Opcode == X86ISD::STRICT_CMPM)
598       OpVT = N->getOperand(1).getValueType();
599     if (OpVT.is256BitVector() || OpVT.is128BitVector())
600       return Subtarget->hasVLX();
601 
602     return true;
603   }
604   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
605   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
606       Opcode == X86ISD::FSETCCM_SAE)
607     return true;
608 
609   return false;
610 }
611 
612 // Returns true if we can assume the writer of the mask has zero extended it
613 // for us.
614 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
615   // If this is an AND, check if we have a compare on either side. As long as
616   // one side guarantees the mask is zero extended, the AND will preserve those
617   // zeros.
618   if (N->getOpcode() == ISD::AND)
619     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
620            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
621 
622   return isLegalMaskCompare(N, Subtarget);
623 }
624 
625 bool
626 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
627   if (OptLevel == CodeGenOptLevel::None)
628     return false;
629 
630   if (!N.hasOneUse())
631     return false;
632 
633   if (N.getOpcode() != ISD::LOAD)
634     return true;
635 
636   // Don't fold non-temporal loads if we have an instruction for them.
637   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
638     return false;
639 
640   // If N is a load, do additional profitability checks.
641   if (U == Root) {
642     switch (U->getOpcode()) {
643     default: break;
644     case X86ISD::ADD:
645     case X86ISD::ADC:
646     case X86ISD::SUB:
647     case X86ISD::SBB:
648     case X86ISD::AND:
649     case X86ISD::XOR:
650     case X86ISD::OR:
651     case ISD::ADD:
652     case ISD::UADDO_CARRY:
653     case ISD::AND:
654     case ISD::OR:
655     case ISD::XOR: {
656       SDValue Op1 = U->getOperand(1);
657 
658       // If the other operand is a 8-bit immediate we should fold the immediate
659       // instead. This reduces code size.
660       // e.g.
661       // movl 4(%esp), %eax
662       // addl $4, %eax
663       // vs.
664       // movl $4, %eax
665       // addl 4(%esp), %eax
666       // The former is 2 bytes shorter. In case where the increment is 1, then
667       // the saving can be 4 bytes (by using incl %eax).
668       if (auto *Imm = dyn_cast<ConstantSDNode>(Op1)) {
669         if (Imm->getAPIntValue().isSignedIntN(8))
670           return false;
671 
672         // If this is a 64-bit AND with an immediate that fits in 32-bits,
673         // prefer using the smaller and over folding the load. This is needed to
674         // make sure immediates created by shrinkAndImmediate are always folded.
675         // Ideally we would narrow the load during DAG combine and get the
676         // best of both worlds.
677         if (U->getOpcode() == ISD::AND &&
678             Imm->getAPIntValue().getBitWidth() == 64 &&
679             Imm->getAPIntValue().isIntN(32))
680           return false;
681 
682         // If this really a zext_inreg that can be represented with a movzx
683         // instruction, prefer that.
684         // TODO: We could shrink the load and fold if it is non-volatile.
685         if (U->getOpcode() == ISD::AND &&
686             (Imm->getAPIntValue() == UINT8_MAX ||
687              Imm->getAPIntValue() == UINT16_MAX ||
688              Imm->getAPIntValue() == UINT32_MAX))
689           return false;
690 
691         // ADD/SUB with can negate the immediate and use the opposite operation
692         // to fit 128 into a sign extended 8 bit immediate.
693         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
694             (-Imm->getAPIntValue()).isSignedIntN(8))
695           return false;
696 
697         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
698             (-Imm->getAPIntValue()).isSignedIntN(8) &&
699             hasNoCarryFlagUses(SDValue(U, 1)))
700           return false;
701       }
702 
703       // If the other operand is a TLS address, we should fold it instead.
704       // This produces
705       // movl    %gs:0, %eax
706       // leal    i@NTPOFF(%eax), %eax
707       // instead of
708       // movl    $i@NTPOFF, %eax
709       // addl    %gs:0, %eax
710       // if the block also has an access to a second TLS address this will save
711       // a load.
712       // FIXME: This is probably also true for non-TLS addresses.
713       if (Op1.getOpcode() == X86ISD::Wrapper) {
714         SDValue Val = Op1.getOperand(0);
715         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
716           return false;
717       }
718 
719       // Don't fold load if this matches the BTS/BTR/BTC patterns.
720       // BTS: (or X, (shl 1, n))
721       // BTR: (and X, (rotl -2, n))
722       // BTC: (xor X, (shl 1, n))
723       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
724         if (U->getOperand(0).getOpcode() == ISD::SHL &&
725             isOneConstant(U->getOperand(0).getOperand(0)))
726           return false;
727 
728         if (U->getOperand(1).getOpcode() == ISD::SHL &&
729             isOneConstant(U->getOperand(1).getOperand(0)))
730           return false;
731       }
732       if (U->getOpcode() == ISD::AND) {
733         SDValue U0 = U->getOperand(0);
734         SDValue U1 = U->getOperand(1);
735         if (U0.getOpcode() == ISD::ROTL) {
736           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
737           if (C && C->getSExtValue() == -2)
738             return false;
739         }
740 
741         if (U1.getOpcode() == ISD::ROTL) {
742           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
743           if (C && C->getSExtValue() == -2)
744             return false;
745         }
746       }
747 
748       break;
749     }
750     case ISD::SHL:
751     case ISD::SRA:
752     case ISD::SRL:
753       // Don't fold a load into a shift by immediate. The BMI2 instructions
754       // support folding a load, but not an immediate. The legacy instructions
755       // support folding an immediate, but can't fold a load. Folding an
756       // immediate is preferable to folding a load.
757       if (isa<ConstantSDNode>(U->getOperand(1)))
758         return false;
759 
760       break;
761     }
762   }
763 
764   // Prevent folding a load if this can implemented with an insert_subreg or
765   // a move that implicitly zeroes.
766   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
767       isNullConstant(Root->getOperand(2)) &&
768       (Root->getOperand(0).isUndef() ||
769        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
770     return false;
771 
772   return true;
773 }
774 
775 // Indicates it is profitable to form an AVX512 masked operation. Returning
776 // false will favor a masked register-register masked move or vblendm and the
777 // operation will be selected separately.
778 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
779   assert(
780       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
781       "Unexpected opcode!");
782 
783   // If the operation has additional users, the operation will be duplicated.
784   // Check the use count to prevent that.
785   // FIXME: Are there cheap opcodes we might want to duplicate?
786   return N->getOperand(1).hasOneUse();
787 }
788 
789 /// Replace the original chain operand of the call with
790 /// load's chain operand and move load below the call's chain operand.
791 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
792                                SDValue Call, SDValue OrigChain) {
793   SmallVector<SDValue, 8> Ops;
794   SDValue Chain = OrigChain.getOperand(0);
795   if (Chain.getNode() == Load.getNode())
796     Ops.push_back(Load.getOperand(0));
797   else {
798     assert(Chain.getOpcode() == ISD::TokenFactor &&
799            "Unexpected chain operand");
800     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
801       if (Chain.getOperand(i).getNode() == Load.getNode())
802         Ops.push_back(Load.getOperand(0));
803       else
804         Ops.push_back(Chain.getOperand(i));
805     SDValue NewChain =
806       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
807     Ops.clear();
808     Ops.push_back(NewChain);
809   }
810   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
811   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
812   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
813                              Load.getOperand(1), Load.getOperand(2));
814 
815   Ops.clear();
816   Ops.push_back(SDValue(Load.getNode(), 1));
817   Ops.append(Call->op_begin() + 1, Call->op_end());
818   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
819 }
820 
821 /// Return true if call address is a load and it can be
822 /// moved below CALLSEQ_START and the chains leading up to the call.
823 /// Return the CALLSEQ_START by reference as a second output.
824 /// In the case of a tail call, there isn't a callseq node between the call
825 /// chain and the load.
826 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
827   // The transformation is somewhat dangerous if the call's chain was glued to
828   // the call. After MoveBelowOrigChain the load is moved between the call and
829   // the chain, this can create a cycle if the load is not folded. So it is
830   // *really* important that we are sure the load will be folded.
831   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
832     return false;
833   auto *LD = dyn_cast<LoadSDNode>(Callee.getNode());
834   if (!LD ||
835       !LD->isSimple() ||
836       LD->getAddressingMode() != ISD::UNINDEXED ||
837       LD->getExtensionType() != ISD::NON_EXTLOAD)
838     return false;
839 
840   // Now let's find the callseq_start.
841   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
842     if (!Chain.hasOneUse())
843       return false;
844     Chain = Chain.getOperand(0);
845   }
846 
847   if (!Chain.getNumOperands())
848     return false;
849   // Since we are not checking for AA here, conservatively abort if the chain
850   // writes to memory. It's not safe to move the callee (a load) across a store.
851   if (isa<MemSDNode>(Chain.getNode()) &&
852       cast<MemSDNode>(Chain.getNode())->writeMem())
853     return false;
854   if (Chain.getOperand(0).getNode() == Callee.getNode())
855     return true;
856   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
857       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
858       Callee.getValue(1).hasOneUse())
859     return true;
860   return false;
861 }
862 
863 static bool isEndbrImm64(uint64_t Imm) {
864 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
865 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
866   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
867     return false;
868 
869   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
870                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
871   int i = 24; // 24bit 0x0F1EFA has matched
872   while (i < 64) {
873     uint8_t Byte = (Imm >> i) & 0xFF;
874     if (Byte == 0xF3)
875       return true;
876     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
877       return false;
878     i += 8;
879   }
880 
881   return false;
882 }
883 
884 static bool needBWI(MVT VT) {
885   return (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v64i8);
886 }
887 
888 void X86DAGToDAGISel::PreprocessISelDAG() {
889   bool MadeChange = false;
890   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
891        E = CurDAG->allnodes_end(); I != E; ) {
892     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
893 
894     // This is for CET enhancement.
895     //
896     // ENDBR32 and ENDBR64 have specific opcodes:
897     // ENDBR32: F3 0F 1E FB
898     // ENDBR64: F3 0F 1E FA
899     // And we want that attackers won’t find unintended ENDBR32/64
900     // opcode matches in the binary
901     // Here’s an example:
902     // If the compiler had to generate asm for the following code:
903     // a = 0xF30F1EFA
904     // it could, for example, generate:
905     // mov 0xF30F1EFA, dword ptr[a]
906     // In such a case, the binary would include a gadget that starts
907     // with a fake ENDBR64 opcode. Therefore, we split such generation
908     // into multiple operations, let it not shows in the binary
909     if (N->getOpcode() == ISD::Constant) {
910       MVT VT = N->getSimpleValueType(0);
911       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
912       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
913       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
914         // Check that the cf-protection-branch is enabled.
915         Metadata *CFProtectionBranch =
916           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
917         if (CFProtectionBranch || IndirectBranchTracking) {
918           SDLoc dl(N);
919           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
920           Complement = CurDAG->getNOT(dl, Complement, VT);
921           --I;
922           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
923           ++I;
924           MadeChange = true;
925           continue;
926         }
927       }
928     }
929 
930     // If this is a target specific AND node with no flag usages, turn it back
931     // into ISD::AND to enable test instruction matching.
932     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
933       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
934                                     N->getOperand(0), N->getOperand(1));
935       --I;
936       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
937       ++I;
938       MadeChange = true;
939       continue;
940     }
941 
942     // Convert vector increment or decrement to sub/add with an all-ones
943     // constant:
944     // add X, <1, 1...> --> sub X, <-1, -1...>
945     // sub X, <1, 1...> --> add X, <-1, -1...>
946     // The all-ones vector constant can be materialized using a pcmpeq
947     // instruction that is commonly recognized as an idiom (has no register
948     // dependency), so that's better/smaller than loading a splat 1 constant.
949     //
950     // But don't do this if it would inhibit a potentially profitable load
951     // folding opportunity for the other operand. That only occurs with the
952     // intersection of:
953     // (1) The other operand (op0) is load foldable.
954     // (2) The op is an add (otherwise, we are *creating* an add and can still
955     //     load fold the other op).
956     // (3) The target has AVX (otherwise, we have a destructive add and can't
957     //     load fold the other op without killing the constant op).
958     // (4) The constant 1 vector has multiple uses (so it is profitable to load
959     //     into a register anyway).
960     auto mayPreventLoadFold = [&]() {
961       return X86::mayFoldLoad(N->getOperand(0), *Subtarget) &&
962              N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
963              !N->getOperand(1).hasOneUse();
964     };
965     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
966         N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) {
967       APInt SplatVal;
968       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
969           SplatVal.isOne()) {
970         SDLoc DL(N);
971 
972         MVT VT = N->getSimpleValueType(0);
973         unsigned NumElts = VT.getSizeInBits() / 32;
974         SDValue AllOnes =
975             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
976         AllOnes = CurDAG->getBitcast(VT, AllOnes);
977 
978         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
979         SDValue Res =
980             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
981         --I;
982         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
983         ++I;
984         MadeChange = true;
985         continue;
986       }
987     }
988 
989     switch (N->getOpcode()) {
990     case X86ISD::VBROADCAST: {
991       MVT VT = N->getSimpleValueType(0);
992       // Emulate v32i16/v64i8 broadcast without BWI.
993       if (!Subtarget->hasBWI() && needBWI(VT)) {
994         MVT NarrowVT = VT.getHalfNumVectorElementsVT();
995         SDLoc dl(N);
996         SDValue NarrowBCast =
997             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
998         SDValue Res =
999             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1000                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1001         unsigned Index = NarrowVT.getVectorMinNumElements();
1002         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1003                               CurDAG->getIntPtrConstant(Index, dl));
1004 
1005         --I;
1006         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1007         ++I;
1008         MadeChange = true;
1009         continue;
1010       }
1011 
1012       break;
1013     }
1014     case X86ISD::VBROADCAST_LOAD: {
1015       MVT VT = N->getSimpleValueType(0);
1016       // Emulate v32i16/v64i8 broadcast without BWI.
1017       if (!Subtarget->hasBWI() && needBWI(VT)) {
1018         MVT NarrowVT = VT.getHalfNumVectorElementsVT();
1019         auto *MemNode = cast<MemSDNode>(N);
1020         SDLoc dl(N);
1021         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
1022         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
1023         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
1024             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
1025             MemNode->getMemOperand());
1026         SDValue Res =
1027             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
1028                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
1029         unsigned Index = NarrowVT.getVectorMinNumElements();
1030         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
1031                               CurDAG->getIntPtrConstant(Index, dl));
1032 
1033         --I;
1034         SDValue To[] = {Res, NarrowBCast.getValue(1)};
1035         CurDAG->ReplaceAllUsesWith(N, To);
1036         ++I;
1037         MadeChange = true;
1038         continue;
1039       }
1040 
1041       break;
1042     }
1043     case ISD::LOAD: {
1044       // If this is a XMM/YMM load of the same lower bits as another YMM/ZMM
1045       // load, then just extract the lower subvector and avoid the second load.
1046       auto *Ld = cast<LoadSDNode>(N);
1047       MVT VT = N->getSimpleValueType(0);
1048       if (!ISD::isNormalLoad(Ld) || !Ld->isSimple() ||
1049           !(VT.is128BitVector() || VT.is256BitVector()))
1050         break;
1051 
1052       MVT MaxVT = VT;
1053       SDNode *MaxLd = nullptr;
1054       SDValue Ptr = Ld->getBasePtr();
1055       SDValue Chain = Ld->getChain();
1056       for (SDNode *User : Ptr->uses()) {
1057         auto *UserLd = dyn_cast<LoadSDNode>(User);
1058         MVT UserVT = User->getSimpleValueType(0);
1059         if (User != N && UserLd && ISD::isNormalLoad(User) &&
1060             UserLd->getBasePtr() == Ptr && UserLd->getChain() == Chain &&
1061             !User->hasAnyUseOfValue(1) &&
1062             (UserVT.is256BitVector() || UserVT.is512BitVector()) &&
1063             UserVT.getSizeInBits() > VT.getSizeInBits() &&
1064             (!MaxLd || UserVT.getSizeInBits() > MaxVT.getSizeInBits())) {
1065           MaxLd = User;
1066           MaxVT = UserVT;
1067         }
1068       }
1069       if (MaxLd) {
1070         SDLoc dl(N);
1071         unsigned NumSubElts = VT.getSizeInBits() / MaxVT.getScalarSizeInBits();
1072         MVT SubVT = MVT::getVectorVT(MaxVT.getScalarType(), NumSubElts);
1073         SDValue Extract = CurDAG->getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT,
1074                                           SDValue(MaxLd, 0),
1075                                           CurDAG->getIntPtrConstant(0, dl));
1076         SDValue Res = CurDAG->getBitcast(VT, Extract);
1077 
1078         --I;
1079         SDValue To[] = {Res, SDValue(MaxLd, 1)};
1080         CurDAG->ReplaceAllUsesWith(N, To);
1081         ++I;
1082         MadeChange = true;
1083         continue;
1084       }
1085       break;
1086     }
1087     case ISD::VSELECT: {
1088       // Replace VSELECT with non-mask conditions with with BLENDV/VPTERNLOG.
1089       EVT EleVT = N->getOperand(0).getValueType().getVectorElementType();
1090       if (EleVT == MVT::i1)
1091         break;
1092 
1093       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
1094       assert(N->getValueType(0).getVectorElementType() != MVT::i16 &&
1095              "We can't replace VSELECT with BLENDV in vXi16!");
1096       SDValue R;
1097       if (Subtarget->hasVLX() && CurDAG->ComputeNumSignBits(N->getOperand(0)) ==
1098                                      EleVT.getSizeInBits()) {
1099         R = CurDAG->getNode(X86ISD::VPTERNLOG, SDLoc(N), N->getValueType(0),
1100                             N->getOperand(0), N->getOperand(1), N->getOperand(2),
1101                             CurDAG->getTargetConstant(0xCA, SDLoc(N), MVT::i8));
1102       } else {
1103         R = CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
1104                             N->getOperand(0), N->getOperand(1),
1105                             N->getOperand(2));
1106       }
1107       --I;
1108       CurDAG->ReplaceAllUsesWith(N, R.getNode());
1109       ++I;
1110       MadeChange = true;
1111       continue;
1112     }
1113     case ISD::FP_ROUND:
1114     case ISD::STRICT_FP_ROUND:
1115     case ISD::FP_TO_SINT:
1116     case ISD::FP_TO_UINT:
1117     case ISD::STRICT_FP_TO_SINT:
1118     case ISD::STRICT_FP_TO_UINT: {
1119       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
1120       // don't need 2 sets of patterns.
1121       if (!N->getSimpleValueType(0).isVector())
1122         break;
1123 
1124       unsigned NewOpc;
1125       switch (N->getOpcode()) {
1126       default: llvm_unreachable("Unexpected opcode!");
1127       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
1128       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
1129       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
1130       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
1131       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1132       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
1133       }
1134       SDValue Res;
1135       if (N->isStrictFPOpcode())
1136         Res =
1137             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1138                             {N->getOperand(0), N->getOperand(1)});
1139       else
1140         Res =
1141             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1142                             N->getOperand(0));
1143       --I;
1144       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1145       ++I;
1146       MadeChange = true;
1147       continue;
1148     }
1149     case ISD::SHL:
1150     case ISD::SRA:
1151     case ISD::SRL: {
1152       // Replace vector shifts with their X86 specific equivalent so we don't
1153       // need 2 sets of patterns.
1154       if (!N->getValueType(0).isVector())
1155         break;
1156 
1157       unsigned NewOpc;
1158       switch (N->getOpcode()) {
1159       default: llvm_unreachable("Unexpected opcode!");
1160       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1161       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1162       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1163       }
1164       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1165                                     N->getOperand(0), N->getOperand(1));
1166       --I;
1167       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1168       ++I;
1169       MadeChange = true;
1170       continue;
1171     }
1172     case ISD::ANY_EXTEND:
1173     case ISD::ANY_EXTEND_VECTOR_INREG: {
1174       // Replace vector any extend with the zero extend equivalents so we don't
1175       // need 2 sets of patterns. Ignore vXi1 extensions.
1176       if (!N->getValueType(0).isVector())
1177         break;
1178 
1179       unsigned NewOpc;
1180       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1181         assert(N->getOpcode() == ISD::ANY_EXTEND &&
1182                "Unexpected opcode for mask vector!");
1183         NewOpc = ISD::SIGN_EXTEND;
1184       } else {
1185         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1186                               ? ISD::ZERO_EXTEND
1187                               : ISD::ZERO_EXTEND_VECTOR_INREG;
1188       }
1189 
1190       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1191                                     N->getOperand(0));
1192       --I;
1193       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1194       ++I;
1195       MadeChange = true;
1196       continue;
1197     }
1198     case ISD::FCEIL:
1199     case ISD::STRICT_FCEIL:
1200     case ISD::FFLOOR:
1201     case ISD::STRICT_FFLOOR:
1202     case ISD::FTRUNC:
1203     case ISD::STRICT_FTRUNC:
1204     case ISD::FROUNDEVEN:
1205     case ISD::STRICT_FROUNDEVEN:
1206     case ISD::FNEARBYINT:
1207     case ISD::STRICT_FNEARBYINT:
1208     case ISD::FRINT:
1209     case ISD::STRICT_FRINT: {
1210       // Replace fp rounding with their X86 specific equivalent so we don't
1211       // need 2 sets of patterns.
1212       unsigned Imm;
1213       switch (N->getOpcode()) {
1214       default: llvm_unreachable("Unexpected opcode!");
1215       case ISD::STRICT_FCEIL:
1216       case ISD::FCEIL:      Imm = 0xA; break;
1217       case ISD::STRICT_FFLOOR:
1218       case ISD::FFLOOR:     Imm = 0x9; break;
1219       case ISD::STRICT_FTRUNC:
1220       case ISD::FTRUNC:     Imm = 0xB; break;
1221       case ISD::STRICT_FROUNDEVEN:
1222       case ISD::FROUNDEVEN: Imm = 0x8; break;
1223       case ISD::STRICT_FNEARBYINT:
1224       case ISD::FNEARBYINT: Imm = 0xC; break;
1225       case ISD::STRICT_FRINT:
1226       case ISD::FRINT:      Imm = 0x4; break;
1227       }
1228       SDLoc dl(N);
1229       bool IsStrict = N->isStrictFPOpcode();
1230       SDValue Res;
1231       if (IsStrict)
1232         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1233                               {N->getValueType(0), MVT::Other},
1234                               {N->getOperand(0), N->getOperand(1),
1235                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1236       else
1237         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1238                               N->getOperand(0),
1239                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1240       --I;
1241       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1242       ++I;
1243       MadeChange = true;
1244       continue;
1245     }
1246     case X86ISD::FANDN:
1247     case X86ISD::FAND:
1248     case X86ISD::FOR:
1249     case X86ISD::FXOR: {
1250       // Widen scalar fp logic ops to vector to reduce isel patterns.
1251       // FIXME: Can we do this during lowering/combine.
1252       MVT VT = N->getSimpleValueType(0);
1253       if (VT.isVector() || VT == MVT::f128)
1254         break;
1255 
1256       MVT VecVT = VT == MVT::f64   ? MVT::v2f64
1257                   : VT == MVT::f32 ? MVT::v4f32
1258                                    : MVT::v8f16;
1259 
1260       SDLoc dl(N);
1261       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1262                                     N->getOperand(0));
1263       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1264                                     N->getOperand(1));
1265 
1266       SDValue Res;
1267       if (Subtarget->hasSSE2()) {
1268         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1269         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1270         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1271         unsigned Opc;
1272         switch (N->getOpcode()) {
1273         default: llvm_unreachable("Unexpected opcode!");
1274         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1275         case X86ISD::FAND:  Opc = ISD::AND;      break;
1276         case X86ISD::FOR:   Opc = ISD::OR;       break;
1277         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
1278         }
1279         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1280         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1281       } else {
1282         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1283       }
1284       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1285                             CurDAG->getIntPtrConstant(0, dl));
1286       --I;
1287       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1288       ++I;
1289       MadeChange = true;
1290       continue;
1291     }
1292     }
1293 
1294     if (OptLevel != CodeGenOptLevel::None &&
1295         // Only do this when the target can fold the load into the call or
1296         // jmp.
1297         !Subtarget->useIndirectThunkCalls() &&
1298         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1299          (N->getOpcode() == X86ISD::TC_RETURN &&
1300           (Subtarget->is64Bit() ||
1301            !getTargetMachine().isPositionIndependent())))) {
1302       /// Also try moving call address load from outside callseq_start to just
1303       /// before the call to allow it to be folded.
1304       ///
1305       ///     [Load chain]
1306       ///         ^
1307       ///         |
1308       ///       [Load]
1309       ///       ^    ^
1310       ///       |    |
1311       ///      /      \--
1312       ///     /          |
1313       ///[CALLSEQ_START] |
1314       ///     ^          |
1315       ///     |          |
1316       /// [LOAD/C2Reg]   |
1317       ///     |          |
1318       ///      \        /
1319       ///       \      /
1320       ///       [CALL]
1321       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1322       SDValue Chain = N->getOperand(0);
1323       SDValue Load  = N->getOperand(1);
1324       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1325         continue;
1326       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1327       ++NumLoadMoved;
1328       MadeChange = true;
1329       continue;
1330     }
1331 
1332     // Lower fpround and fpextend nodes that target the FP stack to be store and
1333     // load to the stack.  This is a gross hack.  We would like to simply mark
1334     // these as being illegal, but when we do that, legalize produces these when
1335     // it expands calls, then expands these in the same legalize pass.  We would
1336     // like dag combine to be able to hack on these between the call expansion
1337     // and the node legalization.  As such this pass basically does "really
1338     // late" legalization of these inline with the X86 isel pass.
1339     // FIXME: This should only happen when not compiled with -O0.
1340     switch (N->getOpcode()) {
1341     default: continue;
1342     case ISD::FP_ROUND:
1343     case ISD::FP_EXTEND:
1344     {
1345       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1346       MVT DstVT = N->getSimpleValueType(0);
1347 
1348       // If any of the sources are vectors, no fp stack involved.
1349       if (SrcVT.isVector() || DstVT.isVector())
1350         continue;
1351 
1352       // If the source and destination are SSE registers, then this is a legal
1353       // conversion that should not be lowered.
1354       const X86TargetLowering *X86Lowering =
1355           static_cast<const X86TargetLowering *>(TLI);
1356       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1357       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1358       if (SrcIsSSE && DstIsSSE)
1359         continue;
1360 
1361       if (!SrcIsSSE && !DstIsSSE) {
1362         // If this is an FPStack extension, it is a noop.
1363         if (N->getOpcode() == ISD::FP_EXTEND)
1364           continue;
1365         // If this is a value-preserving FPStack truncation, it is a noop.
1366         if (N->getConstantOperandVal(1))
1367           continue;
1368       }
1369 
1370       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1371       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1372       // operations.  Based on this, decide what we want to do.
1373       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1374       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1375       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1376       MachinePointerInfo MPI =
1377           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1378       SDLoc dl(N);
1379 
1380       // FIXME: optimize the case where the src/dest is a load or store?
1381 
1382       SDValue Store = CurDAG->getTruncStore(
1383           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1384       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1385                                           MemTmp, MPI, MemVT);
1386 
1387       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1388       // extload we created.  This will cause general havok on the dag because
1389       // anything below the conversion could be folded into other existing nodes.
1390       // To avoid invalidating 'I', back it up to the convert node.
1391       --I;
1392       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1393       break;
1394     }
1395 
1396     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1397     //dealing with the chain differently, as there is already a preexisting chain.
1398     case ISD::STRICT_FP_ROUND:
1399     case ISD::STRICT_FP_EXTEND:
1400     {
1401       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1402       MVT DstVT = N->getSimpleValueType(0);
1403 
1404       // If any of the sources are vectors, no fp stack involved.
1405       if (SrcVT.isVector() || DstVT.isVector())
1406         continue;
1407 
1408       // If the source and destination are SSE registers, then this is a legal
1409       // conversion that should not be lowered.
1410       const X86TargetLowering *X86Lowering =
1411           static_cast<const X86TargetLowering *>(TLI);
1412       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1413       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1414       if (SrcIsSSE && DstIsSSE)
1415         continue;
1416 
1417       if (!SrcIsSSE && !DstIsSSE) {
1418         // If this is an FPStack extension, it is a noop.
1419         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1420           continue;
1421         // If this is a value-preserving FPStack truncation, it is a noop.
1422         if (N->getConstantOperandVal(2))
1423           continue;
1424       }
1425 
1426       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1427       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1428       // operations.  Based on this, decide what we want to do.
1429       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1430       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1431       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1432       MachinePointerInfo MPI =
1433           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1434       SDLoc dl(N);
1435 
1436       // FIXME: optimize the case where the src/dest is a load or store?
1437 
1438       //Since the operation is StrictFP, use the preexisting chain.
1439       SDValue Store, Result;
1440       if (!SrcIsSSE) {
1441         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1442         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1443         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1444                                             MPI, /*Align*/ std::nullopt,
1445                                             MachineMemOperand::MOStore);
1446         if (N->getFlags().hasNoFPExcept()) {
1447           SDNodeFlags Flags = Store->getFlags();
1448           Flags.setNoFPExcept(true);
1449           Store->setFlags(Flags);
1450         }
1451       } else {
1452         assert(SrcVT == MemVT && "Unexpected VT!");
1453         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1454                                  MPI);
1455       }
1456 
1457       if (!DstIsSSE) {
1458         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1459         SDValue Ops[] = {Store, MemTmp};
1460         Result = CurDAG->getMemIntrinsicNode(
1461             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1462             /*Align*/ std::nullopt, MachineMemOperand::MOLoad);
1463         if (N->getFlags().hasNoFPExcept()) {
1464           SDNodeFlags Flags = Result->getFlags();
1465           Flags.setNoFPExcept(true);
1466           Result->setFlags(Flags);
1467         }
1468       } else {
1469         assert(DstVT == MemVT && "Unexpected VT!");
1470         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1471       }
1472 
1473       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1474       // extload we created.  This will cause general havok on the dag because
1475       // anything below the conversion could be folded into other existing nodes.
1476       // To avoid invalidating 'I', back it up to the convert node.
1477       --I;
1478       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1479       break;
1480     }
1481     }
1482 
1483 
1484     // Now that we did that, the node is dead.  Increment the iterator to the
1485     // next node to process, then delete N.
1486     ++I;
1487     MadeChange = true;
1488   }
1489 
1490   // Remove any dead nodes that may have been left behind.
1491   if (MadeChange)
1492     CurDAG->RemoveDeadNodes();
1493 }
1494 
1495 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1496 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1497   unsigned Opc = N->getMachineOpcode();
1498   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1499       Opc != X86::MOVSX64rr8)
1500     return false;
1501 
1502   SDValue N0 = N->getOperand(0);
1503 
1504   // We need to be extracting the lower bit of an extend.
1505   if (!N0.isMachineOpcode() ||
1506       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1507       N0.getConstantOperandVal(1) != X86::sub_8bit)
1508     return false;
1509 
1510   // We're looking for either a movsx or movzx to match the original opcode.
1511   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1512                                                 : X86::MOVSX32rr8_NOREX;
1513   SDValue N00 = N0.getOperand(0);
1514   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1515     return false;
1516 
1517   if (Opc == X86::MOVSX64rr8) {
1518     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1519     // to 64.
1520     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1521                                                    MVT::i64, N00);
1522     ReplaceUses(N, Extend);
1523   } else {
1524     // Ok we can drop this extend and just use the original extend.
1525     ReplaceUses(N, N00.getNode());
1526   }
1527 
1528   return true;
1529 }
1530 
1531 void X86DAGToDAGISel::PostprocessISelDAG() {
1532   // Skip peepholes at -O0.
1533   if (TM.getOptLevel() == CodeGenOptLevel::None)
1534     return;
1535 
1536   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1537 
1538   bool MadeChange = false;
1539   while (Position != CurDAG->allnodes_begin()) {
1540     SDNode *N = &*--Position;
1541     // Skip dead nodes and any non-machine opcodes.
1542     if (N->use_empty() || !N->isMachineOpcode())
1543       continue;
1544 
1545     if (tryOptimizeRem8Extend(N)) {
1546       MadeChange = true;
1547       continue;
1548     }
1549 
1550     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1551     // the same. Rewrite to remove the AND.
1552     unsigned Opc = N->getMachineOpcode();
1553     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1554          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1555         N->getOperand(0) == N->getOperand(1) &&
1556         N->getOperand(0)->hasNUsesOfValue(2, N->getOperand(0).getResNo()) &&
1557         N->getOperand(0).isMachineOpcode()) {
1558       SDValue And = N->getOperand(0);
1559       unsigned N0Opc = And.getMachineOpcode();
1560       if ((N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1561            N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) &&
1562           !And->hasAnyUseOfValue(1)) {
1563         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1564                                                      MVT::i32,
1565                                                      And.getOperand(0),
1566                                                      And.getOperand(1));
1567         ReplaceUses(N, Test);
1568         MadeChange = true;
1569         continue;
1570       }
1571       if ((N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1572            N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) &&
1573           !And->hasAnyUseOfValue(1)) {
1574         unsigned NewOpc;
1575         switch (N0Opc) {
1576         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1577         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1578         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1579         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1580         }
1581 
1582         // Need to swap the memory and register operand.
1583         SDValue Ops[] = { And.getOperand(1),
1584                           And.getOperand(2),
1585                           And.getOperand(3),
1586                           And.getOperand(4),
1587                           And.getOperand(5),
1588                           And.getOperand(0),
1589                           And.getOperand(6)  /* Chain */ };
1590         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1591                                                      MVT::i32, MVT::Other, Ops);
1592         CurDAG->setNodeMemRefs(
1593             Test, cast<MachineSDNode>(And.getNode())->memoperands());
1594         ReplaceUses(And.getValue(2), SDValue(Test, 1));
1595         ReplaceUses(SDValue(N, 0), SDValue(Test, 0));
1596         MadeChange = true;
1597         continue;
1598       }
1599     }
1600 
1601     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1602     // used. We're doing this late so we can prefer to fold the AND into masked
1603     // comparisons. Doing that can be better for the live range of the mask
1604     // register.
1605     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1606          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1607         N->getOperand(0) == N->getOperand(1) &&
1608         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1609         N->getOperand(0).isMachineOpcode() &&
1610         onlyUsesZeroFlag(SDValue(N, 0))) {
1611       SDValue And = N->getOperand(0);
1612       unsigned N0Opc = And.getMachineOpcode();
1613       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1614       // KAND instructions and KTEST use the same ISA feature.
1615       if (N0Opc == X86::KANDBrr ||
1616           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1617           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1618         unsigned NewOpc;
1619         switch (Opc) {
1620         default: llvm_unreachable("Unexpected opcode!");
1621         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1622         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1623         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1624         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1625         }
1626         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1627                                                       MVT::i32,
1628                                                       And.getOperand(0),
1629                                                       And.getOperand(1));
1630         ReplaceUses(N, KTest);
1631         MadeChange = true;
1632         continue;
1633       }
1634     }
1635 
1636     // Attempt to remove vectors moves that were inserted to zero upper bits.
1637     if (Opc != TargetOpcode::SUBREG_TO_REG)
1638       continue;
1639 
1640     unsigned SubRegIdx = N->getConstantOperandVal(2);
1641     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1642       continue;
1643 
1644     SDValue Move = N->getOperand(1);
1645     if (!Move.isMachineOpcode())
1646       continue;
1647 
1648     // Make sure its one of the move opcodes we recognize.
1649     switch (Move.getMachineOpcode()) {
1650     default:
1651       continue;
1652     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1653     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1654     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1655     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1656     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1657     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1658     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1659     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1660     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1661     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1662     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1663     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1664     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1665     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1666       break;
1667     }
1668 
1669     SDValue In = Move.getOperand(0);
1670     if (!In.isMachineOpcode() ||
1671         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1672       continue;
1673 
1674     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1675     // the SHA instructions which use a legacy encoding.
1676     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1677     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1678         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1679         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1680       continue;
1681 
1682     // Producing instruction is another vector instruction. We can drop the
1683     // move.
1684     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1685     MadeChange = true;
1686   }
1687 
1688   if (MadeChange)
1689     CurDAG->RemoveDeadNodes();
1690 }
1691 
1692 
1693 /// Emit any code that needs to be executed only in the main function.
1694 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1695   if (Subtarget->isTargetCygMing()) {
1696     TargetLowering::ArgListTy Args;
1697     auto &DL = CurDAG->getDataLayout();
1698 
1699     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1700     CLI.setChain(CurDAG->getRoot())
1701         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1702                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1703                    std::move(Args));
1704     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1705     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1706     CurDAG->setRoot(Result.second);
1707   }
1708 }
1709 
1710 void X86DAGToDAGISel::emitFunctionEntryCode() {
1711   // If this is main, emit special code for main.
1712   const Function &F = MF->getFunction();
1713   if (F.hasExternalLinkage() && F.getName() == "main")
1714     emitSpecialCodeForMain();
1715 }
1716 
1717 static bool isDispSafeForFrameIndex(int64_t Val) {
1718   // On 64-bit platforms, we can run into an issue where a frame index
1719   // includes a displacement that, when added to the explicit displacement,
1720   // will overflow the displacement field. Assuming that the frame index
1721   // displacement fits into a 31-bit integer  (which is only slightly more
1722   // aggressive than the current fundamental assumption that it fits into
1723   // a 32-bit integer), a 31-bit disp should always be safe.
1724   return isInt<31>(Val);
1725 }
1726 
1727 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1728                                             X86ISelAddressMode &AM) {
1729   // We may have already matched a displacement and the caller just added the
1730   // symbolic displacement. So we still need to do the checks even if Offset
1731   // is zero.
1732 
1733   int64_t Val = AM.Disp + Offset;
1734 
1735   // Cannot combine ExternalSymbol displacements with integer offsets.
1736   if (Val != 0 && (AM.ES || AM.MCSym))
1737     return true;
1738 
1739   CodeModel::Model M = TM.getCodeModel();
1740   if (Subtarget->is64Bit()) {
1741     if (Val != 0 &&
1742         !X86::isOffsetSuitableForCodeModel(Val, M,
1743                                            AM.hasSymbolicDisplacement()))
1744       return true;
1745     // In addition to the checks required for a register base, check that
1746     // we do not try to use an unsafe Disp with a frame index.
1747     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1748         !isDispSafeForFrameIndex(Val))
1749       return true;
1750     // In ILP32 (x32) mode, pointers are 32 bits and need to be zero-extended to
1751     // 64 bits. Instructions with 32-bit register addresses perform this zero
1752     // extension for us and we can safely ignore the high bits of Offset.
1753     // Instructions with only a 32-bit immediate address do not, though: they
1754     // sign extend instead. This means only address the low 2GB of address space
1755     // is directly addressable, we need indirect addressing for the high 2GB of
1756     // address space.
1757     // TODO: Some of the earlier checks may be relaxed for ILP32 mode as the
1758     // implicit zero extension of instructions would cover up any problem.
1759     // However, we have asserts elsewhere that get triggered if we do, so keep
1760     // the checks for now.
1761     // TODO: We would actually be able to accept these, as well as the same
1762     // addresses in LP64 mode, by adding the EIZ pseudo-register as an operand
1763     // to get an address size override to be emitted. However, this
1764     // pseudo-register is not part of any register class and therefore causes
1765     // MIR verification to fail.
1766     if (Subtarget->isTarget64BitILP32() && !isUInt<31>(Val) &&
1767         !AM.hasBaseOrIndexReg())
1768       return true;
1769   }
1770   AM.Disp = Val;
1771   return false;
1772 }
1773 
1774 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1775                                          bool AllowSegmentRegForX32) {
1776   SDValue Address = N->getOperand(1);
1777 
1778   // load gs:0 -> GS segment register.
1779   // load fs:0 -> FS segment register.
1780   //
1781   // This optimization is generally valid because the GNU TLS model defines that
1782   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1783   // with 32-bit registers, as we get in ILP32 mode, those registers are first
1784   // zero-extended to 64 bits and then added it to the base address, which gives
1785   // unwanted results when the register holds a negative value.
1786   // For more information see http://people.redhat.com/drepper/tls.pdf
1787   if (isNullConstant(Address) && AM.Segment.getNode() == nullptr &&
1788       !IndirectTlsSegRefs &&
1789       (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1790        Subtarget->isTargetFuchsia())) {
1791     if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1792       return true;
1793     switch (N->getPointerInfo().getAddrSpace()) {
1794     case X86AS::GS:
1795       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1796       return false;
1797     case X86AS::FS:
1798       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1799       return false;
1800       // Address space X86AS::SS is not handled here, because it is not used to
1801       // address TLS areas.
1802     }
1803   }
1804 
1805   return true;
1806 }
1807 
1808 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1809 /// mode. These wrap things that will resolve down into a symbol reference.
1810 /// If no match is possible, this returns true, otherwise it returns false.
1811 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1812   // If the addressing mode already has a symbol as the displacement, we can
1813   // never match another symbol.
1814   if (AM.hasSymbolicDisplacement())
1815     return true;
1816 
1817   bool IsRIPRelTLS = false;
1818   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1819   if (IsRIPRel) {
1820     SDValue Val = N.getOperand(0);
1821     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1822       IsRIPRelTLS = true;
1823   }
1824 
1825   // We can't use an addressing mode in the 64-bit large code model.
1826   // Global TLS addressing is an exception. In the medium code model,
1827   // we use can use a mode when RIP wrappers are present.
1828   // That signifies access to globals that are known to be "near",
1829   // such as the GOT itself.
1830   CodeModel::Model M = TM.getCodeModel();
1831   if (Subtarget->is64Bit() && M == CodeModel::Large && !IsRIPRelTLS)
1832     return true;
1833 
1834   // Base and index reg must be 0 in order to use %rip as base.
1835   if (IsRIPRel && AM.hasBaseOrIndexReg())
1836     return true;
1837 
1838   // Make a local copy in case we can't do this fold.
1839   X86ISelAddressMode Backup = AM;
1840 
1841   int64_t Offset = 0;
1842   SDValue N0 = N.getOperand(0);
1843   if (auto *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1844     AM.GV = G->getGlobal();
1845     AM.SymbolFlags = G->getTargetFlags();
1846     Offset = G->getOffset();
1847   } else if (auto *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1848     AM.CP = CP->getConstVal();
1849     AM.Alignment = CP->getAlign();
1850     AM.SymbolFlags = CP->getTargetFlags();
1851     Offset = CP->getOffset();
1852   } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1853     AM.ES = S->getSymbol();
1854     AM.SymbolFlags = S->getTargetFlags();
1855   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1856     AM.MCSym = S->getMCSymbol();
1857   } else if (auto *J = dyn_cast<JumpTableSDNode>(N0)) {
1858     AM.JT = J->getIndex();
1859     AM.SymbolFlags = J->getTargetFlags();
1860   } else if (auto *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1861     AM.BlockAddr = BA->getBlockAddress();
1862     AM.SymbolFlags = BA->getTargetFlags();
1863     Offset = BA->getOffset();
1864   } else
1865     llvm_unreachable("Unhandled symbol reference node.");
1866 
1867   // Can't use an addressing mode with large globals.
1868   if (Subtarget->is64Bit() && !IsRIPRel && AM.GV &&
1869       TM.isLargeGlobalValue(AM.GV)) {
1870     AM = Backup;
1871     return true;
1872   }
1873 
1874   if (foldOffsetIntoAddress(Offset, AM)) {
1875     AM = Backup;
1876     return true;
1877   }
1878 
1879   if (IsRIPRel)
1880     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1881 
1882   // Commit the changes now that we know this fold is safe.
1883   return false;
1884 }
1885 
1886 /// Add the specified node to the specified addressing mode, returning true if
1887 /// it cannot be done. This just pattern matches for the addressing mode.
1888 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1889   if (matchAddressRecursively(N, AM, 0))
1890     return true;
1891 
1892   // Post-processing: Make a second attempt to fold a load, if we now know
1893   // that there will not be any other register. This is only performed for
1894   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1895   // any foldable load the first time.
1896   if (Subtarget->isTarget64BitILP32() &&
1897       AM.BaseType == X86ISelAddressMode::RegBase &&
1898       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1899     SDValue Save_Base_Reg = AM.Base_Reg;
1900     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1901       AM.Base_Reg = SDValue();
1902       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1903         AM.Base_Reg = Save_Base_Reg;
1904     }
1905   }
1906 
1907   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1908   // a smaller encoding and avoids a scaled-index.
1909   if (AM.Scale == 2 &&
1910       AM.BaseType == X86ISelAddressMode::RegBase &&
1911       AM.Base_Reg.getNode() == nullptr) {
1912     AM.Base_Reg = AM.IndexReg;
1913     AM.Scale = 1;
1914   }
1915 
1916   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1917   // because it has a smaller encoding.
1918   if (TM.getCodeModel() != CodeModel::Large &&
1919       (!AM.GV || !TM.isLargeGlobalValue(AM.GV)) && Subtarget->is64Bit() &&
1920       AM.Scale == 1 && AM.BaseType == X86ISelAddressMode::RegBase &&
1921       AM.Base_Reg.getNode() == nullptr && AM.IndexReg.getNode() == nullptr &&
1922       AM.SymbolFlags == X86II::MO_NO_FLAG && AM.hasSymbolicDisplacement()) {
1923     AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1924   }
1925 
1926   return false;
1927 }
1928 
1929 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1930                                unsigned Depth) {
1931   // Add an artificial use to this node so that we can keep track of
1932   // it if it gets CSE'd with a different node.
1933   HandleSDNode Handle(N);
1934 
1935   X86ISelAddressMode Backup = AM;
1936   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1937       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1938     return false;
1939   AM = Backup;
1940 
1941   // Try again after commutating the operands.
1942   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1943                                Depth + 1) &&
1944       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1945     return false;
1946   AM = Backup;
1947 
1948   // If we couldn't fold both operands into the address at the same time,
1949   // see if we can just put each operand into a register and fold at least
1950   // the add.
1951   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1952       !AM.Base_Reg.getNode() &&
1953       !AM.IndexReg.getNode()) {
1954     N = Handle.getValue();
1955     AM.Base_Reg = N.getOperand(0);
1956     AM.IndexReg = N.getOperand(1);
1957     AM.Scale = 1;
1958     return false;
1959   }
1960   N = Handle.getValue();
1961   return true;
1962 }
1963 
1964 // Insert a node into the DAG at least before the Pos node's position. This
1965 // will reposition the node as needed, and will assign it a node ID that is <=
1966 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1967 // IDs! The selection DAG must no longer depend on their uniqueness when this
1968 // is used.
1969 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1970   if (N->getNodeId() == -1 ||
1971       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1972        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1973     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1974     // Mark Node as invalid for pruning as after this it may be a successor to a
1975     // selected node but otherwise be in the same position of Pos.
1976     // Conservatively mark it with the same -abs(Id) to assure node id
1977     // invariant is preserved.
1978     N->setNodeId(Pos->getNodeId());
1979     SelectionDAGISel::InvalidateNodeId(N.getNode());
1980   }
1981 }
1982 
1983 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1984 // safe. This allows us to convert the shift and and into an h-register
1985 // extract and a scaled index. Returns false if the simplification is
1986 // performed.
1987 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1988                                       uint64_t Mask,
1989                                       SDValue Shift, SDValue X,
1990                                       X86ISelAddressMode &AM) {
1991   if (Shift.getOpcode() != ISD::SRL ||
1992       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1993       !Shift.hasOneUse())
1994     return true;
1995 
1996   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1997   if (ScaleLog <= 0 || ScaleLog >= 4 ||
1998       Mask != (0xffu << ScaleLog))
1999     return true;
2000 
2001   MVT XVT = X.getSimpleValueType();
2002   MVT VT = N.getSimpleValueType();
2003   SDLoc DL(N);
2004   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
2005   SDValue NewMask = DAG.getConstant(0xff, DL, XVT);
2006   SDValue Srl = DAG.getNode(ISD::SRL, DL, XVT, X, Eight);
2007   SDValue And = DAG.getNode(ISD::AND, DL, XVT, Srl, NewMask);
2008   SDValue Ext = DAG.getZExtOrTrunc(And, DL, VT);
2009   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
2010   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Ext, ShlCount);
2011 
2012   // Insert the new nodes into the topological ordering. We must do this in
2013   // a valid topological ordering as nothing is going to go back and re-sort
2014   // these nodes. We continually insert before 'N' in sequence as this is
2015   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2016   // hierarchy left to express.
2017   insertDAGNode(DAG, N, Eight);
2018   insertDAGNode(DAG, N, NewMask);
2019   insertDAGNode(DAG, N, Srl);
2020   insertDAGNode(DAG, N, And);
2021   insertDAGNode(DAG, N, Ext);
2022   insertDAGNode(DAG, N, ShlCount);
2023   insertDAGNode(DAG, N, Shl);
2024   DAG.ReplaceAllUsesWith(N, Shl);
2025   DAG.RemoveDeadNode(N.getNode());
2026   AM.IndexReg = Ext;
2027   AM.Scale = (1 << ScaleLog);
2028   return false;
2029 }
2030 
2031 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
2032 // allows us to fold the shift into this addressing mode. Returns false if the
2033 // transform succeeded.
2034 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
2035                                         X86ISelAddressMode &AM) {
2036   SDValue Shift = N.getOperand(0);
2037 
2038   // Use a signed mask so that shifting right will insert sign bits. These
2039   // bits will be removed when we shift the result left so it doesn't matter
2040   // what we use. This might allow a smaller immediate encoding.
2041   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
2042 
2043   // If we have an any_extend feeding the AND, look through it to see if there
2044   // is a shift behind it. But only if the AND doesn't use the extended bits.
2045   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
2046   bool FoundAnyExtend = false;
2047   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
2048       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
2049       isUInt<32>(Mask)) {
2050     FoundAnyExtend = true;
2051     Shift = Shift.getOperand(0);
2052   }
2053 
2054   if (Shift.getOpcode() != ISD::SHL ||
2055       !isa<ConstantSDNode>(Shift.getOperand(1)))
2056     return true;
2057 
2058   SDValue X = Shift.getOperand(0);
2059 
2060   // Not likely to be profitable if either the AND or SHIFT node has more
2061   // than one use (unless all uses are for address computation). Besides,
2062   // isel mechanism requires their node ids to be reused.
2063   if (!N.hasOneUse() || !Shift.hasOneUse())
2064     return true;
2065 
2066   // Verify that the shift amount is something we can fold.
2067   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2068   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
2069     return true;
2070 
2071   MVT VT = N.getSimpleValueType();
2072   SDLoc DL(N);
2073   if (FoundAnyExtend) {
2074     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
2075     insertDAGNode(DAG, N, NewX);
2076     X = NewX;
2077   }
2078 
2079   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
2080   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
2081   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
2082 
2083   // Insert the new nodes into the topological ordering. We must do this in
2084   // a valid topological ordering as nothing is going to go back and re-sort
2085   // these nodes. We continually insert before 'N' in sequence as this is
2086   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2087   // hierarchy left to express.
2088   insertDAGNode(DAG, N, NewMask);
2089   insertDAGNode(DAG, N, NewAnd);
2090   insertDAGNode(DAG, N, NewShift);
2091   DAG.ReplaceAllUsesWith(N, NewShift);
2092   DAG.RemoveDeadNode(N.getNode());
2093 
2094   AM.Scale = 1 << ShiftAmt;
2095   AM.IndexReg = NewAnd;
2096   return false;
2097 }
2098 
2099 // Implement some heroics to detect shifts of masked values where the mask can
2100 // be replaced by extending the shift and undoing that in the addressing mode
2101 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
2102 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
2103 // the addressing mode. This results in code such as:
2104 //
2105 //   int f(short *y, int *lookup_table) {
2106 //     ...
2107 //     return *y + lookup_table[*y >> 11];
2108 //   }
2109 //
2110 // Turning into:
2111 //   movzwl (%rdi), %eax
2112 //   movl %eax, %ecx
2113 //   shrl $11, %ecx
2114 //   addl (%rsi,%rcx,4), %eax
2115 //
2116 // Instead of:
2117 //   movzwl (%rdi), %eax
2118 //   movl %eax, %ecx
2119 //   shrl $9, %ecx
2120 //   andl $124, %rcx
2121 //   addl (%rsi,%rcx), %eax
2122 //
2123 // Note that this function assumes the mask is provided as a mask *after* the
2124 // value is shifted. The input chain may or may not match that, but computing
2125 // such a mask is trivial.
2126 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
2127                                     uint64_t Mask,
2128                                     SDValue Shift, SDValue X,
2129                                     X86ISelAddressMode &AM) {
2130   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
2131       !isa<ConstantSDNode>(Shift.getOperand(1)))
2132     return true;
2133 
2134   // We need to ensure that mask is a continuous run of bits.
2135   unsigned MaskIdx, MaskLen;
2136   if (!isShiftedMask_64(Mask, MaskIdx, MaskLen))
2137     return true;
2138   unsigned MaskLZ = 64 - (MaskIdx + MaskLen);
2139 
2140   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2141 
2142   // The amount of shift we're trying to fit into the addressing mode is taken
2143   // from the shifted mask index (number of trailing zeros of the mask).
2144   unsigned AMShiftAmt = MaskIdx;
2145 
2146   // There is nothing we can do here unless the mask is removing some bits.
2147   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2148   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2149 
2150   // Scale the leading zero count down based on the actual size of the value.
2151   // Also scale it down based on the size of the shift.
2152   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
2153   if (MaskLZ < ScaleDown)
2154     return true;
2155   MaskLZ -= ScaleDown;
2156 
2157   // The final check is to ensure that any masked out high bits of X are
2158   // already known to be zero. Otherwise, the mask has a semantic impact
2159   // other than masking out a couple of low bits. Unfortunately, because of
2160   // the mask, zero extensions will be removed from operands in some cases.
2161   // This code works extra hard to look through extensions because we can
2162   // replace them with zero extensions cheaply if necessary.
2163   bool ReplacingAnyExtend = false;
2164   if (X.getOpcode() == ISD::ANY_EXTEND) {
2165     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2166                           X.getOperand(0).getSimpleValueType().getSizeInBits();
2167     // Assume that we'll replace the any-extend with a zero-extend, and
2168     // narrow the search to the extended value.
2169     X = X.getOperand(0);
2170     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2171     ReplacingAnyExtend = true;
2172   }
2173   APInt MaskedHighBits =
2174     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2175   if (!DAG.MaskedValueIsZero(X, MaskedHighBits))
2176     return true;
2177 
2178   // We've identified a pattern that can be transformed into a single shift
2179   // and an addressing mode. Make it so.
2180   MVT VT = N.getSimpleValueType();
2181   if (ReplacingAnyExtend) {
2182     assert(X.getValueType() != VT);
2183     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2184     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2185     insertDAGNode(DAG, N, NewX);
2186     X = NewX;
2187   }
2188 
2189   MVT XVT = X.getSimpleValueType();
2190   SDLoc DL(N);
2191   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2192   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, XVT, X, NewSRLAmt);
2193   SDValue NewExt = DAG.getZExtOrTrunc(NewSRL, DL, VT);
2194   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2195   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewExt, NewSHLAmt);
2196 
2197   // Insert the new nodes into the topological ordering. We must do this in
2198   // a valid topological ordering as nothing is going to go back and re-sort
2199   // these nodes. We continually insert before 'N' in sequence as this is
2200   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2201   // hierarchy left to express.
2202   insertDAGNode(DAG, N, NewSRLAmt);
2203   insertDAGNode(DAG, N, NewSRL);
2204   insertDAGNode(DAG, N, NewExt);
2205   insertDAGNode(DAG, N, NewSHLAmt);
2206   insertDAGNode(DAG, N, NewSHL);
2207   DAG.ReplaceAllUsesWith(N, NewSHL);
2208   DAG.RemoveDeadNode(N.getNode());
2209 
2210   AM.Scale = 1 << AMShiftAmt;
2211   AM.IndexReg = NewExt;
2212   return false;
2213 }
2214 
2215 // Transform "(X >> SHIFT) & (MASK << C1)" to
2216 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2217 // matched to a BEXTR later. Returns false if the simplification is performed.
2218 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2219                                    uint64_t Mask,
2220                                    SDValue Shift, SDValue X,
2221                                    X86ISelAddressMode &AM,
2222                                    const X86Subtarget &Subtarget) {
2223   if (Shift.getOpcode() != ISD::SRL ||
2224       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2225       !Shift.hasOneUse() || !N.hasOneUse())
2226     return true;
2227 
2228   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2229   if (!Subtarget.hasTBM() &&
2230       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2231     return true;
2232 
2233   // We need to ensure that mask is a continuous run of bits.
2234   unsigned MaskIdx, MaskLen;
2235   if (!isShiftedMask_64(Mask, MaskIdx, MaskLen))
2236     return true;
2237 
2238   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2239 
2240   // The amount of shift we're trying to fit into the addressing mode is taken
2241   // from the shifted mask index (number of trailing zeros of the mask).
2242   unsigned AMShiftAmt = MaskIdx;
2243 
2244   // There is nothing we can do here unless the mask is removing some bits.
2245   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2246   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2247 
2248   MVT XVT = X.getSimpleValueType();
2249   MVT VT = N.getSimpleValueType();
2250   SDLoc DL(N);
2251   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2252   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, XVT, X, NewSRLAmt);
2253   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, XVT);
2254   SDValue NewAnd = DAG.getNode(ISD::AND, DL, XVT, NewSRL, NewMask);
2255   SDValue NewExt = DAG.getZExtOrTrunc(NewAnd, DL, VT);
2256   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2257   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewExt, NewSHLAmt);
2258 
2259   // Insert the new nodes into the topological ordering. We must do this in
2260   // a valid topological ordering as nothing is going to go back and re-sort
2261   // these nodes. We continually insert before 'N' in sequence as this is
2262   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2263   // hierarchy left to express.
2264   insertDAGNode(DAG, N, NewSRLAmt);
2265   insertDAGNode(DAG, N, NewSRL);
2266   insertDAGNode(DAG, N, NewMask);
2267   insertDAGNode(DAG, N, NewAnd);
2268   insertDAGNode(DAG, N, NewExt);
2269   insertDAGNode(DAG, N, NewSHLAmt);
2270   insertDAGNode(DAG, N, NewSHL);
2271   DAG.ReplaceAllUsesWith(N, NewSHL);
2272   DAG.RemoveDeadNode(N.getNode());
2273 
2274   AM.Scale = 1 << AMShiftAmt;
2275   AM.IndexReg = NewExt;
2276   return false;
2277 }
2278 
2279 // Attempt to peek further into a scaled index register, collecting additional
2280 // extensions / offsets / etc. Returns /p N if we can't peek any further.
2281 SDValue X86DAGToDAGISel::matchIndexRecursively(SDValue N,
2282                                                X86ISelAddressMode &AM,
2283                                                unsigned Depth) {
2284   assert(AM.IndexReg.getNode() == nullptr && "IndexReg already matched");
2285   assert((AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8) &&
2286          "Illegal index scale");
2287 
2288   // Limit recursion.
2289   if (Depth >= SelectionDAG::MaxRecursionDepth)
2290     return N;
2291 
2292   EVT VT = N.getValueType();
2293   unsigned Opc = N.getOpcode();
2294 
2295   // index: add(x,c) -> index: x, disp + c
2296   if (CurDAG->isBaseWithConstantOffset(N)) {
2297     auto *AddVal = cast<ConstantSDNode>(N.getOperand(1));
2298     uint64_t Offset = (uint64_t)AddVal->getSExtValue() * AM.Scale;
2299     if (!foldOffsetIntoAddress(Offset, AM))
2300       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2301   }
2302 
2303   // index: add(x,x) -> index: x, scale * 2
2304   if (Opc == ISD::ADD && N.getOperand(0) == N.getOperand(1)) {
2305     if (AM.Scale <= 4) {
2306       AM.Scale *= 2;
2307       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2308     }
2309   }
2310 
2311   // index: shl(x,i) -> index: x, scale * (1 << i)
2312   if (Opc == X86ISD::VSHLI) {
2313     uint64_t ShiftAmt = N.getConstantOperandVal(1);
2314     uint64_t ScaleAmt = 1ULL << ShiftAmt;
2315     if ((AM.Scale * ScaleAmt) <= 8) {
2316       AM.Scale *= ScaleAmt;
2317       return matchIndexRecursively(N.getOperand(0), AM, Depth + 1);
2318     }
2319   }
2320 
2321   // index: sext(add_nsw(x,c)) -> index: sext(x), disp + sext(c)
2322   // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2323   if (Opc == ISD::SIGN_EXTEND && !VT.isVector() && N.hasOneUse()) {
2324     SDValue Src = N.getOperand(0);
2325     if (Src.getOpcode() == ISD::ADD && Src->getFlags().hasNoSignedWrap() &&
2326         Src.hasOneUse()) {
2327       if (CurDAG->isBaseWithConstantOffset(Src)) {
2328         SDValue AddSrc = Src.getOperand(0);
2329         auto *AddVal = cast<ConstantSDNode>(Src.getOperand(1));
2330         uint64_t Offset = (uint64_t)AddVal->getSExtValue();
2331         if (!foldOffsetIntoAddress(Offset * AM.Scale, AM)) {
2332           SDLoc DL(N);
2333           SDValue ExtSrc = CurDAG->getNode(Opc, DL, VT, AddSrc);
2334           SDValue ExtVal = CurDAG->getConstant(Offset, DL, VT);
2335           SDValue ExtAdd = CurDAG->getNode(ISD::ADD, DL, VT, ExtSrc, ExtVal);
2336           insertDAGNode(*CurDAG, N, ExtSrc);
2337           insertDAGNode(*CurDAG, N, ExtVal);
2338           insertDAGNode(*CurDAG, N, ExtAdd);
2339           CurDAG->ReplaceAllUsesWith(N, ExtAdd);
2340           CurDAG->RemoveDeadNode(N.getNode());
2341           return ExtSrc;
2342         }
2343       }
2344     }
2345   }
2346 
2347   // index: zext(add_nuw(x,c)) -> index: zext(x), disp + zext(c)
2348   // index: zext(addlike(x,c)) -> index: zext(x), disp + zext(c)
2349   // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2350   if (Opc == ISD::ZERO_EXTEND && !VT.isVector() && N.hasOneUse()) {
2351     SDValue Src = N.getOperand(0);
2352     unsigned SrcOpc = Src.getOpcode();
2353     if (((SrcOpc == ISD::ADD && Src->getFlags().hasNoUnsignedWrap()) ||
2354          CurDAG->isADDLike(Src)) &&
2355         Src.hasOneUse()) {
2356       if (CurDAG->isBaseWithConstantOffset(Src)) {
2357         SDValue AddSrc = Src.getOperand(0);
2358         uint64_t Offset = Src.getConstantOperandVal(1);
2359         if (!foldOffsetIntoAddress(Offset * AM.Scale, AM)) {
2360           SDLoc DL(N);
2361           SDValue Res;
2362           // If we're also scaling, see if we can use that as well.
2363           if (AddSrc.getOpcode() == ISD::SHL &&
2364               isa<ConstantSDNode>(AddSrc.getOperand(1))) {
2365             SDValue ShVal = AddSrc.getOperand(0);
2366             uint64_t ShAmt = AddSrc.getConstantOperandVal(1);
2367             APInt HiBits =
2368                 APInt::getHighBitsSet(AddSrc.getScalarValueSizeInBits(), ShAmt);
2369             uint64_t ScaleAmt = 1ULL << ShAmt;
2370             if ((AM.Scale * ScaleAmt) <= 8 &&
2371                 (AddSrc->getFlags().hasNoUnsignedWrap() ||
2372                  CurDAG->MaskedValueIsZero(ShVal, HiBits))) {
2373               AM.Scale *= ScaleAmt;
2374               SDValue ExtShVal = CurDAG->getNode(Opc, DL, VT, ShVal);
2375               SDValue ExtShift = CurDAG->getNode(ISD::SHL, DL, VT, ExtShVal,
2376                                                  AddSrc.getOperand(1));
2377               insertDAGNode(*CurDAG, N, ExtShVal);
2378               insertDAGNode(*CurDAG, N, ExtShift);
2379               AddSrc = ExtShift;
2380               Res = ExtShVal;
2381             }
2382           }
2383           SDValue ExtSrc = CurDAG->getNode(Opc, DL, VT, AddSrc);
2384           SDValue ExtVal = CurDAG->getConstant(Offset, DL, VT);
2385           SDValue ExtAdd = CurDAG->getNode(SrcOpc, DL, VT, ExtSrc, ExtVal);
2386           insertDAGNode(*CurDAG, N, ExtSrc);
2387           insertDAGNode(*CurDAG, N, ExtVal);
2388           insertDAGNode(*CurDAG, N, ExtAdd);
2389           CurDAG->ReplaceAllUsesWith(N, ExtAdd);
2390           CurDAG->RemoveDeadNode(N.getNode());
2391           return Res ? Res : ExtSrc;
2392         }
2393       }
2394     }
2395   }
2396 
2397   // TODO: Handle extensions, shifted masks etc.
2398   return N;
2399 }
2400 
2401 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2402                                               unsigned Depth) {
2403   SDLoc dl(N);
2404   LLVM_DEBUG({
2405     dbgs() << "MatchAddress: ";
2406     AM.dump(CurDAG);
2407   });
2408   // Limit recursion.
2409   if (Depth >= SelectionDAG::MaxRecursionDepth)
2410     return matchAddressBase(N, AM);
2411 
2412   // If this is already a %rip relative address, we can only merge immediates
2413   // into it.  Instead of handling this in every case, we handle it here.
2414   // RIP relative addressing: %rip + 32-bit displacement!
2415   if (AM.isRIPRelative()) {
2416     // FIXME: JumpTable and ExternalSymbol address currently don't like
2417     // displacements.  It isn't very important, but this should be fixed for
2418     // consistency.
2419     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2420       return true;
2421 
2422     if (auto *Cst = dyn_cast<ConstantSDNode>(N))
2423       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2424         return false;
2425     return true;
2426   }
2427 
2428   switch (N.getOpcode()) {
2429   default: break;
2430   case ISD::LOCAL_RECOVER: {
2431     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2432       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2433         // Use the symbol and don't prefix it.
2434         AM.MCSym = ESNode->getMCSymbol();
2435         return false;
2436       }
2437     break;
2438   }
2439   case ISD::Constant: {
2440     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2441     if (!foldOffsetIntoAddress(Val, AM))
2442       return false;
2443     break;
2444   }
2445 
2446   case X86ISD::Wrapper:
2447   case X86ISD::WrapperRIP:
2448     if (!matchWrapper(N, AM))
2449       return false;
2450     break;
2451 
2452   case ISD::LOAD:
2453     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2454       return false;
2455     break;
2456 
2457   case ISD::FrameIndex:
2458     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2459         AM.Base_Reg.getNode() == nullptr &&
2460         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2461       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2462       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2463       return false;
2464     }
2465     break;
2466 
2467   case ISD::SHL:
2468     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2469       break;
2470 
2471     if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2472       unsigned Val = CN->getZExtValue();
2473       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2474       // that the base operand remains free for further matching. If
2475       // the base doesn't end up getting used, a post-processing step
2476       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2477       if (Val == 1 || Val == 2 || Val == 3) {
2478         SDValue ShVal = N.getOperand(0);
2479         AM.Scale = 1 << Val;
2480         AM.IndexReg = matchIndexRecursively(ShVal, AM, Depth + 1);
2481         return false;
2482       }
2483     }
2484     break;
2485 
2486   case ISD::SRL: {
2487     // Scale must not be used already.
2488     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2489 
2490     // We only handle up to 64-bit values here as those are what matter for
2491     // addressing mode optimizations.
2492     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2493            "Unexpected value size!");
2494 
2495     SDValue And = N.getOperand(0);
2496     if (And.getOpcode() != ISD::AND) break;
2497     SDValue X = And.getOperand(0);
2498 
2499     // The mask used for the transform is expected to be post-shift, but we
2500     // found the shift first so just apply the shift to the mask before passing
2501     // it down.
2502     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2503         !isa<ConstantSDNode>(And.getOperand(1)))
2504       break;
2505     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2506 
2507     // Try to fold the mask and shift into the scale, and return false if we
2508     // succeed.
2509     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2510       return false;
2511     break;
2512   }
2513 
2514   case ISD::SMUL_LOHI:
2515   case ISD::UMUL_LOHI:
2516     // A mul_lohi where we need the low part can be folded as a plain multiply.
2517     if (N.getResNo() != 0) break;
2518     [[fallthrough]];
2519   case ISD::MUL:
2520   case X86ISD::MUL_IMM:
2521     // X*[3,5,9] -> X+X*[2,4,8]
2522     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2523         AM.Base_Reg.getNode() == nullptr &&
2524         AM.IndexReg.getNode() == nullptr) {
2525       if (auto *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2526         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2527             CN->getZExtValue() == 9) {
2528           AM.Scale = unsigned(CN->getZExtValue())-1;
2529 
2530           SDValue MulVal = N.getOperand(0);
2531           SDValue Reg;
2532 
2533           // Okay, we know that we have a scale by now.  However, if the scaled
2534           // value is an add of something and a constant, we can fold the
2535           // constant into the disp field here.
2536           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2537               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2538             Reg = MulVal.getOperand(0);
2539             auto *AddVal = cast<ConstantSDNode>(MulVal.getOperand(1));
2540             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2541             if (foldOffsetIntoAddress(Disp, AM))
2542               Reg = N.getOperand(0);
2543           } else {
2544             Reg = N.getOperand(0);
2545           }
2546 
2547           AM.IndexReg = AM.Base_Reg = Reg;
2548           return false;
2549         }
2550     }
2551     break;
2552 
2553   case ISD::SUB: {
2554     // Given A-B, if A can be completely folded into the address and
2555     // the index field with the index field unused, use -B as the index.
2556     // This is a win if a has multiple parts that can be folded into
2557     // the address. Also, this saves a mov if the base register has
2558     // other uses, since it avoids a two-address sub instruction, however
2559     // it costs an additional mov if the index register has other uses.
2560 
2561     // Add an artificial use to this node so that we can keep track of
2562     // it if it gets CSE'd with a different node.
2563     HandleSDNode Handle(N);
2564 
2565     // Test if the LHS of the sub can be folded.
2566     X86ISelAddressMode Backup = AM;
2567     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2568       N = Handle.getValue();
2569       AM = Backup;
2570       break;
2571     }
2572     N = Handle.getValue();
2573     // Test if the index field is free for use.
2574     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2575       AM = Backup;
2576       break;
2577     }
2578 
2579     int Cost = 0;
2580     SDValue RHS = N.getOperand(1);
2581     // If the RHS involves a register with multiple uses, this
2582     // transformation incurs an extra mov, due to the neg instruction
2583     // clobbering its operand.
2584     if (!RHS.getNode()->hasOneUse() ||
2585         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2586         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2587         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2588         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2589          RHS.getOperand(0).getValueType() == MVT::i32))
2590       ++Cost;
2591     // If the base is a register with multiple uses, this
2592     // transformation may save a mov.
2593     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2594          !AM.Base_Reg.getNode()->hasOneUse()) ||
2595         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2596       --Cost;
2597     // If the folded LHS was interesting, this transformation saves
2598     // address arithmetic.
2599     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2600         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2601         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2602       --Cost;
2603     // If it doesn't look like it may be an overall win, don't do it.
2604     if (Cost >= 0) {
2605       AM = Backup;
2606       break;
2607     }
2608 
2609     // Ok, the transformation is legal and appears profitable. Go for it.
2610     // Negation will be emitted later to avoid creating dangling nodes if this
2611     // was an unprofitable LEA.
2612     AM.IndexReg = RHS;
2613     AM.NegateIndex = true;
2614     AM.Scale = 1;
2615     return false;
2616   }
2617 
2618   case ISD::OR:
2619   case ISD::XOR:
2620     // See if we can treat the OR/XOR node as an ADD node.
2621     if (!CurDAG->isADDLike(N))
2622       break;
2623     [[fallthrough]];
2624   case ISD::ADD:
2625     if (!matchAdd(N, AM, Depth))
2626       return false;
2627     break;
2628 
2629   case ISD::AND: {
2630     // Perform some heroic transforms on an and of a constant-count shift
2631     // with a constant to enable use of the scaled offset field.
2632 
2633     // Scale must not be used already.
2634     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2635 
2636     // We only handle up to 64-bit values here as those are what matter for
2637     // addressing mode optimizations.
2638     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2639            "Unexpected value size!");
2640 
2641     if (!isa<ConstantSDNode>(N.getOperand(1)))
2642       break;
2643 
2644     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2645       SDValue Shift = N.getOperand(0);
2646       SDValue X = Shift.getOperand(0);
2647 
2648       uint64_t Mask = N.getConstantOperandVal(1);
2649 
2650       // Try to fold the mask and shift into an extract and scale.
2651       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2652         return false;
2653 
2654       // Try to fold the mask and shift directly into the scale.
2655       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2656         return false;
2657 
2658       // Try to fold the mask and shift into BEXTR and scale.
2659       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2660         return false;
2661     }
2662 
2663     // Try to swap the mask and shift to place shifts which can be done as
2664     // a scale on the outside of the mask.
2665     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2666       return false;
2667 
2668     break;
2669   }
2670   case ISD::ZERO_EXTEND: {
2671     // Try to widen a zexted shift left to the same size as its use, so we can
2672     // match the shift as a scale factor.
2673     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2674       break;
2675 
2676     SDValue Src = N.getOperand(0);
2677 
2678     // See if we can match a zext(addlike(x,c)).
2679     // TODO: Move more ZERO_EXTEND patterns into matchIndexRecursively.
2680     if (Src.getOpcode() == ISD::ADD || Src.getOpcode() == ISD::OR)
2681       if (SDValue Index = matchIndexRecursively(N, AM, Depth + 1))
2682         if (Index != N) {
2683           AM.IndexReg = Index;
2684           return false;
2685         }
2686 
2687     // Peek through mask: zext(and(shl(x,c1),c2))
2688     APInt Mask = APInt::getAllOnes(Src.getScalarValueSizeInBits());
2689     if (Src.getOpcode() == ISD::AND && Src.hasOneUse())
2690       if (auto *MaskC = dyn_cast<ConstantSDNode>(Src.getOperand(1))) {
2691         Mask = MaskC->getAPIntValue();
2692         Src = Src.getOperand(0);
2693       }
2694 
2695     if (Src.getOpcode() == ISD::SHL && Src.hasOneUse()) {
2696       // Give up if the shift is not a valid scale factor [1,2,3].
2697       SDValue ShlSrc = Src.getOperand(0);
2698       SDValue ShlAmt = Src.getOperand(1);
2699       auto *ShAmtC = dyn_cast<ConstantSDNode>(ShlAmt);
2700       if (!ShAmtC)
2701         break;
2702       unsigned ShAmtV = ShAmtC->getZExtValue();
2703       if (ShAmtV > 3)
2704         break;
2705 
2706       // The narrow shift must only shift out zero bits (it must be 'nuw').
2707       // That makes it safe to widen to the destination type.
2708       APInt HighZeros =
2709           APInt::getHighBitsSet(ShlSrc.getValueSizeInBits(), ShAmtV);
2710       if (!Src->getFlags().hasNoUnsignedWrap() &&
2711           !CurDAG->MaskedValueIsZero(ShlSrc, HighZeros & Mask))
2712         break;
2713 
2714       // zext (shl nuw i8 %x, C1) to i32
2715       // --> shl (zext i8 %x to i32), (zext C1)
2716       // zext (and (shl nuw i8 %x, C1), C2) to i32
2717       // --> shl (zext i8 (and %x, C2 >> C1) to i32), (zext C1)
2718       MVT SrcVT = ShlSrc.getSimpleValueType();
2719       MVT VT = N.getSimpleValueType();
2720       SDLoc DL(N);
2721 
2722       SDValue Res = ShlSrc;
2723       if (!Mask.isAllOnes()) {
2724         Res = CurDAG->getConstant(Mask.lshr(ShAmtV), DL, SrcVT);
2725         insertDAGNode(*CurDAG, N, Res);
2726         Res = CurDAG->getNode(ISD::AND, DL, SrcVT, ShlSrc, Res);
2727         insertDAGNode(*CurDAG, N, Res);
2728       }
2729       SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Res);
2730       insertDAGNode(*CurDAG, N, Zext);
2731       SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, ShlAmt);
2732       insertDAGNode(*CurDAG, N, NewShl);
2733 
2734       // Convert the shift to scale factor.
2735       AM.Scale = 1 << ShAmtV;
2736       AM.IndexReg = Zext;
2737 
2738       CurDAG->ReplaceAllUsesWith(N, NewShl);
2739       CurDAG->RemoveDeadNode(N.getNode());
2740       return false;
2741     }
2742 
2743     if (Src.getOpcode() == ISD::SRL && !Mask.isAllOnes()) {
2744       // Try to fold the mask and shift into an extract and scale.
2745       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask.getZExtValue(), Src,
2746                                      Src.getOperand(0), AM))
2747         return false;
2748 
2749       // Try to fold the mask and shift directly into the scale.
2750       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask.getZExtValue(), Src,
2751                                    Src.getOperand(0), AM))
2752         return false;
2753 
2754       // Try to fold the mask and shift into BEXTR and scale.
2755       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask.getZExtValue(), Src,
2756                                   Src.getOperand(0), AM, *Subtarget))
2757         return false;
2758     }
2759 
2760     break;
2761   }
2762   }
2763 
2764   return matchAddressBase(N, AM);
2765 }
2766 
2767 /// Helper for MatchAddress. Add the specified node to the
2768 /// specified addressing mode without any further recursion.
2769 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2770   // Is the base register already occupied?
2771   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2772     // If so, check to see if the scale index register is set.
2773     if (!AM.IndexReg.getNode()) {
2774       AM.IndexReg = N;
2775       AM.Scale = 1;
2776       return false;
2777     }
2778 
2779     // Otherwise, we cannot select it.
2780     return true;
2781   }
2782 
2783   // Default, generate it as a register.
2784   AM.BaseType = X86ISelAddressMode::RegBase;
2785   AM.Base_Reg = N;
2786   return false;
2787 }
2788 
2789 bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
2790                                                     X86ISelAddressMode &AM,
2791                                                     unsigned Depth) {
2792   SDLoc dl(N);
2793   LLVM_DEBUG({
2794     dbgs() << "MatchVectorAddress: ";
2795     AM.dump(CurDAG);
2796   });
2797   // Limit recursion.
2798   if (Depth >= SelectionDAG::MaxRecursionDepth)
2799     return matchAddressBase(N, AM);
2800 
2801   // TODO: Support other operations.
2802   switch (N.getOpcode()) {
2803   case ISD::Constant: {
2804     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2805     if (!foldOffsetIntoAddress(Val, AM))
2806       return false;
2807     break;
2808   }
2809   case X86ISD::Wrapper:
2810     if (!matchWrapper(N, AM))
2811       return false;
2812     break;
2813   case ISD::ADD: {
2814     // Add an artificial use to this node so that we can keep track of
2815     // it if it gets CSE'd with a different node.
2816     HandleSDNode Handle(N);
2817 
2818     X86ISelAddressMode Backup = AM;
2819     if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) &&
2820         !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2821                                        Depth + 1))
2822       return false;
2823     AM = Backup;
2824 
2825     // Try again after commuting the operands.
2826     if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
2827                                        Depth + 1) &&
2828         !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM,
2829                                        Depth + 1))
2830       return false;
2831     AM = Backup;
2832 
2833     N = Handle.getValue();
2834     break;
2835   }
2836   }
2837 
2838   return matchAddressBase(N, AM);
2839 }
2840 
2841 /// Helper for selectVectorAddr. Handles things that can be folded into a
2842 /// gather/scatter address. The index register and scale should have already
2843 /// been handled.
2844 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2845   return matchVectorAddressRecursively(N, AM, 0);
2846 }
2847 
2848 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2849                                        SDValue IndexOp, SDValue ScaleOp,
2850                                        SDValue &Base, SDValue &Scale,
2851                                        SDValue &Index, SDValue &Disp,
2852                                        SDValue &Segment) {
2853   X86ISelAddressMode AM;
2854   AM.Scale = ScaleOp->getAsZExtVal();
2855 
2856   // Attempt to match index patterns, as long as we're not relying on implicit
2857   // sign-extension, which is performed BEFORE scale.
2858   if (IndexOp.getScalarValueSizeInBits() == BasePtr.getScalarValueSizeInBits())
2859     AM.IndexReg = matchIndexRecursively(IndexOp, AM, 0);
2860   else
2861     AM.IndexReg = IndexOp;
2862 
2863   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2864   if (AddrSpace == X86AS::GS)
2865     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2866   if (AddrSpace == X86AS::FS)
2867     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2868   if (AddrSpace == X86AS::SS)
2869     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2870 
2871   SDLoc DL(BasePtr);
2872   MVT VT = BasePtr.getSimpleValueType();
2873 
2874   // Try to match into the base and displacement fields.
2875   if (matchVectorAddress(BasePtr, AM))
2876     return false;
2877 
2878   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2879   return true;
2880 }
2881 
2882 /// Returns true if it is able to pattern match an addressing mode.
2883 /// It returns the operands which make up the maximal addressing mode it can
2884 /// match by reference.
2885 ///
2886 /// Parent is the parent node of the addr operand that is being matched.  It
2887 /// is always a load, store, atomic node, or null.  It is only null when
2888 /// checking memory operands for inline asm nodes.
2889 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2890                                  SDValue &Scale, SDValue &Index,
2891                                  SDValue &Disp, SDValue &Segment) {
2892   X86ISelAddressMode AM;
2893 
2894   if (Parent &&
2895       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2896       // that are not a MemSDNode, and thus don't have proper addrspace info.
2897       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2898       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2899       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2900       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2901       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2902       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2903       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2904     unsigned AddrSpace =
2905       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2906     if (AddrSpace == X86AS::GS)
2907       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2908     if (AddrSpace == X86AS::FS)
2909       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2910     if (AddrSpace == X86AS::SS)
2911       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2912   }
2913 
2914   // Save the DL and VT before calling matchAddress, it can invalidate N.
2915   SDLoc DL(N);
2916   MVT VT = N.getSimpleValueType();
2917 
2918   if (matchAddress(N, AM))
2919     return false;
2920 
2921   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2922   return true;
2923 }
2924 
2925 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2926   // Cannot use 32 bit constants to reference objects in kernel/large code
2927   // model.
2928   if (TM.getCodeModel() == CodeModel::Kernel ||
2929       TM.getCodeModel() == CodeModel::Large)
2930     return false;
2931 
2932   // In static codegen with small code model, we can get the address of a label
2933   // into a register with 'movl'
2934   if (N->getOpcode() != X86ISD::Wrapper)
2935     return false;
2936 
2937   N = N.getOperand(0);
2938 
2939   // At least GNU as does not accept 'movl' for TPOFF relocations.
2940   // FIXME: We could use 'movl' when we know we are targeting MC.
2941   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2942     return false;
2943 
2944   Imm = N;
2945   // Small/medium code model can reference non-TargetGlobalAddress objects with
2946   // 32 bit constants.
2947   if (N->getOpcode() != ISD::TargetGlobalAddress) {
2948     return TM.getCodeModel() == CodeModel::Small ||
2949            TM.getCodeModel() == CodeModel::Medium;
2950   }
2951 
2952   const GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
2953   if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2954     return CR->getUnsignedMax().ult(1ull << 32);
2955 
2956   return !TM.isLargeGlobalValue(GV);
2957 }
2958 
2959 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2960                                          SDValue &Scale, SDValue &Index,
2961                                          SDValue &Disp, SDValue &Segment) {
2962   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2963   SDLoc DL(N);
2964 
2965   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2966     return false;
2967 
2968   auto *RN = dyn_cast<RegisterSDNode>(Base);
2969   if (RN && RN->getReg() == 0)
2970     Base = CurDAG->getRegister(0, MVT::i64);
2971   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2972     // Base could already be %rip, particularly in the x32 ABI.
2973     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2974                                                      MVT::i64), 0);
2975     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2976                                          Base);
2977   }
2978 
2979   RN = dyn_cast<RegisterSDNode>(Index);
2980   if (RN && RN->getReg() == 0)
2981     Index = CurDAG->getRegister(0, MVT::i64);
2982   else {
2983     assert(Index.getValueType() == MVT::i32 &&
2984            "Expect to be extending 32-bit registers for use in LEA");
2985     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2986                                                      MVT::i64), 0);
2987     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2988                                           Index);
2989   }
2990 
2991   return true;
2992 }
2993 
2994 /// Calls SelectAddr and determines if the maximal addressing
2995 /// mode it matches can be cost effectively emitted as an LEA instruction.
2996 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2997                                     SDValue &Base, SDValue &Scale,
2998                                     SDValue &Index, SDValue &Disp,
2999                                     SDValue &Segment) {
3000   X86ISelAddressMode AM;
3001 
3002   // Save the DL and VT before calling matchAddress, it can invalidate N.
3003   SDLoc DL(N);
3004   MVT VT = N.getSimpleValueType();
3005 
3006   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
3007   // segments.
3008   SDValue Copy = AM.Segment;
3009   SDValue T = CurDAG->getRegister(0, MVT::i32);
3010   AM.Segment = T;
3011   if (matchAddress(N, AM))
3012     return false;
3013   assert (T == AM.Segment);
3014   AM.Segment = Copy;
3015 
3016   unsigned Complexity = 0;
3017   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
3018     Complexity = 1;
3019   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
3020     Complexity = 4;
3021 
3022   if (AM.IndexReg.getNode())
3023     Complexity++;
3024 
3025   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
3026   // a simple shift.
3027   if (AM.Scale > 1)
3028     Complexity++;
3029 
3030   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
3031   // to a LEA. This is determined with some experimentation but is by no means
3032   // optimal (especially for code size consideration). LEA is nice because of
3033   // its three-address nature. Tweak the cost function again when we can run
3034   // convertToThreeAddress() at register allocation time.
3035   if (AM.hasSymbolicDisplacement()) {
3036     // For X86-64, always use LEA to materialize RIP-relative addresses.
3037     if (Subtarget->is64Bit())
3038       Complexity = 4;
3039     else
3040       Complexity += 2;
3041   }
3042 
3043   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
3044   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
3045   // duplicating flag-producing instructions later in the pipeline.
3046   if (N.getOpcode() == ISD::ADD) {
3047     auto isMathWithFlags = [](SDValue V) {
3048       switch (V.getOpcode()) {
3049       case X86ISD::ADD:
3050       case X86ISD::SUB:
3051       case X86ISD::ADC:
3052       case X86ISD::SBB:
3053       case X86ISD::SMUL:
3054       case X86ISD::UMUL:
3055       /* TODO: These opcodes can be added safely, but we may want to justify
3056                their inclusion for different reasons (better for reg-alloc).
3057       case X86ISD::OR:
3058       case X86ISD::XOR:
3059       case X86ISD::AND:
3060       */
3061         // Value 1 is the flag output of the node - verify it's not dead.
3062         return !SDValue(V.getNode(), 1).use_empty();
3063       default:
3064         return false;
3065       }
3066     };
3067     // TODO: We might want to factor in whether there's a load folding
3068     // opportunity for the math op that disappears with LEA.
3069     if (isMathWithFlags(N.getOperand(0)) || isMathWithFlags(N.getOperand(1)))
3070       Complexity++;
3071   }
3072 
3073   if (AM.Disp)
3074     Complexity++;
3075 
3076   // If it isn't worth using an LEA, reject it.
3077   if (Complexity <= 2)
3078     return false;
3079 
3080   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
3081   return true;
3082 }
3083 
3084 /// This is only run on TargetGlobalTLSAddress nodes.
3085 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
3086                                         SDValue &Scale, SDValue &Index,
3087                                         SDValue &Disp, SDValue &Segment) {
3088   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
3089   auto *GA = cast<GlobalAddressSDNode>(N);
3090 
3091   X86ISelAddressMode AM;
3092   AM.GV = GA->getGlobal();
3093   AM.Disp += GA->getOffset();
3094   AM.SymbolFlags = GA->getTargetFlags();
3095 
3096   if (Subtarget->is32Bit()) {
3097     AM.Scale = 1;
3098     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
3099   }
3100 
3101   MVT VT = N.getSimpleValueType();
3102   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
3103   return true;
3104 }
3105 
3106 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
3107   // Keep track of the original value type and whether this value was
3108   // truncated. If we see a truncation from pointer type to VT that truncates
3109   // bits that are known to be zero, we can use a narrow reference.
3110   EVT VT = N.getValueType();
3111   bool WasTruncated = false;
3112   if (N.getOpcode() == ISD::TRUNCATE) {
3113     WasTruncated = true;
3114     N = N.getOperand(0);
3115   }
3116 
3117   if (N.getOpcode() != X86ISD::Wrapper)
3118     return false;
3119 
3120   // We can only use non-GlobalValues as immediates if they were not truncated,
3121   // as we do not have any range information. If we have a GlobalValue and the
3122   // address was not truncated, we can select it as an operand directly.
3123   unsigned Opc = N.getOperand(0)->getOpcode();
3124   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
3125     Op = N.getOperand(0);
3126     // We can only select the operand directly if we didn't have to look past a
3127     // truncate.
3128     return !WasTruncated;
3129   }
3130 
3131   // Check that the global's range fits into VT.
3132   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
3133   std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
3134   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
3135     return false;
3136 
3137   // Okay, we can use a narrow reference.
3138   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
3139                                       GA->getOffset(), GA->getTargetFlags());
3140   return true;
3141 }
3142 
3143 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
3144                                   SDValue &Base, SDValue &Scale,
3145                                   SDValue &Index, SDValue &Disp,
3146                                   SDValue &Segment) {
3147   assert(Root && P && "Unknown root/parent nodes");
3148   if (!ISD::isNON_EXTLoad(N.getNode()) ||
3149       !IsProfitableToFold(N, P, Root) ||
3150       !IsLegalToFold(N, P, Root, OptLevel))
3151     return false;
3152 
3153   return selectAddr(N.getNode(),
3154                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
3155 }
3156 
3157 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
3158                                        SDValue &Base, SDValue &Scale,
3159                                        SDValue &Index, SDValue &Disp,
3160                                        SDValue &Segment) {
3161   assert(Root && P && "Unknown root/parent nodes");
3162   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
3163       !IsProfitableToFold(N, P, Root) ||
3164       !IsLegalToFold(N, P, Root, OptLevel))
3165     return false;
3166 
3167   return selectAddr(N.getNode(),
3168                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
3169 }
3170 
3171 /// Return an SDNode that returns the value of the global base register.
3172 /// Output instructions required to initialize the global base register,
3173 /// if necessary.
3174 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
3175   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
3176   auto &DL = MF->getDataLayout();
3177   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
3178 }
3179 
3180 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
3181   if (N->getOpcode() == ISD::TRUNCATE)
3182     N = N->getOperand(0).getNode();
3183   if (N->getOpcode() != X86ISD::Wrapper)
3184     return false;
3185 
3186   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
3187   if (!GA)
3188     return false;
3189 
3190   auto *GV = GA->getGlobal();
3191   std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange();
3192   if (CR)
3193     return CR->getSignedMin().sge(-1ull << Width) &&
3194            CR->getSignedMax().slt(1ull << Width);
3195   // In the kernel code model, globals are in the negative 2GB of the address
3196   // space, so globals can be a sign extended 32-bit immediate.
3197   // In other code models, small globals are in the low 2GB of the address
3198   // space, so sign extending them is equivalent to zero extending them.
3199   return Width == 32 && !TM.isLargeGlobalValue(GV);
3200 }
3201 
3202 X86::CondCode X86DAGToDAGISel::getCondFromNode(SDNode *N) const {
3203   assert(N->isMachineOpcode() && "Unexpected node");
3204   unsigned Opc = N->getMachineOpcode();
3205   const MCInstrDesc &MCID = getInstrInfo()->get(Opc);
3206   int CondNo = X86::getCondSrcNoFromDesc(MCID);
3207   if (CondNo < 0)
3208     return X86::COND_INVALID;
3209 
3210   return static_cast<X86::CondCode>(N->getConstantOperandVal(CondNo));
3211 }
3212 
3213 /// Test whether the given X86ISD::CMP node has any users that use a flag
3214 /// other than ZF.
3215 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
3216   // Examine each user of the node.
3217   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3218          UI != UE; ++UI) {
3219     // Only check things that use the flags.
3220     if (UI.getUse().getResNo() != Flags.getResNo())
3221       continue;
3222     // Only examine CopyToReg uses that copy to EFLAGS.
3223     if (UI->getOpcode() != ISD::CopyToReg ||
3224         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3225       return false;
3226     // Examine each user of the CopyToReg use.
3227     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3228            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3229       // Only examine the Flag result.
3230       if (FlagUI.getUse().getResNo() != 1) continue;
3231       // Anything unusual: assume conservatively.
3232       if (!FlagUI->isMachineOpcode()) return false;
3233       // Examine the condition code of the user.
3234       X86::CondCode CC = getCondFromNode(*FlagUI);
3235 
3236       switch (CC) {
3237       // Comparisons which only use the zero flag.
3238       case X86::COND_E: case X86::COND_NE:
3239         continue;
3240       // Anything else: assume conservatively.
3241       default:
3242         return false;
3243       }
3244     }
3245   }
3246   return true;
3247 }
3248 
3249 /// Test whether the given X86ISD::CMP node has any uses which require the SF
3250 /// flag to be accurate.
3251 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
3252   // Examine each user of the node.
3253   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3254          UI != UE; ++UI) {
3255     // Only check things that use the flags.
3256     if (UI.getUse().getResNo() != Flags.getResNo())
3257       continue;
3258     // Only examine CopyToReg uses that copy to EFLAGS.
3259     if (UI->getOpcode() != ISD::CopyToReg ||
3260         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3261       return false;
3262     // Examine each user of the CopyToReg use.
3263     for (SDNode::use_iterator FlagUI = UI->use_begin(),
3264            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3265       // Only examine the Flag result.
3266       if (FlagUI.getUse().getResNo() != 1) continue;
3267       // Anything unusual: assume conservatively.
3268       if (!FlagUI->isMachineOpcode()) return false;
3269       // Examine the condition code of the user.
3270       X86::CondCode CC = getCondFromNode(*FlagUI);
3271 
3272       switch (CC) {
3273       // Comparisons which don't examine the SF flag.
3274       case X86::COND_A: case X86::COND_AE:
3275       case X86::COND_B: case X86::COND_BE:
3276       case X86::COND_E: case X86::COND_NE:
3277       case X86::COND_O: case X86::COND_NO:
3278       case X86::COND_P: case X86::COND_NP:
3279         continue;
3280       // Anything else: assume conservatively.
3281       default:
3282         return false;
3283       }
3284     }
3285   }
3286   return true;
3287 }
3288 
3289 static bool mayUseCarryFlag(X86::CondCode CC) {
3290   switch (CC) {
3291   // Comparisons which don't examine the CF flag.
3292   case X86::COND_O: case X86::COND_NO:
3293   case X86::COND_E: case X86::COND_NE:
3294   case X86::COND_S: case X86::COND_NS:
3295   case X86::COND_P: case X86::COND_NP:
3296   case X86::COND_L: case X86::COND_GE:
3297   case X86::COND_G: case X86::COND_LE:
3298     return false;
3299   // Anything else: assume conservatively.
3300   default:
3301     return true;
3302   }
3303 }
3304 
3305 /// Test whether the given node which sets flags has any uses which require the
3306 /// CF flag to be accurate.
3307  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
3308   // Examine each user of the node.
3309   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3310          UI != UE; ++UI) {
3311     // Only check things that use the flags.
3312     if (UI.getUse().getResNo() != Flags.getResNo())
3313       continue;
3314 
3315     unsigned UIOpc = UI->getOpcode();
3316 
3317     if (UIOpc == ISD::CopyToReg) {
3318       // Only examine CopyToReg uses that copy to EFLAGS.
3319       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3320         return false;
3321       // Examine each user of the CopyToReg use.
3322       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
3323            FlagUI != FlagUE; ++FlagUI) {
3324         // Only examine the Flag result.
3325         if (FlagUI.getUse().getResNo() != 1)
3326           continue;
3327         // Anything unusual: assume conservatively.
3328         if (!FlagUI->isMachineOpcode())
3329           return false;
3330         // Examine the condition code of the user.
3331         X86::CondCode CC = getCondFromNode(*FlagUI);
3332 
3333         if (mayUseCarryFlag(CC))
3334           return false;
3335       }
3336 
3337       // This CopyToReg is ok. Move on to the next user.
3338       continue;
3339     }
3340 
3341     // This might be an unselected node. So look for the pre-isel opcodes that
3342     // use flags.
3343     unsigned CCOpNo;
3344     switch (UIOpc) {
3345     default:
3346       // Something unusual. Be conservative.
3347       return false;
3348     case X86ISD::SETCC:       CCOpNo = 0; break;
3349     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
3350     case X86ISD::CMOV:        CCOpNo = 2; break;
3351     case X86ISD::BRCOND:      CCOpNo = 2; break;
3352     }
3353 
3354     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
3355     if (mayUseCarryFlag(CC))
3356       return false;
3357   }
3358   return true;
3359 }
3360 
3361 /// Check whether or not the chain ending in StoreNode is suitable for doing
3362 /// the {load; op; store} to modify transformation.
3363 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
3364                                         SDValue StoredVal, SelectionDAG *CurDAG,
3365                                         unsigned LoadOpNo,
3366                                         LoadSDNode *&LoadNode,
3367                                         SDValue &InputChain) {
3368   // Is the stored value result 0 of the operation?
3369   if (StoredVal.getResNo() != 0) return false;
3370 
3371   // Are there other uses of the operation other than the store?
3372   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3373 
3374   // Is the store non-extending and non-indexed?
3375   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3376     return false;
3377 
3378   SDValue Load = StoredVal->getOperand(LoadOpNo);
3379   // Is the stored value a non-extending and non-indexed load?
3380   if (!ISD::isNormalLoad(Load.getNode())) return false;
3381 
3382   // Return LoadNode by reference.
3383   LoadNode = cast<LoadSDNode>(Load);
3384 
3385   // Is store the only read of the loaded value?
3386   if (!Load.hasOneUse())
3387     return false;
3388 
3389   // Is the address of the store the same as the load?
3390   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3391       LoadNode->getOffset() != StoreNode->getOffset())
3392     return false;
3393 
3394   bool FoundLoad = false;
3395   SmallVector<SDValue, 4> ChainOps;
3396   SmallVector<const SDNode *, 4> LoopWorklist;
3397   SmallPtrSet<const SDNode *, 16> Visited;
3398   const unsigned int Max = 1024;
3399 
3400   //  Visualization of Load-Op-Store fusion:
3401   // -------------------------
3402   // Legend:
3403   //    *-lines = Chain operand dependencies.
3404   //    |-lines = Normal operand dependencies.
3405   //    Dependencies flow down and right. n-suffix references multiple nodes.
3406   //
3407   //        C                        Xn  C
3408   //        *                         *  *
3409   //        *                          * *
3410   //  Xn  A-LD    Yn                    TF         Yn
3411   //   *    * \   |                       *        |
3412   //    *   *  \  |                        *       |
3413   //     *  *   \ |             =>       A--LD_OP_ST
3414   //      * *    \|                                 \
3415   //       TF    OP                                  \
3416   //         *   | \                                  Zn
3417   //          *  |  \
3418   //         A-ST    Zn
3419   //
3420 
3421   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3422   //                                      #2: Yn -> LD
3423   //                                      #3: ST -> Zn
3424 
3425   // Ensure the transform is safe by checking for the dual
3426   // dependencies to make sure we do not induce a loop.
3427 
3428   // As LD is a predecessor to both OP and ST we can do this by checking:
3429   //  a). if LD is a predecessor to a member of Xn or Yn.
3430   //  b). if a Zn is a predecessor to ST.
3431 
3432   // However, (b) can only occur through being a chain predecessor to
3433   // ST, which is the same as Zn being a member or predecessor of Xn,
3434   // which is a subset of LD being a predecessor of Xn. So it's
3435   // subsumed by check (a).
3436 
3437   SDValue Chain = StoreNode->getChain();
3438 
3439   // Gather X elements in ChainOps.
3440   if (Chain == Load.getValue(1)) {
3441     FoundLoad = true;
3442     ChainOps.push_back(Load.getOperand(0));
3443   } else if (Chain.getOpcode() == ISD::TokenFactor) {
3444     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3445       SDValue Op = Chain.getOperand(i);
3446       if (Op == Load.getValue(1)) {
3447         FoundLoad = true;
3448         // Drop Load, but keep its chain. No cycle check necessary.
3449         ChainOps.push_back(Load.getOperand(0));
3450         continue;
3451       }
3452       LoopWorklist.push_back(Op.getNode());
3453       ChainOps.push_back(Op);
3454     }
3455   }
3456 
3457   if (!FoundLoad)
3458     return false;
3459 
3460   // Worklist is currently Xn. Add Yn to worklist.
3461   for (SDValue Op : StoredVal->ops())
3462     if (Op.getNode() != LoadNode)
3463       LoopWorklist.push_back(Op.getNode());
3464 
3465   // Check (a) if Load is a predecessor to Xn + Yn
3466   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3467                                    true))
3468     return false;
3469 
3470   InputChain =
3471       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3472   return true;
3473 }
3474 
3475 // Change a chain of {load; op; store} of the same value into a simple op
3476 // through memory of that value, if the uses of the modified value and its
3477 // address are suitable.
3478 //
3479 // The tablegen pattern memory operand pattern is currently not able to match
3480 // the case where the EFLAGS on the original operation are used.
3481 //
3482 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3483 // be transferred from a node in the pattern to the result node, probably with
3484 // a new keyword. For example, we have this
3485 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3486 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3487 //   (implicit EFLAGS)]>;
3488 // but maybe need something like this
3489 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3490 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3491 //   (transferrable EFLAGS)]>;
3492 //
3493 // Until then, we manually fold these and instruction select the operation
3494 // here.
3495 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3496   auto *StoreNode = cast<StoreSDNode>(Node);
3497   SDValue StoredVal = StoreNode->getOperand(1);
3498   unsigned Opc = StoredVal->getOpcode();
3499 
3500   // Before we try to select anything, make sure this is memory operand size
3501   // and opcode we can handle. Note that this must match the code below that
3502   // actually lowers the opcodes.
3503   EVT MemVT = StoreNode->getMemoryVT();
3504   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3505       MemVT != MVT::i8)
3506     return false;
3507 
3508   bool IsCommutable = false;
3509   bool IsNegate = false;
3510   switch (Opc) {
3511   default:
3512     return false;
3513   case X86ISD::SUB:
3514     IsNegate = isNullConstant(StoredVal.getOperand(0));
3515     break;
3516   case X86ISD::SBB:
3517     break;
3518   case X86ISD::ADD:
3519   case X86ISD::ADC:
3520   case X86ISD::AND:
3521   case X86ISD::OR:
3522   case X86ISD::XOR:
3523     IsCommutable = true;
3524     break;
3525   }
3526 
3527   unsigned LoadOpNo = IsNegate ? 1 : 0;
3528   LoadSDNode *LoadNode = nullptr;
3529   SDValue InputChain;
3530   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3531                                    LoadNode, InputChain)) {
3532     if (!IsCommutable)
3533       return false;
3534 
3535     // This operation is commutable, try the other operand.
3536     LoadOpNo = 1;
3537     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3538                                      LoadNode, InputChain))
3539       return false;
3540   }
3541 
3542   SDValue Base, Scale, Index, Disp, Segment;
3543   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3544                   Segment))
3545     return false;
3546 
3547   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3548                           unsigned Opc8) {
3549     switch (MemVT.getSimpleVT().SimpleTy) {
3550     case MVT::i64:
3551       return Opc64;
3552     case MVT::i32:
3553       return Opc32;
3554     case MVT::i16:
3555       return Opc16;
3556     case MVT::i8:
3557       return Opc8;
3558     default:
3559       llvm_unreachable("Invalid size!");
3560     }
3561   };
3562 
3563   MachineSDNode *Result;
3564   switch (Opc) {
3565   case X86ISD::SUB:
3566     // Handle negate.
3567     if (IsNegate) {
3568       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3569                                      X86::NEG8m);
3570       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3571       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3572                                       MVT::Other, Ops);
3573       break;
3574     }
3575    [[fallthrough]];
3576   case X86ISD::ADD:
3577     // Try to match inc/dec.
3578     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3579       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3580       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3581       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3582       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3583         unsigned NewOpc =
3584           ((Opc == X86ISD::ADD) == IsOne)
3585               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3586               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3587         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3588         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3589                                         MVT::Other, Ops);
3590         break;
3591       }
3592     }
3593     [[fallthrough]];
3594   case X86ISD::ADC:
3595   case X86ISD::SBB:
3596   case X86ISD::AND:
3597   case X86ISD::OR:
3598   case X86ISD::XOR: {
3599     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3600       switch (Opc) {
3601       case X86ISD::ADD:
3602         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3603                             X86::ADD8mr);
3604       case X86ISD::ADC:
3605         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3606                             X86::ADC8mr);
3607       case X86ISD::SUB:
3608         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3609                             X86::SUB8mr);
3610       case X86ISD::SBB:
3611         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3612                             X86::SBB8mr);
3613       case X86ISD::AND:
3614         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3615                             X86::AND8mr);
3616       case X86ISD::OR:
3617         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3618       case X86ISD::XOR:
3619         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3620                             X86::XOR8mr);
3621       default:
3622         llvm_unreachable("Invalid opcode!");
3623       }
3624     };
3625     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3626       switch (Opc) {
3627       case X86ISD::ADD:
3628         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3629                             X86::ADD8mi);
3630       case X86ISD::ADC:
3631         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3632                             X86::ADC8mi);
3633       case X86ISD::SUB:
3634         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3635                             X86::SUB8mi);
3636       case X86ISD::SBB:
3637         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3638                             X86::SBB8mi);
3639       case X86ISD::AND:
3640         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3641                             X86::AND8mi);
3642       case X86ISD::OR:
3643         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3644                             X86::OR8mi);
3645       case X86ISD::XOR:
3646         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3647                             X86::XOR8mi);
3648       default:
3649         llvm_unreachable("Invalid opcode!");
3650       }
3651     };
3652 
3653     unsigned NewOpc = SelectRegOpcode(Opc);
3654     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3655 
3656     // See if the operand is a constant that we can fold into an immediate
3657     // operand.
3658     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3659       int64_t OperandV = OperandC->getSExtValue();
3660 
3661       // Check if we can shrink the operand enough to fit in an immediate (or
3662       // fit into a smaller immediate) by negating it and switching the
3663       // operation.
3664       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3665           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3666            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3667             isInt<32>(-OperandV))) &&
3668           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3669         OperandV = -OperandV;
3670         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3671       }
3672 
3673       if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3674         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3675         NewOpc = SelectImmOpcode(Opc);
3676       }
3677     }
3678 
3679     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3680       SDValue CopyTo =
3681           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3682                                StoredVal.getOperand(2), SDValue());
3683 
3684       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3685                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3686       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3687                                       Ops);
3688     } else {
3689       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3690                              Segment, Operand, InputChain};
3691       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3692                                       Ops);
3693     }
3694     break;
3695   }
3696   default:
3697     llvm_unreachable("Invalid opcode!");
3698   }
3699 
3700   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3701                                  LoadNode->getMemOperand()};
3702   CurDAG->setNodeMemRefs(Result, MemOps);
3703 
3704   // Update Load Chain uses as well.
3705   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3706   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3707   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3708   CurDAG->RemoveDeadNode(Node);
3709   return true;
3710 }
3711 
3712 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3713 // Where Mask is one of the following patterns:
3714 //   a) x &  (1 << nbits) - 1
3715 //   b) x & ~(-1 << nbits)
3716 //   c) x &  (-1 >> (32 - y))
3717 //   d) x << (32 - y) >> (32 - y)
3718 //   e) (1 << nbits) - 1
3719 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3720   assert(
3721       (Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::AND ||
3722        Node->getOpcode() == ISD::SRL) &&
3723       "Should be either an and-mask, or right-shift after clearing high bits.");
3724 
3725   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3726   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3727     return false;
3728 
3729   MVT NVT = Node->getSimpleValueType(0);
3730 
3731   // Only supported for 32 and 64 bits.
3732   if (NVT != MVT::i32 && NVT != MVT::i64)
3733     return false;
3734 
3735   SDValue NBits;
3736   bool NegateNBits;
3737 
3738   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3739   // Else, if we only have BMI1's BEXTR, we require one-use.
3740   const bool AllowExtraUsesByDefault = Subtarget->hasBMI2();
3741   auto checkUses = [AllowExtraUsesByDefault](
3742                        SDValue Op, unsigned NUses,
3743                        std::optional<bool> AllowExtraUses) {
3744     return AllowExtraUses.value_or(AllowExtraUsesByDefault) ||
3745            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3746   };
3747   auto checkOneUse = [checkUses](SDValue Op,
3748                                  std::optional<bool> AllowExtraUses =
3749                                      std::nullopt) {
3750     return checkUses(Op, 1, AllowExtraUses);
3751   };
3752   auto checkTwoUse = [checkUses](SDValue Op,
3753                                  std::optional<bool> AllowExtraUses =
3754                                      std::nullopt) {
3755     return checkUses(Op, 2, AllowExtraUses);
3756   };
3757 
3758   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3759     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3760       assert(V.getSimpleValueType() == MVT::i32 &&
3761              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3762              "Expected i64 -> i32 truncation");
3763       V = V.getOperand(0);
3764     }
3765     return V;
3766   };
3767 
3768   // a) x & ((1 << nbits) + (-1))
3769   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits,
3770                         &NegateNBits](SDValue Mask) -> bool {
3771     // Match `add`. Must only have one use!
3772     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3773       return false;
3774     // We should be adding all-ones constant (i.e. subtracting one.)
3775     if (!isAllOnesConstant(Mask->getOperand(1)))
3776       return false;
3777     // Match `1 << nbits`. Might be truncated. Must only have one use!
3778     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3779     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3780       return false;
3781     if (!isOneConstant(M0->getOperand(0)))
3782       return false;
3783     NBits = M0->getOperand(1);
3784     NegateNBits = false;
3785     return true;
3786   };
3787 
3788   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3789     V = peekThroughOneUseTruncation(V);
3790     return CurDAG->MaskedValueIsAllOnes(
3791         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3792                                 NVT.getSizeInBits()));
3793   };
3794 
3795   // b) x & ~(-1 << nbits)
3796   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3797                         &NBits, &NegateNBits](SDValue Mask) -> bool {
3798     // Match `~()`. Must only have one use!
3799     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3800       return false;
3801     // The -1 only has to be all-ones for the final Node's NVT.
3802     if (!isAllOnes(Mask->getOperand(1)))
3803       return false;
3804     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3805     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3806     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3807       return false;
3808     // The -1 only has to be all-ones for the final Node's NVT.
3809     if (!isAllOnes(M0->getOperand(0)))
3810       return false;
3811     NBits = M0->getOperand(1);
3812     NegateNBits = false;
3813     return true;
3814   };
3815 
3816   // Try to match potentially-truncated shift amount as `(bitwidth - y)`,
3817   // or leave the shift amount as-is, but then we'll have to negate it.
3818   auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt,
3819                                                      unsigned Bitwidth) {
3820     NBits = ShiftAmt;
3821     NegateNBits = true;
3822     // Skip over a truncate of the shift amount, if any.
3823     if (NBits.getOpcode() == ISD::TRUNCATE)
3824       NBits = NBits.getOperand(0);
3825     // Try to match the shift amount as (bitwidth - y). It should go away, too.
3826     // If it doesn't match, that's fine, we'll just negate it ourselves.
3827     if (NBits.getOpcode() != ISD::SUB)
3828       return;
3829     auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0));
3830     if (!V0 || V0->getZExtValue() != Bitwidth)
3831       return;
3832     NBits = NBits.getOperand(1);
3833     NegateNBits = false;
3834   };
3835 
3836   // c) x &  (-1 >> z)  but then we'll have to subtract z from bitwidth
3837   //   or
3838   // c) x &  (-1 >> (32 - y))
3839   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits,
3840                         canonicalizeShiftAmt](SDValue Mask) -> bool {
3841     // The mask itself may be truncated.
3842     Mask = peekThroughOneUseTruncation(Mask);
3843     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3844     // Match `l>>`. Must only have one use!
3845     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3846       return false;
3847     // We should be shifting truly all-ones constant.
3848     if (!isAllOnesConstant(Mask.getOperand(0)))
3849       return false;
3850     SDValue M1 = Mask.getOperand(1);
3851     // The shift amount should not be used externally.
3852     if (!checkOneUse(M1))
3853       return false;
3854     canonicalizeShiftAmt(M1, Bitwidth);
3855     // Pattern c. is non-canonical, and is expanded into pattern d. iff there
3856     // is no extra use of the mask. Clearly, there was one since we are here.
3857     // But at the same time, if we need to negate the shift amount,
3858     // then we don't want the mask to stick around, else it's unprofitable.
3859     return !NegateNBits;
3860   };
3861 
3862   SDValue X;
3863 
3864   // d) x << z >> z  but then we'll have to subtract z from bitwidth
3865   //   or
3866   // d) x << (32 - y) >> (32 - y)
3867   auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt,
3868                         AllowExtraUsesByDefault, &NegateNBits,
3869                         &X](SDNode *Node) -> bool {
3870     if (Node->getOpcode() != ISD::SRL)
3871       return false;
3872     SDValue N0 = Node->getOperand(0);
3873     if (N0->getOpcode() != ISD::SHL)
3874       return false;
3875     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3876     SDValue N1 = Node->getOperand(1);
3877     SDValue N01 = N0->getOperand(1);
3878     // Both of the shifts must be by the exact same value.
3879     if (N1 != N01)
3880       return false;
3881     canonicalizeShiftAmt(N1, Bitwidth);
3882     // There should not be any external uses of the inner shift / shift amount.
3883     // Note that while we are generally okay with external uses given BMI2,
3884     // iff we need to negate the shift amount, we are not okay with extra uses.
3885     const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits;
3886     if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses))
3887       return false;
3888     X = N0->getOperand(0);
3889     return true;
3890   };
3891 
3892   auto matchLowBitMask = [matchPatternA, matchPatternB,
3893                           matchPatternC](SDValue Mask) -> bool {
3894     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3895   };
3896 
3897   if (Node->getOpcode() == ISD::AND) {
3898     X = Node->getOperand(0);
3899     SDValue Mask = Node->getOperand(1);
3900 
3901     if (matchLowBitMask(Mask)) {
3902       // Great.
3903     } else {
3904       std::swap(X, Mask);
3905       if (!matchLowBitMask(Mask))
3906         return false;
3907     }
3908   } else if (matchLowBitMask(SDValue(Node, 0))) {
3909     X = CurDAG->getAllOnesConstant(SDLoc(Node), NVT);
3910   } else if (!matchPatternD(Node))
3911     return false;
3912 
3913   // If we need to negate the shift amount, require BMI2 BZHI support.
3914   // It's just too unprofitable for BMI1 BEXTR.
3915   if (NegateNBits && !Subtarget->hasBMI2())
3916     return false;
3917 
3918   SDLoc DL(Node);
3919 
3920   // Truncate the shift amount.
3921   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3922   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3923 
3924   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3925   // All the other bits are undefined, we do not care about them.
3926   SDValue ImplDef = SDValue(
3927       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3928   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3929 
3930   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3931   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3932   NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
3933                                          MVT::i32, ImplDef, NBits, SRIdxVal),
3934                   0);
3935   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3936 
3937   // We might have matched the amount of high bits to be cleared,
3938   // but we want the amount of low bits to be kept, so negate it then.
3939   if (NegateNBits) {
3940     SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32);
3941     insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC);
3942 
3943     NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits);
3944     insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3945   }
3946 
3947   if (Subtarget->hasBMI2()) {
3948     // Great, just emit the BZHI..
3949     if (NVT != MVT::i32) {
3950       // But have to place the bit count into the wide-enough register first.
3951       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3952       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3953     }
3954 
3955     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3956     ReplaceNode(Node, Extract.getNode());
3957     SelectCode(Extract.getNode());
3958     return true;
3959   }
3960 
3961   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3962   // *logically* shifted (potentially with one-use trunc inbetween),
3963   // and the truncation was the only use of the shift,
3964   // and if so look past one-use truncation.
3965   {
3966     SDValue RealX = peekThroughOneUseTruncation(X);
3967     // FIXME: only if the shift is one-use?
3968     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3969       X = RealX;
3970   }
3971 
3972   MVT XVT = X.getSimpleValueType();
3973 
3974   // Else, emitting BEXTR requires one more step.
3975   // The 'control' of BEXTR has the pattern of:
3976   // [15...8 bit][ 7...0 bit] location
3977   // [ bit count][     shift] name
3978   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3979 
3980   // Shift NBits left by 8 bits, thus producing 'control'.
3981   // This makes the low 8 bits to be zero.
3982   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3983   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3984   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3985   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3986 
3987   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3988   // FIXME: only if the shift is one-use?
3989   if (X.getOpcode() == ISD::SRL) {
3990     SDValue ShiftAmt = X.getOperand(1);
3991     X = X.getOperand(0);
3992 
3993     assert(ShiftAmt.getValueType() == MVT::i8 &&
3994            "Expected shift amount to be i8");
3995 
3996     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3997     // We could zext to i16 in some form, but we intentionally don't do that.
3998     SDValue OrigShiftAmt = ShiftAmt;
3999     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
4000     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
4001 
4002     // And now 'or' these low 8 bits of shift amount into the 'control'.
4003     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
4004     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
4005   }
4006 
4007   // But have to place the 'control' into the wide-enough register first.
4008   if (XVT != MVT::i32) {
4009     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
4010     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
4011   }
4012 
4013   // And finally, form the BEXTR itself.
4014   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
4015 
4016   // The 'X' was originally truncated. Do that now.
4017   if (XVT != NVT) {
4018     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
4019     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
4020   }
4021 
4022   ReplaceNode(Node, Extract.getNode());
4023   SelectCode(Extract.getNode());
4024 
4025   return true;
4026 }
4027 
4028 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
4029 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
4030   MVT NVT = Node->getSimpleValueType(0);
4031   SDLoc dl(Node);
4032 
4033   SDValue N0 = Node->getOperand(0);
4034   SDValue N1 = Node->getOperand(1);
4035 
4036   // If we have TBM we can use an immediate for the control. If we have BMI
4037   // we should only do this if the BEXTR instruction is implemented well.
4038   // Otherwise moving the control into a register makes this more costly.
4039   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
4040   // hoisting the move immediate would make it worthwhile with a less optimal
4041   // BEXTR?
4042   bool PreferBEXTR =
4043       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
4044   if (!PreferBEXTR && !Subtarget->hasBMI2())
4045     return nullptr;
4046 
4047   // Must have a shift right.
4048   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
4049     return nullptr;
4050 
4051   // Shift can't have additional users.
4052   if (!N0->hasOneUse())
4053     return nullptr;
4054 
4055   // Only supported for 32 and 64 bits.
4056   if (NVT != MVT::i32 && NVT != MVT::i64)
4057     return nullptr;
4058 
4059   // Shift amount and RHS of and must be constant.
4060   auto *MaskCst = dyn_cast<ConstantSDNode>(N1);
4061   auto *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
4062   if (!MaskCst || !ShiftCst)
4063     return nullptr;
4064 
4065   // And RHS must be a mask.
4066   uint64_t Mask = MaskCst->getZExtValue();
4067   if (!isMask_64(Mask))
4068     return nullptr;
4069 
4070   uint64_t Shift = ShiftCst->getZExtValue();
4071   uint64_t MaskSize = llvm::popcount(Mask);
4072 
4073   // Don't interfere with something that can be handled by extracting AH.
4074   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
4075   if (Shift == 8 && MaskSize == 8)
4076     return nullptr;
4077 
4078   // Make sure we are only using bits that were in the original value, not
4079   // shifted in.
4080   if (Shift + MaskSize > NVT.getSizeInBits())
4081     return nullptr;
4082 
4083   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
4084   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
4085   // does not fit into 32 bits. Load folding is not a sufficient reason.
4086   if (!PreferBEXTR && MaskSize <= 32)
4087     return nullptr;
4088 
4089   SDValue Control;
4090   unsigned ROpc, MOpc;
4091 
4092 #define GET_EGPR_IF_ENABLED(OPC) (Subtarget->hasEGPR() ? OPC##_EVEX : OPC)
4093   if (!PreferBEXTR) {
4094     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
4095     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
4096     // Let's perform the mask first, and apply shift later. Note that we need to
4097     // widen the mask to account for the fact that we'll apply shift afterwards!
4098     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
4099     ROpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BZHI64rr)
4100                            : GET_EGPR_IF_ENABLED(X86::BZHI32rr);
4101     MOpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BZHI64rm)
4102                            : GET_EGPR_IF_ENABLED(X86::BZHI32rm);
4103     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4104     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
4105   } else {
4106     // The 'control' of BEXTR has the pattern of:
4107     // [15...8 bit][ 7...0 bit] location
4108     // [ bit count][     shift] name
4109     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
4110     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
4111     if (Subtarget->hasTBM()) {
4112       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
4113       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
4114     } else {
4115       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
4116       // BMI requires the immediate to placed in a register.
4117       ROpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BEXTR64rr)
4118                              : GET_EGPR_IF_ENABLED(X86::BEXTR32rr);
4119       MOpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BEXTR64rm)
4120                              : GET_EGPR_IF_ENABLED(X86::BEXTR32rm);
4121       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4122       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
4123     }
4124   }
4125 
4126   MachineSDNode *NewNode;
4127   SDValue Input = N0->getOperand(0);
4128   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4129   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4130     SDValue Ops[] = {
4131         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
4132     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4133     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4134     // Update the chain.
4135     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
4136     // Record the mem-refs
4137     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
4138   } else {
4139     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
4140   }
4141 
4142   if (!PreferBEXTR) {
4143     // We still need to apply the shift.
4144     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
4145     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
4146     NewNode =
4147         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
4148   }
4149 
4150   return NewNode;
4151 }
4152 
4153 // Emit a PCMISTR(I/M) instruction.
4154 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
4155                                              bool MayFoldLoad, const SDLoc &dl,
4156                                              MVT VT, SDNode *Node) {
4157   SDValue N0 = Node->getOperand(0);
4158   SDValue N1 = Node->getOperand(1);
4159   SDValue Imm = Node->getOperand(2);
4160   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
4161   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
4162 
4163   // Try to fold a load. No need to check alignment.
4164   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4165   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4166     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4167                       N1.getOperand(0) };
4168     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
4169     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4170     // Update the chain.
4171     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
4172     // Record the mem-refs
4173     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
4174     return CNode;
4175   }
4176 
4177   SDValue Ops[] = { N0, N1, Imm };
4178   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
4179   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
4180   return CNode;
4181 }
4182 
4183 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
4184 // to emit a second instruction after this one. This is needed since we have two
4185 // copyToReg nodes glued before this and we need to continue that glue through.
4186 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
4187                                              bool MayFoldLoad, const SDLoc &dl,
4188                                              MVT VT, SDNode *Node,
4189                                              SDValue &InGlue) {
4190   SDValue N0 = Node->getOperand(0);
4191   SDValue N2 = Node->getOperand(2);
4192   SDValue Imm = Node->getOperand(4);
4193   auto *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
4194   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
4195 
4196   // Try to fold a load. No need to check alignment.
4197   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4198   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4199     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4200                       N2.getOperand(0), InGlue };
4201     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
4202     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4203     InGlue = SDValue(CNode, 3);
4204     // Update the chain.
4205     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
4206     // Record the mem-refs
4207     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
4208     return CNode;
4209   }
4210 
4211   SDValue Ops[] = { N0, N2, Imm, InGlue };
4212   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
4213   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
4214   InGlue = SDValue(CNode, 2);
4215   return CNode;
4216 }
4217 
4218 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
4219   EVT VT = N->getValueType(0);
4220 
4221   // Only handle scalar shifts.
4222   if (VT.isVector())
4223     return false;
4224 
4225   // Narrower shifts only mask to 5 bits in hardware.
4226   unsigned Size = VT == MVT::i64 ? 64 : 32;
4227 
4228   SDValue OrigShiftAmt = N->getOperand(1);
4229   SDValue ShiftAmt = OrigShiftAmt;
4230   SDLoc DL(N);
4231 
4232   // Skip over a truncate of the shift amount.
4233   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
4234     ShiftAmt = ShiftAmt->getOperand(0);
4235 
4236   // This function is called after X86DAGToDAGISel::matchBitExtract(),
4237   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
4238 
4239   SDValue NewShiftAmt;
4240   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB ||
4241       ShiftAmt->getOpcode() == ISD::XOR) {
4242     SDValue Add0 = ShiftAmt->getOperand(0);
4243     SDValue Add1 = ShiftAmt->getOperand(1);
4244     auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
4245     auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
4246     // If we are shifting by X+/-/^N where N == 0 mod Size, then just shift by X
4247     // to avoid the ADD/SUB/XOR.
4248     if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
4249       NewShiftAmt = Add0;
4250 
4251     } else if (ShiftAmt->getOpcode() != ISD::ADD && ShiftAmt.hasOneUse() &&
4252                ((Add0C && Add0C->getAPIntValue().urem(Size) == Size - 1) ||
4253                 (Add1C && Add1C->getAPIntValue().urem(Size) == Size - 1))) {
4254       // If we are doing a NOT on just the lower bits with (Size*N-1) -/^ X
4255       // we can replace it with a NOT. In the XOR case it may save some code
4256       // size, in the SUB case it also may save a move.
4257       assert(Add0C == nullptr || Add1C == nullptr);
4258 
4259       // We can only do N-X, not X-N
4260       if (ShiftAmt->getOpcode() == ISD::SUB && Add0C == nullptr)
4261         return false;
4262 
4263       EVT OpVT = ShiftAmt.getValueType();
4264 
4265       SDValue AllOnes = CurDAG->getAllOnesConstant(DL, OpVT);
4266       NewShiftAmt = CurDAG->getNode(ISD::XOR, DL, OpVT,
4267                                     Add0C == nullptr ? Add0 : Add1, AllOnes);
4268       insertDAGNode(*CurDAG, OrigShiftAmt, AllOnes);
4269       insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4270       // If we are shifting by N-X where N == 0 mod Size, then just shift by
4271       // -X to generate a NEG instead of a SUB of a constant.
4272     } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
4273                Add0C->getZExtValue() != 0) {
4274       EVT SubVT = ShiftAmt.getValueType();
4275       SDValue X;
4276       if (Add0C->getZExtValue() % Size == 0)
4277         X = Add1;
4278       else if (ShiftAmt.hasOneUse() && Size == 64 &&
4279                Add0C->getZExtValue() % 32 == 0) {
4280         // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
4281         // This is mainly beneficial if we already compute (x+n*32).
4282         if (Add1.getOpcode() == ISD::TRUNCATE) {
4283           Add1 = Add1.getOperand(0);
4284           SubVT = Add1.getValueType();
4285         }
4286         if (Add0.getValueType() != SubVT) {
4287           Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
4288           insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
4289         }
4290 
4291         X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
4292         insertDAGNode(*CurDAG, OrigShiftAmt, X);
4293       } else
4294         return false;
4295       // Insert a negate op.
4296       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
4297       // that uses it that's not a shift.
4298       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
4299       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
4300       NewShiftAmt = Neg;
4301 
4302       // Insert these operands into a valid topological order so they can
4303       // get selected independently.
4304       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
4305       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
4306     } else
4307       return false;
4308   } else
4309     return false;
4310 
4311   if (NewShiftAmt.getValueType() != MVT::i8) {
4312     // Need to truncate the shift amount.
4313     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
4314     // Add to a correct topological ordering.
4315     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4316   }
4317 
4318   // Insert a new mask to keep the shift amount legal. This should be removed
4319   // by isel patterns.
4320   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
4321                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
4322   // Place in a correct topological ordering.
4323   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
4324 
4325   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
4326                                                    NewShiftAmt);
4327   if (UpdatedNode != N) {
4328     // If we found an existing node, we should replace ourselves with that node
4329     // and wait for it to be selected after its other users.
4330     ReplaceNode(N, UpdatedNode);
4331     return true;
4332   }
4333 
4334   // If the original shift amount is now dead, delete it so that we don't run
4335   // it through isel.
4336   if (OrigShiftAmt.getNode()->use_empty())
4337     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
4338 
4339   // Now that we've optimized the shift amount, defer to normal isel to get
4340   // load folding and legacy vs BMI2 selection without repeating it here.
4341   SelectCode(N);
4342   return true;
4343 }
4344 
4345 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
4346   MVT NVT = N->getSimpleValueType(0);
4347   unsigned Opcode = N->getOpcode();
4348   SDLoc dl(N);
4349 
4350   // For operations of the form (x << C1) op C2, check if we can use a smaller
4351   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
4352   SDValue Shift = N->getOperand(0);
4353   SDValue N1 = N->getOperand(1);
4354 
4355   auto *Cst = dyn_cast<ConstantSDNode>(N1);
4356   if (!Cst)
4357     return false;
4358 
4359   int64_t Val = Cst->getSExtValue();
4360 
4361   // If we have an any_extend feeding the AND, look through it to see if there
4362   // is a shift behind it. But only if the AND doesn't use the extended bits.
4363   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
4364   bool FoundAnyExtend = false;
4365   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
4366       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
4367       isUInt<32>(Val)) {
4368     FoundAnyExtend = true;
4369     Shift = Shift.getOperand(0);
4370   }
4371 
4372   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
4373     return false;
4374 
4375   // i8 is unshrinkable, i16 should be promoted to i32.
4376   if (NVT != MVT::i32 && NVT != MVT::i64)
4377     return false;
4378 
4379   auto *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
4380   if (!ShlCst)
4381     return false;
4382 
4383   uint64_t ShAmt = ShlCst->getZExtValue();
4384 
4385   // Make sure that we don't change the operation by removing bits.
4386   // This only matters for OR and XOR, AND is unaffected.
4387   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
4388   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
4389     return false;
4390 
4391   // Check the minimum bitwidth for the new constant.
4392   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
4393   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
4394     if (Opcode == ISD::AND) {
4395       // AND32ri is the same as AND64ri32 with zext imm.
4396       // Try this before sign extended immediates below.
4397       ShiftedVal = (uint64_t)Val >> ShAmt;
4398       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4399         return true;
4400       // Also swap order when the AND can become MOVZX.
4401       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
4402         return true;
4403     }
4404     ShiftedVal = Val >> ShAmt;
4405     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
4406         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
4407       return true;
4408     if (Opcode != ISD::AND) {
4409       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
4410       ShiftedVal = (uint64_t)Val >> ShAmt;
4411       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4412         return true;
4413     }
4414     return false;
4415   };
4416 
4417   int64_t ShiftedVal;
4418   if (!CanShrinkImmediate(ShiftedVal))
4419     return false;
4420 
4421   // Ok, we can reorder to get a smaller immediate.
4422 
4423   // But, its possible the original immediate allowed an AND to become MOVZX.
4424   // Doing this late due to avoid the MakedValueIsZero call as late as
4425   // possible.
4426   if (Opcode == ISD::AND) {
4427     // Find the smallest zext this could possibly be.
4428     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4429     ZExtWidth = llvm::bit_ceil(std::max(ZExtWidth, 8U));
4430 
4431     // Figure out which bits need to be zero to achieve that mask.
4432     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
4433                                             ZExtWidth);
4434     NeededMask &= ~Cst->getAPIntValue();
4435 
4436     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4437       return false;
4438   }
4439 
4440   SDValue X = Shift.getOperand(0);
4441   if (FoundAnyExtend) {
4442     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4443     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4444     X = NewX;
4445   }
4446 
4447   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4448   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4449   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4450   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4451   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4452                                    Shift.getOperand(1));
4453   ReplaceNode(N, NewSHL.getNode());
4454   SelectCode(NewSHL.getNode());
4455   return true;
4456 }
4457 
4458 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4459                                      SDNode *ParentB, SDNode *ParentC,
4460                                      SDValue A, SDValue B, SDValue C,
4461                                      uint8_t Imm) {
4462   assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) &&
4463          C.isOperandOf(ParentC) && "Incorrect parent node");
4464 
4465   auto tryFoldLoadOrBCast =
4466       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4467              SDValue &Index, SDValue &Disp, SDValue &Segment) {
4468         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4469           return true;
4470 
4471         // Not a load, check for broadcast which may be behind a bitcast.
4472         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4473           P = L.getNode();
4474           L = L.getOperand(0);
4475         }
4476 
4477         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4478           return false;
4479 
4480         // Only 32 and 64 bit broadcasts are supported.
4481         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4482         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4483         if (Size != 32 && Size != 64)
4484           return false;
4485 
4486         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4487       };
4488 
4489   bool FoldedLoad = false;
4490   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4491   if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4492     FoldedLoad = true;
4493   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4494                                 Tmp4)) {
4495     FoldedLoad = true;
4496     std::swap(A, C);
4497     // Swap bits 1/4 and 3/6.
4498     uint8_t OldImm = Imm;
4499     Imm = OldImm & 0xa5;
4500     if (OldImm & 0x02) Imm |= 0x10;
4501     if (OldImm & 0x10) Imm |= 0x02;
4502     if (OldImm & 0x08) Imm |= 0x40;
4503     if (OldImm & 0x40) Imm |= 0x08;
4504   } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3,
4505                                 Tmp4)) {
4506     FoldedLoad = true;
4507     std::swap(B, C);
4508     // Swap bits 1/2 and 5/6.
4509     uint8_t OldImm = Imm;
4510     Imm = OldImm & 0x99;
4511     if (OldImm & 0x02) Imm |= 0x04;
4512     if (OldImm & 0x04) Imm |= 0x02;
4513     if (OldImm & 0x20) Imm |= 0x40;
4514     if (OldImm & 0x40) Imm |= 0x20;
4515   }
4516 
4517   SDLoc DL(Root);
4518 
4519   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4520 
4521   MVT NVT = Root->getSimpleValueType(0);
4522 
4523   MachineSDNode *MNode;
4524   if (FoldedLoad) {
4525     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4526 
4527     unsigned Opc;
4528     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4529       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4530       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4531       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4532 
4533       bool UseD = EltSize == 32;
4534       if (NVT.is128BitVector())
4535         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4536       else if (NVT.is256BitVector())
4537         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4538       else if (NVT.is512BitVector())
4539         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4540       else
4541         llvm_unreachable("Unexpected vector size!");
4542     } else {
4543       bool UseD = NVT.getVectorElementType() == MVT::i32;
4544       if (NVT.is128BitVector())
4545         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4546       else if (NVT.is256BitVector())
4547         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4548       else if (NVT.is512BitVector())
4549         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4550       else
4551         llvm_unreachable("Unexpected vector size!");
4552     }
4553 
4554     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4555     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4556 
4557     // Update the chain.
4558     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4559     // Record the mem-refs
4560     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4561   } else {
4562     bool UseD = NVT.getVectorElementType() == MVT::i32;
4563     unsigned Opc;
4564     if (NVT.is128BitVector())
4565       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4566     else if (NVT.is256BitVector())
4567       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4568     else if (NVT.is512BitVector())
4569       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4570     else
4571       llvm_unreachable("Unexpected vector size!");
4572 
4573     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4574   }
4575 
4576   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4577   CurDAG->RemoveDeadNode(Root);
4578   return true;
4579 }
4580 
4581 // Try to match two logic ops to a VPTERNLOG.
4582 // FIXME: Handle more complex patterns that use an operand more than once?
4583 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4584   MVT NVT = N->getSimpleValueType(0);
4585 
4586   // Make sure we support VPTERNLOG.
4587   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4588       NVT.getVectorElementType() == MVT::i1)
4589     return false;
4590 
4591   // We need VLX for 128/256-bit.
4592   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4593     return false;
4594 
4595   SDValue N0 = N->getOperand(0);
4596   SDValue N1 = N->getOperand(1);
4597 
4598   auto getFoldableLogicOp = [](SDValue Op) {
4599     // Peek through single use bitcast.
4600     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4601       Op = Op.getOperand(0);
4602 
4603     if (!Op.hasOneUse())
4604       return SDValue();
4605 
4606     unsigned Opc = Op.getOpcode();
4607     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4608         Opc == X86ISD::ANDNP)
4609       return Op;
4610 
4611     return SDValue();
4612   };
4613 
4614   SDValue A, FoldableOp;
4615   if ((FoldableOp = getFoldableLogicOp(N1))) {
4616     A = N0;
4617   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4618     A = N1;
4619   } else
4620     return false;
4621 
4622   SDValue B = FoldableOp.getOperand(0);
4623   SDValue C = FoldableOp.getOperand(1);
4624   SDNode *ParentA = N;
4625   SDNode *ParentB = FoldableOp.getNode();
4626   SDNode *ParentC = FoldableOp.getNode();
4627 
4628   // We can build the appropriate control immediate by performing the logic
4629   // operation we're matching using these constants for A, B, and C.
4630   uint8_t TernlogMagicA = 0xf0;
4631   uint8_t TernlogMagicB = 0xcc;
4632   uint8_t TernlogMagicC = 0xaa;
4633 
4634   // Some of the inputs may be inverted, peek through them and invert the
4635   // magic values accordingly.
4636   // TODO: There may be a bitcast before the xor that we should peek through.
4637   auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) {
4638     if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() &&
4639         ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) {
4640       Magic = ~Magic;
4641       Parent = Op.getNode();
4642       Op = Op.getOperand(0);
4643     }
4644   };
4645 
4646   PeekThroughNot(A, ParentA, TernlogMagicA);
4647   PeekThroughNot(B, ParentB, TernlogMagicB);
4648   PeekThroughNot(C, ParentC, TernlogMagicC);
4649 
4650   uint8_t Imm;
4651   switch (FoldableOp.getOpcode()) {
4652   default: llvm_unreachable("Unexpected opcode!");
4653   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
4654   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
4655   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
4656   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4657   }
4658 
4659   switch (N->getOpcode()) {
4660   default: llvm_unreachable("Unexpected opcode!");
4661   case X86ISD::ANDNP:
4662     if (A == N0)
4663       Imm &= ~TernlogMagicA;
4664     else
4665       Imm = ~(Imm) & TernlogMagicA;
4666     break;
4667   case ISD::AND: Imm &= TernlogMagicA; break;
4668   case ISD::OR:  Imm |= TernlogMagicA; break;
4669   case ISD::XOR: Imm ^= TernlogMagicA; break;
4670   }
4671 
4672   return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm);
4673 }
4674 
4675 /// If the high bits of an 'and' operand are known zero, try setting the
4676 /// high bits of an 'and' constant operand to produce a smaller encoding by
4677 /// creating a small, sign-extended negative immediate rather than a large
4678 /// positive one. This reverses a transform in SimplifyDemandedBits that
4679 /// shrinks mask constants by clearing bits. There is also a possibility that
4680 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4681 /// case, just replace the 'and'. Return 'true' if the node is replaced.
4682 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4683   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4684   // have immediate operands.
4685   MVT VT = And->getSimpleValueType(0);
4686   if (VT != MVT::i32 && VT != MVT::i64)
4687     return false;
4688 
4689   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4690   if (!And1C)
4691     return false;
4692 
4693   // Bail out if the mask constant is already negative. It's can't shrink more.
4694   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4695   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4696   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4697   // are negative too.
4698   APInt MaskVal = And1C->getAPIntValue();
4699   unsigned MaskLZ = MaskVal.countl_zero();
4700   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4701     return false;
4702 
4703   // Don't extend into the upper 32 bits of a 64 bit mask.
4704   if (VT == MVT::i64 && MaskLZ >= 32) {
4705     MaskLZ -= 32;
4706     MaskVal = MaskVal.trunc(32);
4707   }
4708 
4709   SDValue And0 = And->getOperand(0);
4710   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4711   APInt NegMaskVal = MaskVal | HighZeros;
4712 
4713   // If a negative constant would not allow a smaller encoding, there's no need
4714   // to continue. Only change the constant when we know it's a win.
4715   unsigned MinWidth = NegMaskVal.getSignificantBits();
4716   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getSignificantBits() <= 32))
4717     return false;
4718 
4719   // Extend masks if we truncated above.
4720   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4721     NegMaskVal = NegMaskVal.zext(64);
4722     HighZeros = HighZeros.zext(64);
4723   }
4724 
4725   // The variable operand must be all zeros in the top bits to allow using the
4726   // new, negative constant as the mask.
4727   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4728     return false;
4729 
4730   // Check if the mask is -1. In that case, this is an unnecessary instruction
4731   // that escaped earlier analysis.
4732   if (NegMaskVal.isAllOnes()) {
4733     ReplaceNode(And, And0.getNode());
4734     return true;
4735   }
4736 
4737   // A negative mask allows a smaller encoding. Create a new 'and' node.
4738   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4739   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4740   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4741   ReplaceNode(And, NewAnd.getNode());
4742   SelectCode(NewAnd.getNode());
4743   return true;
4744 }
4745 
4746 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4747                               bool FoldedBCast, bool Masked) {
4748 #define VPTESTM_CASE(VT, SUFFIX) \
4749 case MVT::VT: \
4750   if (Masked) \
4751     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4752   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4753 
4754 
4755 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4756 default: llvm_unreachable("Unexpected VT!"); \
4757 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4758 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4759 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4760 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4761 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4762 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4763 
4764 #define VPTESTM_FULL_CASES(SUFFIX) \
4765 VPTESTM_BROADCAST_CASES(SUFFIX) \
4766 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4767 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4768 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4769 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4770 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4771 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4772 
4773   if (FoldedBCast) {
4774     switch (TestVT.SimpleTy) {
4775     VPTESTM_BROADCAST_CASES(rmb)
4776     }
4777   }
4778 
4779   if (FoldedLoad) {
4780     switch (TestVT.SimpleTy) {
4781     VPTESTM_FULL_CASES(rm)
4782     }
4783   }
4784 
4785   switch (TestVT.SimpleTy) {
4786   VPTESTM_FULL_CASES(rr)
4787   }
4788 
4789 #undef VPTESTM_FULL_CASES
4790 #undef VPTESTM_BROADCAST_CASES
4791 #undef VPTESTM_CASE
4792 }
4793 
4794 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4795 // to form a masked operation.
4796 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4797                                  SDValue InMask) {
4798   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4799   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4800          "Unexpected VT!");
4801 
4802   // Look for equal and not equal compares.
4803   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4804   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4805     return false;
4806 
4807   SDValue SetccOp0 = Setcc.getOperand(0);
4808   SDValue SetccOp1 = Setcc.getOperand(1);
4809 
4810   // Canonicalize the all zero vector to the RHS.
4811   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4812     std::swap(SetccOp0, SetccOp1);
4813 
4814   // See if we're comparing against zero.
4815   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4816     return false;
4817 
4818   SDValue N0 = SetccOp0;
4819 
4820   MVT CmpVT = N0.getSimpleValueType();
4821   MVT CmpSVT = CmpVT.getVectorElementType();
4822 
4823   // Start with both operands the same. We'll try to refine this.
4824   SDValue Src0 = N0;
4825   SDValue Src1 = N0;
4826 
4827   {
4828     // Look through single use bitcasts.
4829     SDValue N0Temp = N0;
4830     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4831       N0Temp = N0.getOperand(0);
4832 
4833      // Look for single use AND.
4834     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4835       Src0 = N0Temp.getOperand(0);
4836       Src1 = N0Temp.getOperand(1);
4837     }
4838   }
4839 
4840   // Without VLX we need to widen the operation.
4841   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4842 
4843   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4844                                 SDValue &Base, SDValue &Scale, SDValue &Index,
4845                                 SDValue &Disp, SDValue &Segment) {
4846     // If we need to widen, we can't fold the load.
4847     if (!Widen)
4848       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4849         return true;
4850 
4851     // If we didn't fold a load, try to match broadcast. No widening limitation
4852     // for this. But only 32 and 64 bit types are supported.
4853     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4854       return false;
4855 
4856     // Look through single use bitcasts.
4857     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4858       P = L.getNode();
4859       L = L.getOperand(0);
4860     }
4861 
4862     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4863       return false;
4864 
4865     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4866     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4867       return false;
4868 
4869     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4870   };
4871 
4872   // We can only fold loads if the sources are unique.
4873   bool CanFoldLoads = Src0 != Src1;
4874 
4875   bool FoldedLoad = false;
4876   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4877   if (CanFoldLoads) {
4878     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4879                                     Tmp3, Tmp4);
4880     if (!FoldedLoad) {
4881       // And is commutative.
4882       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4883                                       Tmp2, Tmp3, Tmp4);
4884       if (FoldedLoad)
4885         std::swap(Src0, Src1);
4886     }
4887   }
4888 
4889   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4890 
4891   bool IsMasked = InMask.getNode() != nullptr;
4892 
4893   SDLoc dl(Root);
4894 
4895   MVT ResVT = Setcc.getSimpleValueType();
4896   MVT MaskVT = ResVT;
4897   if (Widen) {
4898     // Widen the inputs using insert_subreg or copy_to_regclass.
4899     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4900     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4901     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4902     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4903     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4904     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4905                                                      CmpVT), 0);
4906     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4907 
4908     if (!FoldedBCast)
4909       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4910 
4911     if (IsMasked) {
4912       // Widen the mask.
4913       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4914       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4915       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4916                                               dl, MaskVT, InMask, RC), 0);
4917     }
4918   }
4919 
4920   bool IsTestN = CC == ISD::SETEQ;
4921   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4922                                IsMasked);
4923 
4924   MachineSDNode *CNode;
4925   if (FoldedLoad) {
4926     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4927 
4928     if (IsMasked) {
4929       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4930                         Src1.getOperand(0) };
4931       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4932     } else {
4933       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4934                         Src1.getOperand(0) };
4935       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4936     }
4937 
4938     // Update the chain.
4939     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4940     // Record the mem-refs
4941     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4942   } else {
4943     if (IsMasked)
4944       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4945     else
4946       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4947   }
4948 
4949   // If we widened, we need to shrink the mask VT.
4950   if (Widen) {
4951     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4952     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4953     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4954                                    dl, ResVT, SDValue(CNode, 0), RC);
4955   }
4956 
4957   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4958   CurDAG->RemoveDeadNode(Root);
4959   return true;
4960 }
4961 
4962 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4963 // into vpternlog.
4964 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4965   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4966 
4967   MVT NVT = N->getSimpleValueType(0);
4968 
4969   // Make sure we support VPTERNLOG.
4970   if (!NVT.isVector() || !Subtarget->hasAVX512())
4971     return false;
4972 
4973   // We need VLX for 128/256-bit.
4974   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4975     return false;
4976 
4977   SDValue N0 = N->getOperand(0);
4978   SDValue N1 = N->getOperand(1);
4979 
4980   // Canonicalize AND to LHS.
4981   if (N1.getOpcode() == ISD::AND)
4982     std::swap(N0, N1);
4983 
4984   if (N0.getOpcode() != ISD::AND ||
4985       N1.getOpcode() != X86ISD::ANDNP ||
4986       !N0.hasOneUse() || !N1.hasOneUse())
4987     return false;
4988 
4989   // ANDN is not commutable, use it to pick down A and C.
4990   SDValue A = N1.getOperand(0);
4991   SDValue C = N1.getOperand(1);
4992 
4993   // AND is commutable, if one operand matches A, the other operand is B.
4994   // Otherwise this isn't a match.
4995   SDValue B;
4996   if (N0.getOperand(0) == A)
4997     B = N0.getOperand(1);
4998   else if (N0.getOperand(1) == A)
4999     B = N0.getOperand(0);
5000   else
5001     return false;
5002 
5003   SDLoc dl(N);
5004   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
5005   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
5006   ReplaceNode(N, Ternlog.getNode());
5007 
5008   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
5009                         Ternlog.getNode(), A, B, C, 0xCA);
5010 }
5011 
5012 void X86DAGToDAGISel::Select(SDNode *Node) {
5013   MVT NVT = Node->getSimpleValueType(0);
5014   unsigned Opcode = Node->getOpcode();
5015   SDLoc dl(Node);
5016 
5017   if (Node->isMachineOpcode()) {
5018     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
5019     Node->setNodeId(-1);
5020     return;   // Already selected.
5021   }
5022 
5023   switch (Opcode) {
5024   default: break;
5025   case ISD::INTRINSIC_W_CHAIN: {
5026     unsigned IntNo = Node->getConstantOperandVal(1);
5027     switch (IntNo) {
5028     default: break;
5029     case Intrinsic::x86_encodekey128:
5030     case Intrinsic::x86_encodekey256: {
5031       if (!Subtarget->hasKL())
5032         break;
5033 
5034       unsigned Opcode;
5035       switch (IntNo) {
5036       default: llvm_unreachable("Impossible intrinsic");
5037       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
5038       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
5039       }
5040 
5041       SDValue Chain = Node->getOperand(0);
5042       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
5043                                    SDValue());
5044       if (Opcode == X86::ENCODEKEY256)
5045         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
5046                                      Chain.getValue(1));
5047 
5048       MachineSDNode *Res = CurDAG->getMachineNode(
5049           Opcode, dl, Node->getVTList(),
5050           {Node->getOperand(2), Chain, Chain.getValue(1)});
5051       ReplaceNode(Node, Res);
5052       return;
5053     }
5054     case Intrinsic::x86_tileloadd64_internal:
5055     case Intrinsic::x86_tileloaddt164_internal: {
5056       if (!Subtarget->hasAMXTILE())
5057         break;
5058       unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
5059                          ? X86::PTILELOADDV
5060                          : X86::PTILELOADDT1V;
5061       // _tile_loadd_internal(row, col, buf, STRIDE)
5062       SDValue Base = Node->getOperand(4);
5063       SDValue Scale = getI8Imm(1, dl);
5064       SDValue Index = Node->getOperand(5);
5065       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5066       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5067       SDValue Chain = Node->getOperand(0);
5068       MachineSDNode *CNode;
5069       SDValue Ops[] = {Node->getOperand(2),
5070                        Node->getOperand(3),
5071                        Base,
5072                        Scale,
5073                        Index,
5074                        Disp,
5075                        Segment,
5076                        Chain};
5077       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
5078       ReplaceNode(Node, CNode);
5079       return;
5080     }
5081     }
5082     break;
5083   }
5084   case ISD::INTRINSIC_VOID: {
5085     unsigned IntNo = Node->getConstantOperandVal(1);
5086     switch (IntNo) {
5087     default: break;
5088     case Intrinsic::x86_sse3_monitor:
5089     case Intrinsic::x86_monitorx:
5090     case Intrinsic::x86_clzero: {
5091       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
5092 
5093       unsigned Opc = 0;
5094       switch (IntNo) {
5095       default: llvm_unreachable("Unexpected intrinsic!");
5096       case Intrinsic::x86_sse3_monitor:
5097         if (!Subtarget->hasSSE3())
5098           break;
5099         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
5100         break;
5101       case Intrinsic::x86_monitorx:
5102         if (!Subtarget->hasMWAITX())
5103           break;
5104         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
5105         break;
5106       case Intrinsic::x86_clzero:
5107         if (!Subtarget->hasCLZERO())
5108           break;
5109         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
5110         break;
5111       }
5112 
5113       if (Opc) {
5114         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
5115         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
5116                                              Node->getOperand(2), SDValue());
5117         SDValue InGlue = Chain.getValue(1);
5118 
5119         if (IntNo == Intrinsic::x86_sse3_monitor ||
5120             IntNo == Intrinsic::x86_monitorx) {
5121           // Copy the other two operands to ECX and EDX.
5122           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
5123                                        InGlue);
5124           InGlue = Chain.getValue(1);
5125           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
5126                                        InGlue);
5127           InGlue = Chain.getValue(1);
5128         }
5129 
5130         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
5131                                                       { Chain, InGlue});
5132         ReplaceNode(Node, CNode);
5133         return;
5134       }
5135 
5136       break;
5137     }
5138     case Intrinsic::x86_tilestored64_internal: {
5139       unsigned Opc = X86::PTILESTOREDV;
5140       // _tile_stored_internal(row, col, buf, STRIDE, c)
5141       SDValue Base = Node->getOperand(4);
5142       SDValue Scale = getI8Imm(1, dl);
5143       SDValue Index = Node->getOperand(5);
5144       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5145       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5146       SDValue Chain = Node->getOperand(0);
5147       MachineSDNode *CNode;
5148       SDValue Ops[] = {Node->getOperand(2),
5149                        Node->getOperand(3),
5150                        Base,
5151                        Scale,
5152                        Index,
5153                        Disp,
5154                        Segment,
5155                        Node->getOperand(6),
5156                        Chain};
5157       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5158       ReplaceNode(Node, CNode);
5159       return;
5160     }
5161     case Intrinsic::x86_tileloadd64:
5162     case Intrinsic::x86_tileloaddt164:
5163     case Intrinsic::x86_tilestored64: {
5164       if (!Subtarget->hasAMXTILE())
5165         break;
5166       unsigned Opc;
5167       switch (IntNo) {
5168       default: llvm_unreachable("Unexpected intrinsic!");
5169       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
5170       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
5171       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
5172       }
5173       // FIXME: Match displacement and scale.
5174       unsigned TIndex = Node->getConstantOperandVal(2);
5175       SDValue TReg = getI8Imm(TIndex, dl);
5176       SDValue Base = Node->getOperand(3);
5177       SDValue Scale = getI8Imm(1, dl);
5178       SDValue Index = Node->getOperand(4);
5179       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5180       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5181       SDValue Chain = Node->getOperand(0);
5182       MachineSDNode *CNode;
5183       if (Opc == X86::PTILESTORED) {
5184         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
5185         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5186       } else {
5187         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
5188         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5189       }
5190       ReplaceNode(Node, CNode);
5191       return;
5192     }
5193     }
5194     break;
5195   }
5196   case ISD::BRIND:
5197   case X86ISD::NT_BRIND: {
5198     if (Subtarget->isTargetNaCl())
5199       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
5200       // leave the instruction alone.
5201       break;
5202     if (Subtarget->isTarget64BitILP32()) {
5203       // Converts a 32-bit register to a 64-bit, zero-extended version of
5204       // it. This is needed because x86-64 can do many things, but jmp %r32
5205       // ain't one of them.
5206       SDValue Target = Node->getOperand(1);
5207       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
5208       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
5209       SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
5210                                       Node->getOperand(0), ZextTarget);
5211       ReplaceNode(Node, Brind.getNode());
5212       SelectCode(ZextTarget.getNode());
5213       SelectCode(Brind.getNode());
5214       return;
5215     }
5216     break;
5217   }
5218   case X86ISD::GlobalBaseReg:
5219     ReplaceNode(Node, getGlobalBaseReg());
5220     return;
5221 
5222   case ISD::BITCAST:
5223     // Just drop all 128/256/512-bit bitcasts.
5224     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
5225         NVT == MVT::f128) {
5226       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
5227       CurDAG->RemoveDeadNode(Node);
5228       return;
5229     }
5230     break;
5231 
5232   case ISD::SRL:
5233     if (matchBitExtract(Node))
5234       return;
5235     [[fallthrough]];
5236   case ISD::SRA:
5237   case ISD::SHL:
5238     if (tryShiftAmountMod(Node))
5239       return;
5240     break;
5241 
5242   case X86ISD::VPTERNLOG: {
5243     uint8_t Imm = Node->getConstantOperandVal(3);
5244     if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0),
5245                        Node->getOperand(1), Node->getOperand(2), Imm))
5246       return;
5247     break;
5248   }
5249 
5250   case X86ISD::ANDNP:
5251     if (tryVPTERNLOG(Node))
5252       return;
5253     break;
5254 
5255   case ISD::AND:
5256     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
5257       // Try to form a masked VPTESTM. Operands can be in either order.
5258       SDValue N0 = Node->getOperand(0);
5259       SDValue N1 = Node->getOperand(1);
5260       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
5261           tryVPTESTM(Node, N0, N1))
5262         return;
5263       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
5264           tryVPTESTM(Node, N1, N0))
5265         return;
5266     }
5267 
5268     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
5269       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5270       CurDAG->RemoveDeadNode(Node);
5271       return;
5272     }
5273     if (matchBitExtract(Node))
5274       return;
5275     if (AndImmShrink && shrinkAndImmediate(Node))
5276       return;
5277 
5278     [[fallthrough]];
5279   case ISD::OR:
5280   case ISD::XOR:
5281     if (tryShrinkShlLogicImm(Node))
5282       return;
5283     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
5284       return;
5285     if (tryVPTERNLOG(Node))
5286       return;
5287 
5288     [[fallthrough]];
5289   case ISD::ADD:
5290     if (Opcode == ISD::ADD && matchBitExtract(Node))
5291       return;
5292     [[fallthrough]];
5293   case ISD::SUB: {
5294     // Try to avoid folding immediates with multiple uses for optsize.
5295     // This code tries to select to register form directly to avoid going
5296     // through the isel table which might fold the immediate. We can't change
5297     // the patterns on the add/sub/and/or/xor with immediate paterns in the
5298     // tablegen files to check immediate use count without making the patterns
5299     // unavailable to the fast-isel table.
5300     if (!CurDAG->shouldOptForSize())
5301       break;
5302 
5303     // Only handle i8/i16/i32/i64.
5304     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
5305       break;
5306 
5307     SDValue N0 = Node->getOperand(0);
5308     SDValue N1 = Node->getOperand(1);
5309 
5310     auto *Cst = dyn_cast<ConstantSDNode>(N1);
5311     if (!Cst)
5312       break;
5313 
5314     int64_t Val = Cst->getSExtValue();
5315 
5316     // Make sure its an immediate that is considered foldable.
5317     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
5318     if (!isInt<8>(Val) && !isInt<32>(Val))
5319       break;
5320 
5321     // If this can match to INC/DEC, let it go.
5322     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
5323       break;
5324 
5325     // Check if we should avoid folding this immediate.
5326     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
5327       break;
5328 
5329     // We should not fold the immediate. So we need a register form instead.
5330     unsigned ROpc, MOpc;
5331     switch (NVT.SimpleTy) {
5332     default: llvm_unreachable("Unexpected VT!");
5333     case MVT::i8:
5334       switch (Opcode) {
5335       default: llvm_unreachable("Unexpected opcode!");
5336       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
5337       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
5338       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
5339       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
5340       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
5341       }
5342       break;
5343     case MVT::i16:
5344       switch (Opcode) {
5345       default: llvm_unreachable("Unexpected opcode!");
5346       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
5347       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
5348       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
5349       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
5350       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
5351       }
5352       break;
5353     case MVT::i32:
5354       switch (Opcode) {
5355       default: llvm_unreachable("Unexpected opcode!");
5356       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
5357       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
5358       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
5359       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
5360       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
5361       }
5362       break;
5363     case MVT::i64:
5364       switch (Opcode) {
5365       default: llvm_unreachable("Unexpected opcode!");
5366       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
5367       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
5368       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
5369       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
5370       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
5371       }
5372       break;
5373     }
5374 
5375     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
5376 
5377     // If this is a not a subtract, we can still try to fold a load.
5378     if (Opcode != ISD::SUB) {
5379       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5380       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5381         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5382         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5383         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5384         // Update the chain.
5385         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
5386         // Record the mem-refs
5387         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
5388         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5389         CurDAG->RemoveDeadNode(Node);
5390         return;
5391       }
5392     }
5393 
5394     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
5395     return;
5396   }
5397 
5398   case X86ISD::SMUL:
5399     // i16/i32/i64 are handled with isel patterns.
5400     if (NVT != MVT::i8)
5401       break;
5402     [[fallthrough]];
5403   case X86ISD::UMUL: {
5404     SDValue N0 = Node->getOperand(0);
5405     SDValue N1 = Node->getOperand(1);
5406 
5407     unsigned LoReg, ROpc, MOpc;
5408     switch (NVT.SimpleTy) {
5409     default: llvm_unreachable("Unsupported VT!");
5410     case MVT::i8:
5411       LoReg = X86::AL;
5412       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
5413       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
5414       break;
5415     case MVT::i16:
5416       LoReg = X86::AX;
5417       ROpc = X86::MUL16r;
5418       MOpc = X86::MUL16m;
5419       break;
5420     case MVT::i32:
5421       LoReg = X86::EAX;
5422       ROpc = X86::MUL32r;
5423       MOpc = X86::MUL32m;
5424       break;
5425     case MVT::i64:
5426       LoReg = X86::RAX;
5427       ROpc = X86::MUL64r;
5428       MOpc = X86::MUL64m;
5429       break;
5430     }
5431 
5432     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5433     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5434     // Multiply is commutative.
5435     if (!FoldedLoad) {
5436       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5437       if (FoldedLoad)
5438         std::swap(N0, N1);
5439     }
5440 
5441     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5442                                           N0, SDValue()).getValue(1);
5443 
5444     MachineSDNode *CNode;
5445     if (FoldedLoad) {
5446       // i16/i32/i64 use an instruction that produces a low and high result even
5447       // though only the low result is used.
5448       SDVTList VTs;
5449       if (NVT == MVT::i8)
5450         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5451       else
5452         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5453 
5454       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5455                         InGlue };
5456       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5457 
5458       // Update the chain.
5459       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5460       // Record the mem-refs
5461       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5462     } else {
5463       // i16/i32/i64 use an instruction that produces a low and high result even
5464       // though only the low result is used.
5465       SDVTList VTs;
5466       if (NVT == MVT::i8)
5467         VTs = CurDAG->getVTList(NVT, MVT::i32);
5468       else
5469         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5470 
5471       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InGlue});
5472     }
5473 
5474     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5475     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5476     CurDAG->RemoveDeadNode(Node);
5477     return;
5478   }
5479 
5480   case ISD::SMUL_LOHI:
5481   case ISD::UMUL_LOHI: {
5482     SDValue N0 = Node->getOperand(0);
5483     SDValue N1 = Node->getOperand(1);
5484 
5485     unsigned Opc, MOpc;
5486     unsigned LoReg, HiReg;
5487     bool IsSigned = Opcode == ISD::SMUL_LOHI;
5488     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5489     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5490     switch (NVT.SimpleTy) {
5491     default: llvm_unreachable("Unsupported VT!");
5492     case MVT::i32:
5493       Opc = UseMULXHi  ? X86::MULX32Hrr
5494             : UseMULX  ? GET_EGPR_IF_ENABLED(X86::MULX32rr)
5495             : IsSigned ? X86::IMUL32r
5496                        : X86::MUL32r;
5497       MOpc = UseMULXHi  ? X86::MULX32Hrm
5498              : UseMULX  ? GET_EGPR_IF_ENABLED(X86::MULX32rm)
5499              : IsSigned ? X86::IMUL32m
5500                         : X86::MUL32m;
5501       LoReg = UseMULX ? X86::EDX : X86::EAX;
5502       HiReg = X86::EDX;
5503       break;
5504     case MVT::i64:
5505       Opc = UseMULXHi  ? X86::MULX64Hrr
5506             : UseMULX  ? GET_EGPR_IF_ENABLED(X86::MULX64rr)
5507             : IsSigned ? X86::IMUL64r
5508                        : X86::MUL64r;
5509       MOpc = UseMULXHi  ? X86::MULX64Hrm
5510              : UseMULX  ? GET_EGPR_IF_ENABLED(X86::MULX64rm)
5511              : IsSigned ? X86::IMUL64m
5512                         : X86::MUL64m;
5513       LoReg = UseMULX ? X86::RDX : X86::RAX;
5514       HiReg = X86::RDX;
5515       break;
5516 #undef GET_EGPR_IF_ENABLED
5517     }
5518 
5519     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5520     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5521     // Multiply is commutative.
5522     if (!foldedLoad) {
5523       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5524       if (foldedLoad)
5525         std::swap(N0, N1);
5526     }
5527 
5528     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5529                                           N0, SDValue()).getValue(1);
5530     SDValue ResHi, ResLo;
5531     if (foldedLoad) {
5532       SDValue Chain;
5533       MachineSDNode *CNode = nullptr;
5534       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5535                         InGlue };
5536       if (UseMULXHi) {
5537         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5538         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5539         ResHi = SDValue(CNode, 0);
5540         Chain = SDValue(CNode, 1);
5541       } else if (UseMULX) {
5542         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5543         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5544         ResHi = SDValue(CNode, 0);
5545         ResLo = SDValue(CNode, 1);
5546         Chain = SDValue(CNode, 2);
5547       } else {
5548         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5549         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5550         Chain = SDValue(CNode, 0);
5551         InGlue = SDValue(CNode, 1);
5552       }
5553 
5554       // Update the chain.
5555       ReplaceUses(N1.getValue(1), Chain);
5556       // Record the mem-refs
5557       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5558     } else {
5559       SDValue Ops[] = { N1, InGlue };
5560       if (UseMULXHi) {
5561         SDVTList VTs = CurDAG->getVTList(NVT);
5562         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5563         ResHi = SDValue(CNode, 0);
5564       } else if (UseMULX) {
5565         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5566         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5567         ResHi = SDValue(CNode, 0);
5568         ResLo = SDValue(CNode, 1);
5569       } else {
5570         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5571         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5572         InGlue = SDValue(CNode, 0);
5573       }
5574     }
5575 
5576     // Copy the low half of the result, if it is needed.
5577     if (!SDValue(Node, 0).use_empty()) {
5578       if (!ResLo) {
5579         assert(LoReg && "Register for low half is not defined!");
5580         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5581                                        NVT, InGlue);
5582         InGlue = ResLo.getValue(2);
5583       }
5584       ReplaceUses(SDValue(Node, 0), ResLo);
5585       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5586                  dbgs() << '\n');
5587     }
5588     // Copy the high half of the result, if it is needed.
5589     if (!SDValue(Node, 1).use_empty()) {
5590       if (!ResHi) {
5591         assert(HiReg && "Register for high half is not defined!");
5592         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5593                                        NVT, InGlue);
5594         InGlue = ResHi.getValue(2);
5595       }
5596       ReplaceUses(SDValue(Node, 1), ResHi);
5597       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5598                  dbgs() << '\n');
5599     }
5600 
5601     CurDAG->RemoveDeadNode(Node);
5602     return;
5603   }
5604 
5605   case ISD::SDIVREM:
5606   case ISD::UDIVREM: {
5607     SDValue N0 = Node->getOperand(0);
5608     SDValue N1 = Node->getOperand(1);
5609 
5610     unsigned ROpc, MOpc;
5611     bool isSigned = Opcode == ISD::SDIVREM;
5612     if (!isSigned) {
5613       switch (NVT.SimpleTy) {
5614       default: llvm_unreachable("Unsupported VT!");
5615       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
5616       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5617       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5618       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5619       }
5620     } else {
5621       switch (NVT.SimpleTy) {
5622       default: llvm_unreachable("Unsupported VT!");
5623       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
5624       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5625       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5626       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5627       }
5628     }
5629 
5630     unsigned LoReg, HiReg, ClrReg;
5631     unsigned SExtOpcode;
5632     switch (NVT.SimpleTy) {
5633     default: llvm_unreachable("Unsupported VT!");
5634     case MVT::i8:
5635       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
5636       SExtOpcode = 0; // Not used.
5637       break;
5638     case MVT::i16:
5639       LoReg = X86::AX;  HiReg = X86::DX;
5640       ClrReg = X86::DX;
5641       SExtOpcode = X86::CWD;
5642       break;
5643     case MVT::i32:
5644       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5645       SExtOpcode = X86::CDQ;
5646       break;
5647     case MVT::i64:
5648       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5649       SExtOpcode = X86::CQO;
5650       break;
5651     }
5652 
5653     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5654     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5655     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5656 
5657     SDValue InGlue;
5658     if (NVT == MVT::i8) {
5659       // Special case for div8, just use a move with zero extension to AX to
5660       // clear the upper 8 bits (AH).
5661       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5662       MachineSDNode *Move;
5663       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5664         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5665         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5666                                                     : X86::MOVZX16rm8;
5667         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5668         Chain = SDValue(Move, 1);
5669         ReplaceUses(N0.getValue(1), Chain);
5670         // Record the mem-refs
5671         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5672       } else {
5673         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5674                                                     : X86::MOVZX16rr8;
5675         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5676         Chain = CurDAG->getEntryNode();
5677       }
5678       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5679                                     SDValue());
5680       InGlue = Chain.getValue(1);
5681     } else {
5682       InGlue =
5683         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5684                              LoReg, N0, SDValue()).getValue(1);
5685       if (isSigned && !signBitIsZero) {
5686         // Sign extend the low part into the high part.
5687         InGlue =
5688           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InGlue),0);
5689       } else {
5690         // Zero out the high part, effectively zero extending the input.
5691         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5692         SDValue ClrNode = SDValue(
5693             CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
5694         switch (NVT.SimpleTy) {
5695         case MVT::i16:
5696           ClrNode =
5697               SDValue(CurDAG->getMachineNode(
5698                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5699                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
5700                                                     MVT::i32)),
5701                       0);
5702           break;
5703         case MVT::i32:
5704           break;
5705         case MVT::i64:
5706           ClrNode =
5707               SDValue(CurDAG->getMachineNode(
5708                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5709                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5710                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
5711                                                     MVT::i32)),
5712                       0);
5713           break;
5714         default:
5715           llvm_unreachable("Unexpected division source");
5716         }
5717 
5718         InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5719                                       ClrNode, InGlue).getValue(1);
5720       }
5721     }
5722 
5723     if (foldedLoad) {
5724       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5725                         InGlue };
5726       MachineSDNode *CNode =
5727         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5728       InGlue = SDValue(CNode, 1);
5729       // Update the chain.
5730       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5731       // Record the mem-refs
5732       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5733     } else {
5734       InGlue =
5735         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InGlue), 0);
5736     }
5737 
5738     // Prevent use of AH in a REX instruction by explicitly copying it to
5739     // an ABCD_L register.
5740     //
5741     // The current assumption of the register allocator is that isel
5742     // won't generate explicit references to the GR8_ABCD_H registers. If
5743     // the allocator and/or the backend get enhanced to be more robust in
5744     // that regard, this can be, and should be, removed.
5745     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5746       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5747       unsigned AHExtOpcode =
5748           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5749 
5750       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5751                                              MVT::Glue, AHCopy, InGlue);
5752       SDValue Result(RNode, 0);
5753       InGlue = SDValue(RNode, 1);
5754 
5755       Result =
5756           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5757 
5758       ReplaceUses(SDValue(Node, 1), Result);
5759       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5760                  dbgs() << '\n');
5761     }
5762     // Copy the division (low) result, if it is needed.
5763     if (!SDValue(Node, 0).use_empty()) {
5764       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5765                                                 LoReg, NVT, InGlue);
5766       InGlue = Result.getValue(2);
5767       ReplaceUses(SDValue(Node, 0), Result);
5768       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5769                  dbgs() << '\n');
5770     }
5771     // Copy the remainder (high) result, if it is needed.
5772     if (!SDValue(Node, 1).use_empty()) {
5773       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5774                                               HiReg, NVT, InGlue);
5775       InGlue = Result.getValue(2);
5776       ReplaceUses(SDValue(Node, 1), Result);
5777       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5778                  dbgs() << '\n');
5779     }
5780     CurDAG->RemoveDeadNode(Node);
5781     return;
5782   }
5783 
5784   case X86ISD::FCMP:
5785   case X86ISD::STRICT_FCMP:
5786   case X86ISD::STRICT_FCMPS: {
5787     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5788                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
5789     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5790     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5791 
5792     // Save the original VT of the compare.
5793     MVT CmpVT = N0.getSimpleValueType();
5794 
5795     // Floating point needs special handling if we don't have FCOMI.
5796     if (Subtarget->canUseCMOV())
5797       break;
5798 
5799     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5800 
5801     unsigned Opc;
5802     switch (CmpVT.SimpleTy) {
5803     default: llvm_unreachable("Unexpected type!");
5804     case MVT::f32:
5805       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5806       break;
5807     case MVT::f64:
5808       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5809       break;
5810     case MVT::f80:
5811       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5812       break;
5813     }
5814 
5815     SDValue Chain =
5816         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5817     SDValue Glue;
5818     if (IsStrictCmp) {
5819       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5820       Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5821       Glue = Chain.getValue(1);
5822     } else {
5823       Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5824     }
5825 
5826     // Move FPSW to AX.
5827     SDValue FNSTSW =
5828         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5829 
5830     // Extract upper 8-bits of AX.
5831     SDValue Extract =
5832         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5833 
5834     // Move AH into flags.
5835     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5836     assert(Subtarget->canUseLAHFSAHF() &&
5837            "Target doesn't support SAHF or FCOMI?");
5838     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5839     Chain = AH;
5840     SDValue SAHF = SDValue(
5841         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5842 
5843     if (IsStrictCmp)
5844       ReplaceUses(SDValue(Node, 1), Chain);
5845 
5846     ReplaceUses(SDValue(Node, 0), SAHF);
5847     CurDAG->RemoveDeadNode(Node);
5848     return;
5849   }
5850 
5851   case X86ISD::CMP: {
5852     SDValue N0 = Node->getOperand(0);
5853     SDValue N1 = Node->getOperand(1);
5854 
5855     // Optimizations for TEST compares.
5856     if (!isNullConstant(N1))
5857       break;
5858 
5859     // Save the original VT of the compare.
5860     MVT CmpVT = N0.getSimpleValueType();
5861 
5862     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5863     // by a test instruction. The test should be removed later by
5864     // analyzeCompare if we are using only the zero flag.
5865     // TODO: Should we check the users and use the BEXTR flags directly?
5866     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5867       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5868         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5869                                              : X86::TEST32rr;
5870         SDValue BEXTR = SDValue(NewNode, 0);
5871         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5872         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5873         CurDAG->RemoveDeadNode(Node);
5874         return;
5875       }
5876     }
5877 
5878     // We can peek through truncates, but we need to be careful below.
5879     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5880       N0 = N0.getOperand(0);
5881 
5882     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5883     // use a smaller encoding.
5884     // Look past the truncate if CMP is the only use of it.
5885     if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5886         N0.getValueType() != MVT::i8) {
5887       auto *MaskC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5888       if (!MaskC)
5889         break;
5890 
5891       // We may have looked through a truncate so mask off any bits that
5892       // shouldn't be part of the compare.
5893       uint64_t Mask = MaskC->getZExtValue();
5894       Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
5895 
5896       // Check if we can replace AND+IMM{32,64} with a shift. This is possible
5897       // for masks like 0xFF000000 or 0x00FFFFFF and if we care only about the
5898       // zero flag.
5899       if (CmpVT == MVT::i64 && !isInt<8>(Mask) && isShiftedMask_64(Mask) &&
5900           onlyUsesZeroFlag(SDValue(Node, 0))) {
5901         unsigned ShiftOpcode = ISD::DELETED_NODE;
5902         unsigned ShiftAmt;
5903         unsigned SubRegIdx;
5904         MVT SubRegVT;
5905         unsigned TestOpcode;
5906         unsigned LeadingZeros = llvm::countl_zero(Mask);
5907         unsigned TrailingZeros = llvm::countr_zero(Mask);
5908 
5909         // With leading/trailing zeros, the transform is profitable if we can
5910         // eliminate a movabsq or shrink a 32-bit immediate to 8-bit without
5911         // incurring any extra register moves.
5912         bool SavesBytes = !isInt<32>(Mask) || N0.getOperand(0).hasOneUse();
5913         if (LeadingZeros == 0 && SavesBytes) {
5914           // If the mask covers the most significant bit, then we can replace
5915           // TEST+AND with a SHR and check eflags.
5916           // This emits a redundant TEST which is subsequently eliminated.
5917           ShiftOpcode = X86::SHR64ri;
5918           ShiftAmt = TrailingZeros;
5919           SubRegIdx = 0;
5920           TestOpcode = X86::TEST64rr;
5921         } else if (TrailingZeros == 0 && SavesBytes) {
5922           // If the mask covers the least significant bit, then we can replace
5923           // TEST+AND with a SHL and check eflags.
5924           // This emits a redundant TEST which is subsequently eliminated.
5925           ShiftOpcode = X86::SHL64ri;
5926           ShiftAmt = LeadingZeros;
5927           SubRegIdx = 0;
5928           TestOpcode = X86::TEST64rr;
5929         } else if (MaskC->hasOneUse() && !isInt<32>(Mask)) {
5930           // If the shifted mask extends into the high half and is 8/16/32 bits
5931           // wide, then replace it with a SHR and a TEST8rr/TEST16rr/TEST32rr.
5932           unsigned PopCount = 64 - LeadingZeros - TrailingZeros;
5933           if (PopCount == 8) {
5934             ShiftOpcode = X86::SHR64ri;
5935             ShiftAmt = TrailingZeros;
5936             SubRegIdx = X86::sub_8bit;
5937             SubRegVT = MVT::i8;
5938             TestOpcode = X86::TEST8rr;
5939           } else if (PopCount == 16) {
5940             ShiftOpcode = X86::SHR64ri;
5941             ShiftAmt = TrailingZeros;
5942             SubRegIdx = X86::sub_16bit;
5943             SubRegVT = MVT::i16;
5944             TestOpcode = X86::TEST16rr;
5945           } else if (PopCount == 32) {
5946             ShiftOpcode = X86::SHR64ri;
5947             ShiftAmt = TrailingZeros;
5948             SubRegIdx = X86::sub_32bit;
5949             SubRegVT = MVT::i32;
5950             TestOpcode = X86::TEST32rr;
5951           }
5952         }
5953         if (ShiftOpcode != ISD::DELETED_NODE) {
5954           SDValue ShiftC = CurDAG->getTargetConstant(ShiftAmt, dl, MVT::i64);
5955           SDValue Shift = SDValue(
5956               CurDAG->getMachineNode(ShiftOpcode, dl, MVT::i64, MVT::i32,
5957                                      N0.getOperand(0), ShiftC),
5958               0);
5959           if (SubRegIdx != 0) {
5960             Shift =
5961                 CurDAG->getTargetExtractSubreg(SubRegIdx, dl, SubRegVT, Shift);
5962           }
5963           MachineSDNode *Test =
5964               CurDAG->getMachineNode(TestOpcode, dl, MVT::i32, Shift, Shift);
5965           ReplaceNode(Node, Test);
5966           return;
5967         }
5968       }
5969 
5970       MVT VT;
5971       int SubRegOp;
5972       unsigned ROpc, MOpc;
5973 
5974       // For each of these checks we need to be careful if the sign flag is
5975       // being used. It is only safe to use the sign flag in two conditions,
5976       // either the sign bit in the shrunken mask is zero or the final test
5977       // size is equal to the original compare size.
5978 
5979       if (isUInt<8>(Mask) &&
5980           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5981            hasNoSignFlagUses(SDValue(Node, 0)))) {
5982         // For example, convert "testl %eax, $8" to "testb %al, $8"
5983         VT = MVT::i8;
5984         SubRegOp = X86::sub_8bit;
5985         ROpc = X86::TEST8ri;
5986         MOpc = X86::TEST8mi;
5987       } else if (OptForMinSize && isUInt<16>(Mask) &&
5988                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5989                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5990         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5991         // NOTE: We only want to form TESTW instructions if optimizing for
5992         // min size. Otherwise we only save one byte and possibly get a length
5993         // changing prefix penalty in the decoders.
5994         VT = MVT::i16;
5995         SubRegOp = X86::sub_16bit;
5996         ROpc = X86::TEST16ri;
5997         MOpc = X86::TEST16mi;
5998       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5999                  ((!(Mask & 0x80000000) &&
6000                    // Without minsize 16-bit Cmps can get here so we need to
6001                    // be sure we calculate the correct sign flag if needed.
6002                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
6003                   CmpVT == MVT::i32 ||
6004                   hasNoSignFlagUses(SDValue(Node, 0)))) {
6005         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
6006         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
6007         // Otherwize, we find ourselves in a position where we have to do
6008         // promotion. If previous passes did not promote the and, we assume
6009         // they had a good reason not to and do not promote here.
6010         VT = MVT::i32;
6011         SubRegOp = X86::sub_32bit;
6012         ROpc = X86::TEST32ri;
6013         MOpc = X86::TEST32mi;
6014       } else {
6015         // No eligible transformation was found.
6016         break;
6017       }
6018 
6019       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
6020       SDValue Reg = N0.getOperand(0);
6021 
6022       // Emit a testl or testw.
6023       MachineSDNode *NewNode;
6024       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
6025       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
6026         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
6027           if (!LoadN->isSimple()) {
6028             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
6029             if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
6030                 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
6031                 (MOpc == X86::TEST32mi && NumVolBits != 32))
6032               break;
6033           }
6034         }
6035         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
6036                           Reg.getOperand(0) };
6037         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
6038         // Update the chain.
6039         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
6040         // Record the mem-refs
6041         CurDAG->setNodeMemRefs(NewNode,
6042                                {cast<LoadSDNode>(Reg)->getMemOperand()});
6043       } else {
6044         // Extract the subregister if necessary.
6045         if (N0.getValueType() != VT)
6046           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
6047 
6048         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
6049       }
6050       // Replace CMP with TEST.
6051       ReplaceNode(Node, NewNode);
6052       return;
6053     }
6054     break;
6055   }
6056   case X86ISD::PCMPISTR: {
6057     if (!Subtarget->hasSSE42())
6058       break;
6059 
6060     bool NeedIndex = !SDValue(Node, 0).use_empty();
6061     bool NeedMask = !SDValue(Node, 1).use_empty();
6062     // We can't fold a load if we are going to make two instructions.
6063     bool MayFoldLoad = !NeedIndex || !NeedMask;
6064 
6065     MachineSDNode *CNode;
6066     if (NeedMask) {
6067       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
6068       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
6069       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
6070       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
6071     }
6072     if (NeedIndex || !NeedMask) {
6073       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
6074       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
6075       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
6076       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
6077     }
6078 
6079     // Connect the flag usage to the last instruction created.
6080     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
6081     CurDAG->RemoveDeadNode(Node);
6082     return;
6083   }
6084   case X86ISD::PCMPESTR: {
6085     if (!Subtarget->hasSSE42())
6086       break;
6087 
6088     // Copy the two implicit register inputs.
6089     SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
6090                                           Node->getOperand(1),
6091                                           SDValue()).getValue(1);
6092     InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
6093                                   Node->getOperand(3), InGlue).getValue(1);
6094 
6095     bool NeedIndex = !SDValue(Node, 0).use_empty();
6096     bool NeedMask = !SDValue(Node, 1).use_empty();
6097     // We can't fold a load if we are going to make two instructions.
6098     bool MayFoldLoad = !NeedIndex || !NeedMask;
6099 
6100     MachineSDNode *CNode;
6101     if (NeedMask) {
6102       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
6103       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
6104       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
6105                            InGlue);
6106       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
6107     }
6108     if (NeedIndex || !NeedMask) {
6109       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
6110       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
6111       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InGlue);
6112       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
6113     }
6114     // Connect the flag usage to the last instruction created.
6115     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
6116     CurDAG->RemoveDeadNode(Node);
6117     return;
6118   }
6119 
6120   case ISD::SETCC: {
6121     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
6122       return;
6123 
6124     break;
6125   }
6126 
6127   case ISD::STORE:
6128     if (foldLoadStoreIntoMemOperand(Node))
6129       return;
6130     break;
6131 
6132   case X86ISD::SETCC_CARRY: {
6133     MVT VT = Node->getSimpleValueType(0);
6134     SDValue Result;
6135     if (Subtarget->hasSBBDepBreaking()) {
6136       // We have to do this manually because tblgen will put the eflags copy in
6137       // the wrong place if we use an extract_subreg in the pattern.
6138       // Copy flags to the EFLAGS register and glue it to next node.
6139       SDValue EFLAGS =
6140           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
6141                                Node->getOperand(1), SDValue());
6142 
6143       // Create a 64-bit instruction if the result is 64-bits otherwise use the
6144       // 32-bit version.
6145       unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
6146       MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
6147       Result = SDValue(
6148           CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)),
6149           0);
6150     } else {
6151       // The target does not recognize sbb with the same reg operand as a
6152       // no-source idiom, so we explicitly zero the input values.
6153       Result = getSBBZero(Node);
6154     }
6155 
6156     // For less than 32-bits we need to extract from the 32-bit node.
6157     if (VT == MVT::i8 || VT == MVT::i16) {
6158       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6159       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
6160     }
6161 
6162     ReplaceUses(SDValue(Node, 0), Result);
6163     CurDAG->RemoveDeadNode(Node);
6164     return;
6165   }
6166   case X86ISD::SBB: {
6167     if (isNullConstant(Node->getOperand(0)) &&
6168         isNullConstant(Node->getOperand(1))) {
6169       SDValue Result = getSBBZero(Node);
6170 
6171       // Replace the flag use.
6172       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
6173 
6174       // Replace the result use.
6175       if (!SDValue(Node, 0).use_empty()) {
6176         // For less than 32-bits we need to extract from the 32-bit node.
6177         MVT VT = Node->getSimpleValueType(0);
6178         if (VT == MVT::i8 || VT == MVT::i16) {
6179           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6180           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
6181         }
6182         ReplaceUses(SDValue(Node, 0), Result);
6183       }
6184 
6185       CurDAG->RemoveDeadNode(Node);
6186       return;
6187     }
6188     break;
6189   }
6190   case X86ISD::MGATHER: {
6191     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
6192     SDValue IndexOp = Mgt->getIndex();
6193     SDValue Mask = Mgt->getMask();
6194     MVT IndexVT = IndexOp.getSimpleValueType();
6195     MVT ValueVT = Node->getSimpleValueType(0);
6196     MVT MaskVT = Mask.getSimpleValueType();
6197 
6198     // This is just to prevent crashes if the nodes are malformed somehow. We're
6199     // otherwise only doing loose type checking in here based on type what
6200     // a type constraint would say just like table based isel.
6201     if (!ValueVT.isVector() || !MaskVT.isVector())
6202       break;
6203 
6204     unsigned NumElts = ValueVT.getVectorNumElements();
6205     MVT ValueSVT = ValueVT.getVectorElementType();
6206 
6207     bool IsFP = ValueSVT.isFloatingPoint();
6208     unsigned EltSize = ValueSVT.getSizeInBits();
6209 
6210     unsigned Opc = 0;
6211     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
6212     if (AVX512Gather) {
6213       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6214         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
6215       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6216         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
6217       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6218         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
6219       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6220         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
6221       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6222         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
6223       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6224         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
6225       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6226         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
6227       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6228         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
6229       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6230         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
6231       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6232         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
6233       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6234         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
6235       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6236         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
6237     } else {
6238       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
6239              "Unexpected mask VT!");
6240       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6241         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
6242       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6243         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
6244       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6245         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
6246       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6247         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
6248       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6249         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
6250       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6251         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
6252       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6253         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
6254       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6255         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
6256     }
6257 
6258     if (!Opc)
6259       break;
6260 
6261     SDValue Base, Scale, Index, Disp, Segment;
6262     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
6263                           Base, Scale, Index, Disp, Segment))
6264       break;
6265 
6266     SDValue PassThru = Mgt->getPassThru();
6267     SDValue Chain = Mgt->getChain();
6268     // Gather instructions have a mask output not in the ISD node.
6269     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
6270 
6271     MachineSDNode *NewNode;
6272     if (AVX512Gather) {
6273       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
6274                        Index,    Disp, Segment, Chain};
6275       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6276     } else {
6277       SDValue Ops[] = {PassThru, Base,    Scale, Index,
6278                        Disp,     Segment, Mask,  Chain};
6279       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6280     }
6281     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
6282     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
6283     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
6284     CurDAG->RemoveDeadNode(Node);
6285     return;
6286   }
6287   case X86ISD::MSCATTER: {
6288     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
6289     SDValue Value = Sc->getValue();
6290     SDValue IndexOp = Sc->getIndex();
6291     MVT IndexVT = IndexOp.getSimpleValueType();
6292     MVT ValueVT = Value.getSimpleValueType();
6293 
6294     // This is just to prevent crashes if the nodes are malformed somehow. We're
6295     // otherwise only doing loose type checking in here based on type what
6296     // a type constraint would say just like table based isel.
6297     if (!ValueVT.isVector())
6298       break;
6299 
6300     unsigned NumElts = ValueVT.getVectorNumElements();
6301     MVT ValueSVT = ValueVT.getVectorElementType();
6302 
6303     bool IsFP = ValueSVT.isFloatingPoint();
6304     unsigned EltSize = ValueSVT.getSizeInBits();
6305 
6306     unsigned Opc;
6307     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6308       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
6309     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6310       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
6311     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6312       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
6313     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6314       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
6315     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6316       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
6317     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6318       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
6319     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6320       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
6321     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6322       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
6323     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6324       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
6325     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6326       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
6327     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6328       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
6329     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6330       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
6331     else
6332       break;
6333 
6334     SDValue Base, Scale, Index, Disp, Segment;
6335     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
6336                           Base, Scale, Index, Disp, Segment))
6337       break;
6338 
6339     SDValue Mask = Sc->getMask();
6340     SDValue Chain = Sc->getChain();
6341     // Scatter instructions have a mask output not in the ISD node.
6342     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
6343     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
6344 
6345     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
6346     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
6347     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
6348     CurDAG->RemoveDeadNode(Node);
6349     return;
6350   }
6351   case ISD::PREALLOCATED_SETUP: {
6352     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6353     auto CallId = MFI->getPreallocatedIdForCallSite(
6354         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6355     SDValue Chain = Node->getOperand(0);
6356     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6357     MachineSDNode *New = CurDAG->getMachineNode(
6358         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
6359     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
6360     CurDAG->RemoveDeadNode(Node);
6361     return;
6362   }
6363   case ISD::PREALLOCATED_ARG: {
6364     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6365     auto CallId = MFI->getPreallocatedIdForCallSite(
6366         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
6367     SDValue Chain = Node->getOperand(0);
6368     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6369     SDValue ArgIndex = Node->getOperand(2);
6370     SDValue Ops[3];
6371     Ops[0] = CallIdValue;
6372     Ops[1] = ArgIndex;
6373     Ops[2] = Chain;
6374     MachineSDNode *New = CurDAG->getMachineNode(
6375         TargetOpcode::PREALLOCATED_ARG, dl,
6376         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
6377                           MVT::Other),
6378         Ops);
6379     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
6380     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
6381     CurDAG->RemoveDeadNode(Node);
6382     return;
6383   }
6384   case X86ISD::AESENCWIDE128KL:
6385   case X86ISD::AESDECWIDE128KL:
6386   case X86ISD::AESENCWIDE256KL:
6387   case X86ISD::AESDECWIDE256KL: {
6388     if (!Subtarget->hasWIDEKL())
6389       break;
6390 
6391     unsigned Opcode;
6392     switch (Node->getOpcode()) {
6393     default:
6394       llvm_unreachable("Unexpected opcode!");
6395     case X86ISD::AESENCWIDE128KL:
6396       Opcode = X86::AESENCWIDE128KL;
6397       break;
6398     case X86ISD::AESDECWIDE128KL:
6399       Opcode = X86::AESDECWIDE128KL;
6400       break;
6401     case X86ISD::AESENCWIDE256KL:
6402       Opcode = X86::AESENCWIDE256KL;
6403       break;
6404     case X86ISD::AESDECWIDE256KL:
6405       Opcode = X86::AESDECWIDE256KL;
6406       break;
6407     }
6408 
6409     SDValue Chain = Node->getOperand(0);
6410     SDValue Addr = Node->getOperand(1);
6411 
6412     SDValue Base, Scale, Index, Disp, Segment;
6413     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
6414       break;
6415 
6416     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
6417                                  SDValue());
6418     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
6419                                  Chain.getValue(1));
6420     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
6421                                  Chain.getValue(1));
6422     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
6423                                  Chain.getValue(1));
6424     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
6425                                  Chain.getValue(1));
6426     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
6427                                  Chain.getValue(1));
6428     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
6429                                  Chain.getValue(1));
6430     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
6431                                  Chain.getValue(1));
6432 
6433     MachineSDNode *Res = CurDAG->getMachineNode(
6434         Opcode, dl, Node->getVTList(),
6435         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
6436     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
6437     ReplaceNode(Node, Res);
6438     return;
6439   }
6440   }
6441 
6442   SelectCode(Node);
6443 }
6444 
6445 bool X86DAGToDAGISel::SelectInlineAsmMemoryOperand(
6446     const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
6447     std::vector<SDValue> &OutOps) {
6448   SDValue Op0, Op1, Op2, Op3, Op4;
6449   switch (ConstraintID) {
6450   default:
6451     llvm_unreachable("Unexpected asm memory constraint");
6452   case InlineAsm::ConstraintCode::o: // offsetable        ??
6453   case InlineAsm::ConstraintCode::v: // not offsetable    ??
6454   case InlineAsm::ConstraintCode::m: // memory
6455   case InlineAsm::ConstraintCode::X:
6456   case InlineAsm::ConstraintCode::p: // address
6457     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
6458       return true;
6459     break;
6460   }
6461 
6462   OutOps.push_back(Op0);
6463   OutOps.push_back(Op1);
6464   OutOps.push_back(Op2);
6465   OutOps.push_back(Op3);
6466   OutOps.push_back(Op4);
6467   return false;
6468 }
6469 
6470 /// This pass converts a legalized DAG into a X86-specific DAG,
6471 /// ready for instruction scheduling.
6472 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6473                                      CodeGenOptLevel OptLevel) {
6474   return new X86DAGToDAGISel(TM, OptLevel);
6475 }
6476