xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a DAG pattern matching instruction selector for X86,
10 // converting from a legalized dag to a X86 dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86.h"
15 #include "X86MachineFunctionInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/MachineModuleInfo.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicsX86.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <cstdint>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "x86-isel"
38 
39 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
40 
41 static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
42     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
43     cl::Hidden);
44 
45 static cl::opt<bool> EnablePromoteAnyextLoad(
46     "x86-promote-anyext-load", cl::init(true),
47     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
48 
49 extern cl::opt<bool> IndirectBranchTracking;
50 
51 //===----------------------------------------------------------------------===//
52 //                      Pattern Matcher Implementation
53 //===----------------------------------------------------------------------===//
54 
55 namespace {
56   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
57   /// numbers for the leaves of the matched tree.
58   struct X86ISelAddressMode {
59     enum {
60       RegBase,
61       FrameIndexBase
62     } BaseType;
63 
64     // This is really a union, discriminated by BaseType!
65     SDValue Base_Reg;
66     int Base_FrameIndex;
67 
68     unsigned Scale;
69     SDValue IndexReg;
70     int32_t Disp;
71     SDValue Segment;
72     const GlobalValue *GV;
73     const Constant *CP;
74     const BlockAddress *BlockAddr;
75     const char *ES;
76     MCSymbol *MCSym;
77     int JT;
78     Align Alignment;            // CP alignment.
79     unsigned char SymbolFlags;  // X86II::MO_*
80     bool NegateIndex = false;
81 
82     X86ISelAddressMode()
83         : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
84           Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr),
85           MCSym(nullptr), JT(-1), SymbolFlags(X86II::MO_NO_FLAG) {}
86 
87     bool hasSymbolicDisplacement() const {
88       return GV != nullptr || CP != nullptr || ES != nullptr ||
89              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
90     }
91 
92     bool hasBaseOrIndexReg() const {
93       return BaseType == FrameIndexBase ||
94              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
95     }
96 
97     /// Return true if this addressing mode is already RIP-relative.
98     bool isRIPRelative() const {
99       if (BaseType != RegBase) return false;
100       if (RegisterSDNode *RegNode =
101             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
102         return RegNode->getReg() == X86::RIP;
103       return false;
104     }
105 
106     void setBaseReg(SDValue Reg) {
107       BaseType = RegBase;
108       Base_Reg = Reg;
109     }
110 
111 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
112     void dump(SelectionDAG *DAG = nullptr) {
113       dbgs() << "X86ISelAddressMode " << this << '\n';
114       dbgs() << "Base_Reg ";
115       if (Base_Reg.getNode())
116         Base_Reg.getNode()->dump(DAG);
117       else
118         dbgs() << "nul\n";
119       if (BaseType == FrameIndexBase)
120         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
121       dbgs() << " Scale " << Scale << '\n'
122              << "IndexReg ";
123       if (NegateIndex)
124         dbgs() << "negate ";
125       if (IndexReg.getNode())
126         IndexReg.getNode()->dump(DAG);
127       else
128         dbgs() << "nul\n";
129       dbgs() << " Disp " << Disp << '\n'
130              << "GV ";
131       if (GV)
132         GV->dump();
133       else
134         dbgs() << "nul";
135       dbgs() << " CP ";
136       if (CP)
137         CP->dump();
138       else
139         dbgs() << "nul";
140       dbgs() << '\n'
141              << "ES ";
142       if (ES)
143         dbgs() << ES;
144       else
145         dbgs() << "nul";
146       dbgs() << " MCSym ";
147       if (MCSym)
148         dbgs() << MCSym;
149       else
150         dbgs() << "nul";
151       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
152     }
153 #endif
154   };
155 }
156 
157 namespace {
158   //===--------------------------------------------------------------------===//
159   /// ISel - X86-specific code to select X86 machine instructions for
160   /// SelectionDAG operations.
161   ///
162   class X86DAGToDAGISel final : public SelectionDAGISel {
163     /// Keep a pointer to the X86Subtarget around so that we can
164     /// make the right decision when generating code for different targets.
165     const X86Subtarget *Subtarget;
166 
167     /// If true, selector should try to optimize for minimum code size.
168     bool OptForMinSize;
169 
170     /// Disable direct TLS access through segment registers.
171     bool IndirectTlsSegRefs;
172 
173   public:
174     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
175         : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
176           OptForMinSize(false), IndirectTlsSegRefs(false) {}
177 
178     StringRef getPassName() const override {
179       return "X86 DAG->DAG Instruction Selection";
180     }
181 
182     bool runOnMachineFunction(MachineFunction &MF) override {
183       // Reset the subtarget each time through.
184       Subtarget = &MF.getSubtarget<X86Subtarget>();
185       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
186                              "indirect-tls-seg-refs");
187 
188       // OptFor[Min]Size are used in pattern predicates that isel is matching.
189       OptForMinSize = MF.getFunction().hasMinSize();
190       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
191              "OptForMinSize implies OptForSize");
192 
193       SelectionDAGISel::runOnMachineFunction(MF);
194       return true;
195     }
196 
197     void emitFunctionEntryCode() override;
198 
199     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
200 
201     void PreprocessISelDAG() override;
202     void PostprocessISelDAG() override;
203 
204 // Include the pieces autogenerated from the target description.
205 #include "X86GenDAGISel.inc"
206 
207   private:
208     void Select(SDNode *N) override;
209 
210     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
211     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
212                             bool AllowSegmentRegForX32 = false);
213     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
214     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
215     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
216     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
217     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218                                  unsigned Depth);
219     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
220     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
221                     SDValue &Scale, SDValue &Index, SDValue &Disp,
222                     SDValue &Segment);
223     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
224                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
225                           SDValue &Index, SDValue &Disp, SDValue &Segment);
226     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
227     bool selectLEAAddr(SDValue N, SDValue &Base,
228                        SDValue &Scale, SDValue &Index, SDValue &Disp,
229                        SDValue &Segment);
230     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
231                             SDValue &Scale, SDValue &Index, SDValue &Disp,
232                             SDValue &Segment);
233     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
234                            SDValue &Scale, SDValue &Index, SDValue &Disp,
235                            SDValue &Segment);
236     bool selectRelocImm(SDValue N, SDValue &Op);
237 
238     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
239                      SDValue &Base, SDValue &Scale,
240                      SDValue &Index, SDValue &Disp,
241                      SDValue &Segment);
242 
243     // Convenience method where P is also root.
244     bool tryFoldLoad(SDNode *P, SDValue N,
245                      SDValue &Base, SDValue &Scale,
246                      SDValue &Index, SDValue &Disp,
247                      SDValue &Segment) {
248       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
249     }
250 
251     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
252                           SDValue &Base, SDValue &Scale,
253                           SDValue &Index, SDValue &Disp,
254                           SDValue &Segment);
255 
256     bool isProfitableToFormMaskedOp(SDNode *N) const;
257 
258     /// Implement addressing mode selection for inline asm expressions.
259     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
260                                       unsigned ConstraintID,
261                                       std::vector<SDValue> &OutOps) override;
262 
263     void emitSpecialCodeForMain();
264 
265     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
266                                    MVT VT, SDValue &Base, SDValue &Scale,
267                                    SDValue &Index, SDValue &Disp,
268                                    SDValue &Segment) {
269       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
270         Base = CurDAG->getTargetFrameIndex(
271             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
272       else if (AM.Base_Reg.getNode())
273         Base = AM.Base_Reg;
274       else
275         Base = CurDAG->getRegister(0, VT);
276 
277       Scale = getI8Imm(AM.Scale, DL);
278 
279       // Negate the index if needed.
280       if (AM.NegateIndex) {
281         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
282         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
283                                                      AM.IndexReg), 0);
284         AM.IndexReg = Neg;
285       }
286 
287       if (AM.IndexReg.getNode())
288         Index = AM.IndexReg;
289       else
290         Index = CurDAG->getRegister(0, VT);
291 
292       // These are 32-bit even in 64-bit mode since RIP-relative offset
293       // is 32-bit.
294       if (AM.GV)
295         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
296                                               MVT::i32, AM.Disp,
297                                               AM.SymbolFlags);
298       else if (AM.CP)
299         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
300                                              AM.Disp, AM.SymbolFlags);
301       else if (AM.ES) {
302         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
303         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
304       } else if (AM.MCSym) {
305         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
306         assert(AM.SymbolFlags == 0 && "oo");
307         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
308       } else if (AM.JT != -1) {
309         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
310         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
311       } else if (AM.BlockAddr)
312         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
313                                              AM.SymbolFlags);
314       else
315         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
316 
317       if (AM.Segment.getNode())
318         Segment = AM.Segment;
319       else
320         Segment = CurDAG->getRegister(0, MVT::i16);
321     }
322 
323     // Utility function to determine whether we should avoid selecting
324     // immediate forms of instructions for better code size or not.
325     // At a high level, we'd like to avoid such instructions when
326     // we have similar constants used within the same basic block
327     // that can be kept in a register.
328     //
329     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
330       uint32_t UseCount = 0;
331 
332       // Do not want to hoist if we're not optimizing for size.
333       // TODO: We'd like to remove this restriction.
334       // See the comment in X86InstrInfo.td for more info.
335       if (!CurDAG->shouldOptForSize())
336         return false;
337 
338       // Walk all the users of the immediate.
339       for (SDNode::use_iterator UI = N->use_begin(),
340            UE = N->use_end(); (UI != UE) && (UseCount < 2); ++UI) {
341 
342         SDNode *User = *UI;
343 
344         // This user is already selected. Count it as a legitimate use and
345         // move on.
346         if (User->isMachineOpcode()) {
347           UseCount++;
348           continue;
349         }
350 
351         // We want to count stores of immediates as real uses.
352         if (User->getOpcode() == ISD::STORE &&
353             User->getOperand(1).getNode() == N) {
354           UseCount++;
355           continue;
356         }
357 
358         // We don't currently match users that have > 2 operands (except
359         // for stores, which are handled above)
360         // Those instruction won't match in ISEL, for now, and would
361         // be counted incorrectly.
362         // This may change in the future as we add additional instruction
363         // types.
364         if (User->getNumOperands() != 2)
365           continue;
366 
367         // If this is a sign-extended 8-bit integer immediate used in an ALU
368         // instruction, there is probably an opcode encoding to save space.
369         auto *C = dyn_cast<ConstantSDNode>(N);
370         if (C && isInt<8>(C->getSExtValue()))
371           continue;
372 
373         // Immediates that are used for offsets as part of stack
374         // manipulation should be left alone. These are typically
375         // used to indicate SP offsets for argument passing and
376         // will get pulled into stores/pushes (implicitly).
377         if (User->getOpcode() == X86ISD::ADD ||
378             User->getOpcode() == ISD::ADD    ||
379             User->getOpcode() == X86ISD::SUB ||
380             User->getOpcode() == ISD::SUB) {
381 
382           // Find the other operand of the add/sub.
383           SDValue OtherOp = User->getOperand(0);
384           if (OtherOp.getNode() == N)
385             OtherOp = User->getOperand(1);
386 
387           // Don't count if the other operand is SP.
388           RegisterSDNode *RegNode;
389           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
390               (RegNode = dyn_cast_or_null<RegisterSDNode>(
391                  OtherOp->getOperand(1).getNode())))
392             if ((RegNode->getReg() == X86::ESP) ||
393                 (RegNode->getReg() == X86::RSP))
394               continue;
395         }
396 
397         // ... otherwise, count this and move on.
398         UseCount++;
399       }
400 
401       // If we have more than 1 use, then recommend for hoisting.
402       return (UseCount > 1);
403     }
404 
405     /// Return a target constant with the specified value of type i8.
406     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
407       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
408     }
409 
410     /// Return a target constant with the specified value, of type i32.
411     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
412       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
413     }
414 
415     /// Return a target constant with the specified value, of type i64.
416     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
417       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
418     }
419 
420     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
421                                         const SDLoc &DL) {
422       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
423       uint64_t Index = N->getConstantOperandVal(1);
424       MVT VecVT = N->getOperand(0).getSimpleValueType();
425       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
426     }
427 
428     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
429                                       const SDLoc &DL) {
430       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
431       uint64_t Index = N->getConstantOperandVal(2);
432       MVT VecVT = N->getSimpleValueType(0);
433       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
434     }
435 
436     // Helper to detect unneeded and instructions on shift amounts. Called
437     // from PatFrags in tablegen.
438     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
439       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
440       const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
441 
442       if (Val.countTrailingOnes() >= Width)
443         return true;
444 
445       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
446       return Mask.countTrailingOnes() >= Width;
447     }
448 
449     /// Return an SDNode that returns the value of the global base register.
450     /// Output instructions required to initialize the global base register,
451     /// if necessary.
452     SDNode *getGlobalBaseReg();
453 
454     /// Return a reference to the TargetMachine, casted to the target-specific
455     /// type.
456     const X86TargetMachine &getTargetMachine() const {
457       return static_cast<const X86TargetMachine &>(TM);
458     }
459 
460     /// Return a reference to the TargetInstrInfo, casted to the target-specific
461     /// type.
462     const X86InstrInfo *getInstrInfo() const {
463       return Subtarget->getInstrInfo();
464     }
465 
466     /// Address-mode matching performs shift-of-and to and-of-shift
467     /// reassociation in order to expose more scaled addressing
468     /// opportunities.
469     bool ComplexPatternFuncMutatesDAG() const override {
470       return true;
471     }
472 
473     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
474 
475     // Indicates we should prefer to use a non-temporal load for this load.
476     bool useNonTemporalLoad(LoadSDNode *N) const {
477       if (!N->isNonTemporal())
478         return false;
479 
480       unsigned StoreSize = N->getMemoryVT().getStoreSize();
481 
482       if (N->getAlignment() < StoreSize)
483         return false;
484 
485       switch (StoreSize) {
486       default: llvm_unreachable("Unsupported store size");
487       case 4:
488       case 8:
489         return false;
490       case 16:
491         return Subtarget->hasSSE41();
492       case 32:
493         return Subtarget->hasAVX2();
494       case 64:
495         return Subtarget->hasAVX512();
496       }
497     }
498 
499     bool foldLoadStoreIntoMemOperand(SDNode *Node);
500     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
501     bool matchBitExtract(SDNode *Node);
502     bool shrinkAndImmediate(SDNode *N);
503     bool isMaskZeroExtended(SDNode *N) const;
504     bool tryShiftAmountMod(SDNode *N);
505     bool tryShrinkShlLogicImm(SDNode *N);
506     bool tryVPTERNLOG(SDNode *N);
507     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentBC,
508                         SDValue A, SDValue B, SDValue C, uint8_t Imm);
509     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
510     bool tryMatchBitSelect(SDNode *N);
511 
512     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
513                                 const SDLoc &dl, MVT VT, SDNode *Node);
514     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
515                                 const SDLoc &dl, MVT VT, SDNode *Node,
516                                 SDValue &InFlag);
517 
518     bool tryOptimizeRem8Extend(SDNode *N);
519 
520     bool onlyUsesZeroFlag(SDValue Flags) const;
521     bool hasNoSignFlagUses(SDValue Flags) const;
522     bool hasNoCarryFlagUses(SDValue Flags) const;
523   };
524 }
525 
526 
527 // Returns true if this masked compare can be implemented legally with this
528 // type.
529 static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
530   unsigned Opcode = N->getOpcode();
531   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
532       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
533       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
534     // We can get 256-bit 8 element types here without VLX being enabled. When
535     // this happens we will use 512-bit operations and the mask will not be
536     // zero extended.
537     EVT OpVT = N->getOperand(0).getValueType();
538     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
539     // second operand.
540     if (Opcode == X86ISD::STRICT_CMPM)
541       OpVT = N->getOperand(1).getValueType();
542     if (OpVT.is256BitVector() || OpVT.is128BitVector())
543       return Subtarget->hasVLX();
544 
545     return true;
546   }
547   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
548   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
549       Opcode == X86ISD::FSETCCM_SAE)
550     return true;
551 
552   return false;
553 }
554 
555 // Returns true if we can assume the writer of the mask has zero extended it
556 // for us.
557 bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
558   // If this is an AND, check if we have a compare on either side. As long as
559   // one side guarantees the mask is zero extended, the AND will preserve those
560   // zeros.
561   if (N->getOpcode() == ISD::AND)
562     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
563            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
564 
565   return isLegalMaskCompare(N, Subtarget);
566 }
567 
568 bool
569 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
570   if (OptLevel == CodeGenOpt::None) return false;
571 
572   if (!N.hasOneUse())
573     return false;
574 
575   if (N.getOpcode() != ISD::LOAD)
576     return true;
577 
578   // Don't fold non-temporal loads if we have an instruction for them.
579   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
580     return false;
581 
582   // If N is a load, do additional profitability checks.
583   if (U == Root) {
584     switch (U->getOpcode()) {
585     default: break;
586     case X86ISD::ADD:
587     case X86ISD::ADC:
588     case X86ISD::SUB:
589     case X86ISD::SBB:
590     case X86ISD::AND:
591     case X86ISD::XOR:
592     case X86ISD::OR:
593     case ISD::ADD:
594     case ISD::ADDCARRY:
595     case ISD::AND:
596     case ISD::OR:
597     case ISD::XOR: {
598       SDValue Op1 = U->getOperand(1);
599 
600       // If the other operand is a 8-bit immediate we should fold the immediate
601       // instead. This reduces code size.
602       // e.g.
603       // movl 4(%esp), %eax
604       // addl $4, %eax
605       // vs.
606       // movl $4, %eax
607       // addl 4(%esp), %eax
608       // The former is 2 bytes shorter. In case where the increment is 1, then
609       // the saving can be 4 bytes (by using incl %eax).
610       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
611         if (Imm->getAPIntValue().isSignedIntN(8))
612           return false;
613 
614         // If this is a 64-bit AND with an immediate that fits in 32-bits,
615         // prefer using the smaller and over folding the load. This is needed to
616         // make sure immediates created by shrinkAndImmediate are always folded.
617         // Ideally we would narrow the load during DAG combine and get the
618         // best of both worlds.
619         if (U->getOpcode() == ISD::AND &&
620             Imm->getAPIntValue().getBitWidth() == 64 &&
621             Imm->getAPIntValue().isIntN(32))
622           return false;
623 
624         // If this really a zext_inreg that can be represented with a movzx
625         // instruction, prefer that.
626         // TODO: We could shrink the load and fold if it is non-volatile.
627         if (U->getOpcode() == ISD::AND &&
628             (Imm->getAPIntValue() == UINT8_MAX ||
629              Imm->getAPIntValue() == UINT16_MAX ||
630              Imm->getAPIntValue() == UINT32_MAX))
631           return false;
632 
633         // ADD/SUB with can negate the immediate and use the opposite operation
634         // to fit 128 into a sign extended 8 bit immediate.
635         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
636             (-Imm->getAPIntValue()).isSignedIntN(8))
637           return false;
638 
639         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
640             (-Imm->getAPIntValue()).isSignedIntN(8) &&
641             hasNoCarryFlagUses(SDValue(U, 1)))
642           return false;
643       }
644 
645       // If the other operand is a TLS address, we should fold it instead.
646       // This produces
647       // movl    %gs:0, %eax
648       // leal    i@NTPOFF(%eax), %eax
649       // instead of
650       // movl    $i@NTPOFF, %eax
651       // addl    %gs:0, %eax
652       // if the block also has an access to a second TLS address this will save
653       // a load.
654       // FIXME: This is probably also true for non-TLS addresses.
655       if (Op1.getOpcode() == X86ISD::Wrapper) {
656         SDValue Val = Op1.getOperand(0);
657         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
658           return false;
659       }
660 
661       // Don't fold load if this matches the BTS/BTR/BTC patterns.
662       // BTS: (or X, (shl 1, n))
663       // BTR: (and X, (rotl -2, n))
664       // BTC: (xor X, (shl 1, n))
665       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
666         if (U->getOperand(0).getOpcode() == ISD::SHL &&
667             isOneConstant(U->getOperand(0).getOperand(0)))
668           return false;
669 
670         if (U->getOperand(1).getOpcode() == ISD::SHL &&
671             isOneConstant(U->getOperand(1).getOperand(0)))
672           return false;
673       }
674       if (U->getOpcode() == ISD::AND) {
675         SDValue U0 = U->getOperand(0);
676         SDValue U1 = U->getOperand(1);
677         if (U0.getOpcode() == ISD::ROTL) {
678           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
679           if (C && C->getSExtValue() == -2)
680             return false;
681         }
682 
683         if (U1.getOpcode() == ISD::ROTL) {
684           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
685           if (C && C->getSExtValue() == -2)
686             return false;
687         }
688       }
689 
690       break;
691     }
692     case ISD::SHL:
693     case ISD::SRA:
694     case ISD::SRL:
695       // Don't fold a load into a shift by immediate. The BMI2 instructions
696       // support folding a load, but not an immediate. The legacy instructions
697       // support folding an immediate, but can't fold a load. Folding an
698       // immediate is preferable to folding a load.
699       if (isa<ConstantSDNode>(U->getOperand(1)))
700         return false;
701 
702       break;
703     }
704   }
705 
706   // Prevent folding a load if this can implemented with an insert_subreg or
707   // a move that implicitly zeroes.
708   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
709       isNullConstant(Root->getOperand(2)) &&
710       (Root->getOperand(0).isUndef() ||
711        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
712     return false;
713 
714   return true;
715 }
716 
717 // Indicates it is profitable to form an AVX512 masked operation. Returning
718 // false will favor a masked register-register masked move or vblendm and the
719 // operation will be selected separately.
720 bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
721   assert(
722       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
723       "Unexpected opcode!");
724 
725   // If the operation has additional users, the operation will be duplicated.
726   // Check the use count to prevent that.
727   // FIXME: Are there cheap opcodes we might want to duplicate?
728   return N->getOperand(1).hasOneUse();
729 }
730 
731 /// Replace the original chain operand of the call with
732 /// load's chain operand and move load below the call's chain operand.
733 static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
734                                SDValue Call, SDValue OrigChain) {
735   SmallVector<SDValue, 8> Ops;
736   SDValue Chain = OrigChain.getOperand(0);
737   if (Chain.getNode() == Load.getNode())
738     Ops.push_back(Load.getOperand(0));
739   else {
740     assert(Chain.getOpcode() == ISD::TokenFactor &&
741            "Unexpected chain operand");
742     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
743       if (Chain.getOperand(i).getNode() == Load.getNode())
744         Ops.push_back(Load.getOperand(0));
745       else
746         Ops.push_back(Chain.getOperand(i));
747     SDValue NewChain =
748       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
749     Ops.clear();
750     Ops.push_back(NewChain);
751   }
752   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
753   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
754   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
755                              Load.getOperand(1), Load.getOperand(2));
756 
757   Ops.clear();
758   Ops.push_back(SDValue(Load.getNode(), 1));
759   Ops.append(Call->op_begin() + 1, Call->op_end());
760   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
761 }
762 
763 /// Return true if call address is a load and it can be
764 /// moved below CALLSEQ_START and the chains leading up to the call.
765 /// Return the CALLSEQ_START by reference as a second output.
766 /// In the case of a tail call, there isn't a callseq node between the call
767 /// chain and the load.
768 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
769   // The transformation is somewhat dangerous if the call's chain was glued to
770   // the call. After MoveBelowOrigChain the load is moved between the call and
771   // the chain, this can create a cycle if the load is not folded. So it is
772   // *really* important that we are sure the load will be folded.
773   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
774     return false;
775   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
776   if (!LD ||
777       !LD->isSimple() ||
778       LD->getAddressingMode() != ISD::UNINDEXED ||
779       LD->getExtensionType() != ISD::NON_EXTLOAD)
780     return false;
781 
782   // Now let's find the callseq_start.
783   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
784     if (!Chain.hasOneUse())
785       return false;
786     Chain = Chain.getOperand(0);
787   }
788 
789   if (!Chain.getNumOperands())
790     return false;
791   // Since we are not checking for AA here, conservatively abort if the chain
792   // writes to memory. It's not safe to move the callee (a load) across a store.
793   if (isa<MemSDNode>(Chain.getNode()) &&
794       cast<MemSDNode>(Chain.getNode())->writeMem())
795     return false;
796   if (Chain.getOperand(0).getNode() == Callee.getNode())
797     return true;
798   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
799       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
800       Callee.getValue(1).hasOneUse())
801     return true;
802   return false;
803 }
804 
805 static bool isEndbrImm64(uint64_t Imm) {
806 // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
807 // i.g: 0xF3660F1EFA, 0xF3670F1EFA
808   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
809     return false;
810 
811   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
812                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
813   int i = 24; // 24bit 0x0F1EFA has matched
814   while (i < 64) {
815     uint8_t Byte = (Imm >> i) & 0xFF;
816     if (Byte == 0xF3)
817       return true;
818     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
819       return false;
820     i += 8;
821   }
822 
823   return false;
824 }
825 
826 void X86DAGToDAGISel::PreprocessISelDAG() {
827   bool MadeChange = false;
828   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
829        E = CurDAG->allnodes_end(); I != E; ) {
830     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
831 
832     // This is for CET enhancement.
833     //
834     // ENDBR32 and ENDBR64 have specific opcodes:
835     // ENDBR32: F3 0F 1E FB
836     // ENDBR64: F3 0F 1E FA
837     // And we want that attackers won’t find unintended ENDBR32/64
838     // opcode matches in the binary
839     // Here’s an example:
840     // If the compiler had to generate asm for the following code:
841     // a = 0xF30F1EFA
842     // it could, for example, generate:
843     // mov 0xF30F1EFA, dword ptr[a]
844     // In such a case, the binary would include a gadget that starts
845     // with a fake ENDBR64 opcode. Therefore, we split such generation
846     // into multiple operations, let it not shows in the binary
847     if (N->getOpcode() == ISD::Constant) {
848       MVT VT = N->getSimpleValueType(0);
849       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
850       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
851       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
852         // Check that the cf-protection-branch is enabled.
853         Metadata *CFProtectionBranch =
854           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
855         if (CFProtectionBranch || IndirectBranchTracking) {
856           SDLoc dl(N);
857           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
858           Complement = CurDAG->getNOT(dl, Complement, VT);
859           --I;
860           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
861           ++I;
862           MadeChange = true;
863           continue;
864         }
865       }
866     }
867 
868     // If this is a target specific AND node with no flag usages, turn it back
869     // into ISD::AND to enable test instruction matching.
870     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
871       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
872                                     N->getOperand(0), N->getOperand(1));
873       --I;
874       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
875       ++I;
876       MadeChange = true;
877       continue;
878     }
879 
880     /// Convert vector increment or decrement to sub/add with an all-ones
881     /// constant:
882     /// add X, <1, 1...> --> sub X, <-1, -1...>
883     /// sub X, <1, 1...> --> add X, <-1, -1...>
884     /// The all-ones vector constant can be materialized using a pcmpeq
885     /// instruction that is commonly recognized as an idiom (has no register
886     /// dependency), so that's better/smaller than loading a splat 1 constant.
887     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
888         N->getSimpleValueType(0).isVector()) {
889 
890       APInt SplatVal;
891       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
892           SplatVal.isOneValue()) {
893         SDLoc DL(N);
894 
895         MVT VT = N->getSimpleValueType(0);
896         unsigned NumElts = VT.getSizeInBits() / 32;
897         SDValue AllOnes =
898             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
899         AllOnes = CurDAG->getBitcast(VT, AllOnes);
900 
901         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
902         SDValue Res =
903             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
904         --I;
905         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
906         ++I;
907         MadeChange = true;
908         continue;
909       }
910     }
911 
912     switch (N->getOpcode()) {
913     case X86ISD::VBROADCAST: {
914       MVT VT = N->getSimpleValueType(0);
915       // Emulate v32i16/v64i8 broadcast without BWI.
916       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
917         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
918         SDLoc dl(N);
919         SDValue NarrowBCast =
920             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
921         SDValue Res =
922             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
923                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
924         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
925         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
926                               CurDAG->getIntPtrConstant(Index, dl));
927 
928         --I;
929         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
930         ++I;
931         MadeChange = true;
932         continue;
933       }
934 
935       break;
936     }
937     case X86ISD::VBROADCAST_LOAD: {
938       MVT VT = N->getSimpleValueType(0);
939       // Emulate v32i16/v64i8 broadcast without BWI.
940       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
941         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
942         auto *MemNode = cast<MemSDNode>(N);
943         SDLoc dl(N);
944         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
945         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
946         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
947             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
948             MemNode->getMemOperand());
949         SDValue Res =
950             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
951                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
952         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
953         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
954                               CurDAG->getIntPtrConstant(Index, dl));
955 
956         --I;
957         SDValue To[] = {Res, NarrowBCast.getValue(1)};
958         CurDAG->ReplaceAllUsesWith(N, To);
959         ++I;
960         MadeChange = true;
961         continue;
962       }
963 
964       break;
965     }
966     case ISD::VSELECT: {
967       // Replace VSELECT with non-mask conditions with with BLENDV.
968       if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
969         break;
970 
971       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
972       SDValue Blendv =
973           CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
974                           N->getOperand(0), N->getOperand(1), N->getOperand(2));
975       --I;
976       CurDAG->ReplaceAllUsesWith(N, Blendv.getNode());
977       ++I;
978       MadeChange = true;
979       continue;
980     }
981     case ISD::FP_ROUND:
982     case ISD::STRICT_FP_ROUND:
983     case ISD::FP_TO_SINT:
984     case ISD::FP_TO_UINT:
985     case ISD::STRICT_FP_TO_SINT:
986     case ISD::STRICT_FP_TO_UINT: {
987       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
988       // don't need 2 sets of patterns.
989       if (!N->getSimpleValueType(0).isVector())
990         break;
991 
992       unsigned NewOpc;
993       switch (N->getOpcode()) {
994       default: llvm_unreachable("Unexpected opcode!");
995       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
996       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
997       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
998       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
999       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1000       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
1001       }
1002       SDValue Res;
1003       if (N->isStrictFPOpcode())
1004         Res =
1005             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1006                             {N->getOperand(0), N->getOperand(1)});
1007       else
1008         Res =
1009             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1010                             N->getOperand(0));
1011       --I;
1012       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1013       ++I;
1014       MadeChange = true;
1015       continue;
1016     }
1017     case ISD::SHL:
1018     case ISD::SRA:
1019     case ISD::SRL: {
1020       // Replace vector shifts with their X86 specific equivalent so we don't
1021       // need 2 sets of patterns.
1022       if (!N->getValueType(0).isVector())
1023         break;
1024 
1025       unsigned NewOpc;
1026       switch (N->getOpcode()) {
1027       default: llvm_unreachable("Unexpected opcode!");
1028       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1029       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1030       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1031       }
1032       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1033                                     N->getOperand(0), N->getOperand(1));
1034       --I;
1035       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1036       ++I;
1037       MadeChange = true;
1038       continue;
1039     }
1040     case ISD::ANY_EXTEND:
1041     case ISD::ANY_EXTEND_VECTOR_INREG: {
1042       // Replace vector any extend with the zero extend equivalents so we don't
1043       // need 2 sets of patterns. Ignore vXi1 extensions.
1044       if (!N->getValueType(0).isVector())
1045         break;
1046 
1047       unsigned NewOpc;
1048       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
1049         assert(N->getOpcode() == ISD::ANY_EXTEND &&
1050                "Unexpected opcode for mask vector!");
1051         NewOpc = ISD::SIGN_EXTEND;
1052       } else {
1053         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1054                               ? ISD::ZERO_EXTEND
1055                               : ISD::ZERO_EXTEND_VECTOR_INREG;
1056       }
1057 
1058       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
1059                                     N->getOperand(0));
1060       --I;
1061       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1062       ++I;
1063       MadeChange = true;
1064       continue;
1065     }
1066     case ISD::FCEIL:
1067     case ISD::STRICT_FCEIL:
1068     case ISD::FFLOOR:
1069     case ISD::STRICT_FFLOOR:
1070     case ISD::FTRUNC:
1071     case ISD::STRICT_FTRUNC:
1072     case ISD::FROUNDEVEN:
1073     case ISD::STRICT_FROUNDEVEN:
1074     case ISD::FNEARBYINT:
1075     case ISD::STRICT_FNEARBYINT:
1076     case ISD::FRINT:
1077     case ISD::STRICT_FRINT: {
1078       // Replace fp rounding with their X86 specific equivalent so we don't
1079       // need 2 sets of patterns.
1080       unsigned Imm;
1081       switch (N->getOpcode()) {
1082       default: llvm_unreachable("Unexpected opcode!");
1083       case ISD::STRICT_FCEIL:
1084       case ISD::FCEIL:      Imm = 0xA; break;
1085       case ISD::STRICT_FFLOOR:
1086       case ISD::FFLOOR:     Imm = 0x9; break;
1087       case ISD::STRICT_FTRUNC:
1088       case ISD::FTRUNC:     Imm = 0xB; break;
1089       case ISD::STRICT_FROUNDEVEN:
1090       case ISD::FROUNDEVEN: Imm = 0x8; break;
1091       case ISD::STRICT_FNEARBYINT:
1092       case ISD::FNEARBYINT: Imm = 0xC; break;
1093       case ISD::STRICT_FRINT:
1094       case ISD::FRINT:      Imm = 0x4; break;
1095       }
1096       SDLoc dl(N);
1097       bool IsStrict = N->isStrictFPOpcode();
1098       SDValue Res;
1099       if (IsStrict)
1100         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1101                               {N->getValueType(0), MVT::Other},
1102                               {N->getOperand(0), N->getOperand(1),
1103                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1104       else
1105         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
1106                               N->getOperand(0),
1107                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1108       --I;
1109       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
1110       ++I;
1111       MadeChange = true;
1112       continue;
1113     }
1114     case X86ISD::FANDN:
1115     case X86ISD::FAND:
1116     case X86ISD::FOR:
1117     case X86ISD::FXOR: {
1118       // Widen scalar fp logic ops to vector to reduce isel patterns.
1119       // FIXME: Can we do this during lowering/combine.
1120       MVT VT = N->getSimpleValueType(0);
1121       if (VT.isVector() || VT == MVT::f128)
1122         break;
1123 
1124       MVT VecVT = VT == MVT::f64 ? MVT::v2f64 : MVT::v4f32;
1125       SDLoc dl(N);
1126       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1127                                     N->getOperand(0));
1128       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
1129                                     N->getOperand(1));
1130 
1131       SDValue Res;
1132       if (Subtarget->hasSSE2()) {
1133         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1134         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
1135         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
1136         unsigned Opc;
1137         switch (N->getOpcode()) {
1138         default: llvm_unreachable("Unexpected opcode!");
1139         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1140         case X86ISD::FAND:  Opc = ISD::AND;      break;
1141         case X86ISD::FOR:   Opc = ISD::OR;       break;
1142         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
1143         }
1144         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
1145         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
1146       } else {
1147         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
1148       }
1149       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
1150                             CurDAG->getIntPtrConstant(0, dl));
1151       --I;
1152       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1153       ++I;
1154       MadeChange = true;
1155       continue;
1156     }
1157     }
1158 
1159     if (OptLevel != CodeGenOpt::None &&
1160         // Only do this when the target can fold the load into the call or
1161         // jmp.
1162         !Subtarget->useIndirectThunkCalls() &&
1163         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1164          (N->getOpcode() == X86ISD::TC_RETURN &&
1165           (Subtarget->is64Bit() ||
1166            !getTargetMachine().isPositionIndependent())))) {
1167       /// Also try moving call address load from outside callseq_start to just
1168       /// before the call to allow it to be folded.
1169       ///
1170       ///     [Load chain]
1171       ///         ^
1172       ///         |
1173       ///       [Load]
1174       ///       ^    ^
1175       ///       |    |
1176       ///      /      \--
1177       ///     /          |
1178       ///[CALLSEQ_START] |
1179       ///     ^          |
1180       ///     |          |
1181       /// [LOAD/C2Reg]   |
1182       ///     |          |
1183       ///      \        /
1184       ///       \      /
1185       ///       [CALL]
1186       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1187       SDValue Chain = N->getOperand(0);
1188       SDValue Load  = N->getOperand(1);
1189       if (!isCalleeLoad(Load, Chain, HasCallSeq))
1190         continue;
1191       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
1192       ++NumLoadMoved;
1193       MadeChange = true;
1194       continue;
1195     }
1196 
1197     // Lower fpround and fpextend nodes that target the FP stack to be store and
1198     // load to the stack.  This is a gross hack.  We would like to simply mark
1199     // these as being illegal, but when we do that, legalize produces these when
1200     // it expands calls, then expands these in the same legalize pass.  We would
1201     // like dag combine to be able to hack on these between the call expansion
1202     // and the node legalization.  As such this pass basically does "really
1203     // late" legalization of these inline with the X86 isel pass.
1204     // FIXME: This should only happen when not compiled with -O0.
1205     switch (N->getOpcode()) {
1206     default: continue;
1207     case ISD::FP_ROUND:
1208     case ISD::FP_EXTEND:
1209     {
1210       MVT SrcVT = N->getOperand(0).getSimpleValueType();
1211       MVT DstVT = N->getSimpleValueType(0);
1212 
1213       // If any of the sources are vectors, no fp stack involved.
1214       if (SrcVT.isVector() || DstVT.isVector())
1215         continue;
1216 
1217       // If the source and destination are SSE registers, then this is a legal
1218       // conversion that should not be lowered.
1219       const X86TargetLowering *X86Lowering =
1220           static_cast<const X86TargetLowering *>(TLI);
1221       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1222       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1223       if (SrcIsSSE && DstIsSSE)
1224         continue;
1225 
1226       if (!SrcIsSSE && !DstIsSSE) {
1227         // If this is an FPStack extension, it is a noop.
1228         if (N->getOpcode() == ISD::FP_EXTEND)
1229           continue;
1230         // If this is a value-preserving FPStack truncation, it is a noop.
1231         if (N->getConstantOperandVal(1))
1232           continue;
1233       }
1234 
1235       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1236       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1237       // operations.  Based on this, decide what we want to do.
1238       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1239       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1240       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1241       MachinePointerInfo MPI =
1242           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1243       SDLoc dl(N);
1244 
1245       // FIXME: optimize the case where the src/dest is a load or store?
1246 
1247       SDValue Store = CurDAG->getTruncStore(
1248           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
1249       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
1250                                           MemTmp, MPI, MemVT);
1251 
1252       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1253       // extload we created.  This will cause general havok on the dag because
1254       // anything below the conversion could be folded into other existing nodes.
1255       // To avoid invalidating 'I', back it up to the convert node.
1256       --I;
1257       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1258       break;
1259     }
1260 
1261     //The sequence of events for lowering STRICT_FP versions of these nodes requires
1262     //dealing with the chain differently, as there is already a preexisting chain.
1263     case ISD::STRICT_FP_ROUND:
1264     case ISD::STRICT_FP_EXTEND:
1265     {
1266       MVT SrcVT = N->getOperand(1).getSimpleValueType();
1267       MVT DstVT = N->getSimpleValueType(0);
1268 
1269       // If any of the sources are vectors, no fp stack involved.
1270       if (SrcVT.isVector() || DstVT.isVector())
1271         continue;
1272 
1273       // If the source and destination are SSE registers, then this is a legal
1274       // conversion that should not be lowered.
1275       const X86TargetLowering *X86Lowering =
1276           static_cast<const X86TargetLowering *>(TLI);
1277       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
1278       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
1279       if (SrcIsSSE && DstIsSSE)
1280         continue;
1281 
1282       if (!SrcIsSSE && !DstIsSSE) {
1283         // If this is an FPStack extension, it is a noop.
1284         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1285           continue;
1286         // If this is a value-preserving FPStack truncation, it is a noop.
1287         if (N->getConstantOperandVal(2))
1288           continue;
1289       }
1290 
1291       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1292       // FPStack has extload and truncstore.  SSE can fold direct loads into other
1293       // operations.  Based on this, decide what we want to do.
1294       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1295       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
1296       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
1297       MachinePointerInfo MPI =
1298           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
1299       SDLoc dl(N);
1300 
1301       // FIXME: optimize the case where the src/dest is a load or store?
1302 
1303       //Since the operation is StrictFP, use the preexisting chain.
1304       SDValue Store, Result;
1305       if (!SrcIsSSE) {
1306         SDVTList VTs = CurDAG->getVTList(MVT::Other);
1307         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
1308         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
1309                                             MPI, /*Align*/ None,
1310                                             MachineMemOperand::MOStore);
1311         if (N->getFlags().hasNoFPExcept()) {
1312           SDNodeFlags Flags = Store->getFlags();
1313           Flags.setNoFPExcept(true);
1314           Store->setFlags(Flags);
1315         }
1316       } else {
1317         assert(SrcVT == MemVT && "Unexpected VT!");
1318         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
1319                                  MPI);
1320       }
1321 
1322       if (!DstIsSSE) {
1323         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1324         SDValue Ops[] = {Store, MemTmp};
1325         Result = CurDAG->getMemIntrinsicNode(
1326             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
1327             /*Align*/ None, MachineMemOperand::MOLoad);
1328         if (N->getFlags().hasNoFPExcept()) {
1329           SDNodeFlags Flags = Result->getFlags();
1330           Flags.setNoFPExcept(true);
1331           Result->setFlags(Flags);
1332         }
1333       } else {
1334         assert(DstVT == MemVT && "Unexpected VT!");
1335         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
1336       }
1337 
1338       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1339       // extload we created.  This will cause general havok on the dag because
1340       // anything below the conversion could be folded into other existing nodes.
1341       // To avoid invalidating 'I', back it up to the convert node.
1342       --I;
1343       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
1344       break;
1345     }
1346     }
1347 
1348 
1349     // Now that we did that, the node is dead.  Increment the iterator to the
1350     // next node to process, then delete N.
1351     ++I;
1352     MadeChange = true;
1353   }
1354 
1355   // Remove any dead nodes that may have been left behind.
1356   if (MadeChange)
1357     CurDAG->RemoveDeadNodes();
1358 }
1359 
1360 // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1361 bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1362   unsigned Opc = N->getMachineOpcode();
1363   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1364       Opc != X86::MOVSX64rr8)
1365     return false;
1366 
1367   SDValue N0 = N->getOperand(0);
1368 
1369   // We need to be extracting the lower bit of an extend.
1370   if (!N0.isMachineOpcode() ||
1371       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1372       N0.getConstantOperandVal(1) != X86::sub_8bit)
1373     return false;
1374 
1375   // We're looking for either a movsx or movzx to match the original opcode.
1376   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1377                                                 : X86::MOVSX32rr8_NOREX;
1378   SDValue N00 = N0.getOperand(0);
1379   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1380     return false;
1381 
1382   if (Opc == X86::MOVSX64rr8) {
1383     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1384     // to 64.
1385     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1386                                                    MVT::i64, N00);
1387     ReplaceUses(N, Extend);
1388   } else {
1389     // Ok we can drop this extend and just use the original extend.
1390     ReplaceUses(N, N00.getNode());
1391   }
1392 
1393   return true;
1394 }
1395 
1396 void X86DAGToDAGISel::PostprocessISelDAG() {
1397   // Skip peepholes at -O0.
1398   if (TM.getOptLevel() == CodeGenOpt::None)
1399     return;
1400 
1401   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1402 
1403   bool MadeChange = false;
1404   while (Position != CurDAG->allnodes_begin()) {
1405     SDNode *N = &*--Position;
1406     // Skip dead nodes and any non-machine opcodes.
1407     if (N->use_empty() || !N->isMachineOpcode())
1408       continue;
1409 
1410     if (tryOptimizeRem8Extend(N)) {
1411       MadeChange = true;
1412       continue;
1413     }
1414 
1415     // Look for a TESTrr+ANDrr pattern where both operands of the test are
1416     // the same. Rewrite to remove the AND.
1417     unsigned Opc = N->getMachineOpcode();
1418     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1419          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1420         N->getOperand(0) == N->getOperand(1) &&
1421         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1422         N->getOperand(0).isMachineOpcode()) {
1423       SDValue And = N->getOperand(0);
1424       unsigned N0Opc = And.getMachineOpcode();
1425       if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1426           N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
1427         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1428                                                      MVT::i32,
1429                                                      And.getOperand(0),
1430                                                      And.getOperand(1));
1431         ReplaceUses(N, Test);
1432         MadeChange = true;
1433         continue;
1434       }
1435       if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1436           N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
1437         unsigned NewOpc;
1438         switch (N0Opc) {
1439         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
1440         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1441         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1442         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1443         }
1444 
1445         // Need to swap the memory and register operand.
1446         SDValue Ops[] = { And.getOperand(1),
1447                           And.getOperand(2),
1448                           And.getOperand(3),
1449                           And.getOperand(4),
1450                           And.getOperand(5),
1451                           And.getOperand(0),
1452                           And.getOperand(6)  /* Chain */ };
1453         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1454                                                      MVT::i32, MVT::Other, Ops);
1455         CurDAG->setNodeMemRefs(
1456             Test, cast<MachineSDNode>(And.getNode())->memoperands());
1457         ReplaceUses(N, Test);
1458         MadeChange = true;
1459         continue;
1460       }
1461     }
1462 
1463     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1464     // used. We're doing this late so we can prefer to fold the AND into masked
1465     // comparisons. Doing that can be better for the live range of the mask
1466     // register.
1467     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1468          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1469         N->getOperand(0) == N->getOperand(1) &&
1470         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1471         N->getOperand(0).isMachineOpcode() &&
1472         onlyUsesZeroFlag(SDValue(N, 0))) {
1473       SDValue And = N->getOperand(0);
1474       unsigned N0Opc = And.getMachineOpcode();
1475       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1476       // KAND instructions and KTEST use the same ISA feature.
1477       if (N0Opc == X86::KANDBrr ||
1478           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1479           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1480         unsigned NewOpc;
1481         switch (Opc) {
1482         default: llvm_unreachable("Unexpected opcode!");
1483         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1484         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1485         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1486         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1487         }
1488         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1489                                                       MVT::i32,
1490                                                       And.getOperand(0),
1491                                                       And.getOperand(1));
1492         ReplaceUses(N, KTest);
1493         MadeChange = true;
1494         continue;
1495       }
1496     }
1497 
1498     // Attempt to remove vectors moves that were inserted to zero upper bits.
1499     if (Opc != TargetOpcode::SUBREG_TO_REG)
1500       continue;
1501 
1502     unsigned SubRegIdx = N->getConstantOperandVal(2);
1503     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1504       continue;
1505 
1506     SDValue Move = N->getOperand(1);
1507     if (!Move.isMachineOpcode())
1508       continue;
1509 
1510     // Make sure its one of the move opcodes we recognize.
1511     switch (Move.getMachineOpcode()) {
1512     default:
1513       continue;
1514     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
1515     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
1516     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
1517     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
1518     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
1519     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
1520     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
1521     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
1522     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1523     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1524     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
1525     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
1526     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1527     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1528       break;
1529     }
1530 
1531     SDValue In = Move.getOperand(0);
1532     if (!In.isMachineOpcode() ||
1533         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1534       continue;
1535 
1536     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1537     // the SHA instructions which use a legacy encoding.
1538     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1539     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1540         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1541         (TSFlags & X86II::EncodingMask) != X86II::XOP)
1542       continue;
1543 
1544     // Producing instruction is another vector instruction. We can drop the
1545     // move.
1546     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
1547     MadeChange = true;
1548   }
1549 
1550   if (MadeChange)
1551     CurDAG->RemoveDeadNodes();
1552 }
1553 
1554 
1555 /// Emit any code that needs to be executed only in the main function.
1556 void X86DAGToDAGISel::emitSpecialCodeForMain() {
1557   if (Subtarget->isTargetCygMing()) {
1558     TargetLowering::ArgListTy Args;
1559     auto &DL = CurDAG->getDataLayout();
1560 
1561     TargetLowering::CallLoweringInfo CLI(*CurDAG);
1562     CLI.setChain(CurDAG->getRoot())
1563         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
1564                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
1565                    std::move(Args));
1566     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1567     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1568     CurDAG->setRoot(Result.second);
1569   }
1570 }
1571 
1572 void X86DAGToDAGISel::emitFunctionEntryCode() {
1573   // If this is main, emit special code for main.
1574   const Function &F = MF->getFunction();
1575   if (F.hasExternalLinkage() && F.getName() == "main")
1576     emitSpecialCodeForMain();
1577 }
1578 
1579 static bool isDispSafeForFrameIndex(int64_t Val) {
1580   // On 64-bit platforms, we can run into an issue where a frame index
1581   // includes a displacement that, when added to the explicit displacement,
1582   // will overflow the displacement field. Assuming that the frame index
1583   // displacement fits into a 31-bit integer  (which is only slightly more
1584   // aggressive than the current fundamental assumption that it fits into
1585   // a 32-bit integer), a 31-bit disp should always be safe.
1586   return isInt<31>(Val);
1587 }
1588 
1589 bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1590                                             X86ISelAddressMode &AM) {
1591   // We may have already matched a displacement and the caller just added the
1592   // symbolic displacement. So we still need to do the checks even if Offset
1593   // is zero.
1594 
1595   int64_t Val = AM.Disp + Offset;
1596 
1597   // Cannot combine ExternalSymbol displacements with integer offsets.
1598   if (Val != 0 && (AM.ES || AM.MCSym))
1599     return true;
1600 
1601   CodeModel::Model M = TM.getCodeModel();
1602   if (Subtarget->is64Bit()) {
1603     if (Val != 0 &&
1604         !X86::isOffsetSuitableForCodeModel(Val, M,
1605                                            AM.hasSymbolicDisplacement()))
1606       return true;
1607     // In addition to the checks required for a register base, check that
1608     // we do not try to use an unsafe Disp with a frame index.
1609     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1610         !isDispSafeForFrameIndex(Val))
1611       return true;
1612   }
1613   AM.Disp = Val;
1614   return false;
1615 
1616 }
1617 
1618 bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1619                                          bool AllowSegmentRegForX32) {
1620   SDValue Address = N->getOperand(1);
1621 
1622   // load gs:0 -> GS segment register.
1623   // load fs:0 -> FS segment register.
1624   //
1625   // This optimization is generally valid because the GNU TLS model defines that
1626   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1627   // with 32-bit registers, as we get in ILP32 mode, those registers are first
1628   // zero-extended to 64 bits and then added it to the base address, which gives
1629   // unwanted results when the register holds a negative value.
1630   // For more information see http://people.redhat.com/drepper/tls.pdf
1631   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) {
1632     if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
1633         !IndirectTlsSegRefs &&
1634         (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1635          Subtarget->isTargetFuchsia())) {
1636       if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1637         return true;
1638       switch (N->getPointerInfo().getAddrSpace()) {
1639       case X86AS::GS:
1640         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1641         return false;
1642       case X86AS::FS:
1643         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1644         return false;
1645       // Address space X86AS::SS is not handled here, because it is not used to
1646       // address TLS areas.
1647       }
1648     }
1649   }
1650 
1651   return true;
1652 }
1653 
1654 /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1655 /// mode. These wrap things that will resolve down into a symbol reference.
1656 /// If no match is possible, this returns true, otherwise it returns false.
1657 bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1658   // If the addressing mode already has a symbol as the displacement, we can
1659   // never match another symbol.
1660   if (AM.hasSymbolicDisplacement())
1661     return true;
1662 
1663   bool IsRIPRelTLS = false;
1664   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1665   if (IsRIPRel) {
1666     SDValue Val = N.getOperand(0);
1667     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1668       IsRIPRelTLS = true;
1669   }
1670 
1671   // We can't use an addressing mode in the 64-bit large code model.
1672   // Global TLS addressing is an exception. In the medium code model,
1673   // we use can use a mode when RIP wrappers are present.
1674   // That signifies access to globals that are known to be "near",
1675   // such as the GOT itself.
1676   CodeModel::Model M = TM.getCodeModel();
1677   if (Subtarget->is64Bit() &&
1678       ((M == CodeModel::Large && !IsRIPRelTLS) ||
1679        (M == CodeModel::Medium && !IsRIPRel)))
1680     return true;
1681 
1682   // Base and index reg must be 0 in order to use %rip as base.
1683   if (IsRIPRel && AM.hasBaseOrIndexReg())
1684     return true;
1685 
1686   // Make a local copy in case we can't do this fold.
1687   X86ISelAddressMode Backup = AM;
1688 
1689   int64_t Offset = 0;
1690   SDValue N0 = N.getOperand(0);
1691   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
1692     AM.GV = G->getGlobal();
1693     AM.SymbolFlags = G->getTargetFlags();
1694     Offset = G->getOffset();
1695   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
1696     AM.CP = CP->getConstVal();
1697     AM.Alignment = CP->getAlign();
1698     AM.SymbolFlags = CP->getTargetFlags();
1699     Offset = CP->getOffset();
1700   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
1701     AM.ES = S->getSymbol();
1702     AM.SymbolFlags = S->getTargetFlags();
1703   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
1704     AM.MCSym = S->getMCSymbol();
1705   } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
1706     AM.JT = J->getIndex();
1707     AM.SymbolFlags = J->getTargetFlags();
1708   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
1709     AM.BlockAddr = BA->getBlockAddress();
1710     AM.SymbolFlags = BA->getTargetFlags();
1711     Offset = BA->getOffset();
1712   } else
1713     llvm_unreachable("Unhandled symbol reference node.");
1714 
1715   if (foldOffsetIntoAddress(Offset, AM)) {
1716     AM = Backup;
1717     return true;
1718   }
1719 
1720   if (IsRIPRel)
1721     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1722 
1723   // Commit the changes now that we know this fold is safe.
1724   return false;
1725 }
1726 
1727 /// Add the specified node to the specified addressing mode, returning true if
1728 /// it cannot be done. This just pattern matches for the addressing mode.
1729 bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1730   if (matchAddressRecursively(N, AM, 0))
1731     return true;
1732 
1733   // Post-processing: Make a second attempt to fold a load, if we now know
1734   // that there will not be any other register. This is only performed for
1735   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1736   // any foldable load the first time.
1737   if (Subtarget->isTarget64BitILP32() &&
1738       AM.BaseType == X86ISelAddressMode::RegBase &&
1739       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1740     SDValue Save_Base_Reg = AM.Base_Reg;
1741     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
1742       AM.Base_Reg = SDValue();
1743       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
1744         AM.Base_Reg = Save_Base_Reg;
1745     }
1746   }
1747 
1748   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1749   // a smaller encoding and avoids a scaled-index.
1750   if (AM.Scale == 2 &&
1751       AM.BaseType == X86ISelAddressMode::RegBase &&
1752       AM.Base_Reg.getNode() == nullptr) {
1753     AM.Base_Reg = AM.IndexReg;
1754     AM.Scale = 1;
1755   }
1756 
1757   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1758   // because it has a smaller encoding.
1759   // TODO: Which other code models can use this?
1760   switch (TM.getCodeModel()) {
1761     default: break;
1762     case CodeModel::Small:
1763     case CodeModel::Kernel:
1764       if (Subtarget->is64Bit() &&
1765           AM.Scale == 1 &&
1766           AM.BaseType == X86ISelAddressMode::RegBase &&
1767           AM.Base_Reg.getNode() == nullptr &&
1768           AM.IndexReg.getNode() == nullptr &&
1769           AM.SymbolFlags == X86II::MO_NO_FLAG &&
1770           AM.hasSymbolicDisplacement())
1771         AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1772       break;
1773   }
1774 
1775   return false;
1776 }
1777 
1778 bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1779                                unsigned Depth) {
1780   // Add an artificial use to this node so that we can keep track of
1781   // it if it gets CSE'd with a different node.
1782   HandleSDNode Handle(N);
1783 
1784   X86ISelAddressMode Backup = AM;
1785   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1786       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1787     return false;
1788   AM = Backup;
1789 
1790   // Try again after commutating the operands.
1791   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
1792                                Depth + 1) &&
1793       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
1794     return false;
1795   AM = Backup;
1796 
1797   // If we couldn't fold both operands into the address at the same time,
1798   // see if we can just put each operand into a register and fold at least
1799   // the add.
1800   if (AM.BaseType == X86ISelAddressMode::RegBase &&
1801       !AM.Base_Reg.getNode() &&
1802       !AM.IndexReg.getNode()) {
1803     N = Handle.getValue();
1804     AM.Base_Reg = N.getOperand(0);
1805     AM.IndexReg = N.getOperand(1);
1806     AM.Scale = 1;
1807     return false;
1808   }
1809   N = Handle.getValue();
1810   return true;
1811 }
1812 
1813 // Insert a node into the DAG at least before the Pos node's position. This
1814 // will reposition the node as needed, and will assign it a node ID that is <=
1815 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1816 // IDs! The selection DAG must no longer depend on their uniqueness when this
1817 // is used.
1818 static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1819   if (N->getNodeId() == -1 ||
1820       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
1821        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
1822     DAG.RepositionNode(Pos->getIterator(), N.getNode());
1823     // Mark Node as invalid for pruning as after this it may be a successor to a
1824     // selected node but otherwise be in the same position of Pos.
1825     // Conservatively mark it with the same -abs(Id) to assure node id
1826     // invariant is preserved.
1827     N->setNodeId(Pos->getNodeId());
1828     SelectionDAGISel::InvalidateNodeId(N.getNode());
1829   }
1830 }
1831 
1832 // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1833 // safe. This allows us to convert the shift and and into an h-register
1834 // extract and a scaled index. Returns false if the simplification is
1835 // performed.
1836 static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1837                                       uint64_t Mask,
1838                                       SDValue Shift, SDValue X,
1839                                       X86ISelAddressMode &AM) {
1840   if (Shift.getOpcode() != ISD::SRL ||
1841       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
1842       !Shift.hasOneUse())
1843     return true;
1844 
1845   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
1846   if (ScaleLog <= 0 || ScaleLog >= 4 ||
1847       Mask != (0xffu << ScaleLog))
1848     return true;
1849 
1850   MVT VT = N.getSimpleValueType();
1851   SDLoc DL(N);
1852   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
1853   SDValue NewMask = DAG.getConstant(0xff, DL, VT);
1854   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
1855   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
1856   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
1857   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
1858 
1859   // Insert the new nodes into the topological ordering. We must do this in
1860   // a valid topological ordering as nothing is going to go back and re-sort
1861   // these nodes. We continually insert before 'N' in sequence as this is
1862   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1863   // hierarchy left to express.
1864   insertDAGNode(DAG, N, Eight);
1865   insertDAGNode(DAG, N, Srl);
1866   insertDAGNode(DAG, N, NewMask);
1867   insertDAGNode(DAG, N, And);
1868   insertDAGNode(DAG, N, ShlCount);
1869   insertDAGNode(DAG, N, Shl);
1870   DAG.ReplaceAllUsesWith(N, Shl);
1871   DAG.RemoveDeadNode(N.getNode());
1872   AM.IndexReg = And;
1873   AM.Scale = (1 << ScaleLog);
1874   return false;
1875 }
1876 
1877 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
1878 // allows us to fold the shift into this addressing mode. Returns false if the
1879 // transform succeeded.
1880 static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
1881                                         X86ISelAddressMode &AM) {
1882   SDValue Shift = N.getOperand(0);
1883 
1884   // Use a signed mask so that shifting right will insert sign bits. These
1885   // bits will be removed when we shift the result left so it doesn't matter
1886   // what we use. This might allow a smaller immediate encoding.
1887   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
1888 
1889   // If we have an any_extend feeding the AND, look through it to see if there
1890   // is a shift behind it. But only if the AND doesn't use the extended bits.
1891   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
1892   bool FoundAnyExtend = false;
1893   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
1894       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
1895       isUInt<32>(Mask)) {
1896     FoundAnyExtend = true;
1897     Shift = Shift.getOperand(0);
1898   }
1899 
1900   if (Shift.getOpcode() != ISD::SHL ||
1901       !isa<ConstantSDNode>(Shift.getOperand(1)))
1902     return true;
1903 
1904   SDValue X = Shift.getOperand(0);
1905 
1906   // Not likely to be profitable if either the AND or SHIFT node has more
1907   // than one use (unless all uses are for address computation). Besides,
1908   // isel mechanism requires their node ids to be reused.
1909   if (!N.hasOneUse() || !Shift.hasOneUse())
1910     return true;
1911 
1912   // Verify that the shift amount is something we can fold.
1913   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1914   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
1915     return true;
1916 
1917   MVT VT = N.getSimpleValueType();
1918   SDLoc DL(N);
1919   if (FoundAnyExtend) {
1920     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
1921     insertDAGNode(DAG, N, NewX);
1922     X = NewX;
1923   }
1924 
1925   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
1926   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
1927   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
1928 
1929   // Insert the new nodes into the topological ordering. We must do this in
1930   // a valid topological ordering as nothing is going to go back and re-sort
1931   // these nodes. We continually insert before 'N' in sequence as this is
1932   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
1933   // hierarchy left to express.
1934   insertDAGNode(DAG, N, NewMask);
1935   insertDAGNode(DAG, N, NewAnd);
1936   insertDAGNode(DAG, N, NewShift);
1937   DAG.ReplaceAllUsesWith(N, NewShift);
1938   DAG.RemoveDeadNode(N.getNode());
1939 
1940   AM.Scale = 1 << ShiftAmt;
1941   AM.IndexReg = NewAnd;
1942   return false;
1943 }
1944 
1945 // Implement some heroics to detect shifts of masked values where the mask can
1946 // be replaced by extending the shift and undoing that in the addressing mode
1947 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
1948 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
1949 // the addressing mode. This results in code such as:
1950 //
1951 //   int f(short *y, int *lookup_table) {
1952 //     ...
1953 //     return *y + lookup_table[*y >> 11];
1954 //   }
1955 //
1956 // Turning into:
1957 //   movzwl (%rdi), %eax
1958 //   movl %eax, %ecx
1959 //   shrl $11, %ecx
1960 //   addl (%rsi,%rcx,4), %eax
1961 //
1962 // Instead of:
1963 //   movzwl (%rdi), %eax
1964 //   movl %eax, %ecx
1965 //   shrl $9, %ecx
1966 //   andl $124, %rcx
1967 //   addl (%rsi,%rcx), %eax
1968 //
1969 // Note that this function assumes the mask is provided as a mask *after* the
1970 // value is shifted. The input chain may or may not match that, but computing
1971 // such a mask is trivial.
1972 static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
1973                                     uint64_t Mask,
1974                                     SDValue Shift, SDValue X,
1975                                     X86ISelAddressMode &AM) {
1976   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
1977       !isa<ConstantSDNode>(Shift.getOperand(1)))
1978     return true;
1979 
1980   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
1981   unsigned MaskLZ = countLeadingZeros(Mask);
1982   unsigned MaskTZ = countTrailingZeros(Mask);
1983 
1984   // The amount of shift we're trying to fit into the addressing mode is taken
1985   // from the trailing zeros of the mask.
1986   unsigned AMShiftAmt = MaskTZ;
1987 
1988   // There is nothing we can do here unless the mask is removing some bits.
1989   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
1990   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
1991 
1992   // We also need to ensure that mask is a continuous run of bits.
1993   if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
1994 
1995   // Scale the leading zero count down based on the actual size of the value.
1996   // Also scale it down based on the size of the shift.
1997   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
1998   if (MaskLZ < ScaleDown)
1999     return true;
2000   MaskLZ -= ScaleDown;
2001 
2002   // The final check is to ensure that any masked out high bits of X are
2003   // already known to be zero. Otherwise, the mask has a semantic impact
2004   // other than masking out a couple of low bits. Unfortunately, because of
2005   // the mask, zero extensions will be removed from operands in some cases.
2006   // This code works extra hard to look through extensions because we can
2007   // replace them with zero extensions cheaply if necessary.
2008   bool ReplacingAnyExtend = false;
2009   if (X.getOpcode() == ISD::ANY_EXTEND) {
2010     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2011                           X.getOperand(0).getSimpleValueType().getSizeInBits();
2012     // Assume that we'll replace the any-extend with a zero-extend, and
2013     // narrow the search to the extended value.
2014     X = X.getOperand(0);
2015     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2016     ReplacingAnyExtend = true;
2017   }
2018   APInt MaskedHighBits =
2019     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
2020   KnownBits Known = DAG.computeKnownBits(X);
2021   if (MaskedHighBits != Known.Zero) return true;
2022 
2023   // We've identified a pattern that can be transformed into a single shift
2024   // and an addressing mode. Make it so.
2025   MVT VT = N.getSimpleValueType();
2026   if (ReplacingAnyExtend) {
2027     assert(X.getValueType() != VT);
2028     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2029     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
2030     insertDAGNode(DAG, N, NewX);
2031     X = NewX;
2032   }
2033   SDLoc DL(N);
2034   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2035   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2036   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2037   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
2038 
2039   // Insert the new nodes into the topological ordering. We must do this in
2040   // a valid topological ordering as nothing is going to go back and re-sort
2041   // these nodes. We continually insert before 'N' in sequence as this is
2042   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2043   // hierarchy left to express.
2044   insertDAGNode(DAG, N, NewSRLAmt);
2045   insertDAGNode(DAG, N, NewSRL);
2046   insertDAGNode(DAG, N, NewSHLAmt);
2047   insertDAGNode(DAG, N, NewSHL);
2048   DAG.ReplaceAllUsesWith(N, NewSHL);
2049   DAG.RemoveDeadNode(N.getNode());
2050 
2051   AM.Scale = 1 << AMShiftAmt;
2052   AM.IndexReg = NewSRL;
2053   return false;
2054 }
2055 
2056 // Transform "(X >> SHIFT) & (MASK << C1)" to
2057 // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2058 // matched to a BEXTR later. Returns false if the simplification is performed.
2059 static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2060                                    uint64_t Mask,
2061                                    SDValue Shift, SDValue X,
2062                                    X86ISelAddressMode &AM,
2063                                    const X86Subtarget &Subtarget) {
2064   if (Shift.getOpcode() != ISD::SRL ||
2065       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
2066       !Shift.hasOneUse() || !N.hasOneUse())
2067     return true;
2068 
2069   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2070   if (!Subtarget.hasTBM() &&
2071       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2072     return true;
2073 
2074   // We need to ensure that mask is a continuous run of bits.
2075   if (!isShiftedMask_64(Mask)) return true;
2076 
2077   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
2078 
2079   // The amount of shift we're trying to fit into the addressing mode is taken
2080   // from the trailing zeros of the mask.
2081   unsigned AMShiftAmt = countTrailingZeros(Mask);
2082 
2083   // There is nothing we can do here unless the mask is removing some bits.
2084   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2085   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2086 
2087   MVT VT = N.getSimpleValueType();
2088   SDLoc DL(N);
2089   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2090   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
2091   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
2092   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
2093   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2094   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
2095 
2096   // Insert the new nodes into the topological ordering. We must do this in
2097   // a valid topological ordering as nothing is going to go back and re-sort
2098   // these nodes. We continually insert before 'N' in sequence as this is
2099   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2100   // hierarchy left to express.
2101   insertDAGNode(DAG, N, NewSRLAmt);
2102   insertDAGNode(DAG, N, NewSRL);
2103   insertDAGNode(DAG, N, NewMask);
2104   insertDAGNode(DAG, N, NewAnd);
2105   insertDAGNode(DAG, N, NewSHLAmt);
2106   insertDAGNode(DAG, N, NewSHL);
2107   DAG.ReplaceAllUsesWith(N, NewSHL);
2108   DAG.RemoveDeadNode(N.getNode());
2109 
2110   AM.Scale = 1 << AMShiftAmt;
2111   AM.IndexReg = NewAnd;
2112   return false;
2113 }
2114 
2115 bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2116                                               unsigned Depth) {
2117   SDLoc dl(N);
2118   LLVM_DEBUG({
2119     dbgs() << "MatchAddress: ";
2120     AM.dump(CurDAG);
2121   });
2122   // Limit recursion.
2123   if (Depth > 5)
2124     return matchAddressBase(N, AM);
2125 
2126   // If this is already a %rip relative address, we can only merge immediates
2127   // into it.  Instead of handling this in every case, we handle it here.
2128   // RIP relative addressing: %rip + 32-bit displacement!
2129   if (AM.isRIPRelative()) {
2130     // FIXME: JumpTable and ExternalSymbol address currently don't like
2131     // displacements.  It isn't very important, but this should be fixed for
2132     // consistency.
2133     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2134       return true;
2135 
2136     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
2137       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
2138         return false;
2139     return true;
2140   }
2141 
2142   switch (N.getOpcode()) {
2143   default: break;
2144   case ISD::LOCAL_RECOVER: {
2145     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2146       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
2147         // Use the symbol and don't prefix it.
2148         AM.MCSym = ESNode->getMCSymbol();
2149         return false;
2150       }
2151     break;
2152   }
2153   case ISD::Constant: {
2154     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2155     if (!foldOffsetIntoAddress(Val, AM))
2156       return false;
2157     break;
2158   }
2159 
2160   case X86ISD::Wrapper:
2161   case X86ISD::WrapperRIP:
2162     if (!matchWrapper(N, AM))
2163       return false;
2164     break;
2165 
2166   case ISD::LOAD:
2167     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
2168       return false;
2169     break;
2170 
2171   case ISD::FrameIndex:
2172     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2173         AM.Base_Reg.getNode() == nullptr &&
2174         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
2175       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2176       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
2177       return false;
2178     }
2179     break;
2180 
2181   case ISD::SHL:
2182     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2183       break;
2184 
2185     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
2186       unsigned Val = CN->getZExtValue();
2187       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2188       // that the base operand remains free for further matching. If
2189       // the base doesn't end up getting used, a post-processing step
2190       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2191       if (Val == 1 || Val == 2 || Val == 3) {
2192         AM.Scale = 1 << Val;
2193         SDValue ShVal = N.getOperand(0);
2194 
2195         // Okay, we know that we have a scale by now.  However, if the scaled
2196         // value is an add of something and a constant, we can fold the
2197         // constant into the disp field here.
2198         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
2199           AM.IndexReg = ShVal.getOperand(0);
2200           ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
2201           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
2202           if (!foldOffsetIntoAddress(Disp, AM))
2203             return false;
2204         }
2205 
2206         AM.IndexReg = ShVal;
2207         return false;
2208       }
2209     }
2210     break;
2211 
2212   case ISD::SRL: {
2213     // Scale must not be used already.
2214     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2215 
2216     // We only handle up to 64-bit values here as those are what matter for
2217     // addressing mode optimizations.
2218     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2219            "Unexpected value size!");
2220 
2221     SDValue And = N.getOperand(0);
2222     if (And.getOpcode() != ISD::AND) break;
2223     SDValue X = And.getOperand(0);
2224 
2225     // The mask used for the transform is expected to be post-shift, but we
2226     // found the shift first so just apply the shift to the mask before passing
2227     // it down.
2228     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
2229         !isa<ConstantSDNode>(And.getOperand(1)))
2230       break;
2231     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
2232 
2233     // Try to fold the mask and shift into the scale, and return false if we
2234     // succeed.
2235     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
2236       return false;
2237     break;
2238   }
2239 
2240   case ISD::SMUL_LOHI:
2241   case ISD::UMUL_LOHI:
2242     // A mul_lohi where we need the low part can be folded as a plain multiply.
2243     if (N.getResNo() != 0) break;
2244     LLVM_FALLTHROUGH;
2245   case ISD::MUL:
2246   case X86ISD::MUL_IMM:
2247     // X*[3,5,9] -> X+X*[2,4,8]
2248     if (AM.BaseType == X86ISelAddressMode::RegBase &&
2249         AM.Base_Reg.getNode() == nullptr &&
2250         AM.IndexReg.getNode() == nullptr) {
2251       if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
2252         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2253             CN->getZExtValue() == 9) {
2254           AM.Scale = unsigned(CN->getZExtValue())-1;
2255 
2256           SDValue MulVal = N.getOperand(0);
2257           SDValue Reg;
2258 
2259           // Okay, we know that we have a scale by now.  However, if the scaled
2260           // value is an add of something and a constant, we can fold the
2261           // constant into the disp field here.
2262           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2263               isa<ConstantSDNode>(MulVal.getOperand(1))) {
2264             Reg = MulVal.getOperand(0);
2265             ConstantSDNode *AddVal =
2266               cast<ConstantSDNode>(MulVal.getOperand(1));
2267             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2268             if (foldOffsetIntoAddress(Disp, AM))
2269               Reg = N.getOperand(0);
2270           } else {
2271             Reg = N.getOperand(0);
2272           }
2273 
2274           AM.IndexReg = AM.Base_Reg = Reg;
2275           return false;
2276         }
2277     }
2278     break;
2279 
2280   case ISD::SUB: {
2281     // Given A-B, if A can be completely folded into the address and
2282     // the index field with the index field unused, use -B as the index.
2283     // This is a win if a has multiple parts that can be folded into
2284     // the address. Also, this saves a mov if the base register has
2285     // other uses, since it avoids a two-address sub instruction, however
2286     // it costs an additional mov if the index register has other uses.
2287 
2288     // Add an artificial use to this node so that we can keep track of
2289     // it if it gets CSE'd with a different node.
2290     HandleSDNode Handle(N);
2291 
2292     // Test if the LHS of the sub can be folded.
2293     X86ISelAddressMode Backup = AM;
2294     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
2295       N = Handle.getValue();
2296       AM = Backup;
2297       break;
2298     }
2299     N = Handle.getValue();
2300     // Test if the index field is free for use.
2301     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2302       AM = Backup;
2303       break;
2304     }
2305 
2306     int Cost = 0;
2307     SDValue RHS = N.getOperand(1);
2308     // If the RHS involves a register with multiple uses, this
2309     // transformation incurs an extra mov, due to the neg instruction
2310     // clobbering its operand.
2311     if (!RHS.getNode()->hasOneUse() ||
2312         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2313         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2314         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2315         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2316          RHS.getOperand(0).getValueType() == MVT::i32))
2317       ++Cost;
2318     // If the base is a register with multiple uses, this
2319     // transformation may save a mov.
2320     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2321          !AM.Base_Reg.getNode()->hasOneUse()) ||
2322         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2323       --Cost;
2324     // If the folded LHS was interesting, this transformation saves
2325     // address arithmetic.
2326     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2327         ((AM.Disp != 0) && (Backup.Disp == 0)) +
2328         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2329       --Cost;
2330     // If it doesn't look like it may be an overall win, don't do it.
2331     if (Cost >= 0) {
2332       AM = Backup;
2333       break;
2334     }
2335 
2336     // Ok, the transformation is legal and appears profitable. Go for it.
2337     // Negation will be emitted later to avoid creating dangling nodes if this
2338     // was an unprofitable LEA.
2339     AM.IndexReg = RHS;
2340     AM.NegateIndex = true;
2341     AM.Scale = 1;
2342     return false;
2343   }
2344 
2345   case ISD::ADD:
2346     if (!matchAdd(N, AM, Depth))
2347       return false;
2348     break;
2349 
2350   case ISD::OR:
2351     // We want to look through a transform in InstCombine and DAGCombiner that
2352     // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
2353     // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
2354     // An 'lea' can then be used to match the shift (multiply) and add:
2355     // and $1, %esi
2356     // lea (%rsi, %rdi, 8), %rax
2357     if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
2358         !matchAdd(N, AM, Depth))
2359       return false;
2360     break;
2361 
2362   case ISD::AND: {
2363     // Perform some heroic transforms on an and of a constant-count shift
2364     // with a constant to enable use of the scaled offset field.
2365 
2366     // Scale must not be used already.
2367     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2368 
2369     // We only handle up to 64-bit values here as those are what matter for
2370     // addressing mode optimizations.
2371     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2372            "Unexpected value size!");
2373 
2374     if (!isa<ConstantSDNode>(N.getOperand(1)))
2375       break;
2376 
2377     if (N.getOperand(0).getOpcode() == ISD::SRL) {
2378       SDValue Shift = N.getOperand(0);
2379       SDValue X = Shift.getOperand(0);
2380 
2381       uint64_t Mask = N.getConstantOperandVal(1);
2382 
2383       // Try to fold the mask and shift into an extract and scale.
2384       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
2385         return false;
2386 
2387       // Try to fold the mask and shift directly into the scale.
2388       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
2389         return false;
2390 
2391       // Try to fold the mask and shift into BEXTR and scale.
2392       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
2393         return false;
2394     }
2395 
2396     // Try to swap the mask and shift to place shifts which can be done as
2397     // a scale on the outside of the mask.
2398     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
2399       return false;
2400 
2401     break;
2402   }
2403   case ISD::ZERO_EXTEND: {
2404     // Try to widen a zexted shift left to the same size as its use, so we can
2405     // match the shift as a scale factor.
2406     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2407       break;
2408     if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
2409       break;
2410 
2411     // Give up if the shift is not a valid scale factor [1,2,3].
2412     SDValue Shl = N.getOperand(0);
2413     auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
2414     if (!ShAmtC || ShAmtC->getZExtValue() > 3)
2415       break;
2416 
2417     // The narrow shift must only shift out zero bits (it must be 'nuw').
2418     // That makes it safe to widen to the destination type.
2419     APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
2420                                             ShAmtC->getZExtValue());
2421     if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
2422       break;
2423 
2424     // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
2425     MVT VT = N.getSimpleValueType();
2426     SDLoc DL(N);
2427     SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
2428     SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
2429 
2430     // Convert the shift to scale factor.
2431     AM.Scale = 1 << ShAmtC->getZExtValue();
2432     AM.IndexReg = Zext;
2433 
2434     insertDAGNode(*CurDAG, N, Zext);
2435     insertDAGNode(*CurDAG, N, NewShl);
2436     CurDAG->ReplaceAllUsesWith(N, NewShl);
2437     CurDAG->RemoveDeadNode(N.getNode());
2438     return false;
2439   }
2440   }
2441 
2442   return matchAddressBase(N, AM);
2443 }
2444 
2445 /// Helper for MatchAddress. Add the specified node to the
2446 /// specified addressing mode without any further recursion.
2447 bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2448   // Is the base register already occupied?
2449   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2450     // If so, check to see if the scale index register is set.
2451     if (!AM.IndexReg.getNode()) {
2452       AM.IndexReg = N;
2453       AM.Scale = 1;
2454       return false;
2455     }
2456 
2457     // Otherwise, we cannot select it.
2458     return true;
2459   }
2460 
2461   // Default, generate it as a register.
2462   AM.BaseType = X86ISelAddressMode::RegBase;
2463   AM.Base_Reg = N;
2464   return false;
2465 }
2466 
2467 /// Helper for selectVectorAddr. Handles things that can be folded into a
2468 /// gather scatter address. The index register and scale should have already
2469 /// been handled.
2470 bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2471   // TODO: Support other operations.
2472   switch (N.getOpcode()) {
2473   case ISD::Constant: {
2474     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
2475     if (!foldOffsetIntoAddress(Val, AM))
2476       return false;
2477     break;
2478   }
2479   case X86ISD::Wrapper:
2480     if (!matchWrapper(N, AM))
2481       return false;
2482     break;
2483   }
2484 
2485   return matchAddressBase(N, AM);
2486 }
2487 
2488 bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2489                                        SDValue IndexOp, SDValue ScaleOp,
2490                                        SDValue &Base, SDValue &Scale,
2491                                        SDValue &Index, SDValue &Disp,
2492                                        SDValue &Segment) {
2493   X86ISelAddressMode AM;
2494   AM.IndexReg = IndexOp;
2495   AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
2496 
2497   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2498   if (AddrSpace == X86AS::GS)
2499     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2500   if (AddrSpace == X86AS::FS)
2501     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2502   if (AddrSpace == X86AS::SS)
2503     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2504 
2505   SDLoc DL(BasePtr);
2506   MVT VT = BasePtr.getSimpleValueType();
2507 
2508   // Try to match into the base and displacement fields.
2509   if (matchVectorAddress(BasePtr, AM))
2510     return false;
2511 
2512   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2513   return true;
2514 }
2515 
2516 /// Returns true if it is able to pattern match an addressing mode.
2517 /// It returns the operands which make up the maximal addressing mode it can
2518 /// match by reference.
2519 ///
2520 /// Parent is the parent node of the addr operand that is being matched.  It
2521 /// is always a load, store, atomic node, or null.  It is only null when
2522 /// checking memory operands for inline asm nodes.
2523 bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2524                                  SDValue &Scale, SDValue &Index,
2525                                  SDValue &Disp, SDValue &Segment) {
2526   X86ISelAddressMode AM;
2527 
2528   if (Parent &&
2529       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2530       // that are not a MemSDNode, and thus don't have proper addrspace info.
2531       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2532       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2533       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2534       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2535       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2536       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2537       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2538     unsigned AddrSpace =
2539       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
2540     if (AddrSpace == X86AS::GS)
2541       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2542     if (AddrSpace == X86AS::FS)
2543       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2544     if (AddrSpace == X86AS::SS)
2545       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2546   }
2547 
2548   // Save the DL and VT before calling matchAddress, it can invalidate N.
2549   SDLoc DL(N);
2550   MVT VT = N.getSimpleValueType();
2551 
2552   if (matchAddress(N, AM))
2553     return false;
2554 
2555   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2556   return true;
2557 }
2558 
2559 bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2560   // In static codegen with small code model, we can get the address of a label
2561   // into a register with 'movl'
2562   if (N->getOpcode() != X86ISD::Wrapper)
2563     return false;
2564 
2565   N = N.getOperand(0);
2566 
2567   // At least GNU as does not accept 'movl' for TPOFF relocations.
2568   // FIXME: We could use 'movl' when we know we are targeting MC.
2569   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2570     return false;
2571 
2572   Imm = N;
2573   if (N->getOpcode() != ISD::TargetGlobalAddress)
2574     return TM.getCodeModel() == CodeModel::Small;
2575 
2576   Optional<ConstantRange> CR =
2577       cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
2578   if (!CR)
2579     return TM.getCodeModel() == CodeModel::Small;
2580 
2581   return CR->getUnsignedMax().ult(1ull << 32);
2582 }
2583 
2584 bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2585                                          SDValue &Scale, SDValue &Index,
2586                                          SDValue &Disp, SDValue &Segment) {
2587   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2588   SDLoc DL(N);
2589 
2590   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2591     return false;
2592 
2593   RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
2594   if (RN && RN->getReg() == 0)
2595     Base = CurDAG->getRegister(0, MVT::i64);
2596   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2597     // Base could already be %rip, particularly in the x32 ABI.
2598     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2599                                                      MVT::i64), 0);
2600     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2601                                          Base);
2602   }
2603 
2604   RN = dyn_cast<RegisterSDNode>(Index);
2605   if (RN && RN->getReg() == 0)
2606     Index = CurDAG->getRegister(0, MVT::i64);
2607   else {
2608     assert(Index.getValueType() == MVT::i32 &&
2609            "Expect to be extending 32-bit registers for use in LEA");
2610     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2611                                                      MVT::i64), 0);
2612     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2613                                           Index);
2614   }
2615 
2616   return true;
2617 }
2618 
2619 /// Calls SelectAddr and determines if the maximal addressing
2620 /// mode it matches can be cost effectively emitted as an LEA instruction.
2621 bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
2622                                     SDValue &Base, SDValue &Scale,
2623                                     SDValue &Index, SDValue &Disp,
2624                                     SDValue &Segment) {
2625   X86ISelAddressMode AM;
2626 
2627   // Save the DL and VT before calling matchAddress, it can invalidate N.
2628   SDLoc DL(N);
2629   MVT VT = N.getSimpleValueType();
2630 
2631   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
2632   // segments.
2633   SDValue Copy = AM.Segment;
2634   SDValue T = CurDAG->getRegister(0, MVT::i32);
2635   AM.Segment = T;
2636   if (matchAddress(N, AM))
2637     return false;
2638   assert (T == AM.Segment);
2639   AM.Segment = Copy;
2640 
2641   unsigned Complexity = 0;
2642   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
2643     Complexity = 1;
2644   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2645     Complexity = 4;
2646 
2647   if (AM.IndexReg.getNode())
2648     Complexity++;
2649 
2650   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
2651   // a simple shift.
2652   if (AM.Scale > 1)
2653     Complexity++;
2654 
2655   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
2656   // to a LEA. This is determined with some experimentation but is by no means
2657   // optimal (especially for code size consideration). LEA is nice because of
2658   // its three-address nature. Tweak the cost function again when we can run
2659   // convertToThreeAddress() at register allocation time.
2660   if (AM.hasSymbolicDisplacement()) {
2661     // For X86-64, always use LEA to materialize RIP-relative addresses.
2662     if (Subtarget->is64Bit())
2663       Complexity = 4;
2664     else
2665       Complexity += 2;
2666   }
2667 
2668   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
2669   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
2670   // duplicating flag-producing instructions later in the pipeline.
2671   if (N.getOpcode() == ISD::ADD) {
2672     auto isMathWithFlags = [](SDValue V) {
2673       switch (V.getOpcode()) {
2674       case X86ISD::ADD:
2675       case X86ISD::SUB:
2676       case X86ISD::ADC:
2677       case X86ISD::SBB:
2678       /* TODO: These opcodes can be added safely, but we may want to justify
2679                their inclusion for different reasons (better for reg-alloc).
2680       case X86ISD::SMUL:
2681       case X86ISD::UMUL:
2682       case X86ISD::OR:
2683       case X86ISD::XOR:
2684       case X86ISD::AND:
2685       */
2686         // Value 1 is the flag output of the node - verify it's not dead.
2687         return !SDValue(V.getNode(), 1).use_empty();
2688       default:
2689         return false;
2690       }
2691     };
2692     // TODO: This could be an 'or' rather than 'and' to make the transform more
2693     //       likely to happen. We might want to factor in whether there's a
2694     //       load folding opportunity for the math op that disappears with LEA.
2695     if (isMathWithFlags(N.getOperand(0)) && isMathWithFlags(N.getOperand(1)))
2696       Complexity++;
2697   }
2698 
2699   if (AM.Disp)
2700     Complexity++;
2701 
2702   // If it isn't worth using an LEA, reject it.
2703   if (Complexity <= 2)
2704     return false;
2705 
2706   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2707   return true;
2708 }
2709 
2710 /// This is only run on TargetGlobalTLSAddress nodes.
2711 bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
2712                                         SDValue &Scale, SDValue &Index,
2713                                         SDValue &Disp, SDValue &Segment) {
2714   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
2715   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
2716 
2717   X86ISelAddressMode AM;
2718   AM.GV = GA->getGlobal();
2719   AM.Disp += GA->getOffset();
2720   AM.SymbolFlags = GA->getTargetFlags();
2721 
2722   if (Subtarget->is32Bit()) {
2723     AM.Scale = 1;
2724     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
2725   }
2726 
2727   MVT VT = N.getSimpleValueType();
2728   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
2729   return true;
2730 }
2731 
2732 bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
2733   // Keep track of the original value type and whether this value was
2734   // truncated. If we see a truncation from pointer type to VT that truncates
2735   // bits that are known to be zero, we can use a narrow reference.
2736   EVT VT = N.getValueType();
2737   bool WasTruncated = false;
2738   if (N.getOpcode() == ISD::TRUNCATE) {
2739     WasTruncated = true;
2740     N = N.getOperand(0);
2741   }
2742 
2743   if (N.getOpcode() != X86ISD::Wrapper)
2744     return false;
2745 
2746   // We can only use non-GlobalValues as immediates if they were not truncated,
2747   // as we do not have any range information. If we have a GlobalValue and the
2748   // address was not truncated, we can select it as an operand directly.
2749   unsigned Opc = N.getOperand(0)->getOpcode();
2750   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
2751     Op = N.getOperand(0);
2752     // We can only select the operand directly if we didn't have to look past a
2753     // truncate.
2754     return !WasTruncated;
2755   }
2756 
2757   // Check that the global's range fits into VT.
2758   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
2759   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2760   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
2761     return false;
2762 
2763   // Okay, we can use a narrow reference.
2764   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
2765                                       GA->getOffset(), GA->getTargetFlags());
2766   return true;
2767 }
2768 
2769 bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
2770                                   SDValue &Base, SDValue &Scale,
2771                                   SDValue &Index, SDValue &Disp,
2772                                   SDValue &Segment) {
2773   assert(Root && P && "Unknown root/parent nodes");
2774   if (!ISD::isNON_EXTLoad(N.getNode()) ||
2775       !IsProfitableToFold(N, P, Root) ||
2776       !IsLegalToFold(N, P, Root, OptLevel))
2777     return false;
2778 
2779   return selectAddr(N.getNode(),
2780                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2781 }
2782 
2783 bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
2784                                        SDValue &Base, SDValue &Scale,
2785                                        SDValue &Index, SDValue &Disp,
2786                                        SDValue &Segment) {
2787   assert(Root && P && "Unknown root/parent nodes");
2788   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
2789       !IsProfitableToFold(N, P, Root) ||
2790       !IsLegalToFold(N, P, Root, OptLevel))
2791     return false;
2792 
2793   return selectAddr(N.getNode(),
2794                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
2795 }
2796 
2797 /// Return an SDNode that returns the value of the global base register.
2798 /// Output instructions required to initialize the global base register,
2799 /// if necessary.
2800 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
2801   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
2802   auto &DL = MF->getDataLayout();
2803   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
2804 }
2805 
2806 bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
2807   if (N->getOpcode() == ISD::TRUNCATE)
2808     N = N->getOperand(0).getNode();
2809   if (N->getOpcode() != X86ISD::Wrapper)
2810     return false;
2811 
2812   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
2813   if (!GA)
2814     return false;
2815 
2816   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
2817   if (!CR)
2818     return Width == 32 && TM.getCodeModel() == CodeModel::Small;
2819 
2820   return CR->getSignedMin().sge(-1ull << Width) &&
2821          CR->getSignedMax().slt(1ull << Width);
2822 }
2823 
2824 static X86::CondCode getCondFromNode(SDNode *N) {
2825   assert(N->isMachineOpcode() && "Unexpected node");
2826   X86::CondCode CC = X86::COND_INVALID;
2827   unsigned Opc = N->getMachineOpcode();
2828   if (Opc == X86::JCC_1)
2829     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
2830   else if (Opc == X86::SETCCr)
2831     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
2832   else if (Opc == X86::SETCCm)
2833     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
2834   else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
2835            Opc == X86::CMOV64rr)
2836     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
2837   else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
2838            Opc == X86::CMOV64rm)
2839     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));
2840 
2841   return CC;
2842 }
2843 
2844 /// Test whether the given X86ISD::CMP node has any users that use a flag
2845 /// other than ZF.
2846 bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
2847   // Examine each user of the node.
2848   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2849          UI != UE; ++UI) {
2850     // Only check things that use the flags.
2851     if (UI.getUse().getResNo() != Flags.getResNo())
2852       continue;
2853     // Only examine CopyToReg uses that copy to EFLAGS.
2854     if (UI->getOpcode() != ISD::CopyToReg ||
2855         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2856       return false;
2857     // Examine each user of the CopyToReg use.
2858     for (SDNode::use_iterator FlagUI = UI->use_begin(),
2859            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2860       // Only examine the Flag result.
2861       if (FlagUI.getUse().getResNo() != 1) continue;
2862       // Anything unusual: assume conservatively.
2863       if (!FlagUI->isMachineOpcode()) return false;
2864       // Examine the condition code of the user.
2865       X86::CondCode CC = getCondFromNode(*FlagUI);
2866 
2867       switch (CC) {
2868       // Comparisons which only use the zero flag.
2869       case X86::COND_E: case X86::COND_NE:
2870         continue;
2871       // Anything else: assume conservatively.
2872       default:
2873         return false;
2874       }
2875     }
2876   }
2877   return true;
2878 }
2879 
2880 /// Test whether the given X86ISD::CMP node has any uses which require the SF
2881 /// flag to be accurate.
2882 bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
2883   // Examine each user of the node.
2884   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2885          UI != UE; ++UI) {
2886     // Only check things that use the flags.
2887     if (UI.getUse().getResNo() != Flags.getResNo())
2888       continue;
2889     // Only examine CopyToReg uses that copy to EFLAGS.
2890     if (UI->getOpcode() != ISD::CopyToReg ||
2891         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2892       return false;
2893     // Examine each user of the CopyToReg use.
2894     for (SDNode::use_iterator FlagUI = UI->use_begin(),
2895            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
2896       // Only examine the Flag result.
2897       if (FlagUI.getUse().getResNo() != 1) continue;
2898       // Anything unusual: assume conservatively.
2899       if (!FlagUI->isMachineOpcode()) return false;
2900       // Examine the condition code of the user.
2901       X86::CondCode CC = getCondFromNode(*FlagUI);
2902 
2903       switch (CC) {
2904       // Comparisons which don't examine the SF flag.
2905       case X86::COND_A: case X86::COND_AE:
2906       case X86::COND_B: case X86::COND_BE:
2907       case X86::COND_E: case X86::COND_NE:
2908       case X86::COND_O: case X86::COND_NO:
2909       case X86::COND_P: case X86::COND_NP:
2910         continue;
2911       // Anything else: assume conservatively.
2912       default:
2913         return false;
2914       }
2915     }
2916   }
2917   return true;
2918 }
2919 
2920 static bool mayUseCarryFlag(X86::CondCode CC) {
2921   switch (CC) {
2922   // Comparisons which don't examine the CF flag.
2923   case X86::COND_O: case X86::COND_NO:
2924   case X86::COND_E: case X86::COND_NE:
2925   case X86::COND_S: case X86::COND_NS:
2926   case X86::COND_P: case X86::COND_NP:
2927   case X86::COND_L: case X86::COND_GE:
2928   case X86::COND_G: case X86::COND_LE:
2929     return false;
2930   // Anything else: assume conservatively.
2931   default:
2932     return true;
2933   }
2934 }
2935 
2936 /// Test whether the given node which sets flags has any uses which require the
2937 /// CF flag to be accurate.
2938  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
2939   // Examine each user of the node.
2940   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
2941          UI != UE; ++UI) {
2942     // Only check things that use the flags.
2943     if (UI.getUse().getResNo() != Flags.getResNo())
2944       continue;
2945 
2946     unsigned UIOpc = UI->getOpcode();
2947 
2948     if (UIOpc == ISD::CopyToReg) {
2949       // Only examine CopyToReg uses that copy to EFLAGS.
2950       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
2951         return false;
2952       // Examine each user of the CopyToReg use.
2953       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
2954            FlagUI != FlagUE; ++FlagUI) {
2955         // Only examine the Flag result.
2956         if (FlagUI.getUse().getResNo() != 1)
2957           continue;
2958         // Anything unusual: assume conservatively.
2959         if (!FlagUI->isMachineOpcode())
2960           return false;
2961         // Examine the condition code of the user.
2962         X86::CondCode CC = getCondFromNode(*FlagUI);
2963 
2964         if (mayUseCarryFlag(CC))
2965           return false;
2966       }
2967 
2968       // This CopyToReg is ok. Move on to the next user.
2969       continue;
2970     }
2971 
2972     // This might be an unselected node. So look for the pre-isel opcodes that
2973     // use flags.
2974     unsigned CCOpNo;
2975     switch (UIOpc) {
2976     default:
2977       // Something unusual. Be conservative.
2978       return false;
2979     case X86ISD::SETCC:       CCOpNo = 0; break;
2980     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
2981     case X86ISD::CMOV:        CCOpNo = 2; break;
2982     case X86ISD::BRCOND:      CCOpNo = 2; break;
2983     }
2984 
2985     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
2986     if (mayUseCarryFlag(CC))
2987       return false;
2988   }
2989   return true;
2990 }
2991 
2992 /// Check whether or not the chain ending in StoreNode is suitable for doing
2993 /// the {load; op; store} to modify transformation.
2994 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
2995                                         SDValue StoredVal, SelectionDAG *CurDAG,
2996                                         unsigned LoadOpNo,
2997                                         LoadSDNode *&LoadNode,
2998                                         SDValue &InputChain) {
2999   // Is the stored value result 0 of the operation?
3000   if (StoredVal.getResNo() != 0) return false;
3001 
3002   // Are there other uses of the operation other than the store?
3003   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
3004 
3005   // Is the store non-extending and non-indexed?
3006   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
3007     return false;
3008 
3009   SDValue Load = StoredVal->getOperand(LoadOpNo);
3010   // Is the stored value a non-extending and non-indexed load?
3011   if (!ISD::isNormalLoad(Load.getNode())) return false;
3012 
3013   // Return LoadNode by reference.
3014   LoadNode = cast<LoadSDNode>(Load);
3015 
3016   // Is store the only read of the loaded value?
3017   if (!Load.hasOneUse())
3018     return false;
3019 
3020   // Is the address of the store the same as the load?
3021   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3022       LoadNode->getOffset() != StoreNode->getOffset())
3023     return false;
3024 
3025   bool FoundLoad = false;
3026   SmallVector<SDValue, 4> ChainOps;
3027   SmallVector<const SDNode *, 4> LoopWorklist;
3028   SmallPtrSet<const SDNode *, 16> Visited;
3029   const unsigned int Max = 1024;
3030 
3031   //  Visualization of Load-Op-Store fusion:
3032   // -------------------------
3033   // Legend:
3034   //    *-lines = Chain operand dependencies.
3035   //    |-lines = Normal operand dependencies.
3036   //    Dependencies flow down and right. n-suffix references multiple nodes.
3037   //
3038   //        C                        Xn  C
3039   //        *                         *  *
3040   //        *                          * *
3041   //  Xn  A-LD    Yn                    TF         Yn
3042   //   *    * \   |                       *        |
3043   //    *   *  \  |                        *       |
3044   //     *  *   \ |             =>       A--LD_OP_ST
3045   //      * *    \|                                 \
3046   //       TF    OP                                  \
3047   //         *   | \                                  Zn
3048   //          *  |  \
3049   //         A-ST    Zn
3050   //
3051 
3052   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3053   //                                      #2: Yn -> LD
3054   //                                      #3: ST -> Zn
3055 
3056   // Ensure the transform is safe by checking for the dual
3057   // dependencies to make sure we do not induce a loop.
3058 
3059   // As LD is a predecessor to both OP and ST we can do this by checking:
3060   //  a). if LD is a predecessor to a member of Xn or Yn.
3061   //  b). if a Zn is a predecessor to ST.
3062 
3063   // However, (b) can only occur through being a chain predecessor to
3064   // ST, which is the same as Zn being a member or predecessor of Xn,
3065   // which is a subset of LD being a predecessor of Xn. So it's
3066   // subsumed by check (a).
3067 
3068   SDValue Chain = StoreNode->getChain();
3069 
3070   // Gather X elements in ChainOps.
3071   if (Chain == Load.getValue(1)) {
3072     FoundLoad = true;
3073     ChainOps.push_back(Load.getOperand(0));
3074   } else if (Chain.getOpcode() == ISD::TokenFactor) {
3075     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3076       SDValue Op = Chain.getOperand(i);
3077       if (Op == Load.getValue(1)) {
3078         FoundLoad = true;
3079         // Drop Load, but keep its chain. No cycle check necessary.
3080         ChainOps.push_back(Load.getOperand(0));
3081         continue;
3082       }
3083       LoopWorklist.push_back(Op.getNode());
3084       ChainOps.push_back(Op);
3085     }
3086   }
3087 
3088   if (!FoundLoad)
3089     return false;
3090 
3091   // Worklist is currently Xn. Add Yn to worklist.
3092   for (SDValue Op : StoredVal->ops())
3093     if (Op.getNode() != LoadNode)
3094       LoopWorklist.push_back(Op.getNode());
3095 
3096   // Check (a) if Load is a predecessor to Xn + Yn
3097   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
3098                                    true))
3099     return false;
3100 
3101   InputChain =
3102       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3103   return true;
3104 }
3105 
3106 // Change a chain of {load; op; store} of the same value into a simple op
3107 // through memory of that value, if the uses of the modified value and its
3108 // address are suitable.
3109 //
3110 // The tablegen pattern memory operand pattern is currently not able to match
3111 // the case where the EFLAGS on the original operation are used.
3112 //
3113 // To move this to tablegen, we'll need to improve tablegen to allow flags to
3114 // be transferred from a node in the pattern to the result node, probably with
3115 // a new keyword. For example, we have this
3116 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3117 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3118 //   (implicit EFLAGS)]>;
3119 // but maybe need something like this
3120 // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3121 //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3122 //   (transferrable EFLAGS)]>;
3123 //
3124 // Until then, we manually fold these and instruction select the operation
3125 // here.
3126 bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3127   StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
3128   SDValue StoredVal = StoreNode->getOperand(1);
3129   unsigned Opc = StoredVal->getOpcode();
3130 
3131   // Before we try to select anything, make sure this is memory operand size
3132   // and opcode we can handle. Note that this must match the code below that
3133   // actually lowers the opcodes.
3134   EVT MemVT = StoreNode->getMemoryVT();
3135   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3136       MemVT != MVT::i8)
3137     return false;
3138 
3139   bool IsCommutable = false;
3140   bool IsNegate = false;
3141   switch (Opc) {
3142   default:
3143     return false;
3144   case X86ISD::SUB:
3145     IsNegate = isNullConstant(StoredVal.getOperand(0));
3146     break;
3147   case X86ISD::SBB:
3148     break;
3149   case X86ISD::ADD:
3150   case X86ISD::ADC:
3151   case X86ISD::AND:
3152   case X86ISD::OR:
3153   case X86ISD::XOR:
3154     IsCommutable = true;
3155     break;
3156   }
3157 
3158   unsigned LoadOpNo = IsNegate ? 1 : 0;
3159   LoadSDNode *LoadNode = nullptr;
3160   SDValue InputChain;
3161   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3162                                    LoadNode, InputChain)) {
3163     if (!IsCommutable)
3164       return false;
3165 
3166     // This operation is commutable, try the other operand.
3167     LoadOpNo = 1;
3168     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3169                                      LoadNode, InputChain))
3170       return false;
3171   }
3172 
3173   SDValue Base, Scale, Index, Disp, Segment;
3174   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3175                   Segment))
3176     return false;
3177 
3178   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3179                           unsigned Opc8) {
3180     switch (MemVT.getSimpleVT().SimpleTy) {
3181     case MVT::i64:
3182       return Opc64;
3183     case MVT::i32:
3184       return Opc32;
3185     case MVT::i16:
3186       return Opc16;
3187     case MVT::i8:
3188       return Opc8;
3189     default:
3190       llvm_unreachable("Invalid size!");
3191     }
3192   };
3193 
3194   MachineSDNode *Result;
3195   switch (Opc) {
3196   case X86ISD::SUB:
3197     // Handle negate.
3198     if (IsNegate) {
3199       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3200                                      X86::NEG8m);
3201       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3202       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3203                                       MVT::Other, Ops);
3204       break;
3205     }
3206    LLVM_FALLTHROUGH;
3207   case X86ISD::ADD:
3208     // Try to match inc/dec.
3209     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3210       bool IsOne = isOneConstant(StoredVal.getOperand(1));
3211       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
3212       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3213       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
3214         unsigned NewOpc =
3215           ((Opc == X86ISD::ADD) == IsOne)
3216               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3217               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3218         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3219         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3220                                         MVT::Other, Ops);
3221         break;
3222       }
3223     }
3224     LLVM_FALLTHROUGH;
3225   case X86ISD::ADC:
3226   case X86ISD::SBB:
3227   case X86ISD::AND:
3228   case X86ISD::OR:
3229   case X86ISD::XOR: {
3230     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3231       switch (Opc) {
3232       case X86ISD::ADD:
3233         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3234                             X86::ADD8mr);
3235       case X86ISD::ADC:
3236         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3237                             X86::ADC8mr);
3238       case X86ISD::SUB:
3239         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3240                             X86::SUB8mr);
3241       case X86ISD::SBB:
3242         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3243                             X86::SBB8mr);
3244       case X86ISD::AND:
3245         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3246                             X86::AND8mr);
3247       case X86ISD::OR:
3248         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3249       case X86ISD::XOR:
3250         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3251                             X86::XOR8mr);
3252       default:
3253         llvm_unreachable("Invalid opcode!");
3254       }
3255     };
3256     auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
3257       switch (Opc) {
3258       case X86ISD::ADD:
3259         return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
3260       case X86ISD::ADC:
3261         return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
3262       case X86ISD::SUB:
3263         return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
3264       case X86ISD::SBB:
3265         return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
3266       case X86ISD::AND:
3267         return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
3268       case X86ISD::OR:
3269         return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
3270       case X86ISD::XOR:
3271         return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
3272       default:
3273         llvm_unreachable("Invalid opcode!");
3274       }
3275     };
3276     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3277       switch (Opc) {
3278       case X86ISD::ADD:
3279         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3280                             X86::ADD8mi);
3281       case X86ISD::ADC:
3282         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3283                             X86::ADC8mi);
3284       case X86ISD::SUB:
3285         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3286                             X86::SUB8mi);
3287       case X86ISD::SBB:
3288         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3289                             X86::SBB8mi);
3290       case X86ISD::AND:
3291         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3292                             X86::AND8mi);
3293       case X86ISD::OR:
3294         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3295                             X86::OR8mi);
3296       case X86ISD::XOR:
3297         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3298                             X86::XOR8mi);
3299       default:
3300         llvm_unreachable("Invalid opcode!");
3301       }
3302     };
3303 
3304     unsigned NewOpc = SelectRegOpcode(Opc);
3305     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
3306 
3307     // See if the operand is a constant that we can fold into an immediate
3308     // operand.
3309     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
3310       int64_t OperandV = OperandC->getSExtValue();
3311 
3312       // Check if we can shrink the operand enough to fit in an immediate (or
3313       // fit into a smaller immediate) by negating it and switching the
3314       // operation.
3315       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3316           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3317            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3318             isInt<32>(-OperandV))) &&
3319           hasNoCarryFlagUses(StoredVal.getValue(1))) {
3320         OperandV = -OperandV;
3321         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3322       }
3323 
3324       // First try to fit this into an Imm8 operand. If it doesn't fit, then try
3325       // the larger immediate operand.
3326       if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
3327         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3328         NewOpc = SelectImm8Opcode(Opc);
3329       } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3330         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
3331         NewOpc = SelectImmOpcode(Opc);
3332       }
3333     }
3334 
3335     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3336       SDValue CopyTo =
3337           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3338                                StoredVal.getOperand(2), SDValue());
3339 
3340       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
3341                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
3342       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3343                                       Ops);
3344     } else {
3345       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
3346                              Segment, Operand, InputChain};
3347       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3348                                       Ops);
3349     }
3350     break;
3351   }
3352   default:
3353     llvm_unreachable("Invalid opcode!");
3354   }
3355 
3356   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3357                                  LoadNode->getMemOperand()};
3358   CurDAG->setNodeMemRefs(Result, MemOps);
3359 
3360   // Update Load Chain uses as well.
3361   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
3362   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
3363   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
3364   CurDAG->RemoveDeadNode(Node);
3365   return true;
3366 }
3367 
3368 // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
3369 // Where Mask is one of the following patterns:
3370 //   a) x &  (1 << nbits) - 1
3371 //   b) x & ~(-1 << nbits)
3372 //   c) x &  (-1 >> (32 - y))
3373 //   d) x << (32 - y) >> (32 - y)
3374 bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3375   assert(
3376       (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
3377       "Should be either an and-mask, or right-shift after clearing high bits.");
3378 
3379   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3380   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3381     return false;
3382 
3383   MVT NVT = Node->getSimpleValueType(0);
3384 
3385   // Only supported for 32 and 64 bits.
3386   if (NVT != MVT::i32 && NVT != MVT::i64)
3387     return false;
3388 
3389   SDValue NBits;
3390 
3391   // If we have BMI2's BZHI, we are ok with muti-use patterns.
3392   // Else, if we only have BMI1's BEXTR, we require one-use.
3393   const bool CanHaveExtraUses = Subtarget->hasBMI2();
3394   auto checkUses = [CanHaveExtraUses](SDValue Op, unsigned NUses) {
3395     return CanHaveExtraUses ||
3396            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3397   };
3398   auto checkOneUse = [checkUses](SDValue Op) { return checkUses(Op, 1); };
3399   auto checkTwoUse = [checkUses](SDValue Op) { return checkUses(Op, 2); };
3400 
3401   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3402     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3403       assert(V.getSimpleValueType() == MVT::i32 &&
3404              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3405              "Expected i64 -> i32 truncation");
3406       V = V.getOperand(0);
3407     }
3408     return V;
3409   };
3410 
3411   // a) x & ((1 << nbits) + (-1))
3412   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation,
3413                         &NBits](SDValue Mask) -> bool {
3414     // Match `add`. Must only have one use!
3415     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3416       return false;
3417     // We should be adding all-ones constant (i.e. subtracting one.)
3418     if (!isAllOnesConstant(Mask->getOperand(1)))
3419       return false;
3420     // Match `1 << nbits`. Might be truncated. Must only have one use!
3421     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3422     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3423       return false;
3424     if (!isOneConstant(M0->getOperand(0)))
3425       return false;
3426     NBits = M0->getOperand(1);
3427     return true;
3428   };
3429 
3430   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3431     V = peekThroughOneUseTruncation(V);
3432     return CurDAG->MaskedValueIsAllOnes(
3433         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
3434                                 NVT.getSizeInBits()));
3435   };
3436 
3437   // b) x & ~(-1 << nbits)
3438   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3439                         &NBits](SDValue Mask) -> bool {
3440     // Match `~()`. Must only have one use!
3441     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3442       return false;
3443     // The -1 only has to be all-ones for the final Node's NVT.
3444     if (!isAllOnes(Mask->getOperand(1)))
3445       return false;
3446     // Match `-1 << nbits`. Might be truncated. Must only have one use!
3447     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
3448     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3449       return false;
3450     // The -1 only has to be all-ones for the final Node's NVT.
3451     if (!isAllOnes(M0->getOperand(0)))
3452       return false;
3453     NBits = M0->getOperand(1);
3454     return true;
3455   };
3456 
3457   // Match potentially-truncated (bitwidth - y)
3458   auto matchShiftAmt = [checkOneUse, &NBits](SDValue ShiftAmt,
3459                                              unsigned Bitwidth) {
3460     // Skip over a truncate of the shift amount.
3461     if (ShiftAmt.getOpcode() == ISD::TRUNCATE) {
3462       ShiftAmt = ShiftAmt.getOperand(0);
3463       // The trunc should have been the only user of the real shift amount.
3464       if (!checkOneUse(ShiftAmt))
3465         return false;
3466     }
3467     // Match the shift amount as: (bitwidth - y). It should go away, too.
3468     if (ShiftAmt.getOpcode() != ISD::SUB)
3469       return false;
3470     auto *V0 = dyn_cast<ConstantSDNode>(ShiftAmt.getOperand(0));
3471     if (!V0 || V0->getZExtValue() != Bitwidth)
3472       return false;
3473     NBits = ShiftAmt.getOperand(1);
3474     return true;
3475   };
3476 
3477   // c) x &  (-1 >> (32 - y))
3478   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation,
3479                         matchShiftAmt](SDValue Mask) -> bool {
3480     // The mask itself may be truncated.
3481     Mask = peekThroughOneUseTruncation(Mask);
3482     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3483     // Match `l>>`. Must only have one use!
3484     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3485       return false;
3486     // We should be shifting truly all-ones constant.
3487     if (!isAllOnesConstant(Mask.getOperand(0)))
3488       return false;
3489     SDValue M1 = Mask.getOperand(1);
3490     // The shift amount should not be used externally.
3491     if (!checkOneUse(M1))
3492       return false;
3493     return matchShiftAmt(M1, Bitwidth);
3494   };
3495 
3496   SDValue X;
3497 
3498   // d) x << (32 - y) >> (32 - y)
3499   auto matchPatternD = [checkOneUse, checkTwoUse, matchShiftAmt,
3500                         &X](SDNode *Node) -> bool {
3501     if (Node->getOpcode() != ISD::SRL)
3502       return false;
3503     SDValue N0 = Node->getOperand(0);
3504     if (N0->getOpcode() != ISD::SHL || !checkOneUse(N0))
3505       return false;
3506     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3507     SDValue N1 = Node->getOperand(1);
3508     SDValue N01 = N0->getOperand(1);
3509     // Both of the shifts must be by the exact same value.
3510     // There should not be any uses of the shift amount outside of the pattern.
3511     if (N1 != N01 || !checkTwoUse(N1))
3512       return false;
3513     if (!matchShiftAmt(N1, Bitwidth))
3514       return false;
3515     X = N0->getOperand(0);
3516     return true;
3517   };
3518 
3519   auto matchLowBitMask = [matchPatternA, matchPatternB,
3520                           matchPatternC](SDValue Mask) -> bool {
3521     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3522   };
3523 
3524   if (Node->getOpcode() == ISD::AND) {
3525     X = Node->getOperand(0);
3526     SDValue Mask = Node->getOperand(1);
3527 
3528     if (matchLowBitMask(Mask)) {
3529       // Great.
3530     } else {
3531       std::swap(X, Mask);
3532       if (!matchLowBitMask(Mask))
3533         return false;
3534     }
3535   } else if (!matchPatternD(Node))
3536     return false;
3537 
3538   SDLoc DL(Node);
3539 
3540   // Truncate the shift amount.
3541   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3542   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3543 
3544   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3545   // All the other bits are undefined, we do not care about them.
3546   SDValue ImplDef = SDValue(
3547       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3548   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
3549 
3550   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3551   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
3552   NBits = SDValue(
3553       CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::i32, ImplDef,
3554                              NBits, SRIdxVal), 0);
3555   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3556 
3557   if (Subtarget->hasBMI2()) {
3558     // Great, just emit the the BZHI..
3559     if (NVT != MVT::i32) {
3560       // But have to place the bit count into the wide-enough register first.
3561       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
3562       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
3563     }
3564 
3565     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
3566     ReplaceNode(Node, Extract.getNode());
3567     SelectCode(Extract.getNode());
3568     return true;
3569   }
3570 
3571   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3572   // *logically* shifted (potentially with one-use trunc inbetween),
3573   // and the truncation was the only use of the shift,
3574   // and if so look past one-use truncation.
3575   {
3576     SDValue RealX = peekThroughOneUseTruncation(X);
3577     // FIXME: only if the shift is one-use?
3578     if (RealX != X && RealX.getOpcode() == ISD::SRL)
3579       X = RealX;
3580   }
3581 
3582   MVT XVT = X.getSimpleValueType();
3583 
3584   // Else, emitting BEXTR requires one more step.
3585   // The 'control' of BEXTR has the pattern of:
3586   // [15...8 bit][ 7...0 bit] location
3587   // [ bit count][     shift] name
3588   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3589 
3590   // Shift NBits left by 8 bits, thus producing 'control'.
3591   // This makes the low 8 bits to be zero.
3592   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3593   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
3594   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3595   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3596 
3597   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3598   // FIXME: only if the shift is one-use?
3599   if (X.getOpcode() == ISD::SRL) {
3600     SDValue ShiftAmt = X.getOperand(1);
3601     X = X.getOperand(0);
3602 
3603     assert(ShiftAmt.getValueType() == MVT::i8 &&
3604            "Expected shift amount to be i8");
3605 
3606     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
3607     // We could zext to i16 in some form, but we intentionally don't do that.
3608     SDValue OrigShiftAmt = ShiftAmt;
3609     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
3610     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
3611 
3612     // And now 'or' these low 8 bits of shift amount into the 'control'.
3613     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
3614     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3615   }
3616 
3617   // But have to place the 'control' into the wide-enough register first.
3618   if (XVT != MVT::i32) {
3619     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
3620     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
3621   }
3622 
3623   // And finally, form the BEXTR itself.
3624   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
3625 
3626   // The 'X' was originally truncated. Do that now.
3627   if (XVT != NVT) {
3628     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
3629     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
3630   }
3631 
3632   ReplaceNode(Node, Extract.getNode());
3633   SelectCode(Extract.getNode());
3634 
3635   return true;
3636 }
3637 
3638 // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
3639 MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
3640   MVT NVT = Node->getSimpleValueType(0);
3641   SDLoc dl(Node);
3642 
3643   SDValue N0 = Node->getOperand(0);
3644   SDValue N1 = Node->getOperand(1);
3645 
3646   // If we have TBM we can use an immediate for the control. If we have BMI
3647   // we should only do this if the BEXTR instruction is implemented well.
3648   // Otherwise moving the control into a register makes this more costly.
3649   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
3650   // hoisting the move immediate would make it worthwhile with a less optimal
3651   // BEXTR?
3652   bool PreferBEXTR =
3653       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
3654   if (!PreferBEXTR && !Subtarget->hasBMI2())
3655     return nullptr;
3656 
3657   // Must have a shift right.
3658   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
3659     return nullptr;
3660 
3661   // Shift can't have additional users.
3662   if (!N0->hasOneUse())
3663     return nullptr;
3664 
3665   // Only supported for 32 and 64 bits.
3666   if (NVT != MVT::i32 && NVT != MVT::i64)
3667     return nullptr;
3668 
3669   // Shift amount and RHS of and must be constant.
3670   ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
3671   ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
3672   if (!MaskCst || !ShiftCst)
3673     return nullptr;
3674 
3675   // And RHS must be a mask.
3676   uint64_t Mask = MaskCst->getZExtValue();
3677   if (!isMask_64(Mask))
3678     return nullptr;
3679 
3680   uint64_t Shift = ShiftCst->getZExtValue();
3681   uint64_t MaskSize = countPopulation(Mask);
3682 
3683   // Don't interfere with something that can be handled by extracting AH.
3684   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
3685   if (Shift == 8 && MaskSize == 8)
3686     return nullptr;
3687 
3688   // Make sure we are only using bits that were in the original value, not
3689   // shifted in.
3690   if (Shift + MaskSize > NVT.getSizeInBits())
3691     return nullptr;
3692 
3693   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
3694   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
3695   // does not fit into 32 bits. Load folding is not a sufficient reason.
3696   if (!PreferBEXTR && MaskSize <= 32)
3697     return nullptr;
3698 
3699   SDValue Control;
3700   unsigned ROpc, MOpc;
3701 
3702   if (!PreferBEXTR) {
3703     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
3704     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
3705     // Let's perform the mask first, and apply shift later. Note that we need to
3706     // widen the mask to account for the fact that we'll apply shift afterwards!
3707     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
3708     ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
3709     MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
3710     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3711     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3712   } else {
3713     // The 'control' of BEXTR has the pattern of:
3714     // [15...8 bit][ 7...0 bit] location
3715     // [ bit count][     shift] name
3716     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
3717     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
3718     if (Subtarget->hasTBM()) {
3719       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
3720       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
3721     } else {
3722       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
3723       // BMI requires the immediate to placed in a register.
3724       ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
3725       MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
3726       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
3727       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
3728     }
3729   }
3730 
3731   MachineSDNode *NewNode;
3732   SDValue Input = N0->getOperand(0);
3733   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3734   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3735     SDValue Ops[] = {
3736         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
3737     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
3738     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3739     // Update the chain.
3740     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
3741     // Record the mem-refs
3742     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
3743   } else {
3744     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
3745   }
3746 
3747   if (!PreferBEXTR) {
3748     // We still need to apply the shift.
3749     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
3750     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
3751     NewNode =
3752         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
3753   }
3754 
3755   return NewNode;
3756 }
3757 
3758 // Emit a PCMISTR(I/M) instruction.
3759 MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
3760                                              bool MayFoldLoad, const SDLoc &dl,
3761                                              MVT VT, SDNode *Node) {
3762   SDValue N0 = Node->getOperand(0);
3763   SDValue N1 = Node->getOperand(1);
3764   SDValue Imm = Node->getOperand(2);
3765   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3766   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3767 
3768   // Try to fold a load. No need to check alignment.
3769   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3770   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3771     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3772                       N1.getOperand(0) };
3773     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
3774     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3775     // Update the chain.
3776     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
3777     // Record the mem-refs
3778     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
3779     return CNode;
3780   }
3781 
3782   SDValue Ops[] = { N0, N1, Imm };
3783   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
3784   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3785   return CNode;
3786 }
3787 
3788 // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
3789 // to emit a second instruction after this one. This is needed since we have two
3790 // copyToReg nodes glued before this and we need to continue that glue through.
3791 MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
3792                                              bool MayFoldLoad, const SDLoc &dl,
3793                                              MVT VT, SDNode *Node,
3794                                              SDValue &InFlag) {
3795   SDValue N0 = Node->getOperand(0);
3796   SDValue N2 = Node->getOperand(2);
3797   SDValue Imm = Node->getOperand(4);
3798   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
3799   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
3800 
3801   // Try to fold a load. No need to check alignment.
3802   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
3803   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
3804     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
3805                       N2.getOperand(0), InFlag };
3806     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
3807     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
3808     InFlag = SDValue(CNode, 3);
3809     // Update the chain.
3810     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
3811     // Record the mem-refs
3812     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
3813     return CNode;
3814   }
3815 
3816   SDValue Ops[] = { N0, N2, Imm, InFlag };
3817   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
3818   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
3819   InFlag = SDValue(CNode, 2);
3820   return CNode;
3821 }
3822 
3823 bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3824   EVT VT = N->getValueType(0);
3825 
3826   // Only handle scalar shifts.
3827   if (VT.isVector())
3828     return false;
3829 
3830   // Narrower shifts only mask to 5 bits in hardware.
3831   unsigned Size = VT == MVT::i64 ? 64 : 32;
3832 
3833   SDValue OrigShiftAmt = N->getOperand(1);
3834   SDValue ShiftAmt = OrigShiftAmt;
3835   SDLoc DL(N);
3836 
3837   // Skip over a truncate of the shift amount.
3838   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
3839     ShiftAmt = ShiftAmt->getOperand(0);
3840 
3841   // This function is called after X86DAGToDAGISel::matchBitExtract(),
3842   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
3843 
3844   SDValue NewShiftAmt;
3845   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3846     SDValue Add0 = ShiftAmt->getOperand(0);
3847     SDValue Add1 = ShiftAmt->getOperand(1);
3848     auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
3849     auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
3850     // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3851     // to avoid the ADD/SUB.
3852     if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
3853       NewShiftAmt = Add0;
3854       // If we are shifting by N-X where N == 0 mod Size, then just shift by -X
3855       // to generate a NEG instead of a SUB of a constant.
3856     } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
3857                Add0C->getZExtValue() != 0) {
3858       EVT SubVT = ShiftAmt.getValueType();
3859       SDValue X;
3860       if (Add0C->getZExtValue() % Size == 0)
3861         X = Add1;
3862       else if (ShiftAmt.hasOneUse() && Size == 64 &&
3863                Add0C->getZExtValue() % 32 == 0) {
3864         // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
3865         // This is mainly beneficial if we already compute (x+n*32).
3866         if (Add1.getOpcode() == ISD::TRUNCATE) {
3867           Add1 = Add1.getOperand(0);
3868           SubVT = Add1.getValueType();
3869         }
3870         if (Add0.getValueType() != SubVT) {
3871           Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
3872           insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
3873         }
3874 
3875         X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
3876         insertDAGNode(*CurDAG, OrigShiftAmt, X);
3877       } else
3878         return false;
3879       // Insert a negate op.
3880       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
3881       // that uses it that's not a shift.
3882       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
3883       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
3884       NewShiftAmt = Neg;
3885 
3886       // Insert these operands into a valid topological order so they can
3887       // get selected independently.
3888       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
3889       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
3890     } else
3891       return false;
3892   } else
3893     return false;
3894 
3895   if (NewShiftAmt.getValueType() != MVT::i8) {
3896     // Need to truncate the shift amount.
3897     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
3898     // Add to a correct topological ordering.
3899     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3900   }
3901 
3902   // Insert a new mask to keep the shift amount legal. This should be removed
3903   // by isel patterns.
3904   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
3905                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
3906   // Place in a correct topological ordering.
3907   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
3908 
3909   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
3910                                                    NewShiftAmt);
3911   if (UpdatedNode != N) {
3912     // If we found an existing node, we should replace ourselves with that node
3913     // and wait for it to be selected after its other users.
3914     ReplaceNode(N, UpdatedNode);
3915     return true;
3916   }
3917 
3918   // If the original shift amount is now dead, delete it so that we don't run
3919   // it through isel.
3920   if (OrigShiftAmt.getNode()->use_empty())
3921     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
3922 
3923   // Now that we've optimized the shift amount, defer to normal isel to get
3924   // load folding and legacy vs BMI2 selection without repeating it here.
3925   SelectCode(N);
3926   return true;
3927 }
3928 
3929 bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
3930   MVT NVT = N->getSimpleValueType(0);
3931   unsigned Opcode = N->getOpcode();
3932   SDLoc dl(N);
3933 
3934   // For operations of the form (x << C1) op C2, check if we can use a smaller
3935   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
3936   SDValue Shift = N->getOperand(0);
3937   SDValue N1 = N->getOperand(1);
3938 
3939   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
3940   if (!Cst)
3941     return false;
3942 
3943   int64_t Val = Cst->getSExtValue();
3944 
3945   // If we have an any_extend feeding the AND, look through it to see if there
3946   // is a shift behind it. But only if the AND doesn't use the extended bits.
3947   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
3948   bool FoundAnyExtend = false;
3949   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
3950       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
3951       isUInt<32>(Val)) {
3952     FoundAnyExtend = true;
3953     Shift = Shift.getOperand(0);
3954   }
3955 
3956   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
3957     return false;
3958 
3959   // i8 is unshrinkable, i16 should be promoted to i32.
3960   if (NVT != MVT::i32 && NVT != MVT::i64)
3961     return false;
3962 
3963   ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
3964   if (!ShlCst)
3965     return false;
3966 
3967   uint64_t ShAmt = ShlCst->getZExtValue();
3968 
3969   // Make sure that we don't change the operation by removing bits.
3970   // This only matters for OR and XOR, AND is unaffected.
3971   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
3972   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
3973     return false;
3974 
3975   // Check the minimum bitwidth for the new constant.
3976   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
3977   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
3978     if (Opcode == ISD::AND) {
3979       // AND32ri is the same as AND64ri32 with zext imm.
3980       // Try this before sign extended immediates below.
3981       ShiftedVal = (uint64_t)Val >> ShAmt;
3982       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3983         return true;
3984       // Also swap order when the AND can become MOVZX.
3985       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
3986         return true;
3987     }
3988     ShiftedVal = Val >> ShAmt;
3989     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
3990         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
3991       return true;
3992     if (Opcode != ISD::AND) {
3993       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
3994       ShiftedVal = (uint64_t)Val >> ShAmt;
3995       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
3996         return true;
3997     }
3998     return false;
3999   };
4000 
4001   int64_t ShiftedVal;
4002   if (!CanShrinkImmediate(ShiftedVal))
4003     return false;
4004 
4005   // Ok, we can reorder to get a smaller immediate.
4006 
4007   // But, its possible the original immediate allowed an AND to become MOVZX.
4008   // Doing this late due to avoid the MakedValueIsZero call as late as
4009   // possible.
4010   if (Opcode == ISD::AND) {
4011     // Find the smallest zext this could possibly be.
4012     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4013     ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
4014 
4015     // Figure out which bits need to be zero to achieve that mask.
4016     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
4017                                             ZExtWidth);
4018     NeededMask &= ~Cst->getAPIntValue();
4019 
4020     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
4021       return false;
4022   }
4023 
4024   SDValue X = Shift.getOperand(0);
4025   if (FoundAnyExtend) {
4026     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
4027     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
4028     X = NewX;
4029   }
4030 
4031   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
4032   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
4033   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
4034   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
4035   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
4036                                    Shift.getOperand(1));
4037   ReplaceNode(N, NewSHL.getNode());
4038   SelectCode(NewSHL.getNode());
4039   return true;
4040 }
4041 
4042 bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4043                                      SDNode *ParentBC, SDValue A, SDValue B,
4044                                      SDValue C, uint8_t Imm) {
4045   assert(A.isOperandOf(ParentA));
4046   assert(B.isOperandOf(ParentBC));
4047   assert(C.isOperandOf(ParentBC));
4048 
4049   auto tryFoldLoadOrBCast =
4050       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4051              SDValue &Index, SDValue &Disp, SDValue &Segment) {
4052         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4053           return true;
4054 
4055         // Not a load, check for broadcast which may be behind a bitcast.
4056         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4057           P = L.getNode();
4058           L = L.getOperand(0);
4059         }
4060 
4061         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4062           return false;
4063 
4064         // Only 32 and 64 bit broadcasts are supported.
4065         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4066         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4067         if (Size != 32 && Size != 64)
4068           return false;
4069 
4070         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4071       };
4072 
4073   bool FoldedLoad = false;
4074   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4075   if (tryFoldLoadOrBCast(Root, ParentBC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4076     FoldedLoad = true;
4077   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4078                                 Tmp4)) {
4079     FoldedLoad = true;
4080     std::swap(A, C);
4081     // Swap bits 1/4 and 3/6.
4082     uint8_t OldImm = Imm;
4083     Imm = OldImm & 0xa5;
4084     if (OldImm & 0x02) Imm |= 0x10;
4085     if (OldImm & 0x10) Imm |= 0x02;
4086     if (OldImm & 0x08) Imm |= 0x40;
4087     if (OldImm & 0x40) Imm |= 0x08;
4088   } else if (tryFoldLoadOrBCast(Root, ParentBC, B, Tmp0, Tmp1, Tmp2, Tmp3,
4089                                 Tmp4)) {
4090     FoldedLoad = true;
4091     std::swap(B, C);
4092     // Swap bits 1/2 and 5/6.
4093     uint8_t OldImm = Imm;
4094     Imm = OldImm & 0x99;
4095     if (OldImm & 0x02) Imm |= 0x04;
4096     if (OldImm & 0x04) Imm |= 0x02;
4097     if (OldImm & 0x20) Imm |= 0x40;
4098     if (OldImm & 0x40) Imm |= 0x20;
4099   }
4100 
4101   SDLoc DL(Root);
4102 
4103   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4104 
4105   MVT NVT = Root->getSimpleValueType(0);
4106 
4107   MachineSDNode *MNode;
4108   if (FoldedLoad) {
4109     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4110 
4111     unsigned Opc;
4112     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4113       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
4114       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4115       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4116 
4117       bool UseD = EltSize == 32;
4118       if (NVT.is128BitVector())
4119         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4120       else if (NVT.is256BitVector())
4121         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4122       else if (NVT.is512BitVector())
4123         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4124       else
4125         llvm_unreachable("Unexpected vector size!");
4126     } else {
4127       bool UseD = NVT.getVectorElementType() == MVT::i32;
4128       if (NVT.is128BitVector())
4129         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4130       else if (NVT.is256BitVector())
4131         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4132       else if (NVT.is512BitVector())
4133         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4134       else
4135         llvm_unreachable("Unexpected vector size!");
4136     }
4137 
4138     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
4139     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
4140 
4141     // Update the chain.
4142     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
4143     // Record the mem-refs
4144     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
4145   } else {
4146     bool UseD = NVT.getVectorElementType() == MVT::i32;
4147     unsigned Opc;
4148     if (NVT.is128BitVector())
4149       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4150     else if (NVT.is256BitVector())
4151       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4152     else if (NVT.is512BitVector())
4153       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4154     else
4155       llvm_unreachable("Unexpected vector size!");
4156 
4157     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
4158   }
4159 
4160   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
4161   CurDAG->RemoveDeadNode(Root);
4162   return true;
4163 }
4164 
4165 // Try to match two logic ops to a VPTERNLOG.
4166 // FIXME: Handle inverted inputs?
4167 // FIXME: Handle more complex patterns that use an operand more than once?
4168 bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4169   MVT NVT = N->getSimpleValueType(0);
4170 
4171   // Make sure we support VPTERNLOG.
4172   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4173       NVT.getVectorElementType() == MVT::i1)
4174     return false;
4175 
4176   // We need VLX for 128/256-bit.
4177   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4178     return false;
4179 
4180   SDValue N0 = N->getOperand(0);
4181   SDValue N1 = N->getOperand(1);
4182 
4183   auto getFoldableLogicOp = [](SDValue Op) {
4184     // Peek through single use bitcast.
4185     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4186       Op = Op.getOperand(0);
4187 
4188     if (!Op.hasOneUse())
4189       return SDValue();
4190 
4191     unsigned Opc = Op.getOpcode();
4192     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4193         Opc == X86ISD::ANDNP)
4194       return Op;
4195 
4196     return SDValue();
4197   };
4198 
4199   SDValue A, FoldableOp;
4200   if ((FoldableOp = getFoldableLogicOp(N1))) {
4201     A = N0;
4202   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4203     A = N1;
4204   } else
4205     return false;
4206 
4207   SDValue B = FoldableOp.getOperand(0);
4208   SDValue C = FoldableOp.getOperand(1);
4209 
4210   // We can build the appropriate control immediate by performing the logic
4211   // operation we're matching using these constants for A, B, and C.
4212   const uint8_t TernlogMagicA = 0xf0;
4213   const uint8_t TernlogMagicB = 0xcc;
4214   const uint8_t TernlogMagicC = 0xaa;
4215 
4216   uint8_t Imm;
4217   switch (FoldableOp.getOpcode()) {
4218   default: llvm_unreachable("Unexpected opcode!");
4219   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
4220   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
4221   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
4222   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4223   }
4224 
4225   switch (N->getOpcode()) {
4226   default: llvm_unreachable("Unexpected opcode!");
4227   case X86ISD::ANDNP:
4228     if (A == N0)
4229       Imm &= ~TernlogMagicA;
4230     else
4231       Imm = ~(Imm) & TernlogMagicA;
4232     break;
4233   case ISD::AND: Imm &= TernlogMagicA; break;
4234   case ISD::OR:  Imm |= TernlogMagicA; break;
4235   case ISD::XOR: Imm ^= TernlogMagicA; break;
4236   }
4237 
4238   return matchVPTERNLOG(N, N, FoldableOp.getNode(), A, B, C, Imm);
4239 }
4240 
4241 /// If the high bits of an 'and' operand are known zero, try setting the
4242 /// high bits of an 'and' constant operand to produce a smaller encoding by
4243 /// creating a small, sign-extended negative immediate rather than a large
4244 /// positive one. This reverses a transform in SimplifyDemandedBits that
4245 /// shrinks mask constants by clearing bits. There is also a possibility that
4246 /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4247 /// case, just replace the 'and'. Return 'true' if the node is replaced.
4248 bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4249   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4250   // have immediate operands.
4251   MVT VT = And->getSimpleValueType(0);
4252   if (VT != MVT::i32 && VT != MVT::i64)
4253     return false;
4254 
4255   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
4256   if (!And1C)
4257     return false;
4258 
4259   // Bail out if the mask constant is already negative. It's can't shrink more.
4260   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4261   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4262   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4263   // are negative too.
4264   APInt MaskVal = And1C->getAPIntValue();
4265   unsigned MaskLZ = MaskVal.countLeadingZeros();
4266   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4267     return false;
4268 
4269   // Don't extend into the upper 32 bits of a 64 bit mask.
4270   if (VT == MVT::i64 && MaskLZ >= 32) {
4271     MaskLZ -= 32;
4272     MaskVal = MaskVal.trunc(32);
4273   }
4274 
4275   SDValue And0 = And->getOperand(0);
4276   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
4277   APInt NegMaskVal = MaskVal | HighZeros;
4278 
4279   // If a negative constant would not allow a smaller encoding, there's no need
4280   // to continue. Only change the constant when we know it's a win.
4281   unsigned MinWidth = NegMaskVal.getMinSignedBits();
4282   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
4283     return false;
4284 
4285   // Extend masks if we truncated above.
4286   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4287     NegMaskVal = NegMaskVal.zext(64);
4288     HighZeros = HighZeros.zext(64);
4289   }
4290 
4291   // The variable operand must be all zeros in the top bits to allow using the
4292   // new, negative constant as the mask.
4293   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
4294     return false;
4295 
4296   // Check if the mask is -1. In that case, this is an unnecessary instruction
4297   // that escaped earlier analysis.
4298   if (NegMaskVal.isAllOnesValue()) {
4299     ReplaceNode(And, And0.getNode());
4300     return true;
4301   }
4302 
4303   // A negative mask allows a smaller encoding. Create a new 'and' node.
4304   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
4305   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
4306   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
4307   ReplaceNode(And, NewAnd.getNode());
4308   SelectCode(NewAnd.getNode());
4309   return true;
4310 }
4311 
4312 static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4313                               bool FoldedBCast, bool Masked) {
4314 #define VPTESTM_CASE(VT, SUFFIX) \
4315 case MVT::VT: \
4316   if (Masked) \
4317     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4318   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4319 
4320 
4321 #define VPTESTM_BROADCAST_CASES(SUFFIX) \
4322 default: llvm_unreachable("Unexpected VT!"); \
4323 VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4324 VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4325 VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4326 VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4327 VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4328 VPTESTM_CASE(v8i64, QZ##SUFFIX)
4329 
4330 #define VPTESTM_FULL_CASES(SUFFIX) \
4331 VPTESTM_BROADCAST_CASES(SUFFIX) \
4332 VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4333 VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4334 VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4335 VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4336 VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4337 VPTESTM_CASE(v32i16, WZ##SUFFIX)
4338 
4339   if (FoldedBCast) {
4340     switch (TestVT.SimpleTy) {
4341     VPTESTM_BROADCAST_CASES(rmb)
4342     }
4343   }
4344 
4345   if (FoldedLoad) {
4346     switch (TestVT.SimpleTy) {
4347     VPTESTM_FULL_CASES(rm)
4348     }
4349   }
4350 
4351   switch (TestVT.SimpleTy) {
4352   VPTESTM_FULL_CASES(rr)
4353   }
4354 
4355 #undef VPTESTM_FULL_CASES
4356 #undef VPTESTM_BROADCAST_CASES
4357 #undef VPTESTM_CASE
4358 }
4359 
4360 // Try to create VPTESTM instruction. If InMask is not null, it will be used
4361 // to form a masked operation.
4362 bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4363                                  SDValue InMask) {
4364   assert(Subtarget->hasAVX512() && "Expected AVX512!");
4365   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4366          "Unexpected VT!");
4367 
4368   // Look for equal and not equal compares.
4369   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
4370   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4371     return false;
4372 
4373   SDValue SetccOp0 = Setcc.getOperand(0);
4374   SDValue SetccOp1 = Setcc.getOperand(1);
4375 
4376   // Canonicalize the all zero vector to the RHS.
4377   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
4378     std::swap(SetccOp0, SetccOp1);
4379 
4380   // See if we're comparing against zero.
4381   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
4382     return false;
4383 
4384   SDValue N0 = SetccOp0;
4385 
4386   MVT CmpVT = N0.getSimpleValueType();
4387   MVT CmpSVT = CmpVT.getVectorElementType();
4388 
4389   // Start with both operands the same. We'll try to refine this.
4390   SDValue Src0 = N0;
4391   SDValue Src1 = N0;
4392 
4393   {
4394     // Look through single use bitcasts.
4395     SDValue N0Temp = N0;
4396     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4397       N0Temp = N0.getOperand(0);
4398 
4399      // Look for single use AND.
4400     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4401       Src0 = N0Temp.getOperand(0);
4402       Src1 = N0Temp.getOperand(1);
4403     }
4404   }
4405 
4406   // Without VLX we need to widen the operation.
4407   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4408 
4409   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4410                                 SDValue &Base, SDValue &Scale, SDValue &Index,
4411                                 SDValue &Disp, SDValue &Segment) {
4412     // If we need to widen, we can't fold the load.
4413     if (!Widen)
4414       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
4415         return true;
4416 
4417     // If we didn't fold a load, try to match broadcast. No widening limitation
4418     // for this. But only 32 and 64 bit types are supported.
4419     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4420       return false;
4421 
4422     // Look through single use bitcasts.
4423     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4424       P = L.getNode();
4425       L = L.getOperand(0);
4426     }
4427 
4428     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4429       return false;
4430 
4431     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
4432     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4433       return false;
4434 
4435     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
4436   };
4437 
4438   // We can only fold loads if the sources are unique.
4439   bool CanFoldLoads = Src0 != Src1;
4440 
4441   bool FoldedLoad = false;
4442   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4443   if (CanFoldLoads) {
4444     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4445                                     Tmp3, Tmp4);
4446     if (!FoldedLoad) {
4447       // And is commutative.
4448       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4449                                       Tmp2, Tmp3, Tmp4);
4450       if (FoldedLoad)
4451         std::swap(Src0, Src1);
4452     }
4453   }
4454 
4455   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4456 
4457   bool IsMasked = InMask.getNode() != nullptr;
4458 
4459   SDLoc dl(Root);
4460 
4461   MVT ResVT = Setcc.getSimpleValueType();
4462   MVT MaskVT = ResVT;
4463   if (Widen) {
4464     // Widen the inputs using insert_subreg or copy_to_regclass.
4465     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4466     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4467     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4468     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
4469     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4470     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4471                                                      CmpVT), 0);
4472     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
4473 
4474     if (!FoldedBCast)
4475       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
4476 
4477     if (IsMasked) {
4478       // Widen the mask.
4479       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
4480       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4481       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4482                                               dl, MaskVT, InMask, RC), 0);
4483     }
4484   }
4485 
4486   bool IsTestN = CC == ISD::SETEQ;
4487   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4488                                IsMasked);
4489 
4490   MachineSDNode *CNode;
4491   if (FoldedLoad) {
4492     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4493 
4494     if (IsMasked) {
4495       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4496                         Src1.getOperand(0) };
4497       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4498     } else {
4499       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4500                         Src1.getOperand(0) };
4501       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
4502     }
4503 
4504     // Update the chain.
4505     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
4506     // Record the mem-refs
4507     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
4508   } else {
4509     if (IsMasked)
4510       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
4511     else
4512       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
4513   }
4514 
4515   // If we widened, we need to shrink the mask VT.
4516   if (Widen) {
4517     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
4518     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4519     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4520                                    dl, ResVT, SDValue(CNode, 0), RC);
4521   }
4522 
4523   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
4524   CurDAG->RemoveDeadNode(Root);
4525   return true;
4526 }
4527 
4528 // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4529 // into vpternlog.
4530 bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4531   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4532 
4533   MVT NVT = N->getSimpleValueType(0);
4534 
4535   // Make sure we support VPTERNLOG.
4536   if (!NVT.isVector() || !Subtarget->hasAVX512())
4537     return false;
4538 
4539   // We need VLX for 128/256-bit.
4540   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4541     return false;
4542 
4543   SDValue N0 = N->getOperand(0);
4544   SDValue N1 = N->getOperand(1);
4545 
4546   // Canonicalize AND to LHS.
4547   if (N1.getOpcode() == ISD::AND)
4548     std::swap(N0, N1);
4549 
4550   if (N0.getOpcode() != ISD::AND ||
4551       N1.getOpcode() != X86ISD::ANDNP ||
4552       !N0.hasOneUse() || !N1.hasOneUse())
4553     return false;
4554 
4555   // ANDN is not commutable, use it to pick down A and C.
4556   SDValue A = N1.getOperand(0);
4557   SDValue C = N1.getOperand(1);
4558 
4559   // AND is commutable, if one operand matches A, the other operand is B.
4560   // Otherwise this isn't a match.
4561   SDValue B;
4562   if (N0.getOperand(0) == A)
4563     B = N0.getOperand(1);
4564   else if (N0.getOperand(1) == A)
4565     B = N0.getOperand(0);
4566   else
4567     return false;
4568 
4569   SDLoc dl(N);
4570   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
4571   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
4572   ReplaceNode(N, Ternlog.getNode());
4573 
4574   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
4575                         A, B, C, 0xCA);
4576 }
4577 
4578 void X86DAGToDAGISel::Select(SDNode *Node) {
4579   MVT NVT = Node->getSimpleValueType(0);
4580   unsigned Opcode = Node->getOpcode();
4581   SDLoc dl(Node);
4582 
4583   if (Node->isMachineOpcode()) {
4584     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
4585     Node->setNodeId(-1);
4586     return;   // Already selected.
4587   }
4588 
4589   switch (Opcode) {
4590   default: break;
4591   case ISD::INTRINSIC_W_CHAIN: {
4592     unsigned IntNo = Node->getConstantOperandVal(1);
4593     switch (IntNo) {
4594     default: break;
4595     case Intrinsic::x86_encodekey128:
4596     case Intrinsic::x86_encodekey256: {
4597       if (!Subtarget->hasKL())
4598         break;
4599 
4600       unsigned Opcode;
4601       switch (IntNo) {
4602       default: llvm_unreachable("Impossible intrinsic");
4603       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
4604       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
4605       }
4606 
4607       SDValue Chain = Node->getOperand(0);
4608       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
4609                                    SDValue());
4610       if (Opcode == X86::ENCODEKEY256)
4611         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
4612                                      Chain.getValue(1));
4613 
4614       MachineSDNode *Res = CurDAG->getMachineNode(
4615           Opcode, dl, Node->getVTList(),
4616           {Node->getOperand(2), Chain, Chain.getValue(1)});
4617       ReplaceNode(Node, Res);
4618       return;
4619     }
4620     case Intrinsic::x86_tileloadd64_internal:
4621     case Intrinsic::x86_tileloaddt164_internal: {
4622       if (!Subtarget->hasAMXTILE())
4623         break;
4624       unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
4625                          ? X86::PTILELOADDV
4626                          : X86::PTILELOADDT1V;
4627       // _tile_loadd_internal(row, col, buf, STRIDE)
4628       SDValue Base = Node->getOperand(4);
4629       SDValue Scale = getI8Imm(1, dl);
4630       SDValue Index = Node->getOperand(5);
4631       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4632       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4633       SDValue Chain = Node->getOperand(0);
4634       MachineSDNode *CNode;
4635       SDValue Ops[] = {Node->getOperand(2),
4636                        Node->getOperand(3),
4637                        Base,
4638                        Scale,
4639                        Index,
4640                        Disp,
4641                        Segment,
4642                        Chain};
4643       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
4644       ReplaceNode(Node, CNode);
4645       return;
4646     }
4647     }
4648     break;
4649   }
4650   case ISD::INTRINSIC_VOID: {
4651     unsigned IntNo = Node->getConstantOperandVal(1);
4652     switch (IntNo) {
4653     default: break;
4654     case Intrinsic::x86_sse3_monitor:
4655     case Intrinsic::x86_monitorx:
4656     case Intrinsic::x86_clzero: {
4657       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
4658 
4659       unsigned Opc = 0;
4660       switch (IntNo) {
4661       default: llvm_unreachable("Unexpected intrinsic!");
4662       case Intrinsic::x86_sse3_monitor:
4663         if (!Subtarget->hasSSE3())
4664           break;
4665         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
4666         break;
4667       case Intrinsic::x86_monitorx:
4668         if (!Subtarget->hasMWAITX())
4669           break;
4670         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
4671         break;
4672       case Intrinsic::x86_clzero:
4673         if (!Subtarget->hasCLZERO())
4674           break;
4675         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
4676         break;
4677       }
4678 
4679       if (Opc) {
4680         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
4681         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
4682                                              Node->getOperand(2), SDValue());
4683         SDValue InFlag = Chain.getValue(1);
4684 
4685         if (IntNo == Intrinsic::x86_sse3_monitor ||
4686             IntNo == Intrinsic::x86_monitorx) {
4687           // Copy the other two operands to ECX and EDX.
4688           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
4689                                        InFlag);
4690           InFlag = Chain.getValue(1);
4691           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
4692                                        InFlag);
4693           InFlag = Chain.getValue(1);
4694         }
4695 
4696         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4697                                                       { Chain, InFlag});
4698         ReplaceNode(Node, CNode);
4699         return;
4700       }
4701 
4702       break;
4703     }
4704     case Intrinsic::x86_tilestored64_internal: {
4705       unsigned Opc = X86::PTILESTOREDV;
4706       // _tile_stored_internal(row, col, buf, STRIDE, c)
4707       SDValue Base = Node->getOperand(4);
4708       SDValue Scale = getI8Imm(1, dl);
4709       SDValue Index = Node->getOperand(5);
4710       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4711       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4712       SDValue Chain = Node->getOperand(0);
4713       MachineSDNode *CNode;
4714       SDValue Ops[] = {Node->getOperand(2),
4715                        Node->getOperand(3),
4716                        Base,
4717                        Scale,
4718                        Index,
4719                        Disp,
4720                        Segment,
4721                        Node->getOperand(6),
4722                        Chain};
4723       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4724       ReplaceNode(Node, CNode);
4725       return;
4726     }
4727     case Intrinsic::x86_tileloadd64:
4728     case Intrinsic::x86_tileloaddt164:
4729     case Intrinsic::x86_tilestored64: {
4730       if (!Subtarget->hasAMXTILE())
4731         break;
4732       unsigned Opc;
4733       switch (IntNo) {
4734       default: llvm_unreachable("Unexpected intrinsic!");
4735       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
4736       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
4737       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
4738       }
4739       // FIXME: Match displacement and scale.
4740       unsigned TIndex = Node->getConstantOperandVal(2);
4741       SDValue TReg = getI8Imm(TIndex, dl);
4742       SDValue Base = Node->getOperand(3);
4743       SDValue Scale = getI8Imm(1, dl);
4744       SDValue Index = Node->getOperand(4);
4745       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
4746       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
4747       SDValue Chain = Node->getOperand(0);
4748       MachineSDNode *CNode;
4749       if (Opc == X86::PTILESTORED) {
4750         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
4751         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4752       } else {
4753         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
4754         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4755       }
4756       ReplaceNode(Node, CNode);
4757       return;
4758     }
4759     }
4760     break;
4761   }
4762   case ISD::BRIND:
4763   case X86ISD::NT_BRIND: {
4764     if (Subtarget->isTargetNaCl())
4765       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
4766       // leave the instruction alone.
4767       break;
4768     if (Subtarget->isTarget64BitILP32()) {
4769       // Converts a 32-bit register to a 64-bit, zero-extended version of
4770       // it. This is needed because x86-64 can do many things, but jmp %r32
4771       // ain't one of them.
4772       SDValue Target = Node->getOperand(1);
4773       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
4774       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
4775       SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
4776                                       Node->getOperand(0), ZextTarget);
4777       ReplaceNode(Node, Brind.getNode());
4778       SelectCode(ZextTarget.getNode());
4779       SelectCode(Brind.getNode());
4780       return;
4781     }
4782     break;
4783   }
4784   case X86ISD::GlobalBaseReg:
4785     ReplaceNode(Node, getGlobalBaseReg());
4786     return;
4787 
4788   case ISD::BITCAST:
4789     // Just drop all 128/256/512-bit bitcasts.
4790     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
4791         NVT == MVT::f128) {
4792       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
4793       CurDAG->RemoveDeadNode(Node);
4794       return;
4795     }
4796     break;
4797 
4798   case ISD::SRL:
4799     if (matchBitExtract(Node))
4800       return;
4801     LLVM_FALLTHROUGH;
4802   case ISD::SRA:
4803   case ISD::SHL:
4804     if (tryShiftAmountMod(Node))
4805       return;
4806     break;
4807 
4808   case X86ISD::VPTERNLOG: {
4809     uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue();
4810     if (matchVPTERNLOG(Node, Node, Node, Node->getOperand(0),
4811                        Node->getOperand(1), Node->getOperand(2), Imm))
4812       return;
4813     break;
4814   }
4815 
4816   case X86ISD::ANDNP:
4817     if (tryVPTERNLOG(Node))
4818       return;
4819     break;
4820 
4821   case ISD::AND:
4822     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
4823       // Try to form a masked VPTESTM. Operands can be in either order.
4824       SDValue N0 = Node->getOperand(0);
4825       SDValue N1 = Node->getOperand(1);
4826       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
4827           tryVPTESTM(Node, N0, N1))
4828         return;
4829       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
4830           tryVPTESTM(Node, N1, N0))
4831         return;
4832     }
4833 
4834     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
4835       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
4836       CurDAG->RemoveDeadNode(Node);
4837       return;
4838     }
4839     if (matchBitExtract(Node))
4840       return;
4841     if (AndImmShrink && shrinkAndImmediate(Node))
4842       return;
4843 
4844     LLVM_FALLTHROUGH;
4845   case ISD::OR:
4846   case ISD::XOR:
4847     if (tryShrinkShlLogicImm(Node))
4848       return;
4849     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
4850       return;
4851     if (tryVPTERNLOG(Node))
4852       return;
4853 
4854     LLVM_FALLTHROUGH;
4855   case ISD::ADD:
4856   case ISD::SUB: {
4857     // Try to avoid folding immediates with multiple uses for optsize.
4858     // This code tries to select to register form directly to avoid going
4859     // through the isel table which might fold the immediate. We can't change
4860     // the patterns on the add/sub/and/or/xor with immediate paterns in the
4861     // tablegen files to check immediate use count without making the patterns
4862     // unavailable to the fast-isel table.
4863     if (!CurDAG->shouldOptForSize())
4864       break;
4865 
4866     // Only handle i8/i16/i32/i64.
4867     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
4868       break;
4869 
4870     SDValue N0 = Node->getOperand(0);
4871     SDValue N1 = Node->getOperand(1);
4872 
4873     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
4874     if (!Cst)
4875       break;
4876 
4877     int64_t Val = Cst->getSExtValue();
4878 
4879     // Make sure its an immediate that is considered foldable.
4880     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
4881     if (!isInt<8>(Val) && !isInt<32>(Val))
4882       break;
4883 
4884     // If this can match to INC/DEC, let it go.
4885     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
4886       break;
4887 
4888     // Check if we should avoid folding this immediate.
4889     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
4890       break;
4891 
4892     // We should not fold the immediate. So we need a register form instead.
4893     unsigned ROpc, MOpc;
4894     switch (NVT.SimpleTy) {
4895     default: llvm_unreachable("Unexpected VT!");
4896     case MVT::i8:
4897       switch (Opcode) {
4898       default: llvm_unreachable("Unexpected opcode!");
4899       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
4900       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
4901       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
4902       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
4903       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
4904       }
4905       break;
4906     case MVT::i16:
4907       switch (Opcode) {
4908       default: llvm_unreachable("Unexpected opcode!");
4909       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
4910       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
4911       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
4912       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
4913       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
4914       }
4915       break;
4916     case MVT::i32:
4917       switch (Opcode) {
4918       default: llvm_unreachable("Unexpected opcode!");
4919       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
4920       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
4921       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
4922       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
4923       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
4924       }
4925       break;
4926     case MVT::i64:
4927       switch (Opcode) {
4928       default: llvm_unreachable("Unexpected opcode!");
4929       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
4930       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
4931       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
4932       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
4933       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
4934       }
4935       break;
4936     }
4937 
4938     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
4939 
4940     // If this is a not a subtract, we can still try to fold a load.
4941     if (Opcode != ISD::SUB) {
4942       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4943       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4944         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
4945         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4946         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
4947         // Update the chain.
4948         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
4949         // Record the mem-refs
4950         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
4951         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
4952         CurDAG->RemoveDeadNode(Node);
4953         return;
4954       }
4955     }
4956 
4957     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
4958     return;
4959   }
4960 
4961   case X86ISD::SMUL:
4962     // i16/i32/i64 are handled with isel patterns.
4963     if (NVT != MVT::i8)
4964       break;
4965     LLVM_FALLTHROUGH;
4966   case X86ISD::UMUL: {
4967     SDValue N0 = Node->getOperand(0);
4968     SDValue N1 = Node->getOperand(1);
4969 
4970     unsigned LoReg, ROpc, MOpc;
4971     switch (NVT.SimpleTy) {
4972     default: llvm_unreachable("Unsupported VT!");
4973     case MVT::i8:
4974       LoReg = X86::AL;
4975       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
4976       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
4977       break;
4978     case MVT::i16:
4979       LoReg = X86::AX;
4980       ROpc = X86::MUL16r;
4981       MOpc = X86::MUL16m;
4982       break;
4983     case MVT::i32:
4984       LoReg = X86::EAX;
4985       ROpc = X86::MUL32r;
4986       MOpc = X86::MUL32m;
4987       break;
4988     case MVT::i64:
4989       LoReg = X86::RAX;
4990       ROpc = X86::MUL64r;
4991       MOpc = X86::MUL64m;
4992       break;
4993     }
4994 
4995     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4996     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
4997     // Multiply is commutative.
4998     if (!FoldedLoad) {
4999       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5000       if (FoldedLoad)
5001         std::swap(N0, N1);
5002     }
5003 
5004     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5005                                           N0, SDValue()).getValue(1);
5006 
5007     MachineSDNode *CNode;
5008     if (FoldedLoad) {
5009       // i16/i32/i64 use an instruction that produces a low and high result even
5010       // though only the low result is used.
5011       SDVTList VTs;
5012       if (NVT == MVT::i8)
5013         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5014       else
5015         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5016 
5017       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5018                         InFlag };
5019       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5020 
5021       // Update the chain.
5022       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5023       // Record the mem-refs
5024       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5025     } else {
5026       // i16/i32/i64 use an instruction that produces a low and high result even
5027       // though only the low result is used.
5028       SDVTList VTs;
5029       if (NVT == MVT::i8)
5030         VTs = CurDAG->getVTList(NVT, MVT::i32);
5031       else
5032         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5033 
5034       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
5035     }
5036 
5037     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5038     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5039     CurDAG->RemoveDeadNode(Node);
5040     return;
5041   }
5042 
5043   case ISD::SMUL_LOHI:
5044   case ISD::UMUL_LOHI: {
5045     SDValue N0 = Node->getOperand(0);
5046     SDValue N1 = Node->getOperand(1);
5047 
5048     unsigned Opc, MOpc;
5049     unsigned LoReg, HiReg;
5050     bool IsSigned = Opcode == ISD::SMUL_LOHI;
5051     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5052     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5053     switch (NVT.SimpleTy) {
5054     default: llvm_unreachable("Unsupported VT!");
5055     case MVT::i32:
5056       Opc  = UseMULXHi ? X86::MULX32Hrr :
5057              UseMULX ? X86::MULX32rr :
5058              IsSigned ? X86::IMUL32r : X86::MUL32r;
5059       MOpc = UseMULXHi ? X86::MULX32Hrm :
5060              UseMULX ? X86::MULX32rm :
5061              IsSigned ? X86::IMUL32m : X86::MUL32m;
5062       LoReg = UseMULX ? X86::EDX : X86::EAX;
5063       HiReg = X86::EDX;
5064       break;
5065     case MVT::i64:
5066       Opc  = UseMULXHi ? X86::MULX64Hrr :
5067              UseMULX ? X86::MULX64rr :
5068              IsSigned ? X86::IMUL64r : X86::MUL64r;
5069       MOpc = UseMULXHi ? X86::MULX64Hrm :
5070              UseMULX ? X86::MULX64rm :
5071              IsSigned ? X86::IMUL64m : X86::MUL64m;
5072       LoReg = UseMULX ? X86::RDX : X86::RAX;
5073       HiReg = X86::RDX;
5074       break;
5075     }
5076 
5077     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5078     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5079     // Multiply is commmutative.
5080     if (!foldedLoad) {
5081       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5082       if (foldedLoad)
5083         std::swap(N0, N1);
5084     }
5085 
5086     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
5087                                           N0, SDValue()).getValue(1);
5088     SDValue ResHi, ResLo;
5089     if (foldedLoad) {
5090       SDValue Chain;
5091       MachineSDNode *CNode = nullptr;
5092       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5093                         InFlag };
5094       if (UseMULXHi) {
5095         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5096         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5097         ResHi = SDValue(CNode, 0);
5098         Chain = SDValue(CNode, 1);
5099       } else if (UseMULX) {
5100         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5101         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5102         ResHi = SDValue(CNode, 0);
5103         ResLo = SDValue(CNode, 1);
5104         Chain = SDValue(CNode, 2);
5105       } else {
5106         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5107         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
5108         Chain = SDValue(CNode, 0);
5109         InFlag = SDValue(CNode, 1);
5110       }
5111 
5112       // Update the chain.
5113       ReplaceUses(N1.getValue(1), Chain);
5114       // Record the mem-refs
5115       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5116     } else {
5117       SDValue Ops[] = { N1, InFlag };
5118       if (UseMULXHi) {
5119         SDVTList VTs = CurDAG->getVTList(NVT);
5120         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5121         ResHi = SDValue(CNode, 0);
5122       } else if (UseMULX) {
5123         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
5124         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5125         ResHi = SDValue(CNode, 0);
5126         ResLo = SDValue(CNode, 1);
5127       } else {
5128         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5129         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
5130         InFlag = SDValue(CNode, 0);
5131       }
5132     }
5133 
5134     // Copy the low half of the result, if it is needed.
5135     if (!SDValue(Node, 0).use_empty()) {
5136       if (!ResLo) {
5137         assert(LoReg && "Register for low half is not defined!");
5138         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
5139                                        NVT, InFlag);
5140         InFlag = ResLo.getValue(2);
5141       }
5142       ReplaceUses(SDValue(Node, 0), ResLo);
5143       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5144                  dbgs() << '\n');
5145     }
5146     // Copy the high half of the result, if it is needed.
5147     if (!SDValue(Node, 1).use_empty()) {
5148       if (!ResHi) {
5149         assert(HiReg && "Register for high half is not defined!");
5150         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
5151                                        NVT, InFlag);
5152         InFlag = ResHi.getValue(2);
5153       }
5154       ReplaceUses(SDValue(Node, 1), ResHi);
5155       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5156                  dbgs() << '\n');
5157     }
5158 
5159     CurDAG->RemoveDeadNode(Node);
5160     return;
5161   }
5162 
5163   case ISD::SDIVREM:
5164   case ISD::UDIVREM: {
5165     SDValue N0 = Node->getOperand(0);
5166     SDValue N1 = Node->getOperand(1);
5167 
5168     unsigned ROpc, MOpc;
5169     bool isSigned = Opcode == ISD::SDIVREM;
5170     if (!isSigned) {
5171       switch (NVT.SimpleTy) {
5172       default: llvm_unreachable("Unsupported VT!");
5173       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
5174       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5175       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5176       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5177       }
5178     } else {
5179       switch (NVT.SimpleTy) {
5180       default: llvm_unreachable("Unsupported VT!");
5181       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
5182       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5183       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5184       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5185       }
5186     }
5187 
5188     unsigned LoReg, HiReg, ClrReg;
5189     unsigned SExtOpcode;
5190     switch (NVT.SimpleTy) {
5191     default: llvm_unreachable("Unsupported VT!");
5192     case MVT::i8:
5193       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
5194       SExtOpcode = 0; // Not used.
5195       break;
5196     case MVT::i16:
5197       LoReg = X86::AX;  HiReg = X86::DX;
5198       ClrReg = X86::DX;
5199       SExtOpcode = X86::CWD;
5200       break;
5201     case MVT::i32:
5202       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5203       SExtOpcode = X86::CDQ;
5204       break;
5205     case MVT::i64:
5206       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5207       SExtOpcode = X86::CQO;
5208       break;
5209     }
5210 
5211     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5212     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
5213     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
5214 
5215     SDValue InFlag;
5216     if (NVT == MVT::i8) {
5217       // Special case for div8, just use a move with zero extension to AX to
5218       // clear the upper 8 bits (AH).
5219       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5220       MachineSDNode *Move;
5221       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5222         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
5223         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5224                                                     : X86::MOVZX16rm8;
5225         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5226         Chain = SDValue(Move, 1);
5227         ReplaceUses(N0.getValue(1), Chain);
5228         // Record the mem-refs
5229         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
5230       } else {
5231         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5232                                                     : X86::MOVZX16rr8;
5233         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5234         Chain = CurDAG->getEntryNode();
5235       }
5236       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5237                                     SDValue());
5238       InFlag = Chain.getValue(1);
5239     } else {
5240       InFlag =
5241         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
5242                              LoReg, N0, SDValue()).getValue(1);
5243       if (isSigned && !signBitIsZero) {
5244         // Sign extend the low part into the high part.
5245         InFlag =
5246           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
5247       } else {
5248         // Zero out the high part, effectively zero extending the input.
5249         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5250         SDValue ClrNode =
5251             SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5252         switch (NVT.SimpleTy) {
5253         case MVT::i16:
5254           ClrNode =
5255               SDValue(CurDAG->getMachineNode(
5256                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5257                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
5258                                                     MVT::i32)),
5259                       0);
5260           break;
5261         case MVT::i32:
5262           break;
5263         case MVT::i64:
5264           ClrNode =
5265               SDValue(CurDAG->getMachineNode(
5266                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5267                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5268                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
5269                                                     MVT::i32)),
5270                       0);
5271           break;
5272         default:
5273           llvm_unreachable("Unexpected division source");
5274         }
5275 
5276         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
5277                                       ClrNode, InFlag).getValue(1);
5278       }
5279     }
5280 
5281     if (foldedLoad) {
5282       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
5283                         InFlag };
5284       MachineSDNode *CNode =
5285         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5286       InFlag = SDValue(CNode, 1);
5287       // Update the chain.
5288       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
5289       // Record the mem-refs
5290       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
5291     } else {
5292       InFlag =
5293         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0);
5294     }
5295 
5296     // Prevent use of AH in a REX instruction by explicitly copying it to
5297     // an ABCD_L register.
5298     //
5299     // The current assumption of the register allocator is that isel
5300     // won't generate explicit references to the GR8_ABCD_H registers. If
5301     // the allocator and/or the backend get enhanced to be more robust in
5302     // that regard, this can be, and should be, removed.
5303     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5304       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5305       unsigned AHExtOpcode =
5306           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5307 
5308       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5309                                              MVT::Glue, AHCopy, InFlag);
5310       SDValue Result(RNode, 0);
5311       InFlag = SDValue(RNode, 1);
5312 
5313       Result =
5314           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5315 
5316       ReplaceUses(SDValue(Node, 1), Result);
5317       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5318                  dbgs() << '\n');
5319     }
5320     // Copy the division (low) result, if it is needed.
5321     if (!SDValue(Node, 0).use_empty()) {
5322       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5323                                                 LoReg, NVT, InFlag);
5324       InFlag = Result.getValue(2);
5325       ReplaceUses(SDValue(Node, 0), Result);
5326       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5327                  dbgs() << '\n');
5328     }
5329     // Copy the remainder (high) result, if it is needed.
5330     if (!SDValue(Node, 1).use_empty()) {
5331       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
5332                                               HiReg, NVT, InFlag);
5333       InFlag = Result.getValue(2);
5334       ReplaceUses(SDValue(Node, 1), Result);
5335       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5336                  dbgs() << '\n');
5337     }
5338     CurDAG->RemoveDeadNode(Node);
5339     return;
5340   }
5341 
5342   case X86ISD::FCMP:
5343   case X86ISD::STRICT_FCMP:
5344   case X86ISD::STRICT_FCMPS: {
5345     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5346                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
5347     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
5348     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
5349 
5350     // Save the original VT of the compare.
5351     MVT CmpVT = N0.getSimpleValueType();
5352 
5353     // Floating point needs special handling if we don't have FCOMI.
5354     if (Subtarget->hasCMov())
5355       break;
5356 
5357     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5358 
5359     unsigned Opc;
5360     switch (CmpVT.SimpleTy) {
5361     default: llvm_unreachable("Unexpected type!");
5362     case MVT::f32:
5363       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5364       break;
5365     case MVT::f64:
5366       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5367       break;
5368     case MVT::f80:
5369       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5370       break;
5371     }
5372 
5373     SDValue Chain =
5374         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
5375     SDValue Glue;
5376     if (IsStrictCmp) {
5377       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5378       Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
5379       Glue = Chain.getValue(1);
5380     } else {
5381       Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5382     }
5383 
5384     // Move FPSW to AX.
5385     SDValue FNSTSW =
5386         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5387 
5388     // Extract upper 8-bits of AX.
5389     SDValue Extract =
5390         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5391 
5392     // Move AH into flags.
5393     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5394     assert(Subtarget->hasLAHFSAHF() &&
5395            "Target doesn't support SAHF or FCOMI?");
5396     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5397     Chain = AH;
5398     SDValue SAHF = SDValue(
5399         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5400 
5401     if (IsStrictCmp)
5402       ReplaceUses(SDValue(Node, 1), Chain);
5403 
5404     ReplaceUses(SDValue(Node, 0), SAHF);
5405     CurDAG->RemoveDeadNode(Node);
5406     return;
5407   }
5408 
5409   case X86ISD::CMP: {
5410     SDValue N0 = Node->getOperand(0);
5411     SDValue N1 = Node->getOperand(1);
5412 
5413     // Optimizations for TEST compares.
5414     if (!isNullConstant(N1))
5415       break;
5416 
5417     // Save the original VT of the compare.
5418     MVT CmpVT = N0.getSimpleValueType();
5419 
5420     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5421     // by a test instruction. The test should be removed later by
5422     // analyzeCompare if we are using only the zero flag.
5423     // TODO: Should we check the users and use the BEXTR flags directly?
5424     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5425       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
5426         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5427                                              : X86::TEST32rr;
5428         SDValue BEXTR = SDValue(NewNode, 0);
5429         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5430         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5431         CurDAG->RemoveDeadNode(Node);
5432         return;
5433       }
5434     }
5435 
5436     // We can peek through truncates, but we need to be careful below.
5437     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5438       N0 = N0.getOperand(0);
5439 
5440     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5441     // use a smaller encoding.
5442     // Look past the truncate if CMP is the only use of it.
5443     if (N0.getOpcode() == ISD::AND &&
5444         N0.getNode()->hasOneUse() &&
5445         N0.getValueType() != MVT::i8) {
5446       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5447       if (!C) break;
5448       uint64_t Mask = C->getZExtValue();
5449       // We may have looked through a truncate so mask off any bits that
5450       // shouldn't be part of the compare.
5451       Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
5452 
5453       // Check if we can replace AND+IMM64 with a shift. This is possible for
5454       // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
5455       // flag.
5456       if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
5457           onlyUsesZeroFlag(SDValue(Node, 0))) {
5458         if (isMask_64(~Mask)) {
5459           unsigned TrailingZeros = countTrailingZeros(Mask);
5460           SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
5461           SDValue Shift =
5462             SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
5463                                            N0.getOperand(0), Imm), 0);
5464           MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5465                                                        MVT::i32, Shift, Shift);
5466           ReplaceNode(Node, Test);
5467           return;
5468         }
5469         if (isMask_64(Mask)) {
5470           unsigned LeadingZeros = countLeadingZeros(Mask);
5471           SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
5472           SDValue Shift =
5473             SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
5474                                            N0.getOperand(0), Imm), 0);
5475           MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
5476                                                        MVT::i32, Shift, Shift);
5477           ReplaceNode(Node, Test);
5478           return;
5479         }
5480       }
5481 
5482       MVT VT;
5483       int SubRegOp;
5484       unsigned ROpc, MOpc;
5485 
5486       // For each of these checks we need to be careful if the sign flag is
5487       // being used. It is only safe to use the sign flag in two conditions,
5488       // either the sign bit in the shrunken mask is zero or the final test
5489       // size is equal to the original compare size.
5490 
5491       if (isUInt<8>(Mask) &&
5492           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
5493            hasNoSignFlagUses(SDValue(Node, 0)))) {
5494         // For example, convert "testl %eax, $8" to "testb %al, $8"
5495         VT = MVT::i8;
5496         SubRegOp = X86::sub_8bit;
5497         ROpc = X86::TEST8ri;
5498         MOpc = X86::TEST8mi;
5499       } else if (OptForMinSize && isUInt<16>(Mask) &&
5500                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
5501                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5502         // For example, "testl %eax, $32776" to "testw %ax, $32776".
5503         // NOTE: We only want to form TESTW instructions if optimizing for
5504         // min size. Otherwise we only save one byte and possibly get a length
5505         // changing prefix penalty in the decoders.
5506         VT = MVT::i16;
5507         SubRegOp = X86::sub_16bit;
5508         ROpc = X86::TEST16ri;
5509         MOpc = X86::TEST16mi;
5510       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
5511                  ((!(Mask & 0x80000000) &&
5512                    // Without minsize 16-bit Cmps can get here so we need to
5513                    // be sure we calculate the correct sign flag if needed.
5514                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
5515                   CmpVT == MVT::i32 ||
5516                   hasNoSignFlagUses(SDValue(Node, 0)))) {
5517         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
5518         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
5519         // Otherwize, we find ourselves in a position where we have to do
5520         // promotion. If previous passes did not promote the and, we assume
5521         // they had a good reason not to and do not promote here.
5522         VT = MVT::i32;
5523         SubRegOp = X86::sub_32bit;
5524         ROpc = X86::TEST32ri;
5525         MOpc = X86::TEST32mi;
5526       } else {
5527         // No eligible transformation was found.
5528         break;
5529       }
5530 
5531       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
5532       SDValue Reg = N0.getOperand(0);
5533 
5534       // Emit a testl or testw.
5535       MachineSDNode *NewNode;
5536       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5537       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
5538         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
5539           if (!LoadN->isSimple()) {
5540             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
5541             if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
5542                 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
5543                 (MOpc == X86::TEST32mi && NumVolBits != 32))
5544               break;
5545           }
5546         }
5547         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
5548                           Reg.getOperand(0) };
5549         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
5550         // Update the chain.
5551         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
5552         // Record the mem-refs
5553         CurDAG->setNodeMemRefs(NewNode,
5554                                {cast<LoadSDNode>(Reg)->getMemOperand()});
5555       } else {
5556         // Extract the subregister if necessary.
5557         if (N0.getValueType() != VT)
5558           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
5559 
5560         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
5561       }
5562       // Replace CMP with TEST.
5563       ReplaceNode(Node, NewNode);
5564       return;
5565     }
5566     break;
5567   }
5568   case X86ISD::PCMPISTR: {
5569     if (!Subtarget->hasSSE42())
5570       break;
5571 
5572     bool NeedIndex = !SDValue(Node, 0).use_empty();
5573     bool NeedMask = !SDValue(Node, 1).use_empty();
5574     // We can't fold a load if we are going to make two instructions.
5575     bool MayFoldLoad = !NeedIndex || !NeedMask;
5576 
5577     MachineSDNode *CNode;
5578     if (NeedMask) {
5579       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
5580       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
5581       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
5582       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5583     }
5584     if (NeedIndex || !NeedMask) {
5585       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
5586       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
5587       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
5588       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5589     }
5590 
5591     // Connect the flag usage to the last instruction created.
5592     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5593     CurDAG->RemoveDeadNode(Node);
5594     return;
5595   }
5596   case X86ISD::PCMPESTR: {
5597     if (!Subtarget->hasSSE42())
5598       break;
5599 
5600     // Copy the two implicit register inputs.
5601     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
5602                                           Node->getOperand(1),
5603                                           SDValue()).getValue(1);
5604     InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
5605                                   Node->getOperand(3), InFlag).getValue(1);
5606 
5607     bool NeedIndex = !SDValue(Node, 0).use_empty();
5608     bool NeedMask = !SDValue(Node, 1).use_empty();
5609     // We can't fold a load if we are going to make two instructions.
5610     bool MayFoldLoad = !NeedIndex || !NeedMask;
5611 
5612     MachineSDNode *CNode;
5613     if (NeedMask) {
5614       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
5615       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
5616       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
5617                            InFlag);
5618       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
5619     }
5620     if (NeedIndex || !NeedMask) {
5621       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
5622       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
5623       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
5624       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
5625     }
5626     // Connect the flag usage to the last instruction created.
5627     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
5628     CurDAG->RemoveDeadNode(Node);
5629     return;
5630   }
5631 
5632   case ISD::SETCC: {
5633     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
5634       return;
5635 
5636     break;
5637   }
5638 
5639   case ISD::STORE:
5640     if (foldLoadStoreIntoMemOperand(Node))
5641       return;
5642     break;
5643 
5644   case X86ISD::SETCC_CARRY: {
5645     // We have to do this manually because tblgen will put the eflags copy in
5646     // the wrong place if we use an extract_subreg in the pattern.
5647     MVT VT = Node->getSimpleValueType(0);
5648 
5649     // Copy flags to the EFLAGS register and glue it to next node.
5650     SDValue EFLAGS =
5651         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5652                              Node->getOperand(1), SDValue());
5653 
5654     // Create a 64-bit instruction if the result is 64-bits otherwise use the
5655     // 32-bit version.
5656     unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
5657     MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5658     SDValue Result = SDValue(
5659         CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)), 0);
5660 
5661     // For less than 32-bits we need to extract from the 32-bit node.
5662     if (VT == MVT::i8 || VT == MVT::i16) {
5663       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5664       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5665     }
5666 
5667     ReplaceUses(SDValue(Node, 0), Result);
5668     CurDAG->RemoveDeadNode(Node);
5669     return;
5670   }
5671   case X86ISD::SBB: {
5672     if (isNullConstant(Node->getOperand(0)) &&
5673         isNullConstant(Node->getOperand(1))) {
5674       MVT VT = Node->getSimpleValueType(0);
5675 
5676       // Create zero.
5677       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5678       SDValue Zero =
5679           SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
5680       if (VT == MVT::i64) {
5681         Zero = SDValue(
5682             CurDAG->getMachineNode(
5683                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5684                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
5685                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
5686             0);
5687       }
5688 
5689       // Copy flags to the EFLAGS register and glue it to next node.
5690       SDValue EFLAGS =
5691           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
5692                                Node->getOperand(2), SDValue());
5693 
5694       // Create a 64-bit instruction if the result is 64-bits otherwise use the
5695       // 32-bit version.
5696       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
5697       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
5698       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
5699       SDValue Result =
5700           SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {Zero, Zero, EFLAGS,
5701                                          EFLAGS.getValue(1)}),
5702                   0);
5703 
5704       // Replace the flag use.
5705       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
5706 
5707       // Replace the result use.
5708       if (!SDValue(Node, 0).use_empty()) {
5709         // For less than 32-bits we need to extract from the 32-bit node.
5710         if (VT == MVT::i8 || VT == MVT::i16) {
5711           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
5712           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
5713         }
5714         ReplaceUses(SDValue(Node, 0), Result);
5715       }
5716 
5717       CurDAG->RemoveDeadNode(Node);
5718       return;
5719     }
5720     break;
5721   }
5722   case X86ISD::MGATHER: {
5723     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
5724     SDValue IndexOp = Mgt->getIndex();
5725     SDValue Mask = Mgt->getMask();
5726     MVT IndexVT = IndexOp.getSimpleValueType();
5727     MVT ValueVT = Node->getSimpleValueType(0);
5728     MVT MaskVT = Mask.getSimpleValueType();
5729 
5730     // This is just to prevent crashes if the nodes are malformed somehow. We're
5731     // otherwise only doing loose type checking in here based on type what
5732     // a type constraint would say just like table based isel.
5733     if (!ValueVT.isVector() || !MaskVT.isVector())
5734       break;
5735 
5736     unsigned NumElts = ValueVT.getVectorNumElements();
5737     MVT ValueSVT = ValueVT.getVectorElementType();
5738 
5739     bool IsFP = ValueSVT.isFloatingPoint();
5740     unsigned EltSize = ValueSVT.getSizeInBits();
5741 
5742     unsigned Opc = 0;
5743     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
5744     if (AVX512Gather) {
5745       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5746         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
5747       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5748         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
5749       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5750         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
5751       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5752         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
5753       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5754         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
5755       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5756         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
5757       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5758         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
5759       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5760         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
5761       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5762         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
5763       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5764         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
5765       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5766         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
5767       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5768         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
5769     } else {
5770       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
5771              "Unexpected mask VT!");
5772       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5773         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
5774       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5775         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
5776       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5777         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
5778       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5779         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
5780       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5781         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
5782       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5783         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
5784       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5785         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
5786       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5787         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
5788     }
5789 
5790     if (!Opc)
5791       break;
5792 
5793     SDValue Base, Scale, Index, Disp, Segment;
5794     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
5795                           Base, Scale, Index, Disp, Segment))
5796       break;
5797 
5798     SDValue PassThru = Mgt->getPassThru();
5799     SDValue Chain = Mgt->getChain();
5800     // Gather instructions have a mask output not in the ISD node.
5801     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
5802 
5803     MachineSDNode *NewNode;
5804     if (AVX512Gather) {
5805       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
5806                        Index,    Disp, Segment, Chain};
5807       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5808     } else {
5809       SDValue Ops[] = {PassThru, Base,    Scale, Index,
5810                        Disp,     Segment, Mask,  Chain};
5811       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5812     }
5813     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
5814     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
5815     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
5816     CurDAG->RemoveDeadNode(Node);
5817     return;
5818   }
5819   case X86ISD::MSCATTER: {
5820     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
5821     SDValue Value = Sc->getValue();
5822     SDValue IndexOp = Sc->getIndex();
5823     MVT IndexVT = IndexOp.getSimpleValueType();
5824     MVT ValueVT = Value.getSimpleValueType();
5825 
5826     // This is just to prevent crashes if the nodes are malformed somehow. We're
5827     // otherwise only doing loose type checking in here based on type what
5828     // a type constraint would say just like table based isel.
5829     if (!ValueVT.isVector())
5830       break;
5831 
5832     unsigned NumElts = ValueVT.getVectorNumElements();
5833     MVT ValueSVT = ValueVT.getVectorElementType();
5834 
5835     bool IsFP = ValueSVT.isFloatingPoint();
5836     unsigned EltSize = ValueSVT.getSizeInBits();
5837 
5838     unsigned Opc;
5839     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
5840       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
5841     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
5842       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
5843     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
5844       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
5845     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
5846       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
5847     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
5848       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
5849     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
5850       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
5851     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
5852       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
5853     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
5854       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
5855     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
5856       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
5857     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
5858       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
5859     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
5860       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
5861     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
5862       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
5863     else
5864       break;
5865 
5866     SDValue Base, Scale, Index, Disp, Segment;
5867     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
5868                           Base, Scale, Index, Disp, Segment))
5869       break;
5870 
5871     SDValue Mask = Sc->getMask();
5872     SDValue Chain = Sc->getChain();
5873     // Scatter instructions have a mask output not in the ISD node.
5874     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
5875     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
5876 
5877     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
5878     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
5879     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
5880     CurDAG->RemoveDeadNode(Node);
5881     return;
5882   }
5883   case ISD::PREALLOCATED_SETUP: {
5884     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
5885     auto CallId = MFI->getPreallocatedIdForCallSite(
5886         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
5887     SDValue Chain = Node->getOperand(0);
5888     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
5889     MachineSDNode *New = CurDAG->getMachineNode(
5890         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
5891     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
5892     CurDAG->RemoveDeadNode(Node);
5893     return;
5894   }
5895   case ISD::PREALLOCATED_ARG: {
5896     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
5897     auto CallId = MFI->getPreallocatedIdForCallSite(
5898         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
5899     SDValue Chain = Node->getOperand(0);
5900     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
5901     SDValue ArgIndex = Node->getOperand(2);
5902     SDValue Ops[3];
5903     Ops[0] = CallIdValue;
5904     Ops[1] = ArgIndex;
5905     Ops[2] = Chain;
5906     MachineSDNode *New = CurDAG->getMachineNode(
5907         TargetOpcode::PREALLOCATED_ARG, dl,
5908         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
5909                           MVT::Other),
5910         Ops);
5911     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
5912     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
5913     CurDAG->RemoveDeadNode(Node);
5914     return;
5915   }
5916   case X86ISD::AESENCWIDE128KL:
5917   case X86ISD::AESDECWIDE128KL:
5918   case X86ISD::AESENCWIDE256KL:
5919   case X86ISD::AESDECWIDE256KL: {
5920     if (!Subtarget->hasWIDEKL())
5921       break;
5922 
5923     unsigned Opcode;
5924     switch (Node->getOpcode()) {
5925     default:
5926       llvm_unreachable("Unexpected opcode!");
5927     case X86ISD::AESENCWIDE128KL:
5928       Opcode = X86::AESENCWIDE128KL;
5929       break;
5930     case X86ISD::AESDECWIDE128KL:
5931       Opcode = X86::AESDECWIDE128KL;
5932       break;
5933     case X86ISD::AESENCWIDE256KL:
5934       Opcode = X86::AESENCWIDE256KL;
5935       break;
5936     case X86ISD::AESDECWIDE256KL:
5937       Opcode = X86::AESDECWIDE256KL;
5938       break;
5939     }
5940 
5941     SDValue Chain = Node->getOperand(0);
5942     SDValue Addr = Node->getOperand(1);
5943 
5944     SDValue Base, Scale, Index, Disp, Segment;
5945     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
5946       break;
5947 
5948     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
5949                                  SDValue());
5950     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
5951                                  Chain.getValue(1));
5952     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
5953                                  Chain.getValue(1));
5954     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
5955                                  Chain.getValue(1));
5956     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
5957                                  Chain.getValue(1));
5958     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
5959                                  Chain.getValue(1));
5960     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
5961                                  Chain.getValue(1));
5962     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
5963                                  Chain.getValue(1));
5964 
5965     MachineSDNode *Res = CurDAG->getMachineNode(
5966         Opcode, dl, Node->getVTList(),
5967         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
5968     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
5969     ReplaceNode(Node, Res);
5970     return;
5971   }
5972   }
5973 
5974   SelectCode(Node);
5975 }
5976 
5977 bool X86DAGToDAGISel::
5978 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
5979                              std::vector<SDValue> &OutOps) {
5980   SDValue Op0, Op1, Op2, Op3, Op4;
5981   switch (ConstraintID) {
5982   default:
5983     llvm_unreachable("Unexpected asm memory constraint");
5984   case InlineAsm::Constraint_o: // offsetable        ??
5985   case InlineAsm::Constraint_v: // not offsetable    ??
5986   case InlineAsm::Constraint_m: // memory
5987   case InlineAsm::Constraint_X:
5988     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
5989       return true;
5990     break;
5991   }
5992 
5993   OutOps.push_back(Op0);
5994   OutOps.push_back(Op1);
5995   OutOps.push_back(Op2);
5996   OutOps.push_back(Op3);
5997   OutOps.push_back(Op4);
5998   return false;
5999 }
6000 
6001 /// This pass converts a legalized DAG into a X86-specific DAG,
6002 /// ready for instruction scheduling.
6003 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6004                                      CodeGenOpt::Level OptLevel) {
6005   return new X86DAGToDAGISel(TM, OptLevel);
6006 }
6007