xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FrameLowering.cpp (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include <cstdlib>
36 
37 #define DEBUG_TYPE "x86-fl"
38 
39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
40 STATISTIC(NumFrameExtraProbe,
41           "Number of extra stack probes generated in prologue");
42 
43 using namespace llvm;
44 
45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
46                                    MaybeAlign StackAlignOverride)
47     : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
48                           STI.is64Bit() ? -8 : -4),
49       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
50   // Cache a bunch of frame-related predicates for this subtarget.
51   SlotSize = TRI->getSlotSize();
52   Is64Bit = STI.is64Bit();
53   IsLP64 = STI.isTarget64BitLP64();
54   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
55   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
56   StackPtr = TRI->getStackRegister();
57 }
58 
59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
60   return !MF.getFrameInfo().hasVarSizedObjects() &&
61          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
62          !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
63 }
64 
65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
66 /// call frame pseudos can be simplified.  Having a FP, as in the default
67 /// implementation, is not sufficient here since we can't always use it.
68 /// Use a more nuanced condition.
69 bool
70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
71   return hasReservedCallFrame(MF) ||
72          MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
73          (hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
74          TRI->hasBasePointer(MF);
75 }
76 
77 // needsFrameIndexResolution - Do we need to perform FI resolution for
78 // this function. Normally, this is required only when the function
79 // has any stack objects. However, FI resolution actually has another job,
80 // not apparent from the title - it resolves callframesetup/destroy
81 // that were not simplified earlier.
82 // So, this is required for x86 functions that have push sequences even
83 // when there are no stack objects.
84 bool
85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
86   return MF.getFrameInfo().hasStackObjects() ||
87          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
88 }
89 
90 /// hasFP - Return true if the specified function should have a dedicated frame
91 /// pointer register.  This is true if the function has variable sized allocas
92 /// or if frame pointer elimination is disabled.
93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
94   const MachineFrameInfo &MFI = MF.getFrameInfo();
95   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
96           TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
97           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
98           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
99           MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
100           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
101           MFI.hasStackMap() || MFI.hasPatchPoint() ||
102           MFI.hasCopyImplyingStackAdjustment());
103 }
104 
105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
106   if (IsLP64) {
107     if (isInt<8>(Imm))
108       return X86::SUB64ri8;
109     return X86::SUB64ri32;
110   } else {
111     if (isInt<8>(Imm))
112       return X86::SUB32ri8;
113     return X86::SUB32ri;
114   }
115 }
116 
117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
118   if (IsLP64) {
119     if (isInt<8>(Imm))
120       return X86::ADD64ri8;
121     return X86::ADD64ri32;
122   } else {
123     if (isInt<8>(Imm))
124       return X86::ADD32ri8;
125     return X86::ADD32ri;
126   }
127 }
128 
129 static unsigned getSUBrrOpcode(bool IsLP64) {
130   return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
131 }
132 
133 static unsigned getADDrrOpcode(bool IsLP64) {
134   return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
135 }
136 
137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
138   if (IsLP64) {
139     if (isInt<8>(Imm))
140       return X86::AND64ri8;
141     return X86::AND64ri32;
142   }
143   if (isInt<8>(Imm))
144     return X86::AND32ri8;
145   return X86::AND32ri;
146 }
147 
148 static unsigned getLEArOpcode(bool IsLP64) {
149   return IsLP64 ? X86::LEA64r : X86::LEA32r;
150 }
151 
152 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
153   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
154     unsigned Reg = RegMask.PhysReg;
155 
156     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
157         Reg == X86::AH || Reg == X86::AL)
158       return true;
159   }
160 
161   return false;
162 }
163 
164 /// Check if the flags need to be preserved before the terminators.
165 /// This would be the case, if the eflags is live-in of the region
166 /// composed by the terminators or live-out of that region, without
167 /// being defined by a terminator.
168 static bool
169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
170   for (const MachineInstr &MI : MBB.terminators()) {
171     bool BreakNext = false;
172     for (const MachineOperand &MO : MI.operands()) {
173       if (!MO.isReg())
174         continue;
175       Register Reg = MO.getReg();
176       if (Reg != X86::EFLAGS)
177         continue;
178 
179       // This terminator needs an eflags that is not defined
180       // by a previous another terminator:
181       // EFLAGS is live-in of the region composed by the terminators.
182       if (!MO.isDef())
183         return true;
184       // This terminator defines the eflags, i.e., we don't need to preserve it.
185       // However, we still need to check this specific terminator does not
186       // read a live-in value.
187       BreakNext = true;
188     }
189     // We found a definition of the eflags, no need to preserve them.
190     if (BreakNext)
191       return false;
192   }
193 
194   // None of the terminators use or define the eflags.
195   // Check if they are live-out, that would imply we need to preserve them.
196   for (const MachineBasicBlock *Succ : MBB.successors())
197     if (Succ->isLiveIn(X86::EFLAGS))
198       return true;
199 
200   return false;
201 }
202 
203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
204 /// stack pointer by a constant value.
205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
206                                     MachineBasicBlock::iterator &MBBI,
207                                     const DebugLoc &DL,
208                                     int64_t NumBytes, bool InEpilogue) const {
209   bool isSub = NumBytes < 0;
210   uint64_t Offset = isSub ? -NumBytes : NumBytes;
211   MachineInstr::MIFlag Flag =
212       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
213 
214   uint64_t Chunk = (1LL << 31) - 1;
215 
216   MachineFunction &MF = *MBB.getParent();
217   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
218   const X86TargetLowering &TLI = *STI.getTargetLowering();
219   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
220 
221   // It's ok to not take into account large chunks when probing, as the
222   // allocation is split in smaller chunks anyway.
223   if (EmitInlineStackProbe && !InEpilogue) {
224 
225     // This pseudo-instruction is going to be expanded, potentially using a
226     // loop, by inlineStackProbe().
227     BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
228     return;
229   } else if (Offset > Chunk) {
230     // Rather than emit a long series of instructions for large offsets,
231     // load the offset into a register and do one sub/add
232     unsigned Reg = 0;
233     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
234 
235     if (isSub && !isEAXLiveIn(MBB))
236       Reg = Rax;
237     else
238       Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
239 
240     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
241     unsigned AddSubRROpc =
242         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
243     if (Reg) {
244       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
245           .addImm(Offset)
246           .setMIFlag(Flag);
247       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
248                              .addReg(StackPtr)
249                              .addReg(Reg);
250       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
251       return;
252     } else if (Offset > 8 * Chunk) {
253       // If we would need more than 8 add or sub instructions (a >16GB stack
254       // frame), it's worth spilling RAX to materialize this immediate.
255       //   pushq %rax
256       //   movabsq +-$Offset+-SlotSize, %rax
257       //   addq %rsp, %rax
258       //   xchg %rax, (%rsp)
259       //   movq (%rsp), %rsp
260       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
261       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
262           .addReg(Rax, RegState::Kill)
263           .setMIFlag(Flag);
264       // Subtract is not commutative, so negate the offset and always use add.
265       // Subtract 8 less and add 8 more to account for the PUSH we just did.
266       if (isSub)
267         Offset = -(Offset - SlotSize);
268       else
269         Offset = Offset + SlotSize;
270       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
271           .addImm(Offset)
272           .setMIFlag(Flag);
273       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
274                              .addReg(Rax)
275                              .addReg(StackPtr);
276       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
277       // Exchange the new SP in RAX with the top of the stack.
278       addRegOffset(
279           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
280           StackPtr, false, 0);
281       // Load new SP from the top of the stack into RSP.
282       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
283                    StackPtr, false, 0);
284       return;
285     }
286   }
287 
288   while (Offset) {
289     uint64_t ThisVal = std::min(Offset, Chunk);
290     if (ThisVal == SlotSize) {
291       // Use push / pop for slot sized adjustments as a size optimization. We
292       // need to find a dead register when using pop.
293       unsigned Reg = isSub
294         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
295         : TRI->findDeadCallerSavedReg(MBB, MBBI);
296       if (Reg) {
297         unsigned Opc = isSub
298           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
299           : (Is64Bit ? X86::POP64r  : X86::POP32r);
300         BuildMI(MBB, MBBI, DL, TII.get(Opc))
301             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
302             .setMIFlag(Flag);
303         Offset -= ThisVal;
304         continue;
305       }
306     }
307 
308     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
309         .setMIFlag(Flag);
310 
311     Offset -= ThisVal;
312   }
313 }
314 
315 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
316     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
317     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
318   assert(Offset != 0 && "zero offset stack adjustment requested");
319 
320   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
321   // is tricky.
322   bool UseLEA;
323   if (!InEpilogue) {
324     // Check if inserting the prologue at the beginning
325     // of MBB would require to use LEA operations.
326     // We need to use LEA operations if EFLAGS is live in, because
327     // it means an instruction will read it before it gets defined.
328     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
329   } else {
330     // If we can use LEA for SP but we shouldn't, check that none
331     // of the terminators uses the eflags. Otherwise we will insert
332     // a ADD that will redefine the eflags and break the condition.
333     // Alternatively, we could move the ADD, but this may not be possible
334     // and is an optimization anyway.
335     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
336     if (UseLEA && !STI.useLeaForSP())
337       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
338     // If that assert breaks, that means we do not do the right thing
339     // in canUseAsEpilogue.
340     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
341            "We shouldn't have allowed this insertion point");
342   }
343 
344   MachineInstrBuilder MI;
345   if (UseLEA) {
346     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
347                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
348                               StackPtr),
349                       StackPtr, false, Offset);
350   } else {
351     bool IsSub = Offset < 0;
352     uint64_t AbsOffset = IsSub ? -Offset : Offset;
353     const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
354                                : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
355     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
356              .addReg(StackPtr)
357              .addImm(AbsOffset);
358     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
359   }
360   return MI;
361 }
362 
363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
364                                      MachineBasicBlock::iterator &MBBI,
365                                      bool doMergeWithPrevious) const {
366   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
367       (!doMergeWithPrevious && MBBI == MBB.end()))
368     return 0;
369 
370   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
371 
372   PI = skipDebugInstructionsBackward(PI, MBB.begin());
373   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
374   // instruction, and that there are no DBG_VALUE or other instructions between
375   // ADD/SUB/LEA and its corresponding CFI instruction.
376   /* TODO: Add support for the case where there are multiple CFI instructions
377     below the ADD/SUB/LEA, e.g.:
378     ...
379     add
380     cfi_def_cfa_offset
381     cfi_offset
382     ...
383   */
384   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
385     PI = std::prev(PI);
386 
387   unsigned Opc = PI->getOpcode();
388   int Offset = 0;
389 
390   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
391        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
392       PI->getOperand(0).getReg() == StackPtr){
393     assert(PI->getOperand(1).getReg() == StackPtr);
394     Offset = PI->getOperand(2).getImm();
395   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
396              PI->getOperand(0).getReg() == StackPtr &&
397              PI->getOperand(1).getReg() == StackPtr &&
398              PI->getOperand(2).getImm() == 1 &&
399              PI->getOperand(3).getReg() == X86::NoRegister &&
400              PI->getOperand(5).getReg() == X86::NoRegister) {
401     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
402     Offset = PI->getOperand(4).getImm();
403   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
404               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
405              PI->getOperand(0).getReg() == StackPtr) {
406     assert(PI->getOperand(1).getReg() == StackPtr);
407     Offset = -PI->getOperand(2).getImm();
408   } else
409     return 0;
410 
411   PI = MBB.erase(PI);
412   if (PI != MBB.end() && PI->isCFIInstruction()) {
413     auto CIs = MBB.getParent()->getFrameInstructions();
414     MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()];
415     if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
416         CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
417       PI = MBB.erase(PI);
418   }
419   if (!doMergeWithPrevious)
420     MBBI = skipDebugInstructionsForward(PI, MBB.end());
421 
422   return Offset;
423 }
424 
425 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
426                                 MachineBasicBlock::iterator MBBI,
427                                 const DebugLoc &DL,
428                                 const MCCFIInstruction &CFIInst) const {
429   MachineFunction &MF = *MBB.getParent();
430   unsigned CFIIndex = MF.addFrameInst(CFIInst);
431   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
432       .addCFIIndex(CFIIndex);
433 }
434 
435 /// Emits Dwarf Info specifying offsets of callee saved registers and
436 /// frame pointer. This is called only when basic block sections are enabled.
437 void X86FrameLowering::emitCalleeSavedFrameMoves(
438     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
439   MachineFunction &MF = *MBB.getParent();
440   if (!hasFP(MF)) {
441     emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
442     return;
443   }
444   const MachineModuleInfo &MMI = MF.getMMI();
445   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
446   const Register FramePtr = TRI->getFrameRegister(MF);
447   const Register MachineFramePtr =
448       STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
449                                : FramePtr;
450   unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
451   // Offset = space for return address + size of the frame pointer itself.
452   unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
453   BuildCFI(MBB, MBBI, DebugLoc{},
454            MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
455   emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
456 }
457 
458 void X86FrameLowering::emitCalleeSavedFrameMoves(
459     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
460     const DebugLoc &DL, bool IsPrologue) const {
461   MachineFunction &MF = *MBB.getParent();
462   MachineFrameInfo &MFI = MF.getFrameInfo();
463   MachineModuleInfo &MMI = MF.getMMI();
464   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
465 
466   // Add callee saved registers to move list.
467   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
468   if (CSI.empty()) return;
469 
470   // Calculate offsets.
471   for (std::vector<CalleeSavedInfo>::const_iterator
472          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
473     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
474     unsigned Reg = I->getReg();
475     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
476 
477     if (IsPrologue) {
478       BuildCFI(MBB, MBBI, DL,
479                MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
480     } else {
481       BuildCFI(MBB, MBBI, DL,
482                MCCFIInstruction::createRestore(nullptr, DwarfReg));
483     }
484   }
485 }
486 
487 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
488                                       MachineBasicBlock &MBB,
489                                       MachineBasicBlock::iterator MBBI,
490                                       const DebugLoc &DL, bool InProlog) const {
491   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
492   if (STI.isTargetWindowsCoreCLR()) {
493     if (InProlog) {
494       BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
495           .addImm(0 /* no explicit stack size */);
496     } else {
497       emitStackProbeInline(MF, MBB, MBBI, DL, false);
498     }
499   } else {
500     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
501   }
502 }
503 
504 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
505                                         MachineBasicBlock &PrologMBB) const {
506   auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
507     return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
508   });
509   if (Where != PrologMBB.end()) {
510     DebugLoc DL = PrologMBB.findDebugLoc(Where);
511     emitStackProbeInline(MF, PrologMBB, Where, DL, true);
512     Where->eraseFromParent();
513   }
514 }
515 
516 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
517                                             MachineBasicBlock &MBB,
518                                             MachineBasicBlock::iterator MBBI,
519                                             const DebugLoc &DL,
520                                             bool InProlog) const {
521   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
522   if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
523     emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
524   else
525     emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
526 }
527 
528 void X86FrameLowering::emitStackProbeInlineGeneric(
529     MachineFunction &MF, MachineBasicBlock &MBB,
530     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
531   MachineInstr &AllocWithProbe = *MBBI;
532   uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
533 
534   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
535   const X86TargetLowering &TLI = *STI.getTargetLowering();
536   assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
537          "different expansion expected for CoreCLR 64 bit");
538 
539   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
540   uint64_t ProbeChunk = StackProbeSize * 8;
541 
542   uint64_t MaxAlign =
543       TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
544 
545   // Synthesize a loop or unroll it, depending on the number of iterations.
546   // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
547   // between the unaligned rsp and current rsp.
548   if (Offset > ProbeChunk) {
549     emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
550                                     MaxAlign % StackProbeSize);
551   } else {
552     emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
553                                      MaxAlign % StackProbeSize);
554   }
555 }
556 
557 void X86FrameLowering::emitStackProbeInlineGenericBlock(
558     MachineFunction &MF, MachineBasicBlock &MBB,
559     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
560     uint64_t AlignOffset) const {
561 
562   const bool NeedsDwarfCFI = needsDwarfCFI(MF);
563   const bool HasFP = hasFP(MF);
564   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
565   const X86TargetLowering &TLI = *STI.getTargetLowering();
566   const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
567   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
568   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
569 
570   uint64_t CurrentOffset = 0;
571 
572   assert(AlignOffset < StackProbeSize);
573 
574   // If the offset is so small it fits within a page, there's nothing to do.
575   if (StackProbeSize < Offset + AlignOffset) {
576 
577     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
578                            .addReg(StackPtr)
579                            .addImm(StackProbeSize - AlignOffset)
580                            .setMIFlag(MachineInstr::FrameSetup);
581     if (!HasFP && NeedsDwarfCFI) {
582       BuildCFI(MBB, MBBI, DL,
583                MCCFIInstruction::createAdjustCfaOffset(
584                    nullptr, StackProbeSize - AlignOffset));
585     }
586     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
587 
588     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
589                      .setMIFlag(MachineInstr::FrameSetup),
590                  StackPtr, false, 0)
591         .addImm(0)
592         .setMIFlag(MachineInstr::FrameSetup);
593     NumFrameExtraProbe++;
594     CurrentOffset = StackProbeSize - AlignOffset;
595   }
596 
597   // For the next N - 1 pages, just probe. I tried to take advantage of
598   // natural probes but it implies much more logic and there was very few
599   // interesting natural probes to interleave.
600   while (CurrentOffset + StackProbeSize < Offset) {
601     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
602                            .addReg(StackPtr)
603                            .addImm(StackProbeSize)
604                            .setMIFlag(MachineInstr::FrameSetup);
605     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
606 
607     if (!HasFP && NeedsDwarfCFI) {
608       BuildCFI(
609           MBB, MBBI, DL,
610           MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize));
611     }
612     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
613                      .setMIFlag(MachineInstr::FrameSetup),
614                  StackPtr, false, 0)
615         .addImm(0)
616         .setMIFlag(MachineInstr::FrameSetup);
617     NumFrameExtraProbe++;
618     CurrentOffset += StackProbeSize;
619   }
620 
621   // No need to probe the tail, it is smaller than a Page.
622   uint64_t ChunkSize = Offset - CurrentOffset;
623   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
624                          .addReg(StackPtr)
625                          .addImm(ChunkSize)
626                          .setMIFlag(MachineInstr::FrameSetup);
627   // No need to adjust Dwarf CFA offset here, the last position of the stack has
628   // been defined
629   MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
630 }
631 
632 void X86FrameLowering::emitStackProbeInlineGenericLoop(
633     MachineFunction &MF, MachineBasicBlock &MBB,
634     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
635     uint64_t AlignOffset) const {
636   assert(Offset && "null offset");
637 
638   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
639   const X86TargetLowering &TLI = *STI.getTargetLowering();
640   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
641   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
642 
643   if (AlignOffset) {
644     if (AlignOffset < StackProbeSize) {
645       // Perform a first smaller allocation followed by a probe.
646       const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset);
647       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr)
648                              .addReg(StackPtr)
649                              .addImm(AlignOffset)
650                              .setMIFlag(MachineInstr::FrameSetup);
651       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
652 
653       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
654                        .setMIFlag(MachineInstr::FrameSetup),
655                    StackPtr, false, 0)
656           .addImm(0)
657           .setMIFlag(MachineInstr::FrameSetup);
658       NumFrameExtraProbe++;
659       Offset -= AlignOffset;
660     }
661   }
662 
663   // Synthesize a loop
664   NumFrameLoopProbe++;
665   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
666 
667   MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
668   MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
669 
670   MachineFunction::iterator MBBIter = ++MBB.getIterator();
671   MF.insert(MBBIter, testMBB);
672   MF.insert(MBBIter, tailMBB);
673 
674   Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
675                               : Is64Bit         ? X86::R11D
676                                                 : X86::EAX;
677   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
678       .addReg(StackPtr)
679       .setMIFlag(MachineInstr::FrameSetup);
680 
681   // save loop bound
682   {
683     const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset);
684     BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
685         .addReg(FinalStackProbed)
686         .addImm(Offset / StackProbeSize * StackProbeSize)
687         .setMIFlag(MachineInstr::FrameSetup);
688   }
689 
690   // allocate a page
691   {
692     const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
693     BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr)
694         .addReg(StackPtr)
695         .addImm(StackProbeSize)
696         .setMIFlag(MachineInstr::FrameSetup);
697   }
698 
699   // touch the page
700   addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
701                    .setMIFlag(MachineInstr::FrameSetup),
702                StackPtr, false, 0)
703       .addImm(0)
704       .setMIFlag(MachineInstr::FrameSetup);
705 
706   // cmp with stack pointer bound
707   BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
708       .addReg(StackPtr)
709       .addReg(FinalStackProbed)
710       .setMIFlag(MachineInstr::FrameSetup);
711 
712   // jump
713   BuildMI(testMBB, DL, TII.get(X86::JCC_1))
714       .addMBB(testMBB)
715       .addImm(X86::COND_NE)
716       .setMIFlag(MachineInstr::FrameSetup);
717   testMBB->addSuccessor(testMBB);
718   testMBB->addSuccessor(tailMBB);
719 
720   // BB management
721   tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
722   tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
723   MBB.addSuccessor(testMBB);
724 
725   // handle tail
726   unsigned TailOffset = Offset % StackProbeSize;
727   if (TailOffset) {
728     const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset);
729     BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr)
730         .addReg(StackPtr)
731         .addImm(TailOffset)
732         .setMIFlag(MachineInstr::FrameSetup);
733   }
734 
735   // Update Live In information
736   recomputeLiveIns(*testMBB);
737   recomputeLiveIns(*tailMBB);
738 }
739 
740 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
741     MachineFunction &MF, MachineBasicBlock &MBB,
742     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
743   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
744   assert(STI.is64Bit() && "different expansion needed for 32 bit");
745   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
746   const TargetInstrInfo &TII = *STI.getInstrInfo();
747   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
748 
749   // RAX contains the number of bytes of desired stack adjustment.
750   // The handling here assumes this value has already been updated so as to
751   // maintain stack alignment.
752   //
753   // We need to exit with RSP modified by this amount and execute suitable
754   // page touches to notify the OS that we're growing the stack responsibly.
755   // All stack probing must be done without modifying RSP.
756   //
757   // MBB:
758   //    SizeReg = RAX;
759   //    ZeroReg = 0
760   //    CopyReg = RSP
761   //    Flags, TestReg = CopyReg - SizeReg
762   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
763   //    LimitReg = gs magic thread env access
764   //    if FinalReg >= LimitReg goto ContinueMBB
765   // RoundBB:
766   //    RoundReg = page address of FinalReg
767   // LoopMBB:
768   //    LoopReg = PHI(LimitReg,ProbeReg)
769   //    ProbeReg = LoopReg - PageSize
770   //    [ProbeReg] = 0
771   //    if (ProbeReg > RoundReg) goto LoopMBB
772   // ContinueMBB:
773   //    RSP = RSP - RAX
774   //    [rest of original MBB]
775 
776   // Set up the new basic blocks
777   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
778   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
779   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
780 
781   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
782   MF.insert(MBBIter, RoundMBB);
783   MF.insert(MBBIter, LoopMBB);
784   MF.insert(MBBIter, ContinueMBB);
785 
786   // Split MBB and move the tail portion down to ContinueMBB.
787   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
788   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
789   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
790 
791   // Some useful constants
792   const int64_t ThreadEnvironmentStackLimit = 0x10;
793   const int64_t PageSize = 0x1000;
794   const int64_t PageMask = ~(PageSize - 1);
795 
796   // Registers we need. For the normal case we use virtual
797   // registers. For the prolog expansion we use RAX, RCX and RDX.
798   MachineRegisterInfo &MRI = MF.getRegInfo();
799   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
800   const Register SizeReg = InProlog ? X86::RAX
801                                     : MRI.createVirtualRegister(RegClass),
802                  ZeroReg = InProlog ? X86::RCX
803                                     : MRI.createVirtualRegister(RegClass),
804                  CopyReg = InProlog ? X86::RDX
805                                     : MRI.createVirtualRegister(RegClass),
806                  TestReg = InProlog ? X86::RDX
807                                     : MRI.createVirtualRegister(RegClass),
808                  FinalReg = InProlog ? X86::RDX
809                                      : MRI.createVirtualRegister(RegClass),
810                  RoundedReg = InProlog ? X86::RDX
811                                        : MRI.createVirtualRegister(RegClass),
812                  LimitReg = InProlog ? X86::RCX
813                                      : MRI.createVirtualRegister(RegClass),
814                  JoinReg = InProlog ? X86::RCX
815                                     : MRI.createVirtualRegister(RegClass),
816                  ProbeReg = InProlog ? X86::RCX
817                                      : MRI.createVirtualRegister(RegClass);
818 
819   // SP-relative offsets where we can save RCX and RDX.
820   int64_t RCXShadowSlot = 0;
821   int64_t RDXShadowSlot = 0;
822 
823   // If inlining in the prolog, save RCX and RDX.
824   if (InProlog) {
825     // Compute the offsets. We need to account for things already
826     // pushed onto the stack at this point: return address, frame
827     // pointer (if used), and callee saves.
828     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
829     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
830     const bool HasFP = hasFP(MF);
831 
832     // Check if we need to spill RCX and/or RDX.
833     // Here we assume that no earlier prologue instruction changes RCX and/or
834     // RDX, so checking the block live-ins is enough.
835     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
836     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
837     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
838     // Assign the initial slot to both registers, then change RDX's slot if both
839     // need to be spilled.
840     if (IsRCXLiveIn)
841       RCXShadowSlot = InitSlot;
842     if (IsRDXLiveIn)
843       RDXShadowSlot = InitSlot;
844     if (IsRDXLiveIn && IsRCXLiveIn)
845       RDXShadowSlot += 8;
846     // Emit the saves if needed.
847     if (IsRCXLiveIn)
848       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
849                    RCXShadowSlot)
850           .addReg(X86::RCX);
851     if (IsRDXLiveIn)
852       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
853                    RDXShadowSlot)
854           .addReg(X86::RDX);
855   } else {
856     // Not in the prolog. Copy RAX to a virtual reg.
857     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
858   }
859 
860   // Add code to MBB to check for overflow and set the new target stack pointer
861   // to zero if so.
862   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
863       .addReg(ZeroReg, RegState::Undef)
864       .addReg(ZeroReg, RegState::Undef);
865   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
866   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
867       .addReg(CopyReg)
868       .addReg(SizeReg);
869   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
870       .addReg(TestReg)
871       .addReg(ZeroReg)
872       .addImm(X86::COND_B);
873 
874   // FinalReg now holds final stack pointer value, or zero if
875   // allocation would overflow. Compare against the current stack
876   // limit from the thread environment block. Note this limit is the
877   // lowest touched page on the stack, not the point at which the OS
878   // will cause an overflow exception, so this is just an optimization
879   // to avoid unnecessarily touching pages that are below the current
880   // SP but already committed to the stack by the OS.
881   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
882       .addReg(0)
883       .addImm(1)
884       .addReg(0)
885       .addImm(ThreadEnvironmentStackLimit)
886       .addReg(X86::GS);
887   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
888   // Jump if the desired stack pointer is at or above the stack limit.
889   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
890 
891   // Add code to roundMBB to round the final stack pointer to a page boundary.
892   RoundMBB->addLiveIn(FinalReg);
893   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
894       .addReg(FinalReg)
895       .addImm(PageMask);
896   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
897 
898   // LimitReg now holds the current stack limit, RoundedReg page-rounded
899   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
900   // and probe until we reach RoundedReg.
901   if (!InProlog) {
902     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
903         .addReg(LimitReg)
904         .addMBB(RoundMBB)
905         .addReg(ProbeReg)
906         .addMBB(LoopMBB);
907   }
908 
909   LoopMBB->addLiveIn(JoinReg);
910   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
911                false, -PageSize);
912 
913   // Probe by storing a byte onto the stack.
914   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
915       .addReg(ProbeReg)
916       .addImm(1)
917       .addReg(0)
918       .addImm(0)
919       .addReg(0)
920       .addImm(0);
921 
922   LoopMBB->addLiveIn(RoundedReg);
923   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
924       .addReg(RoundedReg)
925       .addReg(ProbeReg);
926   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
927 
928   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
929 
930   // If in prolog, restore RDX and RCX.
931   if (InProlog) {
932     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
933       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
934                            TII.get(X86::MOV64rm), X86::RCX),
935                    X86::RSP, false, RCXShadowSlot);
936     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
937       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
938                            TII.get(X86::MOV64rm), X86::RDX),
939                    X86::RSP, false, RDXShadowSlot);
940   }
941 
942   // Now that the probing is done, add code to continueMBB to update
943   // the stack pointer for real.
944   ContinueMBB->addLiveIn(SizeReg);
945   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
946       .addReg(X86::RSP)
947       .addReg(SizeReg);
948 
949   // Add the control flow edges we need.
950   MBB.addSuccessor(ContinueMBB);
951   MBB.addSuccessor(RoundMBB);
952   RoundMBB->addSuccessor(LoopMBB);
953   LoopMBB->addSuccessor(ContinueMBB);
954   LoopMBB->addSuccessor(LoopMBB);
955 
956   // Mark all the instructions added to the prolog as frame setup.
957   if (InProlog) {
958     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
959       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
960     }
961     for (MachineInstr &MI : *RoundMBB) {
962       MI.setFlag(MachineInstr::FrameSetup);
963     }
964     for (MachineInstr &MI : *LoopMBB) {
965       MI.setFlag(MachineInstr::FrameSetup);
966     }
967     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
968          CMBBI != ContinueMBBI; ++CMBBI) {
969       CMBBI->setFlag(MachineInstr::FrameSetup);
970     }
971   }
972 }
973 
974 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
975                                           MachineBasicBlock &MBB,
976                                           MachineBasicBlock::iterator MBBI,
977                                           const DebugLoc &DL,
978                                           bool InProlog) const {
979   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
980 
981   // FIXME: Add indirect thunk support and remove this.
982   if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
983     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
984                        "code model and indirect thunks not yet implemented.");
985 
986   unsigned CallOp;
987   if (Is64Bit)
988     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
989   else
990     CallOp = X86::CALLpcrel32;
991 
992   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
993 
994   MachineInstrBuilder CI;
995   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
996 
997   // All current stack probes take AX and SP as input, clobber flags, and
998   // preserve all registers. x86_64 probes leave RSP unmodified.
999   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1000     // For the large code model, we have to call through a register. Use R11,
1001     // as it is scratch in all supported calling conventions.
1002     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1003         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1004     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1005   } else {
1006     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1007         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1008   }
1009 
1010   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1011   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1012   CI.addReg(AX, RegState::Implicit)
1013       .addReg(SP, RegState::Implicit)
1014       .addReg(AX, RegState::Define | RegState::Implicit)
1015       .addReg(SP, RegState::Define | RegState::Implicit)
1016       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1017 
1018   if (STI.isTargetWin64() || !STI.isOSWindows()) {
1019     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1020     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1021     // themselves. They also does not clobber %rax so we can reuse it when
1022     // adjusting %rsp.
1023     // All other platforms do not specify a particular ABI for the stack probe
1024     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1025     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1026         .addReg(SP)
1027         .addReg(AX);
1028   }
1029 
1030   if (InProlog) {
1031     // Apply the frame setup flag to all inserted instrs.
1032     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1033       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1034   }
1035 }
1036 
1037 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1038   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1039   // and might require smaller successive adjustments.
1040   const uint64_t Win64MaxSEHOffset = 128;
1041   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1042   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1043   return SEHFrameOffset & -16;
1044 }
1045 
1046 // If we're forcing a stack realignment we can't rely on just the frame
1047 // info, we need to know the ABI stack alignment as well in case we
1048 // have a call out.  Otherwise just make sure we have some alignment - we'll
1049 // go with the minimum SlotSize.
1050 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1051   const MachineFrameInfo &MFI = MF.getFrameInfo();
1052   Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1053   Align StackAlign = getStackAlign();
1054   if (MF.getFunction().hasFnAttribute("stackrealign")) {
1055     if (MFI.hasCalls())
1056       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1057     else if (MaxAlign < SlotSize)
1058       MaxAlign = Align(SlotSize);
1059   }
1060   return MaxAlign.value();
1061 }
1062 
1063 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1064                                           MachineBasicBlock::iterator MBBI,
1065                                           const DebugLoc &DL, unsigned Reg,
1066                                           uint64_t MaxAlign) const {
1067   uint64_t Val = -MaxAlign;
1068   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1069 
1070   MachineFunction &MF = *MBB.getParent();
1071   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1072   const X86TargetLowering &TLI = *STI.getTargetLowering();
1073   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1074   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1075 
1076   // We want to make sure that (in worst case) less than StackProbeSize bytes
1077   // are not probed after the AND. This assumption is used in
1078   // emitStackProbeInlineGeneric.
1079   if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1080     {
1081       NumFrameLoopProbe++;
1082       MachineBasicBlock *entryMBB =
1083           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1084       MachineBasicBlock *headMBB =
1085           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1086       MachineBasicBlock *bodyMBB =
1087           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1088       MachineBasicBlock *footMBB =
1089           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1090 
1091       MachineFunction::iterator MBBIter = MBB.getIterator();
1092       MF.insert(MBBIter, entryMBB);
1093       MF.insert(MBBIter, headMBB);
1094       MF.insert(MBBIter, bodyMBB);
1095       MF.insert(MBBIter, footMBB);
1096       const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1097       Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
1098                                   : Is64Bit         ? X86::R11D
1099                                                     : X86::EAX;
1100 
1101       // Setup entry block
1102       {
1103 
1104         entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1105         BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1106             .addReg(StackPtr)
1107             .setMIFlag(MachineInstr::FrameSetup);
1108         MachineInstr *MI =
1109             BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1110                 .addReg(FinalStackProbed)
1111                 .addImm(Val)
1112                 .setMIFlag(MachineInstr::FrameSetup);
1113 
1114         // The EFLAGS implicit def is dead.
1115         MI->getOperand(3).setIsDead();
1116 
1117         BuildMI(entryMBB, DL,
1118                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1119             .addReg(FinalStackProbed)
1120             .addReg(StackPtr)
1121             .setMIFlag(MachineInstr::FrameSetup);
1122         BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1123             .addMBB(&MBB)
1124             .addImm(X86::COND_E)
1125             .setMIFlag(MachineInstr::FrameSetup);
1126         entryMBB->addSuccessor(headMBB);
1127         entryMBB->addSuccessor(&MBB);
1128       }
1129 
1130       // Loop entry block
1131 
1132       {
1133         const unsigned SUBOpc =
1134             getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1135         BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1136             .addReg(StackPtr)
1137             .addImm(StackProbeSize)
1138             .setMIFlag(MachineInstr::FrameSetup);
1139 
1140         BuildMI(headMBB, DL,
1141                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1142             .addReg(FinalStackProbed)
1143             .addReg(StackPtr)
1144             .setMIFlag(MachineInstr::FrameSetup);
1145 
1146         // jump
1147         BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1148             .addMBB(footMBB)
1149             .addImm(X86::COND_B)
1150             .setMIFlag(MachineInstr::FrameSetup);
1151 
1152         headMBB->addSuccessor(bodyMBB);
1153         headMBB->addSuccessor(footMBB);
1154       }
1155 
1156       // setup loop body
1157       {
1158         addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1159                          .setMIFlag(MachineInstr::FrameSetup),
1160                      StackPtr, false, 0)
1161             .addImm(0)
1162             .setMIFlag(MachineInstr::FrameSetup);
1163 
1164         const unsigned SUBOpc =
1165             getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1166         BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1167             .addReg(StackPtr)
1168             .addImm(StackProbeSize)
1169             .setMIFlag(MachineInstr::FrameSetup);
1170 
1171         // cmp with stack pointer bound
1172         BuildMI(bodyMBB, DL,
1173                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1174             .addReg(FinalStackProbed)
1175             .addReg(StackPtr)
1176             .setMIFlag(MachineInstr::FrameSetup);
1177 
1178         // jump
1179         BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1180             .addMBB(bodyMBB)
1181             .addImm(X86::COND_B)
1182             .setMIFlag(MachineInstr::FrameSetup);
1183         bodyMBB->addSuccessor(bodyMBB);
1184         bodyMBB->addSuccessor(footMBB);
1185       }
1186 
1187       // setup loop footer
1188       {
1189         BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1190             .addReg(FinalStackProbed)
1191             .setMIFlag(MachineInstr::FrameSetup);
1192         addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1193                          .setMIFlag(MachineInstr::FrameSetup),
1194                      StackPtr, false, 0)
1195             .addImm(0)
1196             .setMIFlag(MachineInstr::FrameSetup);
1197         footMBB->addSuccessor(&MBB);
1198       }
1199 
1200       recomputeLiveIns(*headMBB);
1201       recomputeLiveIns(*bodyMBB);
1202       recomputeLiveIns(*footMBB);
1203       recomputeLiveIns(MBB);
1204     }
1205   } else {
1206     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1207                            .addReg(Reg)
1208                            .addImm(Val)
1209                            .setMIFlag(MachineInstr::FrameSetup);
1210 
1211     // The EFLAGS implicit def is dead.
1212     MI->getOperand(3).setIsDead();
1213   }
1214 }
1215 
1216 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1217   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1218   // clobbered by any interrupt handler.
1219   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1220          "MF used frame lowering for wrong subtarget");
1221   const Function &Fn = MF.getFunction();
1222   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1223   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1224 }
1225 
1226 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
1227   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1228 }
1229 
1230 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
1231   return !isWin64Prologue(MF) && MF.needsFrameMoves();
1232 }
1233 
1234 /// emitPrologue - Push callee-saved registers onto the stack, which
1235 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1236 /// space for local variables. Also emit labels used by the exception handler to
1237 /// generate the exception handling frames.
1238 
1239 /*
1240   Here's a gist of what gets emitted:
1241 
1242   ; Establish frame pointer, if needed
1243   [if needs FP]
1244       push  %rbp
1245       .cfi_def_cfa_offset 16
1246       .cfi_offset %rbp, -16
1247       .seh_pushreg %rpb
1248       mov  %rsp, %rbp
1249       .cfi_def_cfa_register %rbp
1250 
1251   ; Spill general-purpose registers
1252   [for all callee-saved GPRs]
1253       pushq %<reg>
1254       [if not needs FP]
1255          .cfi_def_cfa_offset (offset from RETADDR)
1256       .seh_pushreg %<reg>
1257 
1258   ; If the required stack alignment > default stack alignment
1259   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
1260   ; of unknown size in the stack frame.
1261   [if stack needs re-alignment]
1262       and  $MASK, %rsp
1263 
1264   ; Allocate space for locals
1265   [if target is Windows and allocated space > 4096 bytes]
1266       ; Windows needs special care for allocations larger
1267       ; than one page.
1268       mov $NNN, %rax
1269       call ___chkstk_ms/___chkstk
1270       sub  %rax, %rsp
1271   [else]
1272       sub  $NNN, %rsp
1273 
1274   [if needs FP]
1275       .seh_stackalloc (size of XMM spill slots)
1276       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1277   [else]
1278       .seh_stackalloc NNN
1279 
1280   ; Spill XMMs
1281   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1282   ; they may get spilled on any platform, if the current function
1283   ; calls @llvm.eh.unwind.init
1284   [if needs FP]
1285       [for all callee-saved XMM registers]
1286           movaps  %<xmm reg>, -MMM(%rbp)
1287       [for all callee-saved XMM registers]
1288           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1289               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1290   [else]
1291       [for all callee-saved XMM registers]
1292           movaps  %<xmm reg>, KKK(%rsp)
1293       [for all callee-saved XMM registers]
1294           .seh_savexmm %<xmm reg>, KKK
1295 
1296   .seh_endprologue
1297 
1298   [if needs base pointer]
1299       mov  %rsp, %rbx
1300       [if needs to restore base pointer]
1301           mov %rsp, -MMM(%rbp)
1302 
1303   ; Emit CFI info
1304   [if needs FP]
1305       [for all callee-saved registers]
1306           .cfi_offset %<reg>, (offset from %rbp)
1307   [else]
1308        .cfi_def_cfa_offset (offset from RETADDR)
1309       [for all callee-saved registers]
1310           .cfi_offset %<reg>, (offset from %rsp)
1311 
1312   Notes:
1313   - .seh directives are emitted only for Windows 64 ABI
1314   - .cv_fpo directives are emitted on win32 when emitting CodeView
1315   - .cfi directives are emitted for all other ABIs
1316   - for 32-bit code, substitute %e?? registers for %r??
1317 */
1318 
1319 void X86FrameLowering::emitPrologue(MachineFunction &MF,
1320                                     MachineBasicBlock &MBB) const {
1321   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1322          "MF used frame lowering for wrong subtarget");
1323   MachineBasicBlock::iterator MBBI = MBB.begin();
1324   MachineFrameInfo &MFI = MF.getFrameInfo();
1325   const Function &Fn = MF.getFunction();
1326   MachineModuleInfo &MMI = MF.getMMI();
1327   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1328   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1329   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
1330   bool IsFunclet = MBB.isEHFuncletEntry();
1331   EHPersonality Personality = EHPersonality::Unknown;
1332   if (Fn.hasPersonalityFn())
1333     Personality = classifyEHPersonality(Fn.getPersonalityFn());
1334   bool FnHasClrFunclet =
1335       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1336   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1337   bool HasFP = hasFP(MF);
1338   bool IsWin64Prologue = isWin64Prologue(MF);
1339   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1340   // FIXME: Emit FPO data for EH funclets.
1341   bool NeedsWinFPO =
1342       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1343   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1344   bool NeedsDwarfCFI = needsDwarfCFI(MF);
1345   Register FramePtr = TRI->getFrameRegister(MF);
1346   const Register MachineFramePtr =
1347       STI.isTarget64BitILP32()
1348           ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1349   Register BasePtr = TRI->getBaseRegister();
1350   bool HasWinCFI = false;
1351 
1352   // Debug location must be unknown since the first debug location is used
1353   // to determine the end of the prologue.
1354   DebugLoc DL;
1355 
1356   // Add RETADDR move area to callee saved frame size.
1357   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1358   if (TailCallReturnAddrDelta && IsWin64Prologue)
1359     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1360 
1361   if (TailCallReturnAddrDelta < 0)
1362     X86FI->setCalleeSavedFrameSize(
1363       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1364 
1365   const bool EmitStackProbeCall =
1366       STI.getTargetLowering()->hasStackProbeSymbol(MF);
1367   unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1368 
1369   if (HasFP && X86FI->hasSwiftAsyncContext()) {
1370     BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8),
1371             MachineFramePtr)
1372         .addUse(MachineFramePtr)
1373         .addImm(60)
1374         .setMIFlag(MachineInstr::FrameSetup);
1375   }
1376 
1377   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1378   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1379   // stack alignment.
1380   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1381       Fn.arg_size() == 2) {
1382     StackSize += 8;
1383     MFI.setStackSize(StackSize);
1384     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1385   }
1386 
1387   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1388   // function, and use up to 128 bytes of stack space, don't have a frame
1389   // pointer, calls, or dynamic alloca then we do not need to adjust the
1390   // stack pointer (we fit in the Red Zone). We also check that we don't
1391   // push and pop from the stack.
1392   if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
1393       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1394       !MFI.adjustsStack() &&                   // No calls.
1395       !EmitStackProbeCall &&                   // No stack probes.
1396       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1397       !MF.shouldSplitStack()) {                // Regular stack
1398     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1399     if (HasFP) MinSize += SlotSize;
1400     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1401     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1402     MFI.setStackSize(StackSize);
1403   }
1404 
1405   // Insert stack pointer adjustment for later moving of return addr.  Only
1406   // applies to tail call optimized functions where the callee argument stack
1407   // size is bigger than the callers.
1408   if (TailCallReturnAddrDelta < 0) {
1409     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1410                          /*InEpilogue=*/false)
1411         .setMIFlag(MachineInstr::FrameSetup);
1412   }
1413 
1414   // Mapping for machine moves:
1415   //
1416   //   DST: VirtualFP AND
1417   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1418   //        ELSE                        => DW_CFA_def_cfa
1419   //
1420   //   SRC: VirtualFP AND
1421   //        DST: Register               => DW_CFA_def_cfa_register
1422   //
1423   //   ELSE
1424   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1425   //        REG < 64                    => DW_CFA_offset + Reg
1426   //        ELSE                        => DW_CFA_offset_extended
1427 
1428   uint64_t NumBytes = 0;
1429   int stackGrowth = -SlotSize;
1430 
1431   // Find the funclet establisher parameter
1432   Register Establisher = X86::NoRegister;
1433   if (IsClrFunclet)
1434     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1435   else if (IsFunclet)
1436     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1437 
1438   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1439     // Immediately spill establisher into the home slot.
1440     // The runtime cares about this.
1441     // MOV64mr %rdx, 16(%rsp)
1442     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1443     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1444         .addReg(Establisher)
1445         .setMIFlag(MachineInstr::FrameSetup);
1446     MBB.addLiveIn(Establisher);
1447   }
1448 
1449   if (HasFP) {
1450     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1451 
1452     // Calculate required stack adjustment.
1453     uint64_t FrameSize = StackSize - SlotSize;
1454     // If required, include space for extra hidden slot for stashing base pointer.
1455     if (X86FI->getRestoreBasePointer())
1456       FrameSize += SlotSize;
1457 
1458     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1459 
1460     // Callee-saved registers are pushed on stack before the stack is realigned.
1461     if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
1462       NumBytes = alignTo(NumBytes, MaxAlign);
1463 
1464     // Save EBP/RBP into the appropriate stack slot.
1465     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1466       .addReg(MachineFramePtr, RegState::Kill)
1467       .setMIFlag(MachineInstr::FrameSetup);
1468 
1469     if (NeedsDwarfCFI) {
1470       // Mark the place where EBP/RBP was saved.
1471       // Define the current CFA rule to use the provided offset.
1472       assert(StackSize);
1473       BuildCFI(MBB, MBBI, DL,
1474                MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth));
1475 
1476       // Change the rule for the FramePtr to be an "offset" rule.
1477       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1478       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1479                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1480     }
1481 
1482     if (NeedsWinCFI) {
1483       HasWinCFI = true;
1484       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1485           .addImm(FramePtr)
1486           .setMIFlag(MachineInstr::FrameSetup);
1487     }
1488 
1489     if (!IsFunclet) {
1490       if (X86FI->hasSwiftAsyncContext()) {
1491         const auto &Attrs = MF.getFunction().getAttributes();
1492 
1493         // Before we update the live frame pointer we have to ensure there's a
1494         // valid (or null) asynchronous context in its slot just before FP in
1495         // the frame record, so store it now.
1496         if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
1497           // We have an initial context in r14, store it just before the frame
1498           // pointer.
1499           MBB.addLiveIn(X86::R14);
1500           BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1501               .addReg(X86::R14)
1502               .setMIFlag(MachineInstr::FrameSetup);
1503         } else {
1504           // No initial context, store null so that there's no pointer that
1505           // could be misused.
1506           BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8))
1507               .addImm(0)
1508               .setMIFlag(MachineInstr::FrameSetup);
1509         }
1510 
1511         if (NeedsWinCFI) {
1512           HasWinCFI = true;
1513           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1514               .addImm(X86::R14)
1515               .setMIFlag(MachineInstr::FrameSetup);
1516         }
1517 
1518         BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
1519             .addUse(X86::RSP)
1520             .addImm(1)
1521             .addUse(X86::NoRegister)
1522             .addImm(8)
1523             .addUse(X86::NoRegister)
1524             .setMIFlag(MachineInstr::FrameSetup);
1525         BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP)
1526             .addUse(X86::RSP)
1527             .addImm(8)
1528             .setMIFlag(MachineInstr::FrameSetup);
1529       }
1530 
1531       if (!IsWin64Prologue && !IsFunclet) {
1532         // Update EBP with the new base value.
1533         if (!X86FI->hasSwiftAsyncContext())
1534           BuildMI(MBB, MBBI, DL,
1535                   TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1536                   FramePtr)
1537               .addReg(StackPtr)
1538               .setMIFlag(MachineInstr::FrameSetup);
1539 
1540         if (NeedsDwarfCFI) {
1541           // Mark effective beginning of when frame pointer becomes valid.
1542           // Define the current CFA to use the EBP/RBP register.
1543           unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1544           BuildCFI(
1545               MBB, MBBI, DL,
1546               MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr));
1547         }
1548 
1549         if (NeedsWinFPO) {
1550           // .cv_fpo_setframe $FramePtr
1551           HasWinCFI = true;
1552           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1553               .addImm(FramePtr)
1554               .addImm(0)
1555               .setMIFlag(MachineInstr::FrameSetup);
1556         }
1557       }
1558     }
1559   } else {
1560     assert(!IsFunclet && "funclets without FPs not yet implemented");
1561     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1562   }
1563 
1564   // Update the offset adjustment, which is mainly used by codeview to translate
1565   // from ESP to VFRAME relative local variable offsets.
1566   if (!IsFunclet) {
1567     if (HasFP && TRI->hasStackRealignment(MF))
1568       MFI.setOffsetAdjustment(-NumBytes);
1569     else
1570       MFI.setOffsetAdjustment(-StackSize);
1571   }
1572 
1573   // For EH funclets, only allocate enough space for outgoing calls. Save the
1574   // NumBytes value that we would've used for the parent frame.
1575   unsigned ParentFrameNumBytes = NumBytes;
1576   if (IsFunclet)
1577     NumBytes = getWinEHFuncletFrameSize(MF);
1578 
1579   // Skip the callee-saved push instructions.
1580   bool PushedRegs = false;
1581   int StackOffset = 2 * stackGrowth;
1582 
1583   while (MBBI != MBB.end() &&
1584          MBBI->getFlag(MachineInstr::FrameSetup) &&
1585          (MBBI->getOpcode() == X86::PUSH32r ||
1586           MBBI->getOpcode() == X86::PUSH64r)) {
1587     PushedRegs = true;
1588     Register Reg = MBBI->getOperand(0).getReg();
1589     ++MBBI;
1590 
1591     if (!HasFP && NeedsDwarfCFI) {
1592       // Mark callee-saved push instruction.
1593       // Define the current CFA rule to use the provided offset.
1594       assert(StackSize);
1595       BuildCFI(MBB, MBBI, DL,
1596                MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset));
1597       StackOffset += stackGrowth;
1598     }
1599 
1600     if (NeedsWinCFI) {
1601       HasWinCFI = true;
1602       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1603           .addImm(Reg)
1604           .setMIFlag(MachineInstr::FrameSetup);
1605     }
1606   }
1607 
1608   // Realign stack after we pushed callee-saved registers (so that we'll be
1609   // able to calculate their offsets from the frame pointer).
1610   // Don't do this for Win64, it needs to realign the stack after the prologue.
1611   if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) {
1612     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1613     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1614 
1615     if (NeedsWinCFI) {
1616       HasWinCFI = true;
1617       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1618           .addImm(MaxAlign)
1619           .setMIFlag(MachineInstr::FrameSetup);
1620     }
1621   }
1622 
1623   // If there is an SUB32ri of ESP immediately before this instruction, merge
1624   // the two. This can be the case when tail call elimination is enabled and
1625   // the callee has more arguments then the caller.
1626   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1627 
1628   // Adjust stack pointer: ESP -= numbytes.
1629 
1630   // Windows and cygwin/mingw require a prologue helper routine when allocating
1631   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1632   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1633   // stack and adjust the stack pointer in one go.  The 64-bit version of
1634   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1635   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1636   // increments is necessary to ensure that the guard pages used by the OS
1637   // virtual memory manager are allocated in correct sequence.
1638   uint64_t AlignedNumBytes = NumBytes;
1639   if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
1640     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1641   if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1642     assert(!X86FI->getUsesRedZone() &&
1643            "The Red Zone is not accounted for in stack probes");
1644 
1645     // Check whether EAX is livein for this block.
1646     bool isEAXAlive = isEAXLiveIn(MBB);
1647 
1648     if (isEAXAlive) {
1649       if (Is64Bit) {
1650         // Save RAX
1651         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1652           .addReg(X86::RAX, RegState::Kill)
1653           .setMIFlag(MachineInstr::FrameSetup);
1654       } else {
1655         // Save EAX
1656         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1657           .addReg(X86::EAX, RegState::Kill)
1658           .setMIFlag(MachineInstr::FrameSetup);
1659       }
1660     }
1661 
1662     if (Is64Bit) {
1663       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1664       // Function prologue is responsible for adjusting the stack pointer.
1665       int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1666       if (isUInt<32>(Alloc)) {
1667         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1668             .addImm(Alloc)
1669             .setMIFlag(MachineInstr::FrameSetup);
1670       } else if (isInt<32>(Alloc)) {
1671         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1672             .addImm(Alloc)
1673             .setMIFlag(MachineInstr::FrameSetup);
1674       } else {
1675         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1676             .addImm(Alloc)
1677             .setMIFlag(MachineInstr::FrameSetup);
1678       }
1679     } else {
1680       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1681       // We'll also use 4 already allocated bytes for EAX.
1682       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1683           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1684           .setMIFlag(MachineInstr::FrameSetup);
1685     }
1686 
1687     // Call __chkstk, __chkstk_ms, or __alloca.
1688     emitStackProbe(MF, MBB, MBBI, DL, true);
1689 
1690     if (isEAXAlive) {
1691       // Restore RAX/EAX
1692       MachineInstr *MI;
1693       if (Is64Bit)
1694         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1695                           StackPtr, false, NumBytes - 8);
1696       else
1697         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1698                           StackPtr, false, NumBytes - 4);
1699       MI->setFlag(MachineInstr::FrameSetup);
1700       MBB.insert(MBBI, MI);
1701     }
1702   } else if (NumBytes) {
1703     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1704   }
1705 
1706   if (NeedsWinCFI && NumBytes) {
1707     HasWinCFI = true;
1708     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1709         .addImm(NumBytes)
1710         .setMIFlag(MachineInstr::FrameSetup);
1711   }
1712 
1713   int SEHFrameOffset = 0;
1714   unsigned SPOrEstablisher;
1715   if (IsFunclet) {
1716     if (IsClrFunclet) {
1717       // The establisher parameter passed to a CLR funclet is actually a pointer
1718       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1719       // to find the root function establisher frame by loading the PSPSym from
1720       // the intermediate frame.
1721       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1722       MachinePointerInfo NoInfo;
1723       MBB.addLiveIn(Establisher);
1724       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1725                    Establisher, false, PSPSlotOffset)
1726           .addMemOperand(MF.getMachineMemOperand(
1727               NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
1728       ;
1729       // Save the root establisher back into the current funclet's (mostly
1730       // empty) frame, in case a sub-funclet or the GC needs it.
1731       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1732                    false, PSPSlotOffset)
1733           .addReg(Establisher)
1734           .addMemOperand(MF.getMachineMemOperand(
1735               NoInfo,
1736               MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1737               SlotSize, Align(SlotSize)));
1738     }
1739     SPOrEstablisher = Establisher;
1740   } else {
1741     SPOrEstablisher = StackPtr;
1742   }
1743 
1744   if (IsWin64Prologue && HasFP) {
1745     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1746     // this calculation on the incoming establisher, which holds the value of
1747     // RSP from the parent frame at the end of the prologue.
1748     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1749     if (SEHFrameOffset)
1750       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1751                    SPOrEstablisher, false, SEHFrameOffset);
1752     else
1753       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1754           .addReg(SPOrEstablisher);
1755 
1756     // If this is not a funclet, emit the CFI describing our frame pointer.
1757     if (NeedsWinCFI && !IsFunclet) {
1758       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1759       HasWinCFI = true;
1760       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1761           .addImm(FramePtr)
1762           .addImm(SEHFrameOffset)
1763           .setMIFlag(MachineInstr::FrameSetup);
1764       if (isAsynchronousEHPersonality(Personality))
1765         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1766     }
1767   } else if (IsFunclet && STI.is32Bit()) {
1768     // Reset EBP / ESI to something good for funclets.
1769     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1770     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1771     // into the registration node so that the runtime will restore it for us.
1772     if (!MBB.isCleanupFuncletEntry()) {
1773       assert(Personality == EHPersonality::MSVC_CXX);
1774       Register FrameReg;
1775       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1776       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
1777       // ESP is the first field, so no extra displacement is needed.
1778       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1779                    false, EHRegOffset)
1780           .addReg(X86::ESP);
1781     }
1782   }
1783 
1784   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1785     const MachineInstr &FrameInstr = *MBBI;
1786     ++MBBI;
1787 
1788     if (NeedsWinCFI) {
1789       int FI;
1790       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1791         if (X86::FR64RegClass.contains(Reg)) {
1792           int Offset;
1793           Register IgnoredFrameReg;
1794           if (IsWin64Prologue && IsFunclet)
1795             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1796           else
1797             Offset =
1798                 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
1799                 SEHFrameOffset;
1800 
1801           HasWinCFI = true;
1802           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1803           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1804               .addImm(Reg)
1805               .addImm(Offset)
1806               .setMIFlag(MachineInstr::FrameSetup);
1807         }
1808       }
1809     }
1810   }
1811 
1812   if (NeedsWinCFI && HasWinCFI)
1813     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1814         .setMIFlag(MachineInstr::FrameSetup);
1815 
1816   if (FnHasClrFunclet && !IsFunclet) {
1817     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1818     // immediately after the prolog)  into the PSPSlot so that funclets
1819     // and the GC can recover it.
1820     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1821     auto PSPInfo = MachinePointerInfo::getFixedStack(
1822         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1823     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1824                  PSPSlotOffset)
1825         .addReg(StackPtr)
1826         .addMemOperand(MF.getMachineMemOperand(
1827             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1828             SlotSize, Align(SlotSize)));
1829   }
1830 
1831   // Realign stack after we spilled callee-saved registers (so that we'll be
1832   // able to calculate their offsets from the frame pointer).
1833   // Win64 requires aligning the stack after the prologue.
1834   if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
1835     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1836     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1837   }
1838 
1839   // We already dealt with stack realignment and funclets above.
1840   if (IsFunclet && STI.is32Bit())
1841     return;
1842 
1843   // If we need a base pointer, set it up here. It's whatever the value
1844   // of the stack pointer is at this point. Any variable size objects
1845   // will be allocated after this, so we can still use the base pointer
1846   // to reference locals.
1847   if (TRI->hasBasePointer(MF)) {
1848     // Update the base pointer with the current stack pointer.
1849     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1850     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1851       .addReg(SPOrEstablisher)
1852       .setMIFlag(MachineInstr::FrameSetup);
1853     if (X86FI->getRestoreBasePointer()) {
1854       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1855       // dependence chain. Used by SjLj EH.
1856       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1857       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1858                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1859         .addReg(SPOrEstablisher)
1860         .setMIFlag(MachineInstr::FrameSetup);
1861     }
1862 
1863     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1864       // Stash the value of the frame pointer relative to the base pointer for
1865       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1866       // it recovers the frame pointer from the base pointer rather than the
1867       // other way around.
1868       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1869       Register UsedReg;
1870       int Offset =
1871           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
1872               .getFixed();
1873       assert(UsedReg == BasePtr);
1874       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1875           .addReg(FramePtr)
1876           .setMIFlag(MachineInstr::FrameSetup);
1877     }
1878   }
1879 
1880   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1881     // Mark end of stack pointer adjustment.
1882     if (!HasFP && NumBytes) {
1883       // Define the current CFA rule to use the provided offset.
1884       assert(StackSize);
1885       BuildCFI(
1886           MBB, MBBI, DL,
1887           MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth));
1888     }
1889 
1890     // Emit DWARF info specifying the offsets of the callee-saved registers.
1891     emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
1892   }
1893 
1894   // X86 Interrupt handling function cannot assume anything about the direction
1895   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1896   // in each prologue of interrupt handler function.
1897   //
1898   // FIXME: Create "cld" instruction only in these cases:
1899   // 1. The interrupt handling function uses any of the "rep" instructions.
1900   // 2. Interrupt handling function calls another function.
1901   //
1902   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1903     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1904         .setMIFlag(MachineInstr::FrameSetup);
1905 
1906   // At this point we know if the function has WinCFI or not.
1907   MF.setHasWinCFI(HasWinCFI);
1908 }
1909 
1910 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1911     const MachineFunction &MF) const {
1912   // We can't use LEA instructions for adjusting the stack pointer if we don't
1913   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1914   // to deallocate the stack.
1915   // This means that we can use LEA for SP in two situations:
1916   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1917   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1918   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1919 }
1920 
1921 static bool isFuncletReturnInstr(MachineInstr &MI) {
1922   switch (MI.getOpcode()) {
1923   case X86::CATCHRET:
1924   case X86::CLEANUPRET:
1925     return true;
1926   default:
1927     return false;
1928   }
1929   llvm_unreachable("impossible");
1930 }
1931 
1932 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1933 // stack. It holds a pointer to the bottom of the root function frame.  The
1934 // establisher frame pointer passed to a nested funclet may point to the
1935 // (mostly empty) frame of its parent funclet, but it will need to find
1936 // the frame of the root function to access locals.  To facilitate this,
1937 // every funclet copies the pointer to the bottom of the root function
1938 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1939 // same offset for the PSPSym in the root function frame that's used in the
1940 // funclets' frames allows each funclet to dynamically accept any ancestor
1941 // frame as its establisher argument (the runtime doesn't guarantee the
1942 // immediate parent for some reason lost to history), and also allows the GC,
1943 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1944 // frame with only a single offset reported for the entire method.
1945 unsigned
1946 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1947   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1948   Register SPReg;
1949   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1950                                               /*IgnoreSPUpdates*/ true)
1951                    .getFixed();
1952   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1953   return static_cast<unsigned>(Offset);
1954 }
1955 
1956 unsigned
1957 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1958   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1959   // This is the size of the pushed CSRs.
1960   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1961   // This is the size of callee saved XMMs.
1962   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1963   unsigned XMMSize = WinEHXMMSlotInfo.size() *
1964                      TRI->getSpillSize(X86::VR128RegClass);
1965   // This is the amount of stack a funclet needs to allocate.
1966   unsigned UsedSize;
1967   EHPersonality Personality =
1968       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1969   if (Personality == EHPersonality::CoreCLR) {
1970     // CLR funclets need to hold enough space to include the PSPSym, at the
1971     // same offset from the stack pointer (immediately after the prolog) as it
1972     // resides at in the main function.
1973     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1974   } else {
1975     // Other funclets just need enough stack for outgoing call arguments.
1976     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1977   }
1978   // RBP is not included in the callee saved register block. After pushing RBP,
1979   // everything is 16 byte aligned. Everything we allocate before an outgoing
1980   // call must also be 16 byte aligned.
1981   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
1982   // Subtract out the size of the callee saved registers. This is how much stack
1983   // each funclet will allocate.
1984   return FrameSizeMinusRBP + XMMSize - CSSize;
1985 }
1986 
1987 static bool isTailCallOpcode(unsigned Opc) {
1988     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1989         Opc == X86::TCRETURNmi ||
1990         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1991         Opc == X86::TCRETURNmi64;
1992 }
1993 
1994 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1995                                     MachineBasicBlock &MBB) const {
1996   const MachineFrameInfo &MFI = MF.getFrameInfo();
1997   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1998   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1999   MachineBasicBlock::iterator MBBI = Terminator;
2000   DebugLoc DL;
2001   if (MBBI != MBB.end())
2002     DL = MBBI->getDebugLoc();
2003   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
2004   const bool Is64BitILP32 = STI.isTarget64BitILP32();
2005   Register FramePtr = TRI->getFrameRegister(MF);
2006   Register MachineFramePtr =
2007       Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
2008 
2009   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2010   bool NeedsWin64CFI =
2011       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
2012   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
2013 
2014   // Get the number of bytes to allocate from the FrameInfo.
2015   uint64_t StackSize = MFI.getStackSize();
2016   uint64_t MaxAlign = calculateMaxStackAlign(MF);
2017   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2018   bool HasFP = hasFP(MF);
2019   uint64_t NumBytes = 0;
2020 
2021   bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
2022                         !MF.getTarget().getTargetTriple().isOSWindows()) &&
2023                        MF.needsFrameMoves();
2024 
2025   if (IsFunclet) {
2026     assert(HasFP && "EH funclets without FP not yet implemented");
2027     NumBytes = getWinEHFuncletFrameSize(MF);
2028   } else if (HasFP) {
2029     // Calculate required stack adjustment.
2030     uint64_t FrameSize = StackSize - SlotSize;
2031     NumBytes = FrameSize - CSSize;
2032 
2033     // Callee-saved registers were pushed on stack before the stack was
2034     // realigned.
2035     if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
2036       NumBytes = alignTo(FrameSize, MaxAlign);
2037   } else {
2038     NumBytes = StackSize - CSSize;
2039   }
2040   uint64_t SEHStackAllocAmt = NumBytes;
2041 
2042   // AfterPop is the position to insert .cfi_restore.
2043   MachineBasicBlock::iterator AfterPop = MBBI;
2044   if (HasFP) {
2045     if (X86FI->hasSwiftAsyncContext()) {
2046       // Discard the context.
2047       int Offset = 16 + mergeSPUpdates(MBB, MBBI, true);
2048       emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true);
2049     }
2050     // Pop EBP.
2051     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
2052             MachineFramePtr)
2053         .setMIFlag(MachineInstr::FrameDestroy);
2054 
2055     // We need to reset FP to its untagged state on return. Bit 60 is currently
2056     // used to show the presence of an extended frame.
2057     if (X86FI->hasSwiftAsyncContext()) {
2058       BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8),
2059               MachineFramePtr)
2060           .addUse(MachineFramePtr)
2061           .addImm(60)
2062           .setMIFlag(MachineInstr::FrameDestroy);
2063     }
2064 
2065     if (NeedsDwarfCFI) {
2066       unsigned DwarfStackPtr =
2067           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2068       BuildCFI(MBB, MBBI, DL,
2069                MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize));
2070       if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2071         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2072         BuildCFI(MBB, AfterPop, DL,
2073                  MCCFIInstruction::createRestore(nullptr, DwarfFramePtr));
2074         --MBBI;
2075         --AfterPop;
2076       }
2077       --MBBI;
2078     }
2079   }
2080 
2081   MachineBasicBlock::iterator FirstCSPop = MBBI;
2082   // Skip the callee-saved pop instructions.
2083   while (MBBI != MBB.begin()) {
2084     MachineBasicBlock::iterator PI = std::prev(MBBI);
2085     unsigned Opc = PI->getOpcode();
2086 
2087     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2088       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2089           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2090           (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2091           (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)))
2092         break;
2093       FirstCSPop = PI;
2094     }
2095 
2096     --MBBI;
2097   }
2098   MBBI = FirstCSPop;
2099 
2100   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2101     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2102 
2103   if (MBBI != MBB.end())
2104     DL = MBBI->getDebugLoc();
2105 
2106   // If there is an ADD32ri or SUB32ri of ESP immediately before this
2107   // instruction, merge the two instructions.
2108   if (NumBytes || MFI.hasVarSizedObjects())
2109     NumBytes += mergeSPUpdates(MBB, MBBI, true);
2110 
2111   // If dynamic alloca is used, then reset esp to point to the last callee-saved
2112   // slot before popping them off! Same applies for the case, when stack was
2113   // realigned. Don't do this if this was a funclet epilogue, since the funclets
2114   // will not do realignment or dynamic stack allocation.
2115   if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
2116       !IsFunclet) {
2117     if (TRI->hasStackRealignment(MF))
2118       MBBI = FirstCSPop;
2119     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2120     uint64_t LEAAmount =
2121         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2122 
2123     if (X86FI->hasSwiftAsyncContext())
2124       LEAAmount -= 16;
2125 
2126     // There are only two legal forms of epilogue:
2127     // - add SEHAllocationSize, %rsp
2128     // - lea SEHAllocationSize(%FramePtr), %rsp
2129     //
2130     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2131     // However, we may use this sequence if we have a frame pointer because the
2132     // effects of the prologue can safely be undone.
2133     if (LEAAmount != 0) {
2134       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2135       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
2136                    FramePtr, false, LEAAmount);
2137       --MBBI;
2138     } else {
2139       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2140       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
2141         .addReg(FramePtr);
2142       --MBBI;
2143     }
2144   } else if (NumBytes) {
2145     // Adjust stack pointer back: ESP += numbytes.
2146     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2147     if (!hasFP(MF) && NeedsDwarfCFI) {
2148       // Define the current CFA rule to use the provided offset.
2149       BuildCFI(MBB, MBBI, DL,
2150                MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize));
2151     }
2152     --MBBI;
2153   }
2154 
2155   // Windows unwinder will not invoke function's exception handler if IP is
2156   // either in prologue or in epilogue.  This behavior causes a problem when a
2157   // call immediately precedes an epilogue, because the return address points
2158   // into the epilogue.  To cope with that, we insert an epilogue marker here,
2159   // then replace it with a 'nop' if it ends up immediately after a CALL in the
2160   // final emitted code.
2161   if (NeedsWin64CFI && MF.hasWinCFI())
2162     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2163 
2164   if (!hasFP(MF) && NeedsDwarfCFI) {
2165     MBBI = FirstCSPop;
2166     int64_t Offset = -CSSize - SlotSize;
2167     // Mark callee-saved pop instruction.
2168     // Define the current CFA rule to use the provided offset.
2169     while (MBBI != MBB.end()) {
2170       MachineBasicBlock::iterator PI = MBBI;
2171       unsigned Opc = PI->getOpcode();
2172       ++MBBI;
2173       if (Opc == X86::POP32r || Opc == X86::POP64r) {
2174         Offset += SlotSize;
2175         BuildCFI(MBB, MBBI, DL,
2176                  MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset));
2177       }
2178     }
2179   }
2180 
2181   // Emit DWARF info specifying the restores of the callee-saved registers.
2182   // For epilogue with return inside or being other block without successor,
2183   // no need to generate .cfi_restore for callee-saved registers.
2184   if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) {
2185     emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2186   }
2187 
2188   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2189     // Add the return addr area delta back since we are not tail calling.
2190     int Offset = -1 * X86FI->getTCReturnAddrDelta();
2191     assert(Offset >= 0 && "TCDelta should never be positive");
2192     if (Offset) {
2193       // Check for possible merge with preceding ADD instruction.
2194       Offset += mergeSPUpdates(MBB, Terminator, true);
2195       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2196     }
2197   }
2198 
2199   // Emit tilerelease for AMX kernel.
2200   const MachineRegisterInfo &MRI = MF.getRegInfo();
2201   const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID);
2202   for (unsigned I = 0; I < RC->getNumRegs(); I++)
2203     if (!MRI.reg_nodbg_empty(X86::TMM0 + I)) {
2204       BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2205       break;
2206     }
2207 }
2208 
2209 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2210                                                      int FI,
2211                                                      Register &FrameReg) const {
2212   const MachineFrameInfo &MFI = MF.getFrameInfo();
2213 
2214   bool IsFixed = MFI.isFixedObjectIndex(FI);
2215   // We can't calculate offset from frame pointer if the stack is realigned,
2216   // so enforce usage of stack/base pointer.  The base pointer is used when we
2217   // have dynamic allocas in addition to dynamic realignment.
2218   if (TRI->hasBasePointer(MF))
2219     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2220   else if (TRI->hasStackRealignment(MF))
2221     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2222   else
2223     FrameReg = TRI->getFrameRegister(MF);
2224 
2225   // Offset will hold the offset from the stack pointer at function entry to the
2226   // object.
2227   // We need to factor in additional offsets applied during the prologue to the
2228   // frame, base, and stack pointer depending on which is used.
2229   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2230   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2231   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2232   uint64_t StackSize = MFI.getStackSize();
2233   bool HasFP = hasFP(MF);
2234   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2235   int64_t FPDelta = 0;
2236 
2237   // In an x86 interrupt, remove the offset we added to account for the return
2238   // address from any stack object allocated in the caller's frame. Interrupts
2239   // do not have a standard return address. Fixed objects in the current frame,
2240   // such as SSE register spills, should not get this treatment.
2241   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2242       Offset >= 0) {
2243     Offset += getOffsetOfLocalArea();
2244   }
2245 
2246   if (IsWin64Prologue) {
2247     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2248 
2249     // Calculate required stack adjustment.
2250     uint64_t FrameSize = StackSize - SlotSize;
2251     // If required, include space for extra hidden slot for stashing base pointer.
2252     if (X86FI->getRestoreBasePointer())
2253       FrameSize += SlotSize;
2254     uint64_t NumBytes = FrameSize - CSSize;
2255 
2256     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2257     if (FI && FI == X86FI->getFAIndex())
2258       return StackOffset::getFixed(-SEHFrameOffset);
2259 
2260     // FPDelta is the offset from the "traditional" FP location of the old base
2261     // pointer followed by return address and the location required by the
2262     // restricted Win64 prologue.
2263     // Add FPDelta to all offsets below that go through the frame pointer.
2264     FPDelta = FrameSize - SEHFrameOffset;
2265     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2266            "FPDelta isn't aligned per the Win64 ABI!");
2267   }
2268 
2269 
2270   if (TRI->hasBasePointer(MF)) {
2271     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
2272     if (FI < 0) {
2273       // Skip the saved EBP.
2274       return StackOffset::getFixed(Offset + SlotSize + FPDelta);
2275     } else {
2276       assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2277       return StackOffset::getFixed(Offset + StackSize);
2278     }
2279   } else if (TRI->hasStackRealignment(MF)) {
2280     if (FI < 0) {
2281       // Skip the saved EBP.
2282       return StackOffset::getFixed(Offset + SlotSize + FPDelta);
2283     } else {
2284       assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2285       return StackOffset::getFixed(Offset + StackSize);
2286     }
2287     // FIXME: Support tail calls
2288   } else {
2289     if (!HasFP)
2290       return StackOffset::getFixed(Offset + StackSize);
2291 
2292     // Skip the saved EBP.
2293     Offset += SlotSize;
2294 
2295     // Skip the RETADDR move area
2296     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2297     if (TailCallReturnAddrDelta < 0)
2298       Offset -= TailCallReturnAddrDelta;
2299   }
2300 
2301   return StackOffset::getFixed(Offset + FPDelta);
2302 }
2303 
2304 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2305                                               Register &FrameReg) const {
2306   const MachineFrameInfo &MFI = MF.getFrameInfo();
2307   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2308   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2309   const auto it = WinEHXMMSlotInfo.find(FI);
2310 
2311   if (it == WinEHXMMSlotInfo.end())
2312     return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2313 
2314   FrameReg = TRI->getStackRegister();
2315   return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2316          it->second;
2317 }
2318 
2319 StackOffset
2320 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2321                                            Register &FrameReg,
2322                                            int Adjustment) const {
2323   const MachineFrameInfo &MFI = MF.getFrameInfo();
2324   FrameReg = TRI->getStackRegister();
2325   return StackOffset::getFixed(MFI.getObjectOffset(FI) -
2326                                getOffsetOfLocalArea() + Adjustment);
2327 }
2328 
2329 StackOffset
2330 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2331                                                  int FI, Register &FrameReg,
2332                                                  bool IgnoreSPUpdates) const {
2333 
2334   const MachineFrameInfo &MFI = MF.getFrameInfo();
2335   // Does not include any dynamic realign.
2336   const uint64_t StackSize = MFI.getStackSize();
2337   // LLVM arranges the stack as follows:
2338   //   ...
2339   //   ARG2
2340   //   ARG1
2341   //   RETADDR
2342   //   PUSH RBP   <-- RBP points here
2343   //   PUSH CSRs
2344   //   ~~~~~~~    <-- possible stack realignment (non-win64)
2345   //   ...
2346   //   STACK OBJECTS
2347   //   ...        <-- RSP after prologue points here
2348   //   ~~~~~~~    <-- possible stack realignment (win64)
2349   //
2350   // if (hasVarSizedObjects()):
2351   //   ...        <-- "base pointer" (ESI/RBX) points here
2352   //   DYNAMIC ALLOCAS
2353   //   ...        <-- RSP points here
2354   //
2355   // Case 1: In the simple case of no stack realignment and no dynamic
2356   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2357   // with fixed offsets from RSP.
2358   //
2359   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2360   // stack objects are addressed with RBP and regular stack objects with RSP.
2361   //
2362   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2363   // to address stack arguments for outgoing calls and nothing else. The "base
2364   // pointer" points to local variables, and RBP points to fixed objects.
2365   //
2366   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2367   // answer we give is relative to the SP after the prologue, and not the
2368   // SP in the middle of the function.
2369 
2370   if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) &&
2371       !STI.isTargetWin64())
2372     return getFrameIndexReference(MF, FI, FrameReg);
2373 
2374   // If !hasReservedCallFrame the function might have SP adjustement in the
2375   // body.  So, even though the offset is statically known, it depends on where
2376   // we are in the function.
2377   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2378     return getFrameIndexReference(MF, FI, FrameReg);
2379 
2380   // We don't handle tail calls, and shouldn't be seeing them either.
2381   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2382          "we don't handle this case!");
2383 
2384   // This is how the math works out:
2385   //
2386   //  %rsp grows (i.e. gets lower) left to right. Each box below is
2387   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
2388   //  get to.
2389   //
2390   //    ----------------------------------
2391   //    | BP | Obj0 | Obj1 | ... | ObjN |
2392   //    ----------------------------------
2393   //    ^    ^      ^                   ^
2394   //    A    B      C                   E
2395   //
2396   // A is the incoming stack pointer.
2397   // (B - A) is the local area offset (-8 for x86-64) [1]
2398   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2399   //
2400   // |(E - B)| is the StackSize (absolute value, positive).  For a
2401   // stack that grown down, this works out to be (B - E). [3]
2402   //
2403   // E is also the value of %rsp after stack has been set up, and we
2404   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
2405   // (C - E) == (C - A) - (B - A) + (B - E)
2406   //            { Using [1], [2] and [3] above }
2407   //         == getObjectOffset - LocalAreaOffset + StackSize
2408 
2409   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2410 }
2411 
2412 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2413     MachineFunction &MF, const TargetRegisterInfo *TRI,
2414     std::vector<CalleeSavedInfo> &CSI) const {
2415   MachineFrameInfo &MFI = MF.getFrameInfo();
2416   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2417 
2418   unsigned CalleeSavedFrameSize = 0;
2419   unsigned XMMCalleeSavedFrameSize = 0;
2420   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2421   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2422 
2423   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2424 
2425   if (TailCallReturnAddrDelta < 0) {
2426     // create RETURNADDR area
2427     //   arg
2428     //   arg
2429     //   RETADDR
2430     //   { ...
2431     //     RETADDR area
2432     //     ...
2433     //   }
2434     //   [EBP]
2435     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2436                            TailCallReturnAddrDelta - SlotSize, true);
2437   }
2438 
2439   // Spill the BasePtr if it's used.
2440   if (this->TRI->hasBasePointer(MF)) {
2441     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2442     if (MF.hasEHFunclets()) {
2443       int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2444       X86FI->setHasSEHFramePtrSave(true);
2445       X86FI->setSEHFramePtrSaveIndex(FI);
2446     }
2447   }
2448 
2449   if (hasFP(MF)) {
2450     // emitPrologue always spills frame register the first thing.
2451     SpillSlotOffset -= SlotSize;
2452     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2453 
2454     // The async context lives directly before the frame pointer, and we
2455     // allocate a second slot to preserve stack alignment.
2456     if (X86FI->hasSwiftAsyncContext()) {
2457       SpillSlotOffset -= SlotSize;
2458       MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2459       SpillSlotOffset -= SlotSize;
2460     }
2461 
2462     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2463     // the frame register, we can delete it from CSI list and not have to worry
2464     // about avoiding it later.
2465     Register FPReg = TRI->getFrameRegister(MF);
2466     for (unsigned i = 0; i < CSI.size(); ++i) {
2467       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2468         CSI.erase(CSI.begin() + i);
2469         break;
2470       }
2471     }
2472   }
2473 
2474   // Assign slots for GPRs. It increases frame size.
2475   for (unsigned i = CSI.size(); i != 0; --i) {
2476     unsigned Reg = CSI[i - 1].getReg();
2477 
2478     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2479       continue;
2480 
2481     SpillSlotOffset -= SlotSize;
2482     CalleeSavedFrameSize += SlotSize;
2483 
2484     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2485     CSI[i - 1].setFrameIdx(SlotIndex);
2486   }
2487 
2488   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2489   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2490 
2491   // Assign slots for XMMs.
2492   for (unsigned i = CSI.size(); i != 0; --i) {
2493     unsigned Reg = CSI[i - 1].getReg();
2494     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2495       continue;
2496 
2497     // If this is k-register make sure we lookup via the largest legal type.
2498     MVT VT = MVT::Other;
2499     if (X86::VK16RegClass.contains(Reg))
2500       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2501 
2502     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2503     unsigned Size = TRI->getSpillSize(*RC);
2504     Align Alignment = TRI->getSpillAlign(*RC);
2505     // ensure alignment
2506     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2507     SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2508 
2509     // spill into slot
2510     SpillSlotOffset -= Size;
2511     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2512     CSI[i - 1].setFrameIdx(SlotIndex);
2513     MFI.ensureMaxAlignment(Alignment);
2514 
2515     // Save the start offset and size of XMM in stack frame for funclets.
2516     if (X86::VR128RegClass.contains(Reg)) {
2517       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2518       XMMCalleeSavedFrameSize += Size;
2519     }
2520   }
2521 
2522   return true;
2523 }
2524 
2525 bool X86FrameLowering::spillCalleeSavedRegisters(
2526     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2527     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2528   DebugLoc DL = MBB.findDebugLoc(MI);
2529 
2530   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2531   // for us, and there are no XMM CSRs on Win32.
2532   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2533     return true;
2534 
2535   // Push GPRs. It increases frame size.
2536   const MachineFunction &MF = *MBB.getParent();
2537   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2538   for (unsigned i = CSI.size(); i != 0; --i) {
2539     unsigned Reg = CSI[i - 1].getReg();
2540 
2541     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2542       continue;
2543 
2544     const MachineRegisterInfo &MRI = MF.getRegInfo();
2545     bool isLiveIn = MRI.isLiveIn(Reg);
2546     if (!isLiveIn)
2547       MBB.addLiveIn(Reg);
2548 
2549     // Decide whether we can add a kill flag to the use.
2550     bool CanKill = !isLiveIn;
2551     // Check if any subregister is live-in
2552     if (CanKill) {
2553       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2554         if (MRI.isLiveIn(*AReg)) {
2555           CanKill = false;
2556           break;
2557         }
2558       }
2559     }
2560 
2561     // Do not set a kill flag on values that are also marked as live-in. This
2562     // happens with the @llvm-returnaddress intrinsic and with arguments
2563     // passed in callee saved registers.
2564     // Omitting the kill flags is conservatively correct even if the live-in
2565     // is not used after all.
2566     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2567       .setMIFlag(MachineInstr::FrameSetup);
2568   }
2569 
2570   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2571   // It can be done by spilling XMMs to stack frame.
2572   for (unsigned i = CSI.size(); i != 0; --i) {
2573     unsigned Reg = CSI[i-1].getReg();
2574     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2575       continue;
2576 
2577     // If this is k-register make sure we lookup via the largest legal type.
2578     MVT VT = MVT::Other;
2579     if (X86::VK16RegClass.contains(Reg))
2580       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2581 
2582     // Add the callee-saved register as live-in. It's killed at the spill.
2583     MBB.addLiveIn(Reg);
2584     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2585 
2586     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2587                             TRI);
2588     --MI;
2589     MI->setFlag(MachineInstr::FrameSetup);
2590     ++MI;
2591   }
2592 
2593   return true;
2594 }
2595 
2596 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2597                                                MachineBasicBlock::iterator MBBI,
2598                                                MachineInstr *CatchRet) const {
2599   // SEH shouldn't use catchret.
2600   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2601              MBB.getParent()->getFunction().getPersonalityFn())) &&
2602          "SEH should not use CATCHRET");
2603   const DebugLoc &DL = CatchRet->getDebugLoc();
2604   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2605 
2606   // Fill EAX/RAX with the address of the target block.
2607   if (STI.is64Bit()) {
2608     // LEA64r CatchRetTarget(%rip), %rax
2609     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2610         .addReg(X86::RIP)
2611         .addImm(0)
2612         .addReg(0)
2613         .addMBB(CatchRetTarget)
2614         .addReg(0);
2615   } else {
2616     // MOV32ri $CatchRetTarget, %eax
2617     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2618         .addMBB(CatchRetTarget);
2619   }
2620 
2621   // Record that we've taken the address of CatchRetTarget and no longer just
2622   // reference it in a terminator.
2623   CatchRetTarget->setHasAddressTaken();
2624 }
2625 
2626 bool X86FrameLowering::restoreCalleeSavedRegisters(
2627     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2628     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2629   if (CSI.empty())
2630     return false;
2631 
2632   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2633     // Don't restore CSRs in 32-bit EH funclets. Matches
2634     // spillCalleeSavedRegisters.
2635     if (STI.is32Bit())
2636       return true;
2637     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2638     // funclets. emitEpilogue transforms these to normal jumps.
2639     if (MI->getOpcode() == X86::CATCHRET) {
2640       const Function &F = MBB.getParent()->getFunction();
2641       bool IsSEH = isAsynchronousEHPersonality(
2642           classifyEHPersonality(F.getPersonalityFn()));
2643       if (IsSEH)
2644         return true;
2645     }
2646   }
2647 
2648   DebugLoc DL = MBB.findDebugLoc(MI);
2649 
2650   // Reload XMMs from stack frame.
2651   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2652     unsigned Reg = CSI[i].getReg();
2653     if (X86::GR64RegClass.contains(Reg) ||
2654         X86::GR32RegClass.contains(Reg))
2655       continue;
2656 
2657     // If this is k-register make sure we lookup via the largest legal type.
2658     MVT VT = MVT::Other;
2659     if (X86::VK16RegClass.contains(Reg))
2660       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2661 
2662     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2663     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2664   }
2665 
2666   // POP GPRs.
2667   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2668   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2669     unsigned Reg = CSI[i].getReg();
2670     if (!X86::GR64RegClass.contains(Reg) &&
2671         !X86::GR32RegClass.contains(Reg))
2672       continue;
2673 
2674     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2675         .setMIFlag(MachineInstr::FrameDestroy);
2676   }
2677   return true;
2678 }
2679 
2680 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2681                                             BitVector &SavedRegs,
2682                                             RegScavenger *RS) const {
2683   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2684 
2685   // Spill the BasePtr if it's used.
2686   if (TRI->hasBasePointer(MF)){
2687     Register BasePtr = TRI->getBaseRegister();
2688     if (STI.isTarget64BitILP32())
2689       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2690     SavedRegs.set(BasePtr);
2691   }
2692 }
2693 
2694 static bool
2695 HasNestArgument(const MachineFunction *MF) {
2696   const Function &F = MF->getFunction();
2697   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2698        I != E; I++) {
2699     if (I->hasNestAttr() && !I->use_empty())
2700       return true;
2701   }
2702   return false;
2703 }
2704 
2705 /// GetScratchRegister - Get a temp register for performing work in the
2706 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2707 /// and the properties of the function either one or two registers will be
2708 /// needed. Set primary to true for the first register, false for the second.
2709 static unsigned
2710 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2711   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2712 
2713   // Erlang stuff.
2714   if (CallingConvention == CallingConv::HiPE) {
2715     if (Is64Bit)
2716       return Primary ? X86::R14 : X86::R13;
2717     else
2718       return Primary ? X86::EBX : X86::EDI;
2719   }
2720 
2721   if (Is64Bit) {
2722     if (IsLP64)
2723       return Primary ? X86::R11 : X86::R12;
2724     else
2725       return Primary ? X86::R11D : X86::R12D;
2726   }
2727 
2728   bool IsNested = HasNestArgument(&MF);
2729 
2730   if (CallingConvention == CallingConv::X86_FastCall ||
2731       CallingConvention == CallingConv::Fast ||
2732       CallingConvention == CallingConv::Tail) {
2733     if (IsNested)
2734       report_fatal_error("Segmented stacks does not support fastcall with "
2735                          "nested function.");
2736     return Primary ? X86::EAX : X86::ECX;
2737   }
2738   if (IsNested)
2739     return Primary ? X86::EDX : X86::EAX;
2740   return Primary ? X86::ECX : X86::EAX;
2741 }
2742 
2743 // The stack limit in the TCB is set to this many bytes above the actual stack
2744 // limit.
2745 static const uint64_t kSplitStackAvailable = 256;
2746 
2747 void X86FrameLowering::adjustForSegmentedStacks(
2748     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2749   MachineFrameInfo &MFI = MF.getFrameInfo();
2750   uint64_t StackSize;
2751   unsigned TlsReg, TlsOffset;
2752   DebugLoc DL;
2753 
2754   // To support shrink-wrapping we would need to insert the new blocks
2755   // at the right place and update the branches to PrologueMBB.
2756   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2757 
2758   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2759   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2760          "Scratch register is live-in");
2761 
2762   if (MF.getFunction().isVarArg())
2763     report_fatal_error("Segmented stacks do not support vararg functions.");
2764   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2765       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2766       !STI.isTargetDragonFly())
2767     report_fatal_error("Segmented stacks not supported on this platform.");
2768 
2769   // Eventually StackSize will be calculated by a link-time pass; which will
2770   // also decide whether checking code needs to be injected into this particular
2771   // prologue.
2772   StackSize = MFI.getStackSize();
2773 
2774   // Do not generate a prologue for leaf functions with a stack of size zero.
2775   // For non-leaf functions we have to allow for the possibility that the
2776   // callis to a non-split function, as in PR37807. This function could also
2777   // take the address of a non-split function. When the linker tries to adjust
2778   // its non-existent prologue, it would fail with an error. Mark the object
2779   // file so that such failures are not errors. See this Go language bug-report
2780   // https://go-review.googlesource.com/c/go/+/148819/
2781   if (StackSize == 0 && !MFI.hasTailCall()) {
2782     MF.getMMI().setHasNosplitStack(true);
2783     return;
2784   }
2785 
2786   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2787   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2788   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2789   bool IsNested = false;
2790 
2791   // We need to know if the function has a nest argument only in 64 bit mode.
2792   if (Is64Bit)
2793     IsNested = HasNestArgument(&MF);
2794 
2795   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2796   // allocMBB needs to be last (terminating) instruction.
2797 
2798   for (const auto &LI : PrologueMBB.liveins()) {
2799     allocMBB->addLiveIn(LI);
2800     checkMBB->addLiveIn(LI);
2801   }
2802 
2803   if (IsNested)
2804     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2805 
2806   MF.push_front(allocMBB);
2807   MF.push_front(checkMBB);
2808 
2809   // When the frame size is less than 256 we just compare the stack
2810   // boundary directly to the value of the stack pointer, per gcc.
2811   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2812 
2813   // Read the limit off the current stacklet off the stack_guard location.
2814   if (Is64Bit) {
2815     if (STI.isTargetLinux()) {
2816       TlsReg = X86::FS;
2817       TlsOffset = IsLP64 ? 0x70 : 0x40;
2818     } else if (STI.isTargetDarwin()) {
2819       TlsReg = X86::GS;
2820       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2821     } else if (STI.isTargetWin64()) {
2822       TlsReg = X86::GS;
2823       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2824     } else if (STI.isTargetFreeBSD()) {
2825       TlsReg = X86::FS;
2826       TlsOffset = 0x18;
2827     } else if (STI.isTargetDragonFly()) {
2828       TlsReg = X86::FS;
2829       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2830     } else {
2831       report_fatal_error("Segmented stacks not supported on this platform.");
2832     }
2833 
2834     if (CompareStackPointer)
2835       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2836     else
2837       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2838         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2839 
2840     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2841       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2842   } else {
2843     if (STI.isTargetLinux()) {
2844       TlsReg = X86::GS;
2845       TlsOffset = 0x30;
2846     } else if (STI.isTargetDarwin()) {
2847       TlsReg = X86::GS;
2848       TlsOffset = 0x48 + 90*4;
2849     } else if (STI.isTargetWin32()) {
2850       TlsReg = X86::FS;
2851       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2852     } else if (STI.isTargetDragonFly()) {
2853       TlsReg = X86::FS;
2854       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2855     } else if (STI.isTargetFreeBSD()) {
2856       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2857     } else {
2858       report_fatal_error("Segmented stacks not supported on this platform.");
2859     }
2860 
2861     if (CompareStackPointer)
2862       ScratchReg = X86::ESP;
2863     else
2864       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2865         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2866 
2867     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2868         STI.isTargetDragonFly()) {
2869       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2870         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2871     } else if (STI.isTargetDarwin()) {
2872 
2873       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2874       unsigned ScratchReg2;
2875       bool SaveScratch2;
2876       if (CompareStackPointer) {
2877         // The primary scratch register is available for holding the TLS offset.
2878         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2879         SaveScratch2 = false;
2880       } else {
2881         // Need to use a second register to hold the TLS offset
2882         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2883 
2884         // Unfortunately, with fastcc the second scratch register may hold an
2885         // argument.
2886         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2887       }
2888 
2889       // If Scratch2 is live-in then it needs to be saved.
2890       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2891              "Scratch register is live-in and not saved");
2892 
2893       if (SaveScratch2)
2894         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2895           .addReg(ScratchReg2, RegState::Kill);
2896 
2897       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2898         .addImm(TlsOffset);
2899       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2900         .addReg(ScratchReg)
2901         .addReg(ScratchReg2).addImm(1).addReg(0)
2902         .addImm(0)
2903         .addReg(TlsReg);
2904 
2905       if (SaveScratch2)
2906         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2907     }
2908   }
2909 
2910   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2911   // It jumps to normal execution of the function body.
2912   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2913 
2914   // On 32 bit we first push the arguments size and then the frame size. On 64
2915   // bit, we pass the stack frame size in r10 and the argument size in r11.
2916   if (Is64Bit) {
2917     // Functions with nested arguments use R10, so it needs to be saved across
2918     // the call to _morestack
2919 
2920     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2921     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2922     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2923     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2924     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2925 
2926     if (IsNested)
2927       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2928 
2929     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2930       .addImm(StackSize);
2931     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2932       .addImm(X86FI->getArgumentStackSize());
2933   } else {
2934     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2935       .addImm(X86FI->getArgumentStackSize());
2936     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2937       .addImm(StackSize);
2938   }
2939 
2940   // __morestack is in libgcc
2941   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2942     // Under the large code model, we cannot assume that __morestack lives
2943     // within 2^31 bytes of the call site, so we cannot use pc-relative
2944     // addressing. We cannot perform the call via a temporary register,
2945     // as the rax register may be used to store the static chain, and all
2946     // other suitable registers may be either callee-save or used for
2947     // parameter passing. We cannot use the stack at this point either
2948     // because __morestack manipulates the stack directly.
2949     //
2950     // To avoid these issues, perform an indirect call via a read-only memory
2951     // location containing the address.
2952     //
2953     // This solution is not perfect, as it assumes that the .rodata section
2954     // is laid out within 2^31 bytes of each function body, but this seems
2955     // to be sufficient for JIT.
2956     // FIXME: Add retpoline support and remove the error here..
2957     if (STI.useIndirectThunkCalls())
2958       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2959                          "code model and thunks not yet implemented.");
2960     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2961         .addReg(X86::RIP)
2962         .addImm(0)
2963         .addReg(0)
2964         .addExternalSymbol("__morestack_addr")
2965         .addReg(0);
2966     MF.getMMI().setUsesMorestackAddr(true);
2967   } else {
2968     if (Is64Bit)
2969       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2970         .addExternalSymbol("__morestack");
2971     else
2972       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2973         .addExternalSymbol("__morestack");
2974   }
2975 
2976   if (IsNested)
2977     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2978   else
2979     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2980 
2981   allocMBB->addSuccessor(&PrologueMBB);
2982 
2983   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2984   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2985 
2986 #ifdef EXPENSIVE_CHECKS
2987   MF.verify();
2988 #endif
2989 }
2990 
2991 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2992 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2993 /// to fields it needs, through a named metadata node "hipe.literals" containing
2994 /// name-value pairs.
2995 static unsigned getHiPELiteral(
2996     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2997   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2998     MDNode *Node = HiPELiteralsMD->getOperand(i);
2999     if (Node->getNumOperands() != 2) continue;
3000     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
3001     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
3002     if (!NodeName || !NodeVal) continue;
3003     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
3004     if (ValConst && NodeName->getString() == LiteralName) {
3005       return ValConst->getZExtValue();
3006     }
3007   }
3008 
3009   report_fatal_error("HiPE literal " + LiteralName
3010                      + " required but not provided");
3011 }
3012 
3013 // Return true if there are no non-ehpad successors to MBB and there are no
3014 // non-meta instructions between MBBI and MBB.end().
3015 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
3016                                   MachineBasicBlock::const_iterator MBBI) {
3017   return llvm::all_of(
3018              MBB.successors(),
3019              [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
3020          std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
3021            return MI.isMetaInstruction();
3022          });
3023 }
3024 
3025 /// Erlang programs may need a special prologue to handle the stack size they
3026 /// might need at runtime. That is because Erlang/OTP does not implement a C
3027 /// stack but uses a custom implementation of hybrid stack/heap architecture.
3028 /// (for more information see Eric Stenman's Ph.D. thesis:
3029 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3030 ///
3031 /// CheckStack:
3032 ///       temp0 = sp - MaxStack
3033 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3034 /// OldStart:
3035 ///       ...
3036 /// IncStack:
3037 ///       call inc_stack   # doubles the stack space
3038 ///       temp0 = sp - MaxStack
3039 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3040 void X86FrameLowering::adjustForHiPEPrologue(
3041     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3042   MachineFrameInfo &MFI = MF.getFrameInfo();
3043   DebugLoc DL;
3044 
3045   // To support shrink-wrapping we would need to insert the new blocks
3046   // at the right place and update the branches to PrologueMBB.
3047   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3048 
3049   // HiPE-specific values
3050   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
3051     ->getNamedMetadata("hipe.literals");
3052   if (!HiPELiteralsMD)
3053     report_fatal_error(
3054         "Can't generate HiPE prologue without runtime parameters");
3055   const unsigned HipeLeafWords
3056     = getHiPELiteral(HiPELiteralsMD,
3057                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3058   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
3059   const unsigned Guaranteed = HipeLeafWords * SlotSize;
3060   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
3061                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
3062   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
3063 
3064   assert(STI.isTargetLinux() &&
3065          "HiPE prologue is only supported on Linux operating systems.");
3066 
3067   // Compute the largest caller's frame that is needed to fit the callees'
3068   // frames. This 'MaxStack' is computed from:
3069   //
3070   // a) the fixed frame size, which is the space needed for all spilled temps,
3071   // b) outgoing on-stack parameter areas, and
3072   // c) the minimum stack space this function needs to make available for the
3073   //    functions it calls (a tunable ABI property).
3074   if (MFI.hasCalls()) {
3075     unsigned MoreStackForCalls = 0;
3076 
3077     for (auto &MBB : MF) {
3078       for (auto &MI : MBB) {
3079         if (!MI.isCall())
3080           continue;
3081 
3082         // Get callee operand.
3083         const MachineOperand &MO = MI.getOperand(0);
3084 
3085         // Only take account of global function calls (no closures etc.).
3086         if (!MO.isGlobal())
3087           continue;
3088 
3089         const Function *F = dyn_cast<Function>(MO.getGlobal());
3090         if (!F)
3091           continue;
3092 
3093         // Do not update 'MaxStack' for primitive and built-in functions
3094         // (encoded with names either starting with "erlang."/"bif_" or not
3095         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3096         // "_", such as the BIF "suspend_0") as they are executed on another
3097         // stack.
3098         if (F->getName().find("erlang.") != StringRef::npos ||
3099             F->getName().find("bif_") != StringRef::npos ||
3100             F->getName().find_first_of("._") == StringRef::npos)
3101           continue;
3102 
3103         unsigned CalleeStkArity =
3104           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
3105         if (HipeLeafWords - 1 > CalleeStkArity)
3106           MoreStackForCalls = std::max(MoreStackForCalls,
3107                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3108       }
3109     }
3110     MaxStack += MoreStackForCalls;
3111   }
3112 
3113   // If the stack frame needed is larger than the guaranteed then runtime checks
3114   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3115   if (MaxStack > Guaranteed) {
3116     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3117     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3118 
3119     for (const auto &LI : PrologueMBB.liveins()) {
3120       stackCheckMBB->addLiveIn(LI);
3121       incStackMBB->addLiveIn(LI);
3122     }
3123 
3124     MF.push_front(incStackMBB);
3125     MF.push_front(stackCheckMBB);
3126 
3127     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3128     unsigned LEAop, CMPop, CALLop;
3129     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3130     if (Is64Bit) {
3131       SPReg = X86::RSP;
3132       PReg  = X86::RBP;
3133       LEAop = X86::LEA64r;
3134       CMPop = X86::CMP64rm;
3135       CALLop = X86::CALL64pcrel32;
3136     } else {
3137       SPReg = X86::ESP;
3138       PReg  = X86::EBP;
3139       LEAop = X86::LEA32r;
3140       CMPop = X86::CMP32rm;
3141       CALLop = X86::CALLpcrel32;
3142     }
3143 
3144     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3145     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3146            "HiPE prologue scratch register is live-in");
3147 
3148     // Create new MBB for StackCheck:
3149     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
3150                  SPReg, false, -MaxStack);
3151     // SPLimitOffset is in a fixed heap location (pointed by BP).
3152     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
3153                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
3154     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
3155 
3156     // Create new MBB for IncStack:
3157     BuildMI(incStackMBB, DL, TII.get(CALLop)).
3158       addExternalSymbol("inc_stack_0");
3159     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
3160                  SPReg, false, -MaxStack);
3161     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
3162                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
3163     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
3164 
3165     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3166     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3167     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3168     incStackMBB->addSuccessor(incStackMBB, {1, 100});
3169   }
3170 #ifdef EXPENSIVE_CHECKS
3171   MF.verify();
3172 #endif
3173 }
3174 
3175 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3176                                            MachineBasicBlock::iterator MBBI,
3177                                            const DebugLoc &DL,
3178                                            int Offset) const {
3179   if (Offset <= 0)
3180     return false;
3181 
3182   if (Offset % SlotSize)
3183     return false;
3184 
3185   int NumPops = Offset / SlotSize;
3186   // This is only worth it if we have at most 2 pops.
3187   if (NumPops != 1 && NumPops != 2)
3188     return false;
3189 
3190   // Handle only the trivial case where the adjustment directly follows
3191   // a call. This is the most common one, anyway.
3192   if (MBBI == MBB.begin())
3193     return false;
3194   MachineBasicBlock::iterator Prev = std::prev(MBBI);
3195   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3196     return false;
3197 
3198   unsigned Regs[2];
3199   unsigned FoundRegs = 0;
3200 
3201   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3202   const MachineOperand &RegMask = Prev->getOperand(1);
3203 
3204   auto &RegClass =
3205       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3206   // Try to find up to NumPops free registers.
3207   for (auto Candidate : RegClass) {
3208     // Poor man's liveness:
3209     // Since we're immediately after a call, any register that is clobbered
3210     // by the call and not defined by it can be considered dead.
3211     if (!RegMask.clobbersPhysReg(Candidate))
3212       continue;
3213 
3214     // Don't clobber reserved registers
3215     if (MRI.isReserved(Candidate))
3216       continue;
3217 
3218     bool IsDef = false;
3219     for (const MachineOperand &MO : Prev->implicit_operands()) {
3220       if (MO.isReg() && MO.isDef() &&
3221           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3222         IsDef = true;
3223         break;
3224       }
3225     }
3226 
3227     if (IsDef)
3228       continue;
3229 
3230     Regs[FoundRegs++] = Candidate;
3231     if (FoundRegs == (unsigned)NumPops)
3232       break;
3233   }
3234 
3235   if (FoundRegs == 0)
3236     return false;
3237 
3238   // If we found only one free register, but need two, reuse the same one twice.
3239   while (FoundRegs < (unsigned)NumPops)
3240     Regs[FoundRegs++] = Regs[0];
3241 
3242   for (int i = 0; i < NumPops; ++i)
3243     BuildMI(MBB, MBBI, DL,
3244             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
3245 
3246   return true;
3247 }
3248 
3249 MachineBasicBlock::iterator X86FrameLowering::
3250 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
3251                               MachineBasicBlock::iterator I) const {
3252   bool reserveCallFrame = hasReservedCallFrame(MF);
3253   unsigned Opcode = I->getOpcode();
3254   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3255   DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
3256   uint64_t Amount = TII.getFrameSize(*I);
3257   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3258   I = MBB.erase(I);
3259   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3260 
3261   // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3262   // typically because the function is marked noreturn (abort, throw,
3263   // assert_fail, etc).
3264   if (isDestroy && blockEndIsUnreachable(MBB, I))
3265     return I;
3266 
3267   if (!reserveCallFrame) {
3268     // If the stack pointer can be changed after prologue, turn the
3269     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3270     // adjcallstackdown instruction into 'add ESP, <amt>'
3271 
3272     // We need to keep the stack aligned properly.  To do this, we round the
3273     // amount of space needed for the outgoing arguments up to the next
3274     // alignment boundary.
3275     Amount = alignTo(Amount, getStackAlign());
3276 
3277     const Function &F = MF.getFunction();
3278     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3279     bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3280 
3281     // If we have any exception handlers in this function, and we adjust
3282     // the SP before calls, we may need to indicate this to the unwinder
3283     // using GNU_ARGS_SIZE. Note that this may be necessary even when
3284     // Amount == 0, because the preceding function may have set a non-0
3285     // GNU_ARGS_SIZE.
3286     // TODO: We don't need to reset this between subsequent functions,
3287     // if it didn't change.
3288     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3289 
3290     if (HasDwarfEHHandlers && !isDestroy &&
3291         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3292       BuildCFI(MBB, InsertPos, DL,
3293                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3294 
3295     if (Amount == 0)
3296       return I;
3297 
3298     // Factor out the amount that gets handled inside the sequence
3299     // (Pushes of argument for frame setup, callee pops for frame destroy)
3300     Amount -= InternalAmt;
3301 
3302     // TODO: This is needed only if we require precise CFA.
3303     // If this is a callee-pop calling convention, emit a CFA adjust for
3304     // the amount the callee popped.
3305     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3306       BuildCFI(MBB, InsertPos, DL,
3307                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3308 
3309     // Add Amount to SP to destroy a frame, or subtract to setup.
3310     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3311 
3312     if (StackAdjustment) {
3313       // Merge with any previous or following adjustment instruction. Note: the
3314       // instructions merged with here do not have CFI, so their stack
3315       // adjustments do not feed into CfaAdjustment.
3316       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3317       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3318 
3319       if (StackAdjustment) {
3320         if (!(F.hasMinSize() &&
3321               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3322           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3323                                /*InEpilogue=*/false);
3324       }
3325     }
3326 
3327     if (DwarfCFI && !hasFP(MF)) {
3328       // If we don't have FP, but need to generate unwind information,
3329       // we need to set the correct CFA offset after the stack adjustment.
3330       // How much we adjust the CFA offset depends on whether we're emitting
3331       // CFI only for EH purposes or for debugging. EH only requires the CFA
3332       // offset to be correct at each call site, while for debugging we want
3333       // it to be more precise.
3334 
3335       int64_t CfaAdjustment = -StackAdjustment;
3336       // TODO: When not using precise CFA, we also need to adjust for the
3337       // InternalAmt here.
3338       if (CfaAdjustment) {
3339         BuildCFI(MBB, InsertPos, DL,
3340                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
3341                                                          CfaAdjustment));
3342       }
3343     }
3344 
3345     return I;
3346   }
3347 
3348   if (InternalAmt) {
3349     MachineBasicBlock::iterator CI = I;
3350     MachineBasicBlock::iterator B = MBB.begin();
3351     while (CI != B && !std::prev(CI)->isCall())
3352       --CI;
3353     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3354   }
3355 
3356   return I;
3357 }
3358 
3359 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3360   assert(MBB.getParent() && "Block is not attached to a function!");
3361   const MachineFunction &MF = *MBB.getParent();
3362   if (!MBB.isLiveIn(X86::EFLAGS))
3363     return true;
3364 
3365   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3366   return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
3367 }
3368 
3369 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3370   assert(MBB.getParent() && "Block is not attached to a function!");
3371 
3372   // Win64 has strict requirements in terms of epilogue and we are
3373   // not taking a chance at messing with them.
3374   // I.e., unless this block is already an exit block, we can't use
3375   // it as an epilogue.
3376   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3377     return false;
3378 
3379   // Swift async context epilogue has a BTR instruction that clobbers parts of
3380   // EFLAGS.
3381   const MachineFunction &MF = *MBB.getParent();
3382   if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
3383     return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3384 
3385   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3386     return true;
3387 
3388   // If we cannot use LEA to adjust SP, we may need to use ADD, which
3389   // clobbers the EFLAGS. Check that we do not need to preserve it,
3390   // otherwise, conservatively assume this is not
3391   // safe to insert the epilogue here.
3392   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3393 }
3394 
3395 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3396   // If we may need to emit frameless compact unwind information, give
3397   // up as this is currently broken: PR25614.
3398   bool CompactUnwind =
3399       MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3400       nullptr;
3401   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3402           !CompactUnwind) &&
3403          // The lowering of segmented stack and HiPE only support entry
3404          // blocks as prologue blocks: PR26107. This limitation may be
3405          // lifted if we fix:
3406          // - adjustForSegmentedStacks
3407          // - adjustForHiPEPrologue
3408          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3409          !MF.shouldSplitStack();
3410 }
3411 
3412 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3413     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3414     const DebugLoc &DL, bool RestoreSP) const {
3415   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3416   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3417   assert(STI.is32Bit() && !Uses64BitFramePtr &&
3418          "restoring EBP/ESI on non-32-bit target");
3419 
3420   MachineFunction &MF = *MBB.getParent();
3421   Register FramePtr = TRI->getFrameRegister(MF);
3422   Register BasePtr = TRI->getBaseRegister();
3423   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3424   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3425   MachineFrameInfo &MFI = MF.getFrameInfo();
3426 
3427   // FIXME: Don't set FrameSetup flag in catchret case.
3428 
3429   int FI = FuncInfo.EHRegNodeFrameIndex;
3430   int EHRegSize = MFI.getObjectSize(FI);
3431 
3432   if (RestoreSP) {
3433     // MOV32rm -EHRegSize(%ebp), %esp
3434     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3435                  X86::EBP, true, -EHRegSize)
3436         .setMIFlag(MachineInstr::FrameSetup);
3437   }
3438 
3439   Register UsedReg;
3440   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
3441   int EndOffset = -EHRegOffset - EHRegSize;
3442   FuncInfo.EHRegNodeEndOffset = EndOffset;
3443 
3444   if (UsedReg == FramePtr) {
3445     // ADD $offset, %ebp
3446     unsigned ADDri = getADDriOpcode(false, EndOffset);
3447     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3448         .addReg(FramePtr)
3449         .addImm(EndOffset)
3450         .setMIFlag(MachineInstr::FrameSetup)
3451         ->getOperand(3)
3452         .setIsDead();
3453     assert(EndOffset >= 0 &&
3454            "end of registration object above normal EBP position!");
3455   } else if (UsedReg == BasePtr) {
3456     // LEA offset(%ebp), %esi
3457     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3458                  FramePtr, false, EndOffset)
3459         .setMIFlag(MachineInstr::FrameSetup);
3460     // MOV32rm SavedEBPOffset(%esi), %ebp
3461     assert(X86FI->getHasSEHFramePtrSave());
3462     int Offset =
3463         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
3464             .getFixed();
3465     assert(UsedReg == BasePtr);
3466     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3467                  UsedReg, true, Offset)
3468         .setMIFlag(MachineInstr::FrameSetup);
3469   } else {
3470     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3471   }
3472   return MBBI;
3473 }
3474 
3475 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3476   return TRI->getSlotSize();
3477 }
3478 
3479 Register
3480 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3481   return TRI->getDwarfRegNum(StackPtr, true);
3482 }
3483 
3484 namespace {
3485 // Struct used by orderFrameObjects to help sort the stack objects.
3486 struct X86FrameSortingObject {
3487   bool IsValid = false;         // true if we care about this Object.
3488   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
3489   unsigned ObjectSize = 0;      // Size of Object in bytes.
3490   Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3491   unsigned ObjectNumUses = 0;   // Object static number of uses.
3492 };
3493 
3494 // The comparison function we use for std::sort to order our local
3495 // stack symbols. The current algorithm is to use an estimated
3496 // "density". This takes into consideration the size and number of
3497 // uses each object has in order to roughly minimize code size.
3498 // So, for example, an object of size 16B that is referenced 5 times
3499 // will get higher priority than 4 4B objects referenced 1 time each.
3500 // It's not perfect and we may be able to squeeze a few more bytes out of
3501 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3502 // fringe end can have special consideration, given their size is less
3503 // important, etc.), but the algorithmic complexity grows too much to be
3504 // worth the extra gains we get. This gets us pretty close.
3505 // The final order leaves us with objects with highest priority going
3506 // at the end of our list.
3507 struct X86FrameSortingComparator {
3508   inline bool operator()(const X86FrameSortingObject &A,
3509                          const X86FrameSortingObject &B) const {
3510     uint64_t DensityAScaled, DensityBScaled;
3511 
3512     // For consistency in our comparison, all invalid objects are placed
3513     // at the end. This also allows us to stop walking when we hit the
3514     // first invalid item after it's all sorted.
3515     if (!A.IsValid)
3516       return false;
3517     if (!B.IsValid)
3518       return true;
3519 
3520     // The density is calculated by doing :
3521     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
3522     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
3523     // Since this approach may cause inconsistencies in
3524     // the floating point <, >, == comparisons, depending on the floating
3525     // point model with which the compiler was built, we're going
3526     // to scale both sides by multiplying with
3527     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3528     // the division and, with it, the need for any floating point
3529     // arithmetic.
3530     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3531       static_cast<uint64_t>(B.ObjectSize);
3532     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3533       static_cast<uint64_t>(A.ObjectSize);
3534 
3535     // If the two densities are equal, prioritize highest alignment
3536     // objects. This allows for similar alignment objects
3537     // to be packed together (given the same density).
3538     // There's room for improvement here, also, since we can pack
3539     // similar alignment (different density) objects next to each
3540     // other to save padding. This will also require further
3541     // complexity/iterations, and the overall gain isn't worth it,
3542     // in general. Something to keep in mind, though.
3543     if (DensityAScaled == DensityBScaled)
3544       return A.ObjectAlignment < B.ObjectAlignment;
3545 
3546     return DensityAScaled < DensityBScaled;
3547   }
3548 };
3549 } // namespace
3550 
3551 // Order the symbols in the local stack.
3552 // We want to place the local stack objects in some sort of sensible order.
3553 // The heuristic we use is to try and pack them according to static number
3554 // of uses and size of object in order to minimize code size.
3555 void X86FrameLowering::orderFrameObjects(
3556     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3557   const MachineFrameInfo &MFI = MF.getFrameInfo();
3558 
3559   // Don't waste time if there's nothing to do.
3560   if (ObjectsToAllocate.empty())
3561     return;
3562 
3563   // Create an array of all MFI objects. We won't need all of these
3564   // objects, but we're going to create a full array of them to make
3565   // it easier to index into when we're counting "uses" down below.
3566   // We want to be able to easily/cheaply access an object by simply
3567   // indexing into it, instead of having to search for it every time.
3568   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3569 
3570   // Walk the objects we care about and mark them as such in our working
3571   // struct.
3572   for (auto &Obj : ObjectsToAllocate) {
3573     SortingObjects[Obj].IsValid = true;
3574     SortingObjects[Obj].ObjectIndex = Obj;
3575     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3576     // Set the size.
3577     int ObjectSize = MFI.getObjectSize(Obj);
3578     if (ObjectSize == 0)
3579       // Variable size. Just use 4.
3580       SortingObjects[Obj].ObjectSize = 4;
3581     else
3582       SortingObjects[Obj].ObjectSize = ObjectSize;
3583   }
3584 
3585   // Count the number of uses for each object.
3586   for (auto &MBB : MF) {
3587     for (auto &MI : MBB) {
3588       if (MI.isDebugInstr())
3589         continue;
3590       for (const MachineOperand &MO : MI.operands()) {
3591         // Check to see if it's a local stack symbol.
3592         if (!MO.isFI())
3593           continue;
3594         int Index = MO.getIndex();
3595         // Check to see if it falls within our range, and is tagged
3596         // to require ordering.
3597         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3598             SortingObjects[Index].IsValid)
3599           SortingObjects[Index].ObjectNumUses++;
3600       }
3601     }
3602   }
3603 
3604   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3605   // info).
3606   llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3607 
3608   // Now modify the original list to represent the final order that
3609   // we want. The order will depend on whether we're going to access them
3610   // from the stack pointer or the frame pointer. For SP, the list should
3611   // end up with the END containing objects that we want with smaller offsets.
3612   // For FP, it should be flipped.
3613   int i = 0;
3614   for (auto &Obj : SortingObjects) {
3615     // All invalid items are sorted at the end, so it's safe to stop.
3616     if (!Obj.IsValid)
3617       break;
3618     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3619   }
3620 
3621   // Flip it if we're accessing off of the FP.
3622   if (!TRI->hasStackRealignment(MF) && hasFP(MF))
3623     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3624 }
3625 
3626 
3627 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3628   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3629   unsigned Offset = 16;
3630   // RBP is immediately pushed.
3631   Offset += SlotSize;
3632   // All callee-saved registers are then pushed.
3633   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3634   // Every funclet allocates enough stack space for the largest outgoing call.
3635   Offset += getWinEHFuncletFrameSize(MF);
3636   return Offset;
3637 }
3638 
3639 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3640     MachineFunction &MF, RegScavenger *RS) const {
3641   // Mark the function as not having WinCFI. We will set it back to true in
3642   // emitPrologue if it gets called and emits CFI.
3643   MF.setHasWinCFI(false);
3644 
3645   // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
3646   // aligned. The format doesn't support misaligned stack adjustments.
3647   if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
3648     MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
3649 
3650   // If this function isn't doing Win64-style C++ EH, we don't need to do
3651   // anything.
3652   if (STI.is64Bit() && MF.hasEHFunclets() &&
3653       classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
3654           EHPersonality::MSVC_CXX) {
3655     adjustFrameForMsvcCxxEh(MF);
3656   }
3657 }
3658 
3659 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
3660   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3661   // relative to RSP after the prologue.  Find the offset of the last fixed
3662   // object, so that we can allocate a slot immediately following it. If there
3663   // were no fixed objects, use offset -SlotSize, which is immediately after the
3664   // return address. Fixed objects have negative frame indices.
3665   MachineFrameInfo &MFI = MF.getFrameInfo();
3666   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3667   int64_t MinFixedObjOffset = -SlotSize;
3668   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3669     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3670 
3671   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3672     for (WinEHHandlerType &H : TBME.HandlerArray) {
3673       int FrameIndex = H.CatchObj.FrameIndex;
3674       if (FrameIndex != INT_MAX) {
3675         // Ensure alignment.
3676         unsigned Align = MFI.getObjectAlign(FrameIndex).value();
3677         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3678         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3679         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3680       }
3681     }
3682   }
3683 
3684   // Ensure alignment.
3685   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3686   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3687   int UnwindHelpFI =
3688       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3689   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3690 
3691   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3692   // other frame setup instructions.
3693   MachineBasicBlock &MBB = MF.front();
3694   auto MBBI = MBB.begin();
3695   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3696     ++MBBI;
3697 
3698   DebugLoc DL = MBB.findDebugLoc(MBBI);
3699   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3700                     UnwindHelpFI)
3701       .addImm(-2);
3702 }
3703 
3704 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3705     MachineFunction &MF, RegScavenger *RS) const {
3706   if (STI.is32Bit() && MF.hasEHFunclets())
3707     restoreWinEHStackPointersInParent(MF);
3708 }
3709 
3710 void X86FrameLowering::restoreWinEHStackPointersInParent(
3711     MachineFunction &MF) const {
3712   // 32-bit functions have to restore stack pointers when control is transferred
3713   // back to the parent function. These blocks are identified as eh pads that
3714   // are not funclet entries.
3715   bool IsSEH = isAsynchronousEHPersonality(
3716       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
3717   for (MachineBasicBlock &MBB : MF) {
3718     bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
3719     if (NeedsRestore)
3720       restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
3721                                   /*RestoreSP=*/IsSEH);
3722   }
3723 }
3724