1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include <cstdlib> 35 36 #define DEBUG_TYPE "x86-fl" 37 38 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 39 STATISTIC(NumFrameExtraProbe, 40 "Number of extra stack probes generated in prologue"); 41 42 using namespace llvm; 43 44 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 45 MaybeAlign StackAlignOverride) 46 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 47 STI.is64Bit() ? -8 : -4), 48 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 49 // Cache a bunch of frame-related predicates for this subtarget. 50 SlotSize = TRI->getSlotSize(); 51 Is64Bit = STI.is64Bit(); 52 IsLP64 = STI.isTarget64BitLP64(); 53 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 54 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 55 StackPtr = TRI->getStackRegister(); 56 } 57 58 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 59 return !MF.getFrameInfo().hasVarSizedObjects() && 60 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 61 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 62 } 63 64 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 65 /// call frame pseudos can be simplified. Having a FP, as in the default 66 /// implementation, is not sufficient here since we can't always use it. 67 /// Use a more nuanced condition. 68 bool 69 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 70 return hasReservedCallFrame(MF) || 71 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 72 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 73 TRI->hasBasePointer(MF); 74 } 75 76 // needsFrameIndexResolution - Do we need to perform FI resolution for 77 // this function. Normally, this is required only when the function 78 // has any stack objects. However, FI resolution actually has another job, 79 // not apparent from the title - it resolves callframesetup/destroy 80 // that were not simplified earlier. 81 // So, this is required for x86 functions that have push sequences even 82 // when there are no stack objects. 83 bool 84 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 85 return MF.getFrameInfo().hasStackObjects() || 86 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 87 } 88 89 /// hasFP - Return true if the specified function should have a dedicated frame 90 /// pointer register. This is true if the function has variable sized allocas 91 /// or if frame pointer elimination is disabled. 92 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 93 const MachineFrameInfo &MFI = MF.getFrameInfo(); 94 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 95 TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() || 96 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 97 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 98 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 99 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 100 MFI.hasStackMap() || MFI.hasPatchPoint() || 101 MFI.hasCopyImplyingStackAdjustment()); 102 } 103 104 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 105 if (IsLP64) { 106 if (isInt<8>(Imm)) 107 return X86::SUB64ri8; 108 return X86::SUB64ri32; 109 } else { 110 if (isInt<8>(Imm)) 111 return X86::SUB32ri8; 112 return X86::SUB32ri; 113 } 114 } 115 116 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 117 if (IsLP64) { 118 if (isInt<8>(Imm)) 119 return X86::ADD64ri8; 120 return X86::ADD64ri32; 121 } else { 122 if (isInt<8>(Imm)) 123 return X86::ADD32ri8; 124 return X86::ADD32ri; 125 } 126 } 127 128 static unsigned getSUBrrOpcode(bool IsLP64) { 129 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 130 } 131 132 static unsigned getADDrrOpcode(bool IsLP64) { 133 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 134 } 135 136 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 137 if (IsLP64) { 138 if (isInt<8>(Imm)) 139 return X86::AND64ri8; 140 return X86::AND64ri32; 141 } 142 if (isInt<8>(Imm)) 143 return X86::AND32ri8; 144 return X86::AND32ri; 145 } 146 147 static unsigned getLEArOpcode(bool IsLP64) { 148 return IsLP64 ? X86::LEA64r : X86::LEA32r; 149 } 150 151 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 152 /// when it reaches the "return" instruction. We can then pop a stack object 153 /// to this register without worry about clobbering it. 154 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 155 MachineBasicBlock::iterator &MBBI, 156 const X86RegisterInfo *TRI, 157 bool Is64Bit) { 158 const MachineFunction *MF = MBB.getParent(); 159 if (MF->callsEHReturn()) 160 return 0; 161 162 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 163 164 if (MBBI == MBB.end()) 165 return 0; 166 167 switch (MBBI->getOpcode()) { 168 default: return 0; 169 case TargetOpcode::PATCHABLE_RET: 170 case X86::RET: 171 case X86::RETL: 172 case X86::RETQ: 173 case X86::RETIL: 174 case X86::RETIQ: 175 case X86::TCRETURNdi: 176 case X86::TCRETURNri: 177 case X86::TCRETURNmi: 178 case X86::TCRETURNdi64: 179 case X86::TCRETURNri64: 180 case X86::TCRETURNmi64: 181 case X86::EH_RETURN: 182 case X86::EH_RETURN64: { 183 SmallSet<uint16_t, 8> Uses; 184 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 185 MachineOperand &MO = MBBI->getOperand(i); 186 if (!MO.isReg() || MO.isDef()) 187 continue; 188 Register Reg = MO.getReg(); 189 if (!Reg) 190 continue; 191 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 192 Uses.insert(*AI); 193 } 194 195 for (auto CS : AvailableRegs) 196 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && 197 CS != X86::ESP) 198 return CS; 199 } 200 } 201 202 return 0; 203 } 204 205 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 206 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 207 unsigned Reg = RegMask.PhysReg; 208 209 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 210 Reg == X86::AH || Reg == X86::AL) 211 return true; 212 } 213 214 return false; 215 } 216 217 /// Check if the flags need to be preserved before the terminators. 218 /// This would be the case, if the eflags is live-in of the region 219 /// composed by the terminators or live-out of that region, without 220 /// being defined by a terminator. 221 static bool 222 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 223 for (const MachineInstr &MI : MBB.terminators()) { 224 bool BreakNext = false; 225 for (const MachineOperand &MO : MI.operands()) { 226 if (!MO.isReg()) 227 continue; 228 Register Reg = MO.getReg(); 229 if (Reg != X86::EFLAGS) 230 continue; 231 232 // This terminator needs an eflags that is not defined 233 // by a previous another terminator: 234 // EFLAGS is live-in of the region composed by the terminators. 235 if (!MO.isDef()) 236 return true; 237 // This terminator defines the eflags, i.e., we don't need to preserve it. 238 // However, we still need to check this specific terminator does not 239 // read a live-in value. 240 BreakNext = true; 241 } 242 // We found a definition of the eflags, no need to preserve them. 243 if (BreakNext) 244 return false; 245 } 246 247 // None of the terminators use or define the eflags. 248 // Check if they are live-out, that would imply we need to preserve them. 249 for (const MachineBasicBlock *Succ : MBB.successors()) 250 if (Succ->isLiveIn(X86::EFLAGS)) 251 return true; 252 253 return false; 254 } 255 256 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 257 /// stack pointer by a constant value. 258 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 259 MachineBasicBlock::iterator &MBBI, 260 const DebugLoc &DL, 261 int64_t NumBytes, bool InEpilogue) const { 262 bool isSub = NumBytes < 0; 263 uint64_t Offset = isSub ? -NumBytes : NumBytes; 264 MachineInstr::MIFlag Flag = 265 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 266 267 uint64_t Chunk = (1LL << 31) - 1; 268 269 MachineFunction &MF = *MBB.getParent(); 270 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 271 const X86TargetLowering &TLI = *STI.getTargetLowering(); 272 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 273 274 // It's ok to not take into account large chunks when probing, as the 275 // allocation is split in smaller chunks anyway. 276 if (EmitInlineStackProbe && !InEpilogue) { 277 278 // This pseudo-instruction is going to be expanded, potentially using a 279 // loop, by inlineStackProbe(). 280 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 281 return; 282 } else if (Offset > Chunk) { 283 // Rather than emit a long series of instructions for large offsets, 284 // load the offset into a register and do one sub/add 285 unsigned Reg = 0; 286 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 287 288 if (isSub && !isEAXLiveIn(MBB)) 289 Reg = Rax; 290 else 291 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 292 293 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 294 unsigned AddSubRROpc = 295 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 296 if (Reg) { 297 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 298 .addImm(Offset) 299 .setMIFlag(Flag); 300 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 301 .addReg(StackPtr) 302 .addReg(Reg); 303 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 304 return; 305 } else if (Offset > 8 * Chunk) { 306 // If we would need more than 8 add or sub instructions (a >16GB stack 307 // frame), it's worth spilling RAX to materialize this immediate. 308 // pushq %rax 309 // movabsq +-$Offset+-SlotSize, %rax 310 // addq %rsp, %rax 311 // xchg %rax, (%rsp) 312 // movq (%rsp), %rsp 313 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 314 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 315 .addReg(Rax, RegState::Kill) 316 .setMIFlag(Flag); 317 // Subtract is not commutative, so negate the offset and always use add. 318 // Subtract 8 less and add 8 more to account for the PUSH we just did. 319 if (isSub) 320 Offset = -(Offset - SlotSize); 321 else 322 Offset = Offset + SlotSize; 323 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 324 .addImm(Offset) 325 .setMIFlag(Flag); 326 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 327 .addReg(Rax) 328 .addReg(StackPtr); 329 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 330 // Exchange the new SP in RAX with the top of the stack. 331 addRegOffset( 332 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 333 StackPtr, false, 0); 334 // Load new SP from the top of the stack into RSP. 335 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 336 StackPtr, false, 0); 337 return; 338 } 339 } 340 341 while (Offset) { 342 uint64_t ThisVal = std::min(Offset, Chunk); 343 if (ThisVal == SlotSize) { 344 // Use push / pop for slot sized adjustments as a size optimization. We 345 // need to find a dead register when using pop. 346 unsigned Reg = isSub 347 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 348 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 349 if (Reg) { 350 unsigned Opc = isSub 351 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 352 : (Is64Bit ? X86::POP64r : X86::POP32r); 353 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 354 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 355 .setMIFlag(Flag); 356 Offset -= ThisVal; 357 continue; 358 } 359 } 360 361 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 362 .setMIFlag(Flag); 363 364 Offset -= ThisVal; 365 } 366 } 367 368 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 369 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 370 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 371 assert(Offset != 0 && "zero offset stack adjustment requested"); 372 373 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 374 // is tricky. 375 bool UseLEA; 376 if (!InEpilogue) { 377 // Check if inserting the prologue at the beginning 378 // of MBB would require to use LEA operations. 379 // We need to use LEA operations if EFLAGS is live in, because 380 // it means an instruction will read it before it gets defined. 381 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 382 } else { 383 // If we can use LEA for SP but we shouldn't, check that none 384 // of the terminators uses the eflags. Otherwise we will insert 385 // a ADD that will redefine the eflags and break the condition. 386 // Alternatively, we could move the ADD, but this may not be possible 387 // and is an optimization anyway. 388 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 389 if (UseLEA && !STI.useLeaForSP()) 390 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 391 // If that assert breaks, that means we do not do the right thing 392 // in canUseAsEpilogue. 393 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 394 "We shouldn't have allowed this insertion point"); 395 } 396 397 MachineInstrBuilder MI; 398 if (UseLEA) { 399 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 400 TII.get(getLEArOpcode(Uses64BitFramePtr)), 401 StackPtr), 402 StackPtr, false, Offset); 403 } else { 404 bool IsSub = Offset < 0; 405 uint64_t AbsOffset = IsSub ? -Offset : Offset; 406 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 407 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 408 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 409 .addReg(StackPtr) 410 .addImm(AbsOffset); 411 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 412 } 413 return MI; 414 } 415 416 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 417 MachineBasicBlock::iterator &MBBI, 418 bool doMergeWithPrevious) const { 419 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 420 (!doMergeWithPrevious && MBBI == MBB.end())) 421 return 0; 422 423 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 424 425 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 426 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 427 // instruction, and that there are no DBG_VALUE or other instructions between 428 // ADD/SUB/LEA and its corresponding CFI instruction. 429 /* TODO: Add support for the case where there are multiple CFI instructions 430 below the ADD/SUB/LEA, e.g.: 431 ... 432 add 433 cfi_def_cfa_offset 434 cfi_offset 435 ... 436 */ 437 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 438 PI = std::prev(PI); 439 440 unsigned Opc = PI->getOpcode(); 441 int Offset = 0; 442 443 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 444 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 445 PI->getOperand(0).getReg() == StackPtr){ 446 assert(PI->getOperand(1).getReg() == StackPtr); 447 Offset = PI->getOperand(2).getImm(); 448 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 449 PI->getOperand(0).getReg() == StackPtr && 450 PI->getOperand(1).getReg() == StackPtr && 451 PI->getOperand(2).getImm() == 1 && 452 PI->getOperand(3).getReg() == X86::NoRegister && 453 PI->getOperand(5).getReg() == X86::NoRegister) { 454 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 455 Offset = PI->getOperand(4).getImm(); 456 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 457 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 458 PI->getOperand(0).getReg() == StackPtr) { 459 assert(PI->getOperand(1).getReg() == StackPtr); 460 Offset = -PI->getOperand(2).getImm(); 461 } else 462 return 0; 463 464 PI = MBB.erase(PI); 465 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 466 if (!doMergeWithPrevious) 467 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 468 469 return Offset; 470 } 471 472 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 473 MachineBasicBlock::iterator MBBI, 474 const DebugLoc &DL, 475 const MCCFIInstruction &CFIInst) const { 476 MachineFunction &MF = *MBB.getParent(); 477 unsigned CFIIndex = MF.addFrameInst(CFIInst); 478 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 479 .addCFIIndex(CFIIndex); 480 } 481 482 /// Emits Dwarf Info specifying offsets of callee saved registers and 483 /// frame pointer. This is called only when basic block sections are enabled. 484 void X86FrameLowering::emitCalleeSavedFrameMoves( 485 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 486 MachineFunction &MF = *MBB.getParent(); 487 if (!hasFP(MF)) { 488 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 489 return; 490 } 491 const MachineModuleInfo &MMI = MF.getMMI(); 492 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 493 const unsigned FramePtr = TRI->getFrameRegister(MF); 494 const unsigned MachineFramePtr = 495 STI.isTarget64BitILP32() ? unsigned(getX86SubSuperRegister(FramePtr, 64)) 496 : FramePtr; 497 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 498 // Offset = space for return address + size of the frame pointer itself. 499 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 500 BuildCFI(MBB, MBBI, DebugLoc{}, 501 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 502 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 503 } 504 505 void X86FrameLowering::emitCalleeSavedFrameMoves( 506 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 507 const DebugLoc &DL, bool IsPrologue) const { 508 MachineFunction &MF = *MBB.getParent(); 509 MachineFrameInfo &MFI = MF.getFrameInfo(); 510 MachineModuleInfo &MMI = MF.getMMI(); 511 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 512 513 // Add callee saved registers to move list. 514 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 515 if (CSI.empty()) return; 516 517 // Calculate offsets. 518 for (std::vector<CalleeSavedInfo>::const_iterator 519 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 520 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 521 unsigned Reg = I->getReg(); 522 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 523 524 if (IsPrologue) { 525 BuildCFI(MBB, MBBI, DL, 526 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 527 } else { 528 BuildCFI(MBB, MBBI, DL, 529 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 530 } 531 } 532 } 533 534 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 535 MachineBasicBlock &MBB, 536 MachineBasicBlock::iterator MBBI, 537 const DebugLoc &DL, bool InProlog) const { 538 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 539 if (STI.isTargetWindowsCoreCLR()) { 540 if (InProlog) { 541 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 542 .addImm(0 /* no explicit stack size */); 543 } else { 544 emitStackProbeInline(MF, MBB, MBBI, DL, false); 545 } 546 } else { 547 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 548 } 549 } 550 551 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 552 MachineBasicBlock &PrologMBB) const { 553 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 554 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 555 }); 556 if (Where != PrologMBB.end()) { 557 DebugLoc DL = PrologMBB.findDebugLoc(Where); 558 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 559 Where->eraseFromParent(); 560 } 561 } 562 563 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 564 MachineBasicBlock &MBB, 565 MachineBasicBlock::iterator MBBI, 566 const DebugLoc &DL, 567 bool InProlog) const { 568 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 569 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 570 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 571 else 572 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 573 } 574 575 void X86FrameLowering::emitStackProbeInlineGeneric( 576 MachineFunction &MF, MachineBasicBlock &MBB, 577 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 578 MachineInstr &AllocWithProbe = *MBBI; 579 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 580 581 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 582 const X86TargetLowering &TLI = *STI.getTargetLowering(); 583 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 584 "different expansion expected for CoreCLR 64 bit"); 585 586 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 587 uint64_t ProbeChunk = StackProbeSize * 8; 588 589 uint64_t MaxAlign = 590 TRI->needsStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 591 592 // Synthesize a loop or unroll it, depending on the number of iterations. 593 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 594 // between the unaligned rsp and current rsp. 595 if (Offset > ProbeChunk) { 596 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 597 MaxAlign % StackProbeSize); 598 } else { 599 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 600 MaxAlign % StackProbeSize); 601 } 602 } 603 604 void X86FrameLowering::emitStackProbeInlineGenericBlock( 605 MachineFunction &MF, MachineBasicBlock &MBB, 606 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 607 uint64_t AlignOffset) const { 608 609 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 610 const X86TargetLowering &TLI = *STI.getTargetLowering(); 611 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 612 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 613 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 614 615 uint64_t CurrentOffset = 0; 616 617 assert(AlignOffset < StackProbeSize); 618 619 // If the offset is so small it fits within a page, there's nothing to do. 620 if (StackProbeSize < Offset + AlignOffset) { 621 622 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 623 .addReg(StackPtr) 624 .addImm(StackProbeSize - AlignOffset) 625 .setMIFlag(MachineInstr::FrameSetup); 626 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 627 628 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 629 .setMIFlag(MachineInstr::FrameSetup), 630 StackPtr, false, 0) 631 .addImm(0) 632 .setMIFlag(MachineInstr::FrameSetup); 633 NumFrameExtraProbe++; 634 CurrentOffset = StackProbeSize - AlignOffset; 635 } 636 637 // For the next N - 1 pages, just probe. I tried to take advantage of 638 // natural probes but it implies much more logic and there was very few 639 // interesting natural probes to interleave. 640 while (CurrentOffset + StackProbeSize < Offset) { 641 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 642 .addReg(StackPtr) 643 .addImm(StackProbeSize) 644 .setMIFlag(MachineInstr::FrameSetup); 645 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 646 647 648 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 649 .setMIFlag(MachineInstr::FrameSetup), 650 StackPtr, false, 0) 651 .addImm(0) 652 .setMIFlag(MachineInstr::FrameSetup); 653 NumFrameExtraProbe++; 654 CurrentOffset += StackProbeSize; 655 } 656 657 // No need to probe the tail, it is smaller than a Page. 658 uint64_t ChunkSize = Offset - CurrentOffset; 659 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 660 .addReg(StackPtr) 661 .addImm(ChunkSize) 662 .setMIFlag(MachineInstr::FrameSetup); 663 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 664 } 665 666 void X86FrameLowering::emitStackProbeInlineGenericLoop( 667 MachineFunction &MF, MachineBasicBlock &MBB, 668 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 669 uint64_t AlignOffset) const { 670 assert(Offset && "null offset"); 671 672 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 673 const X86TargetLowering &TLI = *STI.getTargetLowering(); 674 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 675 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 676 677 if (AlignOffset) { 678 if (AlignOffset < StackProbeSize) { 679 // Perform a first smaller allocation followed by a probe. 680 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 681 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 682 .addReg(StackPtr) 683 .addImm(AlignOffset) 684 .setMIFlag(MachineInstr::FrameSetup); 685 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 686 687 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 688 .setMIFlag(MachineInstr::FrameSetup), 689 StackPtr, false, 0) 690 .addImm(0) 691 .setMIFlag(MachineInstr::FrameSetup); 692 NumFrameExtraProbe++; 693 Offset -= AlignOffset; 694 } 695 } 696 697 // Synthesize a loop 698 NumFrameLoopProbe++; 699 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 700 701 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 702 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 703 704 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 705 MF.insert(MBBIter, testMBB); 706 MF.insert(MBBIter, tailMBB); 707 708 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D; 709 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 710 .addReg(StackPtr) 711 .setMIFlag(MachineInstr::FrameSetup); 712 713 // save loop bound 714 { 715 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset); 716 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 717 .addReg(FinalStackProbed) 718 .addImm(Offset / StackProbeSize * StackProbeSize) 719 .setMIFlag(MachineInstr::FrameSetup); 720 } 721 722 // allocate a page 723 { 724 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 725 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 726 .addReg(StackPtr) 727 .addImm(StackProbeSize) 728 .setMIFlag(MachineInstr::FrameSetup); 729 } 730 731 // touch the page 732 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 733 .setMIFlag(MachineInstr::FrameSetup), 734 StackPtr, false, 0) 735 .addImm(0) 736 .setMIFlag(MachineInstr::FrameSetup); 737 738 // cmp with stack pointer bound 739 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 740 .addReg(StackPtr) 741 .addReg(FinalStackProbed) 742 .setMIFlag(MachineInstr::FrameSetup); 743 744 // jump 745 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 746 .addMBB(testMBB) 747 .addImm(X86::COND_NE) 748 .setMIFlag(MachineInstr::FrameSetup); 749 testMBB->addSuccessor(testMBB); 750 testMBB->addSuccessor(tailMBB); 751 752 // BB management 753 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 754 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 755 MBB.addSuccessor(testMBB); 756 757 // handle tail 758 unsigned TailOffset = Offset % StackProbeSize; 759 if (TailOffset) { 760 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 761 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 762 .addReg(StackPtr) 763 .addImm(TailOffset) 764 .setMIFlag(MachineInstr::FrameSetup); 765 } 766 767 // Update Live In information 768 recomputeLiveIns(*testMBB); 769 recomputeLiveIns(*tailMBB); 770 } 771 772 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 773 MachineFunction &MF, MachineBasicBlock &MBB, 774 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 775 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 776 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 777 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 778 const TargetInstrInfo &TII = *STI.getInstrInfo(); 779 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 780 781 // RAX contains the number of bytes of desired stack adjustment. 782 // The handling here assumes this value has already been updated so as to 783 // maintain stack alignment. 784 // 785 // We need to exit with RSP modified by this amount and execute suitable 786 // page touches to notify the OS that we're growing the stack responsibly. 787 // All stack probing must be done without modifying RSP. 788 // 789 // MBB: 790 // SizeReg = RAX; 791 // ZeroReg = 0 792 // CopyReg = RSP 793 // Flags, TestReg = CopyReg - SizeReg 794 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 795 // LimitReg = gs magic thread env access 796 // if FinalReg >= LimitReg goto ContinueMBB 797 // RoundBB: 798 // RoundReg = page address of FinalReg 799 // LoopMBB: 800 // LoopReg = PHI(LimitReg,ProbeReg) 801 // ProbeReg = LoopReg - PageSize 802 // [ProbeReg] = 0 803 // if (ProbeReg > RoundReg) goto LoopMBB 804 // ContinueMBB: 805 // RSP = RSP - RAX 806 // [rest of original MBB] 807 808 // Set up the new basic blocks 809 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 810 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 811 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 812 813 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 814 MF.insert(MBBIter, RoundMBB); 815 MF.insert(MBBIter, LoopMBB); 816 MF.insert(MBBIter, ContinueMBB); 817 818 // Split MBB and move the tail portion down to ContinueMBB. 819 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 820 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 821 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 822 823 // Some useful constants 824 const int64_t ThreadEnvironmentStackLimit = 0x10; 825 const int64_t PageSize = 0x1000; 826 const int64_t PageMask = ~(PageSize - 1); 827 828 // Registers we need. For the normal case we use virtual 829 // registers. For the prolog expansion we use RAX, RCX and RDX. 830 MachineRegisterInfo &MRI = MF.getRegInfo(); 831 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 832 const Register SizeReg = InProlog ? X86::RAX 833 : MRI.createVirtualRegister(RegClass), 834 ZeroReg = InProlog ? X86::RCX 835 : MRI.createVirtualRegister(RegClass), 836 CopyReg = InProlog ? X86::RDX 837 : MRI.createVirtualRegister(RegClass), 838 TestReg = InProlog ? X86::RDX 839 : MRI.createVirtualRegister(RegClass), 840 FinalReg = InProlog ? X86::RDX 841 : MRI.createVirtualRegister(RegClass), 842 RoundedReg = InProlog ? X86::RDX 843 : MRI.createVirtualRegister(RegClass), 844 LimitReg = InProlog ? X86::RCX 845 : MRI.createVirtualRegister(RegClass), 846 JoinReg = InProlog ? X86::RCX 847 : MRI.createVirtualRegister(RegClass), 848 ProbeReg = InProlog ? X86::RCX 849 : MRI.createVirtualRegister(RegClass); 850 851 // SP-relative offsets where we can save RCX and RDX. 852 int64_t RCXShadowSlot = 0; 853 int64_t RDXShadowSlot = 0; 854 855 // If inlining in the prolog, save RCX and RDX. 856 if (InProlog) { 857 // Compute the offsets. We need to account for things already 858 // pushed onto the stack at this point: return address, frame 859 // pointer (if used), and callee saves. 860 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 861 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 862 const bool HasFP = hasFP(MF); 863 864 // Check if we need to spill RCX and/or RDX. 865 // Here we assume that no earlier prologue instruction changes RCX and/or 866 // RDX, so checking the block live-ins is enough. 867 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 868 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 869 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 870 // Assign the initial slot to both registers, then change RDX's slot if both 871 // need to be spilled. 872 if (IsRCXLiveIn) 873 RCXShadowSlot = InitSlot; 874 if (IsRDXLiveIn) 875 RDXShadowSlot = InitSlot; 876 if (IsRDXLiveIn && IsRCXLiveIn) 877 RDXShadowSlot += 8; 878 // Emit the saves if needed. 879 if (IsRCXLiveIn) 880 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 881 RCXShadowSlot) 882 .addReg(X86::RCX); 883 if (IsRDXLiveIn) 884 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 885 RDXShadowSlot) 886 .addReg(X86::RDX); 887 } else { 888 // Not in the prolog. Copy RAX to a virtual reg. 889 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 890 } 891 892 // Add code to MBB to check for overflow and set the new target stack pointer 893 // to zero if so. 894 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 895 .addReg(ZeroReg, RegState::Undef) 896 .addReg(ZeroReg, RegState::Undef); 897 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 898 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 899 .addReg(CopyReg) 900 .addReg(SizeReg); 901 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 902 .addReg(TestReg) 903 .addReg(ZeroReg) 904 .addImm(X86::COND_B); 905 906 // FinalReg now holds final stack pointer value, or zero if 907 // allocation would overflow. Compare against the current stack 908 // limit from the thread environment block. Note this limit is the 909 // lowest touched page on the stack, not the point at which the OS 910 // will cause an overflow exception, so this is just an optimization 911 // to avoid unnecessarily touching pages that are below the current 912 // SP but already committed to the stack by the OS. 913 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 914 .addReg(0) 915 .addImm(1) 916 .addReg(0) 917 .addImm(ThreadEnvironmentStackLimit) 918 .addReg(X86::GS); 919 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 920 // Jump if the desired stack pointer is at or above the stack limit. 921 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 922 923 // Add code to roundMBB to round the final stack pointer to a page boundary. 924 RoundMBB->addLiveIn(FinalReg); 925 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 926 .addReg(FinalReg) 927 .addImm(PageMask); 928 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 929 930 // LimitReg now holds the current stack limit, RoundedReg page-rounded 931 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 932 // and probe until we reach RoundedReg. 933 if (!InProlog) { 934 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 935 .addReg(LimitReg) 936 .addMBB(RoundMBB) 937 .addReg(ProbeReg) 938 .addMBB(LoopMBB); 939 } 940 941 LoopMBB->addLiveIn(JoinReg); 942 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 943 false, -PageSize); 944 945 // Probe by storing a byte onto the stack. 946 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 947 .addReg(ProbeReg) 948 .addImm(1) 949 .addReg(0) 950 .addImm(0) 951 .addReg(0) 952 .addImm(0); 953 954 LoopMBB->addLiveIn(RoundedReg); 955 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 956 .addReg(RoundedReg) 957 .addReg(ProbeReg); 958 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 959 960 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 961 962 // If in prolog, restore RDX and RCX. 963 if (InProlog) { 964 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 965 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 966 TII.get(X86::MOV64rm), X86::RCX), 967 X86::RSP, false, RCXShadowSlot); 968 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 969 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 970 TII.get(X86::MOV64rm), X86::RDX), 971 X86::RSP, false, RDXShadowSlot); 972 } 973 974 // Now that the probing is done, add code to continueMBB to update 975 // the stack pointer for real. 976 ContinueMBB->addLiveIn(SizeReg); 977 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 978 .addReg(X86::RSP) 979 .addReg(SizeReg); 980 981 // Add the control flow edges we need. 982 MBB.addSuccessor(ContinueMBB); 983 MBB.addSuccessor(RoundMBB); 984 RoundMBB->addSuccessor(LoopMBB); 985 LoopMBB->addSuccessor(ContinueMBB); 986 LoopMBB->addSuccessor(LoopMBB); 987 988 // Mark all the instructions added to the prolog as frame setup. 989 if (InProlog) { 990 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 991 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 992 } 993 for (MachineInstr &MI : *RoundMBB) { 994 MI.setFlag(MachineInstr::FrameSetup); 995 } 996 for (MachineInstr &MI : *LoopMBB) { 997 MI.setFlag(MachineInstr::FrameSetup); 998 } 999 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 1000 CMBBI != ContinueMBBI; ++CMBBI) { 1001 CMBBI->setFlag(MachineInstr::FrameSetup); 1002 } 1003 } 1004 } 1005 1006 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 1007 MachineBasicBlock &MBB, 1008 MachineBasicBlock::iterator MBBI, 1009 const DebugLoc &DL, 1010 bool InProlog) const { 1011 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1012 1013 // FIXME: Add indirect thunk support and remove this. 1014 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1015 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1016 "code model and indirect thunks not yet implemented."); 1017 1018 unsigned CallOp; 1019 if (Is64Bit) 1020 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1021 else 1022 CallOp = X86::CALLpcrel32; 1023 1024 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1025 1026 MachineInstrBuilder CI; 1027 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1028 1029 // All current stack probes take AX and SP as input, clobber flags, and 1030 // preserve all registers. x86_64 probes leave RSP unmodified. 1031 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1032 // For the large code model, we have to call through a register. Use R11, 1033 // as it is scratch in all supported calling conventions. 1034 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1035 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1036 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1037 } else { 1038 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1039 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1040 } 1041 1042 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1043 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1044 CI.addReg(AX, RegState::Implicit) 1045 .addReg(SP, RegState::Implicit) 1046 .addReg(AX, RegState::Define | RegState::Implicit) 1047 .addReg(SP, RegState::Define | RegState::Implicit) 1048 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1049 1050 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1051 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1052 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1053 // themselves. They also does not clobber %rax so we can reuse it when 1054 // adjusting %rsp. 1055 // All other platforms do not specify a particular ABI for the stack probe 1056 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1057 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1058 .addReg(SP) 1059 .addReg(AX); 1060 } 1061 1062 if (InProlog) { 1063 // Apply the frame setup flag to all inserted instrs. 1064 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1065 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1066 } 1067 } 1068 1069 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1070 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1071 // and might require smaller successive adjustments. 1072 const uint64_t Win64MaxSEHOffset = 128; 1073 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1074 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1075 return SEHFrameOffset & -16; 1076 } 1077 1078 // If we're forcing a stack realignment we can't rely on just the frame 1079 // info, we need to know the ABI stack alignment as well in case we 1080 // have a call out. Otherwise just make sure we have some alignment - we'll 1081 // go with the minimum SlotSize. 1082 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1083 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1084 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1085 Align StackAlign = getStackAlign(); 1086 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1087 if (MFI.hasCalls()) 1088 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1089 else if (MaxAlign < SlotSize) 1090 MaxAlign = Align(SlotSize); 1091 } 1092 return MaxAlign.value(); 1093 } 1094 1095 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1096 MachineBasicBlock::iterator MBBI, 1097 const DebugLoc &DL, unsigned Reg, 1098 uint64_t MaxAlign) const { 1099 uint64_t Val = -MaxAlign; 1100 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1101 1102 MachineFunction &MF = *MBB.getParent(); 1103 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1104 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1105 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1106 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1107 1108 // We want to make sure that (in worst case) less than StackProbeSize bytes 1109 // are not probed after the AND. This assumption is used in 1110 // emitStackProbeInlineGeneric. 1111 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1112 { 1113 NumFrameLoopProbe++; 1114 MachineBasicBlock *entryMBB = 1115 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1116 MachineBasicBlock *headMBB = 1117 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1118 MachineBasicBlock *bodyMBB = 1119 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1120 MachineBasicBlock *footMBB = 1121 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1122 1123 MachineFunction::iterator MBBIter = MBB.getIterator(); 1124 MF.insert(MBBIter, entryMBB); 1125 MF.insert(MBBIter, headMBB); 1126 MF.insert(MBBIter, bodyMBB); 1127 MF.insert(MBBIter, footMBB); 1128 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1129 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D; 1130 1131 // Setup entry block 1132 { 1133 1134 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1135 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1136 .addReg(StackPtr) 1137 .setMIFlag(MachineInstr::FrameSetup); 1138 MachineInstr *MI = 1139 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1140 .addReg(FinalStackProbed) 1141 .addImm(Val) 1142 .setMIFlag(MachineInstr::FrameSetup); 1143 1144 // The EFLAGS implicit def is dead. 1145 MI->getOperand(3).setIsDead(); 1146 1147 BuildMI(entryMBB, DL, 1148 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1149 .addReg(FinalStackProbed) 1150 .addReg(StackPtr) 1151 .setMIFlag(MachineInstr::FrameSetup); 1152 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1153 .addMBB(&MBB) 1154 .addImm(X86::COND_E) 1155 .setMIFlag(MachineInstr::FrameSetup); 1156 entryMBB->addSuccessor(headMBB); 1157 entryMBB->addSuccessor(&MBB); 1158 } 1159 1160 // Loop entry block 1161 1162 { 1163 const unsigned SUBOpc = 1164 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1165 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1166 .addReg(StackPtr) 1167 .addImm(StackProbeSize) 1168 .setMIFlag(MachineInstr::FrameSetup); 1169 1170 BuildMI(headMBB, DL, 1171 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1172 .addReg(FinalStackProbed) 1173 .addReg(StackPtr) 1174 .setMIFlag(MachineInstr::FrameSetup); 1175 1176 // jump 1177 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1178 .addMBB(footMBB) 1179 .addImm(X86::COND_B) 1180 .setMIFlag(MachineInstr::FrameSetup); 1181 1182 headMBB->addSuccessor(bodyMBB); 1183 headMBB->addSuccessor(footMBB); 1184 } 1185 1186 // setup loop body 1187 { 1188 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1189 .setMIFlag(MachineInstr::FrameSetup), 1190 StackPtr, false, 0) 1191 .addImm(0) 1192 .setMIFlag(MachineInstr::FrameSetup); 1193 1194 const unsigned SUBOpc = 1195 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1196 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1197 .addReg(StackPtr) 1198 .addImm(StackProbeSize) 1199 .setMIFlag(MachineInstr::FrameSetup); 1200 1201 // cmp with stack pointer bound 1202 BuildMI(bodyMBB, DL, 1203 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1204 .addReg(FinalStackProbed) 1205 .addReg(StackPtr) 1206 .setMIFlag(MachineInstr::FrameSetup); 1207 1208 // jump 1209 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1210 .addMBB(bodyMBB) 1211 .addImm(X86::COND_B) 1212 .setMIFlag(MachineInstr::FrameSetup); 1213 bodyMBB->addSuccessor(bodyMBB); 1214 bodyMBB->addSuccessor(footMBB); 1215 } 1216 1217 // setup loop footer 1218 { 1219 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1220 .addReg(FinalStackProbed) 1221 .setMIFlag(MachineInstr::FrameSetup); 1222 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1223 .setMIFlag(MachineInstr::FrameSetup), 1224 StackPtr, false, 0) 1225 .addImm(0) 1226 .setMIFlag(MachineInstr::FrameSetup); 1227 footMBB->addSuccessor(&MBB); 1228 } 1229 1230 recomputeLiveIns(*headMBB); 1231 recomputeLiveIns(*bodyMBB); 1232 recomputeLiveIns(*footMBB); 1233 recomputeLiveIns(MBB); 1234 } 1235 } else { 1236 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1237 .addReg(Reg) 1238 .addImm(Val) 1239 .setMIFlag(MachineInstr::FrameSetup); 1240 1241 // The EFLAGS implicit def is dead. 1242 MI->getOperand(3).setIsDead(); 1243 } 1244 } 1245 1246 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1247 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1248 // clobbered by any interrupt handler. 1249 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1250 "MF used frame lowering for wrong subtarget"); 1251 const Function &Fn = MF.getFunction(); 1252 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1253 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1254 } 1255 1256 1257 /// emitPrologue - Push callee-saved registers onto the stack, which 1258 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1259 /// space for local variables. Also emit labels used by the exception handler to 1260 /// generate the exception handling frames. 1261 1262 /* 1263 Here's a gist of what gets emitted: 1264 1265 ; Establish frame pointer, if needed 1266 [if needs FP] 1267 push %rbp 1268 .cfi_def_cfa_offset 16 1269 .cfi_offset %rbp, -16 1270 .seh_pushreg %rpb 1271 mov %rsp, %rbp 1272 .cfi_def_cfa_register %rbp 1273 1274 ; Spill general-purpose registers 1275 [for all callee-saved GPRs] 1276 pushq %<reg> 1277 [if not needs FP] 1278 .cfi_def_cfa_offset (offset from RETADDR) 1279 .seh_pushreg %<reg> 1280 1281 ; If the required stack alignment > default stack alignment 1282 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1283 ; of unknown size in the stack frame. 1284 [if stack needs re-alignment] 1285 and $MASK, %rsp 1286 1287 ; Allocate space for locals 1288 [if target is Windows and allocated space > 4096 bytes] 1289 ; Windows needs special care for allocations larger 1290 ; than one page. 1291 mov $NNN, %rax 1292 call ___chkstk_ms/___chkstk 1293 sub %rax, %rsp 1294 [else] 1295 sub $NNN, %rsp 1296 1297 [if needs FP] 1298 .seh_stackalloc (size of XMM spill slots) 1299 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1300 [else] 1301 .seh_stackalloc NNN 1302 1303 ; Spill XMMs 1304 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1305 ; they may get spilled on any platform, if the current function 1306 ; calls @llvm.eh.unwind.init 1307 [if needs FP] 1308 [for all callee-saved XMM registers] 1309 movaps %<xmm reg>, -MMM(%rbp) 1310 [for all callee-saved XMM registers] 1311 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1312 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1313 [else] 1314 [for all callee-saved XMM registers] 1315 movaps %<xmm reg>, KKK(%rsp) 1316 [for all callee-saved XMM registers] 1317 .seh_savexmm %<xmm reg>, KKK 1318 1319 .seh_endprologue 1320 1321 [if needs base pointer] 1322 mov %rsp, %rbx 1323 [if needs to restore base pointer] 1324 mov %rsp, -MMM(%rbp) 1325 1326 ; Emit CFI info 1327 [if needs FP] 1328 [for all callee-saved registers] 1329 .cfi_offset %<reg>, (offset from %rbp) 1330 [else] 1331 .cfi_def_cfa_offset (offset from RETADDR) 1332 [for all callee-saved registers] 1333 .cfi_offset %<reg>, (offset from %rsp) 1334 1335 Notes: 1336 - .seh directives are emitted only for Windows 64 ABI 1337 - .cv_fpo directives are emitted on win32 when emitting CodeView 1338 - .cfi directives are emitted for all other ABIs 1339 - for 32-bit code, substitute %e?? registers for %r?? 1340 */ 1341 1342 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1343 MachineBasicBlock &MBB) const { 1344 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1345 "MF used frame lowering for wrong subtarget"); 1346 MachineBasicBlock::iterator MBBI = MBB.begin(); 1347 MachineFrameInfo &MFI = MF.getFrameInfo(); 1348 const Function &Fn = MF.getFunction(); 1349 MachineModuleInfo &MMI = MF.getMMI(); 1350 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1351 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1352 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1353 bool IsFunclet = MBB.isEHFuncletEntry(); 1354 EHPersonality Personality = EHPersonality::Unknown; 1355 if (Fn.hasPersonalityFn()) 1356 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1357 bool FnHasClrFunclet = 1358 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1359 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1360 bool HasFP = hasFP(MF); 1361 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1362 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1363 // FIXME: Emit FPO data for EH funclets. 1364 bool NeedsWinFPO = 1365 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1366 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1367 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 1368 Register FramePtr = TRI->getFrameRegister(MF); 1369 const Register MachineFramePtr = 1370 STI.isTarget64BitILP32() 1371 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1372 Register BasePtr = TRI->getBaseRegister(); 1373 bool HasWinCFI = false; 1374 1375 // Debug location must be unknown since the first debug location is used 1376 // to determine the end of the prologue. 1377 DebugLoc DL; 1378 1379 // Add RETADDR move area to callee saved frame size. 1380 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1381 if (TailCallReturnAddrDelta && IsWin64Prologue) 1382 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1383 1384 if (TailCallReturnAddrDelta < 0) 1385 X86FI->setCalleeSavedFrameSize( 1386 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1387 1388 const bool EmitStackProbeCall = 1389 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1390 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1391 1392 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1393 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1394 // stack alignment. 1395 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1396 Fn.arg_size() == 2) { 1397 StackSize += 8; 1398 MFI.setStackSize(StackSize); 1399 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1400 } 1401 1402 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1403 // function, and use up to 128 bytes of stack space, don't have a frame 1404 // pointer, calls, or dynamic alloca then we do not need to adjust the 1405 // stack pointer (we fit in the Red Zone). We also check that we don't 1406 // push and pop from the stack. 1407 if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) && 1408 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1409 !MFI.adjustsStack() && // No calls. 1410 !EmitStackProbeCall && // No stack probes. 1411 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1412 !MF.shouldSplitStack()) { // Regular stack 1413 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1414 if (HasFP) MinSize += SlotSize; 1415 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1416 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1417 MFI.setStackSize(StackSize); 1418 } 1419 1420 // Insert stack pointer adjustment for later moving of return addr. Only 1421 // applies to tail call optimized functions where the callee argument stack 1422 // size is bigger than the callers. 1423 if (TailCallReturnAddrDelta < 0) { 1424 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1425 /*InEpilogue=*/false) 1426 .setMIFlag(MachineInstr::FrameSetup); 1427 } 1428 1429 // Mapping for machine moves: 1430 // 1431 // DST: VirtualFP AND 1432 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1433 // ELSE => DW_CFA_def_cfa 1434 // 1435 // SRC: VirtualFP AND 1436 // DST: Register => DW_CFA_def_cfa_register 1437 // 1438 // ELSE 1439 // OFFSET < 0 => DW_CFA_offset_extended_sf 1440 // REG < 64 => DW_CFA_offset + Reg 1441 // ELSE => DW_CFA_offset_extended 1442 1443 uint64_t NumBytes = 0; 1444 int stackGrowth = -SlotSize; 1445 1446 // Find the funclet establisher parameter 1447 Register Establisher = X86::NoRegister; 1448 if (IsClrFunclet) 1449 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1450 else if (IsFunclet) 1451 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1452 1453 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1454 // Immediately spill establisher into the home slot. 1455 // The runtime cares about this. 1456 // MOV64mr %rdx, 16(%rsp) 1457 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1458 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1459 .addReg(Establisher) 1460 .setMIFlag(MachineInstr::FrameSetup); 1461 MBB.addLiveIn(Establisher); 1462 } 1463 1464 if (HasFP) { 1465 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1466 1467 // Calculate required stack adjustment. 1468 uint64_t FrameSize = StackSize - SlotSize; 1469 // If required, include space for extra hidden slot for stashing base pointer. 1470 if (X86FI->getRestoreBasePointer()) 1471 FrameSize += SlotSize; 1472 1473 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1474 1475 // Callee-saved registers are pushed on stack before the stack is realigned. 1476 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1477 NumBytes = alignTo(NumBytes, MaxAlign); 1478 1479 // Save EBP/RBP into the appropriate stack slot. 1480 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1481 .addReg(MachineFramePtr, RegState::Kill) 1482 .setMIFlag(MachineInstr::FrameSetup); 1483 1484 if (NeedsDwarfCFI) { 1485 // Mark the place where EBP/RBP was saved. 1486 // Define the current CFA rule to use the provided offset. 1487 assert(StackSize); 1488 BuildCFI(MBB, MBBI, DL, 1489 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1490 1491 // Change the rule for the FramePtr to be an "offset" rule. 1492 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1493 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1494 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1495 } 1496 1497 if (NeedsWinCFI) { 1498 HasWinCFI = true; 1499 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1500 .addImm(FramePtr) 1501 .setMIFlag(MachineInstr::FrameSetup); 1502 } 1503 1504 if (!IsWin64Prologue && !IsFunclet) { 1505 // Update EBP with the new base value. 1506 BuildMI(MBB, MBBI, DL, 1507 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1508 FramePtr) 1509 .addReg(StackPtr) 1510 .setMIFlag(MachineInstr::FrameSetup); 1511 1512 if (NeedsDwarfCFI) { 1513 // Mark effective beginning of when frame pointer becomes valid. 1514 // Define the current CFA to use the EBP/RBP register. 1515 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1516 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1517 nullptr, DwarfFramePtr)); 1518 } 1519 1520 if (NeedsWinFPO) { 1521 // .cv_fpo_setframe $FramePtr 1522 HasWinCFI = true; 1523 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1524 .addImm(FramePtr) 1525 .addImm(0) 1526 .setMIFlag(MachineInstr::FrameSetup); 1527 } 1528 } 1529 } else { 1530 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1531 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1532 } 1533 1534 // Update the offset adjustment, which is mainly used by codeview to translate 1535 // from ESP to VFRAME relative local variable offsets. 1536 if (!IsFunclet) { 1537 if (HasFP && TRI->needsStackRealignment(MF)) 1538 MFI.setOffsetAdjustment(-NumBytes); 1539 else 1540 MFI.setOffsetAdjustment(-StackSize); 1541 } 1542 1543 // For EH funclets, only allocate enough space for outgoing calls. Save the 1544 // NumBytes value that we would've used for the parent frame. 1545 unsigned ParentFrameNumBytes = NumBytes; 1546 if (IsFunclet) 1547 NumBytes = getWinEHFuncletFrameSize(MF); 1548 1549 // Skip the callee-saved push instructions. 1550 bool PushedRegs = false; 1551 int StackOffset = 2 * stackGrowth; 1552 1553 while (MBBI != MBB.end() && 1554 MBBI->getFlag(MachineInstr::FrameSetup) && 1555 (MBBI->getOpcode() == X86::PUSH32r || 1556 MBBI->getOpcode() == X86::PUSH64r)) { 1557 PushedRegs = true; 1558 Register Reg = MBBI->getOperand(0).getReg(); 1559 ++MBBI; 1560 1561 if (!HasFP && NeedsDwarfCFI) { 1562 // Mark callee-saved push instruction. 1563 // Define the current CFA rule to use the provided offset. 1564 assert(StackSize); 1565 BuildCFI(MBB, MBBI, DL, 1566 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1567 StackOffset += stackGrowth; 1568 } 1569 1570 if (NeedsWinCFI) { 1571 HasWinCFI = true; 1572 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1573 .addImm(Reg) 1574 .setMIFlag(MachineInstr::FrameSetup); 1575 } 1576 } 1577 1578 // Realign stack after we pushed callee-saved registers (so that we'll be 1579 // able to calculate their offsets from the frame pointer). 1580 // Don't do this for Win64, it needs to realign the stack after the prologue. 1581 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1582 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1583 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1584 1585 if (NeedsWinCFI) { 1586 HasWinCFI = true; 1587 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1588 .addImm(MaxAlign) 1589 .setMIFlag(MachineInstr::FrameSetup); 1590 } 1591 } 1592 1593 // If there is an SUB32ri of ESP immediately before this instruction, merge 1594 // the two. This can be the case when tail call elimination is enabled and 1595 // the callee has more arguments then the caller. 1596 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1597 1598 // Adjust stack pointer: ESP -= numbytes. 1599 1600 // Windows and cygwin/mingw require a prologue helper routine when allocating 1601 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1602 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1603 // stack and adjust the stack pointer in one go. The 64-bit version of 1604 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1605 // responsible for adjusting the stack pointer. Touching the stack at 4K 1606 // increments is necessary to ensure that the guard pages used by the OS 1607 // virtual memory manager are allocated in correct sequence. 1608 uint64_t AlignedNumBytes = NumBytes; 1609 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1610 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1611 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1612 assert(!X86FI->getUsesRedZone() && 1613 "The Red Zone is not accounted for in stack probes"); 1614 1615 // Check whether EAX is livein for this block. 1616 bool isEAXAlive = isEAXLiveIn(MBB); 1617 1618 if (isEAXAlive) { 1619 if (Is64Bit) { 1620 // Save RAX 1621 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1622 .addReg(X86::RAX, RegState::Kill) 1623 .setMIFlag(MachineInstr::FrameSetup); 1624 } else { 1625 // Save EAX 1626 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1627 .addReg(X86::EAX, RegState::Kill) 1628 .setMIFlag(MachineInstr::FrameSetup); 1629 } 1630 } 1631 1632 if (Is64Bit) { 1633 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1634 // Function prologue is responsible for adjusting the stack pointer. 1635 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1636 if (isUInt<32>(Alloc)) { 1637 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1638 .addImm(Alloc) 1639 .setMIFlag(MachineInstr::FrameSetup); 1640 } else if (isInt<32>(Alloc)) { 1641 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1642 .addImm(Alloc) 1643 .setMIFlag(MachineInstr::FrameSetup); 1644 } else { 1645 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1646 .addImm(Alloc) 1647 .setMIFlag(MachineInstr::FrameSetup); 1648 } 1649 } else { 1650 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1651 // We'll also use 4 already allocated bytes for EAX. 1652 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1653 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1654 .setMIFlag(MachineInstr::FrameSetup); 1655 } 1656 1657 // Call __chkstk, __chkstk_ms, or __alloca. 1658 emitStackProbe(MF, MBB, MBBI, DL, true); 1659 1660 if (isEAXAlive) { 1661 // Restore RAX/EAX 1662 MachineInstr *MI; 1663 if (Is64Bit) 1664 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1665 StackPtr, false, NumBytes - 8); 1666 else 1667 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1668 StackPtr, false, NumBytes - 4); 1669 MI->setFlag(MachineInstr::FrameSetup); 1670 MBB.insert(MBBI, MI); 1671 } 1672 } else if (NumBytes) { 1673 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1674 } 1675 1676 if (NeedsWinCFI && NumBytes) { 1677 HasWinCFI = true; 1678 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1679 .addImm(NumBytes) 1680 .setMIFlag(MachineInstr::FrameSetup); 1681 } 1682 1683 int SEHFrameOffset = 0; 1684 unsigned SPOrEstablisher; 1685 if (IsFunclet) { 1686 if (IsClrFunclet) { 1687 // The establisher parameter passed to a CLR funclet is actually a pointer 1688 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1689 // to find the root function establisher frame by loading the PSPSym from 1690 // the intermediate frame. 1691 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1692 MachinePointerInfo NoInfo; 1693 MBB.addLiveIn(Establisher); 1694 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1695 Establisher, false, PSPSlotOffset) 1696 .addMemOperand(MF.getMachineMemOperand( 1697 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1698 ; 1699 // Save the root establisher back into the current funclet's (mostly 1700 // empty) frame, in case a sub-funclet or the GC needs it. 1701 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1702 false, PSPSlotOffset) 1703 .addReg(Establisher) 1704 .addMemOperand(MF.getMachineMemOperand( 1705 NoInfo, 1706 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1707 SlotSize, Align(SlotSize))); 1708 } 1709 SPOrEstablisher = Establisher; 1710 } else { 1711 SPOrEstablisher = StackPtr; 1712 } 1713 1714 if (IsWin64Prologue && HasFP) { 1715 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1716 // this calculation on the incoming establisher, which holds the value of 1717 // RSP from the parent frame at the end of the prologue. 1718 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1719 if (SEHFrameOffset) 1720 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1721 SPOrEstablisher, false, SEHFrameOffset); 1722 else 1723 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1724 .addReg(SPOrEstablisher); 1725 1726 // If this is not a funclet, emit the CFI describing our frame pointer. 1727 if (NeedsWinCFI && !IsFunclet) { 1728 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1729 HasWinCFI = true; 1730 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1731 .addImm(FramePtr) 1732 .addImm(SEHFrameOffset) 1733 .setMIFlag(MachineInstr::FrameSetup); 1734 if (isAsynchronousEHPersonality(Personality)) 1735 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1736 } 1737 } else if (IsFunclet && STI.is32Bit()) { 1738 // Reset EBP / ESI to something good for funclets. 1739 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1740 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1741 // into the registration node so that the runtime will restore it for us. 1742 if (!MBB.isCleanupFuncletEntry()) { 1743 assert(Personality == EHPersonality::MSVC_CXX); 1744 Register FrameReg; 1745 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1746 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1747 // ESP is the first field, so no extra displacement is needed. 1748 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1749 false, EHRegOffset) 1750 .addReg(X86::ESP); 1751 } 1752 } 1753 1754 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1755 const MachineInstr &FrameInstr = *MBBI; 1756 ++MBBI; 1757 1758 if (NeedsWinCFI) { 1759 int FI; 1760 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1761 if (X86::FR64RegClass.contains(Reg)) { 1762 int Offset; 1763 Register IgnoredFrameReg; 1764 if (IsWin64Prologue && IsFunclet) 1765 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1766 else 1767 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) + 1768 SEHFrameOffset; 1769 1770 HasWinCFI = true; 1771 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1772 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1773 .addImm(Reg) 1774 .addImm(Offset) 1775 .setMIFlag(MachineInstr::FrameSetup); 1776 } 1777 } 1778 } 1779 } 1780 1781 if (NeedsWinCFI && HasWinCFI) 1782 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1783 .setMIFlag(MachineInstr::FrameSetup); 1784 1785 if (FnHasClrFunclet && !IsFunclet) { 1786 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1787 // immediately after the prolog) into the PSPSlot so that funclets 1788 // and the GC can recover it. 1789 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1790 auto PSPInfo = MachinePointerInfo::getFixedStack( 1791 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1792 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1793 PSPSlotOffset) 1794 .addReg(StackPtr) 1795 .addMemOperand(MF.getMachineMemOperand( 1796 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1797 SlotSize, Align(SlotSize))); 1798 } 1799 1800 // Realign stack after we spilled callee-saved registers (so that we'll be 1801 // able to calculate their offsets from the frame pointer). 1802 // Win64 requires aligning the stack after the prologue. 1803 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1804 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1805 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1806 } 1807 1808 // We already dealt with stack realignment and funclets above. 1809 if (IsFunclet && STI.is32Bit()) 1810 return; 1811 1812 // If we need a base pointer, set it up here. It's whatever the value 1813 // of the stack pointer is at this point. Any variable size objects 1814 // will be allocated after this, so we can still use the base pointer 1815 // to reference locals. 1816 if (TRI->hasBasePointer(MF)) { 1817 // Update the base pointer with the current stack pointer. 1818 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1819 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1820 .addReg(SPOrEstablisher) 1821 .setMIFlag(MachineInstr::FrameSetup); 1822 if (X86FI->getRestoreBasePointer()) { 1823 // Stash value of base pointer. Saving RSP instead of EBP shortens 1824 // dependence chain. Used by SjLj EH. 1825 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1826 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1827 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1828 .addReg(SPOrEstablisher) 1829 .setMIFlag(MachineInstr::FrameSetup); 1830 } 1831 1832 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1833 // Stash the value of the frame pointer relative to the base pointer for 1834 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1835 // it recovers the frame pointer from the base pointer rather than the 1836 // other way around. 1837 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1838 Register UsedReg; 1839 int Offset = 1840 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1841 assert(UsedReg == BasePtr); 1842 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1843 .addReg(FramePtr) 1844 .setMIFlag(MachineInstr::FrameSetup); 1845 } 1846 } 1847 1848 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1849 // Mark end of stack pointer adjustment. 1850 if (!HasFP && NumBytes) { 1851 // Define the current CFA rule to use the provided offset. 1852 assert(StackSize); 1853 BuildCFI( 1854 MBB, MBBI, DL, 1855 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1856 } 1857 1858 // Emit DWARF info specifying the offsets of the callee-saved registers. 1859 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1860 } 1861 1862 // X86 Interrupt handling function cannot assume anything about the direction 1863 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1864 // in each prologue of interrupt handler function. 1865 // 1866 // FIXME: Create "cld" instruction only in these cases: 1867 // 1. The interrupt handling function uses any of the "rep" instructions. 1868 // 2. Interrupt handling function calls another function. 1869 // 1870 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1871 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1872 .setMIFlag(MachineInstr::FrameSetup); 1873 1874 // At this point we know if the function has WinCFI or not. 1875 MF.setHasWinCFI(HasWinCFI); 1876 } 1877 1878 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1879 const MachineFunction &MF) const { 1880 // We can't use LEA instructions for adjusting the stack pointer if we don't 1881 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1882 // to deallocate the stack. 1883 // This means that we can use LEA for SP in two situations: 1884 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1885 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1886 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1887 } 1888 1889 static bool isFuncletReturnInstr(MachineInstr &MI) { 1890 switch (MI.getOpcode()) { 1891 case X86::CATCHRET: 1892 case X86::CLEANUPRET: 1893 return true; 1894 default: 1895 return false; 1896 } 1897 llvm_unreachable("impossible"); 1898 } 1899 1900 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1901 // stack. It holds a pointer to the bottom of the root function frame. The 1902 // establisher frame pointer passed to a nested funclet may point to the 1903 // (mostly empty) frame of its parent funclet, but it will need to find 1904 // the frame of the root function to access locals. To facilitate this, 1905 // every funclet copies the pointer to the bottom of the root function 1906 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1907 // same offset for the PSPSym in the root function frame that's used in the 1908 // funclets' frames allows each funclet to dynamically accept any ancestor 1909 // frame as its establisher argument (the runtime doesn't guarantee the 1910 // immediate parent for some reason lost to history), and also allows the GC, 1911 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1912 // frame with only a single offset reported for the entire method. 1913 unsigned 1914 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1915 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1916 Register SPReg; 1917 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1918 /*IgnoreSPUpdates*/ true); 1919 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1920 return static_cast<unsigned>(Offset); 1921 } 1922 1923 unsigned 1924 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1925 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1926 // This is the size of the pushed CSRs. 1927 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1928 // This is the size of callee saved XMMs. 1929 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1930 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1931 TRI->getSpillSize(X86::VR128RegClass); 1932 // This is the amount of stack a funclet needs to allocate. 1933 unsigned UsedSize; 1934 EHPersonality Personality = 1935 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1936 if (Personality == EHPersonality::CoreCLR) { 1937 // CLR funclets need to hold enough space to include the PSPSym, at the 1938 // same offset from the stack pointer (immediately after the prolog) as it 1939 // resides at in the main function. 1940 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1941 } else { 1942 // Other funclets just need enough stack for outgoing call arguments. 1943 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1944 } 1945 // RBP is not included in the callee saved register block. After pushing RBP, 1946 // everything is 16 byte aligned. Everything we allocate before an outgoing 1947 // call must also be 16 byte aligned. 1948 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 1949 // Subtract out the size of the callee saved registers. This is how much stack 1950 // each funclet will allocate. 1951 return FrameSizeMinusRBP + XMMSize - CSSize; 1952 } 1953 1954 static bool isTailCallOpcode(unsigned Opc) { 1955 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1956 Opc == X86::TCRETURNmi || 1957 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1958 Opc == X86::TCRETURNmi64; 1959 } 1960 1961 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1962 MachineBasicBlock &MBB) const { 1963 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1964 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1965 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1966 MachineBasicBlock::iterator MBBI = Terminator; 1967 DebugLoc DL; 1968 if (MBBI != MBB.end()) 1969 DL = MBBI->getDebugLoc(); 1970 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1971 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1972 Register FramePtr = TRI->getFrameRegister(MF); 1973 unsigned MachineFramePtr = 1974 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1975 1976 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1977 bool NeedsWin64CFI = 1978 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1979 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1980 1981 // Get the number of bytes to allocate from the FrameInfo. 1982 uint64_t StackSize = MFI.getStackSize(); 1983 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1984 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1985 bool HasFP = hasFP(MF); 1986 uint64_t NumBytes = 0; 1987 1988 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 1989 !MF.getTarget().getTargetTriple().isOSWindows()) && 1990 MF.needsFrameMoves(); 1991 1992 if (IsFunclet) { 1993 assert(HasFP && "EH funclets without FP not yet implemented"); 1994 NumBytes = getWinEHFuncletFrameSize(MF); 1995 } else if (HasFP) { 1996 // Calculate required stack adjustment. 1997 uint64_t FrameSize = StackSize - SlotSize; 1998 NumBytes = FrameSize - CSSize; 1999 2000 // Callee-saved registers were pushed on stack before the stack was 2001 // realigned. 2002 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 2003 NumBytes = alignTo(FrameSize, MaxAlign); 2004 } else { 2005 NumBytes = StackSize - CSSize; 2006 } 2007 uint64_t SEHStackAllocAmt = NumBytes; 2008 2009 // AfterPop is the position to insert .cfi_restore. 2010 MachineBasicBlock::iterator AfterPop = MBBI; 2011 if (HasFP) { 2012 // Pop EBP. 2013 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2014 MachineFramePtr) 2015 .setMIFlag(MachineInstr::FrameDestroy); 2016 if (NeedsDwarfCFI) { 2017 unsigned DwarfStackPtr = 2018 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2019 BuildCFI(MBB, MBBI, DL, 2020 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2021 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2022 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2023 BuildCFI(MBB, AfterPop, DL, 2024 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2025 --MBBI; 2026 --AfterPop; 2027 } 2028 --MBBI; 2029 } 2030 } 2031 2032 MachineBasicBlock::iterator FirstCSPop = MBBI; 2033 // Skip the callee-saved pop instructions. 2034 while (MBBI != MBB.begin()) { 2035 MachineBasicBlock::iterator PI = std::prev(MBBI); 2036 unsigned Opc = PI->getOpcode(); 2037 2038 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2039 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2040 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 2041 break; 2042 FirstCSPop = PI; 2043 } 2044 2045 --MBBI; 2046 } 2047 MBBI = FirstCSPop; 2048 2049 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2050 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2051 2052 if (MBBI != MBB.end()) 2053 DL = MBBI->getDebugLoc(); 2054 2055 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2056 // instruction, merge the two instructions. 2057 if (NumBytes || MFI.hasVarSizedObjects()) 2058 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2059 2060 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2061 // slot before popping them off! Same applies for the case, when stack was 2062 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2063 // will not do realignment or dynamic stack allocation. 2064 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 2065 !IsFunclet) { 2066 if (TRI->needsStackRealignment(MF)) 2067 MBBI = FirstCSPop; 2068 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2069 uint64_t LEAAmount = 2070 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2071 2072 // There are only two legal forms of epilogue: 2073 // - add SEHAllocationSize, %rsp 2074 // - lea SEHAllocationSize(%FramePtr), %rsp 2075 // 2076 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2077 // However, we may use this sequence if we have a frame pointer because the 2078 // effects of the prologue can safely be undone. 2079 if (LEAAmount != 0) { 2080 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2081 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2082 FramePtr, false, LEAAmount); 2083 --MBBI; 2084 } else { 2085 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2086 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2087 .addReg(FramePtr); 2088 --MBBI; 2089 } 2090 } else if (NumBytes) { 2091 // Adjust stack pointer back: ESP += numbytes. 2092 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2093 if (!hasFP(MF) && NeedsDwarfCFI) { 2094 // Define the current CFA rule to use the provided offset. 2095 BuildCFI(MBB, MBBI, DL, 2096 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize)); 2097 } 2098 --MBBI; 2099 } 2100 2101 // Windows unwinder will not invoke function's exception handler if IP is 2102 // either in prologue or in epilogue. This behavior causes a problem when a 2103 // call immediately precedes an epilogue, because the return address points 2104 // into the epilogue. To cope with that, we insert an epilogue marker here, 2105 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2106 // final emitted code. 2107 if (NeedsWin64CFI && MF.hasWinCFI()) 2108 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2109 2110 if (!hasFP(MF) && NeedsDwarfCFI) { 2111 MBBI = FirstCSPop; 2112 int64_t Offset = -CSSize - SlotSize; 2113 // Mark callee-saved pop instruction. 2114 // Define the current CFA rule to use the provided offset. 2115 while (MBBI != MBB.end()) { 2116 MachineBasicBlock::iterator PI = MBBI; 2117 unsigned Opc = PI->getOpcode(); 2118 ++MBBI; 2119 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2120 Offset += SlotSize; 2121 BuildCFI(MBB, MBBI, DL, 2122 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2123 } 2124 } 2125 } 2126 2127 // Emit DWARF info specifying the restores of the callee-saved registers. 2128 // For epilogue with return inside or being other block without successor, 2129 // no need to generate .cfi_restore for callee-saved registers. 2130 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) { 2131 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2132 } 2133 2134 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2135 // Add the return addr area delta back since we are not tail calling. 2136 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2137 assert(Offset >= 0 && "TCDelta should never be positive"); 2138 if (Offset) { 2139 // Check for possible merge with preceding ADD instruction. 2140 Offset += mergeSPUpdates(MBB, Terminator, true); 2141 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2142 } 2143 } 2144 } 2145 2146 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 2147 Register &FrameReg) const { 2148 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2149 2150 bool IsFixed = MFI.isFixedObjectIndex(FI); 2151 // We can't calculate offset from frame pointer if the stack is realigned, 2152 // so enforce usage of stack/base pointer. The base pointer is used when we 2153 // have dynamic allocas in addition to dynamic realignment. 2154 if (TRI->hasBasePointer(MF)) 2155 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2156 else if (TRI->needsStackRealignment(MF)) 2157 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2158 else 2159 FrameReg = TRI->getFrameRegister(MF); 2160 2161 // Offset will hold the offset from the stack pointer at function entry to the 2162 // object. 2163 // We need to factor in additional offsets applied during the prologue to the 2164 // frame, base, and stack pointer depending on which is used. 2165 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2166 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2167 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2168 uint64_t StackSize = MFI.getStackSize(); 2169 bool HasFP = hasFP(MF); 2170 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2171 int64_t FPDelta = 0; 2172 2173 // In an x86 interrupt, remove the offset we added to account for the return 2174 // address from any stack object allocated in the caller's frame. Interrupts 2175 // do not have a standard return address. Fixed objects in the current frame, 2176 // such as SSE register spills, should not get this treatment. 2177 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2178 Offset >= 0) { 2179 Offset += getOffsetOfLocalArea(); 2180 } 2181 2182 if (IsWin64Prologue) { 2183 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2184 2185 // Calculate required stack adjustment. 2186 uint64_t FrameSize = StackSize - SlotSize; 2187 // If required, include space for extra hidden slot for stashing base pointer. 2188 if (X86FI->getRestoreBasePointer()) 2189 FrameSize += SlotSize; 2190 uint64_t NumBytes = FrameSize - CSSize; 2191 2192 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2193 if (FI && FI == X86FI->getFAIndex()) 2194 return -SEHFrameOffset; 2195 2196 // FPDelta is the offset from the "traditional" FP location of the old base 2197 // pointer followed by return address and the location required by the 2198 // restricted Win64 prologue. 2199 // Add FPDelta to all offsets below that go through the frame pointer. 2200 FPDelta = FrameSize - SEHFrameOffset; 2201 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2202 "FPDelta isn't aligned per the Win64 ABI!"); 2203 } 2204 2205 2206 if (TRI->hasBasePointer(MF)) { 2207 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 2208 if (FI < 0) { 2209 // Skip the saved EBP. 2210 return Offset + SlotSize + FPDelta; 2211 } else { 2212 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2213 return Offset + StackSize; 2214 } 2215 } else if (TRI->needsStackRealignment(MF)) { 2216 if (FI < 0) { 2217 // Skip the saved EBP. 2218 return Offset + SlotSize + FPDelta; 2219 } else { 2220 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2221 return Offset + StackSize; 2222 } 2223 // FIXME: Support tail calls 2224 } else { 2225 if (!HasFP) 2226 return Offset + StackSize; 2227 2228 // Skip the saved EBP. 2229 Offset += SlotSize; 2230 2231 // Skip the RETADDR move area 2232 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2233 if (TailCallReturnAddrDelta < 0) 2234 Offset -= TailCallReturnAddrDelta; 2235 } 2236 2237 return Offset + FPDelta; 2238 } 2239 2240 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2241 Register &FrameReg) const { 2242 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2243 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2244 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2245 const auto it = WinEHXMMSlotInfo.find(FI); 2246 2247 if (it == WinEHXMMSlotInfo.end()) 2248 return getFrameIndexReference(MF, FI, FrameReg); 2249 2250 FrameReg = TRI->getStackRegister(); 2251 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2252 it->second; 2253 } 2254 2255 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 2256 int FI, Register &FrameReg, 2257 int Adjustment) const { 2258 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2259 FrameReg = TRI->getStackRegister(); 2260 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 2261 } 2262 2263 int X86FrameLowering::getFrameIndexReferencePreferSP( 2264 const MachineFunction &MF, int FI, Register &FrameReg, 2265 bool IgnoreSPUpdates) const { 2266 2267 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2268 // Does not include any dynamic realign. 2269 const uint64_t StackSize = MFI.getStackSize(); 2270 // LLVM arranges the stack as follows: 2271 // ... 2272 // ARG2 2273 // ARG1 2274 // RETADDR 2275 // PUSH RBP <-- RBP points here 2276 // PUSH CSRs 2277 // ~~~~~~~ <-- possible stack realignment (non-win64) 2278 // ... 2279 // STACK OBJECTS 2280 // ... <-- RSP after prologue points here 2281 // ~~~~~~~ <-- possible stack realignment (win64) 2282 // 2283 // if (hasVarSizedObjects()): 2284 // ... <-- "base pointer" (ESI/RBX) points here 2285 // DYNAMIC ALLOCAS 2286 // ... <-- RSP points here 2287 // 2288 // Case 1: In the simple case of no stack realignment and no dynamic 2289 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2290 // with fixed offsets from RSP. 2291 // 2292 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2293 // stack objects are addressed with RBP and regular stack objects with RSP. 2294 // 2295 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2296 // to address stack arguments for outgoing calls and nothing else. The "base 2297 // pointer" points to local variables, and RBP points to fixed objects. 2298 // 2299 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2300 // answer we give is relative to the SP after the prologue, and not the 2301 // SP in the middle of the function. 2302 2303 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 2304 !STI.isTargetWin64()) 2305 return getFrameIndexReference(MF, FI, FrameReg); 2306 2307 // If !hasReservedCallFrame the function might have SP adjustement in the 2308 // body. So, even though the offset is statically known, it depends on where 2309 // we are in the function. 2310 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2311 return getFrameIndexReference(MF, FI, FrameReg); 2312 2313 // We don't handle tail calls, and shouldn't be seeing them either. 2314 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2315 "we don't handle this case!"); 2316 2317 // This is how the math works out: 2318 // 2319 // %rsp grows (i.e. gets lower) left to right. Each box below is 2320 // one word (eight bytes). Obj0 is the stack slot we're trying to 2321 // get to. 2322 // 2323 // ---------------------------------- 2324 // | BP | Obj0 | Obj1 | ... | ObjN | 2325 // ---------------------------------- 2326 // ^ ^ ^ ^ 2327 // A B C E 2328 // 2329 // A is the incoming stack pointer. 2330 // (B - A) is the local area offset (-8 for x86-64) [1] 2331 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2332 // 2333 // |(E - B)| is the StackSize (absolute value, positive). For a 2334 // stack that grown down, this works out to be (B - E). [3] 2335 // 2336 // E is also the value of %rsp after stack has been set up, and we 2337 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2338 // (C - E) == (C - A) - (B - A) + (B - E) 2339 // { Using [1], [2] and [3] above } 2340 // == getObjectOffset - LocalAreaOffset + StackSize 2341 2342 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2343 } 2344 2345 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2346 MachineFunction &MF, const TargetRegisterInfo *TRI, 2347 std::vector<CalleeSavedInfo> &CSI) const { 2348 MachineFrameInfo &MFI = MF.getFrameInfo(); 2349 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2350 2351 unsigned CalleeSavedFrameSize = 0; 2352 unsigned XMMCalleeSavedFrameSize = 0; 2353 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2354 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2355 2356 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2357 2358 if (TailCallReturnAddrDelta < 0) { 2359 // create RETURNADDR area 2360 // arg 2361 // arg 2362 // RETADDR 2363 // { ... 2364 // RETADDR area 2365 // ... 2366 // } 2367 // [EBP] 2368 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2369 TailCallReturnAddrDelta - SlotSize, true); 2370 } 2371 2372 // Spill the BasePtr if it's used. 2373 if (this->TRI->hasBasePointer(MF)) { 2374 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2375 if (MF.hasEHFunclets()) { 2376 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2377 X86FI->setHasSEHFramePtrSave(true); 2378 X86FI->setSEHFramePtrSaveIndex(FI); 2379 } 2380 } 2381 2382 if (hasFP(MF)) { 2383 // emitPrologue always spills frame register the first thing. 2384 SpillSlotOffset -= SlotSize; 2385 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2386 2387 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2388 // the frame register, we can delete it from CSI list and not have to worry 2389 // about avoiding it later. 2390 Register FPReg = TRI->getFrameRegister(MF); 2391 for (unsigned i = 0; i < CSI.size(); ++i) { 2392 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2393 CSI.erase(CSI.begin() + i); 2394 break; 2395 } 2396 } 2397 } 2398 2399 // Assign slots for GPRs. It increases frame size. 2400 for (unsigned i = CSI.size(); i != 0; --i) { 2401 unsigned Reg = CSI[i - 1].getReg(); 2402 2403 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2404 continue; 2405 2406 SpillSlotOffset -= SlotSize; 2407 CalleeSavedFrameSize += SlotSize; 2408 2409 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2410 CSI[i - 1].setFrameIdx(SlotIndex); 2411 } 2412 2413 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2414 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2415 2416 // Assign slots for XMMs. 2417 for (unsigned i = CSI.size(); i != 0; --i) { 2418 unsigned Reg = CSI[i - 1].getReg(); 2419 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2420 continue; 2421 2422 // If this is k-register make sure we lookup via the largest legal type. 2423 MVT VT = MVT::Other; 2424 if (X86::VK16RegClass.contains(Reg)) 2425 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2426 2427 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2428 unsigned Size = TRI->getSpillSize(*RC); 2429 Align Alignment = TRI->getSpillAlign(*RC); 2430 // ensure alignment 2431 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2432 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2433 2434 // spill into slot 2435 SpillSlotOffset -= Size; 2436 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2437 CSI[i - 1].setFrameIdx(SlotIndex); 2438 MFI.ensureMaxAlignment(Alignment); 2439 2440 // Save the start offset and size of XMM in stack frame for funclets. 2441 if (X86::VR128RegClass.contains(Reg)) { 2442 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2443 XMMCalleeSavedFrameSize += Size; 2444 } 2445 } 2446 2447 return true; 2448 } 2449 2450 bool X86FrameLowering::spillCalleeSavedRegisters( 2451 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2452 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2453 DebugLoc DL = MBB.findDebugLoc(MI); 2454 2455 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2456 // for us, and there are no XMM CSRs on Win32. 2457 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2458 return true; 2459 2460 // Push GPRs. It increases frame size. 2461 const MachineFunction &MF = *MBB.getParent(); 2462 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2463 for (unsigned i = CSI.size(); i != 0; --i) { 2464 unsigned Reg = CSI[i - 1].getReg(); 2465 2466 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2467 continue; 2468 2469 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2470 bool isLiveIn = MRI.isLiveIn(Reg); 2471 if (!isLiveIn) 2472 MBB.addLiveIn(Reg); 2473 2474 // Decide whether we can add a kill flag to the use. 2475 bool CanKill = !isLiveIn; 2476 // Check if any subregister is live-in 2477 if (CanKill) { 2478 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2479 if (MRI.isLiveIn(*AReg)) { 2480 CanKill = false; 2481 break; 2482 } 2483 } 2484 } 2485 2486 // Do not set a kill flag on values that are also marked as live-in. This 2487 // happens with the @llvm-returnaddress intrinsic and with arguments 2488 // passed in callee saved registers. 2489 // Omitting the kill flags is conservatively correct even if the live-in 2490 // is not used after all. 2491 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2492 .setMIFlag(MachineInstr::FrameSetup); 2493 } 2494 2495 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2496 // It can be done by spilling XMMs to stack frame. 2497 for (unsigned i = CSI.size(); i != 0; --i) { 2498 unsigned Reg = CSI[i-1].getReg(); 2499 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2500 continue; 2501 2502 // If this is k-register make sure we lookup via the largest legal type. 2503 MVT VT = MVT::Other; 2504 if (X86::VK16RegClass.contains(Reg)) 2505 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2506 2507 // Add the callee-saved register as live-in. It's killed at the spill. 2508 MBB.addLiveIn(Reg); 2509 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2510 2511 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2512 TRI); 2513 --MI; 2514 MI->setFlag(MachineInstr::FrameSetup); 2515 ++MI; 2516 } 2517 2518 return true; 2519 } 2520 2521 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2522 MachineBasicBlock::iterator MBBI, 2523 MachineInstr *CatchRet) const { 2524 // SEH shouldn't use catchret. 2525 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2526 MBB.getParent()->getFunction().getPersonalityFn())) && 2527 "SEH should not use CATCHRET"); 2528 DebugLoc DL = CatchRet->getDebugLoc(); 2529 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2530 2531 // Fill EAX/RAX with the address of the target block. 2532 if (STI.is64Bit()) { 2533 // LEA64r CatchRetTarget(%rip), %rax 2534 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2535 .addReg(X86::RIP) 2536 .addImm(0) 2537 .addReg(0) 2538 .addMBB(CatchRetTarget) 2539 .addReg(0); 2540 } else { 2541 // MOV32ri $CatchRetTarget, %eax 2542 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2543 .addMBB(CatchRetTarget); 2544 } 2545 2546 // Record that we've taken the address of CatchRetTarget and no longer just 2547 // reference it in a terminator. 2548 CatchRetTarget->setHasAddressTaken(); 2549 } 2550 2551 bool X86FrameLowering::restoreCalleeSavedRegisters( 2552 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2553 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2554 if (CSI.empty()) 2555 return false; 2556 2557 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2558 // Don't restore CSRs in 32-bit EH funclets. Matches 2559 // spillCalleeSavedRegisters. 2560 if (STI.is32Bit()) 2561 return true; 2562 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2563 // funclets. emitEpilogue transforms these to normal jumps. 2564 if (MI->getOpcode() == X86::CATCHRET) { 2565 const Function &F = MBB.getParent()->getFunction(); 2566 bool IsSEH = isAsynchronousEHPersonality( 2567 classifyEHPersonality(F.getPersonalityFn())); 2568 if (IsSEH) 2569 return true; 2570 } 2571 } 2572 2573 DebugLoc DL = MBB.findDebugLoc(MI); 2574 2575 // Reload XMMs from stack frame. 2576 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2577 unsigned Reg = CSI[i].getReg(); 2578 if (X86::GR64RegClass.contains(Reg) || 2579 X86::GR32RegClass.contains(Reg)) 2580 continue; 2581 2582 // If this is k-register make sure we lookup via the largest legal type. 2583 MVT VT = MVT::Other; 2584 if (X86::VK16RegClass.contains(Reg)) 2585 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2586 2587 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2588 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2589 } 2590 2591 // POP GPRs. 2592 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2593 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2594 unsigned Reg = CSI[i].getReg(); 2595 if (!X86::GR64RegClass.contains(Reg) && 2596 !X86::GR32RegClass.contains(Reg)) 2597 continue; 2598 2599 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2600 .setMIFlag(MachineInstr::FrameDestroy); 2601 } 2602 return true; 2603 } 2604 2605 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2606 BitVector &SavedRegs, 2607 RegScavenger *RS) const { 2608 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2609 2610 // Spill the BasePtr if it's used. 2611 if (TRI->hasBasePointer(MF)){ 2612 Register BasePtr = TRI->getBaseRegister(); 2613 if (STI.isTarget64BitILP32()) 2614 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2615 SavedRegs.set(BasePtr); 2616 } 2617 } 2618 2619 static bool 2620 HasNestArgument(const MachineFunction *MF) { 2621 const Function &F = MF->getFunction(); 2622 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2623 I != E; I++) { 2624 if (I->hasNestAttr() && !I->use_empty()) 2625 return true; 2626 } 2627 return false; 2628 } 2629 2630 /// GetScratchRegister - Get a temp register for performing work in the 2631 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2632 /// and the properties of the function either one or two registers will be 2633 /// needed. Set primary to true for the first register, false for the second. 2634 static unsigned 2635 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2636 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2637 2638 // Erlang stuff. 2639 if (CallingConvention == CallingConv::HiPE) { 2640 if (Is64Bit) 2641 return Primary ? X86::R14 : X86::R13; 2642 else 2643 return Primary ? X86::EBX : X86::EDI; 2644 } 2645 2646 if (Is64Bit) { 2647 if (IsLP64) 2648 return Primary ? X86::R11 : X86::R12; 2649 else 2650 return Primary ? X86::R11D : X86::R12D; 2651 } 2652 2653 bool IsNested = HasNestArgument(&MF); 2654 2655 if (CallingConvention == CallingConv::X86_FastCall || 2656 CallingConvention == CallingConv::Fast || 2657 CallingConvention == CallingConv::Tail) { 2658 if (IsNested) 2659 report_fatal_error("Segmented stacks does not support fastcall with " 2660 "nested function."); 2661 return Primary ? X86::EAX : X86::ECX; 2662 } 2663 if (IsNested) 2664 return Primary ? X86::EDX : X86::EAX; 2665 return Primary ? X86::ECX : X86::EAX; 2666 } 2667 2668 // The stack limit in the TCB is set to this many bytes above the actual stack 2669 // limit. 2670 static const uint64_t kSplitStackAvailable = 256; 2671 2672 void X86FrameLowering::adjustForSegmentedStacks( 2673 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2674 MachineFrameInfo &MFI = MF.getFrameInfo(); 2675 uint64_t StackSize; 2676 unsigned TlsReg, TlsOffset; 2677 DebugLoc DL; 2678 2679 // To support shrink-wrapping we would need to insert the new blocks 2680 // at the right place and update the branches to PrologueMBB. 2681 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2682 2683 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2684 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2685 "Scratch register is live-in"); 2686 2687 if (MF.getFunction().isVarArg()) 2688 report_fatal_error("Segmented stacks do not support vararg functions."); 2689 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2690 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2691 !STI.isTargetDragonFly()) 2692 report_fatal_error("Segmented stacks not supported on this platform."); 2693 2694 // Eventually StackSize will be calculated by a link-time pass; which will 2695 // also decide whether checking code needs to be injected into this particular 2696 // prologue. 2697 StackSize = MFI.getStackSize(); 2698 2699 // Do not generate a prologue for leaf functions with a stack of size zero. 2700 // For non-leaf functions we have to allow for the possibility that the 2701 // callis to a non-split function, as in PR37807. This function could also 2702 // take the address of a non-split function. When the linker tries to adjust 2703 // its non-existent prologue, it would fail with an error. Mark the object 2704 // file so that such failures are not errors. See this Go language bug-report 2705 // https://go-review.googlesource.com/c/go/+/148819/ 2706 if (StackSize == 0 && !MFI.hasTailCall()) { 2707 MF.getMMI().setHasNosplitStack(true); 2708 return; 2709 } 2710 2711 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2712 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2713 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2714 bool IsNested = false; 2715 2716 // We need to know if the function has a nest argument only in 64 bit mode. 2717 if (Is64Bit) 2718 IsNested = HasNestArgument(&MF); 2719 2720 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2721 // allocMBB needs to be last (terminating) instruction. 2722 2723 for (const auto &LI : PrologueMBB.liveins()) { 2724 allocMBB->addLiveIn(LI); 2725 checkMBB->addLiveIn(LI); 2726 } 2727 2728 if (IsNested) 2729 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2730 2731 MF.push_front(allocMBB); 2732 MF.push_front(checkMBB); 2733 2734 // When the frame size is less than 256 we just compare the stack 2735 // boundary directly to the value of the stack pointer, per gcc. 2736 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2737 2738 // Read the limit off the current stacklet off the stack_guard location. 2739 if (Is64Bit) { 2740 if (STI.isTargetLinux()) { 2741 TlsReg = X86::FS; 2742 TlsOffset = IsLP64 ? 0x70 : 0x40; 2743 } else if (STI.isTargetDarwin()) { 2744 TlsReg = X86::GS; 2745 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2746 } else if (STI.isTargetWin64()) { 2747 TlsReg = X86::GS; 2748 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2749 } else if (STI.isTargetFreeBSD()) { 2750 TlsReg = X86::FS; 2751 TlsOffset = 0x18; 2752 } else if (STI.isTargetDragonFly()) { 2753 TlsReg = X86::FS; 2754 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2755 } else { 2756 report_fatal_error("Segmented stacks not supported on this platform."); 2757 } 2758 2759 if (CompareStackPointer) 2760 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2761 else 2762 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2763 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2764 2765 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2766 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2767 } else { 2768 if (STI.isTargetLinux()) { 2769 TlsReg = X86::GS; 2770 TlsOffset = 0x30; 2771 } else if (STI.isTargetDarwin()) { 2772 TlsReg = X86::GS; 2773 TlsOffset = 0x48 + 90*4; 2774 } else if (STI.isTargetWin32()) { 2775 TlsReg = X86::FS; 2776 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2777 } else if (STI.isTargetDragonFly()) { 2778 TlsReg = X86::FS; 2779 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2780 } else if (STI.isTargetFreeBSD()) { 2781 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2782 } else { 2783 report_fatal_error("Segmented stacks not supported on this platform."); 2784 } 2785 2786 if (CompareStackPointer) 2787 ScratchReg = X86::ESP; 2788 else 2789 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2790 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2791 2792 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2793 STI.isTargetDragonFly()) { 2794 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2795 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2796 } else if (STI.isTargetDarwin()) { 2797 2798 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2799 unsigned ScratchReg2; 2800 bool SaveScratch2; 2801 if (CompareStackPointer) { 2802 // The primary scratch register is available for holding the TLS offset. 2803 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2804 SaveScratch2 = false; 2805 } else { 2806 // Need to use a second register to hold the TLS offset 2807 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2808 2809 // Unfortunately, with fastcc the second scratch register may hold an 2810 // argument. 2811 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2812 } 2813 2814 // If Scratch2 is live-in then it needs to be saved. 2815 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2816 "Scratch register is live-in and not saved"); 2817 2818 if (SaveScratch2) 2819 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2820 .addReg(ScratchReg2, RegState::Kill); 2821 2822 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2823 .addImm(TlsOffset); 2824 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2825 .addReg(ScratchReg) 2826 .addReg(ScratchReg2).addImm(1).addReg(0) 2827 .addImm(0) 2828 .addReg(TlsReg); 2829 2830 if (SaveScratch2) 2831 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2832 } 2833 } 2834 2835 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2836 // It jumps to normal execution of the function body. 2837 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2838 2839 // On 32 bit we first push the arguments size and then the frame size. On 64 2840 // bit, we pass the stack frame size in r10 and the argument size in r11. 2841 if (Is64Bit) { 2842 // Functions with nested arguments use R10, so it needs to be saved across 2843 // the call to _morestack 2844 2845 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2846 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2847 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2848 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2849 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2850 2851 if (IsNested) 2852 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2853 2854 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2855 .addImm(StackSize); 2856 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2857 .addImm(X86FI->getArgumentStackSize()); 2858 } else { 2859 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2860 .addImm(X86FI->getArgumentStackSize()); 2861 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2862 .addImm(StackSize); 2863 } 2864 2865 // __morestack is in libgcc 2866 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2867 // Under the large code model, we cannot assume that __morestack lives 2868 // within 2^31 bytes of the call site, so we cannot use pc-relative 2869 // addressing. We cannot perform the call via a temporary register, 2870 // as the rax register may be used to store the static chain, and all 2871 // other suitable registers may be either callee-save or used for 2872 // parameter passing. We cannot use the stack at this point either 2873 // because __morestack manipulates the stack directly. 2874 // 2875 // To avoid these issues, perform an indirect call via a read-only memory 2876 // location containing the address. 2877 // 2878 // This solution is not perfect, as it assumes that the .rodata section 2879 // is laid out within 2^31 bytes of each function body, but this seems 2880 // to be sufficient for JIT. 2881 // FIXME: Add retpoline support and remove the error here.. 2882 if (STI.useIndirectThunkCalls()) 2883 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2884 "code model and thunks not yet implemented."); 2885 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2886 .addReg(X86::RIP) 2887 .addImm(0) 2888 .addReg(0) 2889 .addExternalSymbol("__morestack_addr") 2890 .addReg(0); 2891 MF.getMMI().setUsesMorestackAddr(true); 2892 } else { 2893 if (Is64Bit) 2894 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2895 .addExternalSymbol("__morestack"); 2896 else 2897 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2898 .addExternalSymbol("__morestack"); 2899 } 2900 2901 if (IsNested) 2902 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2903 else 2904 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2905 2906 allocMBB->addSuccessor(&PrologueMBB); 2907 2908 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2909 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2910 2911 #ifdef EXPENSIVE_CHECKS 2912 MF.verify(); 2913 #endif 2914 } 2915 2916 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2917 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2918 /// to fields it needs, through a named metadata node "hipe.literals" containing 2919 /// name-value pairs. 2920 static unsigned getHiPELiteral( 2921 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2922 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2923 MDNode *Node = HiPELiteralsMD->getOperand(i); 2924 if (Node->getNumOperands() != 2) continue; 2925 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2926 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2927 if (!NodeName || !NodeVal) continue; 2928 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2929 if (ValConst && NodeName->getString() == LiteralName) { 2930 return ValConst->getZExtValue(); 2931 } 2932 } 2933 2934 report_fatal_error("HiPE literal " + LiteralName 2935 + " required but not provided"); 2936 } 2937 2938 // Return true if there are no non-ehpad successors to MBB and there are no 2939 // non-meta instructions between MBBI and MBB.end(). 2940 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 2941 MachineBasicBlock::const_iterator MBBI) { 2942 return std::all_of( 2943 MBB.succ_begin(), MBB.succ_end(), 2944 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 2945 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 2946 return MI.isMetaInstruction(); 2947 }); 2948 } 2949 2950 /// Erlang programs may need a special prologue to handle the stack size they 2951 /// might need at runtime. That is because Erlang/OTP does not implement a C 2952 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2953 /// (for more information see Eric Stenman's Ph.D. thesis: 2954 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2955 /// 2956 /// CheckStack: 2957 /// temp0 = sp - MaxStack 2958 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2959 /// OldStart: 2960 /// ... 2961 /// IncStack: 2962 /// call inc_stack # doubles the stack space 2963 /// temp0 = sp - MaxStack 2964 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2965 void X86FrameLowering::adjustForHiPEPrologue( 2966 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2967 MachineFrameInfo &MFI = MF.getFrameInfo(); 2968 DebugLoc DL; 2969 2970 // To support shrink-wrapping we would need to insert the new blocks 2971 // at the right place and update the branches to PrologueMBB. 2972 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2973 2974 // HiPE-specific values 2975 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2976 ->getNamedMetadata("hipe.literals"); 2977 if (!HiPELiteralsMD) 2978 report_fatal_error( 2979 "Can't generate HiPE prologue without runtime parameters"); 2980 const unsigned HipeLeafWords 2981 = getHiPELiteral(HiPELiteralsMD, 2982 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2983 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2984 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2985 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2986 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2987 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2988 2989 assert(STI.isTargetLinux() && 2990 "HiPE prologue is only supported on Linux operating systems."); 2991 2992 // Compute the largest caller's frame that is needed to fit the callees' 2993 // frames. This 'MaxStack' is computed from: 2994 // 2995 // a) the fixed frame size, which is the space needed for all spilled temps, 2996 // b) outgoing on-stack parameter areas, and 2997 // c) the minimum stack space this function needs to make available for the 2998 // functions it calls (a tunable ABI property). 2999 if (MFI.hasCalls()) { 3000 unsigned MoreStackForCalls = 0; 3001 3002 for (auto &MBB : MF) { 3003 for (auto &MI : MBB) { 3004 if (!MI.isCall()) 3005 continue; 3006 3007 // Get callee operand. 3008 const MachineOperand &MO = MI.getOperand(0); 3009 3010 // Only take account of global function calls (no closures etc.). 3011 if (!MO.isGlobal()) 3012 continue; 3013 3014 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3015 if (!F) 3016 continue; 3017 3018 // Do not update 'MaxStack' for primitive and built-in functions 3019 // (encoded with names either starting with "erlang."/"bif_" or not 3020 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3021 // "_", such as the BIF "suspend_0") as they are executed on another 3022 // stack. 3023 if (F->getName().find("erlang.") != StringRef::npos || 3024 F->getName().find("bif_") != StringRef::npos || 3025 F->getName().find_first_of("._") == StringRef::npos) 3026 continue; 3027 3028 unsigned CalleeStkArity = 3029 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3030 if (HipeLeafWords - 1 > CalleeStkArity) 3031 MoreStackForCalls = std::max(MoreStackForCalls, 3032 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3033 } 3034 } 3035 MaxStack += MoreStackForCalls; 3036 } 3037 3038 // If the stack frame needed is larger than the guaranteed then runtime checks 3039 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3040 if (MaxStack > Guaranteed) { 3041 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3042 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3043 3044 for (const auto &LI : PrologueMBB.liveins()) { 3045 stackCheckMBB->addLiveIn(LI); 3046 incStackMBB->addLiveIn(LI); 3047 } 3048 3049 MF.push_front(incStackMBB); 3050 MF.push_front(stackCheckMBB); 3051 3052 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3053 unsigned LEAop, CMPop, CALLop; 3054 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3055 if (Is64Bit) { 3056 SPReg = X86::RSP; 3057 PReg = X86::RBP; 3058 LEAop = X86::LEA64r; 3059 CMPop = X86::CMP64rm; 3060 CALLop = X86::CALL64pcrel32; 3061 } else { 3062 SPReg = X86::ESP; 3063 PReg = X86::EBP; 3064 LEAop = X86::LEA32r; 3065 CMPop = X86::CMP32rm; 3066 CALLop = X86::CALLpcrel32; 3067 } 3068 3069 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3070 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3071 "HiPE prologue scratch register is live-in"); 3072 3073 // Create new MBB for StackCheck: 3074 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3075 SPReg, false, -MaxStack); 3076 // SPLimitOffset is in a fixed heap location (pointed by BP). 3077 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3078 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3079 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3080 3081 // Create new MBB for IncStack: 3082 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3083 addExternalSymbol("inc_stack_0"); 3084 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3085 SPReg, false, -MaxStack); 3086 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3087 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3088 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3089 3090 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3091 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3092 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3093 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3094 } 3095 #ifdef EXPENSIVE_CHECKS 3096 MF.verify(); 3097 #endif 3098 } 3099 3100 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3101 MachineBasicBlock::iterator MBBI, 3102 const DebugLoc &DL, 3103 int Offset) const { 3104 3105 if (Offset <= 0) 3106 return false; 3107 3108 if (Offset % SlotSize) 3109 return false; 3110 3111 int NumPops = Offset / SlotSize; 3112 // This is only worth it if we have at most 2 pops. 3113 if (NumPops != 1 && NumPops != 2) 3114 return false; 3115 3116 // Handle only the trivial case where the adjustment directly follows 3117 // a call. This is the most common one, anyway. 3118 if (MBBI == MBB.begin()) 3119 return false; 3120 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3121 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3122 return false; 3123 3124 unsigned Regs[2]; 3125 unsigned FoundRegs = 0; 3126 3127 auto &MRI = MBB.getParent()->getRegInfo(); 3128 auto RegMask = Prev->getOperand(1); 3129 3130 auto &RegClass = 3131 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3132 // Try to find up to NumPops free registers. 3133 for (auto Candidate : RegClass) { 3134 3135 // Poor man's liveness: 3136 // Since we're immediately after a call, any register that is clobbered 3137 // by the call and not defined by it can be considered dead. 3138 if (!RegMask.clobbersPhysReg(Candidate)) 3139 continue; 3140 3141 // Don't clobber reserved registers 3142 if (MRI.isReserved(Candidate)) 3143 continue; 3144 3145 bool IsDef = false; 3146 for (const MachineOperand &MO : Prev->implicit_operands()) { 3147 if (MO.isReg() && MO.isDef() && 3148 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3149 IsDef = true; 3150 break; 3151 } 3152 } 3153 3154 if (IsDef) 3155 continue; 3156 3157 Regs[FoundRegs++] = Candidate; 3158 if (FoundRegs == (unsigned)NumPops) 3159 break; 3160 } 3161 3162 if (FoundRegs == 0) 3163 return false; 3164 3165 // If we found only one free register, but need two, reuse the same one twice. 3166 while (FoundRegs < (unsigned)NumPops) 3167 Regs[FoundRegs++] = Regs[0]; 3168 3169 for (int i = 0; i < NumPops; ++i) 3170 BuildMI(MBB, MBBI, DL, 3171 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3172 3173 return true; 3174 } 3175 3176 MachineBasicBlock::iterator X86FrameLowering:: 3177 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3178 MachineBasicBlock::iterator I) const { 3179 bool reserveCallFrame = hasReservedCallFrame(MF); 3180 unsigned Opcode = I->getOpcode(); 3181 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3182 DebugLoc DL = I->getDebugLoc(); 3183 uint64_t Amount = TII.getFrameSize(*I); 3184 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3185 I = MBB.erase(I); 3186 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3187 3188 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3189 // typically because the function is marked noreturn (abort, throw, 3190 // assert_fail, etc). 3191 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3192 return I; 3193 3194 if (!reserveCallFrame) { 3195 // If the stack pointer can be changed after prologue, turn the 3196 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3197 // adjcallstackdown instruction into 'add ESP, <amt>' 3198 3199 // We need to keep the stack aligned properly. To do this, we round the 3200 // amount of space needed for the outgoing arguments up to the next 3201 // alignment boundary. 3202 Amount = alignTo(Amount, getStackAlign()); 3203 3204 const Function &F = MF.getFunction(); 3205 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3206 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3207 3208 // If we have any exception handlers in this function, and we adjust 3209 // the SP before calls, we may need to indicate this to the unwinder 3210 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3211 // Amount == 0, because the preceding function may have set a non-0 3212 // GNU_ARGS_SIZE. 3213 // TODO: We don't need to reset this between subsequent functions, 3214 // if it didn't change. 3215 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3216 3217 if (HasDwarfEHHandlers && !isDestroy && 3218 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3219 BuildCFI(MBB, InsertPos, DL, 3220 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3221 3222 if (Amount == 0) 3223 return I; 3224 3225 // Factor out the amount that gets handled inside the sequence 3226 // (Pushes of argument for frame setup, callee pops for frame destroy) 3227 Amount -= InternalAmt; 3228 3229 // TODO: This is needed only if we require precise CFA. 3230 // If this is a callee-pop calling convention, emit a CFA adjust for 3231 // the amount the callee popped. 3232 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3233 BuildCFI(MBB, InsertPos, DL, 3234 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3235 3236 // Add Amount to SP to destroy a frame, or subtract to setup. 3237 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3238 3239 if (StackAdjustment) { 3240 // Merge with any previous or following adjustment instruction. Note: the 3241 // instructions merged with here do not have CFI, so their stack 3242 // adjustments do not feed into CfaAdjustment. 3243 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3244 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3245 3246 if (StackAdjustment) { 3247 if (!(F.hasMinSize() && 3248 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3249 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3250 /*InEpilogue=*/false); 3251 } 3252 } 3253 3254 if (DwarfCFI && !hasFP(MF)) { 3255 // If we don't have FP, but need to generate unwind information, 3256 // we need to set the correct CFA offset after the stack adjustment. 3257 // How much we adjust the CFA offset depends on whether we're emitting 3258 // CFI only for EH purposes or for debugging. EH only requires the CFA 3259 // offset to be correct at each call site, while for debugging we want 3260 // it to be more precise. 3261 3262 int64_t CfaAdjustment = -StackAdjustment; 3263 // TODO: When not using precise CFA, we also need to adjust for the 3264 // InternalAmt here. 3265 if (CfaAdjustment) { 3266 BuildCFI(MBB, InsertPos, DL, 3267 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3268 CfaAdjustment)); 3269 } 3270 } 3271 3272 return I; 3273 } 3274 3275 if (InternalAmt) { 3276 MachineBasicBlock::iterator CI = I; 3277 MachineBasicBlock::iterator B = MBB.begin(); 3278 while (CI != B && !std::prev(CI)->isCall()) 3279 --CI; 3280 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3281 } 3282 3283 return I; 3284 } 3285 3286 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3287 assert(MBB.getParent() && "Block is not attached to a function!"); 3288 const MachineFunction &MF = *MBB.getParent(); 3289 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 3290 } 3291 3292 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3293 assert(MBB.getParent() && "Block is not attached to a function!"); 3294 3295 // Win64 has strict requirements in terms of epilogue and we are 3296 // not taking a chance at messing with them. 3297 // I.e., unless this block is already an exit block, we can't use 3298 // it as an epilogue. 3299 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3300 return false; 3301 3302 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3303 return true; 3304 3305 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3306 // clobbers the EFLAGS. Check that we do not need to preserve it, 3307 // otherwise, conservatively assume this is not 3308 // safe to insert the epilogue here. 3309 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3310 } 3311 3312 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3313 // If we may need to emit frameless compact unwind information, give 3314 // up as this is currently broken: PR25614. 3315 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 3316 // The lowering of segmented stack and HiPE only support entry blocks 3317 // as prologue blocks: PR26107. 3318 // This limitation may be lifted if we fix: 3319 // - adjustForSegmentedStacks 3320 // - adjustForHiPEPrologue 3321 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3322 !MF.shouldSplitStack(); 3323 } 3324 3325 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3326 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3327 const DebugLoc &DL, bool RestoreSP) const { 3328 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3329 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3330 assert(STI.is32Bit() && !Uses64BitFramePtr && 3331 "restoring EBP/ESI on non-32-bit target"); 3332 3333 MachineFunction &MF = *MBB.getParent(); 3334 Register FramePtr = TRI->getFrameRegister(MF); 3335 Register BasePtr = TRI->getBaseRegister(); 3336 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3337 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3338 MachineFrameInfo &MFI = MF.getFrameInfo(); 3339 3340 // FIXME: Don't set FrameSetup flag in catchret case. 3341 3342 int FI = FuncInfo.EHRegNodeFrameIndex; 3343 int EHRegSize = MFI.getObjectSize(FI); 3344 3345 if (RestoreSP) { 3346 // MOV32rm -EHRegSize(%ebp), %esp 3347 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3348 X86::EBP, true, -EHRegSize) 3349 .setMIFlag(MachineInstr::FrameSetup); 3350 } 3351 3352 Register UsedReg; 3353 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 3354 int EndOffset = -EHRegOffset - EHRegSize; 3355 FuncInfo.EHRegNodeEndOffset = EndOffset; 3356 3357 if (UsedReg == FramePtr) { 3358 // ADD $offset, %ebp 3359 unsigned ADDri = getADDriOpcode(false, EndOffset); 3360 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3361 .addReg(FramePtr) 3362 .addImm(EndOffset) 3363 .setMIFlag(MachineInstr::FrameSetup) 3364 ->getOperand(3) 3365 .setIsDead(); 3366 assert(EndOffset >= 0 && 3367 "end of registration object above normal EBP position!"); 3368 } else if (UsedReg == BasePtr) { 3369 // LEA offset(%ebp), %esi 3370 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3371 FramePtr, false, EndOffset) 3372 .setMIFlag(MachineInstr::FrameSetup); 3373 // MOV32rm SavedEBPOffset(%esi), %ebp 3374 assert(X86FI->getHasSEHFramePtrSave()); 3375 int Offset = 3376 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 3377 assert(UsedReg == BasePtr); 3378 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3379 UsedReg, true, Offset) 3380 .setMIFlag(MachineInstr::FrameSetup); 3381 } else { 3382 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3383 } 3384 return MBBI; 3385 } 3386 3387 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3388 return TRI->getSlotSize(); 3389 } 3390 3391 Register 3392 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3393 return TRI->getDwarfRegNum(StackPtr, true); 3394 } 3395 3396 namespace { 3397 // Struct used by orderFrameObjects to help sort the stack objects. 3398 struct X86FrameSortingObject { 3399 bool IsValid = false; // true if we care about this Object. 3400 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3401 unsigned ObjectSize = 0; // Size of Object in bytes. 3402 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3403 unsigned ObjectNumUses = 0; // Object static number of uses. 3404 }; 3405 3406 // The comparison function we use for std::sort to order our local 3407 // stack symbols. The current algorithm is to use an estimated 3408 // "density". This takes into consideration the size and number of 3409 // uses each object has in order to roughly minimize code size. 3410 // So, for example, an object of size 16B that is referenced 5 times 3411 // will get higher priority than 4 4B objects referenced 1 time each. 3412 // It's not perfect and we may be able to squeeze a few more bytes out of 3413 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3414 // fringe end can have special consideration, given their size is less 3415 // important, etc.), but the algorithmic complexity grows too much to be 3416 // worth the extra gains we get. This gets us pretty close. 3417 // The final order leaves us with objects with highest priority going 3418 // at the end of our list. 3419 struct X86FrameSortingComparator { 3420 inline bool operator()(const X86FrameSortingObject &A, 3421 const X86FrameSortingObject &B) { 3422 uint64_t DensityAScaled, DensityBScaled; 3423 3424 // For consistency in our comparison, all invalid objects are placed 3425 // at the end. This also allows us to stop walking when we hit the 3426 // first invalid item after it's all sorted. 3427 if (!A.IsValid) 3428 return false; 3429 if (!B.IsValid) 3430 return true; 3431 3432 // The density is calculated by doing : 3433 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3434 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3435 // Since this approach may cause inconsistencies in 3436 // the floating point <, >, == comparisons, depending on the floating 3437 // point model with which the compiler was built, we're going 3438 // to scale both sides by multiplying with 3439 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3440 // the division and, with it, the need for any floating point 3441 // arithmetic. 3442 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3443 static_cast<uint64_t>(B.ObjectSize); 3444 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3445 static_cast<uint64_t>(A.ObjectSize); 3446 3447 // If the two densities are equal, prioritize highest alignment 3448 // objects. This allows for similar alignment objects 3449 // to be packed together (given the same density). 3450 // There's room for improvement here, also, since we can pack 3451 // similar alignment (different density) objects next to each 3452 // other to save padding. This will also require further 3453 // complexity/iterations, and the overall gain isn't worth it, 3454 // in general. Something to keep in mind, though. 3455 if (DensityAScaled == DensityBScaled) 3456 return A.ObjectAlignment < B.ObjectAlignment; 3457 3458 return DensityAScaled < DensityBScaled; 3459 } 3460 }; 3461 } // namespace 3462 3463 // Order the symbols in the local stack. 3464 // We want to place the local stack objects in some sort of sensible order. 3465 // The heuristic we use is to try and pack them according to static number 3466 // of uses and size of object in order to minimize code size. 3467 void X86FrameLowering::orderFrameObjects( 3468 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3469 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3470 3471 // Don't waste time if there's nothing to do. 3472 if (ObjectsToAllocate.empty()) 3473 return; 3474 3475 // Create an array of all MFI objects. We won't need all of these 3476 // objects, but we're going to create a full array of them to make 3477 // it easier to index into when we're counting "uses" down below. 3478 // We want to be able to easily/cheaply access an object by simply 3479 // indexing into it, instead of having to search for it every time. 3480 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3481 3482 // Walk the objects we care about and mark them as such in our working 3483 // struct. 3484 for (auto &Obj : ObjectsToAllocate) { 3485 SortingObjects[Obj].IsValid = true; 3486 SortingObjects[Obj].ObjectIndex = Obj; 3487 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3488 // Set the size. 3489 int ObjectSize = MFI.getObjectSize(Obj); 3490 if (ObjectSize == 0) 3491 // Variable size. Just use 4. 3492 SortingObjects[Obj].ObjectSize = 4; 3493 else 3494 SortingObjects[Obj].ObjectSize = ObjectSize; 3495 } 3496 3497 // Count the number of uses for each object. 3498 for (auto &MBB : MF) { 3499 for (auto &MI : MBB) { 3500 if (MI.isDebugInstr()) 3501 continue; 3502 for (const MachineOperand &MO : MI.operands()) { 3503 // Check to see if it's a local stack symbol. 3504 if (!MO.isFI()) 3505 continue; 3506 int Index = MO.getIndex(); 3507 // Check to see if it falls within our range, and is tagged 3508 // to require ordering. 3509 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3510 SortingObjects[Index].IsValid) 3511 SortingObjects[Index].ObjectNumUses++; 3512 } 3513 } 3514 } 3515 3516 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3517 // info). 3518 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3519 3520 // Now modify the original list to represent the final order that 3521 // we want. The order will depend on whether we're going to access them 3522 // from the stack pointer or the frame pointer. For SP, the list should 3523 // end up with the END containing objects that we want with smaller offsets. 3524 // For FP, it should be flipped. 3525 int i = 0; 3526 for (auto &Obj : SortingObjects) { 3527 // All invalid items are sorted at the end, so it's safe to stop. 3528 if (!Obj.IsValid) 3529 break; 3530 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3531 } 3532 3533 // Flip it if we're accessing off of the FP. 3534 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3535 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3536 } 3537 3538 3539 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3540 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3541 unsigned Offset = 16; 3542 // RBP is immediately pushed. 3543 Offset += SlotSize; 3544 // All callee-saved registers are then pushed. 3545 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3546 // Every funclet allocates enough stack space for the largest outgoing call. 3547 Offset += getWinEHFuncletFrameSize(MF); 3548 return Offset; 3549 } 3550 3551 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3552 MachineFunction &MF, RegScavenger *RS) const { 3553 // Mark the function as not having WinCFI. We will set it back to true in 3554 // emitPrologue if it gets called and emits CFI. 3555 MF.setHasWinCFI(false); 3556 3557 // If this function isn't doing Win64-style C++ EH, we don't need to do 3558 // anything. 3559 const Function &F = MF.getFunction(); 3560 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3561 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3562 return; 3563 3564 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3565 // relative to RSP after the prologue. Find the offset of the last fixed 3566 // object, so that we can allocate a slot immediately following it. If there 3567 // were no fixed objects, use offset -SlotSize, which is immediately after the 3568 // return address. Fixed objects have negative frame indices. 3569 MachineFrameInfo &MFI = MF.getFrameInfo(); 3570 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3571 int64_t MinFixedObjOffset = -SlotSize; 3572 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3573 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3574 3575 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3576 for (WinEHHandlerType &H : TBME.HandlerArray) { 3577 int FrameIndex = H.CatchObj.FrameIndex; 3578 if (FrameIndex != INT_MAX) { 3579 // Ensure alignment. 3580 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3581 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3582 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3583 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3584 } 3585 } 3586 } 3587 3588 // Ensure alignment. 3589 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3590 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3591 int UnwindHelpFI = 3592 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3593 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3594 3595 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3596 // other frame setup instructions. 3597 MachineBasicBlock &MBB = MF.front(); 3598 auto MBBI = MBB.begin(); 3599 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3600 ++MBBI; 3601 3602 DebugLoc DL = MBB.findDebugLoc(MBBI); 3603 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3604 UnwindHelpFI) 3605 .addImm(-2); 3606 } 3607 3608 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3609 MachineFunction &MF, RegScavenger *RS) const { 3610 if (STI.is32Bit() && MF.hasEHFunclets()) 3611 restoreWinEHStackPointersInParent(MF); 3612 } 3613 3614 void X86FrameLowering::restoreWinEHStackPointersInParent( 3615 MachineFunction &MF) const { 3616 // 32-bit functions have to restore stack pointers when control is transferred 3617 // back to the parent function. These blocks are identified as eh pads that 3618 // are not funclet entries. 3619 bool IsSEH = isAsynchronousEHPersonality( 3620 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3621 for (MachineBasicBlock &MBB : MF) { 3622 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3623 if (NeedsRestore) 3624 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3625 /*RestoreSP=*/IsSEH); 3626 } 3627 } 3628