xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FrameLowering.cpp (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <cstdlib>
35 
36 #define DEBUG_TYPE "x86-fl"
37 
38 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
39 STATISTIC(NumFrameExtraProbe,
40           "Number of extra stack probes generated in prologue");
41 
42 using namespace llvm;
43 
44 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
45                                    MaybeAlign StackAlignOverride)
46     : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
47                           STI.is64Bit() ? -8 : -4),
48       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
49   // Cache a bunch of frame-related predicates for this subtarget.
50   SlotSize = TRI->getSlotSize();
51   Is64Bit = STI.is64Bit();
52   IsLP64 = STI.isTarget64BitLP64();
53   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
54   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
55   StackPtr = TRI->getStackRegister();
56 }
57 
58 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
59   return !MF.getFrameInfo().hasVarSizedObjects() &&
60          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
61          !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
62 }
63 
64 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
65 /// call frame pseudos can be simplified.  Having a FP, as in the default
66 /// implementation, is not sufficient here since we can't always use it.
67 /// Use a more nuanced condition.
68 bool
69 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
70   return hasReservedCallFrame(MF) ||
71          MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
72          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
73          TRI->hasBasePointer(MF);
74 }
75 
76 // needsFrameIndexResolution - Do we need to perform FI resolution for
77 // this function. Normally, this is required only when the function
78 // has any stack objects. However, FI resolution actually has another job,
79 // not apparent from the title - it resolves callframesetup/destroy
80 // that were not simplified earlier.
81 // So, this is required for x86 functions that have push sequences even
82 // when there are no stack objects.
83 bool
84 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
85   return MF.getFrameInfo().hasStackObjects() ||
86          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
87 }
88 
89 /// hasFP - Return true if the specified function should have a dedicated frame
90 /// pointer register.  This is true if the function has variable sized allocas
91 /// or if frame pointer elimination is disabled.
92 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
93   const MachineFrameInfo &MFI = MF.getFrameInfo();
94   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
95           TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() ||
96           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
97           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
98           MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
99           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
100           MFI.hasStackMap() || MFI.hasPatchPoint() ||
101           MFI.hasCopyImplyingStackAdjustment());
102 }
103 
104 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
105   if (IsLP64) {
106     if (isInt<8>(Imm))
107       return X86::SUB64ri8;
108     return X86::SUB64ri32;
109   } else {
110     if (isInt<8>(Imm))
111       return X86::SUB32ri8;
112     return X86::SUB32ri;
113   }
114 }
115 
116 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
117   if (IsLP64) {
118     if (isInt<8>(Imm))
119       return X86::ADD64ri8;
120     return X86::ADD64ri32;
121   } else {
122     if (isInt<8>(Imm))
123       return X86::ADD32ri8;
124     return X86::ADD32ri;
125   }
126 }
127 
128 static unsigned getSUBrrOpcode(bool IsLP64) {
129   return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
130 }
131 
132 static unsigned getADDrrOpcode(bool IsLP64) {
133   return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
134 }
135 
136 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
137   if (IsLP64) {
138     if (isInt<8>(Imm))
139       return X86::AND64ri8;
140     return X86::AND64ri32;
141   }
142   if (isInt<8>(Imm))
143     return X86::AND32ri8;
144   return X86::AND32ri;
145 }
146 
147 static unsigned getLEArOpcode(bool IsLP64) {
148   return IsLP64 ? X86::LEA64r : X86::LEA32r;
149 }
150 
151 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
152 /// when it reaches the "return" instruction. We can then pop a stack object
153 /// to this register without worry about clobbering it.
154 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
155                                        MachineBasicBlock::iterator &MBBI,
156                                        const X86RegisterInfo *TRI,
157                                        bool Is64Bit) {
158   const MachineFunction *MF = MBB.getParent();
159   if (MF->callsEHReturn())
160     return 0;
161 
162   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
163 
164   if (MBBI == MBB.end())
165     return 0;
166 
167   switch (MBBI->getOpcode()) {
168   default: return 0;
169   case TargetOpcode::PATCHABLE_RET:
170   case X86::RET:
171   case X86::RETL:
172   case X86::RETQ:
173   case X86::RETIL:
174   case X86::RETIQ:
175   case X86::TCRETURNdi:
176   case X86::TCRETURNri:
177   case X86::TCRETURNmi:
178   case X86::TCRETURNdi64:
179   case X86::TCRETURNri64:
180   case X86::TCRETURNmi64:
181   case X86::EH_RETURN:
182   case X86::EH_RETURN64: {
183     SmallSet<uint16_t, 8> Uses;
184     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
185       MachineOperand &MO = MBBI->getOperand(i);
186       if (!MO.isReg() || MO.isDef())
187         continue;
188       Register Reg = MO.getReg();
189       if (!Reg)
190         continue;
191       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
192         Uses.insert(*AI);
193     }
194 
195     for (auto CS : AvailableRegs)
196       if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
197           CS != X86::ESP)
198         return CS;
199   }
200   }
201 
202   return 0;
203 }
204 
205 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
206   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
207     unsigned Reg = RegMask.PhysReg;
208 
209     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
210         Reg == X86::AH || Reg == X86::AL)
211       return true;
212   }
213 
214   return false;
215 }
216 
217 /// Check if the flags need to be preserved before the terminators.
218 /// This would be the case, if the eflags is live-in of the region
219 /// composed by the terminators or live-out of that region, without
220 /// being defined by a terminator.
221 static bool
222 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
223   for (const MachineInstr &MI : MBB.terminators()) {
224     bool BreakNext = false;
225     for (const MachineOperand &MO : MI.operands()) {
226       if (!MO.isReg())
227         continue;
228       Register Reg = MO.getReg();
229       if (Reg != X86::EFLAGS)
230         continue;
231 
232       // This terminator needs an eflags that is not defined
233       // by a previous another terminator:
234       // EFLAGS is live-in of the region composed by the terminators.
235       if (!MO.isDef())
236         return true;
237       // This terminator defines the eflags, i.e., we don't need to preserve it.
238       // However, we still need to check this specific terminator does not
239       // read a live-in value.
240       BreakNext = true;
241     }
242     // We found a definition of the eflags, no need to preserve them.
243     if (BreakNext)
244       return false;
245   }
246 
247   // None of the terminators use or define the eflags.
248   // Check if they are live-out, that would imply we need to preserve them.
249   for (const MachineBasicBlock *Succ : MBB.successors())
250     if (Succ->isLiveIn(X86::EFLAGS))
251       return true;
252 
253   return false;
254 }
255 
256 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
257 /// stack pointer by a constant value.
258 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
259                                     MachineBasicBlock::iterator &MBBI,
260                                     const DebugLoc &DL,
261                                     int64_t NumBytes, bool InEpilogue) const {
262   bool isSub = NumBytes < 0;
263   uint64_t Offset = isSub ? -NumBytes : NumBytes;
264   MachineInstr::MIFlag Flag =
265       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
266 
267   uint64_t Chunk = (1LL << 31) - 1;
268 
269   MachineFunction &MF = *MBB.getParent();
270   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
271   const X86TargetLowering &TLI = *STI.getTargetLowering();
272   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
273 
274   // It's ok to not take into account large chunks when probing, as the
275   // allocation is split in smaller chunks anyway.
276   if (EmitInlineStackProbe && !InEpilogue) {
277 
278     // This pseudo-instruction is going to be expanded, potentially using a
279     // loop, by inlineStackProbe().
280     BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
281     return;
282   } else if (Offset > Chunk) {
283     // Rather than emit a long series of instructions for large offsets,
284     // load the offset into a register and do one sub/add
285     unsigned Reg = 0;
286     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
287 
288     if (isSub && !isEAXLiveIn(MBB))
289       Reg = Rax;
290     else
291       Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
292 
293     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
294     unsigned AddSubRROpc =
295         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
296     if (Reg) {
297       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
298           .addImm(Offset)
299           .setMIFlag(Flag);
300       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
301                              .addReg(StackPtr)
302                              .addReg(Reg);
303       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
304       return;
305     } else if (Offset > 8 * Chunk) {
306       // If we would need more than 8 add or sub instructions (a >16GB stack
307       // frame), it's worth spilling RAX to materialize this immediate.
308       //   pushq %rax
309       //   movabsq +-$Offset+-SlotSize, %rax
310       //   addq %rsp, %rax
311       //   xchg %rax, (%rsp)
312       //   movq (%rsp), %rsp
313       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
314       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
315           .addReg(Rax, RegState::Kill)
316           .setMIFlag(Flag);
317       // Subtract is not commutative, so negate the offset and always use add.
318       // Subtract 8 less and add 8 more to account for the PUSH we just did.
319       if (isSub)
320         Offset = -(Offset - SlotSize);
321       else
322         Offset = Offset + SlotSize;
323       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
324           .addImm(Offset)
325           .setMIFlag(Flag);
326       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
327                              .addReg(Rax)
328                              .addReg(StackPtr);
329       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
330       // Exchange the new SP in RAX with the top of the stack.
331       addRegOffset(
332           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
333           StackPtr, false, 0);
334       // Load new SP from the top of the stack into RSP.
335       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
336                    StackPtr, false, 0);
337       return;
338     }
339   }
340 
341   while (Offset) {
342     uint64_t ThisVal = std::min(Offset, Chunk);
343     if (ThisVal == SlotSize) {
344       // Use push / pop for slot sized adjustments as a size optimization. We
345       // need to find a dead register when using pop.
346       unsigned Reg = isSub
347         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
348         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
349       if (Reg) {
350         unsigned Opc = isSub
351           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
352           : (Is64Bit ? X86::POP64r  : X86::POP32r);
353         BuildMI(MBB, MBBI, DL, TII.get(Opc))
354             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
355             .setMIFlag(Flag);
356         Offset -= ThisVal;
357         continue;
358       }
359     }
360 
361     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
362         .setMIFlag(Flag);
363 
364     Offset -= ThisVal;
365   }
366 }
367 
368 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
369     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
370     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
371   assert(Offset != 0 && "zero offset stack adjustment requested");
372 
373   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
374   // is tricky.
375   bool UseLEA;
376   if (!InEpilogue) {
377     // Check if inserting the prologue at the beginning
378     // of MBB would require to use LEA operations.
379     // We need to use LEA operations if EFLAGS is live in, because
380     // it means an instruction will read it before it gets defined.
381     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
382   } else {
383     // If we can use LEA for SP but we shouldn't, check that none
384     // of the terminators uses the eflags. Otherwise we will insert
385     // a ADD that will redefine the eflags and break the condition.
386     // Alternatively, we could move the ADD, but this may not be possible
387     // and is an optimization anyway.
388     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
389     if (UseLEA && !STI.useLeaForSP())
390       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
391     // If that assert breaks, that means we do not do the right thing
392     // in canUseAsEpilogue.
393     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
394            "We shouldn't have allowed this insertion point");
395   }
396 
397   MachineInstrBuilder MI;
398   if (UseLEA) {
399     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
400                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
401                               StackPtr),
402                       StackPtr, false, Offset);
403   } else {
404     bool IsSub = Offset < 0;
405     uint64_t AbsOffset = IsSub ? -Offset : Offset;
406     const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
407                                : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
408     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
409              .addReg(StackPtr)
410              .addImm(AbsOffset);
411     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
412   }
413   return MI;
414 }
415 
416 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
417                                      MachineBasicBlock::iterator &MBBI,
418                                      bool doMergeWithPrevious) const {
419   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
420       (!doMergeWithPrevious && MBBI == MBB.end()))
421     return 0;
422 
423   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
424 
425   PI = skipDebugInstructionsBackward(PI, MBB.begin());
426   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
427   // instruction, and that there are no DBG_VALUE or other instructions between
428   // ADD/SUB/LEA and its corresponding CFI instruction.
429   /* TODO: Add support for the case where there are multiple CFI instructions
430     below the ADD/SUB/LEA, e.g.:
431     ...
432     add
433     cfi_def_cfa_offset
434     cfi_offset
435     ...
436   */
437   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
438     PI = std::prev(PI);
439 
440   unsigned Opc = PI->getOpcode();
441   int Offset = 0;
442 
443   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
444        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
445       PI->getOperand(0).getReg() == StackPtr){
446     assert(PI->getOperand(1).getReg() == StackPtr);
447     Offset = PI->getOperand(2).getImm();
448   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
449              PI->getOperand(0).getReg() == StackPtr &&
450              PI->getOperand(1).getReg() == StackPtr &&
451              PI->getOperand(2).getImm() == 1 &&
452              PI->getOperand(3).getReg() == X86::NoRegister &&
453              PI->getOperand(5).getReg() == X86::NoRegister) {
454     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
455     Offset = PI->getOperand(4).getImm();
456   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
457               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
458              PI->getOperand(0).getReg() == StackPtr) {
459     assert(PI->getOperand(1).getReg() == StackPtr);
460     Offset = -PI->getOperand(2).getImm();
461   } else
462     return 0;
463 
464   PI = MBB.erase(PI);
465   if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
466   if (!doMergeWithPrevious)
467     MBBI = skipDebugInstructionsForward(PI, MBB.end());
468 
469   return Offset;
470 }
471 
472 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
473                                 MachineBasicBlock::iterator MBBI,
474                                 const DebugLoc &DL,
475                                 const MCCFIInstruction &CFIInst) const {
476   MachineFunction &MF = *MBB.getParent();
477   unsigned CFIIndex = MF.addFrameInst(CFIInst);
478   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
479       .addCFIIndex(CFIIndex);
480 }
481 
482 /// Emits Dwarf Info specifying offsets of callee saved registers and
483 /// frame pointer. This is called only when basic block sections are enabled.
484 void X86FrameLowering::emitCalleeSavedFrameMoves(
485     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
486   MachineFunction &MF = *MBB.getParent();
487   if (!hasFP(MF)) {
488     emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
489     return;
490   }
491   const MachineModuleInfo &MMI = MF.getMMI();
492   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
493   const unsigned FramePtr = TRI->getFrameRegister(MF);
494   const unsigned MachineFramePtr =
495       STI.isTarget64BitILP32() ? unsigned(getX86SubSuperRegister(FramePtr, 64))
496                                : FramePtr;
497   unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
498   // Offset = space for return address + size of the frame pointer itself.
499   unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
500   BuildCFI(MBB, MBBI, DebugLoc{},
501            MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
502   emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
503 }
504 
505 void X86FrameLowering::emitCalleeSavedFrameMoves(
506     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
507     const DebugLoc &DL, bool IsPrologue) const {
508   MachineFunction &MF = *MBB.getParent();
509   MachineFrameInfo &MFI = MF.getFrameInfo();
510   MachineModuleInfo &MMI = MF.getMMI();
511   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
512 
513   // Add callee saved registers to move list.
514   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
515   if (CSI.empty()) return;
516 
517   // Calculate offsets.
518   for (std::vector<CalleeSavedInfo>::const_iterator
519          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
520     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
521     unsigned Reg = I->getReg();
522     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
523 
524     if (IsPrologue) {
525       BuildCFI(MBB, MBBI, DL,
526                MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
527     } else {
528       BuildCFI(MBB, MBBI, DL,
529                MCCFIInstruction::createRestore(nullptr, DwarfReg));
530     }
531   }
532 }
533 
534 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
535                                       MachineBasicBlock &MBB,
536                                       MachineBasicBlock::iterator MBBI,
537                                       const DebugLoc &DL, bool InProlog) const {
538   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
539   if (STI.isTargetWindowsCoreCLR()) {
540     if (InProlog) {
541       BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
542           .addImm(0 /* no explicit stack size */);
543     } else {
544       emitStackProbeInline(MF, MBB, MBBI, DL, false);
545     }
546   } else {
547     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
548   }
549 }
550 
551 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
552                                         MachineBasicBlock &PrologMBB) const {
553   auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
554     return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
555   });
556   if (Where != PrologMBB.end()) {
557     DebugLoc DL = PrologMBB.findDebugLoc(Where);
558     emitStackProbeInline(MF, PrologMBB, Where, DL, true);
559     Where->eraseFromParent();
560   }
561 }
562 
563 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
564                                             MachineBasicBlock &MBB,
565                                             MachineBasicBlock::iterator MBBI,
566                                             const DebugLoc &DL,
567                                             bool InProlog) const {
568   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
569   if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
570     emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
571   else
572     emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
573 }
574 
575 void X86FrameLowering::emitStackProbeInlineGeneric(
576     MachineFunction &MF, MachineBasicBlock &MBB,
577     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
578   MachineInstr &AllocWithProbe = *MBBI;
579   uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
580 
581   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
582   const X86TargetLowering &TLI = *STI.getTargetLowering();
583   assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
584          "different expansion expected for CoreCLR 64 bit");
585 
586   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
587   uint64_t ProbeChunk = StackProbeSize * 8;
588 
589   uint64_t MaxAlign =
590       TRI->needsStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
591 
592   // Synthesize a loop or unroll it, depending on the number of iterations.
593   // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
594   // between the unaligned rsp and current rsp.
595   if (Offset > ProbeChunk) {
596     emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
597                                     MaxAlign % StackProbeSize);
598   } else {
599     emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
600                                      MaxAlign % StackProbeSize);
601   }
602 }
603 
604 void X86FrameLowering::emitStackProbeInlineGenericBlock(
605     MachineFunction &MF, MachineBasicBlock &MBB,
606     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
607     uint64_t AlignOffset) const {
608 
609   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
610   const X86TargetLowering &TLI = *STI.getTargetLowering();
611   const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
612   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
613   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
614 
615   uint64_t CurrentOffset = 0;
616 
617   assert(AlignOffset < StackProbeSize);
618 
619   // If the offset is so small it fits within a page, there's nothing to do.
620   if (StackProbeSize < Offset + AlignOffset) {
621 
622     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
623                            .addReg(StackPtr)
624                            .addImm(StackProbeSize - AlignOffset)
625                            .setMIFlag(MachineInstr::FrameSetup);
626     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
627 
628     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
629                      .setMIFlag(MachineInstr::FrameSetup),
630                  StackPtr, false, 0)
631         .addImm(0)
632         .setMIFlag(MachineInstr::FrameSetup);
633     NumFrameExtraProbe++;
634     CurrentOffset = StackProbeSize - AlignOffset;
635   }
636 
637   // For the next N - 1 pages, just probe. I tried to take advantage of
638   // natural probes but it implies much more logic and there was very few
639   // interesting natural probes to interleave.
640   while (CurrentOffset + StackProbeSize < Offset) {
641     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
642                            .addReg(StackPtr)
643                            .addImm(StackProbeSize)
644                            .setMIFlag(MachineInstr::FrameSetup);
645     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
646 
647 
648     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
649                      .setMIFlag(MachineInstr::FrameSetup),
650                  StackPtr, false, 0)
651         .addImm(0)
652         .setMIFlag(MachineInstr::FrameSetup);
653     NumFrameExtraProbe++;
654     CurrentOffset += StackProbeSize;
655   }
656 
657   // No need to probe the tail, it is smaller than a Page.
658   uint64_t ChunkSize = Offset - CurrentOffset;
659   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
660                          .addReg(StackPtr)
661                          .addImm(ChunkSize)
662                          .setMIFlag(MachineInstr::FrameSetup);
663   MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
664 }
665 
666 void X86FrameLowering::emitStackProbeInlineGenericLoop(
667     MachineFunction &MF, MachineBasicBlock &MBB,
668     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
669     uint64_t AlignOffset) const {
670   assert(Offset && "null offset");
671 
672   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
673   const X86TargetLowering &TLI = *STI.getTargetLowering();
674   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
675   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
676 
677   if (AlignOffset) {
678     if (AlignOffset < StackProbeSize) {
679       // Perform a first smaller allocation followed by a probe.
680       const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset);
681       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr)
682                              .addReg(StackPtr)
683                              .addImm(AlignOffset)
684                              .setMIFlag(MachineInstr::FrameSetup);
685       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
686 
687       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
688                        .setMIFlag(MachineInstr::FrameSetup),
689                    StackPtr, false, 0)
690           .addImm(0)
691           .setMIFlag(MachineInstr::FrameSetup);
692       NumFrameExtraProbe++;
693       Offset -= AlignOffset;
694     }
695   }
696 
697   // Synthesize a loop
698   NumFrameLoopProbe++;
699   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
700 
701   MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
702   MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
703 
704   MachineFunction::iterator MBBIter = ++MBB.getIterator();
705   MF.insert(MBBIter, testMBB);
706   MF.insert(MBBIter, tailMBB);
707 
708   Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;
709   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
710       .addReg(StackPtr)
711       .setMIFlag(MachineInstr::FrameSetup);
712 
713   // save loop bound
714   {
715     const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset);
716     BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
717         .addReg(FinalStackProbed)
718         .addImm(Offset / StackProbeSize * StackProbeSize)
719         .setMIFlag(MachineInstr::FrameSetup);
720   }
721 
722   // allocate a page
723   {
724     const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
725     BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr)
726         .addReg(StackPtr)
727         .addImm(StackProbeSize)
728         .setMIFlag(MachineInstr::FrameSetup);
729   }
730 
731   // touch the page
732   addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
733                    .setMIFlag(MachineInstr::FrameSetup),
734                StackPtr, false, 0)
735       .addImm(0)
736       .setMIFlag(MachineInstr::FrameSetup);
737 
738   // cmp with stack pointer bound
739   BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
740       .addReg(StackPtr)
741       .addReg(FinalStackProbed)
742       .setMIFlag(MachineInstr::FrameSetup);
743 
744   // jump
745   BuildMI(testMBB, DL, TII.get(X86::JCC_1))
746       .addMBB(testMBB)
747       .addImm(X86::COND_NE)
748       .setMIFlag(MachineInstr::FrameSetup);
749   testMBB->addSuccessor(testMBB);
750   testMBB->addSuccessor(tailMBB);
751 
752   // BB management
753   tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
754   tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
755   MBB.addSuccessor(testMBB);
756 
757   // handle tail
758   unsigned TailOffset = Offset % StackProbeSize;
759   if (TailOffset) {
760     const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset);
761     BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr)
762         .addReg(StackPtr)
763         .addImm(TailOffset)
764         .setMIFlag(MachineInstr::FrameSetup);
765   }
766 
767   // Update Live In information
768   recomputeLiveIns(*testMBB);
769   recomputeLiveIns(*tailMBB);
770 }
771 
772 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
773     MachineFunction &MF, MachineBasicBlock &MBB,
774     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
775   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
776   assert(STI.is64Bit() && "different expansion needed for 32 bit");
777   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
778   const TargetInstrInfo &TII = *STI.getInstrInfo();
779   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
780 
781   // RAX contains the number of bytes of desired stack adjustment.
782   // The handling here assumes this value has already been updated so as to
783   // maintain stack alignment.
784   //
785   // We need to exit with RSP modified by this amount and execute suitable
786   // page touches to notify the OS that we're growing the stack responsibly.
787   // All stack probing must be done without modifying RSP.
788   //
789   // MBB:
790   //    SizeReg = RAX;
791   //    ZeroReg = 0
792   //    CopyReg = RSP
793   //    Flags, TestReg = CopyReg - SizeReg
794   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
795   //    LimitReg = gs magic thread env access
796   //    if FinalReg >= LimitReg goto ContinueMBB
797   // RoundBB:
798   //    RoundReg = page address of FinalReg
799   // LoopMBB:
800   //    LoopReg = PHI(LimitReg,ProbeReg)
801   //    ProbeReg = LoopReg - PageSize
802   //    [ProbeReg] = 0
803   //    if (ProbeReg > RoundReg) goto LoopMBB
804   // ContinueMBB:
805   //    RSP = RSP - RAX
806   //    [rest of original MBB]
807 
808   // Set up the new basic blocks
809   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
810   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
811   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
812 
813   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
814   MF.insert(MBBIter, RoundMBB);
815   MF.insert(MBBIter, LoopMBB);
816   MF.insert(MBBIter, ContinueMBB);
817 
818   // Split MBB and move the tail portion down to ContinueMBB.
819   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
820   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
821   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
822 
823   // Some useful constants
824   const int64_t ThreadEnvironmentStackLimit = 0x10;
825   const int64_t PageSize = 0x1000;
826   const int64_t PageMask = ~(PageSize - 1);
827 
828   // Registers we need. For the normal case we use virtual
829   // registers. For the prolog expansion we use RAX, RCX and RDX.
830   MachineRegisterInfo &MRI = MF.getRegInfo();
831   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
832   const Register SizeReg = InProlog ? X86::RAX
833                                     : MRI.createVirtualRegister(RegClass),
834                  ZeroReg = InProlog ? X86::RCX
835                                     : MRI.createVirtualRegister(RegClass),
836                  CopyReg = InProlog ? X86::RDX
837                                     : MRI.createVirtualRegister(RegClass),
838                  TestReg = InProlog ? X86::RDX
839                                     : MRI.createVirtualRegister(RegClass),
840                  FinalReg = InProlog ? X86::RDX
841                                      : MRI.createVirtualRegister(RegClass),
842                  RoundedReg = InProlog ? X86::RDX
843                                        : MRI.createVirtualRegister(RegClass),
844                  LimitReg = InProlog ? X86::RCX
845                                      : MRI.createVirtualRegister(RegClass),
846                  JoinReg = InProlog ? X86::RCX
847                                     : MRI.createVirtualRegister(RegClass),
848                  ProbeReg = InProlog ? X86::RCX
849                                      : MRI.createVirtualRegister(RegClass);
850 
851   // SP-relative offsets where we can save RCX and RDX.
852   int64_t RCXShadowSlot = 0;
853   int64_t RDXShadowSlot = 0;
854 
855   // If inlining in the prolog, save RCX and RDX.
856   if (InProlog) {
857     // Compute the offsets. We need to account for things already
858     // pushed onto the stack at this point: return address, frame
859     // pointer (if used), and callee saves.
860     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
861     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
862     const bool HasFP = hasFP(MF);
863 
864     // Check if we need to spill RCX and/or RDX.
865     // Here we assume that no earlier prologue instruction changes RCX and/or
866     // RDX, so checking the block live-ins is enough.
867     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
868     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
869     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
870     // Assign the initial slot to both registers, then change RDX's slot if both
871     // need to be spilled.
872     if (IsRCXLiveIn)
873       RCXShadowSlot = InitSlot;
874     if (IsRDXLiveIn)
875       RDXShadowSlot = InitSlot;
876     if (IsRDXLiveIn && IsRCXLiveIn)
877       RDXShadowSlot += 8;
878     // Emit the saves if needed.
879     if (IsRCXLiveIn)
880       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
881                    RCXShadowSlot)
882           .addReg(X86::RCX);
883     if (IsRDXLiveIn)
884       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
885                    RDXShadowSlot)
886           .addReg(X86::RDX);
887   } else {
888     // Not in the prolog. Copy RAX to a virtual reg.
889     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
890   }
891 
892   // Add code to MBB to check for overflow and set the new target stack pointer
893   // to zero if so.
894   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
895       .addReg(ZeroReg, RegState::Undef)
896       .addReg(ZeroReg, RegState::Undef);
897   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
898   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
899       .addReg(CopyReg)
900       .addReg(SizeReg);
901   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
902       .addReg(TestReg)
903       .addReg(ZeroReg)
904       .addImm(X86::COND_B);
905 
906   // FinalReg now holds final stack pointer value, or zero if
907   // allocation would overflow. Compare against the current stack
908   // limit from the thread environment block. Note this limit is the
909   // lowest touched page on the stack, not the point at which the OS
910   // will cause an overflow exception, so this is just an optimization
911   // to avoid unnecessarily touching pages that are below the current
912   // SP but already committed to the stack by the OS.
913   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
914       .addReg(0)
915       .addImm(1)
916       .addReg(0)
917       .addImm(ThreadEnvironmentStackLimit)
918       .addReg(X86::GS);
919   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
920   // Jump if the desired stack pointer is at or above the stack limit.
921   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
922 
923   // Add code to roundMBB to round the final stack pointer to a page boundary.
924   RoundMBB->addLiveIn(FinalReg);
925   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
926       .addReg(FinalReg)
927       .addImm(PageMask);
928   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
929 
930   // LimitReg now holds the current stack limit, RoundedReg page-rounded
931   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
932   // and probe until we reach RoundedReg.
933   if (!InProlog) {
934     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
935         .addReg(LimitReg)
936         .addMBB(RoundMBB)
937         .addReg(ProbeReg)
938         .addMBB(LoopMBB);
939   }
940 
941   LoopMBB->addLiveIn(JoinReg);
942   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
943                false, -PageSize);
944 
945   // Probe by storing a byte onto the stack.
946   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
947       .addReg(ProbeReg)
948       .addImm(1)
949       .addReg(0)
950       .addImm(0)
951       .addReg(0)
952       .addImm(0);
953 
954   LoopMBB->addLiveIn(RoundedReg);
955   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
956       .addReg(RoundedReg)
957       .addReg(ProbeReg);
958   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
959 
960   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
961 
962   // If in prolog, restore RDX and RCX.
963   if (InProlog) {
964     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
965       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
966                            TII.get(X86::MOV64rm), X86::RCX),
967                    X86::RSP, false, RCXShadowSlot);
968     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
969       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
970                            TII.get(X86::MOV64rm), X86::RDX),
971                    X86::RSP, false, RDXShadowSlot);
972   }
973 
974   // Now that the probing is done, add code to continueMBB to update
975   // the stack pointer for real.
976   ContinueMBB->addLiveIn(SizeReg);
977   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
978       .addReg(X86::RSP)
979       .addReg(SizeReg);
980 
981   // Add the control flow edges we need.
982   MBB.addSuccessor(ContinueMBB);
983   MBB.addSuccessor(RoundMBB);
984   RoundMBB->addSuccessor(LoopMBB);
985   LoopMBB->addSuccessor(ContinueMBB);
986   LoopMBB->addSuccessor(LoopMBB);
987 
988   // Mark all the instructions added to the prolog as frame setup.
989   if (InProlog) {
990     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
991       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
992     }
993     for (MachineInstr &MI : *RoundMBB) {
994       MI.setFlag(MachineInstr::FrameSetup);
995     }
996     for (MachineInstr &MI : *LoopMBB) {
997       MI.setFlag(MachineInstr::FrameSetup);
998     }
999     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
1000          CMBBI != ContinueMBBI; ++CMBBI) {
1001       CMBBI->setFlag(MachineInstr::FrameSetup);
1002     }
1003   }
1004 }
1005 
1006 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
1007                                           MachineBasicBlock &MBB,
1008                                           MachineBasicBlock::iterator MBBI,
1009                                           const DebugLoc &DL,
1010                                           bool InProlog) const {
1011   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
1012 
1013   // FIXME: Add indirect thunk support and remove this.
1014   if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
1015     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
1016                        "code model and indirect thunks not yet implemented.");
1017 
1018   unsigned CallOp;
1019   if (Is64Bit)
1020     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
1021   else
1022     CallOp = X86::CALLpcrel32;
1023 
1024   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
1025 
1026   MachineInstrBuilder CI;
1027   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
1028 
1029   // All current stack probes take AX and SP as input, clobber flags, and
1030   // preserve all registers. x86_64 probes leave RSP unmodified.
1031   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1032     // For the large code model, we have to call through a register. Use R11,
1033     // as it is scratch in all supported calling conventions.
1034     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1035         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1036     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1037   } else {
1038     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1039         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1040   }
1041 
1042   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1043   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1044   CI.addReg(AX, RegState::Implicit)
1045       .addReg(SP, RegState::Implicit)
1046       .addReg(AX, RegState::Define | RegState::Implicit)
1047       .addReg(SP, RegState::Define | RegState::Implicit)
1048       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1049 
1050   if (STI.isTargetWin64() || !STI.isOSWindows()) {
1051     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1052     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1053     // themselves. They also does not clobber %rax so we can reuse it when
1054     // adjusting %rsp.
1055     // All other platforms do not specify a particular ABI for the stack probe
1056     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1057     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1058         .addReg(SP)
1059         .addReg(AX);
1060   }
1061 
1062   if (InProlog) {
1063     // Apply the frame setup flag to all inserted instrs.
1064     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1065       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1066   }
1067 }
1068 
1069 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1070   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1071   // and might require smaller successive adjustments.
1072   const uint64_t Win64MaxSEHOffset = 128;
1073   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1074   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1075   return SEHFrameOffset & -16;
1076 }
1077 
1078 // If we're forcing a stack realignment we can't rely on just the frame
1079 // info, we need to know the ABI stack alignment as well in case we
1080 // have a call out.  Otherwise just make sure we have some alignment - we'll
1081 // go with the minimum SlotSize.
1082 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1083   const MachineFrameInfo &MFI = MF.getFrameInfo();
1084   Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1085   Align StackAlign = getStackAlign();
1086   if (MF.getFunction().hasFnAttribute("stackrealign")) {
1087     if (MFI.hasCalls())
1088       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1089     else if (MaxAlign < SlotSize)
1090       MaxAlign = Align(SlotSize);
1091   }
1092   return MaxAlign.value();
1093 }
1094 
1095 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1096                                           MachineBasicBlock::iterator MBBI,
1097                                           const DebugLoc &DL, unsigned Reg,
1098                                           uint64_t MaxAlign) const {
1099   uint64_t Val = -MaxAlign;
1100   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1101 
1102   MachineFunction &MF = *MBB.getParent();
1103   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1104   const X86TargetLowering &TLI = *STI.getTargetLowering();
1105   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1106   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1107 
1108   // We want to make sure that (in worst case) less than StackProbeSize bytes
1109   // are not probed after the AND. This assumption is used in
1110   // emitStackProbeInlineGeneric.
1111   if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1112     {
1113       NumFrameLoopProbe++;
1114       MachineBasicBlock *entryMBB =
1115           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1116       MachineBasicBlock *headMBB =
1117           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1118       MachineBasicBlock *bodyMBB =
1119           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1120       MachineBasicBlock *footMBB =
1121           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1122 
1123       MachineFunction::iterator MBBIter = MBB.getIterator();
1124       MF.insert(MBBIter, entryMBB);
1125       MF.insert(MBBIter, headMBB);
1126       MF.insert(MBBIter, bodyMBB);
1127       MF.insert(MBBIter, footMBB);
1128       const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1129       Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;
1130 
1131       // Setup entry block
1132       {
1133 
1134         entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1135         BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1136             .addReg(StackPtr)
1137             .setMIFlag(MachineInstr::FrameSetup);
1138         MachineInstr *MI =
1139             BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1140                 .addReg(FinalStackProbed)
1141                 .addImm(Val)
1142                 .setMIFlag(MachineInstr::FrameSetup);
1143 
1144         // The EFLAGS implicit def is dead.
1145         MI->getOperand(3).setIsDead();
1146 
1147         BuildMI(entryMBB, DL,
1148                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1149             .addReg(FinalStackProbed)
1150             .addReg(StackPtr)
1151             .setMIFlag(MachineInstr::FrameSetup);
1152         BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1153             .addMBB(&MBB)
1154             .addImm(X86::COND_E)
1155             .setMIFlag(MachineInstr::FrameSetup);
1156         entryMBB->addSuccessor(headMBB);
1157         entryMBB->addSuccessor(&MBB);
1158       }
1159 
1160       // Loop entry block
1161 
1162       {
1163         const unsigned SUBOpc =
1164             getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1165         BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1166             .addReg(StackPtr)
1167             .addImm(StackProbeSize)
1168             .setMIFlag(MachineInstr::FrameSetup);
1169 
1170         BuildMI(headMBB, DL,
1171                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1172             .addReg(FinalStackProbed)
1173             .addReg(StackPtr)
1174             .setMIFlag(MachineInstr::FrameSetup);
1175 
1176         // jump
1177         BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1178             .addMBB(footMBB)
1179             .addImm(X86::COND_B)
1180             .setMIFlag(MachineInstr::FrameSetup);
1181 
1182         headMBB->addSuccessor(bodyMBB);
1183         headMBB->addSuccessor(footMBB);
1184       }
1185 
1186       // setup loop body
1187       {
1188         addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1189                          .setMIFlag(MachineInstr::FrameSetup),
1190                      StackPtr, false, 0)
1191             .addImm(0)
1192             .setMIFlag(MachineInstr::FrameSetup);
1193 
1194         const unsigned SUBOpc =
1195             getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1196         BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1197             .addReg(StackPtr)
1198             .addImm(StackProbeSize)
1199             .setMIFlag(MachineInstr::FrameSetup);
1200 
1201         // cmp with stack pointer bound
1202         BuildMI(bodyMBB, DL,
1203                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1204             .addReg(FinalStackProbed)
1205             .addReg(StackPtr)
1206             .setMIFlag(MachineInstr::FrameSetup);
1207 
1208         // jump
1209         BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1210             .addMBB(bodyMBB)
1211             .addImm(X86::COND_B)
1212             .setMIFlag(MachineInstr::FrameSetup);
1213         bodyMBB->addSuccessor(bodyMBB);
1214         bodyMBB->addSuccessor(footMBB);
1215       }
1216 
1217       // setup loop footer
1218       {
1219         BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1220             .addReg(FinalStackProbed)
1221             .setMIFlag(MachineInstr::FrameSetup);
1222         addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1223                          .setMIFlag(MachineInstr::FrameSetup),
1224                      StackPtr, false, 0)
1225             .addImm(0)
1226             .setMIFlag(MachineInstr::FrameSetup);
1227         footMBB->addSuccessor(&MBB);
1228       }
1229 
1230       recomputeLiveIns(*headMBB);
1231       recomputeLiveIns(*bodyMBB);
1232       recomputeLiveIns(*footMBB);
1233       recomputeLiveIns(MBB);
1234     }
1235   } else {
1236     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1237                            .addReg(Reg)
1238                            .addImm(Val)
1239                            .setMIFlag(MachineInstr::FrameSetup);
1240 
1241     // The EFLAGS implicit def is dead.
1242     MI->getOperand(3).setIsDead();
1243   }
1244 }
1245 
1246 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1247   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1248   // clobbered by any interrupt handler.
1249   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1250          "MF used frame lowering for wrong subtarget");
1251   const Function &Fn = MF.getFunction();
1252   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1253   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1254 }
1255 
1256 
1257 /// emitPrologue - Push callee-saved registers onto the stack, which
1258 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1259 /// space for local variables. Also emit labels used by the exception handler to
1260 /// generate the exception handling frames.
1261 
1262 /*
1263   Here's a gist of what gets emitted:
1264 
1265   ; Establish frame pointer, if needed
1266   [if needs FP]
1267       push  %rbp
1268       .cfi_def_cfa_offset 16
1269       .cfi_offset %rbp, -16
1270       .seh_pushreg %rpb
1271       mov  %rsp, %rbp
1272       .cfi_def_cfa_register %rbp
1273 
1274   ; Spill general-purpose registers
1275   [for all callee-saved GPRs]
1276       pushq %<reg>
1277       [if not needs FP]
1278          .cfi_def_cfa_offset (offset from RETADDR)
1279       .seh_pushreg %<reg>
1280 
1281   ; If the required stack alignment > default stack alignment
1282   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
1283   ; of unknown size in the stack frame.
1284   [if stack needs re-alignment]
1285       and  $MASK, %rsp
1286 
1287   ; Allocate space for locals
1288   [if target is Windows and allocated space > 4096 bytes]
1289       ; Windows needs special care for allocations larger
1290       ; than one page.
1291       mov $NNN, %rax
1292       call ___chkstk_ms/___chkstk
1293       sub  %rax, %rsp
1294   [else]
1295       sub  $NNN, %rsp
1296 
1297   [if needs FP]
1298       .seh_stackalloc (size of XMM spill slots)
1299       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1300   [else]
1301       .seh_stackalloc NNN
1302 
1303   ; Spill XMMs
1304   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1305   ; they may get spilled on any platform, if the current function
1306   ; calls @llvm.eh.unwind.init
1307   [if needs FP]
1308       [for all callee-saved XMM registers]
1309           movaps  %<xmm reg>, -MMM(%rbp)
1310       [for all callee-saved XMM registers]
1311           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1312               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1313   [else]
1314       [for all callee-saved XMM registers]
1315           movaps  %<xmm reg>, KKK(%rsp)
1316       [for all callee-saved XMM registers]
1317           .seh_savexmm %<xmm reg>, KKK
1318 
1319   .seh_endprologue
1320 
1321   [if needs base pointer]
1322       mov  %rsp, %rbx
1323       [if needs to restore base pointer]
1324           mov %rsp, -MMM(%rbp)
1325 
1326   ; Emit CFI info
1327   [if needs FP]
1328       [for all callee-saved registers]
1329           .cfi_offset %<reg>, (offset from %rbp)
1330   [else]
1331        .cfi_def_cfa_offset (offset from RETADDR)
1332       [for all callee-saved registers]
1333           .cfi_offset %<reg>, (offset from %rsp)
1334 
1335   Notes:
1336   - .seh directives are emitted only for Windows 64 ABI
1337   - .cv_fpo directives are emitted on win32 when emitting CodeView
1338   - .cfi directives are emitted for all other ABIs
1339   - for 32-bit code, substitute %e?? registers for %r??
1340 */
1341 
1342 void X86FrameLowering::emitPrologue(MachineFunction &MF,
1343                                     MachineBasicBlock &MBB) const {
1344   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1345          "MF used frame lowering for wrong subtarget");
1346   MachineBasicBlock::iterator MBBI = MBB.begin();
1347   MachineFrameInfo &MFI = MF.getFrameInfo();
1348   const Function &Fn = MF.getFunction();
1349   MachineModuleInfo &MMI = MF.getMMI();
1350   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1351   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1352   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
1353   bool IsFunclet = MBB.isEHFuncletEntry();
1354   EHPersonality Personality = EHPersonality::Unknown;
1355   if (Fn.hasPersonalityFn())
1356     Personality = classifyEHPersonality(Fn.getPersonalityFn());
1357   bool FnHasClrFunclet =
1358       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1359   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1360   bool HasFP = hasFP(MF);
1361   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1362   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1363   // FIXME: Emit FPO data for EH funclets.
1364   bool NeedsWinFPO =
1365       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1366   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1367   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
1368   Register FramePtr = TRI->getFrameRegister(MF);
1369   const Register MachineFramePtr =
1370       STI.isTarget64BitILP32()
1371           ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1372   Register BasePtr = TRI->getBaseRegister();
1373   bool HasWinCFI = false;
1374 
1375   // Debug location must be unknown since the first debug location is used
1376   // to determine the end of the prologue.
1377   DebugLoc DL;
1378 
1379   // Add RETADDR move area to callee saved frame size.
1380   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1381   if (TailCallReturnAddrDelta && IsWin64Prologue)
1382     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1383 
1384   if (TailCallReturnAddrDelta < 0)
1385     X86FI->setCalleeSavedFrameSize(
1386       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1387 
1388   const bool EmitStackProbeCall =
1389       STI.getTargetLowering()->hasStackProbeSymbol(MF);
1390   unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1391 
1392   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1393   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1394   // stack alignment.
1395   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1396       Fn.arg_size() == 2) {
1397     StackSize += 8;
1398     MFI.setStackSize(StackSize);
1399     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1400   }
1401 
1402   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1403   // function, and use up to 128 bytes of stack space, don't have a frame
1404   // pointer, calls, or dynamic alloca then we do not need to adjust the
1405   // stack pointer (we fit in the Red Zone). We also check that we don't
1406   // push and pop from the stack.
1407   if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) &&
1408       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1409       !MFI.adjustsStack() &&                   // No calls.
1410       !EmitStackProbeCall &&                   // No stack probes.
1411       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1412       !MF.shouldSplitStack()) {                // Regular stack
1413     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1414     if (HasFP) MinSize += SlotSize;
1415     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1416     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1417     MFI.setStackSize(StackSize);
1418   }
1419 
1420   // Insert stack pointer adjustment for later moving of return addr.  Only
1421   // applies to tail call optimized functions where the callee argument stack
1422   // size is bigger than the callers.
1423   if (TailCallReturnAddrDelta < 0) {
1424     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1425                          /*InEpilogue=*/false)
1426         .setMIFlag(MachineInstr::FrameSetup);
1427   }
1428 
1429   // Mapping for machine moves:
1430   //
1431   //   DST: VirtualFP AND
1432   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1433   //        ELSE                        => DW_CFA_def_cfa
1434   //
1435   //   SRC: VirtualFP AND
1436   //        DST: Register               => DW_CFA_def_cfa_register
1437   //
1438   //   ELSE
1439   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1440   //        REG < 64                    => DW_CFA_offset + Reg
1441   //        ELSE                        => DW_CFA_offset_extended
1442 
1443   uint64_t NumBytes = 0;
1444   int stackGrowth = -SlotSize;
1445 
1446   // Find the funclet establisher parameter
1447   Register Establisher = X86::NoRegister;
1448   if (IsClrFunclet)
1449     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1450   else if (IsFunclet)
1451     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1452 
1453   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1454     // Immediately spill establisher into the home slot.
1455     // The runtime cares about this.
1456     // MOV64mr %rdx, 16(%rsp)
1457     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1458     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1459         .addReg(Establisher)
1460         .setMIFlag(MachineInstr::FrameSetup);
1461     MBB.addLiveIn(Establisher);
1462   }
1463 
1464   if (HasFP) {
1465     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1466 
1467     // Calculate required stack adjustment.
1468     uint64_t FrameSize = StackSize - SlotSize;
1469     // If required, include space for extra hidden slot for stashing base pointer.
1470     if (X86FI->getRestoreBasePointer())
1471       FrameSize += SlotSize;
1472 
1473     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1474 
1475     // Callee-saved registers are pushed on stack before the stack is realigned.
1476     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1477       NumBytes = alignTo(NumBytes, MaxAlign);
1478 
1479     // Save EBP/RBP into the appropriate stack slot.
1480     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1481       .addReg(MachineFramePtr, RegState::Kill)
1482       .setMIFlag(MachineInstr::FrameSetup);
1483 
1484     if (NeedsDwarfCFI) {
1485       // Mark the place where EBP/RBP was saved.
1486       // Define the current CFA rule to use the provided offset.
1487       assert(StackSize);
1488       BuildCFI(MBB, MBBI, DL,
1489                MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth));
1490 
1491       // Change the rule for the FramePtr to be an "offset" rule.
1492       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1493       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1494                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1495     }
1496 
1497     if (NeedsWinCFI) {
1498       HasWinCFI = true;
1499       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1500           .addImm(FramePtr)
1501           .setMIFlag(MachineInstr::FrameSetup);
1502     }
1503 
1504     if (!IsWin64Prologue && !IsFunclet) {
1505       // Update EBP with the new base value.
1506       BuildMI(MBB, MBBI, DL,
1507               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1508               FramePtr)
1509           .addReg(StackPtr)
1510           .setMIFlag(MachineInstr::FrameSetup);
1511 
1512       if (NeedsDwarfCFI) {
1513         // Mark effective beginning of when frame pointer becomes valid.
1514         // Define the current CFA to use the EBP/RBP register.
1515         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1516         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1517                                     nullptr, DwarfFramePtr));
1518       }
1519 
1520       if (NeedsWinFPO) {
1521         // .cv_fpo_setframe $FramePtr
1522         HasWinCFI = true;
1523         BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1524             .addImm(FramePtr)
1525             .addImm(0)
1526             .setMIFlag(MachineInstr::FrameSetup);
1527       }
1528     }
1529   } else {
1530     assert(!IsFunclet && "funclets without FPs not yet implemented");
1531     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1532   }
1533 
1534   // Update the offset adjustment, which is mainly used by codeview to translate
1535   // from ESP to VFRAME relative local variable offsets.
1536   if (!IsFunclet) {
1537     if (HasFP && TRI->needsStackRealignment(MF))
1538       MFI.setOffsetAdjustment(-NumBytes);
1539     else
1540       MFI.setOffsetAdjustment(-StackSize);
1541   }
1542 
1543   // For EH funclets, only allocate enough space for outgoing calls. Save the
1544   // NumBytes value that we would've used for the parent frame.
1545   unsigned ParentFrameNumBytes = NumBytes;
1546   if (IsFunclet)
1547     NumBytes = getWinEHFuncletFrameSize(MF);
1548 
1549   // Skip the callee-saved push instructions.
1550   bool PushedRegs = false;
1551   int StackOffset = 2 * stackGrowth;
1552 
1553   while (MBBI != MBB.end() &&
1554          MBBI->getFlag(MachineInstr::FrameSetup) &&
1555          (MBBI->getOpcode() == X86::PUSH32r ||
1556           MBBI->getOpcode() == X86::PUSH64r)) {
1557     PushedRegs = true;
1558     Register Reg = MBBI->getOperand(0).getReg();
1559     ++MBBI;
1560 
1561     if (!HasFP && NeedsDwarfCFI) {
1562       // Mark callee-saved push instruction.
1563       // Define the current CFA rule to use the provided offset.
1564       assert(StackSize);
1565       BuildCFI(MBB, MBBI, DL,
1566                MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset));
1567       StackOffset += stackGrowth;
1568     }
1569 
1570     if (NeedsWinCFI) {
1571       HasWinCFI = true;
1572       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1573           .addImm(Reg)
1574           .setMIFlag(MachineInstr::FrameSetup);
1575     }
1576   }
1577 
1578   // Realign stack after we pushed callee-saved registers (so that we'll be
1579   // able to calculate their offsets from the frame pointer).
1580   // Don't do this for Win64, it needs to realign the stack after the prologue.
1581   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1582     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1583     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1584 
1585     if (NeedsWinCFI) {
1586       HasWinCFI = true;
1587       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1588           .addImm(MaxAlign)
1589           .setMIFlag(MachineInstr::FrameSetup);
1590     }
1591   }
1592 
1593   // If there is an SUB32ri of ESP immediately before this instruction, merge
1594   // the two. This can be the case when tail call elimination is enabled and
1595   // the callee has more arguments then the caller.
1596   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1597 
1598   // Adjust stack pointer: ESP -= numbytes.
1599 
1600   // Windows and cygwin/mingw require a prologue helper routine when allocating
1601   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1602   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1603   // stack and adjust the stack pointer in one go.  The 64-bit version of
1604   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1605   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1606   // increments is necessary to ensure that the guard pages used by the OS
1607   // virtual memory manager are allocated in correct sequence.
1608   uint64_t AlignedNumBytes = NumBytes;
1609   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1610     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1611   if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1612     assert(!X86FI->getUsesRedZone() &&
1613            "The Red Zone is not accounted for in stack probes");
1614 
1615     // Check whether EAX is livein for this block.
1616     bool isEAXAlive = isEAXLiveIn(MBB);
1617 
1618     if (isEAXAlive) {
1619       if (Is64Bit) {
1620         // Save RAX
1621         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1622           .addReg(X86::RAX, RegState::Kill)
1623           .setMIFlag(MachineInstr::FrameSetup);
1624       } else {
1625         // Save EAX
1626         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1627           .addReg(X86::EAX, RegState::Kill)
1628           .setMIFlag(MachineInstr::FrameSetup);
1629       }
1630     }
1631 
1632     if (Is64Bit) {
1633       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1634       // Function prologue is responsible for adjusting the stack pointer.
1635       int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1636       if (isUInt<32>(Alloc)) {
1637         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1638             .addImm(Alloc)
1639             .setMIFlag(MachineInstr::FrameSetup);
1640       } else if (isInt<32>(Alloc)) {
1641         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1642             .addImm(Alloc)
1643             .setMIFlag(MachineInstr::FrameSetup);
1644       } else {
1645         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1646             .addImm(Alloc)
1647             .setMIFlag(MachineInstr::FrameSetup);
1648       }
1649     } else {
1650       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1651       // We'll also use 4 already allocated bytes for EAX.
1652       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1653           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1654           .setMIFlag(MachineInstr::FrameSetup);
1655     }
1656 
1657     // Call __chkstk, __chkstk_ms, or __alloca.
1658     emitStackProbe(MF, MBB, MBBI, DL, true);
1659 
1660     if (isEAXAlive) {
1661       // Restore RAX/EAX
1662       MachineInstr *MI;
1663       if (Is64Bit)
1664         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1665                           StackPtr, false, NumBytes - 8);
1666       else
1667         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1668                           StackPtr, false, NumBytes - 4);
1669       MI->setFlag(MachineInstr::FrameSetup);
1670       MBB.insert(MBBI, MI);
1671     }
1672   } else if (NumBytes) {
1673     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1674   }
1675 
1676   if (NeedsWinCFI && NumBytes) {
1677     HasWinCFI = true;
1678     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1679         .addImm(NumBytes)
1680         .setMIFlag(MachineInstr::FrameSetup);
1681   }
1682 
1683   int SEHFrameOffset = 0;
1684   unsigned SPOrEstablisher;
1685   if (IsFunclet) {
1686     if (IsClrFunclet) {
1687       // The establisher parameter passed to a CLR funclet is actually a pointer
1688       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1689       // to find the root function establisher frame by loading the PSPSym from
1690       // the intermediate frame.
1691       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1692       MachinePointerInfo NoInfo;
1693       MBB.addLiveIn(Establisher);
1694       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1695                    Establisher, false, PSPSlotOffset)
1696           .addMemOperand(MF.getMachineMemOperand(
1697               NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
1698       ;
1699       // Save the root establisher back into the current funclet's (mostly
1700       // empty) frame, in case a sub-funclet or the GC needs it.
1701       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1702                    false, PSPSlotOffset)
1703           .addReg(Establisher)
1704           .addMemOperand(MF.getMachineMemOperand(
1705               NoInfo,
1706               MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1707               SlotSize, Align(SlotSize)));
1708     }
1709     SPOrEstablisher = Establisher;
1710   } else {
1711     SPOrEstablisher = StackPtr;
1712   }
1713 
1714   if (IsWin64Prologue && HasFP) {
1715     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1716     // this calculation on the incoming establisher, which holds the value of
1717     // RSP from the parent frame at the end of the prologue.
1718     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1719     if (SEHFrameOffset)
1720       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1721                    SPOrEstablisher, false, SEHFrameOffset);
1722     else
1723       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1724           .addReg(SPOrEstablisher);
1725 
1726     // If this is not a funclet, emit the CFI describing our frame pointer.
1727     if (NeedsWinCFI && !IsFunclet) {
1728       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1729       HasWinCFI = true;
1730       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1731           .addImm(FramePtr)
1732           .addImm(SEHFrameOffset)
1733           .setMIFlag(MachineInstr::FrameSetup);
1734       if (isAsynchronousEHPersonality(Personality))
1735         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1736     }
1737   } else if (IsFunclet && STI.is32Bit()) {
1738     // Reset EBP / ESI to something good for funclets.
1739     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1740     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1741     // into the registration node so that the runtime will restore it for us.
1742     if (!MBB.isCleanupFuncletEntry()) {
1743       assert(Personality == EHPersonality::MSVC_CXX);
1744       Register FrameReg;
1745       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1746       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1747       // ESP is the first field, so no extra displacement is needed.
1748       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1749                    false, EHRegOffset)
1750           .addReg(X86::ESP);
1751     }
1752   }
1753 
1754   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1755     const MachineInstr &FrameInstr = *MBBI;
1756     ++MBBI;
1757 
1758     if (NeedsWinCFI) {
1759       int FI;
1760       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1761         if (X86::FR64RegClass.contains(Reg)) {
1762           int Offset;
1763           Register IgnoredFrameReg;
1764           if (IsWin64Prologue && IsFunclet)
1765             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1766           else
1767             Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
1768                      SEHFrameOffset;
1769 
1770           HasWinCFI = true;
1771           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1772           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1773               .addImm(Reg)
1774               .addImm(Offset)
1775               .setMIFlag(MachineInstr::FrameSetup);
1776         }
1777       }
1778     }
1779   }
1780 
1781   if (NeedsWinCFI && HasWinCFI)
1782     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1783         .setMIFlag(MachineInstr::FrameSetup);
1784 
1785   if (FnHasClrFunclet && !IsFunclet) {
1786     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1787     // immediately after the prolog)  into the PSPSlot so that funclets
1788     // and the GC can recover it.
1789     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1790     auto PSPInfo = MachinePointerInfo::getFixedStack(
1791         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1792     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1793                  PSPSlotOffset)
1794         .addReg(StackPtr)
1795         .addMemOperand(MF.getMachineMemOperand(
1796             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1797             SlotSize, Align(SlotSize)));
1798   }
1799 
1800   // Realign stack after we spilled callee-saved registers (so that we'll be
1801   // able to calculate their offsets from the frame pointer).
1802   // Win64 requires aligning the stack after the prologue.
1803   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1804     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1805     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1806   }
1807 
1808   // We already dealt with stack realignment and funclets above.
1809   if (IsFunclet && STI.is32Bit())
1810     return;
1811 
1812   // If we need a base pointer, set it up here. It's whatever the value
1813   // of the stack pointer is at this point. Any variable size objects
1814   // will be allocated after this, so we can still use the base pointer
1815   // to reference locals.
1816   if (TRI->hasBasePointer(MF)) {
1817     // Update the base pointer with the current stack pointer.
1818     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1819     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1820       .addReg(SPOrEstablisher)
1821       .setMIFlag(MachineInstr::FrameSetup);
1822     if (X86FI->getRestoreBasePointer()) {
1823       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1824       // dependence chain. Used by SjLj EH.
1825       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1826       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1827                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1828         .addReg(SPOrEstablisher)
1829         .setMIFlag(MachineInstr::FrameSetup);
1830     }
1831 
1832     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1833       // Stash the value of the frame pointer relative to the base pointer for
1834       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1835       // it recovers the frame pointer from the base pointer rather than the
1836       // other way around.
1837       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1838       Register UsedReg;
1839       int Offset =
1840           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1841       assert(UsedReg == BasePtr);
1842       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1843           .addReg(FramePtr)
1844           .setMIFlag(MachineInstr::FrameSetup);
1845     }
1846   }
1847 
1848   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1849     // Mark end of stack pointer adjustment.
1850     if (!HasFP && NumBytes) {
1851       // Define the current CFA rule to use the provided offset.
1852       assert(StackSize);
1853       BuildCFI(
1854           MBB, MBBI, DL,
1855           MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth));
1856     }
1857 
1858     // Emit DWARF info specifying the offsets of the callee-saved registers.
1859     emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
1860   }
1861 
1862   // X86 Interrupt handling function cannot assume anything about the direction
1863   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1864   // in each prologue of interrupt handler function.
1865   //
1866   // FIXME: Create "cld" instruction only in these cases:
1867   // 1. The interrupt handling function uses any of the "rep" instructions.
1868   // 2. Interrupt handling function calls another function.
1869   //
1870   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1871     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1872         .setMIFlag(MachineInstr::FrameSetup);
1873 
1874   // At this point we know if the function has WinCFI or not.
1875   MF.setHasWinCFI(HasWinCFI);
1876 }
1877 
1878 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1879     const MachineFunction &MF) const {
1880   // We can't use LEA instructions for adjusting the stack pointer if we don't
1881   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1882   // to deallocate the stack.
1883   // This means that we can use LEA for SP in two situations:
1884   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1885   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1886   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1887 }
1888 
1889 static bool isFuncletReturnInstr(MachineInstr &MI) {
1890   switch (MI.getOpcode()) {
1891   case X86::CATCHRET:
1892   case X86::CLEANUPRET:
1893     return true;
1894   default:
1895     return false;
1896   }
1897   llvm_unreachable("impossible");
1898 }
1899 
1900 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1901 // stack. It holds a pointer to the bottom of the root function frame.  The
1902 // establisher frame pointer passed to a nested funclet may point to the
1903 // (mostly empty) frame of its parent funclet, but it will need to find
1904 // the frame of the root function to access locals.  To facilitate this,
1905 // every funclet copies the pointer to the bottom of the root function
1906 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1907 // same offset for the PSPSym in the root function frame that's used in the
1908 // funclets' frames allows each funclet to dynamically accept any ancestor
1909 // frame as its establisher argument (the runtime doesn't guarantee the
1910 // immediate parent for some reason lost to history), and also allows the GC,
1911 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1912 // frame with only a single offset reported for the entire method.
1913 unsigned
1914 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1915   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1916   Register SPReg;
1917   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1918                                               /*IgnoreSPUpdates*/ true);
1919   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1920   return static_cast<unsigned>(Offset);
1921 }
1922 
1923 unsigned
1924 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1925   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1926   // This is the size of the pushed CSRs.
1927   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1928   // This is the size of callee saved XMMs.
1929   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1930   unsigned XMMSize = WinEHXMMSlotInfo.size() *
1931                      TRI->getSpillSize(X86::VR128RegClass);
1932   // This is the amount of stack a funclet needs to allocate.
1933   unsigned UsedSize;
1934   EHPersonality Personality =
1935       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1936   if (Personality == EHPersonality::CoreCLR) {
1937     // CLR funclets need to hold enough space to include the PSPSym, at the
1938     // same offset from the stack pointer (immediately after the prolog) as it
1939     // resides at in the main function.
1940     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1941   } else {
1942     // Other funclets just need enough stack for outgoing call arguments.
1943     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1944   }
1945   // RBP is not included in the callee saved register block. After pushing RBP,
1946   // everything is 16 byte aligned. Everything we allocate before an outgoing
1947   // call must also be 16 byte aligned.
1948   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
1949   // Subtract out the size of the callee saved registers. This is how much stack
1950   // each funclet will allocate.
1951   return FrameSizeMinusRBP + XMMSize - CSSize;
1952 }
1953 
1954 static bool isTailCallOpcode(unsigned Opc) {
1955     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1956         Opc == X86::TCRETURNmi ||
1957         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1958         Opc == X86::TCRETURNmi64;
1959 }
1960 
1961 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1962                                     MachineBasicBlock &MBB) const {
1963   const MachineFrameInfo &MFI = MF.getFrameInfo();
1964   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1965   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1966   MachineBasicBlock::iterator MBBI = Terminator;
1967   DebugLoc DL;
1968   if (MBBI != MBB.end())
1969     DL = MBBI->getDebugLoc();
1970   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1971   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1972   Register FramePtr = TRI->getFrameRegister(MF);
1973   unsigned MachineFramePtr =
1974       Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1975 
1976   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1977   bool NeedsWin64CFI =
1978       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1979   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1980 
1981   // Get the number of bytes to allocate from the FrameInfo.
1982   uint64_t StackSize = MFI.getStackSize();
1983   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1984   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1985   bool HasFP = hasFP(MF);
1986   uint64_t NumBytes = 0;
1987 
1988   bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1989                         !MF.getTarget().getTargetTriple().isOSWindows()) &&
1990                        MF.needsFrameMoves();
1991 
1992   if (IsFunclet) {
1993     assert(HasFP && "EH funclets without FP not yet implemented");
1994     NumBytes = getWinEHFuncletFrameSize(MF);
1995   } else if (HasFP) {
1996     // Calculate required stack adjustment.
1997     uint64_t FrameSize = StackSize - SlotSize;
1998     NumBytes = FrameSize - CSSize;
1999 
2000     // Callee-saved registers were pushed on stack before the stack was
2001     // realigned.
2002     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
2003       NumBytes = alignTo(FrameSize, MaxAlign);
2004   } else {
2005     NumBytes = StackSize - CSSize;
2006   }
2007   uint64_t SEHStackAllocAmt = NumBytes;
2008 
2009   // AfterPop is the position to insert .cfi_restore.
2010   MachineBasicBlock::iterator AfterPop = MBBI;
2011   if (HasFP) {
2012     // Pop EBP.
2013     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
2014             MachineFramePtr)
2015         .setMIFlag(MachineInstr::FrameDestroy);
2016     if (NeedsDwarfCFI) {
2017       unsigned DwarfStackPtr =
2018           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2019       BuildCFI(MBB, MBBI, DL,
2020                MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize));
2021       if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2022         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2023         BuildCFI(MBB, AfterPop, DL,
2024                  MCCFIInstruction::createRestore(nullptr, DwarfFramePtr));
2025         --MBBI;
2026         --AfterPop;
2027       }
2028       --MBBI;
2029     }
2030   }
2031 
2032   MachineBasicBlock::iterator FirstCSPop = MBBI;
2033   // Skip the callee-saved pop instructions.
2034   while (MBBI != MBB.begin()) {
2035     MachineBasicBlock::iterator PI = std::prev(MBBI);
2036     unsigned Opc = PI->getOpcode();
2037 
2038     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2039       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2040           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
2041         break;
2042       FirstCSPop = PI;
2043     }
2044 
2045     --MBBI;
2046   }
2047   MBBI = FirstCSPop;
2048 
2049   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2050     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2051 
2052   if (MBBI != MBB.end())
2053     DL = MBBI->getDebugLoc();
2054 
2055   // If there is an ADD32ri or SUB32ri of ESP immediately before this
2056   // instruction, merge the two instructions.
2057   if (NumBytes || MFI.hasVarSizedObjects())
2058     NumBytes += mergeSPUpdates(MBB, MBBI, true);
2059 
2060   // If dynamic alloca is used, then reset esp to point to the last callee-saved
2061   // slot before popping them off! Same applies for the case, when stack was
2062   // realigned. Don't do this if this was a funclet epilogue, since the funclets
2063   // will not do realignment or dynamic stack allocation.
2064   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
2065       !IsFunclet) {
2066     if (TRI->needsStackRealignment(MF))
2067       MBBI = FirstCSPop;
2068     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2069     uint64_t LEAAmount =
2070         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2071 
2072     // There are only two legal forms of epilogue:
2073     // - add SEHAllocationSize, %rsp
2074     // - lea SEHAllocationSize(%FramePtr), %rsp
2075     //
2076     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2077     // However, we may use this sequence if we have a frame pointer because the
2078     // effects of the prologue can safely be undone.
2079     if (LEAAmount != 0) {
2080       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2081       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
2082                    FramePtr, false, LEAAmount);
2083       --MBBI;
2084     } else {
2085       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2086       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
2087         .addReg(FramePtr);
2088       --MBBI;
2089     }
2090   } else if (NumBytes) {
2091     // Adjust stack pointer back: ESP += numbytes.
2092     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2093     if (!hasFP(MF) && NeedsDwarfCFI) {
2094       // Define the current CFA rule to use the provided offset.
2095       BuildCFI(MBB, MBBI, DL,
2096                MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize));
2097     }
2098     --MBBI;
2099   }
2100 
2101   // Windows unwinder will not invoke function's exception handler if IP is
2102   // either in prologue or in epilogue.  This behavior causes a problem when a
2103   // call immediately precedes an epilogue, because the return address points
2104   // into the epilogue.  To cope with that, we insert an epilogue marker here,
2105   // then replace it with a 'nop' if it ends up immediately after a CALL in the
2106   // final emitted code.
2107   if (NeedsWin64CFI && MF.hasWinCFI())
2108     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2109 
2110   if (!hasFP(MF) && NeedsDwarfCFI) {
2111     MBBI = FirstCSPop;
2112     int64_t Offset = -CSSize - SlotSize;
2113     // Mark callee-saved pop instruction.
2114     // Define the current CFA rule to use the provided offset.
2115     while (MBBI != MBB.end()) {
2116       MachineBasicBlock::iterator PI = MBBI;
2117       unsigned Opc = PI->getOpcode();
2118       ++MBBI;
2119       if (Opc == X86::POP32r || Opc == X86::POP64r) {
2120         Offset += SlotSize;
2121         BuildCFI(MBB, MBBI, DL,
2122                  MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset));
2123       }
2124     }
2125   }
2126 
2127   // Emit DWARF info specifying the restores of the callee-saved registers.
2128   // For epilogue with return inside or being other block without successor,
2129   // no need to generate .cfi_restore for callee-saved registers.
2130   if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) {
2131     emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2132   }
2133 
2134   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2135     // Add the return addr area delta back since we are not tail calling.
2136     int Offset = -1 * X86FI->getTCReturnAddrDelta();
2137     assert(Offset >= 0 && "TCDelta should never be positive");
2138     if (Offset) {
2139       // Check for possible merge with preceding ADD instruction.
2140       Offset += mergeSPUpdates(MBB, Terminator, true);
2141       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2142     }
2143   }
2144 }
2145 
2146 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2147                                              Register &FrameReg) const {
2148   const MachineFrameInfo &MFI = MF.getFrameInfo();
2149 
2150   bool IsFixed = MFI.isFixedObjectIndex(FI);
2151   // We can't calculate offset from frame pointer if the stack is realigned,
2152   // so enforce usage of stack/base pointer.  The base pointer is used when we
2153   // have dynamic allocas in addition to dynamic realignment.
2154   if (TRI->hasBasePointer(MF))
2155     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2156   else if (TRI->needsStackRealignment(MF))
2157     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2158   else
2159     FrameReg = TRI->getFrameRegister(MF);
2160 
2161   // Offset will hold the offset from the stack pointer at function entry to the
2162   // object.
2163   // We need to factor in additional offsets applied during the prologue to the
2164   // frame, base, and stack pointer depending on which is used.
2165   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2166   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2167   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2168   uint64_t StackSize = MFI.getStackSize();
2169   bool HasFP = hasFP(MF);
2170   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2171   int64_t FPDelta = 0;
2172 
2173   // In an x86 interrupt, remove the offset we added to account for the return
2174   // address from any stack object allocated in the caller's frame. Interrupts
2175   // do not have a standard return address. Fixed objects in the current frame,
2176   // such as SSE register spills, should not get this treatment.
2177   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2178       Offset >= 0) {
2179     Offset += getOffsetOfLocalArea();
2180   }
2181 
2182   if (IsWin64Prologue) {
2183     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2184 
2185     // Calculate required stack adjustment.
2186     uint64_t FrameSize = StackSize - SlotSize;
2187     // If required, include space for extra hidden slot for stashing base pointer.
2188     if (X86FI->getRestoreBasePointer())
2189       FrameSize += SlotSize;
2190     uint64_t NumBytes = FrameSize - CSSize;
2191 
2192     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2193     if (FI && FI == X86FI->getFAIndex())
2194       return -SEHFrameOffset;
2195 
2196     // FPDelta is the offset from the "traditional" FP location of the old base
2197     // pointer followed by return address and the location required by the
2198     // restricted Win64 prologue.
2199     // Add FPDelta to all offsets below that go through the frame pointer.
2200     FPDelta = FrameSize - SEHFrameOffset;
2201     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2202            "FPDelta isn't aligned per the Win64 ABI!");
2203   }
2204 
2205 
2206   if (TRI->hasBasePointer(MF)) {
2207     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
2208     if (FI < 0) {
2209       // Skip the saved EBP.
2210       return Offset + SlotSize + FPDelta;
2211     } else {
2212       assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2213       return Offset + StackSize;
2214     }
2215   } else if (TRI->needsStackRealignment(MF)) {
2216     if (FI < 0) {
2217       // Skip the saved EBP.
2218       return Offset + SlotSize + FPDelta;
2219     } else {
2220       assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2221       return Offset + StackSize;
2222     }
2223     // FIXME: Support tail calls
2224   } else {
2225     if (!HasFP)
2226       return Offset + StackSize;
2227 
2228     // Skip the saved EBP.
2229     Offset += SlotSize;
2230 
2231     // Skip the RETADDR move area
2232     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2233     if (TailCallReturnAddrDelta < 0)
2234       Offset -= TailCallReturnAddrDelta;
2235   }
2236 
2237   return Offset + FPDelta;
2238 }
2239 
2240 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2241                                               Register &FrameReg) const {
2242   const MachineFrameInfo &MFI = MF.getFrameInfo();
2243   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2244   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2245   const auto it = WinEHXMMSlotInfo.find(FI);
2246 
2247   if (it == WinEHXMMSlotInfo.end())
2248     return getFrameIndexReference(MF, FI, FrameReg);
2249 
2250   FrameReg = TRI->getStackRegister();
2251   return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2252          it->second;
2253 }
2254 
2255 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
2256                                                int FI, Register &FrameReg,
2257                                                int Adjustment) const {
2258   const MachineFrameInfo &MFI = MF.getFrameInfo();
2259   FrameReg = TRI->getStackRegister();
2260   return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
2261 }
2262 
2263 int X86FrameLowering::getFrameIndexReferencePreferSP(
2264     const MachineFunction &MF, int FI, Register &FrameReg,
2265     bool IgnoreSPUpdates) const {
2266 
2267   const MachineFrameInfo &MFI = MF.getFrameInfo();
2268   // Does not include any dynamic realign.
2269   const uint64_t StackSize = MFI.getStackSize();
2270   // LLVM arranges the stack as follows:
2271   //   ...
2272   //   ARG2
2273   //   ARG1
2274   //   RETADDR
2275   //   PUSH RBP   <-- RBP points here
2276   //   PUSH CSRs
2277   //   ~~~~~~~    <-- possible stack realignment (non-win64)
2278   //   ...
2279   //   STACK OBJECTS
2280   //   ...        <-- RSP after prologue points here
2281   //   ~~~~~~~    <-- possible stack realignment (win64)
2282   //
2283   // if (hasVarSizedObjects()):
2284   //   ...        <-- "base pointer" (ESI/RBX) points here
2285   //   DYNAMIC ALLOCAS
2286   //   ...        <-- RSP points here
2287   //
2288   // Case 1: In the simple case of no stack realignment and no dynamic
2289   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2290   // with fixed offsets from RSP.
2291   //
2292   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2293   // stack objects are addressed with RBP and regular stack objects with RSP.
2294   //
2295   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2296   // to address stack arguments for outgoing calls and nothing else. The "base
2297   // pointer" points to local variables, and RBP points to fixed objects.
2298   //
2299   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2300   // answer we give is relative to the SP after the prologue, and not the
2301   // SP in the middle of the function.
2302 
2303   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
2304       !STI.isTargetWin64())
2305     return getFrameIndexReference(MF, FI, FrameReg);
2306 
2307   // If !hasReservedCallFrame the function might have SP adjustement in the
2308   // body.  So, even though the offset is statically known, it depends on where
2309   // we are in the function.
2310   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2311     return getFrameIndexReference(MF, FI, FrameReg);
2312 
2313   // We don't handle tail calls, and shouldn't be seeing them either.
2314   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2315          "we don't handle this case!");
2316 
2317   // This is how the math works out:
2318   //
2319   //  %rsp grows (i.e. gets lower) left to right. Each box below is
2320   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
2321   //  get to.
2322   //
2323   //    ----------------------------------
2324   //    | BP | Obj0 | Obj1 | ... | ObjN |
2325   //    ----------------------------------
2326   //    ^    ^      ^                   ^
2327   //    A    B      C                   E
2328   //
2329   // A is the incoming stack pointer.
2330   // (B - A) is the local area offset (-8 for x86-64) [1]
2331   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2332   //
2333   // |(E - B)| is the StackSize (absolute value, positive).  For a
2334   // stack that grown down, this works out to be (B - E). [3]
2335   //
2336   // E is also the value of %rsp after stack has been set up, and we
2337   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
2338   // (C - E) == (C - A) - (B - A) + (B - E)
2339   //            { Using [1], [2] and [3] above }
2340   //         == getObjectOffset - LocalAreaOffset + StackSize
2341 
2342   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2343 }
2344 
2345 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2346     MachineFunction &MF, const TargetRegisterInfo *TRI,
2347     std::vector<CalleeSavedInfo> &CSI) const {
2348   MachineFrameInfo &MFI = MF.getFrameInfo();
2349   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2350 
2351   unsigned CalleeSavedFrameSize = 0;
2352   unsigned XMMCalleeSavedFrameSize = 0;
2353   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2354   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2355 
2356   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2357 
2358   if (TailCallReturnAddrDelta < 0) {
2359     // create RETURNADDR area
2360     //   arg
2361     //   arg
2362     //   RETADDR
2363     //   { ...
2364     //     RETADDR area
2365     //     ...
2366     //   }
2367     //   [EBP]
2368     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2369                            TailCallReturnAddrDelta - SlotSize, true);
2370   }
2371 
2372   // Spill the BasePtr if it's used.
2373   if (this->TRI->hasBasePointer(MF)) {
2374     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2375     if (MF.hasEHFunclets()) {
2376       int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2377       X86FI->setHasSEHFramePtrSave(true);
2378       X86FI->setSEHFramePtrSaveIndex(FI);
2379     }
2380   }
2381 
2382   if (hasFP(MF)) {
2383     // emitPrologue always spills frame register the first thing.
2384     SpillSlotOffset -= SlotSize;
2385     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2386 
2387     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2388     // the frame register, we can delete it from CSI list and not have to worry
2389     // about avoiding it later.
2390     Register FPReg = TRI->getFrameRegister(MF);
2391     for (unsigned i = 0; i < CSI.size(); ++i) {
2392       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2393         CSI.erase(CSI.begin() + i);
2394         break;
2395       }
2396     }
2397   }
2398 
2399   // Assign slots for GPRs. It increases frame size.
2400   for (unsigned i = CSI.size(); i != 0; --i) {
2401     unsigned Reg = CSI[i - 1].getReg();
2402 
2403     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2404       continue;
2405 
2406     SpillSlotOffset -= SlotSize;
2407     CalleeSavedFrameSize += SlotSize;
2408 
2409     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2410     CSI[i - 1].setFrameIdx(SlotIndex);
2411   }
2412 
2413   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2414   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2415 
2416   // Assign slots for XMMs.
2417   for (unsigned i = CSI.size(); i != 0; --i) {
2418     unsigned Reg = CSI[i - 1].getReg();
2419     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2420       continue;
2421 
2422     // If this is k-register make sure we lookup via the largest legal type.
2423     MVT VT = MVT::Other;
2424     if (X86::VK16RegClass.contains(Reg))
2425       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2426 
2427     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2428     unsigned Size = TRI->getSpillSize(*RC);
2429     Align Alignment = TRI->getSpillAlign(*RC);
2430     // ensure alignment
2431     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2432     SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2433 
2434     // spill into slot
2435     SpillSlotOffset -= Size;
2436     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2437     CSI[i - 1].setFrameIdx(SlotIndex);
2438     MFI.ensureMaxAlignment(Alignment);
2439 
2440     // Save the start offset and size of XMM in stack frame for funclets.
2441     if (X86::VR128RegClass.contains(Reg)) {
2442       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2443       XMMCalleeSavedFrameSize += Size;
2444     }
2445   }
2446 
2447   return true;
2448 }
2449 
2450 bool X86FrameLowering::spillCalleeSavedRegisters(
2451     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2452     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2453   DebugLoc DL = MBB.findDebugLoc(MI);
2454 
2455   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2456   // for us, and there are no XMM CSRs on Win32.
2457   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2458     return true;
2459 
2460   // Push GPRs. It increases frame size.
2461   const MachineFunction &MF = *MBB.getParent();
2462   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2463   for (unsigned i = CSI.size(); i != 0; --i) {
2464     unsigned Reg = CSI[i - 1].getReg();
2465 
2466     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2467       continue;
2468 
2469     const MachineRegisterInfo &MRI = MF.getRegInfo();
2470     bool isLiveIn = MRI.isLiveIn(Reg);
2471     if (!isLiveIn)
2472       MBB.addLiveIn(Reg);
2473 
2474     // Decide whether we can add a kill flag to the use.
2475     bool CanKill = !isLiveIn;
2476     // Check if any subregister is live-in
2477     if (CanKill) {
2478       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2479         if (MRI.isLiveIn(*AReg)) {
2480           CanKill = false;
2481           break;
2482         }
2483       }
2484     }
2485 
2486     // Do not set a kill flag on values that are also marked as live-in. This
2487     // happens with the @llvm-returnaddress intrinsic and with arguments
2488     // passed in callee saved registers.
2489     // Omitting the kill flags is conservatively correct even if the live-in
2490     // is not used after all.
2491     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2492       .setMIFlag(MachineInstr::FrameSetup);
2493   }
2494 
2495   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2496   // It can be done by spilling XMMs to stack frame.
2497   for (unsigned i = CSI.size(); i != 0; --i) {
2498     unsigned Reg = CSI[i-1].getReg();
2499     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2500       continue;
2501 
2502     // If this is k-register make sure we lookup via the largest legal type.
2503     MVT VT = MVT::Other;
2504     if (X86::VK16RegClass.contains(Reg))
2505       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2506 
2507     // Add the callee-saved register as live-in. It's killed at the spill.
2508     MBB.addLiveIn(Reg);
2509     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2510 
2511     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2512                             TRI);
2513     --MI;
2514     MI->setFlag(MachineInstr::FrameSetup);
2515     ++MI;
2516   }
2517 
2518   return true;
2519 }
2520 
2521 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2522                                                MachineBasicBlock::iterator MBBI,
2523                                                MachineInstr *CatchRet) const {
2524   // SEH shouldn't use catchret.
2525   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2526              MBB.getParent()->getFunction().getPersonalityFn())) &&
2527          "SEH should not use CATCHRET");
2528   DebugLoc DL = CatchRet->getDebugLoc();
2529   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2530 
2531   // Fill EAX/RAX with the address of the target block.
2532   if (STI.is64Bit()) {
2533     // LEA64r CatchRetTarget(%rip), %rax
2534     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2535         .addReg(X86::RIP)
2536         .addImm(0)
2537         .addReg(0)
2538         .addMBB(CatchRetTarget)
2539         .addReg(0);
2540   } else {
2541     // MOV32ri $CatchRetTarget, %eax
2542     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2543         .addMBB(CatchRetTarget);
2544   }
2545 
2546   // Record that we've taken the address of CatchRetTarget and no longer just
2547   // reference it in a terminator.
2548   CatchRetTarget->setHasAddressTaken();
2549 }
2550 
2551 bool X86FrameLowering::restoreCalleeSavedRegisters(
2552     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2553     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2554   if (CSI.empty())
2555     return false;
2556 
2557   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2558     // Don't restore CSRs in 32-bit EH funclets. Matches
2559     // spillCalleeSavedRegisters.
2560     if (STI.is32Bit())
2561       return true;
2562     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2563     // funclets. emitEpilogue transforms these to normal jumps.
2564     if (MI->getOpcode() == X86::CATCHRET) {
2565       const Function &F = MBB.getParent()->getFunction();
2566       bool IsSEH = isAsynchronousEHPersonality(
2567           classifyEHPersonality(F.getPersonalityFn()));
2568       if (IsSEH)
2569         return true;
2570     }
2571   }
2572 
2573   DebugLoc DL = MBB.findDebugLoc(MI);
2574 
2575   // Reload XMMs from stack frame.
2576   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2577     unsigned Reg = CSI[i].getReg();
2578     if (X86::GR64RegClass.contains(Reg) ||
2579         X86::GR32RegClass.contains(Reg))
2580       continue;
2581 
2582     // If this is k-register make sure we lookup via the largest legal type.
2583     MVT VT = MVT::Other;
2584     if (X86::VK16RegClass.contains(Reg))
2585       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2586 
2587     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2588     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2589   }
2590 
2591   // POP GPRs.
2592   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2593   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2594     unsigned Reg = CSI[i].getReg();
2595     if (!X86::GR64RegClass.contains(Reg) &&
2596         !X86::GR32RegClass.contains(Reg))
2597       continue;
2598 
2599     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2600         .setMIFlag(MachineInstr::FrameDestroy);
2601   }
2602   return true;
2603 }
2604 
2605 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2606                                             BitVector &SavedRegs,
2607                                             RegScavenger *RS) const {
2608   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2609 
2610   // Spill the BasePtr if it's used.
2611   if (TRI->hasBasePointer(MF)){
2612     Register BasePtr = TRI->getBaseRegister();
2613     if (STI.isTarget64BitILP32())
2614       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2615     SavedRegs.set(BasePtr);
2616   }
2617 }
2618 
2619 static bool
2620 HasNestArgument(const MachineFunction *MF) {
2621   const Function &F = MF->getFunction();
2622   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2623        I != E; I++) {
2624     if (I->hasNestAttr() && !I->use_empty())
2625       return true;
2626   }
2627   return false;
2628 }
2629 
2630 /// GetScratchRegister - Get a temp register for performing work in the
2631 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2632 /// and the properties of the function either one or two registers will be
2633 /// needed. Set primary to true for the first register, false for the second.
2634 static unsigned
2635 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2636   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2637 
2638   // Erlang stuff.
2639   if (CallingConvention == CallingConv::HiPE) {
2640     if (Is64Bit)
2641       return Primary ? X86::R14 : X86::R13;
2642     else
2643       return Primary ? X86::EBX : X86::EDI;
2644   }
2645 
2646   if (Is64Bit) {
2647     if (IsLP64)
2648       return Primary ? X86::R11 : X86::R12;
2649     else
2650       return Primary ? X86::R11D : X86::R12D;
2651   }
2652 
2653   bool IsNested = HasNestArgument(&MF);
2654 
2655   if (CallingConvention == CallingConv::X86_FastCall ||
2656       CallingConvention == CallingConv::Fast ||
2657       CallingConvention == CallingConv::Tail) {
2658     if (IsNested)
2659       report_fatal_error("Segmented stacks does not support fastcall with "
2660                          "nested function.");
2661     return Primary ? X86::EAX : X86::ECX;
2662   }
2663   if (IsNested)
2664     return Primary ? X86::EDX : X86::EAX;
2665   return Primary ? X86::ECX : X86::EAX;
2666 }
2667 
2668 // The stack limit in the TCB is set to this many bytes above the actual stack
2669 // limit.
2670 static const uint64_t kSplitStackAvailable = 256;
2671 
2672 void X86FrameLowering::adjustForSegmentedStacks(
2673     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2674   MachineFrameInfo &MFI = MF.getFrameInfo();
2675   uint64_t StackSize;
2676   unsigned TlsReg, TlsOffset;
2677   DebugLoc DL;
2678 
2679   // To support shrink-wrapping we would need to insert the new blocks
2680   // at the right place and update the branches to PrologueMBB.
2681   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2682 
2683   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2684   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2685          "Scratch register is live-in");
2686 
2687   if (MF.getFunction().isVarArg())
2688     report_fatal_error("Segmented stacks do not support vararg functions.");
2689   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2690       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2691       !STI.isTargetDragonFly())
2692     report_fatal_error("Segmented stacks not supported on this platform.");
2693 
2694   // Eventually StackSize will be calculated by a link-time pass; which will
2695   // also decide whether checking code needs to be injected into this particular
2696   // prologue.
2697   StackSize = MFI.getStackSize();
2698 
2699   // Do not generate a prologue for leaf functions with a stack of size zero.
2700   // For non-leaf functions we have to allow for the possibility that the
2701   // callis to a non-split function, as in PR37807. This function could also
2702   // take the address of a non-split function. When the linker tries to adjust
2703   // its non-existent prologue, it would fail with an error. Mark the object
2704   // file so that such failures are not errors. See this Go language bug-report
2705   // https://go-review.googlesource.com/c/go/+/148819/
2706   if (StackSize == 0 && !MFI.hasTailCall()) {
2707     MF.getMMI().setHasNosplitStack(true);
2708     return;
2709   }
2710 
2711   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2712   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2713   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2714   bool IsNested = false;
2715 
2716   // We need to know if the function has a nest argument only in 64 bit mode.
2717   if (Is64Bit)
2718     IsNested = HasNestArgument(&MF);
2719 
2720   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2721   // allocMBB needs to be last (terminating) instruction.
2722 
2723   for (const auto &LI : PrologueMBB.liveins()) {
2724     allocMBB->addLiveIn(LI);
2725     checkMBB->addLiveIn(LI);
2726   }
2727 
2728   if (IsNested)
2729     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2730 
2731   MF.push_front(allocMBB);
2732   MF.push_front(checkMBB);
2733 
2734   // When the frame size is less than 256 we just compare the stack
2735   // boundary directly to the value of the stack pointer, per gcc.
2736   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2737 
2738   // Read the limit off the current stacklet off the stack_guard location.
2739   if (Is64Bit) {
2740     if (STI.isTargetLinux()) {
2741       TlsReg = X86::FS;
2742       TlsOffset = IsLP64 ? 0x70 : 0x40;
2743     } else if (STI.isTargetDarwin()) {
2744       TlsReg = X86::GS;
2745       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2746     } else if (STI.isTargetWin64()) {
2747       TlsReg = X86::GS;
2748       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2749     } else if (STI.isTargetFreeBSD()) {
2750       TlsReg = X86::FS;
2751       TlsOffset = 0x18;
2752     } else if (STI.isTargetDragonFly()) {
2753       TlsReg = X86::FS;
2754       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2755     } else {
2756       report_fatal_error("Segmented stacks not supported on this platform.");
2757     }
2758 
2759     if (CompareStackPointer)
2760       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2761     else
2762       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2763         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2764 
2765     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2766       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2767   } else {
2768     if (STI.isTargetLinux()) {
2769       TlsReg = X86::GS;
2770       TlsOffset = 0x30;
2771     } else if (STI.isTargetDarwin()) {
2772       TlsReg = X86::GS;
2773       TlsOffset = 0x48 + 90*4;
2774     } else if (STI.isTargetWin32()) {
2775       TlsReg = X86::FS;
2776       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2777     } else if (STI.isTargetDragonFly()) {
2778       TlsReg = X86::FS;
2779       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2780     } else if (STI.isTargetFreeBSD()) {
2781       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2782     } else {
2783       report_fatal_error("Segmented stacks not supported on this platform.");
2784     }
2785 
2786     if (CompareStackPointer)
2787       ScratchReg = X86::ESP;
2788     else
2789       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2790         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2791 
2792     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2793         STI.isTargetDragonFly()) {
2794       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2795         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2796     } else if (STI.isTargetDarwin()) {
2797 
2798       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2799       unsigned ScratchReg2;
2800       bool SaveScratch2;
2801       if (CompareStackPointer) {
2802         // The primary scratch register is available for holding the TLS offset.
2803         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2804         SaveScratch2 = false;
2805       } else {
2806         // Need to use a second register to hold the TLS offset
2807         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2808 
2809         // Unfortunately, with fastcc the second scratch register may hold an
2810         // argument.
2811         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2812       }
2813 
2814       // If Scratch2 is live-in then it needs to be saved.
2815       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2816              "Scratch register is live-in and not saved");
2817 
2818       if (SaveScratch2)
2819         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2820           .addReg(ScratchReg2, RegState::Kill);
2821 
2822       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2823         .addImm(TlsOffset);
2824       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2825         .addReg(ScratchReg)
2826         .addReg(ScratchReg2).addImm(1).addReg(0)
2827         .addImm(0)
2828         .addReg(TlsReg);
2829 
2830       if (SaveScratch2)
2831         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2832     }
2833   }
2834 
2835   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2836   // It jumps to normal execution of the function body.
2837   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2838 
2839   // On 32 bit we first push the arguments size and then the frame size. On 64
2840   // bit, we pass the stack frame size in r10 and the argument size in r11.
2841   if (Is64Bit) {
2842     // Functions with nested arguments use R10, so it needs to be saved across
2843     // the call to _morestack
2844 
2845     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2846     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2847     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2848     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2849     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2850 
2851     if (IsNested)
2852       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2853 
2854     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2855       .addImm(StackSize);
2856     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2857       .addImm(X86FI->getArgumentStackSize());
2858   } else {
2859     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2860       .addImm(X86FI->getArgumentStackSize());
2861     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2862       .addImm(StackSize);
2863   }
2864 
2865   // __morestack is in libgcc
2866   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2867     // Under the large code model, we cannot assume that __morestack lives
2868     // within 2^31 bytes of the call site, so we cannot use pc-relative
2869     // addressing. We cannot perform the call via a temporary register,
2870     // as the rax register may be used to store the static chain, and all
2871     // other suitable registers may be either callee-save or used for
2872     // parameter passing. We cannot use the stack at this point either
2873     // because __morestack manipulates the stack directly.
2874     //
2875     // To avoid these issues, perform an indirect call via a read-only memory
2876     // location containing the address.
2877     //
2878     // This solution is not perfect, as it assumes that the .rodata section
2879     // is laid out within 2^31 bytes of each function body, but this seems
2880     // to be sufficient for JIT.
2881     // FIXME: Add retpoline support and remove the error here..
2882     if (STI.useIndirectThunkCalls())
2883       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2884                          "code model and thunks not yet implemented.");
2885     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2886         .addReg(X86::RIP)
2887         .addImm(0)
2888         .addReg(0)
2889         .addExternalSymbol("__morestack_addr")
2890         .addReg(0);
2891     MF.getMMI().setUsesMorestackAddr(true);
2892   } else {
2893     if (Is64Bit)
2894       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2895         .addExternalSymbol("__morestack");
2896     else
2897       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2898         .addExternalSymbol("__morestack");
2899   }
2900 
2901   if (IsNested)
2902     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2903   else
2904     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2905 
2906   allocMBB->addSuccessor(&PrologueMBB);
2907 
2908   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2909   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2910 
2911 #ifdef EXPENSIVE_CHECKS
2912   MF.verify();
2913 #endif
2914 }
2915 
2916 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2917 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2918 /// to fields it needs, through a named metadata node "hipe.literals" containing
2919 /// name-value pairs.
2920 static unsigned getHiPELiteral(
2921     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2922   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2923     MDNode *Node = HiPELiteralsMD->getOperand(i);
2924     if (Node->getNumOperands() != 2) continue;
2925     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2926     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2927     if (!NodeName || !NodeVal) continue;
2928     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2929     if (ValConst && NodeName->getString() == LiteralName) {
2930       return ValConst->getZExtValue();
2931     }
2932   }
2933 
2934   report_fatal_error("HiPE literal " + LiteralName
2935                      + " required but not provided");
2936 }
2937 
2938 // Return true if there are no non-ehpad successors to MBB and there are no
2939 // non-meta instructions between MBBI and MBB.end().
2940 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
2941                                   MachineBasicBlock::const_iterator MBBI) {
2942   return std::all_of(
2943              MBB.succ_begin(), MBB.succ_end(),
2944              [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
2945          std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
2946            return MI.isMetaInstruction();
2947          });
2948 }
2949 
2950 /// Erlang programs may need a special prologue to handle the stack size they
2951 /// might need at runtime. That is because Erlang/OTP does not implement a C
2952 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2953 /// (for more information see Eric Stenman's Ph.D. thesis:
2954 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2955 ///
2956 /// CheckStack:
2957 ///       temp0 = sp - MaxStack
2958 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2959 /// OldStart:
2960 ///       ...
2961 /// IncStack:
2962 ///       call inc_stack   # doubles the stack space
2963 ///       temp0 = sp - MaxStack
2964 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2965 void X86FrameLowering::adjustForHiPEPrologue(
2966     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2967   MachineFrameInfo &MFI = MF.getFrameInfo();
2968   DebugLoc DL;
2969 
2970   // To support shrink-wrapping we would need to insert the new blocks
2971   // at the right place and update the branches to PrologueMBB.
2972   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2973 
2974   // HiPE-specific values
2975   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2976     ->getNamedMetadata("hipe.literals");
2977   if (!HiPELiteralsMD)
2978     report_fatal_error(
2979         "Can't generate HiPE prologue without runtime parameters");
2980   const unsigned HipeLeafWords
2981     = getHiPELiteral(HiPELiteralsMD,
2982                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2983   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2984   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2985   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2986                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2987   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2988 
2989   assert(STI.isTargetLinux() &&
2990          "HiPE prologue is only supported on Linux operating systems.");
2991 
2992   // Compute the largest caller's frame that is needed to fit the callees'
2993   // frames. This 'MaxStack' is computed from:
2994   //
2995   // a) the fixed frame size, which is the space needed for all spilled temps,
2996   // b) outgoing on-stack parameter areas, and
2997   // c) the minimum stack space this function needs to make available for the
2998   //    functions it calls (a tunable ABI property).
2999   if (MFI.hasCalls()) {
3000     unsigned MoreStackForCalls = 0;
3001 
3002     for (auto &MBB : MF) {
3003       for (auto &MI : MBB) {
3004         if (!MI.isCall())
3005           continue;
3006 
3007         // Get callee operand.
3008         const MachineOperand &MO = MI.getOperand(0);
3009 
3010         // Only take account of global function calls (no closures etc.).
3011         if (!MO.isGlobal())
3012           continue;
3013 
3014         const Function *F = dyn_cast<Function>(MO.getGlobal());
3015         if (!F)
3016           continue;
3017 
3018         // Do not update 'MaxStack' for primitive and built-in functions
3019         // (encoded with names either starting with "erlang."/"bif_" or not
3020         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3021         // "_", such as the BIF "suspend_0") as they are executed on another
3022         // stack.
3023         if (F->getName().find("erlang.") != StringRef::npos ||
3024             F->getName().find("bif_") != StringRef::npos ||
3025             F->getName().find_first_of("._") == StringRef::npos)
3026           continue;
3027 
3028         unsigned CalleeStkArity =
3029           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
3030         if (HipeLeafWords - 1 > CalleeStkArity)
3031           MoreStackForCalls = std::max(MoreStackForCalls,
3032                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3033       }
3034     }
3035     MaxStack += MoreStackForCalls;
3036   }
3037 
3038   // If the stack frame needed is larger than the guaranteed then runtime checks
3039   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3040   if (MaxStack > Guaranteed) {
3041     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3042     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3043 
3044     for (const auto &LI : PrologueMBB.liveins()) {
3045       stackCheckMBB->addLiveIn(LI);
3046       incStackMBB->addLiveIn(LI);
3047     }
3048 
3049     MF.push_front(incStackMBB);
3050     MF.push_front(stackCheckMBB);
3051 
3052     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3053     unsigned LEAop, CMPop, CALLop;
3054     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3055     if (Is64Bit) {
3056       SPReg = X86::RSP;
3057       PReg  = X86::RBP;
3058       LEAop = X86::LEA64r;
3059       CMPop = X86::CMP64rm;
3060       CALLop = X86::CALL64pcrel32;
3061     } else {
3062       SPReg = X86::ESP;
3063       PReg  = X86::EBP;
3064       LEAop = X86::LEA32r;
3065       CMPop = X86::CMP32rm;
3066       CALLop = X86::CALLpcrel32;
3067     }
3068 
3069     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3070     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3071            "HiPE prologue scratch register is live-in");
3072 
3073     // Create new MBB for StackCheck:
3074     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
3075                  SPReg, false, -MaxStack);
3076     // SPLimitOffset is in a fixed heap location (pointed by BP).
3077     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
3078                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
3079     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
3080 
3081     // Create new MBB for IncStack:
3082     BuildMI(incStackMBB, DL, TII.get(CALLop)).
3083       addExternalSymbol("inc_stack_0");
3084     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
3085                  SPReg, false, -MaxStack);
3086     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
3087                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
3088     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
3089 
3090     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3091     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3092     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3093     incStackMBB->addSuccessor(incStackMBB, {1, 100});
3094   }
3095 #ifdef EXPENSIVE_CHECKS
3096   MF.verify();
3097 #endif
3098 }
3099 
3100 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3101                                            MachineBasicBlock::iterator MBBI,
3102                                            const DebugLoc &DL,
3103                                            int Offset) const {
3104 
3105   if (Offset <= 0)
3106     return false;
3107 
3108   if (Offset % SlotSize)
3109     return false;
3110 
3111   int NumPops = Offset / SlotSize;
3112   // This is only worth it if we have at most 2 pops.
3113   if (NumPops != 1 && NumPops != 2)
3114     return false;
3115 
3116   // Handle only the trivial case where the adjustment directly follows
3117   // a call. This is the most common one, anyway.
3118   if (MBBI == MBB.begin())
3119     return false;
3120   MachineBasicBlock::iterator Prev = std::prev(MBBI);
3121   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3122     return false;
3123 
3124   unsigned Regs[2];
3125   unsigned FoundRegs = 0;
3126 
3127   auto &MRI = MBB.getParent()->getRegInfo();
3128   auto RegMask = Prev->getOperand(1);
3129 
3130   auto &RegClass =
3131       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3132   // Try to find up to NumPops free registers.
3133   for (auto Candidate : RegClass) {
3134 
3135     // Poor man's liveness:
3136     // Since we're immediately after a call, any register that is clobbered
3137     // by the call and not defined by it can be considered dead.
3138     if (!RegMask.clobbersPhysReg(Candidate))
3139       continue;
3140 
3141     // Don't clobber reserved registers
3142     if (MRI.isReserved(Candidate))
3143       continue;
3144 
3145     bool IsDef = false;
3146     for (const MachineOperand &MO : Prev->implicit_operands()) {
3147       if (MO.isReg() && MO.isDef() &&
3148           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3149         IsDef = true;
3150         break;
3151       }
3152     }
3153 
3154     if (IsDef)
3155       continue;
3156 
3157     Regs[FoundRegs++] = Candidate;
3158     if (FoundRegs == (unsigned)NumPops)
3159       break;
3160   }
3161 
3162   if (FoundRegs == 0)
3163     return false;
3164 
3165   // If we found only one free register, but need two, reuse the same one twice.
3166   while (FoundRegs < (unsigned)NumPops)
3167     Regs[FoundRegs++] = Regs[0];
3168 
3169   for (int i = 0; i < NumPops; ++i)
3170     BuildMI(MBB, MBBI, DL,
3171             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
3172 
3173   return true;
3174 }
3175 
3176 MachineBasicBlock::iterator X86FrameLowering::
3177 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
3178                               MachineBasicBlock::iterator I) const {
3179   bool reserveCallFrame = hasReservedCallFrame(MF);
3180   unsigned Opcode = I->getOpcode();
3181   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3182   DebugLoc DL = I->getDebugLoc();
3183   uint64_t Amount = TII.getFrameSize(*I);
3184   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3185   I = MBB.erase(I);
3186   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3187 
3188   // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3189   // typically because the function is marked noreturn (abort, throw,
3190   // assert_fail, etc).
3191   if (isDestroy && blockEndIsUnreachable(MBB, I))
3192     return I;
3193 
3194   if (!reserveCallFrame) {
3195     // If the stack pointer can be changed after prologue, turn the
3196     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3197     // adjcallstackdown instruction into 'add ESP, <amt>'
3198 
3199     // We need to keep the stack aligned properly.  To do this, we round the
3200     // amount of space needed for the outgoing arguments up to the next
3201     // alignment boundary.
3202     Amount = alignTo(Amount, getStackAlign());
3203 
3204     const Function &F = MF.getFunction();
3205     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3206     bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3207 
3208     // If we have any exception handlers in this function, and we adjust
3209     // the SP before calls, we may need to indicate this to the unwinder
3210     // using GNU_ARGS_SIZE. Note that this may be necessary even when
3211     // Amount == 0, because the preceding function may have set a non-0
3212     // GNU_ARGS_SIZE.
3213     // TODO: We don't need to reset this between subsequent functions,
3214     // if it didn't change.
3215     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3216 
3217     if (HasDwarfEHHandlers && !isDestroy &&
3218         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3219       BuildCFI(MBB, InsertPos, DL,
3220                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3221 
3222     if (Amount == 0)
3223       return I;
3224 
3225     // Factor out the amount that gets handled inside the sequence
3226     // (Pushes of argument for frame setup, callee pops for frame destroy)
3227     Amount -= InternalAmt;
3228 
3229     // TODO: This is needed only if we require precise CFA.
3230     // If this is a callee-pop calling convention, emit a CFA adjust for
3231     // the amount the callee popped.
3232     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3233       BuildCFI(MBB, InsertPos, DL,
3234                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3235 
3236     // Add Amount to SP to destroy a frame, or subtract to setup.
3237     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3238 
3239     if (StackAdjustment) {
3240       // Merge with any previous or following adjustment instruction. Note: the
3241       // instructions merged with here do not have CFI, so their stack
3242       // adjustments do not feed into CfaAdjustment.
3243       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3244       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3245 
3246       if (StackAdjustment) {
3247         if (!(F.hasMinSize() &&
3248               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3249           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3250                                /*InEpilogue=*/false);
3251       }
3252     }
3253 
3254     if (DwarfCFI && !hasFP(MF)) {
3255       // If we don't have FP, but need to generate unwind information,
3256       // we need to set the correct CFA offset after the stack adjustment.
3257       // How much we adjust the CFA offset depends on whether we're emitting
3258       // CFI only for EH purposes or for debugging. EH only requires the CFA
3259       // offset to be correct at each call site, while for debugging we want
3260       // it to be more precise.
3261 
3262       int64_t CfaAdjustment = -StackAdjustment;
3263       // TODO: When not using precise CFA, we also need to adjust for the
3264       // InternalAmt here.
3265       if (CfaAdjustment) {
3266         BuildCFI(MBB, InsertPos, DL,
3267                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
3268                                                          CfaAdjustment));
3269       }
3270     }
3271 
3272     return I;
3273   }
3274 
3275   if (InternalAmt) {
3276     MachineBasicBlock::iterator CI = I;
3277     MachineBasicBlock::iterator B = MBB.begin();
3278     while (CI != B && !std::prev(CI)->isCall())
3279       --CI;
3280     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3281   }
3282 
3283   return I;
3284 }
3285 
3286 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3287   assert(MBB.getParent() && "Block is not attached to a function!");
3288   const MachineFunction &MF = *MBB.getParent();
3289   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
3290 }
3291 
3292 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3293   assert(MBB.getParent() && "Block is not attached to a function!");
3294 
3295   // Win64 has strict requirements in terms of epilogue and we are
3296   // not taking a chance at messing with them.
3297   // I.e., unless this block is already an exit block, we can't use
3298   // it as an epilogue.
3299   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3300     return false;
3301 
3302   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3303     return true;
3304 
3305   // If we cannot use LEA to adjust SP, we may need to use ADD, which
3306   // clobbers the EFLAGS. Check that we do not need to preserve it,
3307   // otherwise, conservatively assume this is not
3308   // safe to insert the epilogue here.
3309   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3310 }
3311 
3312 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3313   // If we may need to emit frameless compact unwind information, give
3314   // up as this is currently broken: PR25614.
3315   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
3316          // The lowering of segmented stack and HiPE only support entry blocks
3317          // as prologue blocks: PR26107.
3318          // This limitation may be lifted if we fix:
3319          // - adjustForSegmentedStacks
3320          // - adjustForHiPEPrologue
3321          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3322          !MF.shouldSplitStack();
3323 }
3324 
3325 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3326     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3327     const DebugLoc &DL, bool RestoreSP) const {
3328   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3329   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3330   assert(STI.is32Bit() && !Uses64BitFramePtr &&
3331          "restoring EBP/ESI on non-32-bit target");
3332 
3333   MachineFunction &MF = *MBB.getParent();
3334   Register FramePtr = TRI->getFrameRegister(MF);
3335   Register BasePtr = TRI->getBaseRegister();
3336   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3337   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3338   MachineFrameInfo &MFI = MF.getFrameInfo();
3339 
3340   // FIXME: Don't set FrameSetup flag in catchret case.
3341 
3342   int FI = FuncInfo.EHRegNodeFrameIndex;
3343   int EHRegSize = MFI.getObjectSize(FI);
3344 
3345   if (RestoreSP) {
3346     // MOV32rm -EHRegSize(%ebp), %esp
3347     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3348                  X86::EBP, true, -EHRegSize)
3349         .setMIFlag(MachineInstr::FrameSetup);
3350   }
3351 
3352   Register UsedReg;
3353   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
3354   int EndOffset = -EHRegOffset - EHRegSize;
3355   FuncInfo.EHRegNodeEndOffset = EndOffset;
3356 
3357   if (UsedReg == FramePtr) {
3358     // ADD $offset, %ebp
3359     unsigned ADDri = getADDriOpcode(false, EndOffset);
3360     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3361         .addReg(FramePtr)
3362         .addImm(EndOffset)
3363         .setMIFlag(MachineInstr::FrameSetup)
3364         ->getOperand(3)
3365         .setIsDead();
3366     assert(EndOffset >= 0 &&
3367            "end of registration object above normal EBP position!");
3368   } else if (UsedReg == BasePtr) {
3369     // LEA offset(%ebp), %esi
3370     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3371                  FramePtr, false, EndOffset)
3372         .setMIFlag(MachineInstr::FrameSetup);
3373     // MOV32rm SavedEBPOffset(%esi), %ebp
3374     assert(X86FI->getHasSEHFramePtrSave());
3375     int Offset =
3376         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
3377     assert(UsedReg == BasePtr);
3378     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3379                  UsedReg, true, Offset)
3380         .setMIFlag(MachineInstr::FrameSetup);
3381   } else {
3382     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3383   }
3384   return MBBI;
3385 }
3386 
3387 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3388   return TRI->getSlotSize();
3389 }
3390 
3391 Register
3392 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3393   return TRI->getDwarfRegNum(StackPtr, true);
3394 }
3395 
3396 namespace {
3397 // Struct used by orderFrameObjects to help sort the stack objects.
3398 struct X86FrameSortingObject {
3399   bool IsValid = false;         // true if we care about this Object.
3400   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
3401   unsigned ObjectSize = 0;      // Size of Object in bytes.
3402   Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3403   unsigned ObjectNumUses = 0;   // Object static number of uses.
3404 };
3405 
3406 // The comparison function we use for std::sort to order our local
3407 // stack symbols. The current algorithm is to use an estimated
3408 // "density". This takes into consideration the size and number of
3409 // uses each object has in order to roughly minimize code size.
3410 // So, for example, an object of size 16B that is referenced 5 times
3411 // will get higher priority than 4 4B objects referenced 1 time each.
3412 // It's not perfect and we may be able to squeeze a few more bytes out of
3413 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3414 // fringe end can have special consideration, given their size is less
3415 // important, etc.), but the algorithmic complexity grows too much to be
3416 // worth the extra gains we get. This gets us pretty close.
3417 // The final order leaves us with objects with highest priority going
3418 // at the end of our list.
3419 struct X86FrameSortingComparator {
3420   inline bool operator()(const X86FrameSortingObject &A,
3421                          const X86FrameSortingObject &B) {
3422     uint64_t DensityAScaled, DensityBScaled;
3423 
3424     // For consistency in our comparison, all invalid objects are placed
3425     // at the end. This also allows us to stop walking when we hit the
3426     // first invalid item after it's all sorted.
3427     if (!A.IsValid)
3428       return false;
3429     if (!B.IsValid)
3430       return true;
3431 
3432     // The density is calculated by doing :
3433     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
3434     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
3435     // Since this approach may cause inconsistencies in
3436     // the floating point <, >, == comparisons, depending on the floating
3437     // point model with which the compiler was built, we're going
3438     // to scale both sides by multiplying with
3439     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3440     // the division and, with it, the need for any floating point
3441     // arithmetic.
3442     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3443       static_cast<uint64_t>(B.ObjectSize);
3444     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3445       static_cast<uint64_t>(A.ObjectSize);
3446 
3447     // If the two densities are equal, prioritize highest alignment
3448     // objects. This allows for similar alignment objects
3449     // to be packed together (given the same density).
3450     // There's room for improvement here, also, since we can pack
3451     // similar alignment (different density) objects next to each
3452     // other to save padding. This will also require further
3453     // complexity/iterations, and the overall gain isn't worth it,
3454     // in general. Something to keep in mind, though.
3455     if (DensityAScaled == DensityBScaled)
3456       return A.ObjectAlignment < B.ObjectAlignment;
3457 
3458     return DensityAScaled < DensityBScaled;
3459   }
3460 };
3461 } // namespace
3462 
3463 // Order the symbols in the local stack.
3464 // We want to place the local stack objects in some sort of sensible order.
3465 // The heuristic we use is to try and pack them according to static number
3466 // of uses and size of object in order to minimize code size.
3467 void X86FrameLowering::orderFrameObjects(
3468     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3469   const MachineFrameInfo &MFI = MF.getFrameInfo();
3470 
3471   // Don't waste time if there's nothing to do.
3472   if (ObjectsToAllocate.empty())
3473     return;
3474 
3475   // Create an array of all MFI objects. We won't need all of these
3476   // objects, but we're going to create a full array of them to make
3477   // it easier to index into when we're counting "uses" down below.
3478   // We want to be able to easily/cheaply access an object by simply
3479   // indexing into it, instead of having to search for it every time.
3480   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3481 
3482   // Walk the objects we care about and mark them as such in our working
3483   // struct.
3484   for (auto &Obj : ObjectsToAllocate) {
3485     SortingObjects[Obj].IsValid = true;
3486     SortingObjects[Obj].ObjectIndex = Obj;
3487     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3488     // Set the size.
3489     int ObjectSize = MFI.getObjectSize(Obj);
3490     if (ObjectSize == 0)
3491       // Variable size. Just use 4.
3492       SortingObjects[Obj].ObjectSize = 4;
3493     else
3494       SortingObjects[Obj].ObjectSize = ObjectSize;
3495   }
3496 
3497   // Count the number of uses for each object.
3498   for (auto &MBB : MF) {
3499     for (auto &MI : MBB) {
3500       if (MI.isDebugInstr())
3501         continue;
3502       for (const MachineOperand &MO : MI.operands()) {
3503         // Check to see if it's a local stack symbol.
3504         if (!MO.isFI())
3505           continue;
3506         int Index = MO.getIndex();
3507         // Check to see if it falls within our range, and is tagged
3508         // to require ordering.
3509         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3510             SortingObjects[Index].IsValid)
3511           SortingObjects[Index].ObjectNumUses++;
3512       }
3513     }
3514   }
3515 
3516   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3517   // info).
3518   llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3519 
3520   // Now modify the original list to represent the final order that
3521   // we want. The order will depend on whether we're going to access them
3522   // from the stack pointer or the frame pointer. For SP, the list should
3523   // end up with the END containing objects that we want with smaller offsets.
3524   // For FP, it should be flipped.
3525   int i = 0;
3526   for (auto &Obj : SortingObjects) {
3527     // All invalid items are sorted at the end, so it's safe to stop.
3528     if (!Obj.IsValid)
3529       break;
3530     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3531   }
3532 
3533   // Flip it if we're accessing off of the FP.
3534   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3535     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3536 }
3537 
3538 
3539 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3540   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3541   unsigned Offset = 16;
3542   // RBP is immediately pushed.
3543   Offset += SlotSize;
3544   // All callee-saved registers are then pushed.
3545   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3546   // Every funclet allocates enough stack space for the largest outgoing call.
3547   Offset += getWinEHFuncletFrameSize(MF);
3548   return Offset;
3549 }
3550 
3551 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3552     MachineFunction &MF, RegScavenger *RS) const {
3553   // Mark the function as not having WinCFI. We will set it back to true in
3554   // emitPrologue if it gets called and emits CFI.
3555   MF.setHasWinCFI(false);
3556 
3557   // If this function isn't doing Win64-style C++ EH, we don't need to do
3558   // anything.
3559   const Function &F = MF.getFunction();
3560   if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3561       classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3562     return;
3563 
3564   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3565   // relative to RSP after the prologue.  Find the offset of the last fixed
3566   // object, so that we can allocate a slot immediately following it. If there
3567   // were no fixed objects, use offset -SlotSize, which is immediately after the
3568   // return address. Fixed objects have negative frame indices.
3569   MachineFrameInfo &MFI = MF.getFrameInfo();
3570   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3571   int64_t MinFixedObjOffset = -SlotSize;
3572   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3573     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3574 
3575   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3576     for (WinEHHandlerType &H : TBME.HandlerArray) {
3577       int FrameIndex = H.CatchObj.FrameIndex;
3578       if (FrameIndex != INT_MAX) {
3579         // Ensure alignment.
3580         unsigned Align = MFI.getObjectAlign(FrameIndex).value();
3581         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3582         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3583         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3584       }
3585     }
3586   }
3587 
3588   // Ensure alignment.
3589   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3590   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3591   int UnwindHelpFI =
3592       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3593   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3594 
3595   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3596   // other frame setup instructions.
3597   MachineBasicBlock &MBB = MF.front();
3598   auto MBBI = MBB.begin();
3599   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3600     ++MBBI;
3601 
3602   DebugLoc DL = MBB.findDebugLoc(MBBI);
3603   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3604                     UnwindHelpFI)
3605       .addImm(-2);
3606 }
3607 
3608 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3609     MachineFunction &MF, RegScavenger *RS) const {
3610   if (STI.is32Bit() && MF.hasEHFunclets())
3611     restoreWinEHStackPointersInParent(MF);
3612 }
3613 
3614 void X86FrameLowering::restoreWinEHStackPointersInParent(
3615     MachineFunction &MF) const {
3616   // 32-bit functions have to restore stack pointers when control is transferred
3617   // back to the parent function. These blocks are identified as eh pads that
3618   // are not funclet entries.
3619   bool IsSEH = isAsynchronousEHPersonality(
3620       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
3621   for (MachineBasicBlock &MBB : MF) {
3622     bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
3623     if (NeedsRestore)
3624       restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
3625                                   /*RestoreSP=*/IsSEH);
3626   }
3627 }
3628