1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineModuleInfo.h" 25 #include "llvm/CodeGen/MachineRegisterInfo.h" 26 #include "llvm/CodeGen/WinEHFuncInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Target/TargetOptions.h" 33 #include <cstdlib> 34 35 using namespace llvm; 36 37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 38 MaybeAlign StackAlignOverride) 39 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 40 STI.is64Bit() ? -8 : -4), 41 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 42 // Cache a bunch of frame-related predicates for this subtarget. 43 SlotSize = TRI->getSlotSize(); 44 Is64Bit = STI.is64Bit(); 45 IsLP64 = STI.isTarget64BitLP64(); 46 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 47 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 48 StackPtr = TRI->getStackRegister(); 49 } 50 51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 52 return !MF.getFrameInfo().hasVarSizedObjects() && 53 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 54 } 55 56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 57 /// call frame pseudos can be simplified. Having a FP, as in the default 58 /// implementation, is not sufficient here since we can't always use it. 59 /// Use a more nuanced condition. 60 bool 61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 62 return hasReservedCallFrame(MF) || 63 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 64 TRI->hasBasePointer(MF); 65 } 66 67 // needsFrameIndexResolution - Do we need to perform FI resolution for 68 // this function. Normally, this is required only when the function 69 // has any stack objects. However, FI resolution actually has another job, 70 // not apparent from the title - it resolves callframesetup/destroy 71 // that were not simplified earlier. 72 // So, this is required for x86 functions that have push sequences even 73 // when there are no stack objects. 74 bool 75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 76 return MF.getFrameInfo().hasStackObjects() || 77 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 78 } 79 80 /// hasFP - Return true if the specified function should have a dedicated frame 81 /// pointer register. This is true if the function has variable sized allocas 82 /// or if frame pointer elimination is disabled. 83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 84 const MachineFrameInfo &MFI = MF.getFrameInfo(); 85 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 86 TRI->needsStackRealignment(MF) || 87 MFI.hasVarSizedObjects() || 88 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 89 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 90 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 91 MFI.hasStackMap() || MFI.hasPatchPoint() || 92 MFI.hasCopyImplyingStackAdjustment()); 93 } 94 95 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) { 96 if (IsLP64) { 97 if (isInt<8>(Imm)) 98 return X86::SUB64ri8; 99 return X86::SUB64ri32; 100 } else { 101 if (isInt<8>(Imm)) 102 return X86::SUB32ri8; 103 return X86::SUB32ri; 104 } 105 } 106 107 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) { 108 if (IsLP64) { 109 if (isInt<8>(Imm)) 110 return X86::ADD64ri8; 111 return X86::ADD64ri32; 112 } else { 113 if (isInt<8>(Imm)) 114 return X86::ADD32ri8; 115 return X86::ADD32ri; 116 } 117 } 118 119 static unsigned getSUBrrOpcode(unsigned isLP64) { 120 return isLP64 ? X86::SUB64rr : X86::SUB32rr; 121 } 122 123 static unsigned getADDrrOpcode(unsigned isLP64) { 124 return isLP64 ? X86::ADD64rr : X86::ADD32rr; 125 } 126 127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 128 if (IsLP64) { 129 if (isInt<8>(Imm)) 130 return X86::AND64ri8; 131 return X86::AND64ri32; 132 } 133 if (isInt<8>(Imm)) 134 return X86::AND32ri8; 135 return X86::AND32ri; 136 } 137 138 static unsigned getLEArOpcode(unsigned IsLP64) { 139 return IsLP64 ? X86::LEA64r : X86::LEA32r; 140 } 141 142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 143 /// when it reaches the "return" instruction. We can then pop a stack object 144 /// to this register without worry about clobbering it. 145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 146 MachineBasicBlock::iterator &MBBI, 147 const X86RegisterInfo *TRI, 148 bool Is64Bit) { 149 const MachineFunction *MF = MBB.getParent(); 150 if (MF->callsEHReturn()) 151 return 0; 152 153 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 154 155 if (MBBI == MBB.end()) 156 return 0; 157 158 switch (MBBI->getOpcode()) { 159 default: return 0; 160 case TargetOpcode::PATCHABLE_RET: 161 case X86::RET: 162 case X86::RETL: 163 case X86::RETQ: 164 case X86::RETIL: 165 case X86::RETIQ: 166 case X86::TCRETURNdi: 167 case X86::TCRETURNri: 168 case X86::TCRETURNmi: 169 case X86::TCRETURNdi64: 170 case X86::TCRETURNri64: 171 case X86::TCRETURNmi64: 172 case X86::EH_RETURN: 173 case X86::EH_RETURN64: { 174 SmallSet<uint16_t, 8> Uses; 175 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 176 MachineOperand &MO = MBBI->getOperand(i); 177 if (!MO.isReg() || MO.isDef()) 178 continue; 179 Register Reg = MO.getReg(); 180 if (!Reg) 181 continue; 182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 183 Uses.insert(*AI); 184 } 185 186 for (auto CS : AvailableRegs) 187 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && 188 CS != X86::ESP) 189 return CS; 190 } 191 } 192 193 return 0; 194 } 195 196 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 197 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 198 unsigned Reg = RegMask.PhysReg; 199 200 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 201 Reg == X86::AH || Reg == X86::AL) 202 return true; 203 } 204 205 return false; 206 } 207 208 /// Check if the flags need to be preserved before the terminators. 209 /// This would be the case, if the eflags is live-in of the region 210 /// composed by the terminators or live-out of that region, without 211 /// being defined by a terminator. 212 static bool 213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 214 for (const MachineInstr &MI : MBB.terminators()) { 215 bool BreakNext = false; 216 for (const MachineOperand &MO : MI.operands()) { 217 if (!MO.isReg()) 218 continue; 219 Register Reg = MO.getReg(); 220 if (Reg != X86::EFLAGS) 221 continue; 222 223 // This terminator needs an eflags that is not defined 224 // by a previous another terminator: 225 // EFLAGS is live-in of the region composed by the terminators. 226 if (!MO.isDef()) 227 return true; 228 // This terminator defines the eflags, i.e., we don't need to preserve it. 229 // However, we still need to check this specific terminator does not 230 // read a live-in value. 231 BreakNext = true; 232 } 233 // We found a definition of the eflags, no need to preserve them. 234 if (BreakNext) 235 return false; 236 } 237 238 // None of the terminators use or define the eflags. 239 // Check if they are live-out, that would imply we need to preserve them. 240 for (const MachineBasicBlock *Succ : MBB.successors()) 241 if (Succ->isLiveIn(X86::EFLAGS)) 242 return true; 243 244 return false; 245 } 246 247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 248 /// stack pointer by a constant value. 249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 250 MachineBasicBlock::iterator &MBBI, 251 const DebugLoc &DL, 252 int64_t NumBytes, bool InEpilogue) const { 253 bool isSub = NumBytes < 0; 254 uint64_t Offset = isSub ? -NumBytes : NumBytes; 255 MachineInstr::MIFlag Flag = 256 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 257 258 uint64_t Chunk = (1LL << 31) - 1; 259 260 if (Offset > Chunk) { 261 // Rather than emit a long series of instructions for large offsets, 262 // load the offset into a register and do one sub/add 263 unsigned Reg = 0; 264 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 265 266 if (isSub && !isEAXLiveIn(MBB)) 267 Reg = Rax; 268 else 269 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 270 271 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 272 unsigned AddSubRROpc = 273 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 274 if (Reg) { 275 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 276 .addImm(Offset) 277 .setMIFlag(Flag); 278 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 279 .addReg(StackPtr) 280 .addReg(Reg); 281 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 282 return; 283 } else if (Offset > 8 * Chunk) { 284 // If we would need more than 8 add or sub instructions (a >16GB stack 285 // frame), it's worth spilling RAX to materialize this immediate. 286 // pushq %rax 287 // movabsq +-$Offset+-SlotSize, %rax 288 // addq %rsp, %rax 289 // xchg %rax, (%rsp) 290 // movq (%rsp), %rsp 291 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 292 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 293 .addReg(Rax, RegState::Kill) 294 .setMIFlag(Flag); 295 // Subtract is not commutative, so negate the offset and always use add. 296 // Subtract 8 less and add 8 more to account for the PUSH we just did. 297 if (isSub) 298 Offset = -(Offset - SlotSize); 299 else 300 Offset = Offset + SlotSize; 301 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 302 .addImm(Offset) 303 .setMIFlag(Flag); 304 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 305 .addReg(Rax) 306 .addReg(StackPtr); 307 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 308 // Exchange the new SP in RAX with the top of the stack. 309 addRegOffset( 310 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 311 StackPtr, false, 0); 312 // Load new SP from the top of the stack into RSP. 313 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 314 StackPtr, false, 0); 315 return; 316 } 317 } 318 319 while (Offset) { 320 uint64_t ThisVal = std::min(Offset, Chunk); 321 if (ThisVal == SlotSize) { 322 // Use push / pop for slot sized adjustments as a size optimization. We 323 // need to find a dead register when using pop. 324 unsigned Reg = isSub 325 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 326 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 327 if (Reg) { 328 unsigned Opc = isSub 329 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 330 : (Is64Bit ? X86::POP64r : X86::POP32r); 331 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 333 .setMIFlag(Flag); 334 Offset -= ThisVal; 335 continue; 336 } 337 } 338 339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 340 .setMIFlag(Flag); 341 342 Offset -= ThisVal; 343 } 344 } 345 346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 349 assert(Offset != 0 && "zero offset stack adjustment requested"); 350 351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 352 // is tricky. 353 bool UseLEA; 354 if (!InEpilogue) { 355 // Check if inserting the prologue at the beginning 356 // of MBB would require to use LEA operations. 357 // We need to use LEA operations if EFLAGS is live in, because 358 // it means an instruction will read it before it gets defined. 359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 360 } else { 361 // If we can use LEA for SP but we shouldn't, check that none 362 // of the terminators uses the eflags. Otherwise we will insert 363 // a ADD that will redefine the eflags and break the condition. 364 // Alternatively, we could move the ADD, but this may not be possible 365 // and is an optimization anyway. 366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 367 if (UseLEA && !STI.useLeaForSP()) 368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 369 // If that assert breaks, that means we do not do the right thing 370 // in canUseAsEpilogue. 371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 372 "We shouldn't have allowed this insertion point"); 373 } 374 375 MachineInstrBuilder MI; 376 if (UseLEA) { 377 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 378 TII.get(getLEArOpcode(Uses64BitFramePtr)), 379 StackPtr), 380 StackPtr, false, Offset); 381 } else { 382 bool IsSub = Offset < 0; 383 uint64_t AbsOffset = IsSub ? -Offset : Offset; 384 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 385 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 387 .addReg(StackPtr) 388 .addImm(AbsOffset); 389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 390 } 391 return MI; 392 } 393 394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 395 MachineBasicBlock::iterator &MBBI, 396 bool doMergeWithPrevious) const { 397 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 398 (!doMergeWithPrevious && MBBI == MBB.end())) 399 return 0; 400 401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 402 403 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 405 // instruction, and that there are no DBG_VALUE or other instructions between 406 // ADD/SUB/LEA and its corresponding CFI instruction. 407 /* TODO: Add support for the case where there are multiple CFI instructions 408 below the ADD/SUB/LEA, e.g.: 409 ... 410 add 411 cfi_def_cfa_offset 412 cfi_offset 413 ... 414 */ 415 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 416 PI = std::prev(PI); 417 418 unsigned Opc = PI->getOpcode(); 419 int Offset = 0; 420 421 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 422 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 423 PI->getOperand(0).getReg() == StackPtr){ 424 assert(PI->getOperand(1).getReg() == StackPtr); 425 Offset = PI->getOperand(2).getImm(); 426 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 427 PI->getOperand(0).getReg() == StackPtr && 428 PI->getOperand(1).getReg() == StackPtr && 429 PI->getOperand(2).getImm() == 1 && 430 PI->getOperand(3).getReg() == X86::NoRegister && 431 PI->getOperand(5).getReg() == X86::NoRegister) { 432 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 433 Offset = PI->getOperand(4).getImm(); 434 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 435 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 436 PI->getOperand(0).getReg() == StackPtr) { 437 assert(PI->getOperand(1).getReg() == StackPtr); 438 Offset = -PI->getOperand(2).getImm(); 439 } else 440 return 0; 441 442 PI = MBB.erase(PI); 443 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 444 if (!doMergeWithPrevious) 445 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 446 447 return Offset; 448 } 449 450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 451 MachineBasicBlock::iterator MBBI, 452 const DebugLoc &DL, 453 const MCCFIInstruction &CFIInst) const { 454 MachineFunction &MF = *MBB.getParent(); 455 unsigned CFIIndex = MF.addFrameInst(CFIInst); 456 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 457 .addCFIIndex(CFIIndex); 458 } 459 460 void X86FrameLowering::emitCalleeSavedFrameMoves( 461 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 462 const DebugLoc &DL) const { 463 MachineFunction &MF = *MBB.getParent(); 464 MachineFrameInfo &MFI = MF.getFrameInfo(); 465 MachineModuleInfo &MMI = MF.getMMI(); 466 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 467 468 // Add callee saved registers to move list. 469 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 470 if (CSI.empty()) return; 471 472 // Calculate offsets. 473 for (std::vector<CalleeSavedInfo>::const_iterator 474 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 475 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 476 unsigned Reg = I->getReg(); 477 478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 479 BuildCFI(MBB, MBBI, DL, 480 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 481 } 482 } 483 484 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 485 MachineBasicBlock &MBB, 486 MachineBasicBlock::iterator MBBI, 487 const DebugLoc &DL, bool InProlog) const { 488 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 489 if (STI.isTargetWindowsCoreCLR()) { 490 if (InProlog) { 491 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true); 492 } else { 493 emitStackProbeInline(MF, MBB, MBBI, DL, false); 494 } 495 } else { 496 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 497 } 498 } 499 500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 501 MachineBasicBlock &PrologMBB) const { 502 const StringRef ChkStkStubSymbol = "__chkstk_stub"; 503 MachineInstr *ChkStkStub = nullptr; 504 505 for (MachineInstr &MI : PrologMBB) { 506 if (MI.isCall() && MI.getOperand(0).isSymbol() && 507 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) { 508 ChkStkStub = &MI; 509 break; 510 } 511 } 512 513 if (ChkStkStub != nullptr) { 514 assert(!ChkStkStub->isBundled() && 515 "Not expecting bundled instructions here"); 516 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator()); 517 assert(std::prev(MBBI) == ChkStkStub && 518 "MBBI expected after __chkstk_stub."); 519 DebugLoc DL = PrologMBB.findDebugLoc(MBBI); 520 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true); 521 ChkStkStub->eraseFromParent(); 522 } 523 } 524 525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 526 MachineBasicBlock &MBB, 527 MachineBasicBlock::iterator MBBI, 528 const DebugLoc &DL, 529 bool InProlog) const { 530 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 531 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 532 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 533 const TargetInstrInfo &TII = *STI.getInstrInfo(); 534 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 535 536 // RAX contains the number of bytes of desired stack adjustment. 537 // The handling here assumes this value has already been updated so as to 538 // maintain stack alignment. 539 // 540 // We need to exit with RSP modified by this amount and execute suitable 541 // page touches to notify the OS that we're growing the stack responsibly. 542 // All stack probing must be done without modifying RSP. 543 // 544 // MBB: 545 // SizeReg = RAX; 546 // ZeroReg = 0 547 // CopyReg = RSP 548 // Flags, TestReg = CopyReg - SizeReg 549 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 550 // LimitReg = gs magic thread env access 551 // if FinalReg >= LimitReg goto ContinueMBB 552 // RoundBB: 553 // RoundReg = page address of FinalReg 554 // LoopMBB: 555 // LoopReg = PHI(LimitReg,ProbeReg) 556 // ProbeReg = LoopReg - PageSize 557 // [ProbeReg] = 0 558 // if (ProbeReg > RoundReg) goto LoopMBB 559 // ContinueMBB: 560 // RSP = RSP - RAX 561 // [rest of original MBB] 562 563 // Set up the new basic blocks 564 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 565 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 566 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 567 568 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 569 MF.insert(MBBIter, RoundMBB); 570 MF.insert(MBBIter, LoopMBB); 571 MF.insert(MBBIter, ContinueMBB); 572 573 // Split MBB and move the tail portion down to ContinueMBB. 574 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 575 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 576 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 577 578 // Some useful constants 579 const int64_t ThreadEnvironmentStackLimit = 0x10; 580 const int64_t PageSize = 0x1000; 581 const int64_t PageMask = ~(PageSize - 1); 582 583 // Registers we need. For the normal case we use virtual 584 // registers. For the prolog expansion we use RAX, RCX and RDX. 585 MachineRegisterInfo &MRI = MF.getRegInfo(); 586 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 587 const Register SizeReg = InProlog ? X86::RAX 588 : MRI.createVirtualRegister(RegClass), 589 ZeroReg = InProlog ? X86::RCX 590 : MRI.createVirtualRegister(RegClass), 591 CopyReg = InProlog ? X86::RDX 592 : MRI.createVirtualRegister(RegClass), 593 TestReg = InProlog ? X86::RDX 594 : MRI.createVirtualRegister(RegClass), 595 FinalReg = InProlog ? X86::RDX 596 : MRI.createVirtualRegister(RegClass), 597 RoundedReg = InProlog ? X86::RDX 598 : MRI.createVirtualRegister(RegClass), 599 LimitReg = InProlog ? X86::RCX 600 : MRI.createVirtualRegister(RegClass), 601 JoinReg = InProlog ? X86::RCX 602 : MRI.createVirtualRegister(RegClass), 603 ProbeReg = InProlog ? X86::RCX 604 : MRI.createVirtualRegister(RegClass); 605 606 // SP-relative offsets where we can save RCX and RDX. 607 int64_t RCXShadowSlot = 0; 608 int64_t RDXShadowSlot = 0; 609 610 // If inlining in the prolog, save RCX and RDX. 611 if (InProlog) { 612 // Compute the offsets. We need to account for things already 613 // pushed onto the stack at this point: return address, frame 614 // pointer (if used), and callee saves. 615 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 616 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 617 const bool HasFP = hasFP(MF); 618 619 // Check if we need to spill RCX and/or RDX. 620 // Here we assume that no earlier prologue instruction changes RCX and/or 621 // RDX, so checking the block live-ins is enough. 622 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 623 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 624 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 625 // Assign the initial slot to both registers, then change RDX's slot if both 626 // need to be spilled. 627 if (IsRCXLiveIn) 628 RCXShadowSlot = InitSlot; 629 if (IsRDXLiveIn) 630 RDXShadowSlot = InitSlot; 631 if (IsRDXLiveIn && IsRCXLiveIn) 632 RDXShadowSlot += 8; 633 // Emit the saves if needed. 634 if (IsRCXLiveIn) 635 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 636 RCXShadowSlot) 637 .addReg(X86::RCX); 638 if (IsRDXLiveIn) 639 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 640 RDXShadowSlot) 641 .addReg(X86::RDX); 642 } else { 643 // Not in the prolog. Copy RAX to a virtual reg. 644 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 645 } 646 647 // Add code to MBB to check for overflow and set the new target stack pointer 648 // to zero if so. 649 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 650 .addReg(ZeroReg, RegState::Undef) 651 .addReg(ZeroReg, RegState::Undef); 652 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 653 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 654 .addReg(CopyReg) 655 .addReg(SizeReg); 656 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 657 .addReg(TestReg) 658 .addReg(ZeroReg) 659 .addImm(X86::COND_B); 660 661 // FinalReg now holds final stack pointer value, or zero if 662 // allocation would overflow. Compare against the current stack 663 // limit from the thread environment block. Note this limit is the 664 // lowest touched page on the stack, not the point at which the OS 665 // will cause an overflow exception, so this is just an optimization 666 // to avoid unnecessarily touching pages that are below the current 667 // SP but already committed to the stack by the OS. 668 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 669 .addReg(0) 670 .addImm(1) 671 .addReg(0) 672 .addImm(ThreadEnvironmentStackLimit) 673 .addReg(X86::GS); 674 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 675 // Jump if the desired stack pointer is at or above the stack limit. 676 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 677 678 // Add code to roundMBB to round the final stack pointer to a page boundary. 679 RoundMBB->addLiveIn(FinalReg); 680 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 681 .addReg(FinalReg) 682 .addImm(PageMask); 683 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 684 685 // LimitReg now holds the current stack limit, RoundedReg page-rounded 686 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 687 // and probe until we reach RoundedReg. 688 if (!InProlog) { 689 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 690 .addReg(LimitReg) 691 .addMBB(RoundMBB) 692 .addReg(ProbeReg) 693 .addMBB(LoopMBB); 694 } 695 696 LoopMBB->addLiveIn(JoinReg); 697 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 698 false, -PageSize); 699 700 // Probe by storing a byte onto the stack. 701 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 702 .addReg(ProbeReg) 703 .addImm(1) 704 .addReg(0) 705 .addImm(0) 706 .addReg(0) 707 .addImm(0); 708 709 LoopMBB->addLiveIn(RoundedReg); 710 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 711 .addReg(RoundedReg) 712 .addReg(ProbeReg); 713 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 714 715 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 716 717 // If in prolog, restore RDX and RCX. 718 if (InProlog) { 719 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 720 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 721 TII.get(X86::MOV64rm), X86::RCX), 722 X86::RSP, false, RCXShadowSlot); 723 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 724 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 725 TII.get(X86::MOV64rm), X86::RDX), 726 X86::RSP, false, RDXShadowSlot); 727 } 728 729 // Now that the probing is done, add code to continueMBB to update 730 // the stack pointer for real. 731 ContinueMBB->addLiveIn(SizeReg); 732 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 733 .addReg(X86::RSP) 734 .addReg(SizeReg); 735 736 // Add the control flow edges we need. 737 MBB.addSuccessor(ContinueMBB); 738 MBB.addSuccessor(RoundMBB); 739 RoundMBB->addSuccessor(LoopMBB); 740 LoopMBB->addSuccessor(ContinueMBB); 741 LoopMBB->addSuccessor(LoopMBB); 742 743 // Mark all the instructions added to the prolog as frame setup. 744 if (InProlog) { 745 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 746 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 747 } 748 for (MachineInstr &MI : *RoundMBB) { 749 MI.setFlag(MachineInstr::FrameSetup); 750 } 751 for (MachineInstr &MI : *LoopMBB) { 752 MI.setFlag(MachineInstr::FrameSetup); 753 } 754 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 755 CMBBI != ContinueMBBI; ++CMBBI) { 756 CMBBI->setFlag(MachineInstr::FrameSetup); 757 } 758 } 759 } 760 761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 762 MachineBasicBlock &MBB, 763 MachineBasicBlock::iterator MBBI, 764 const DebugLoc &DL, 765 bool InProlog) const { 766 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 767 768 // FIXME: Add retpoline support and remove this. 769 if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls()) 770 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 771 "code model and retpoline not yet implemented."); 772 773 unsigned CallOp; 774 if (Is64Bit) 775 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 776 else 777 CallOp = X86::CALLpcrel32; 778 779 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 780 781 MachineInstrBuilder CI; 782 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 783 784 // All current stack probes take AX and SP as input, clobber flags, and 785 // preserve all registers. x86_64 probes leave RSP unmodified. 786 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 787 // For the large code model, we have to call through a register. Use R11, 788 // as it is scratch in all supported calling conventions. 789 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 790 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 791 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 792 } else { 793 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 794 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 795 } 796 797 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 798 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 799 CI.addReg(AX, RegState::Implicit) 800 .addReg(SP, RegState::Implicit) 801 .addReg(AX, RegState::Define | RegState::Implicit) 802 .addReg(SP, RegState::Define | RegState::Implicit) 803 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 804 805 if (STI.isTargetWin64() || !STI.isOSWindows()) { 806 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 807 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 808 // themselves. They also does not clobber %rax so we can reuse it when 809 // adjusting %rsp. 810 // All other platforms do not specify a particular ABI for the stack probe 811 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 812 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 813 .addReg(SP) 814 .addReg(AX); 815 } 816 817 if (InProlog) { 818 // Apply the frame setup flag to all inserted instrs. 819 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 820 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 821 } 822 } 823 824 void X86FrameLowering::emitStackProbeInlineStub( 825 MachineFunction &MF, MachineBasicBlock &MBB, 826 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 827 828 assert(InProlog && "ChkStkStub called outside prolog!"); 829 830 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 831 .addExternalSymbol("__chkstk_stub"); 832 } 833 834 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 835 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 836 // and might require smaller successive adjustments. 837 const uint64_t Win64MaxSEHOffset = 128; 838 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 839 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 840 return SEHFrameOffset & -16; 841 } 842 843 // If we're forcing a stack realignment we can't rely on just the frame 844 // info, we need to know the ABI stack alignment as well in case we 845 // have a call out. Otherwise just make sure we have some alignment - we'll 846 // go with the minimum SlotSize. 847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 848 const MachineFrameInfo &MFI = MF.getFrameInfo(); 849 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment. 850 unsigned StackAlign = getStackAlignment(); 851 if (MF.getFunction().hasFnAttribute("stackrealign")) { 852 if (MFI.hasCalls()) 853 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 854 else if (MaxAlign < SlotSize) 855 MaxAlign = SlotSize; 856 } 857 return MaxAlign; 858 } 859 860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 861 MachineBasicBlock::iterator MBBI, 862 const DebugLoc &DL, unsigned Reg, 863 uint64_t MaxAlign) const { 864 uint64_t Val = -MaxAlign; 865 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 866 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 867 .addReg(Reg) 868 .addImm(Val) 869 .setMIFlag(MachineInstr::FrameSetup); 870 871 // The EFLAGS implicit def is dead. 872 MI->getOperand(3).setIsDead(); 873 } 874 875 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 876 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 877 // clobbered by any interrupt handler. 878 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 879 "MF used frame lowering for wrong subtarget"); 880 const Function &Fn = MF.getFunction(); 881 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 882 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 883 } 884 885 886 /// emitPrologue - Push callee-saved registers onto the stack, which 887 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 888 /// space for local variables. Also emit labels used by the exception handler to 889 /// generate the exception handling frames. 890 891 /* 892 Here's a gist of what gets emitted: 893 894 ; Establish frame pointer, if needed 895 [if needs FP] 896 push %rbp 897 .cfi_def_cfa_offset 16 898 .cfi_offset %rbp, -16 899 .seh_pushreg %rpb 900 mov %rsp, %rbp 901 .cfi_def_cfa_register %rbp 902 903 ; Spill general-purpose registers 904 [for all callee-saved GPRs] 905 pushq %<reg> 906 [if not needs FP] 907 .cfi_def_cfa_offset (offset from RETADDR) 908 .seh_pushreg %<reg> 909 910 ; If the required stack alignment > default stack alignment 911 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 912 ; of unknown size in the stack frame. 913 [if stack needs re-alignment] 914 and $MASK, %rsp 915 916 ; Allocate space for locals 917 [if target is Windows and allocated space > 4096 bytes] 918 ; Windows needs special care for allocations larger 919 ; than one page. 920 mov $NNN, %rax 921 call ___chkstk_ms/___chkstk 922 sub %rax, %rsp 923 [else] 924 sub $NNN, %rsp 925 926 [if needs FP] 927 .seh_stackalloc (size of XMM spill slots) 928 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 929 [else] 930 .seh_stackalloc NNN 931 932 ; Spill XMMs 933 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 934 ; they may get spilled on any platform, if the current function 935 ; calls @llvm.eh.unwind.init 936 [if needs FP] 937 [for all callee-saved XMM registers] 938 movaps %<xmm reg>, -MMM(%rbp) 939 [for all callee-saved XMM registers] 940 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 941 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 942 [else] 943 [for all callee-saved XMM registers] 944 movaps %<xmm reg>, KKK(%rsp) 945 [for all callee-saved XMM registers] 946 .seh_savexmm %<xmm reg>, KKK 947 948 .seh_endprologue 949 950 [if needs base pointer] 951 mov %rsp, %rbx 952 [if needs to restore base pointer] 953 mov %rsp, -MMM(%rbp) 954 955 ; Emit CFI info 956 [if needs FP] 957 [for all callee-saved registers] 958 .cfi_offset %<reg>, (offset from %rbp) 959 [else] 960 .cfi_def_cfa_offset (offset from RETADDR) 961 [for all callee-saved registers] 962 .cfi_offset %<reg>, (offset from %rsp) 963 964 Notes: 965 - .seh directives are emitted only for Windows 64 ABI 966 - .cv_fpo directives are emitted on win32 when emitting CodeView 967 - .cfi directives are emitted for all other ABIs 968 - for 32-bit code, substitute %e?? registers for %r?? 969 */ 970 971 void X86FrameLowering::emitPrologue(MachineFunction &MF, 972 MachineBasicBlock &MBB) const { 973 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 974 "MF used frame lowering for wrong subtarget"); 975 MachineBasicBlock::iterator MBBI = MBB.begin(); 976 MachineFrameInfo &MFI = MF.getFrameInfo(); 977 const Function &Fn = MF.getFunction(); 978 MachineModuleInfo &MMI = MF.getMMI(); 979 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 980 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 981 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 982 bool IsFunclet = MBB.isEHFuncletEntry(); 983 EHPersonality Personality = EHPersonality::Unknown; 984 if (Fn.hasPersonalityFn()) 985 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 986 bool FnHasClrFunclet = 987 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 988 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 989 bool HasFP = hasFP(MF); 990 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 991 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 992 // FIXME: Emit FPO data for EH funclets. 993 bool NeedsWinFPO = 994 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 995 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 996 bool NeedsDwarfCFI = 997 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry()); 998 Register FramePtr = TRI->getFrameRegister(MF); 999 const Register MachineFramePtr = 1000 STI.isTarget64BitILP32() 1001 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1002 Register BasePtr = TRI->getBaseRegister(); 1003 bool HasWinCFI = false; 1004 1005 // Debug location must be unknown since the first debug location is used 1006 // to determine the end of the prologue. 1007 DebugLoc DL; 1008 1009 // Add RETADDR move area to callee saved frame size. 1010 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1011 if (TailCallReturnAddrDelta && IsWin64Prologue) 1012 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1013 1014 if (TailCallReturnAddrDelta < 0) 1015 X86FI->setCalleeSavedFrameSize( 1016 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1017 1018 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty(); 1019 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1020 1021 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1022 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1023 // stack alignment. 1024 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1025 Fn.arg_size() == 2) { 1026 StackSize += 8; 1027 MFI.setStackSize(StackSize); 1028 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1029 } 1030 1031 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1032 // function, and use up to 128 bytes of stack space, don't have a frame 1033 // pointer, calls, or dynamic alloca then we do not need to adjust the 1034 // stack pointer (we fit in the Red Zone). We also check that we don't 1035 // push and pop from the stack. 1036 if (has128ByteRedZone(MF) && 1037 !TRI->needsStackRealignment(MF) && 1038 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1039 !MFI.adjustsStack() && // No calls. 1040 !UseStackProbe && // No stack probes. 1041 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1042 !MF.shouldSplitStack()) { // Regular stack 1043 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1044 if (HasFP) MinSize += SlotSize; 1045 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1046 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1047 MFI.setStackSize(StackSize); 1048 } 1049 1050 // Insert stack pointer adjustment for later moving of return addr. Only 1051 // applies to tail call optimized functions where the callee argument stack 1052 // size is bigger than the callers. 1053 if (TailCallReturnAddrDelta < 0) { 1054 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1055 /*InEpilogue=*/false) 1056 .setMIFlag(MachineInstr::FrameSetup); 1057 } 1058 1059 // Mapping for machine moves: 1060 // 1061 // DST: VirtualFP AND 1062 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1063 // ELSE => DW_CFA_def_cfa 1064 // 1065 // SRC: VirtualFP AND 1066 // DST: Register => DW_CFA_def_cfa_register 1067 // 1068 // ELSE 1069 // OFFSET < 0 => DW_CFA_offset_extended_sf 1070 // REG < 64 => DW_CFA_offset + Reg 1071 // ELSE => DW_CFA_offset_extended 1072 1073 uint64_t NumBytes = 0; 1074 int stackGrowth = -SlotSize; 1075 1076 // Find the funclet establisher parameter 1077 Register Establisher = X86::NoRegister; 1078 if (IsClrFunclet) 1079 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1080 else if (IsFunclet) 1081 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1082 1083 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1084 // Immediately spill establisher into the home slot. 1085 // The runtime cares about this. 1086 // MOV64mr %rdx, 16(%rsp) 1087 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1088 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1089 .addReg(Establisher) 1090 .setMIFlag(MachineInstr::FrameSetup); 1091 MBB.addLiveIn(Establisher); 1092 } 1093 1094 if (HasFP) { 1095 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1096 1097 // Calculate required stack adjustment. 1098 uint64_t FrameSize = StackSize - SlotSize; 1099 // If required, include space for extra hidden slot for stashing base pointer. 1100 if (X86FI->getRestoreBasePointer()) 1101 FrameSize += SlotSize; 1102 1103 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1104 1105 // Callee-saved registers are pushed on stack before the stack is realigned. 1106 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1107 NumBytes = alignTo(NumBytes, MaxAlign); 1108 1109 // Save EBP/RBP into the appropriate stack slot. 1110 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1111 .addReg(MachineFramePtr, RegState::Kill) 1112 .setMIFlag(MachineInstr::FrameSetup); 1113 1114 if (NeedsDwarfCFI) { 1115 // Mark the place where EBP/RBP was saved. 1116 // Define the current CFA rule to use the provided offset. 1117 assert(StackSize); 1118 BuildCFI(MBB, MBBI, DL, 1119 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth)); 1120 1121 // Change the rule for the FramePtr to be an "offset" rule. 1122 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1123 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1124 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1125 } 1126 1127 if (NeedsWinCFI) { 1128 HasWinCFI = true; 1129 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1130 .addImm(FramePtr) 1131 .setMIFlag(MachineInstr::FrameSetup); 1132 } 1133 1134 if (!IsWin64Prologue && !IsFunclet) { 1135 // Update EBP with the new base value. 1136 BuildMI(MBB, MBBI, DL, 1137 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1138 FramePtr) 1139 .addReg(StackPtr) 1140 .setMIFlag(MachineInstr::FrameSetup); 1141 1142 if (NeedsDwarfCFI) { 1143 // Mark effective beginning of when frame pointer becomes valid. 1144 // Define the current CFA to use the EBP/RBP register. 1145 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1146 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1147 nullptr, DwarfFramePtr)); 1148 } 1149 1150 if (NeedsWinFPO) { 1151 // .cv_fpo_setframe $FramePtr 1152 HasWinCFI = true; 1153 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1154 .addImm(FramePtr) 1155 .addImm(0) 1156 .setMIFlag(MachineInstr::FrameSetup); 1157 } 1158 } 1159 } else { 1160 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1161 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1162 } 1163 1164 // Update the offset adjustment, which is mainly used by codeview to translate 1165 // from ESP to VFRAME relative local variable offsets. 1166 if (!IsFunclet) { 1167 if (HasFP && TRI->needsStackRealignment(MF)) 1168 MFI.setOffsetAdjustment(-NumBytes); 1169 else 1170 MFI.setOffsetAdjustment(-StackSize); 1171 } 1172 1173 // For EH funclets, only allocate enough space for outgoing calls. Save the 1174 // NumBytes value that we would've used for the parent frame. 1175 unsigned ParentFrameNumBytes = NumBytes; 1176 if (IsFunclet) 1177 NumBytes = getWinEHFuncletFrameSize(MF); 1178 1179 // Skip the callee-saved push instructions. 1180 bool PushedRegs = false; 1181 int StackOffset = 2 * stackGrowth; 1182 1183 while (MBBI != MBB.end() && 1184 MBBI->getFlag(MachineInstr::FrameSetup) && 1185 (MBBI->getOpcode() == X86::PUSH32r || 1186 MBBI->getOpcode() == X86::PUSH64r)) { 1187 PushedRegs = true; 1188 Register Reg = MBBI->getOperand(0).getReg(); 1189 ++MBBI; 1190 1191 if (!HasFP && NeedsDwarfCFI) { 1192 // Mark callee-saved push instruction. 1193 // Define the current CFA rule to use the provided offset. 1194 assert(StackSize); 1195 BuildCFI(MBB, MBBI, DL, 1196 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset)); 1197 StackOffset += stackGrowth; 1198 } 1199 1200 if (NeedsWinCFI) { 1201 HasWinCFI = true; 1202 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1203 .addImm(Reg) 1204 .setMIFlag(MachineInstr::FrameSetup); 1205 } 1206 } 1207 1208 // Realign stack after we pushed callee-saved registers (so that we'll be 1209 // able to calculate their offsets from the frame pointer). 1210 // Don't do this for Win64, it needs to realign the stack after the prologue. 1211 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1212 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1213 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1214 1215 if (NeedsWinCFI) { 1216 HasWinCFI = true; 1217 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1218 .addImm(MaxAlign) 1219 .setMIFlag(MachineInstr::FrameSetup); 1220 } 1221 } 1222 1223 // If there is an SUB32ri of ESP immediately before this instruction, merge 1224 // the two. This can be the case when tail call elimination is enabled and 1225 // the callee has more arguments then the caller. 1226 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1227 1228 // Adjust stack pointer: ESP -= numbytes. 1229 1230 // Windows and cygwin/mingw require a prologue helper routine when allocating 1231 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1232 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1233 // stack and adjust the stack pointer in one go. The 64-bit version of 1234 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1235 // responsible for adjusting the stack pointer. Touching the stack at 4K 1236 // increments is necessary to ensure that the guard pages used by the OS 1237 // virtual memory manager are allocated in correct sequence. 1238 uint64_t AlignedNumBytes = NumBytes; 1239 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1240 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1241 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) { 1242 assert(!X86FI->getUsesRedZone() && 1243 "The Red Zone is not accounted for in stack probes"); 1244 1245 // Check whether EAX is livein for this block. 1246 bool isEAXAlive = isEAXLiveIn(MBB); 1247 1248 if (isEAXAlive) { 1249 if (Is64Bit) { 1250 // Save RAX 1251 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1252 .addReg(X86::RAX, RegState::Kill) 1253 .setMIFlag(MachineInstr::FrameSetup); 1254 } else { 1255 // Save EAX 1256 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1257 .addReg(X86::EAX, RegState::Kill) 1258 .setMIFlag(MachineInstr::FrameSetup); 1259 } 1260 } 1261 1262 if (Is64Bit) { 1263 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1264 // Function prologue is responsible for adjusting the stack pointer. 1265 int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1266 if (isUInt<32>(Alloc)) { 1267 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1268 .addImm(Alloc) 1269 .setMIFlag(MachineInstr::FrameSetup); 1270 } else if (isInt<32>(Alloc)) { 1271 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1272 .addImm(Alloc) 1273 .setMIFlag(MachineInstr::FrameSetup); 1274 } else { 1275 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1276 .addImm(Alloc) 1277 .setMIFlag(MachineInstr::FrameSetup); 1278 } 1279 } else { 1280 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1281 // We'll also use 4 already allocated bytes for EAX. 1282 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1283 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1284 .setMIFlag(MachineInstr::FrameSetup); 1285 } 1286 1287 // Call __chkstk, __chkstk_ms, or __alloca. 1288 emitStackProbe(MF, MBB, MBBI, DL, true); 1289 1290 if (isEAXAlive) { 1291 // Restore RAX/EAX 1292 MachineInstr *MI; 1293 if (Is64Bit) 1294 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1295 StackPtr, false, NumBytes - 8); 1296 else 1297 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1298 StackPtr, false, NumBytes - 4); 1299 MI->setFlag(MachineInstr::FrameSetup); 1300 MBB.insert(MBBI, MI); 1301 } 1302 } else if (NumBytes) { 1303 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1304 } 1305 1306 if (NeedsWinCFI && NumBytes) { 1307 HasWinCFI = true; 1308 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1309 .addImm(NumBytes) 1310 .setMIFlag(MachineInstr::FrameSetup); 1311 } 1312 1313 int SEHFrameOffset = 0; 1314 unsigned SPOrEstablisher; 1315 if (IsFunclet) { 1316 if (IsClrFunclet) { 1317 // The establisher parameter passed to a CLR funclet is actually a pointer 1318 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1319 // to find the root function establisher frame by loading the PSPSym from 1320 // the intermediate frame. 1321 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1322 MachinePointerInfo NoInfo; 1323 MBB.addLiveIn(Establisher); 1324 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1325 Establisher, false, PSPSlotOffset) 1326 .addMemOperand(MF.getMachineMemOperand( 1327 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize)); 1328 ; 1329 // Save the root establisher back into the current funclet's (mostly 1330 // empty) frame, in case a sub-funclet or the GC needs it. 1331 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1332 false, PSPSlotOffset) 1333 .addReg(Establisher) 1334 .addMemOperand( 1335 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore | 1336 MachineMemOperand::MOVolatile, 1337 SlotSize, SlotSize)); 1338 } 1339 SPOrEstablisher = Establisher; 1340 } else { 1341 SPOrEstablisher = StackPtr; 1342 } 1343 1344 if (IsWin64Prologue && HasFP) { 1345 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1346 // this calculation on the incoming establisher, which holds the value of 1347 // RSP from the parent frame at the end of the prologue. 1348 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1349 if (SEHFrameOffset) 1350 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1351 SPOrEstablisher, false, SEHFrameOffset); 1352 else 1353 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1354 .addReg(SPOrEstablisher); 1355 1356 // If this is not a funclet, emit the CFI describing our frame pointer. 1357 if (NeedsWinCFI && !IsFunclet) { 1358 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1359 HasWinCFI = true; 1360 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1361 .addImm(FramePtr) 1362 .addImm(SEHFrameOffset) 1363 .setMIFlag(MachineInstr::FrameSetup); 1364 if (isAsynchronousEHPersonality(Personality)) 1365 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1366 } 1367 } else if (IsFunclet && STI.is32Bit()) { 1368 // Reset EBP / ESI to something good for funclets. 1369 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1370 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1371 // into the registration node so that the runtime will restore it for us. 1372 if (!MBB.isCleanupFuncletEntry()) { 1373 assert(Personality == EHPersonality::MSVC_CXX); 1374 unsigned FrameReg; 1375 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1376 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1377 // ESP is the first field, so no extra displacement is needed. 1378 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1379 false, EHRegOffset) 1380 .addReg(X86::ESP); 1381 } 1382 } 1383 1384 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1385 const MachineInstr &FrameInstr = *MBBI; 1386 ++MBBI; 1387 1388 if (NeedsWinCFI) { 1389 int FI; 1390 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1391 if (X86::FR64RegClass.contains(Reg)) { 1392 int Offset; 1393 unsigned IgnoredFrameReg; 1394 if (IsWin64Prologue && IsFunclet) 1395 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1396 else 1397 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) + 1398 SEHFrameOffset; 1399 1400 HasWinCFI = true; 1401 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1402 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1403 .addImm(Reg) 1404 .addImm(Offset) 1405 .setMIFlag(MachineInstr::FrameSetup); 1406 } 1407 } 1408 } 1409 } 1410 1411 if (NeedsWinCFI && HasWinCFI) 1412 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1413 .setMIFlag(MachineInstr::FrameSetup); 1414 1415 if (FnHasClrFunclet && !IsFunclet) { 1416 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1417 // immediately after the prolog) into the PSPSlot so that funclets 1418 // and the GC can recover it. 1419 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1420 auto PSPInfo = MachinePointerInfo::getFixedStack( 1421 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1422 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1423 PSPSlotOffset) 1424 .addReg(StackPtr) 1425 .addMemOperand(MF.getMachineMemOperand( 1426 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1427 SlotSize, SlotSize)); 1428 } 1429 1430 // Realign stack after we spilled callee-saved registers (so that we'll be 1431 // able to calculate their offsets from the frame pointer). 1432 // Win64 requires aligning the stack after the prologue. 1433 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1434 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1435 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1436 } 1437 1438 // We already dealt with stack realignment and funclets above. 1439 if (IsFunclet && STI.is32Bit()) 1440 return; 1441 1442 // If we need a base pointer, set it up here. It's whatever the value 1443 // of the stack pointer is at this point. Any variable size objects 1444 // will be allocated after this, so we can still use the base pointer 1445 // to reference locals. 1446 if (TRI->hasBasePointer(MF)) { 1447 // Update the base pointer with the current stack pointer. 1448 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1449 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1450 .addReg(SPOrEstablisher) 1451 .setMIFlag(MachineInstr::FrameSetup); 1452 if (X86FI->getRestoreBasePointer()) { 1453 // Stash value of base pointer. Saving RSP instead of EBP shortens 1454 // dependence chain. Used by SjLj EH. 1455 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1456 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1457 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1458 .addReg(SPOrEstablisher) 1459 .setMIFlag(MachineInstr::FrameSetup); 1460 } 1461 1462 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1463 // Stash the value of the frame pointer relative to the base pointer for 1464 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1465 // it recovers the frame pointer from the base pointer rather than the 1466 // other way around. 1467 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1468 unsigned UsedReg; 1469 int Offset = 1470 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1471 assert(UsedReg == BasePtr); 1472 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1473 .addReg(FramePtr) 1474 .setMIFlag(MachineInstr::FrameSetup); 1475 } 1476 } 1477 1478 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1479 // Mark end of stack pointer adjustment. 1480 if (!HasFP && NumBytes) { 1481 // Define the current CFA rule to use the provided offset. 1482 assert(StackSize); 1483 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1484 nullptr, -StackSize + stackGrowth)); 1485 } 1486 1487 // Emit DWARF info specifying the offsets of the callee-saved registers. 1488 emitCalleeSavedFrameMoves(MBB, MBBI, DL); 1489 } 1490 1491 // X86 Interrupt handling function cannot assume anything about the direction 1492 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1493 // in each prologue of interrupt handler function. 1494 // 1495 // FIXME: Create "cld" instruction only in these cases: 1496 // 1. The interrupt handling function uses any of the "rep" instructions. 1497 // 2. Interrupt handling function calls another function. 1498 // 1499 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1500 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1501 .setMIFlag(MachineInstr::FrameSetup); 1502 1503 // At this point we know if the function has WinCFI or not. 1504 MF.setHasWinCFI(HasWinCFI); 1505 } 1506 1507 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1508 const MachineFunction &MF) const { 1509 // We can't use LEA instructions for adjusting the stack pointer if we don't 1510 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1511 // to deallocate the stack. 1512 // This means that we can use LEA for SP in two situations: 1513 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1514 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1515 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1516 } 1517 1518 static bool isFuncletReturnInstr(MachineInstr &MI) { 1519 switch (MI.getOpcode()) { 1520 case X86::CATCHRET: 1521 case X86::CLEANUPRET: 1522 return true; 1523 default: 1524 return false; 1525 } 1526 llvm_unreachable("impossible"); 1527 } 1528 1529 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1530 // stack. It holds a pointer to the bottom of the root function frame. The 1531 // establisher frame pointer passed to a nested funclet may point to the 1532 // (mostly empty) frame of its parent funclet, but it will need to find 1533 // the frame of the root function to access locals. To facilitate this, 1534 // every funclet copies the pointer to the bottom of the root function 1535 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1536 // same offset for the PSPSym in the root function frame that's used in the 1537 // funclets' frames allows each funclet to dynamically accept any ancestor 1538 // frame as its establisher argument (the runtime doesn't guarantee the 1539 // immediate parent for some reason lost to history), and also allows the GC, 1540 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1541 // frame with only a single offset reported for the entire method. 1542 unsigned 1543 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1544 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1545 unsigned SPReg; 1546 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1547 /*IgnoreSPUpdates*/ true); 1548 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1549 return static_cast<unsigned>(Offset); 1550 } 1551 1552 unsigned 1553 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1554 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1555 // This is the size of the pushed CSRs. 1556 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1557 // This is the size of callee saved XMMs. 1558 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1559 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1560 TRI->getSpillSize(X86::VR128RegClass); 1561 // This is the amount of stack a funclet needs to allocate. 1562 unsigned UsedSize; 1563 EHPersonality Personality = 1564 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1565 if (Personality == EHPersonality::CoreCLR) { 1566 // CLR funclets need to hold enough space to include the PSPSym, at the 1567 // same offset from the stack pointer (immediately after the prolog) as it 1568 // resides at in the main function. 1569 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1570 } else { 1571 // Other funclets just need enough stack for outgoing call arguments. 1572 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1573 } 1574 // RBP is not included in the callee saved register block. After pushing RBP, 1575 // everything is 16 byte aligned. Everything we allocate before an outgoing 1576 // call must also be 16 byte aligned. 1577 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment()); 1578 // Subtract out the size of the callee saved registers. This is how much stack 1579 // each funclet will allocate. 1580 return FrameSizeMinusRBP + XMMSize - CSSize; 1581 } 1582 1583 static bool isTailCallOpcode(unsigned Opc) { 1584 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1585 Opc == X86::TCRETURNmi || 1586 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1587 Opc == X86::TCRETURNmi64; 1588 } 1589 1590 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1591 MachineBasicBlock &MBB) const { 1592 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1593 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1594 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1595 MachineBasicBlock::iterator MBBI = Terminator; 1596 DebugLoc DL; 1597 if (MBBI != MBB.end()) 1598 DL = MBBI->getDebugLoc(); 1599 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1600 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1601 Register FramePtr = TRI->getFrameRegister(MF); 1602 unsigned MachineFramePtr = 1603 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1604 1605 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1606 bool NeedsWin64CFI = 1607 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1608 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1609 1610 // Get the number of bytes to allocate from the FrameInfo. 1611 uint64_t StackSize = MFI.getStackSize(); 1612 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1613 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1614 bool HasFP = hasFP(MF); 1615 uint64_t NumBytes = 0; 1616 1617 bool NeedsDwarfCFI = 1618 (!MF.getTarget().getTargetTriple().isOSDarwin() && 1619 !MF.getTarget().getTargetTriple().isOSWindows()) && 1620 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); 1621 1622 if (IsFunclet) { 1623 assert(HasFP && "EH funclets without FP not yet implemented"); 1624 NumBytes = getWinEHFuncletFrameSize(MF); 1625 } else if (HasFP) { 1626 // Calculate required stack adjustment. 1627 uint64_t FrameSize = StackSize - SlotSize; 1628 NumBytes = FrameSize - CSSize; 1629 1630 // Callee-saved registers were pushed on stack before the stack was 1631 // realigned. 1632 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1633 NumBytes = alignTo(FrameSize, MaxAlign); 1634 } else { 1635 NumBytes = StackSize - CSSize; 1636 } 1637 uint64_t SEHStackAllocAmt = NumBytes; 1638 1639 if (HasFP) { 1640 // Pop EBP. 1641 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1642 MachineFramePtr) 1643 .setMIFlag(MachineInstr::FrameDestroy); 1644 if (NeedsDwarfCFI) { 1645 unsigned DwarfStackPtr = 1646 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 1647 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa( 1648 nullptr, DwarfStackPtr, -SlotSize)); 1649 --MBBI; 1650 } 1651 } 1652 1653 MachineBasicBlock::iterator FirstCSPop = MBBI; 1654 // Skip the callee-saved pop instructions. 1655 while (MBBI != MBB.begin()) { 1656 MachineBasicBlock::iterator PI = std::prev(MBBI); 1657 unsigned Opc = PI->getOpcode(); 1658 1659 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1660 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1661 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1662 break; 1663 FirstCSPop = PI; 1664 } 1665 1666 --MBBI; 1667 } 1668 MBBI = FirstCSPop; 1669 1670 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 1671 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 1672 1673 if (MBBI != MBB.end()) 1674 DL = MBBI->getDebugLoc(); 1675 1676 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1677 // instruction, merge the two instructions. 1678 if (NumBytes || MFI.hasVarSizedObjects()) 1679 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1680 1681 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1682 // slot before popping them off! Same applies for the case, when stack was 1683 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1684 // will not do realignment or dynamic stack allocation. 1685 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1686 !IsFunclet) { 1687 if (TRI->needsStackRealignment(MF)) 1688 MBBI = FirstCSPop; 1689 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1690 uint64_t LEAAmount = 1691 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1692 1693 // There are only two legal forms of epilogue: 1694 // - add SEHAllocationSize, %rsp 1695 // - lea SEHAllocationSize(%FramePtr), %rsp 1696 // 1697 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1698 // However, we may use this sequence if we have a frame pointer because the 1699 // effects of the prologue can safely be undone. 1700 if (LEAAmount != 0) { 1701 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1702 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1703 FramePtr, false, LEAAmount); 1704 --MBBI; 1705 } else { 1706 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1707 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1708 .addReg(FramePtr); 1709 --MBBI; 1710 } 1711 } else if (NumBytes) { 1712 // Adjust stack pointer back: ESP += numbytes. 1713 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 1714 if (!hasFP(MF) && NeedsDwarfCFI) { 1715 // Define the current CFA rule to use the provided offset. 1716 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset( 1717 nullptr, -CSSize - SlotSize)); 1718 } 1719 --MBBI; 1720 } 1721 1722 // Windows unwinder will not invoke function's exception handler if IP is 1723 // either in prologue or in epilogue. This behavior causes a problem when a 1724 // call immediately precedes an epilogue, because the return address points 1725 // into the epilogue. To cope with that, we insert an epilogue marker here, 1726 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1727 // final emitted code. 1728 if (NeedsWin64CFI && MF.hasWinCFI()) 1729 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1730 1731 if (!hasFP(MF) && NeedsDwarfCFI) { 1732 MBBI = FirstCSPop; 1733 int64_t Offset = -CSSize - SlotSize; 1734 // Mark callee-saved pop instruction. 1735 // Define the current CFA rule to use the provided offset. 1736 while (MBBI != MBB.end()) { 1737 MachineBasicBlock::iterator PI = MBBI; 1738 unsigned Opc = PI->getOpcode(); 1739 ++MBBI; 1740 if (Opc == X86::POP32r || Opc == X86::POP64r) { 1741 Offset += SlotSize; 1742 BuildCFI(MBB, MBBI, DL, 1743 MCCFIInstruction::createDefCfaOffset(nullptr, Offset)); 1744 } 1745 } 1746 } 1747 1748 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 1749 // Add the return addr area delta back since we are not tail calling. 1750 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1751 assert(Offset >= 0 && "TCDelta should never be positive"); 1752 if (Offset) { 1753 // Check for possible merge with preceding ADD instruction. 1754 Offset += mergeSPUpdates(MBB, Terminator, true); 1755 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 1756 } 1757 } 1758 } 1759 1760 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1761 unsigned &FrameReg) const { 1762 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1763 1764 bool IsFixed = MFI.isFixedObjectIndex(FI); 1765 // We can't calculate offset from frame pointer if the stack is realigned, 1766 // so enforce usage of stack/base pointer. The base pointer is used when we 1767 // have dynamic allocas in addition to dynamic realignment. 1768 if (TRI->hasBasePointer(MF)) 1769 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 1770 else if (TRI->needsStackRealignment(MF)) 1771 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 1772 else 1773 FrameReg = TRI->getFrameRegister(MF); 1774 1775 // Offset will hold the offset from the stack pointer at function entry to the 1776 // object. 1777 // We need to factor in additional offsets applied during the prologue to the 1778 // frame, base, and stack pointer depending on which is used. 1779 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1780 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1781 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1782 uint64_t StackSize = MFI.getStackSize(); 1783 bool HasFP = hasFP(MF); 1784 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1785 int64_t FPDelta = 0; 1786 1787 // In an x86 interrupt, remove the offset we added to account for the return 1788 // address from any stack object allocated in the caller's frame. Interrupts 1789 // do not have a standard return address. Fixed objects in the current frame, 1790 // such as SSE register spills, should not get this treatment. 1791 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 1792 Offset >= 0) { 1793 Offset += getOffsetOfLocalArea(); 1794 } 1795 1796 if (IsWin64Prologue) { 1797 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 1798 1799 // Calculate required stack adjustment. 1800 uint64_t FrameSize = StackSize - SlotSize; 1801 // If required, include space for extra hidden slot for stashing base pointer. 1802 if (X86FI->getRestoreBasePointer()) 1803 FrameSize += SlotSize; 1804 uint64_t NumBytes = FrameSize - CSSize; 1805 1806 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 1807 if (FI && FI == X86FI->getFAIndex()) 1808 return -SEHFrameOffset; 1809 1810 // FPDelta is the offset from the "traditional" FP location of the old base 1811 // pointer followed by return address and the location required by the 1812 // restricted Win64 prologue. 1813 // Add FPDelta to all offsets below that go through the frame pointer. 1814 FPDelta = FrameSize - SEHFrameOffset; 1815 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 1816 "FPDelta isn't aligned per the Win64 ABI!"); 1817 } 1818 1819 1820 if (TRI->hasBasePointer(MF)) { 1821 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 1822 if (FI < 0) { 1823 // Skip the saved EBP. 1824 return Offset + SlotSize + FPDelta; 1825 } else { 1826 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1827 return Offset + StackSize; 1828 } 1829 } else if (TRI->needsStackRealignment(MF)) { 1830 if (FI < 0) { 1831 // Skip the saved EBP. 1832 return Offset + SlotSize + FPDelta; 1833 } else { 1834 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0); 1835 return Offset + StackSize; 1836 } 1837 // FIXME: Support tail calls 1838 } else { 1839 if (!HasFP) 1840 return Offset + StackSize; 1841 1842 // Skip the saved EBP. 1843 Offset += SlotSize; 1844 1845 // Skip the RETADDR move area 1846 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1847 if (TailCallReturnAddrDelta < 0) 1848 Offset -= TailCallReturnAddrDelta; 1849 } 1850 1851 return Offset + FPDelta; 1852 } 1853 1854 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, 1855 int FI, unsigned &FrameReg) const { 1856 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1857 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1858 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1859 const auto it = WinEHXMMSlotInfo.find(FI); 1860 1861 if (it == WinEHXMMSlotInfo.end()) 1862 return getFrameIndexReference(MF, FI, FrameReg); 1863 1864 FrameReg = TRI->getStackRegister(); 1865 return alignTo(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second; 1866 } 1867 1868 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 1869 int FI, unsigned &FrameReg, 1870 int Adjustment) const { 1871 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1872 FrameReg = TRI->getStackRegister(); 1873 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 1874 } 1875 1876 int 1877 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 1878 int FI, unsigned &FrameReg, 1879 bool IgnoreSPUpdates) const { 1880 1881 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1882 // Does not include any dynamic realign. 1883 const uint64_t StackSize = MFI.getStackSize(); 1884 // LLVM arranges the stack as follows: 1885 // ... 1886 // ARG2 1887 // ARG1 1888 // RETADDR 1889 // PUSH RBP <-- RBP points here 1890 // PUSH CSRs 1891 // ~~~~~~~ <-- possible stack realignment (non-win64) 1892 // ... 1893 // STACK OBJECTS 1894 // ... <-- RSP after prologue points here 1895 // ~~~~~~~ <-- possible stack realignment (win64) 1896 // 1897 // if (hasVarSizedObjects()): 1898 // ... <-- "base pointer" (ESI/RBX) points here 1899 // DYNAMIC ALLOCAS 1900 // ... <-- RSP points here 1901 // 1902 // Case 1: In the simple case of no stack realignment and no dynamic 1903 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 1904 // with fixed offsets from RSP. 1905 // 1906 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 1907 // stack objects are addressed with RBP and regular stack objects with RSP. 1908 // 1909 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 1910 // to address stack arguments for outgoing calls and nothing else. The "base 1911 // pointer" points to local variables, and RBP points to fixed objects. 1912 // 1913 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 1914 // answer we give is relative to the SP after the prologue, and not the 1915 // SP in the middle of the function. 1916 1917 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 1918 !STI.isTargetWin64()) 1919 return getFrameIndexReference(MF, FI, FrameReg); 1920 1921 // If !hasReservedCallFrame the function might have SP adjustement in the 1922 // body. So, even though the offset is statically known, it depends on where 1923 // we are in the function. 1924 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 1925 return getFrameIndexReference(MF, FI, FrameReg); 1926 1927 // We don't handle tail calls, and shouldn't be seeing them either. 1928 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 1929 "we don't handle this case!"); 1930 1931 // This is how the math works out: 1932 // 1933 // %rsp grows (i.e. gets lower) left to right. Each box below is 1934 // one word (eight bytes). Obj0 is the stack slot we're trying to 1935 // get to. 1936 // 1937 // ---------------------------------- 1938 // | BP | Obj0 | Obj1 | ... | ObjN | 1939 // ---------------------------------- 1940 // ^ ^ ^ ^ 1941 // A B C E 1942 // 1943 // A is the incoming stack pointer. 1944 // (B - A) is the local area offset (-8 for x86-64) [1] 1945 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 1946 // 1947 // |(E - B)| is the StackSize (absolute value, positive). For a 1948 // stack that grown down, this works out to be (B - E). [3] 1949 // 1950 // E is also the value of %rsp after stack has been set up, and we 1951 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 1952 // (C - E) == (C - A) - (B - A) + (B - E) 1953 // { Using [1], [2] and [3] above } 1954 // == getObjectOffset - LocalAreaOffset + StackSize 1955 1956 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 1957 } 1958 1959 bool X86FrameLowering::assignCalleeSavedSpillSlots( 1960 MachineFunction &MF, const TargetRegisterInfo *TRI, 1961 std::vector<CalleeSavedInfo> &CSI) const { 1962 MachineFrameInfo &MFI = MF.getFrameInfo(); 1963 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1964 1965 unsigned CalleeSavedFrameSize = 0; 1966 unsigned XMMCalleeSavedFrameSize = 0; 1967 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1968 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 1969 1970 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1971 1972 if (TailCallReturnAddrDelta < 0) { 1973 // create RETURNADDR area 1974 // arg 1975 // arg 1976 // RETADDR 1977 // { ... 1978 // RETADDR area 1979 // ... 1980 // } 1981 // [EBP] 1982 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 1983 TailCallReturnAddrDelta - SlotSize, true); 1984 } 1985 1986 // Spill the BasePtr if it's used. 1987 if (this->TRI->hasBasePointer(MF)) { 1988 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 1989 if (MF.hasEHFunclets()) { 1990 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize); 1991 X86FI->setHasSEHFramePtrSave(true); 1992 X86FI->setSEHFramePtrSaveIndex(FI); 1993 } 1994 } 1995 1996 if (hasFP(MF)) { 1997 // emitPrologue always spills frame register the first thing. 1998 SpillSlotOffset -= SlotSize; 1999 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2000 2001 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2002 // the frame register, we can delete it from CSI list and not have to worry 2003 // about avoiding it later. 2004 Register FPReg = TRI->getFrameRegister(MF); 2005 for (unsigned i = 0; i < CSI.size(); ++i) { 2006 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2007 CSI.erase(CSI.begin() + i); 2008 break; 2009 } 2010 } 2011 } 2012 2013 // Assign slots for GPRs. It increases frame size. 2014 for (unsigned i = CSI.size(); i != 0; --i) { 2015 unsigned Reg = CSI[i - 1].getReg(); 2016 2017 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2018 continue; 2019 2020 SpillSlotOffset -= SlotSize; 2021 CalleeSavedFrameSize += SlotSize; 2022 2023 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2024 CSI[i - 1].setFrameIdx(SlotIndex); 2025 } 2026 2027 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2028 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2029 2030 // Assign slots for XMMs. 2031 for (unsigned i = CSI.size(); i != 0; --i) { 2032 unsigned Reg = CSI[i - 1].getReg(); 2033 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2034 continue; 2035 2036 // If this is k-register make sure we lookup via the largest legal type. 2037 MVT VT = MVT::Other; 2038 if (X86::VK16RegClass.contains(Reg)) 2039 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2040 2041 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2042 unsigned Size = TRI->getSpillSize(*RC); 2043 unsigned Align = TRI->getSpillAlignment(*RC); 2044 // ensure alignment 2045 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2046 SpillSlotOffset = -alignTo(-SpillSlotOffset, Align); 2047 2048 // spill into slot 2049 SpillSlotOffset -= Size; 2050 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2051 CSI[i - 1].setFrameIdx(SlotIndex); 2052 MFI.ensureMaxAlignment(Align); 2053 2054 // Save the start offset and size of XMM in stack frame for funclets. 2055 if (X86::VR128RegClass.contains(Reg)) { 2056 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2057 XMMCalleeSavedFrameSize += Size; 2058 } 2059 } 2060 2061 return true; 2062 } 2063 2064 bool X86FrameLowering::spillCalleeSavedRegisters( 2065 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2066 const std::vector<CalleeSavedInfo> &CSI, 2067 const TargetRegisterInfo *TRI) const { 2068 DebugLoc DL = MBB.findDebugLoc(MI); 2069 2070 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2071 // for us, and there are no XMM CSRs on Win32. 2072 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2073 return true; 2074 2075 // Push GPRs. It increases frame size. 2076 const MachineFunction &MF = *MBB.getParent(); 2077 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2078 for (unsigned i = CSI.size(); i != 0; --i) { 2079 unsigned Reg = CSI[i - 1].getReg(); 2080 2081 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2082 continue; 2083 2084 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2085 bool isLiveIn = MRI.isLiveIn(Reg); 2086 if (!isLiveIn) 2087 MBB.addLiveIn(Reg); 2088 2089 // Decide whether we can add a kill flag to the use. 2090 bool CanKill = !isLiveIn; 2091 // Check if any subregister is live-in 2092 if (CanKill) { 2093 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2094 if (MRI.isLiveIn(*AReg)) { 2095 CanKill = false; 2096 break; 2097 } 2098 } 2099 } 2100 2101 // Do not set a kill flag on values that are also marked as live-in. This 2102 // happens with the @llvm-returnaddress intrinsic and with arguments 2103 // passed in callee saved registers. 2104 // Omitting the kill flags is conservatively correct even if the live-in 2105 // is not used after all. 2106 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2107 .setMIFlag(MachineInstr::FrameSetup); 2108 } 2109 2110 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2111 // It can be done by spilling XMMs to stack frame. 2112 for (unsigned i = CSI.size(); i != 0; --i) { 2113 unsigned Reg = CSI[i-1].getReg(); 2114 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2115 continue; 2116 2117 // If this is k-register make sure we lookup via the largest legal type. 2118 MVT VT = MVT::Other; 2119 if (X86::VK16RegClass.contains(Reg)) 2120 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2121 2122 // Add the callee-saved register as live-in. It's killed at the spill. 2123 MBB.addLiveIn(Reg); 2124 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2125 2126 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2127 TRI); 2128 --MI; 2129 MI->setFlag(MachineInstr::FrameSetup); 2130 ++MI; 2131 } 2132 2133 return true; 2134 } 2135 2136 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2137 MachineBasicBlock::iterator MBBI, 2138 MachineInstr *CatchRet) const { 2139 // SEH shouldn't use catchret. 2140 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2141 MBB.getParent()->getFunction().getPersonalityFn())) && 2142 "SEH should not use CATCHRET"); 2143 DebugLoc DL = CatchRet->getDebugLoc(); 2144 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2145 2146 // Fill EAX/RAX with the address of the target block. 2147 if (STI.is64Bit()) { 2148 // LEA64r CatchRetTarget(%rip), %rax 2149 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2150 .addReg(X86::RIP) 2151 .addImm(0) 2152 .addReg(0) 2153 .addMBB(CatchRetTarget) 2154 .addReg(0); 2155 } else { 2156 // MOV32ri $CatchRetTarget, %eax 2157 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2158 .addMBB(CatchRetTarget); 2159 } 2160 2161 // Record that we've taken the address of CatchRetTarget and no longer just 2162 // reference it in a terminator. 2163 CatchRetTarget->setHasAddressTaken(); 2164 } 2165 2166 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 2167 MachineBasicBlock::iterator MI, 2168 std::vector<CalleeSavedInfo> &CSI, 2169 const TargetRegisterInfo *TRI) const { 2170 if (CSI.empty()) 2171 return false; 2172 2173 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2174 // Don't restore CSRs in 32-bit EH funclets. Matches 2175 // spillCalleeSavedRegisters. 2176 if (STI.is32Bit()) 2177 return true; 2178 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2179 // funclets. emitEpilogue transforms these to normal jumps. 2180 if (MI->getOpcode() == X86::CATCHRET) { 2181 const Function &F = MBB.getParent()->getFunction(); 2182 bool IsSEH = isAsynchronousEHPersonality( 2183 classifyEHPersonality(F.getPersonalityFn())); 2184 if (IsSEH) 2185 return true; 2186 } 2187 } 2188 2189 DebugLoc DL = MBB.findDebugLoc(MI); 2190 2191 // Reload XMMs from stack frame. 2192 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2193 unsigned Reg = CSI[i].getReg(); 2194 if (X86::GR64RegClass.contains(Reg) || 2195 X86::GR32RegClass.contains(Reg)) 2196 continue; 2197 2198 // If this is k-register make sure we lookup via the largest legal type. 2199 MVT VT = MVT::Other; 2200 if (X86::VK16RegClass.contains(Reg)) 2201 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2202 2203 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2204 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2205 } 2206 2207 // POP GPRs. 2208 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2209 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2210 unsigned Reg = CSI[i].getReg(); 2211 if (!X86::GR64RegClass.contains(Reg) && 2212 !X86::GR32RegClass.contains(Reg)) 2213 continue; 2214 2215 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2216 .setMIFlag(MachineInstr::FrameDestroy); 2217 } 2218 return true; 2219 } 2220 2221 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2222 BitVector &SavedRegs, 2223 RegScavenger *RS) const { 2224 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2225 2226 // Spill the BasePtr if it's used. 2227 if (TRI->hasBasePointer(MF)){ 2228 Register BasePtr = TRI->getBaseRegister(); 2229 if (STI.isTarget64BitILP32()) 2230 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2231 SavedRegs.set(BasePtr); 2232 } 2233 } 2234 2235 static bool 2236 HasNestArgument(const MachineFunction *MF) { 2237 const Function &F = MF->getFunction(); 2238 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2239 I != E; I++) { 2240 if (I->hasNestAttr() && !I->use_empty()) 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 /// GetScratchRegister - Get a temp register for performing work in the 2247 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2248 /// and the properties of the function either one or two registers will be 2249 /// needed. Set primary to true for the first register, false for the second. 2250 static unsigned 2251 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2252 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2253 2254 // Erlang stuff. 2255 if (CallingConvention == CallingConv::HiPE) { 2256 if (Is64Bit) 2257 return Primary ? X86::R14 : X86::R13; 2258 else 2259 return Primary ? X86::EBX : X86::EDI; 2260 } 2261 2262 if (Is64Bit) { 2263 if (IsLP64) 2264 return Primary ? X86::R11 : X86::R12; 2265 else 2266 return Primary ? X86::R11D : X86::R12D; 2267 } 2268 2269 bool IsNested = HasNestArgument(&MF); 2270 2271 if (CallingConvention == CallingConv::X86_FastCall || 2272 CallingConvention == CallingConv::Fast || 2273 CallingConvention == CallingConv::Tail) { 2274 if (IsNested) 2275 report_fatal_error("Segmented stacks does not support fastcall with " 2276 "nested function."); 2277 return Primary ? X86::EAX : X86::ECX; 2278 } 2279 if (IsNested) 2280 return Primary ? X86::EDX : X86::EAX; 2281 return Primary ? X86::ECX : X86::EAX; 2282 } 2283 2284 // The stack limit in the TCB is set to this many bytes above the actual stack 2285 // limit. 2286 static const uint64_t kSplitStackAvailable = 256; 2287 2288 void X86FrameLowering::adjustForSegmentedStacks( 2289 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2290 MachineFrameInfo &MFI = MF.getFrameInfo(); 2291 uint64_t StackSize; 2292 unsigned TlsReg, TlsOffset; 2293 DebugLoc DL; 2294 2295 // To support shrink-wrapping we would need to insert the new blocks 2296 // at the right place and update the branches to PrologueMBB. 2297 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2298 2299 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2300 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2301 "Scratch register is live-in"); 2302 2303 if (MF.getFunction().isVarArg()) 2304 report_fatal_error("Segmented stacks do not support vararg functions."); 2305 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2306 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2307 !STI.isTargetDragonFly()) 2308 report_fatal_error("Segmented stacks not supported on this platform."); 2309 2310 // Eventually StackSize will be calculated by a link-time pass; which will 2311 // also decide whether checking code needs to be injected into this particular 2312 // prologue. 2313 StackSize = MFI.getStackSize(); 2314 2315 // Do not generate a prologue for leaf functions with a stack of size zero. 2316 // For non-leaf functions we have to allow for the possibility that the 2317 // callis to a non-split function, as in PR37807. This function could also 2318 // take the address of a non-split function. When the linker tries to adjust 2319 // its non-existent prologue, it would fail with an error. Mark the object 2320 // file so that such failures are not errors. See this Go language bug-report 2321 // https://go-review.googlesource.com/c/go/+/148819/ 2322 if (StackSize == 0 && !MFI.hasTailCall()) { 2323 MF.getMMI().setHasNosplitStack(true); 2324 return; 2325 } 2326 2327 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2328 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2329 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2330 bool IsNested = false; 2331 2332 // We need to know if the function has a nest argument only in 64 bit mode. 2333 if (Is64Bit) 2334 IsNested = HasNestArgument(&MF); 2335 2336 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2337 // allocMBB needs to be last (terminating) instruction. 2338 2339 for (const auto &LI : PrologueMBB.liveins()) { 2340 allocMBB->addLiveIn(LI); 2341 checkMBB->addLiveIn(LI); 2342 } 2343 2344 if (IsNested) 2345 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2346 2347 MF.push_front(allocMBB); 2348 MF.push_front(checkMBB); 2349 2350 // When the frame size is less than 256 we just compare the stack 2351 // boundary directly to the value of the stack pointer, per gcc. 2352 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2353 2354 // Read the limit off the current stacklet off the stack_guard location. 2355 if (Is64Bit) { 2356 if (STI.isTargetLinux()) { 2357 TlsReg = X86::FS; 2358 TlsOffset = IsLP64 ? 0x70 : 0x40; 2359 } else if (STI.isTargetDarwin()) { 2360 TlsReg = X86::GS; 2361 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2362 } else if (STI.isTargetWin64()) { 2363 TlsReg = X86::GS; 2364 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2365 } else if (STI.isTargetFreeBSD()) { 2366 TlsReg = X86::FS; 2367 TlsOffset = 0x18; 2368 } else if (STI.isTargetDragonFly()) { 2369 TlsReg = X86::FS; 2370 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2371 } else { 2372 report_fatal_error("Segmented stacks not supported on this platform."); 2373 } 2374 2375 if (CompareStackPointer) 2376 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2377 else 2378 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2379 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2380 2381 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2382 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2383 } else { 2384 if (STI.isTargetLinux()) { 2385 TlsReg = X86::GS; 2386 TlsOffset = 0x30; 2387 } else if (STI.isTargetDarwin()) { 2388 TlsReg = X86::GS; 2389 TlsOffset = 0x48 + 90*4; 2390 } else if (STI.isTargetWin32()) { 2391 TlsReg = X86::FS; 2392 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2393 } else if (STI.isTargetDragonFly()) { 2394 TlsReg = X86::FS; 2395 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2396 } else if (STI.isTargetFreeBSD()) { 2397 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2398 } else { 2399 report_fatal_error("Segmented stacks not supported on this platform."); 2400 } 2401 2402 if (CompareStackPointer) 2403 ScratchReg = X86::ESP; 2404 else 2405 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2406 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2407 2408 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2409 STI.isTargetDragonFly()) { 2410 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2411 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2412 } else if (STI.isTargetDarwin()) { 2413 2414 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2415 unsigned ScratchReg2; 2416 bool SaveScratch2; 2417 if (CompareStackPointer) { 2418 // The primary scratch register is available for holding the TLS offset. 2419 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2420 SaveScratch2 = false; 2421 } else { 2422 // Need to use a second register to hold the TLS offset 2423 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2424 2425 // Unfortunately, with fastcc the second scratch register may hold an 2426 // argument. 2427 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2428 } 2429 2430 // If Scratch2 is live-in then it needs to be saved. 2431 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2432 "Scratch register is live-in and not saved"); 2433 2434 if (SaveScratch2) 2435 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2436 .addReg(ScratchReg2, RegState::Kill); 2437 2438 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2439 .addImm(TlsOffset); 2440 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2441 .addReg(ScratchReg) 2442 .addReg(ScratchReg2).addImm(1).addReg(0) 2443 .addImm(0) 2444 .addReg(TlsReg); 2445 2446 if (SaveScratch2) 2447 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2448 } 2449 } 2450 2451 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2452 // It jumps to normal execution of the function body. 2453 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2454 2455 // On 32 bit we first push the arguments size and then the frame size. On 64 2456 // bit, we pass the stack frame size in r10 and the argument size in r11. 2457 if (Is64Bit) { 2458 // Functions with nested arguments use R10, so it needs to be saved across 2459 // the call to _morestack 2460 2461 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2462 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2463 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2464 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2465 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2466 2467 if (IsNested) 2468 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2469 2470 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2471 .addImm(StackSize); 2472 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2473 .addImm(X86FI->getArgumentStackSize()); 2474 } else { 2475 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2476 .addImm(X86FI->getArgumentStackSize()); 2477 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2478 .addImm(StackSize); 2479 } 2480 2481 // __morestack is in libgcc 2482 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2483 // Under the large code model, we cannot assume that __morestack lives 2484 // within 2^31 bytes of the call site, so we cannot use pc-relative 2485 // addressing. We cannot perform the call via a temporary register, 2486 // as the rax register may be used to store the static chain, and all 2487 // other suitable registers may be either callee-save or used for 2488 // parameter passing. We cannot use the stack at this point either 2489 // because __morestack manipulates the stack directly. 2490 // 2491 // To avoid these issues, perform an indirect call via a read-only memory 2492 // location containing the address. 2493 // 2494 // This solution is not perfect, as it assumes that the .rodata section 2495 // is laid out within 2^31 bytes of each function body, but this seems 2496 // to be sufficient for JIT. 2497 // FIXME: Add retpoline support and remove the error here.. 2498 if (STI.useRetpolineIndirectCalls()) 2499 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2500 "code model and retpoline not yet implemented."); 2501 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2502 .addReg(X86::RIP) 2503 .addImm(0) 2504 .addReg(0) 2505 .addExternalSymbol("__morestack_addr") 2506 .addReg(0); 2507 MF.getMMI().setUsesMorestackAddr(true); 2508 } else { 2509 if (Is64Bit) 2510 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2511 .addExternalSymbol("__morestack"); 2512 else 2513 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2514 .addExternalSymbol("__morestack"); 2515 } 2516 2517 if (IsNested) 2518 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2519 else 2520 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2521 2522 allocMBB->addSuccessor(&PrologueMBB); 2523 2524 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2525 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2526 2527 #ifdef EXPENSIVE_CHECKS 2528 MF.verify(); 2529 #endif 2530 } 2531 2532 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2533 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2534 /// to fields it needs, through a named metadata node "hipe.literals" containing 2535 /// name-value pairs. 2536 static unsigned getHiPELiteral( 2537 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2538 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2539 MDNode *Node = HiPELiteralsMD->getOperand(i); 2540 if (Node->getNumOperands() != 2) continue; 2541 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2542 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2543 if (!NodeName || !NodeVal) continue; 2544 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2545 if (ValConst && NodeName->getString() == LiteralName) { 2546 return ValConst->getZExtValue(); 2547 } 2548 } 2549 2550 report_fatal_error("HiPE literal " + LiteralName 2551 + " required but not provided"); 2552 } 2553 2554 // Return true if there are no non-ehpad successors to MBB and there are no 2555 // non-meta instructions between MBBI and MBB.end(). 2556 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 2557 MachineBasicBlock::const_iterator MBBI) { 2558 return std::all_of( 2559 MBB.succ_begin(), MBB.succ_end(), 2560 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 2561 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 2562 return MI.isMetaInstruction(); 2563 }); 2564 } 2565 2566 /// Erlang programs may need a special prologue to handle the stack size they 2567 /// might need at runtime. That is because Erlang/OTP does not implement a C 2568 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2569 /// (for more information see Eric Stenman's Ph.D. thesis: 2570 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2571 /// 2572 /// CheckStack: 2573 /// temp0 = sp - MaxStack 2574 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2575 /// OldStart: 2576 /// ... 2577 /// IncStack: 2578 /// call inc_stack # doubles the stack space 2579 /// temp0 = sp - MaxStack 2580 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2581 void X86FrameLowering::adjustForHiPEPrologue( 2582 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2583 MachineFrameInfo &MFI = MF.getFrameInfo(); 2584 DebugLoc DL; 2585 2586 // To support shrink-wrapping we would need to insert the new blocks 2587 // at the right place and update the branches to PrologueMBB. 2588 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2589 2590 // HiPE-specific values 2591 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2592 ->getNamedMetadata("hipe.literals"); 2593 if (!HiPELiteralsMD) 2594 report_fatal_error( 2595 "Can't generate HiPE prologue without runtime parameters"); 2596 const unsigned HipeLeafWords 2597 = getHiPELiteral(HiPELiteralsMD, 2598 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2599 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2600 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2601 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2602 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2603 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2604 2605 assert(STI.isTargetLinux() && 2606 "HiPE prologue is only supported on Linux operating systems."); 2607 2608 // Compute the largest caller's frame that is needed to fit the callees' 2609 // frames. This 'MaxStack' is computed from: 2610 // 2611 // a) the fixed frame size, which is the space needed for all spilled temps, 2612 // b) outgoing on-stack parameter areas, and 2613 // c) the minimum stack space this function needs to make available for the 2614 // functions it calls (a tunable ABI property). 2615 if (MFI.hasCalls()) { 2616 unsigned MoreStackForCalls = 0; 2617 2618 for (auto &MBB : MF) { 2619 for (auto &MI : MBB) { 2620 if (!MI.isCall()) 2621 continue; 2622 2623 // Get callee operand. 2624 const MachineOperand &MO = MI.getOperand(0); 2625 2626 // Only take account of global function calls (no closures etc.). 2627 if (!MO.isGlobal()) 2628 continue; 2629 2630 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2631 if (!F) 2632 continue; 2633 2634 // Do not update 'MaxStack' for primitive and built-in functions 2635 // (encoded with names either starting with "erlang."/"bif_" or not 2636 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2637 // "_", such as the BIF "suspend_0") as they are executed on another 2638 // stack. 2639 if (F->getName().find("erlang.") != StringRef::npos || 2640 F->getName().find("bif_") != StringRef::npos || 2641 F->getName().find_first_of("._") == StringRef::npos) 2642 continue; 2643 2644 unsigned CalleeStkArity = 2645 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2646 if (HipeLeafWords - 1 > CalleeStkArity) 2647 MoreStackForCalls = std::max(MoreStackForCalls, 2648 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2649 } 2650 } 2651 MaxStack += MoreStackForCalls; 2652 } 2653 2654 // If the stack frame needed is larger than the guaranteed then runtime checks 2655 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2656 if (MaxStack > Guaranteed) { 2657 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2658 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2659 2660 for (const auto &LI : PrologueMBB.liveins()) { 2661 stackCheckMBB->addLiveIn(LI); 2662 incStackMBB->addLiveIn(LI); 2663 } 2664 2665 MF.push_front(incStackMBB); 2666 MF.push_front(stackCheckMBB); 2667 2668 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2669 unsigned LEAop, CMPop, CALLop; 2670 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2671 if (Is64Bit) { 2672 SPReg = X86::RSP; 2673 PReg = X86::RBP; 2674 LEAop = X86::LEA64r; 2675 CMPop = X86::CMP64rm; 2676 CALLop = X86::CALL64pcrel32; 2677 } else { 2678 SPReg = X86::ESP; 2679 PReg = X86::EBP; 2680 LEAop = X86::LEA32r; 2681 CMPop = X86::CMP32rm; 2682 CALLop = X86::CALLpcrel32; 2683 } 2684 2685 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2686 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2687 "HiPE prologue scratch register is live-in"); 2688 2689 // Create new MBB for StackCheck: 2690 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2691 SPReg, false, -MaxStack); 2692 // SPLimitOffset is in a fixed heap location (pointed by BP). 2693 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2694 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2695 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 2696 2697 // Create new MBB for IncStack: 2698 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2699 addExternalSymbol("inc_stack_0"); 2700 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2701 SPReg, false, -MaxStack); 2702 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2703 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2704 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 2705 2706 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2707 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2708 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2709 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2710 } 2711 #ifdef EXPENSIVE_CHECKS 2712 MF.verify(); 2713 #endif 2714 } 2715 2716 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2717 MachineBasicBlock::iterator MBBI, 2718 const DebugLoc &DL, 2719 int Offset) const { 2720 2721 if (Offset <= 0) 2722 return false; 2723 2724 if (Offset % SlotSize) 2725 return false; 2726 2727 int NumPops = Offset / SlotSize; 2728 // This is only worth it if we have at most 2 pops. 2729 if (NumPops != 1 && NumPops != 2) 2730 return false; 2731 2732 // Handle only the trivial case where the adjustment directly follows 2733 // a call. This is the most common one, anyway. 2734 if (MBBI == MBB.begin()) 2735 return false; 2736 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2737 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2738 return false; 2739 2740 unsigned Regs[2]; 2741 unsigned FoundRegs = 0; 2742 2743 auto &MRI = MBB.getParent()->getRegInfo(); 2744 auto RegMask = Prev->getOperand(1); 2745 2746 auto &RegClass = 2747 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2748 // Try to find up to NumPops free registers. 2749 for (auto Candidate : RegClass) { 2750 2751 // Poor man's liveness: 2752 // Since we're immediately after a call, any register that is clobbered 2753 // by the call and not defined by it can be considered dead. 2754 if (!RegMask.clobbersPhysReg(Candidate)) 2755 continue; 2756 2757 // Don't clobber reserved registers 2758 if (MRI.isReserved(Candidate)) 2759 continue; 2760 2761 bool IsDef = false; 2762 for (const MachineOperand &MO : Prev->implicit_operands()) { 2763 if (MO.isReg() && MO.isDef() && 2764 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2765 IsDef = true; 2766 break; 2767 } 2768 } 2769 2770 if (IsDef) 2771 continue; 2772 2773 Regs[FoundRegs++] = Candidate; 2774 if (FoundRegs == (unsigned)NumPops) 2775 break; 2776 } 2777 2778 if (FoundRegs == 0) 2779 return false; 2780 2781 // If we found only one free register, but need two, reuse the same one twice. 2782 while (FoundRegs < (unsigned)NumPops) 2783 Regs[FoundRegs++] = Regs[0]; 2784 2785 for (int i = 0; i < NumPops; ++i) 2786 BuildMI(MBB, MBBI, DL, 2787 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2788 2789 return true; 2790 } 2791 2792 MachineBasicBlock::iterator X86FrameLowering:: 2793 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2794 MachineBasicBlock::iterator I) const { 2795 bool reserveCallFrame = hasReservedCallFrame(MF); 2796 unsigned Opcode = I->getOpcode(); 2797 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 2798 DebugLoc DL = I->getDebugLoc(); 2799 uint64_t Amount = TII.getFrameSize(*I); 2800 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 2801 I = MBB.erase(I); 2802 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 2803 2804 if (!reserveCallFrame) { 2805 // If the stack pointer can be changed after prologue, turn the 2806 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 2807 // adjcallstackdown instruction into 'add ESP, <amt>' 2808 2809 // We need to keep the stack aligned properly. To do this, we round the 2810 // amount of space needed for the outgoing arguments up to the next 2811 // alignment boundary. 2812 unsigned StackAlign = getStackAlignment(); 2813 Amount = alignTo(Amount, StackAlign); 2814 2815 MachineModuleInfo &MMI = MF.getMMI(); 2816 const Function &F = MF.getFunction(); 2817 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2818 bool DwarfCFI = !WindowsCFI && 2819 (MMI.hasDebugInfo() || F.needsUnwindTableEntry()); 2820 2821 // If we have any exception handlers in this function, and we adjust 2822 // the SP before calls, we may need to indicate this to the unwinder 2823 // using GNU_ARGS_SIZE. Note that this may be necessary even when 2824 // Amount == 0, because the preceding function may have set a non-0 2825 // GNU_ARGS_SIZE. 2826 // TODO: We don't need to reset this between subsequent functions, 2827 // if it didn't change. 2828 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 2829 2830 if (HasDwarfEHHandlers && !isDestroy && 2831 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 2832 BuildCFI(MBB, InsertPos, DL, 2833 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 2834 2835 if (Amount == 0) 2836 return I; 2837 2838 // Factor out the amount that gets handled inside the sequence 2839 // (Pushes of argument for frame setup, callee pops for frame destroy) 2840 Amount -= InternalAmt; 2841 2842 // TODO: This is needed only if we require precise CFA. 2843 // If this is a callee-pop calling convention, emit a CFA adjust for 2844 // the amount the callee popped. 2845 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 2846 BuildCFI(MBB, InsertPos, DL, 2847 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 2848 2849 // Add Amount to SP to destroy a frame, or subtract to setup. 2850 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 2851 2852 if (StackAdjustment) { 2853 // Merge with any previous or following adjustment instruction. Note: the 2854 // instructions merged with here do not have CFI, so their stack 2855 // adjustments do not feed into CfaAdjustment. 2856 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 2857 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 2858 2859 if (StackAdjustment) { 2860 if (!(F.hasMinSize() && 2861 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 2862 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 2863 /*InEpilogue=*/false); 2864 } 2865 } 2866 2867 if (DwarfCFI && !hasFP(MF)) { 2868 // If we don't have FP, but need to generate unwind information, 2869 // we need to set the correct CFA offset after the stack adjustment. 2870 // How much we adjust the CFA offset depends on whether we're emitting 2871 // CFI only for EH purposes or for debugging. EH only requires the CFA 2872 // offset to be correct at each call site, while for debugging we want 2873 // it to be more precise. 2874 2875 int64_t CfaAdjustment = -StackAdjustment; 2876 // TODO: When not using precise CFA, we also need to adjust for the 2877 // InternalAmt here. 2878 if (CfaAdjustment) { 2879 BuildCFI(MBB, InsertPos, DL, 2880 MCCFIInstruction::createAdjustCfaOffset(nullptr, 2881 CfaAdjustment)); 2882 } 2883 } 2884 2885 return I; 2886 } 2887 2888 if (isDestroy && InternalAmt && !blockEndIsUnreachable(MBB, I)) { 2889 // If we are performing frame pointer elimination and if the callee pops 2890 // something off the stack pointer, add it back. We do this until we have 2891 // more advanced stack pointer tracking ability. 2892 // We are not tracking the stack pointer adjustment by the callee, so make 2893 // sure we restore the stack pointer immediately after the call, there may 2894 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions. 2895 MachineBasicBlock::iterator CI = I; 2896 MachineBasicBlock::iterator B = MBB.begin(); 2897 while (CI != B && !std::prev(CI)->isCall()) 2898 --CI; 2899 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 2900 } 2901 2902 return I; 2903 } 2904 2905 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 2906 assert(MBB.getParent() && "Block is not attached to a function!"); 2907 const MachineFunction &MF = *MBB.getParent(); 2908 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 2909 } 2910 2911 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 2912 assert(MBB.getParent() && "Block is not attached to a function!"); 2913 2914 // Win64 has strict requirements in terms of epilogue and we are 2915 // not taking a chance at messing with them. 2916 // I.e., unless this block is already an exit block, we can't use 2917 // it as an epilogue. 2918 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 2919 return false; 2920 2921 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 2922 return true; 2923 2924 // If we cannot use LEA to adjust SP, we may need to use ADD, which 2925 // clobbers the EFLAGS. Check that we do not need to preserve it, 2926 // otherwise, conservatively assume this is not 2927 // safe to insert the epilogue here. 2928 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 2929 } 2930 2931 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2932 // If we may need to emit frameless compact unwind information, give 2933 // up as this is currently broken: PR25614. 2934 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 2935 // The lowering of segmented stack and HiPE only support entry blocks 2936 // as prologue blocks: PR26107. 2937 // This limitation may be lifted if we fix: 2938 // - adjustForSegmentedStacks 2939 // - adjustForHiPEPrologue 2940 MF.getFunction().getCallingConv() != CallingConv::HiPE && 2941 !MF.shouldSplitStack(); 2942 } 2943 2944 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 2945 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 2946 const DebugLoc &DL, bool RestoreSP) const { 2947 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 2948 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 2949 assert(STI.is32Bit() && !Uses64BitFramePtr && 2950 "restoring EBP/ESI on non-32-bit target"); 2951 2952 MachineFunction &MF = *MBB.getParent(); 2953 Register FramePtr = TRI->getFrameRegister(MF); 2954 Register BasePtr = TRI->getBaseRegister(); 2955 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 2956 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2957 MachineFrameInfo &MFI = MF.getFrameInfo(); 2958 2959 // FIXME: Don't set FrameSetup flag in catchret case. 2960 2961 int FI = FuncInfo.EHRegNodeFrameIndex; 2962 int EHRegSize = MFI.getObjectSize(FI); 2963 2964 if (RestoreSP) { 2965 // MOV32rm -EHRegSize(%ebp), %esp 2966 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 2967 X86::EBP, true, -EHRegSize) 2968 .setMIFlag(MachineInstr::FrameSetup); 2969 } 2970 2971 unsigned UsedReg; 2972 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 2973 int EndOffset = -EHRegOffset - EHRegSize; 2974 FuncInfo.EHRegNodeEndOffset = EndOffset; 2975 2976 if (UsedReg == FramePtr) { 2977 // ADD $offset, %ebp 2978 unsigned ADDri = getADDriOpcode(false, EndOffset); 2979 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 2980 .addReg(FramePtr) 2981 .addImm(EndOffset) 2982 .setMIFlag(MachineInstr::FrameSetup) 2983 ->getOperand(3) 2984 .setIsDead(); 2985 assert(EndOffset >= 0 && 2986 "end of registration object above normal EBP position!"); 2987 } else if (UsedReg == BasePtr) { 2988 // LEA offset(%ebp), %esi 2989 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 2990 FramePtr, false, EndOffset) 2991 .setMIFlag(MachineInstr::FrameSetup); 2992 // MOV32rm SavedEBPOffset(%esi), %ebp 2993 assert(X86FI->getHasSEHFramePtrSave()); 2994 int Offset = 2995 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 2996 assert(UsedReg == BasePtr); 2997 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 2998 UsedReg, true, Offset) 2999 .setMIFlag(MachineInstr::FrameSetup); 3000 } else { 3001 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3002 } 3003 return MBBI; 3004 } 3005 3006 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3007 return TRI->getSlotSize(); 3008 } 3009 3010 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) 3011 const { 3012 return TRI->getDwarfRegNum(StackPtr, true); 3013 } 3014 3015 namespace { 3016 // Struct used by orderFrameObjects to help sort the stack objects. 3017 struct X86FrameSortingObject { 3018 bool IsValid = false; // true if we care about this Object. 3019 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3020 unsigned ObjectSize = 0; // Size of Object in bytes. 3021 unsigned ObjectAlignment = 1; // Alignment of Object in bytes. 3022 unsigned ObjectNumUses = 0; // Object static number of uses. 3023 }; 3024 3025 // The comparison function we use for std::sort to order our local 3026 // stack symbols. The current algorithm is to use an estimated 3027 // "density". This takes into consideration the size and number of 3028 // uses each object has in order to roughly minimize code size. 3029 // So, for example, an object of size 16B that is referenced 5 times 3030 // will get higher priority than 4 4B objects referenced 1 time each. 3031 // It's not perfect and we may be able to squeeze a few more bytes out of 3032 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3033 // fringe end can have special consideration, given their size is less 3034 // important, etc.), but the algorithmic complexity grows too much to be 3035 // worth the extra gains we get. This gets us pretty close. 3036 // The final order leaves us with objects with highest priority going 3037 // at the end of our list. 3038 struct X86FrameSortingComparator { 3039 inline bool operator()(const X86FrameSortingObject &A, 3040 const X86FrameSortingObject &B) { 3041 uint64_t DensityAScaled, DensityBScaled; 3042 3043 // For consistency in our comparison, all invalid objects are placed 3044 // at the end. This also allows us to stop walking when we hit the 3045 // first invalid item after it's all sorted. 3046 if (!A.IsValid) 3047 return false; 3048 if (!B.IsValid) 3049 return true; 3050 3051 // The density is calculated by doing : 3052 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3053 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3054 // Since this approach may cause inconsistencies in 3055 // the floating point <, >, == comparisons, depending on the floating 3056 // point model with which the compiler was built, we're going 3057 // to scale both sides by multiplying with 3058 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3059 // the division and, with it, the need for any floating point 3060 // arithmetic. 3061 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3062 static_cast<uint64_t>(B.ObjectSize); 3063 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3064 static_cast<uint64_t>(A.ObjectSize); 3065 3066 // If the two densities are equal, prioritize highest alignment 3067 // objects. This allows for similar alignment objects 3068 // to be packed together (given the same density). 3069 // There's room for improvement here, also, since we can pack 3070 // similar alignment (different density) objects next to each 3071 // other to save padding. This will also require further 3072 // complexity/iterations, and the overall gain isn't worth it, 3073 // in general. Something to keep in mind, though. 3074 if (DensityAScaled == DensityBScaled) 3075 return A.ObjectAlignment < B.ObjectAlignment; 3076 3077 return DensityAScaled < DensityBScaled; 3078 } 3079 }; 3080 } // namespace 3081 3082 // Order the symbols in the local stack. 3083 // We want to place the local stack objects in some sort of sensible order. 3084 // The heuristic we use is to try and pack them according to static number 3085 // of uses and size of object in order to minimize code size. 3086 void X86FrameLowering::orderFrameObjects( 3087 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3088 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3089 3090 // Don't waste time if there's nothing to do. 3091 if (ObjectsToAllocate.empty()) 3092 return; 3093 3094 // Create an array of all MFI objects. We won't need all of these 3095 // objects, but we're going to create a full array of them to make 3096 // it easier to index into when we're counting "uses" down below. 3097 // We want to be able to easily/cheaply access an object by simply 3098 // indexing into it, instead of having to search for it every time. 3099 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3100 3101 // Walk the objects we care about and mark them as such in our working 3102 // struct. 3103 for (auto &Obj : ObjectsToAllocate) { 3104 SortingObjects[Obj].IsValid = true; 3105 SortingObjects[Obj].ObjectIndex = Obj; 3106 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj); 3107 // Set the size. 3108 int ObjectSize = MFI.getObjectSize(Obj); 3109 if (ObjectSize == 0) 3110 // Variable size. Just use 4. 3111 SortingObjects[Obj].ObjectSize = 4; 3112 else 3113 SortingObjects[Obj].ObjectSize = ObjectSize; 3114 } 3115 3116 // Count the number of uses for each object. 3117 for (auto &MBB : MF) { 3118 for (auto &MI : MBB) { 3119 if (MI.isDebugInstr()) 3120 continue; 3121 for (const MachineOperand &MO : MI.operands()) { 3122 // Check to see if it's a local stack symbol. 3123 if (!MO.isFI()) 3124 continue; 3125 int Index = MO.getIndex(); 3126 // Check to see if it falls within our range, and is tagged 3127 // to require ordering. 3128 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3129 SortingObjects[Index].IsValid) 3130 SortingObjects[Index].ObjectNumUses++; 3131 } 3132 } 3133 } 3134 3135 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3136 // info). 3137 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3138 3139 // Now modify the original list to represent the final order that 3140 // we want. The order will depend on whether we're going to access them 3141 // from the stack pointer or the frame pointer. For SP, the list should 3142 // end up with the END containing objects that we want with smaller offsets. 3143 // For FP, it should be flipped. 3144 int i = 0; 3145 for (auto &Obj : SortingObjects) { 3146 // All invalid items are sorted at the end, so it's safe to stop. 3147 if (!Obj.IsValid) 3148 break; 3149 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3150 } 3151 3152 // Flip it if we're accessing off of the FP. 3153 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3154 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3155 } 3156 3157 3158 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3159 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3160 unsigned Offset = 16; 3161 // RBP is immediately pushed. 3162 Offset += SlotSize; 3163 // All callee-saved registers are then pushed. 3164 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3165 // Every funclet allocates enough stack space for the largest outgoing call. 3166 Offset += getWinEHFuncletFrameSize(MF); 3167 return Offset; 3168 } 3169 3170 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3171 MachineFunction &MF, RegScavenger *RS) const { 3172 // Mark the function as not having WinCFI. We will set it back to true in 3173 // emitPrologue if it gets called and emits CFI. 3174 MF.setHasWinCFI(false); 3175 3176 // If this function isn't doing Win64-style C++ EH, we don't need to do 3177 // anything. 3178 const Function &F = MF.getFunction(); 3179 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3180 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3181 return; 3182 3183 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3184 // relative to RSP after the prologue. Find the offset of the last fixed 3185 // object, so that we can allocate a slot immediately following it. If there 3186 // were no fixed objects, use offset -SlotSize, which is immediately after the 3187 // return address. Fixed objects have negative frame indices. 3188 MachineFrameInfo &MFI = MF.getFrameInfo(); 3189 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3190 int64_t MinFixedObjOffset = -SlotSize; 3191 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3192 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3193 3194 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3195 for (WinEHHandlerType &H : TBME.HandlerArray) { 3196 int FrameIndex = H.CatchObj.FrameIndex; 3197 if (FrameIndex != INT_MAX) { 3198 // Ensure alignment. 3199 unsigned Align = MFI.getObjectAlignment(FrameIndex); 3200 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3201 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3202 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3203 } 3204 } 3205 } 3206 3207 // Ensure alignment. 3208 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3209 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3210 int UnwindHelpFI = 3211 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3212 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3213 3214 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3215 // other frame setup instructions. 3216 MachineBasicBlock &MBB = MF.front(); 3217 auto MBBI = MBB.begin(); 3218 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3219 ++MBBI; 3220 3221 DebugLoc DL = MBB.findDebugLoc(MBBI); 3222 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3223 UnwindHelpFI) 3224 .addImm(-2); 3225 } 3226