xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FrameLowering.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include <cstdlib>
34 
35 using namespace llvm;
36 
37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
38                                    MaybeAlign StackAlignOverride)
39     : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
40                           STI.is64Bit() ? -8 : -4),
41       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
42   // Cache a bunch of frame-related predicates for this subtarget.
43   SlotSize = TRI->getSlotSize();
44   Is64Bit = STI.is64Bit();
45   IsLP64 = STI.isTarget64BitLP64();
46   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
47   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
48   StackPtr = TRI->getStackRegister();
49 }
50 
51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
52   return !MF.getFrameInfo().hasVarSizedObjects() &&
53          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
54 }
55 
56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
57 /// call frame pseudos can be simplified.  Having a FP, as in the default
58 /// implementation, is not sufficient here since we can't always use it.
59 /// Use a more nuanced condition.
60 bool
61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
62   return hasReservedCallFrame(MF) ||
63          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
64          TRI->hasBasePointer(MF);
65 }
66 
67 // needsFrameIndexResolution - Do we need to perform FI resolution for
68 // this function. Normally, this is required only when the function
69 // has any stack objects. However, FI resolution actually has another job,
70 // not apparent from the title - it resolves callframesetup/destroy
71 // that were not simplified earlier.
72 // So, this is required for x86 functions that have push sequences even
73 // when there are no stack objects.
74 bool
75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
76   return MF.getFrameInfo().hasStackObjects() ||
77          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
78 }
79 
80 /// hasFP - Return true if the specified function should have a dedicated frame
81 /// pointer register.  This is true if the function has variable sized allocas
82 /// or if frame pointer elimination is disabled.
83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
84   const MachineFrameInfo &MFI = MF.getFrameInfo();
85   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
86           TRI->needsStackRealignment(MF) ||
87           MFI.hasVarSizedObjects() ||
88           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
89           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
90           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
91           MFI.hasStackMap() || MFI.hasPatchPoint() ||
92           MFI.hasCopyImplyingStackAdjustment());
93 }
94 
95 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
96   if (IsLP64) {
97     if (isInt<8>(Imm))
98       return X86::SUB64ri8;
99     return X86::SUB64ri32;
100   } else {
101     if (isInt<8>(Imm))
102       return X86::SUB32ri8;
103     return X86::SUB32ri;
104   }
105 }
106 
107 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
108   if (IsLP64) {
109     if (isInt<8>(Imm))
110       return X86::ADD64ri8;
111     return X86::ADD64ri32;
112   } else {
113     if (isInt<8>(Imm))
114       return X86::ADD32ri8;
115     return X86::ADD32ri;
116   }
117 }
118 
119 static unsigned getSUBrrOpcode(unsigned isLP64) {
120   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
121 }
122 
123 static unsigned getADDrrOpcode(unsigned isLP64) {
124   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
125 }
126 
127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
128   if (IsLP64) {
129     if (isInt<8>(Imm))
130       return X86::AND64ri8;
131     return X86::AND64ri32;
132   }
133   if (isInt<8>(Imm))
134     return X86::AND32ri8;
135   return X86::AND32ri;
136 }
137 
138 static unsigned getLEArOpcode(unsigned IsLP64) {
139   return IsLP64 ? X86::LEA64r : X86::LEA32r;
140 }
141 
142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
143 /// when it reaches the "return" instruction. We can then pop a stack object
144 /// to this register without worry about clobbering it.
145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
146                                        MachineBasicBlock::iterator &MBBI,
147                                        const X86RegisterInfo *TRI,
148                                        bool Is64Bit) {
149   const MachineFunction *MF = MBB.getParent();
150   if (MF->callsEHReturn())
151     return 0;
152 
153   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
154 
155   if (MBBI == MBB.end())
156     return 0;
157 
158   switch (MBBI->getOpcode()) {
159   default: return 0;
160   case TargetOpcode::PATCHABLE_RET:
161   case X86::RET:
162   case X86::RETL:
163   case X86::RETQ:
164   case X86::RETIL:
165   case X86::RETIQ:
166   case X86::TCRETURNdi:
167   case X86::TCRETURNri:
168   case X86::TCRETURNmi:
169   case X86::TCRETURNdi64:
170   case X86::TCRETURNri64:
171   case X86::TCRETURNmi64:
172   case X86::EH_RETURN:
173   case X86::EH_RETURN64: {
174     SmallSet<uint16_t, 8> Uses;
175     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176       MachineOperand &MO = MBBI->getOperand(i);
177       if (!MO.isReg() || MO.isDef())
178         continue;
179       Register Reg = MO.getReg();
180       if (!Reg)
181         continue;
182       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183         Uses.insert(*AI);
184     }
185 
186     for (auto CS : AvailableRegs)
187       if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
188           CS != X86::ESP)
189         return CS;
190   }
191   }
192 
193   return 0;
194 }
195 
196 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
197   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
198     unsigned Reg = RegMask.PhysReg;
199 
200     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201         Reg == X86::AH || Reg == X86::AL)
202       return true;
203   }
204 
205   return false;
206 }
207 
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214   for (const MachineInstr &MI : MBB.terminators()) {
215     bool BreakNext = false;
216     for (const MachineOperand &MO : MI.operands()) {
217       if (!MO.isReg())
218         continue;
219       Register Reg = MO.getReg();
220       if (Reg != X86::EFLAGS)
221         continue;
222 
223       // This terminator needs an eflags that is not defined
224       // by a previous another terminator:
225       // EFLAGS is live-in of the region composed by the terminators.
226       if (!MO.isDef())
227         return true;
228       // This terminator defines the eflags, i.e., we don't need to preserve it.
229       // However, we still need to check this specific terminator does not
230       // read a live-in value.
231       BreakNext = true;
232     }
233     // We found a definition of the eflags, no need to preserve them.
234     if (BreakNext)
235       return false;
236   }
237 
238   // None of the terminators use or define the eflags.
239   // Check if they are live-out, that would imply we need to preserve them.
240   for (const MachineBasicBlock *Succ : MBB.successors())
241     if (Succ->isLiveIn(X86::EFLAGS))
242       return true;
243 
244   return false;
245 }
246 
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250                                     MachineBasicBlock::iterator &MBBI,
251                                     const DebugLoc &DL,
252                                     int64_t NumBytes, bool InEpilogue) const {
253   bool isSub = NumBytes < 0;
254   uint64_t Offset = isSub ? -NumBytes : NumBytes;
255   MachineInstr::MIFlag Flag =
256       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
257 
258   uint64_t Chunk = (1LL << 31) - 1;
259 
260   if (Offset > Chunk) {
261     // Rather than emit a long series of instructions for large offsets,
262     // load the offset into a register and do one sub/add
263     unsigned Reg = 0;
264     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
265 
266     if (isSub && !isEAXLiveIn(MBB))
267       Reg = Rax;
268     else
269       Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
270 
271     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272     unsigned AddSubRROpc =
273         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
274     if (Reg) {
275       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
276           .addImm(Offset)
277           .setMIFlag(Flag);
278       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
279                              .addReg(StackPtr)
280                              .addReg(Reg);
281       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
282       return;
283     } else if (Offset > 8 * Chunk) {
284       // If we would need more than 8 add or sub instructions (a >16GB stack
285       // frame), it's worth spilling RAX to materialize this immediate.
286       //   pushq %rax
287       //   movabsq +-$Offset+-SlotSize, %rax
288       //   addq %rsp, %rax
289       //   xchg %rax, (%rsp)
290       //   movq (%rsp), %rsp
291       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
292       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
293           .addReg(Rax, RegState::Kill)
294           .setMIFlag(Flag);
295       // Subtract is not commutative, so negate the offset and always use add.
296       // Subtract 8 less and add 8 more to account for the PUSH we just did.
297       if (isSub)
298         Offset = -(Offset - SlotSize);
299       else
300         Offset = Offset + SlotSize;
301       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
302           .addImm(Offset)
303           .setMIFlag(Flag);
304       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
305                              .addReg(Rax)
306                              .addReg(StackPtr);
307       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308       // Exchange the new SP in RAX with the top of the stack.
309       addRegOffset(
310           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
311           StackPtr, false, 0);
312       // Load new SP from the top of the stack into RSP.
313       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
314                    StackPtr, false, 0);
315       return;
316     }
317   }
318 
319   while (Offset) {
320     uint64_t ThisVal = std::min(Offset, Chunk);
321     if (ThisVal == SlotSize) {
322       // Use push / pop for slot sized adjustments as a size optimization. We
323       // need to find a dead register when using pop.
324       unsigned Reg = isSub
325         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
326         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
327       if (Reg) {
328         unsigned Opc = isSub
329           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
330           : (Is64Bit ? X86::POP64r  : X86::POP32r);
331         BuildMI(MBB, MBBI, DL, TII.get(Opc))
332             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
333             .setMIFlag(Flag);
334         Offset -= ThisVal;
335         continue;
336       }
337     }
338 
339     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
340         .setMIFlag(Flag);
341 
342     Offset -= ThisVal;
343   }
344 }
345 
346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
347     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
348     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
349   assert(Offset != 0 && "zero offset stack adjustment requested");
350 
351   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
352   // is tricky.
353   bool UseLEA;
354   if (!InEpilogue) {
355     // Check if inserting the prologue at the beginning
356     // of MBB would require to use LEA operations.
357     // We need to use LEA operations if EFLAGS is live in, because
358     // it means an instruction will read it before it gets defined.
359     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
360   } else {
361     // If we can use LEA for SP but we shouldn't, check that none
362     // of the terminators uses the eflags. Otherwise we will insert
363     // a ADD that will redefine the eflags and break the condition.
364     // Alternatively, we could move the ADD, but this may not be possible
365     // and is an optimization anyway.
366     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
367     if (UseLEA && !STI.useLeaForSP())
368       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
369     // If that assert breaks, that means we do not do the right thing
370     // in canUseAsEpilogue.
371     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
372            "We shouldn't have allowed this insertion point");
373   }
374 
375   MachineInstrBuilder MI;
376   if (UseLEA) {
377     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
378                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
379                               StackPtr),
380                       StackPtr, false, Offset);
381   } else {
382     bool IsSub = Offset < 0;
383     uint64_t AbsOffset = IsSub ? -Offset : Offset;
384     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
385                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
386     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
387              .addReg(StackPtr)
388              .addImm(AbsOffset);
389     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
390   }
391   return MI;
392 }
393 
394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
395                                      MachineBasicBlock::iterator &MBBI,
396                                      bool doMergeWithPrevious) const {
397   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
398       (!doMergeWithPrevious && MBBI == MBB.end()))
399     return 0;
400 
401   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
402 
403   PI = skipDebugInstructionsBackward(PI, MBB.begin());
404   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405   // instruction, and that there are no DBG_VALUE or other instructions between
406   // ADD/SUB/LEA and its corresponding CFI instruction.
407   /* TODO: Add support for the case where there are multiple CFI instructions
408     below the ADD/SUB/LEA, e.g.:
409     ...
410     add
411     cfi_def_cfa_offset
412     cfi_offset
413     ...
414   */
415   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
416     PI = std::prev(PI);
417 
418   unsigned Opc = PI->getOpcode();
419   int Offset = 0;
420 
421   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
422        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
423       PI->getOperand(0).getReg() == StackPtr){
424     assert(PI->getOperand(1).getReg() == StackPtr);
425     Offset = PI->getOperand(2).getImm();
426   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
427              PI->getOperand(0).getReg() == StackPtr &&
428              PI->getOperand(1).getReg() == StackPtr &&
429              PI->getOperand(2).getImm() == 1 &&
430              PI->getOperand(3).getReg() == X86::NoRegister &&
431              PI->getOperand(5).getReg() == X86::NoRegister) {
432     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433     Offset = PI->getOperand(4).getImm();
434   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
435               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
436              PI->getOperand(0).getReg() == StackPtr) {
437     assert(PI->getOperand(1).getReg() == StackPtr);
438     Offset = -PI->getOperand(2).getImm();
439   } else
440     return 0;
441 
442   PI = MBB.erase(PI);
443   if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
444   if (!doMergeWithPrevious)
445     MBBI = skipDebugInstructionsForward(PI, MBB.end());
446 
447   return Offset;
448 }
449 
450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
451                                 MachineBasicBlock::iterator MBBI,
452                                 const DebugLoc &DL,
453                                 const MCCFIInstruction &CFIInst) const {
454   MachineFunction &MF = *MBB.getParent();
455   unsigned CFIIndex = MF.addFrameInst(CFIInst);
456   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
457       .addCFIIndex(CFIIndex);
458 }
459 
460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
462     const DebugLoc &DL) const {
463   MachineFunction &MF = *MBB.getParent();
464   MachineFrameInfo &MFI = MF.getFrameInfo();
465   MachineModuleInfo &MMI = MF.getMMI();
466   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
467 
468   // Add callee saved registers to move list.
469   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
470   if (CSI.empty()) return;
471 
472   // Calculate offsets.
473   for (std::vector<CalleeSavedInfo>::const_iterator
474          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
475     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
476     unsigned Reg = I->getReg();
477 
478     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479     BuildCFI(MBB, MBBI, DL,
480              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
481   }
482 }
483 
484 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
485                                       MachineBasicBlock &MBB,
486                                       MachineBasicBlock::iterator MBBI,
487                                       const DebugLoc &DL, bool InProlog) const {
488   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
489   if (STI.isTargetWindowsCoreCLR()) {
490     if (InProlog) {
491       emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
492     } else {
493       emitStackProbeInline(MF, MBB, MBBI, DL, false);
494     }
495   } else {
496     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
497   }
498 }
499 
500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
501                                         MachineBasicBlock &PrologMBB) const {
502   const StringRef ChkStkStubSymbol = "__chkstk_stub";
503   MachineInstr *ChkStkStub = nullptr;
504 
505   for (MachineInstr &MI : PrologMBB) {
506     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
507         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
508       ChkStkStub = &MI;
509       break;
510     }
511   }
512 
513   if (ChkStkStub != nullptr) {
514     assert(!ChkStkStub->isBundled() &&
515            "Not expecting bundled instructions here");
516     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
517     assert(std::prev(MBBI) == ChkStkStub &&
518            "MBBI expected after __chkstk_stub.");
519     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
520     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
521     ChkStkStub->eraseFromParent();
522   }
523 }
524 
525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
526                                             MachineBasicBlock &MBB,
527                                             MachineBasicBlock::iterator MBBI,
528                                             const DebugLoc &DL,
529                                             bool InProlog) const {
530   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
531   assert(STI.is64Bit() && "different expansion needed for 32 bit");
532   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533   const TargetInstrInfo &TII = *STI.getInstrInfo();
534   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
535 
536   // RAX contains the number of bytes of desired stack adjustment.
537   // The handling here assumes this value has already been updated so as to
538   // maintain stack alignment.
539   //
540   // We need to exit with RSP modified by this amount and execute suitable
541   // page touches to notify the OS that we're growing the stack responsibly.
542   // All stack probing must be done without modifying RSP.
543   //
544   // MBB:
545   //    SizeReg = RAX;
546   //    ZeroReg = 0
547   //    CopyReg = RSP
548   //    Flags, TestReg = CopyReg - SizeReg
549   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550   //    LimitReg = gs magic thread env access
551   //    if FinalReg >= LimitReg goto ContinueMBB
552   // RoundBB:
553   //    RoundReg = page address of FinalReg
554   // LoopMBB:
555   //    LoopReg = PHI(LimitReg,ProbeReg)
556   //    ProbeReg = LoopReg - PageSize
557   //    [ProbeReg] = 0
558   //    if (ProbeReg > RoundReg) goto LoopMBB
559   // ContinueMBB:
560   //    RSP = RSP - RAX
561   //    [rest of original MBB]
562 
563   // Set up the new basic blocks
564   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
565   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
567 
568   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
569   MF.insert(MBBIter, RoundMBB);
570   MF.insert(MBBIter, LoopMBB);
571   MF.insert(MBBIter, ContinueMBB);
572 
573   // Split MBB and move the tail portion down to ContinueMBB.
574   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
575   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
576   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
577 
578   // Some useful constants
579   const int64_t ThreadEnvironmentStackLimit = 0x10;
580   const int64_t PageSize = 0x1000;
581   const int64_t PageMask = ~(PageSize - 1);
582 
583   // Registers we need. For the normal case we use virtual
584   // registers. For the prolog expansion we use RAX, RCX and RDX.
585   MachineRegisterInfo &MRI = MF.getRegInfo();
586   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
587   const Register SizeReg = InProlog ? X86::RAX
588                                     : MRI.createVirtualRegister(RegClass),
589                  ZeroReg = InProlog ? X86::RCX
590                                     : MRI.createVirtualRegister(RegClass),
591                  CopyReg = InProlog ? X86::RDX
592                                     : MRI.createVirtualRegister(RegClass),
593                  TestReg = InProlog ? X86::RDX
594                                     : MRI.createVirtualRegister(RegClass),
595                  FinalReg = InProlog ? X86::RDX
596                                      : MRI.createVirtualRegister(RegClass),
597                  RoundedReg = InProlog ? X86::RDX
598                                        : MRI.createVirtualRegister(RegClass),
599                  LimitReg = InProlog ? X86::RCX
600                                      : MRI.createVirtualRegister(RegClass),
601                  JoinReg = InProlog ? X86::RCX
602                                     : MRI.createVirtualRegister(RegClass),
603                  ProbeReg = InProlog ? X86::RCX
604                                      : MRI.createVirtualRegister(RegClass);
605 
606   // SP-relative offsets where we can save RCX and RDX.
607   int64_t RCXShadowSlot = 0;
608   int64_t RDXShadowSlot = 0;
609 
610   // If inlining in the prolog, save RCX and RDX.
611   if (InProlog) {
612     // Compute the offsets. We need to account for things already
613     // pushed onto the stack at this point: return address, frame
614     // pointer (if used), and callee saves.
615     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
616     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
617     const bool HasFP = hasFP(MF);
618 
619     // Check if we need to spill RCX and/or RDX.
620     // Here we assume that no earlier prologue instruction changes RCX and/or
621     // RDX, so checking the block live-ins is enough.
622     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
623     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
624     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
625     // Assign the initial slot to both registers, then change RDX's slot if both
626     // need to be spilled.
627     if (IsRCXLiveIn)
628       RCXShadowSlot = InitSlot;
629     if (IsRDXLiveIn)
630       RDXShadowSlot = InitSlot;
631     if (IsRDXLiveIn && IsRCXLiveIn)
632       RDXShadowSlot += 8;
633     // Emit the saves if needed.
634     if (IsRCXLiveIn)
635       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
636                    RCXShadowSlot)
637           .addReg(X86::RCX);
638     if (IsRDXLiveIn)
639       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
640                    RDXShadowSlot)
641           .addReg(X86::RDX);
642   } else {
643     // Not in the prolog. Copy RAX to a virtual reg.
644     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
645   }
646 
647   // Add code to MBB to check for overflow and set the new target stack pointer
648   // to zero if so.
649   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
650       .addReg(ZeroReg, RegState::Undef)
651       .addReg(ZeroReg, RegState::Undef);
652   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
653   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
654       .addReg(CopyReg)
655       .addReg(SizeReg);
656   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
657       .addReg(TestReg)
658       .addReg(ZeroReg)
659       .addImm(X86::COND_B);
660 
661   // FinalReg now holds final stack pointer value, or zero if
662   // allocation would overflow. Compare against the current stack
663   // limit from the thread environment block. Note this limit is the
664   // lowest touched page on the stack, not the point at which the OS
665   // will cause an overflow exception, so this is just an optimization
666   // to avoid unnecessarily touching pages that are below the current
667   // SP but already committed to the stack by the OS.
668   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
669       .addReg(0)
670       .addImm(1)
671       .addReg(0)
672       .addImm(ThreadEnvironmentStackLimit)
673       .addReg(X86::GS);
674   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
675   // Jump if the desired stack pointer is at or above the stack limit.
676   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
677 
678   // Add code to roundMBB to round the final stack pointer to a page boundary.
679   RoundMBB->addLiveIn(FinalReg);
680   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
681       .addReg(FinalReg)
682       .addImm(PageMask);
683   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
684 
685   // LimitReg now holds the current stack limit, RoundedReg page-rounded
686   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
687   // and probe until we reach RoundedReg.
688   if (!InProlog) {
689     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
690         .addReg(LimitReg)
691         .addMBB(RoundMBB)
692         .addReg(ProbeReg)
693         .addMBB(LoopMBB);
694   }
695 
696   LoopMBB->addLiveIn(JoinReg);
697   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
698                false, -PageSize);
699 
700   // Probe by storing a byte onto the stack.
701   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
702       .addReg(ProbeReg)
703       .addImm(1)
704       .addReg(0)
705       .addImm(0)
706       .addReg(0)
707       .addImm(0);
708 
709   LoopMBB->addLiveIn(RoundedReg);
710   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
711       .addReg(RoundedReg)
712       .addReg(ProbeReg);
713   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
714 
715   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
716 
717   // If in prolog, restore RDX and RCX.
718   if (InProlog) {
719     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
720       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
721                            TII.get(X86::MOV64rm), X86::RCX),
722                    X86::RSP, false, RCXShadowSlot);
723     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
724       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
725                            TII.get(X86::MOV64rm), X86::RDX),
726                    X86::RSP, false, RDXShadowSlot);
727   }
728 
729   // Now that the probing is done, add code to continueMBB to update
730   // the stack pointer for real.
731   ContinueMBB->addLiveIn(SizeReg);
732   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
733       .addReg(X86::RSP)
734       .addReg(SizeReg);
735 
736   // Add the control flow edges we need.
737   MBB.addSuccessor(ContinueMBB);
738   MBB.addSuccessor(RoundMBB);
739   RoundMBB->addSuccessor(LoopMBB);
740   LoopMBB->addSuccessor(ContinueMBB);
741   LoopMBB->addSuccessor(LoopMBB);
742 
743   // Mark all the instructions added to the prolog as frame setup.
744   if (InProlog) {
745     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
746       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
747     }
748     for (MachineInstr &MI : *RoundMBB) {
749       MI.setFlag(MachineInstr::FrameSetup);
750     }
751     for (MachineInstr &MI : *LoopMBB) {
752       MI.setFlag(MachineInstr::FrameSetup);
753     }
754     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
755          CMBBI != ContinueMBBI; ++CMBBI) {
756       CMBBI->setFlag(MachineInstr::FrameSetup);
757     }
758   }
759 }
760 
761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
762                                           MachineBasicBlock &MBB,
763                                           MachineBasicBlock::iterator MBBI,
764                                           const DebugLoc &DL,
765                                           bool InProlog) const {
766   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
767 
768   // FIXME: Add retpoline support and remove this.
769   if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
770     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
771                        "code model and retpoline not yet implemented.");
772 
773   unsigned CallOp;
774   if (Is64Bit)
775     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
776   else
777     CallOp = X86::CALLpcrel32;
778 
779   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
780 
781   MachineInstrBuilder CI;
782   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
783 
784   // All current stack probes take AX and SP as input, clobber flags, and
785   // preserve all registers. x86_64 probes leave RSP unmodified.
786   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
787     // For the large code model, we have to call through a register. Use R11,
788     // as it is scratch in all supported calling conventions.
789     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
790         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
791     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
792   } else {
793     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
794         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
795   }
796 
797   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
798   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
799   CI.addReg(AX, RegState::Implicit)
800       .addReg(SP, RegState::Implicit)
801       .addReg(AX, RegState::Define | RegState::Implicit)
802       .addReg(SP, RegState::Define | RegState::Implicit)
803       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
804 
805   if (STI.isTargetWin64() || !STI.isOSWindows()) {
806     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
807     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
808     // themselves. They also does not clobber %rax so we can reuse it when
809     // adjusting %rsp.
810     // All other platforms do not specify a particular ABI for the stack probe
811     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
812     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
813         .addReg(SP)
814         .addReg(AX);
815   }
816 
817   if (InProlog) {
818     // Apply the frame setup flag to all inserted instrs.
819     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
820       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
821   }
822 }
823 
824 void X86FrameLowering::emitStackProbeInlineStub(
825     MachineFunction &MF, MachineBasicBlock &MBB,
826     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
827 
828   assert(InProlog && "ChkStkStub called outside prolog!");
829 
830   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
831       .addExternalSymbol("__chkstk_stub");
832 }
833 
834 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
835   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
836   // and might require smaller successive adjustments.
837   const uint64_t Win64MaxSEHOffset = 128;
838   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
839   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
840   return SEHFrameOffset & -16;
841 }
842 
843 // If we're forcing a stack realignment we can't rely on just the frame
844 // info, we need to know the ABI stack alignment as well in case we
845 // have a call out.  Otherwise just make sure we have some alignment - we'll
846 // go with the minimum SlotSize.
847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
848   const MachineFrameInfo &MFI = MF.getFrameInfo();
849   uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
850   unsigned StackAlign = getStackAlignment();
851   if (MF.getFunction().hasFnAttribute("stackrealign")) {
852     if (MFI.hasCalls())
853       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
854     else if (MaxAlign < SlotSize)
855       MaxAlign = SlotSize;
856   }
857   return MaxAlign;
858 }
859 
860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
861                                           MachineBasicBlock::iterator MBBI,
862                                           const DebugLoc &DL, unsigned Reg,
863                                           uint64_t MaxAlign) const {
864   uint64_t Val = -MaxAlign;
865   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
866   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
867                          .addReg(Reg)
868                          .addImm(Val)
869                          .setMIFlag(MachineInstr::FrameSetup);
870 
871   // The EFLAGS implicit def is dead.
872   MI->getOperand(3).setIsDead();
873 }
874 
875 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
876   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
877   // clobbered by any interrupt handler.
878   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
879          "MF used frame lowering for wrong subtarget");
880   const Function &Fn = MF.getFunction();
881   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
882   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
883 }
884 
885 
886 /// emitPrologue - Push callee-saved registers onto the stack, which
887 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
888 /// space for local variables. Also emit labels used by the exception handler to
889 /// generate the exception handling frames.
890 
891 /*
892   Here's a gist of what gets emitted:
893 
894   ; Establish frame pointer, if needed
895   [if needs FP]
896       push  %rbp
897       .cfi_def_cfa_offset 16
898       .cfi_offset %rbp, -16
899       .seh_pushreg %rpb
900       mov  %rsp, %rbp
901       .cfi_def_cfa_register %rbp
902 
903   ; Spill general-purpose registers
904   [for all callee-saved GPRs]
905       pushq %<reg>
906       [if not needs FP]
907          .cfi_def_cfa_offset (offset from RETADDR)
908       .seh_pushreg %<reg>
909 
910   ; If the required stack alignment > default stack alignment
911   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
912   ; of unknown size in the stack frame.
913   [if stack needs re-alignment]
914       and  $MASK, %rsp
915 
916   ; Allocate space for locals
917   [if target is Windows and allocated space > 4096 bytes]
918       ; Windows needs special care for allocations larger
919       ; than one page.
920       mov $NNN, %rax
921       call ___chkstk_ms/___chkstk
922       sub  %rax, %rsp
923   [else]
924       sub  $NNN, %rsp
925 
926   [if needs FP]
927       .seh_stackalloc (size of XMM spill slots)
928       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
929   [else]
930       .seh_stackalloc NNN
931 
932   ; Spill XMMs
933   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
934   ; they may get spilled on any platform, if the current function
935   ; calls @llvm.eh.unwind.init
936   [if needs FP]
937       [for all callee-saved XMM registers]
938           movaps  %<xmm reg>, -MMM(%rbp)
939       [for all callee-saved XMM registers]
940           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
941               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
942   [else]
943       [for all callee-saved XMM registers]
944           movaps  %<xmm reg>, KKK(%rsp)
945       [for all callee-saved XMM registers]
946           .seh_savexmm %<xmm reg>, KKK
947 
948   .seh_endprologue
949 
950   [if needs base pointer]
951       mov  %rsp, %rbx
952       [if needs to restore base pointer]
953           mov %rsp, -MMM(%rbp)
954 
955   ; Emit CFI info
956   [if needs FP]
957       [for all callee-saved registers]
958           .cfi_offset %<reg>, (offset from %rbp)
959   [else]
960        .cfi_def_cfa_offset (offset from RETADDR)
961       [for all callee-saved registers]
962           .cfi_offset %<reg>, (offset from %rsp)
963 
964   Notes:
965   - .seh directives are emitted only for Windows 64 ABI
966   - .cv_fpo directives are emitted on win32 when emitting CodeView
967   - .cfi directives are emitted for all other ABIs
968   - for 32-bit code, substitute %e?? registers for %r??
969 */
970 
971 void X86FrameLowering::emitPrologue(MachineFunction &MF,
972                                     MachineBasicBlock &MBB) const {
973   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
974          "MF used frame lowering for wrong subtarget");
975   MachineBasicBlock::iterator MBBI = MBB.begin();
976   MachineFrameInfo &MFI = MF.getFrameInfo();
977   const Function &Fn = MF.getFunction();
978   MachineModuleInfo &MMI = MF.getMMI();
979   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
980   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
981   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
982   bool IsFunclet = MBB.isEHFuncletEntry();
983   EHPersonality Personality = EHPersonality::Unknown;
984   if (Fn.hasPersonalityFn())
985     Personality = classifyEHPersonality(Fn.getPersonalityFn());
986   bool FnHasClrFunclet =
987       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
988   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
989   bool HasFP = hasFP(MF);
990   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
991   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
992   // FIXME: Emit FPO data for EH funclets.
993   bool NeedsWinFPO =
994       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
995   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
996   bool NeedsDwarfCFI =
997       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry());
998   Register FramePtr = TRI->getFrameRegister(MF);
999   const Register MachineFramePtr =
1000       STI.isTarget64BitILP32()
1001           ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1002   Register BasePtr = TRI->getBaseRegister();
1003   bool HasWinCFI = false;
1004 
1005   // Debug location must be unknown since the first debug location is used
1006   // to determine the end of the prologue.
1007   DebugLoc DL;
1008 
1009   // Add RETADDR move area to callee saved frame size.
1010   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1011   if (TailCallReturnAddrDelta && IsWin64Prologue)
1012     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1013 
1014   if (TailCallReturnAddrDelta < 0)
1015     X86FI->setCalleeSavedFrameSize(
1016       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1017 
1018   bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
1019   unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1020 
1021   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1022   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1023   // stack alignment.
1024   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1025       Fn.arg_size() == 2) {
1026     StackSize += 8;
1027     MFI.setStackSize(StackSize);
1028     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1029   }
1030 
1031   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1032   // function, and use up to 128 bytes of stack space, don't have a frame
1033   // pointer, calls, or dynamic alloca then we do not need to adjust the
1034   // stack pointer (we fit in the Red Zone). We also check that we don't
1035   // push and pop from the stack.
1036   if (has128ByteRedZone(MF) &&
1037       !TRI->needsStackRealignment(MF) &&
1038       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1039       !MFI.adjustsStack() &&                   // No calls.
1040       !UseStackProbe &&                        // No stack probes.
1041       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1042       !MF.shouldSplitStack()) {                // Regular stack
1043     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1044     if (HasFP) MinSize += SlotSize;
1045     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1046     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1047     MFI.setStackSize(StackSize);
1048   }
1049 
1050   // Insert stack pointer adjustment for later moving of return addr.  Only
1051   // applies to tail call optimized functions where the callee argument stack
1052   // size is bigger than the callers.
1053   if (TailCallReturnAddrDelta < 0) {
1054     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1055                          /*InEpilogue=*/false)
1056         .setMIFlag(MachineInstr::FrameSetup);
1057   }
1058 
1059   // Mapping for machine moves:
1060   //
1061   //   DST: VirtualFP AND
1062   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1063   //        ELSE                        => DW_CFA_def_cfa
1064   //
1065   //   SRC: VirtualFP AND
1066   //        DST: Register               => DW_CFA_def_cfa_register
1067   //
1068   //   ELSE
1069   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1070   //        REG < 64                    => DW_CFA_offset + Reg
1071   //        ELSE                        => DW_CFA_offset_extended
1072 
1073   uint64_t NumBytes = 0;
1074   int stackGrowth = -SlotSize;
1075 
1076   // Find the funclet establisher parameter
1077   Register Establisher = X86::NoRegister;
1078   if (IsClrFunclet)
1079     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1080   else if (IsFunclet)
1081     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1082 
1083   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1084     // Immediately spill establisher into the home slot.
1085     // The runtime cares about this.
1086     // MOV64mr %rdx, 16(%rsp)
1087     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1088     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1089         .addReg(Establisher)
1090         .setMIFlag(MachineInstr::FrameSetup);
1091     MBB.addLiveIn(Establisher);
1092   }
1093 
1094   if (HasFP) {
1095     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1096 
1097     // Calculate required stack adjustment.
1098     uint64_t FrameSize = StackSize - SlotSize;
1099     // If required, include space for extra hidden slot for stashing base pointer.
1100     if (X86FI->getRestoreBasePointer())
1101       FrameSize += SlotSize;
1102 
1103     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1104 
1105     // Callee-saved registers are pushed on stack before the stack is realigned.
1106     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1107       NumBytes = alignTo(NumBytes, MaxAlign);
1108 
1109     // Save EBP/RBP into the appropriate stack slot.
1110     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1111       .addReg(MachineFramePtr, RegState::Kill)
1112       .setMIFlag(MachineInstr::FrameSetup);
1113 
1114     if (NeedsDwarfCFI) {
1115       // Mark the place where EBP/RBP was saved.
1116       // Define the current CFA rule to use the provided offset.
1117       assert(StackSize);
1118       BuildCFI(MBB, MBBI, DL,
1119                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1120 
1121       // Change the rule for the FramePtr to be an "offset" rule.
1122       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1123       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1124                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1125     }
1126 
1127     if (NeedsWinCFI) {
1128       HasWinCFI = true;
1129       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1130           .addImm(FramePtr)
1131           .setMIFlag(MachineInstr::FrameSetup);
1132     }
1133 
1134     if (!IsWin64Prologue && !IsFunclet) {
1135       // Update EBP with the new base value.
1136       BuildMI(MBB, MBBI, DL,
1137               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1138               FramePtr)
1139           .addReg(StackPtr)
1140           .setMIFlag(MachineInstr::FrameSetup);
1141 
1142       if (NeedsDwarfCFI) {
1143         // Mark effective beginning of when frame pointer becomes valid.
1144         // Define the current CFA to use the EBP/RBP register.
1145         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1146         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1147                                     nullptr, DwarfFramePtr));
1148       }
1149 
1150       if (NeedsWinFPO) {
1151         // .cv_fpo_setframe $FramePtr
1152         HasWinCFI = true;
1153         BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1154             .addImm(FramePtr)
1155             .addImm(0)
1156             .setMIFlag(MachineInstr::FrameSetup);
1157       }
1158     }
1159   } else {
1160     assert(!IsFunclet && "funclets without FPs not yet implemented");
1161     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1162   }
1163 
1164   // Update the offset adjustment, which is mainly used by codeview to translate
1165   // from ESP to VFRAME relative local variable offsets.
1166   if (!IsFunclet) {
1167     if (HasFP && TRI->needsStackRealignment(MF))
1168       MFI.setOffsetAdjustment(-NumBytes);
1169     else
1170       MFI.setOffsetAdjustment(-StackSize);
1171   }
1172 
1173   // For EH funclets, only allocate enough space for outgoing calls. Save the
1174   // NumBytes value that we would've used for the parent frame.
1175   unsigned ParentFrameNumBytes = NumBytes;
1176   if (IsFunclet)
1177     NumBytes = getWinEHFuncletFrameSize(MF);
1178 
1179   // Skip the callee-saved push instructions.
1180   bool PushedRegs = false;
1181   int StackOffset = 2 * stackGrowth;
1182 
1183   while (MBBI != MBB.end() &&
1184          MBBI->getFlag(MachineInstr::FrameSetup) &&
1185          (MBBI->getOpcode() == X86::PUSH32r ||
1186           MBBI->getOpcode() == X86::PUSH64r)) {
1187     PushedRegs = true;
1188     Register Reg = MBBI->getOperand(0).getReg();
1189     ++MBBI;
1190 
1191     if (!HasFP && NeedsDwarfCFI) {
1192       // Mark callee-saved push instruction.
1193       // Define the current CFA rule to use the provided offset.
1194       assert(StackSize);
1195       BuildCFI(MBB, MBBI, DL,
1196                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1197       StackOffset += stackGrowth;
1198     }
1199 
1200     if (NeedsWinCFI) {
1201       HasWinCFI = true;
1202       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1203           .addImm(Reg)
1204           .setMIFlag(MachineInstr::FrameSetup);
1205     }
1206   }
1207 
1208   // Realign stack after we pushed callee-saved registers (so that we'll be
1209   // able to calculate their offsets from the frame pointer).
1210   // Don't do this for Win64, it needs to realign the stack after the prologue.
1211   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1212     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1213     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1214 
1215     if (NeedsWinCFI) {
1216       HasWinCFI = true;
1217       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1218           .addImm(MaxAlign)
1219           .setMIFlag(MachineInstr::FrameSetup);
1220     }
1221   }
1222 
1223   // If there is an SUB32ri of ESP immediately before this instruction, merge
1224   // the two. This can be the case when tail call elimination is enabled and
1225   // the callee has more arguments then the caller.
1226   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1227 
1228   // Adjust stack pointer: ESP -= numbytes.
1229 
1230   // Windows and cygwin/mingw require a prologue helper routine when allocating
1231   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1232   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1233   // stack and adjust the stack pointer in one go.  The 64-bit version of
1234   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1235   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1236   // increments is necessary to ensure that the guard pages used by the OS
1237   // virtual memory manager are allocated in correct sequence.
1238   uint64_t AlignedNumBytes = NumBytes;
1239   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1240     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1241   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1242     assert(!X86FI->getUsesRedZone() &&
1243            "The Red Zone is not accounted for in stack probes");
1244 
1245     // Check whether EAX is livein for this block.
1246     bool isEAXAlive = isEAXLiveIn(MBB);
1247 
1248     if (isEAXAlive) {
1249       if (Is64Bit) {
1250         // Save RAX
1251         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1252           .addReg(X86::RAX, RegState::Kill)
1253           .setMIFlag(MachineInstr::FrameSetup);
1254       } else {
1255         // Save EAX
1256         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1257           .addReg(X86::EAX, RegState::Kill)
1258           .setMIFlag(MachineInstr::FrameSetup);
1259       }
1260     }
1261 
1262     if (Is64Bit) {
1263       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1264       // Function prologue is responsible for adjusting the stack pointer.
1265       int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1266       if (isUInt<32>(Alloc)) {
1267         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1268             .addImm(Alloc)
1269             .setMIFlag(MachineInstr::FrameSetup);
1270       } else if (isInt<32>(Alloc)) {
1271         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1272             .addImm(Alloc)
1273             .setMIFlag(MachineInstr::FrameSetup);
1274       } else {
1275         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1276             .addImm(Alloc)
1277             .setMIFlag(MachineInstr::FrameSetup);
1278       }
1279     } else {
1280       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1281       // We'll also use 4 already allocated bytes for EAX.
1282       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1283           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1284           .setMIFlag(MachineInstr::FrameSetup);
1285     }
1286 
1287     // Call __chkstk, __chkstk_ms, or __alloca.
1288     emitStackProbe(MF, MBB, MBBI, DL, true);
1289 
1290     if (isEAXAlive) {
1291       // Restore RAX/EAX
1292       MachineInstr *MI;
1293       if (Is64Bit)
1294         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1295                           StackPtr, false, NumBytes - 8);
1296       else
1297         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1298                           StackPtr, false, NumBytes - 4);
1299       MI->setFlag(MachineInstr::FrameSetup);
1300       MBB.insert(MBBI, MI);
1301     }
1302   } else if (NumBytes) {
1303     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1304   }
1305 
1306   if (NeedsWinCFI && NumBytes) {
1307     HasWinCFI = true;
1308     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1309         .addImm(NumBytes)
1310         .setMIFlag(MachineInstr::FrameSetup);
1311   }
1312 
1313   int SEHFrameOffset = 0;
1314   unsigned SPOrEstablisher;
1315   if (IsFunclet) {
1316     if (IsClrFunclet) {
1317       // The establisher parameter passed to a CLR funclet is actually a pointer
1318       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1319       // to find the root function establisher frame by loading the PSPSym from
1320       // the intermediate frame.
1321       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1322       MachinePointerInfo NoInfo;
1323       MBB.addLiveIn(Establisher);
1324       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1325                    Establisher, false, PSPSlotOffset)
1326           .addMemOperand(MF.getMachineMemOperand(
1327               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1328       ;
1329       // Save the root establisher back into the current funclet's (mostly
1330       // empty) frame, in case a sub-funclet or the GC needs it.
1331       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1332                    false, PSPSlotOffset)
1333           .addReg(Establisher)
1334           .addMemOperand(
1335               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1336                                                   MachineMemOperand::MOVolatile,
1337                                       SlotSize, SlotSize));
1338     }
1339     SPOrEstablisher = Establisher;
1340   } else {
1341     SPOrEstablisher = StackPtr;
1342   }
1343 
1344   if (IsWin64Prologue && HasFP) {
1345     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1346     // this calculation on the incoming establisher, which holds the value of
1347     // RSP from the parent frame at the end of the prologue.
1348     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1349     if (SEHFrameOffset)
1350       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1351                    SPOrEstablisher, false, SEHFrameOffset);
1352     else
1353       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1354           .addReg(SPOrEstablisher);
1355 
1356     // If this is not a funclet, emit the CFI describing our frame pointer.
1357     if (NeedsWinCFI && !IsFunclet) {
1358       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1359       HasWinCFI = true;
1360       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1361           .addImm(FramePtr)
1362           .addImm(SEHFrameOffset)
1363           .setMIFlag(MachineInstr::FrameSetup);
1364       if (isAsynchronousEHPersonality(Personality))
1365         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1366     }
1367   } else if (IsFunclet && STI.is32Bit()) {
1368     // Reset EBP / ESI to something good for funclets.
1369     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1370     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1371     // into the registration node so that the runtime will restore it for us.
1372     if (!MBB.isCleanupFuncletEntry()) {
1373       assert(Personality == EHPersonality::MSVC_CXX);
1374       unsigned FrameReg;
1375       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1376       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1377       // ESP is the first field, so no extra displacement is needed.
1378       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1379                    false, EHRegOffset)
1380           .addReg(X86::ESP);
1381     }
1382   }
1383 
1384   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1385     const MachineInstr &FrameInstr = *MBBI;
1386     ++MBBI;
1387 
1388     if (NeedsWinCFI) {
1389       int FI;
1390       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1391         if (X86::FR64RegClass.contains(Reg)) {
1392           int Offset;
1393           unsigned IgnoredFrameReg;
1394           if (IsWin64Prologue && IsFunclet)
1395             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1396           else
1397             Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
1398                      SEHFrameOffset;
1399 
1400           HasWinCFI = true;
1401           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1402           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1403               .addImm(Reg)
1404               .addImm(Offset)
1405               .setMIFlag(MachineInstr::FrameSetup);
1406         }
1407       }
1408     }
1409   }
1410 
1411   if (NeedsWinCFI && HasWinCFI)
1412     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1413         .setMIFlag(MachineInstr::FrameSetup);
1414 
1415   if (FnHasClrFunclet && !IsFunclet) {
1416     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1417     // immediately after the prolog)  into the PSPSlot so that funclets
1418     // and the GC can recover it.
1419     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1420     auto PSPInfo = MachinePointerInfo::getFixedStack(
1421         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1422     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1423                  PSPSlotOffset)
1424         .addReg(StackPtr)
1425         .addMemOperand(MF.getMachineMemOperand(
1426             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1427             SlotSize, SlotSize));
1428   }
1429 
1430   // Realign stack after we spilled callee-saved registers (so that we'll be
1431   // able to calculate their offsets from the frame pointer).
1432   // Win64 requires aligning the stack after the prologue.
1433   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1434     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1435     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1436   }
1437 
1438   // We already dealt with stack realignment and funclets above.
1439   if (IsFunclet && STI.is32Bit())
1440     return;
1441 
1442   // If we need a base pointer, set it up here. It's whatever the value
1443   // of the stack pointer is at this point. Any variable size objects
1444   // will be allocated after this, so we can still use the base pointer
1445   // to reference locals.
1446   if (TRI->hasBasePointer(MF)) {
1447     // Update the base pointer with the current stack pointer.
1448     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1449     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1450       .addReg(SPOrEstablisher)
1451       .setMIFlag(MachineInstr::FrameSetup);
1452     if (X86FI->getRestoreBasePointer()) {
1453       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1454       // dependence chain. Used by SjLj EH.
1455       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1456       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1457                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1458         .addReg(SPOrEstablisher)
1459         .setMIFlag(MachineInstr::FrameSetup);
1460     }
1461 
1462     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1463       // Stash the value of the frame pointer relative to the base pointer for
1464       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1465       // it recovers the frame pointer from the base pointer rather than the
1466       // other way around.
1467       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1468       unsigned UsedReg;
1469       int Offset =
1470           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1471       assert(UsedReg == BasePtr);
1472       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1473           .addReg(FramePtr)
1474           .setMIFlag(MachineInstr::FrameSetup);
1475     }
1476   }
1477 
1478   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1479     // Mark end of stack pointer adjustment.
1480     if (!HasFP && NumBytes) {
1481       // Define the current CFA rule to use the provided offset.
1482       assert(StackSize);
1483       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1484                                   nullptr, -StackSize + stackGrowth));
1485     }
1486 
1487     // Emit DWARF info specifying the offsets of the callee-saved registers.
1488     emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1489   }
1490 
1491   // X86 Interrupt handling function cannot assume anything about the direction
1492   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1493   // in each prologue of interrupt handler function.
1494   //
1495   // FIXME: Create "cld" instruction only in these cases:
1496   // 1. The interrupt handling function uses any of the "rep" instructions.
1497   // 2. Interrupt handling function calls another function.
1498   //
1499   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1500     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1501         .setMIFlag(MachineInstr::FrameSetup);
1502 
1503   // At this point we know if the function has WinCFI or not.
1504   MF.setHasWinCFI(HasWinCFI);
1505 }
1506 
1507 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1508     const MachineFunction &MF) const {
1509   // We can't use LEA instructions for adjusting the stack pointer if we don't
1510   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1511   // to deallocate the stack.
1512   // This means that we can use LEA for SP in two situations:
1513   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1514   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1515   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1516 }
1517 
1518 static bool isFuncletReturnInstr(MachineInstr &MI) {
1519   switch (MI.getOpcode()) {
1520   case X86::CATCHRET:
1521   case X86::CLEANUPRET:
1522     return true;
1523   default:
1524     return false;
1525   }
1526   llvm_unreachable("impossible");
1527 }
1528 
1529 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1530 // stack. It holds a pointer to the bottom of the root function frame.  The
1531 // establisher frame pointer passed to a nested funclet may point to the
1532 // (mostly empty) frame of its parent funclet, but it will need to find
1533 // the frame of the root function to access locals.  To facilitate this,
1534 // every funclet copies the pointer to the bottom of the root function
1535 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1536 // same offset for the PSPSym in the root function frame that's used in the
1537 // funclets' frames allows each funclet to dynamically accept any ancestor
1538 // frame as its establisher argument (the runtime doesn't guarantee the
1539 // immediate parent for some reason lost to history), and also allows the GC,
1540 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1541 // frame with only a single offset reported for the entire method.
1542 unsigned
1543 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1544   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1545   unsigned SPReg;
1546   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1547                                               /*IgnoreSPUpdates*/ true);
1548   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1549   return static_cast<unsigned>(Offset);
1550 }
1551 
1552 unsigned
1553 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1554   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1555   // This is the size of the pushed CSRs.
1556   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1557   // This is the size of callee saved XMMs.
1558   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1559   unsigned XMMSize = WinEHXMMSlotInfo.size() *
1560                      TRI->getSpillSize(X86::VR128RegClass);
1561   // This is the amount of stack a funclet needs to allocate.
1562   unsigned UsedSize;
1563   EHPersonality Personality =
1564       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1565   if (Personality == EHPersonality::CoreCLR) {
1566     // CLR funclets need to hold enough space to include the PSPSym, at the
1567     // same offset from the stack pointer (immediately after the prolog) as it
1568     // resides at in the main function.
1569     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1570   } else {
1571     // Other funclets just need enough stack for outgoing call arguments.
1572     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1573   }
1574   // RBP is not included in the callee saved register block. After pushing RBP,
1575   // everything is 16 byte aligned. Everything we allocate before an outgoing
1576   // call must also be 16 byte aligned.
1577   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1578   // Subtract out the size of the callee saved registers. This is how much stack
1579   // each funclet will allocate.
1580   return FrameSizeMinusRBP + XMMSize - CSSize;
1581 }
1582 
1583 static bool isTailCallOpcode(unsigned Opc) {
1584     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1585         Opc == X86::TCRETURNmi ||
1586         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1587         Opc == X86::TCRETURNmi64;
1588 }
1589 
1590 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1591                                     MachineBasicBlock &MBB) const {
1592   const MachineFrameInfo &MFI = MF.getFrameInfo();
1593   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1594   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1595   MachineBasicBlock::iterator MBBI = Terminator;
1596   DebugLoc DL;
1597   if (MBBI != MBB.end())
1598     DL = MBBI->getDebugLoc();
1599   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1600   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1601   Register FramePtr = TRI->getFrameRegister(MF);
1602   unsigned MachineFramePtr =
1603       Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1604 
1605   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1606   bool NeedsWin64CFI =
1607       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1608   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1609 
1610   // Get the number of bytes to allocate from the FrameInfo.
1611   uint64_t StackSize = MFI.getStackSize();
1612   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1613   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1614   bool HasFP = hasFP(MF);
1615   uint64_t NumBytes = 0;
1616 
1617   bool NeedsDwarfCFI =
1618       (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1619        !MF.getTarget().getTargetTriple().isOSWindows()) &&
1620       (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
1621 
1622   if (IsFunclet) {
1623     assert(HasFP && "EH funclets without FP not yet implemented");
1624     NumBytes = getWinEHFuncletFrameSize(MF);
1625   } else if (HasFP) {
1626     // Calculate required stack adjustment.
1627     uint64_t FrameSize = StackSize - SlotSize;
1628     NumBytes = FrameSize - CSSize;
1629 
1630     // Callee-saved registers were pushed on stack before the stack was
1631     // realigned.
1632     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1633       NumBytes = alignTo(FrameSize, MaxAlign);
1634   } else {
1635     NumBytes = StackSize - CSSize;
1636   }
1637   uint64_t SEHStackAllocAmt = NumBytes;
1638 
1639   if (HasFP) {
1640     // Pop EBP.
1641     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1642             MachineFramePtr)
1643         .setMIFlag(MachineInstr::FrameDestroy);
1644     if (NeedsDwarfCFI) {
1645       unsigned DwarfStackPtr =
1646           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1647       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1648                                   nullptr, DwarfStackPtr, -SlotSize));
1649       --MBBI;
1650     }
1651   }
1652 
1653   MachineBasicBlock::iterator FirstCSPop = MBBI;
1654   // Skip the callee-saved pop instructions.
1655   while (MBBI != MBB.begin()) {
1656     MachineBasicBlock::iterator PI = std::prev(MBBI);
1657     unsigned Opc = PI->getOpcode();
1658 
1659     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1660       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1661           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1662         break;
1663       FirstCSPop = PI;
1664     }
1665 
1666     --MBBI;
1667   }
1668   MBBI = FirstCSPop;
1669 
1670   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1671     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1672 
1673   if (MBBI != MBB.end())
1674     DL = MBBI->getDebugLoc();
1675 
1676   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1677   // instruction, merge the two instructions.
1678   if (NumBytes || MFI.hasVarSizedObjects())
1679     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1680 
1681   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1682   // slot before popping them off! Same applies for the case, when stack was
1683   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1684   // will not do realignment or dynamic stack allocation.
1685   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1686       !IsFunclet) {
1687     if (TRI->needsStackRealignment(MF))
1688       MBBI = FirstCSPop;
1689     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1690     uint64_t LEAAmount =
1691         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1692 
1693     // There are only two legal forms of epilogue:
1694     // - add SEHAllocationSize, %rsp
1695     // - lea SEHAllocationSize(%FramePtr), %rsp
1696     //
1697     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1698     // However, we may use this sequence if we have a frame pointer because the
1699     // effects of the prologue can safely be undone.
1700     if (LEAAmount != 0) {
1701       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1702       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1703                    FramePtr, false, LEAAmount);
1704       --MBBI;
1705     } else {
1706       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1707       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1708         .addReg(FramePtr);
1709       --MBBI;
1710     }
1711   } else if (NumBytes) {
1712     // Adjust stack pointer back: ESP += numbytes.
1713     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1714     if (!hasFP(MF) && NeedsDwarfCFI) {
1715       // Define the current CFA rule to use the provided offset.
1716       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1717                                   nullptr, -CSSize - SlotSize));
1718     }
1719     --MBBI;
1720   }
1721 
1722   // Windows unwinder will not invoke function's exception handler if IP is
1723   // either in prologue or in epilogue.  This behavior causes a problem when a
1724   // call immediately precedes an epilogue, because the return address points
1725   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1726   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1727   // final emitted code.
1728   if (NeedsWin64CFI && MF.hasWinCFI())
1729     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1730 
1731   if (!hasFP(MF) && NeedsDwarfCFI) {
1732     MBBI = FirstCSPop;
1733     int64_t Offset = -CSSize - SlotSize;
1734     // Mark callee-saved pop instruction.
1735     // Define the current CFA rule to use the provided offset.
1736     while (MBBI != MBB.end()) {
1737       MachineBasicBlock::iterator PI = MBBI;
1738       unsigned Opc = PI->getOpcode();
1739       ++MBBI;
1740       if (Opc == X86::POP32r || Opc == X86::POP64r) {
1741         Offset += SlotSize;
1742         BuildCFI(MBB, MBBI, DL,
1743                  MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1744       }
1745     }
1746   }
1747 
1748   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1749     // Add the return addr area delta back since we are not tail calling.
1750     int Offset = -1 * X86FI->getTCReturnAddrDelta();
1751     assert(Offset >= 0 && "TCDelta should never be positive");
1752     if (Offset) {
1753       // Check for possible merge with preceding ADD instruction.
1754       Offset += mergeSPUpdates(MBB, Terminator, true);
1755       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1756     }
1757   }
1758 }
1759 
1760 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1761                                              unsigned &FrameReg) const {
1762   const MachineFrameInfo &MFI = MF.getFrameInfo();
1763 
1764   bool IsFixed = MFI.isFixedObjectIndex(FI);
1765   // We can't calculate offset from frame pointer if the stack is realigned,
1766   // so enforce usage of stack/base pointer.  The base pointer is used when we
1767   // have dynamic allocas in addition to dynamic realignment.
1768   if (TRI->hasBasePointer(MF))
1769     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1770   else if (TRI->needsStackRealignment(MF))
1771     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1772   else
1773     FrameReg = TRI->getFrameRegister(MF);
1774 
1775   // Offset will hold the offset from the stack pointer at function entry to the
1776   // object.
1777   // We need to factor in additional offsets applied during the prologue to the
1778   // frame, base, and stack pointer depending on which is used.
1779   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1780   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1781   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1782   uint64_t StackSize = MFI.getStackSize();
1783   bool HasFP = hasFP(MF);
1784   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1785   int64_t FPDelta = 0;
1786 
1787   // In an x86 interrupt, remove the offset we added to account for the return
1788   // address from any stack object allocated in the caller's frame. Interrupts
1789   // do not have a standard return address. Fixed objects in the current frame,
1790   // such as SSE register spills, should not get this treatment.
1791   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
1792       Offset >= 0) {
1793     Offset += getOffsetOfLocalArea();
1794   }
1795 
1796   if (IsWin64Prologue) {
1797     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1798 
1799     // Calculate required stack adjustment.
1800     uint64_t FrameSize = StackSize - SlotSize;
1801     // If required, include space for extra hidden slot for stashing base pointer.
1802     if (X86FI->getRestoreBasePointer())
1803       FrameSize += SlotSize;
1804     uint64_t NumBytes = FrameSize - CSSize;
1805 
1806     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1807     if (FI && FI == X86FI->getFAIndex())
1808       return -SEHFrameOffset;
1809 
1810     // FPDelta is the offset from the "traditional" FP location of the old base
1811     // pointer followed by return address and the location required by the
1812     // restricted Win64 prologue.
1813     // Add FPDelta to all offsets below that go through the frame pointer.
1814     FPDelta = FrameSize - SEHFrameOffset;
1815     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1816            "FPDelta isn't aligned per the Win64 ABI!");
1817   }
1818 
1819 
1820   if (TRI->hasBasePointer(MF)) {
1821     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1822     if (FI < 0) {
1823       // Skip the saved EBP.
1824       return Offset + SlotSize + FPDelta;
1825     } else {
1826       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1827       return Offset + StackSize;
1828     }
1829   } else if (TRI->needsStackRealignment(MF)) {
1830     if (FI < 0) {
1831       // Skip the saved EBP.
1832       return Offset + SlotSize + FPDelta;
1833     } else {
1834       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1835       return Offset + StackSize;
1836     }
1837     // FIXME: Support tail calls
1838   } else {
1839     if (!HasFP)
1840       return Offset + StackSize;
1841 
1842     // Skip the saved EBP.
1843     Offset += SlotSize;
1844 
1845     // Skip the RETADDR move area
1846     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1847     if (TailCallReturnAddrDelta < 0)
1848       Offset -= TailCallReturnAddrDelta;
1849   }
1850 
1851   return Offset + FPDelta;
1852 }
1853 
1854 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF,
1855                                               int FI, unsigned &FrameReg) const {
1856   const MachineFrameInfo &MFI = MF.getFrameInfo();
1857   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1858   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1859   const auto it = WinEHXMMSlotInfo.find(FI);
1860 
1861   if (it == WinEHXMMSlotInfo.end())
1862     return getFrameIndexReference(MF, FI, FrameReg);
1863 
1864   FrameReg = TRI->getStackRegister();
1865   return alignTo(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second;
1866 }
1867 
1868 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1869                                                int FI, unsigned &FrameReg,
1870                                                int Adjustment) const {
1871   const MachineFrameInfo &MFI = MF.getFrameInfo();
1872   FrameReg = TRI->getStackRegister();
1873   return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1874 }
1875 
1876 int
1877 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1878                                                  int FI, unsigned &FrameReg,
1879                                                  bool IgnoreSPUpdates) const {
1880 
1881   const MachineFrameInfo &MFI = MF.getFrameInfo();
1882   // Does not include any dynamic realign.
1883   const uint64_t StackSize = MFI.getStackSize();
1884   // LLVM arranges the stack as follows:
1885   //   ...
1886   //   ARG2
1887   //   ARG1
1888   //   RETADDR
1889   //   PUSH RBP   <-- RBP points here
1890   //   PUSH CSRs
1891   //   ~~~~~~~    <-- possible stack realignment (non-win64)
1892   //   ...
1893   //   STACK OBJECTS
1894   //   ...        <-- RSP after prologue points here
1895   //   ~~~~~~~    <-- possible stack realignment (win64)
1896   //
1897   // if (hasVarSizedObjects()):
1898   //   ...        <-- "base pointer" (ESI/RBX) points here
1899   //   DYNAMIC ALLOCAS
1900   //   ...        <-- RSP points here
1901   //
1902   // Case 1: In the simple case of no stack realignment and no dynamic
1903   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1904   // with fixed offsets from RSP.
1905   //
1906   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1907   // stack objects are addressed with RBP and regular stack objects with RSP.
1908   //
1909   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1910   // to address stack arguments for outgoing calls and nothing else. The "base
1911   // pointer" points to local variables, and RBP points to fixed objects.
1912   //
1913   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1914   // answer we give is relative to the SP after the prologue, and not the
1915   // SP in the middle of the function.
1916 
1917   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1918       !STI.isTargetWin64())
1919     return getFrameIndexReference(MF, FI, FrameReg);
1920 
1921   // If !hasReservedCallFrame the function might have SP adjustement in the
1922   // body.  So, even though the offset is statically known, it depends on where
1923   // we are in the function.
1924   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
1925     return getFrameIndexReference(MF, FI, FrameReg);
1926 
1927   // We don't handle tail calls, and shouldn't be seeing them either.
1928   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1929          "we don't handle this case!");
1930 
1931   // This is how the math works out:
1932   //
1933   //  %rsp grows (i.e. gets lower) left to right. Each box below is
1934   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1935   //  get to.
1936   //
1937   //    ----------------------------------
1938   //    | BP | Obj0 | Obj1 | ... | ObjN |
1939   //    ----------------------------------
1940   //    ^    ^      ^                   ^
1941   //    A    B      C                   E
1942   //
1943   // A is the incoming stack pointer.
1944   // (B - A) is the local area offset (-8 for x86-64) [1]
1945   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1946   //
1947   // |(E - B)| is the StackSize (absolute value, positive).  For a
1948   // stack that grown down, this works out to be (B - E). [3]
1949   //
1950   // E is also the value of %rsp after stack has been set up, and we
1951   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1952   // (C - E) == (C - A) - (B - A) + (B - E)
1953   //            { Using [1], [2] and [3] above }
1954   //         == getObjectOffset - LocalAreaOffset + StackSize
1955 
1956   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1957 }
1958 
1959 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1960     MachineFunction &MF, const TargetRegisterInfo *TRI,
1961     std::vector<CalleeSavedInfo> &CSI) const {
1962   MachineFrameInfo &MFI = MF.getFrameInfo();
1963   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1964 
1965   unsigned CalleeSavedFrameSize = 0;
1966   unsigned XMMCalleeSavedFrameSize = 0;
1967   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1968   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1969 
1970   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1971 
1972   if (TailCallReturnAddrDelta < 0) {
1973     // create RETURNADDR area
1974     //   arg
1975     //   arg
1976     //   RETADDR
1977     //   { ...
1978     //     RETADDR area
1979     //     ...
1980     //   }
1981     //   [EBP]
1982     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1983                            TailCallReturnAddrDelta - SlotSize, true);
1984   }
1985 
1986   // Spill the BasePtr if it's used.
1987   if (this->TRI->hasBasePointer(MF)) {
1988     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1989     if (MF.hasEHFunclets()) {
1990       int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1991       X86FI->setHasSEHFramePtrSave(true);
1992       X86FI->setSEHFramePtrSaveIndex(FI);
1993     }
1994   }
1995 
1996   if (hasFP(MF)) {
1997     // emitPrologue always spills frame register the first thing.
1998     SpillSlotOffset -= SlotSize;
1999     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2000 
2001     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2002     // the frame register, we can delete it from CSI list and not have to worry
2003     // about avoiding it later.
2004     Register FPReg = TRI->getFrameRegister(MF);
2005     for (unsigned i = 0; i < CSI.size(); ++i) {
2006       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2007         CSI.erase(CSI.begin() + i);
2008         break;
2009       }
2010     }
2011   }
2012 
2013   // Assign slots for GPRs. It increases frame size.
2014   for (unsigned i = CSI.size(); i != 0; --i) {
2015     unsigned Reg = CSI[i - 1].getReg();
2016 
2017     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2018       continue;
2019 
2020     SpillSlotOffset -= SlotSize;
2021     CalleeSavedFrameSize += SlotSize;
2022 
2023     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2024     CSI[i - 1].setFrameIdx(SlotIndex);
2025   }
2026 
2027   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2028   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2029 
2030   // Assign slots for XMMs.
2031   for (unsigned i = CSI.size(); i != 0; --i) {
2032     unsigned Reg = CSI[i - 1].getReg();
2033     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2034       continue;
2035 
2036     // If this is k-register make sure we lookup via the largest legal type.
2037     MVT VT = MVT::Other;
2038     if (X86::VK16RegClass.contains(Reg))
2039       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2040 
2041     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2042     unsigned Size = TRI->getSpillSize(*RC);
2043     unsigned Align = TRI->getSpillAlignment(*RC);
2044     // ensure alignment
2045     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2046     SpillSlotOffset = -alignTo(-SpillSlotOffset, Align);
2047 
2048     // spill into slot
2049     SpillSlotOffset -= Size;
2050     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2051     CSI[i - 1].setFrameIdx(SlotIndex);
2052     MFI.ensureMaxAlignment(Align);
2053 
2054     // Save the start offset and size of XMM in stack frame for funclets.
2055     if (X86::VR128RegClass.contains(Reg)) {
2056       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2057       XMMCalleeSavedFrameSize += Size;
2058     }
2059   }
2060 
2061   return true;
2062 }
2063 
2064 bool X86FrameLowering::spillCalleeSavedRegisters(
2065     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2066     const std::vector<CalleeSavedInfo> &CSI,
2067     const TargetRegisterInfo *TRI) const {
2068   DebugLoc DL = MBB.findDebugLoc(MI);
2069 
2070   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2071   // for us, and there are no XMM CSRs on Win32.
2072   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2073     return true;
2074 
2075   // Push GPRs. It increases frame size.
2076   const MachineFunction &MF = *MBB.getParent();
2077   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2078   for (unsigned i = CSI.size(); i != 0; --i) {
2079     unsigned Reg = CSI[i - 1].getReg();
2080 
2081     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2082       continue;
2083 
2084     const MachineRegisterInfo &MRI = MF.getRegInfo();
2085     bool isLiveIn = MRI.isLiveIn(Reg);
2086     if (!isLiveIn)
2087       MBB.addLiveIn(Reg);
2088 
2089     // Decide whether we can add a kill flag to the use.
2090     bool CanKill = !isLiveIn;
2091     // Check if any subregister is live-in
2092     if (CanKill) {
2093       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2094         if (MRI.isLiveIn(*AReg)) {
2095           CanKill = false;
2096           break;
2097         }
2098       }
2099     }
2100 
2101     // Do not set a kill flag on values that are also marked as live-in. This
2102     // happens with the @llvm-returnaddress intrinsic and with arguments
2103     // passed in callee saved registers.
2104     // Omitting the kill flags is conservatively correct even if the live-in
2105     // is not used after all.
2106     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2107       .setMIFlag(MachineInstr::FrameSetup);
2108   }
2109 
2110   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2111   // It can be done by spilling XMMs to stack frame.
2112   for (unsigned i = CSI.size(); i != 0; --i) {
2113     unsigned Reg = CSI[i-1].getReg();
2114     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2115       continue;
2116 
2117     // If this is k-register make sure we lookup via the largest legal type.
2118     MVT VT = MVT::Other;
2119     if (X86::VK16RegClass.contains(Reg))
2120       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2121 
2122     // Add the callee-saved register as live-in. It's killed at the spill.
2123     MBB.addLiveIn(Reg);
2124     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2125 
2126     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2127                             TRI);
2128     --MI;
2129     MI->setFlag(MachineInstr::FrameSetup);
2130     ++MI;
2131   }
2132 
2133   return true;
2134 }
2135 
2136 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2137                                                MachineBasicBlock::iterator MBBI,
2138                                                MachineInstr *CatchRet) const {
2139   // SEH shouldn't use catchret.
2140   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2141              MBB.getParent()->getFunction().getPersonalityFn())) &&
2142          "SEH should not use CATCHRET");
2143   DebugLoc DL = CatchRet->getDebugLoc();
2144   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2145 
2146   // Fill EAX/RAX with the address of the target block.
2147   if (STI.is64Bit()) {
2148     // LEA64r CatchRetTarget(%rip), %rax
2149     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2150         .addReg(X86::RIP)
2151         .addImm(0)
2152         .addReg(0)
2153         .addMBB(CatchRetTarget)
2154         .addReg(0);
2155   } else {
2156     // MOV32ri $CatchRetTarget, %eax
2157     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2158         .addMBB(CatchRetTarget);
2159   }
2160 
2161   // Record that we've taken the address of CatchRetTarget and no longer just
2162   // reference it in a terminator.
2163   CatchRetTarget->setHasAddressTaken();
2164 }
2165 
2166 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2167                                                MachineBasicBlock::iterator MI,
2168                                           std::vector<CalleeSavedInfo> &CSI,
2169                                           const TargetRegisterInfo *TRI) const {
2170   if (CSI.empty())
2171     return false;
2172 
2173   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2174     // Don't restore CSRs in 32-bit EH funclets. Matches
2175     // spillCalleeSavedRegisters.
2176     if (STI.is32Bit())
2177       return true;
2178     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2179     // funclets. emitEpilogue transforms these to normal jumps.
2180     if (MI->getOpcode() == X86::CATCHRET) {
2181       const Function &F = MBB.getParent()->getFunction();
2182       bool IsSEH = isAsynchronousEHPersonality(
2183           classifyEHPersonality(F.getPersonalityFn()));
2184       if (IsSEH)
2185         return true;
2186     }
2187   }
2188 
2189   DebugLoc DL = MBB.findDebugLoc(MI);
2190 
2191   // Reload XMMs from stack frame.
2192   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2193     unsigned Reg = CSI[i].getReg();
2194     if (X86::GR64RegClass.contains(Reg) ||
2195         X86::GR32RegClass.contains(Reg))
2196       continue;
2197 
2198     // If this is k-register make sure we lookup via the largest legal type.
2199     MVT VT = MVT::Other;
2200     if (X86::VK16RegClass.contains(Reg))
2201       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2202 
2203     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2204     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2205   }
2206 
2207   // POP GPRs.
2208   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2209   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2210     unsigned Reg = CSI[i].getReg();
2211     if (!X86::GR64RegClass.contains(Reg) &&
2212         !X86::GR32RegClass.contains(Reg))
2213       continue;
2214 
2215     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2216         .setMIFlag(MachineInstr::FrameDestroy);
2217   }
2218   return true;
2219 }
2220 
2221 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2222                                             BitVector &SavedRegs,
2223                                             RegScavenger *RS) const {
2224   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2225 
2226   // Spill the BasePtr if it's used.
2227   if (TRI->hasBasePointer(MF)){
2228     Register BasePtr = TRI->getBaseRegister();
2229     if (STI.isTarget64BitILP32())
2230       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2231     SavedRegs.set(BasePtr);
2232   }
2233 }
2234 
2235 static bool
2236 HasNestArgument(const MachineFunction *MF) {
2237   const Function &F = MF->getFunction();
2238   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2239        I != E; I++) {
2240     if (I->hasNestAttr() && !I->use_empty())
2241       return true;
2242   }
2243   return false;
2244 }
2245 
2246 /// GetScratchRegister - Get a temp register for performing work in the
2247 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2248 /// and the properties of the function either one or two registers will be
2249 /// needed. Set primary to true for the first register, false for the second.
2250 static unsigned
2251 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2252   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2253 
2254   // Erlang stuff.
2255   if (CallingConvention == CallingConv::HiPE) {
2256     if (Is64Bit)
2257       return Primary ? X86::R14 : X86::R13;
2258     else
2259       return Primary ? X86::EBX : X86::EDI;
2260   }
2261 
2262   if (Is64Bit) {
2263     if (IsLP64)
2264       return Primary ? X86::R11 : X86::R12;
2265     else
2266       return Primary ? X86::R11D : X86::R12D;
2267   }
2268 
2269   bool IsNested = HasNestArgument(&MF);
2270 
2271   if (CallingConvention == CallingConv::X86_FastCall ||
2272       CallingConvention == CallingConv::Fast ||
2273       CallingConvention == CallingConv::Tail) {
2274     if (IsNested)
2275       report_fatal_error("Segmented stacks does not support fastcall with "
2276                          "nested function.");
2277     return Primary ? X86::EAX : X86::ECX;
2278   }
2279   if (IsNested)
2280     return Primary ? X86::EDX : X86::EAX;
2281   return Primary ? X86::ECX : X86::EAX;
2282 }
2283 
2284 // The stack limit in the TCB is set to this many bytes above the actual stack
2285 // limit.
2286 static const uint64_t kSplitStackAvailable = 256;
2287 
2288 void X86FrameLowering::adjustForSegmentedStacks(
2289     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2290   MachineFrameInfo &MFI = MF.getFrameInfo();
2291   uint64_t StackSize;
2292   unsigned TlsReg, TlsOffset;
2293   DebugLoc DL;
2294 
2295   // To support shrink-wrapping we would need to insert the new blocks
2296   // at the right place and update the branches to PrologueMBB.
2297   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2298 
2299   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2300   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2301          "Scratch register is live-in");
2302 
2303   if (MF.getFunction().isVarArg())
2304     report_fatal_error("Segmented stacks do not support vararg functions.");
2305   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2306       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2307       !STI.isTargetDragonFly())
2308     report_fatal_error("Segmented stacks not supported on this platform.");
2309 
2310   // Eventually StackSize will be calculated by a link-time pass; which will
2311   // also decide whether checking code needs to be injected into this particular
2312   // prologue.
2313   StackSize = MFI.getStackSize();
2314 
2315   // Do not generate a prologue for leaf functions with a stack of size zero.
2316   // For non-leaf functions we have to allow for the possibility that the
2317   // callis to a non-split function, as in PR37807. This function could also
2318   // take the address of a non-split function. When the linker tries to adjust
2319   // its non-existent prologue, it would fail with an error. Mark the object
2320   // file so that such failures are not errors. See this Go language bug-report
2321   // https://go-review.googlesource.com/c/go/+/148819/
2322   if (StackSize == 0 && !MFI.hasTailCall()) {
2323     MF.getMMI().setHasNosplitStack(true);
2324     return;
2325   }
2326 
2327   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2328   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2329   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2330   bool IsNested = false;
2331 
2332   // We need to know if the function has a nest argument only in 64 bit mode.
2333   if (Is64Bit)
2334     IsNested = HasNestArgument(&MF);
2335 
2336   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2337   // allocMBB needs to be last (terminating) instruction.
2338 
2339   for (const auto &LI : PrologueMBB.liveins()) {
2340     allocMBB->addLiveIn(LI);
2341     checkMBB->addLiveIn(LI);
2342   }
2343 
2344   if (IsNested)
2345     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2346 
2347   MF.push_front(allocMBB);
2348   MF.push_front(checkMBB);
2349 
2350   // When the frame size is less than 256 we just compare the stack
2351   // boundary directly to the value of the stack pointer, per gcc.
2352   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2353 
2354   // Read the limit off the current stacklet off the stack_guard location.
2355   if (Is64Bit) {
2356     if (STI.isTargetLinux()) {
2357       TlsReg = X86::FS;
2358       TlsOffset = IsLP64 ? 0x70 : 0x40;
2359     } else if (STI.isTargetDarwin()) {
2360       TlsReg = X86::GS;
2361       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2362     } else if (STI.isTargetWin64()) {
2363       TlsReg = X86::GS;
2364       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2365     } else if (STI.isTargetFreeBSD()) {
2366       TlsReg = X86::FS;
2367       TlsOffset = 0x18;
2368     } else if (STI.isTargetDragonFly()) {
2369       TlsReg = X86::FS;
2370       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2371     } else {
2372       report_fatal_error("Segmented stacks not supported on this platform.");
2373     }
2374 
2375     if (CompareStackPointer)
2376       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2377     else
2378       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2379         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2380 
2381     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2382       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2383   } else {
2384     if (STI.isTargetLinux()) {
2385       TlsReg = X86::GS;
2386       TlsOffset = 0x30;
2387     } else if (STI.isTargetDarwin()) {
2388       TlsReg = X86::GS;
2389       TlsOffset = 0x48 + 90*4;
2390     } else if (STI.isTargetWin32()) {
2391       TlsReg = X86::FS;
2392       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2393     } else if (STI.isTargetDragonFly()) {
2394       TlsReg = X86::FS;
2395       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2396     } else if (STI.isTargetFreeBSD()) {
2397       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2398     } else {
2399       report_fatal_error("Segmented stacks not supported on this platform.");
2400     }
2401 
2402     if (CompareStackPointer)
2403       ScratchReg = X86::ESP;
2404     else
2405       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2406         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2407 
2408     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2409         STI.isTargetDragonFly()) {
2410       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2411         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2412     } else if (STI.isTargetDarwin()) {
2413 
2414       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2415       unsigned ScratchReg2;
2416       bool SaveScratch2;
2417       if (CompareStackPointer) {
2418         // The primary scratch register is available for holding the TLS offset.
2419         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2420         SaveScratch2 = false;
2421       } else {
2422         // Need to use a second register to hold the TLS offset
2423         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2424 
2425         // Unfortunately, with fastcc the second scratch register may hold an
2426         // argument.
2427         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2428       }
2429 
2430       // If Scratch2 is live-in then it needs to be saved.
2431       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2432              "Scratch register is live-in and not saved");
2433 
2434       if (SaveScratch2)
2435         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2436           .addReg(ScratchReg2, RegState::Kill);
2437 
2438       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2439         .addImm(TlsOffset);
2440       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2441         .addReg(ScratchReg)
2442         .addReg(ScratchReg2).addImm(1).addReg(0)
2443         .addImm(0)
2444         .addReg(TlsReg);
2445 
2446       if (SaveScratch2)
2447         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2448     }
2449   }
2450 
2451   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2452   // It jumps to normal execution of the function body.
2453   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2454 
2455   // On 32 bit we first push the arguments size and then the frame size. On 64
2456   // bit, we pass the stack frame size in r10 and the argument size in r11.
2457   if (Is64Bit) {
2458     // Functions with nested arguments use R10, so it needs to be saved across
2459     // the call to _morestack
2460 
2461     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2462     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2463     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2464     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2465     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2466 
2467     if (IsNested)
2468       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2469 
2470     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2471       .addImm(StackSize);
2472     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2473       .addImm(X86FI->getArgumentStackSize());
2474   } else {
2475     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2476       .addImm(X86FI->getArgumentStackSize());
2477     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2478       .addImm(StackSize);
2479   }
2480 
2481   // __morestack is in libgcc
2482   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2483     // Under the large code model, we cannot assume that __morestack lives
2484     // within 2^31 bytes of the call site, so we cannot use pc-relative
2485     // addressing. We cannot perform the call via a temporary register,
2486     // as the rax register may be used to store the static chain, and all
2487     // other suitable registers may be either callee-save or used for
2488     // parameter passing. We cannot use the stack at this point either
2489     // because __morestack manipulates the stack directly.
2490     //
2491     // To avoid these issues, perform an indirect call via a read-only memory
2492     // location containing the address.
2493     //
2494     // This solution is not perfect, as it assumes that the .rodata section
2495     // is laid out within 2^31 bytes of each function body, but this seems
2496     // to be sufficient for JIT.
2497     // FIXME: Add retpoline support and remove the error here..
2498     if (STI.useRetpolineIndirectCalls())
2499       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2500                          "code model and retpoline not yet implemented.");
2501     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2502         .addReg(X86::RIP)
2503         .addImm(0)
2504         .addReg(0)
2505         .addExternalSymbol("__morestack_addr")
2506         .addReg(0);
2507     MF.getMMI().setUsesMorestackAddr(true);
2508   } else {
2509     if (Is64Bit)
2510       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2511         .addExternalSymbol("__morestack");
2512     else
2513       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2514         .addExternalSymbol("__morestack");
2515   }
2516 
2517   if (IsNested)
2518     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2519   else
2520     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2521 
2522   allocMBB->addSuccessor(&PrologueMBB);
2523 
2524   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2525   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2526 
2527 #ifdef EXPENSIVE_CHECKS
2528   MF.verify();
2529 #endif
2530 }
2531 
2532 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2533 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2534 /// to fields it needs, through a named metadata node "hipe.literals" containing
2535 /// name-value pairs.
2536 static unsigned getHiPELiteral(
2537     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2538   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2539     MDNode *Node = HiPELiteralsMD->getOperand(i);
2540     if (Node->getNumOperands() != 2) continue;
2541     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2542     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2543     if (!NodeName || !NodeVal) continue;
2544     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2545     if (ValConst && NodeName->getString() == LiteralName) {
2546       return ValConst->getZExtValue();
2547     }
2548   }
2549 
2550   report_fatal_error("HiPE literal " + LiteralName
2551                      + " required but not provided");
2552 }
2553 
2554 // Return true if there are no non-ehpad successors to MBB and there are no
2555 // non-meta instructions between MBBI and MBB.end().
2556 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
2557                                   MachineBasicBlock::const_iterator MBBI) {
2558   return std::all_of(
2559              MBB.succ_begin(), MBB.succ_end(),
2560              [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
2561          std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
2562            return MI.isMetaInstruction();
2563          });
2564 }
2565 
2566 /// Erlang programs may need a special prologue to handle the stack size they
2567 /// might need at runtime. That is because Erlang/OTP does not implement a C
2568 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2569 /// (for more information see Eric Stenman's Ph.D. thesis:
2570 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2571 ///
2572 /// CheckStack:
2573 ///       temp0 = sp - MaxStack
2574 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2575 /// OldStart:
2576 ///       ...
2577 /// IncStack:
2578 ///       call inc_stack   # doubles the stack space
2579 ///       temp0 = sp - MaxStack
2580 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2581 void X86FrameLowering::adjustForHiPEPrologue(
2582     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2583   MachineFrameInfo &MFI = MF.getFrameInfo();
2584   DebugLoc DL;
2585 
2586   // To support shrink-wrapping we would need to insert the new blocks
2587   // at the right place and update the branches to PrologueMBB.
2588   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2589 
2590   // HiPE-specific values
2591   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2592     ->getNamedMetadata("hipe.literals");
2593   if (!HiPELiteralsMD)
2594     report_fatal_error(
2595         "Can't generate HiPE prologue without runtime parameters");
2596   const unsigned HipeLeafWords
2597     = getHiPELiteral(HiPELiteralsMD,
2598                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2599   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2600   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2601   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2602                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2603   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2604 
2605   assert(STI.isTargetLinux() &&
2606          "HiPE prologue is only supported on Linux operating systems.");
2607 
2608   // Compute the largest caller's frame that is needed to fit the callees'
2609   // frames. This 'MaxStack' is computed from:
2610   //
2611   // a) the fixed frame size, which is the space needed for all spilled temps,
2612   // b) outgoing on-stack parameter areas, and
2613   // c) the minimum stack space this function needs to make available for the
2614   //    functions it calls (a tunable ABI property).
2615   if (MFI.hasCalls()) {
2616     unsigned MoreStackForCalls = 0;
2617 
2618     for (auto &MBB : MF) {
2619       for (auto &MI : MBB) {
2620         if (!MI.isCall())
2621           continue;
2622 
2623         // Get callee operand.
2624         const MachineOperand &MO = MI.getOperand(0);
2625 
2626         // Only take account of global function calls (no closures etc.).
2627         if (!MO.isGlobal())
2628           continue;
2629 
2630         const Function *F = dyn_cast<Function>(MO.getGlobal());
2631         if (!F)
2632           continue;
2633 
2634         // Do not update 'MaxStack' for primitive and built-in functions
2635         // (encoded with names either starting with "erlang."/"bif_" or not
2636         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2637         // "_", such as the BIF "suspend_0") as they are executed on another
2638         // stack.
2639         if (F->getName().find("erlang.") != StringRef::npos ||
2640             F->getName().find("bif_") != StringRef::npos ||
2641             F->getName().find_first_of("._") == StringRef::npos)
2642           continue;
2643 
2644         unsigned CalleeStkArity =
2645           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2646         if (HipeLeafWords - 1 > CalleeStkArity)
2647           MoreStackForCalls = std::max(MoreStackForCalls,
2648                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2649       }
2650     }
2651     MaxStack += MoreStackForCalls;
2652   }
2653 
2654   // If the stack frame needed is larger than the guaranteed then runtime checks
2655   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2656   if (MaxStack > Guaranteed) {
2657     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2658     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2659 
2660     for (const auto &LI : PrologueMBB.liveins()) {
2661       stackCheckMBB->addLiveIn(LI);
2662       incStackMBB->addLiveIn(LI);
2663     }
2664 
2665     MF.push_front(incStackMBB);
2666     MF.push_front(stackCheckMBB);
2667 
2668     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2669     unsigned LEAop, CMPop, CALLop;
2670     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2671     if (Is64Bit) {
2672       SPReg = X86::RSP;
2673       PReg  = X86::RBP;
2674       LEAop = X86::LEA64r;
2675       CMPop = X86::CMP64rm;
2676       CALLop = X86::CALL64pcrel32;
2677     } else {
2678       SPReg = X86::ESP;
2679       PReg  = X86::EBP;
2680       LEAop = X86::LEA32r;
2681       CMPop = X86::CMP32rm;
2682       CALLop = X86::CALLpcrel32;
2683     }
2684 
2685     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2686     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2687            "HiPE prologue scratch register is live-in");
2688 
2689     // Create new MBB for StackCheck:
2690     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2691                  SPReg, false, -MaxStack);
2692     // SPLimitOffset is in a fixed heap location (pointed by BP).
2693     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2694                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2695     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
2696 
2697     // Create new MBB for IncStack:
2698     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2699       addExternalSymbol("inc_stack_0");
2700     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2701                  SPReg, false, -MaxStack);
2702     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2703                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2704     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
2705 
2706     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2707     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2708     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2709     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2710   }
2711 #ifdef EXPENSIVE_CHECKS
2712   MF.verify();
2713 #endif
2714 }
2715 
2716 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2717                                            MachineBasicBlock::iterator MBBI,
2718                                            const DebugLoc &DL,
2719                                            int Offset) const {
2720 
2721   if (Offset <= 0)
2722     return false;
2723 
2724   if (Offset % SlotSize)
2725     return false;
2726 
2727   int NumPops = Offset / SlotSize;
2728   // This is only worth it if we have at most 2 pops.
2729   if (NumPops != 1 && NumPops != 2)
2730     return false;
2731 
2732   // Handle only the trivial case where the adjustment directly follows
2733   // a call. This is the most common one, anyway.
2734   if (MBBI == MBB.begin())
2735     return false;
2736   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2737   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2738     return false;
2739 
2740   unsigned Regs[2];
2741   unsigned FoundRegs = 0;
2742 
2743   auto &MRI = MBB.getParent()->getRegInfo();
2744   auto RegMask = Prev->getOperand(1);
2745 
2746   auto &RegClass =
2747       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2748   // Try to find up to NumPops free registers.
2749   for (auto Candidate : RegClass) {
2750 
2751     // Poor man's liveness:
2752     // Since we're immediately after a call, any register that is clobbered
2753     // by the call and not defined by it can be considered dead.
2754     if (!RegMask.clobbersPhysReg(Candidate))
2755       continue;
2756 
2757     // Don't clobber reserved registers
2758     if (MRI.isReserved(Candidate))
2759       continue;
2760 
2761     bool IsDef = false;
2762     for (const MachineOperand &MO : Prev->implicit_operands()) {
2763       if (MO.isReg() && MO.isDef() &&
2764           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2765         IsDef = true;
2766         break;
2767       }
2768     }
2769 
2770     if (IsDef)
2771       continue;
2772 
2773     Regs[FoundRegs++] = Candidate;
2774     if (FoundRegs == (unsigned)NumPops)
2775       break;
2776   }
2777 
2778   if (FoundRegs == 0)
2779     return false;
2780 
2781   // If we found only one free register, but need two, reuse the same one twice.
2782   while (FoundRegs < (unsigned)NumPops)
2783     Regs[FoundRegs++] = Regs[0];
2784 
2785   for (int i = 0; i < NumPops; ++i)
2786     BuildMI(MBB, MBBI, DL,
2787             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2788 
2789   return true;
2790 }
2791 
2792 MachineBasicBlock::iterator X86FrameLowering::
2793 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2794                               MachineBasicBlock::iterator I) const {
2795   bool reserveCallFrame = hasReservedCallFrame(MF);
2796   unsigned Opcode = I->getOpcode();
2797   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2798   DebugLoc DL = I->getDebugLoc();
2799   uint64_t Amount = TII.getFrameSize(*I);
2800   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2801   I = MBB.erase(I);
2802   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2803 
2804   if (!reserveCallFrame) {
2805     // If the stack pointer can be changed after prologue, turn the
2806     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2807     // adjcallstackdown instruction into 'add ESP, <amt>'
2808 
2809     // We need to keep the stack aligned properly.  To do this, we round the
2810     // amount of space needed for the outgoing arguments up to the next
2811     // alignment boundary.
2812     unsigned StackAlign = getStackAlignment();
2813     Amount = alignTo(Amount, StackAlign);
2814 
2815     MachineModuleInfo &MMI = MF.getMMI();
2816     const Function &F = MF.getFunction();
2817     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2818     bool DwarfCFI = !WindowsCFI &&
2819                     (MMI.hasDebugInfo() || F.needsUnwindTableEntry());
2820 
2821     // If we have any exception handlers in this function, and we adjust
2822     // the SP before calls, we may need to indicate this to the unwinder
2823     // using GNU_ARGS_SIZE. Note that this may be necessary even when
2824     // Amount == 0, because the preceding function may have set a non-0
2825     // GNU_ARGS_SIZE.
2826     // TODO: We don't need to reset this between subsequent functions,
2827     // if it didn't change.
2828     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2829 
2830     if (HasDwarfEHHandlers && !isDestroy &&
2831         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2832       BuildCFI(MBB, InsertPos, DL,
2833                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2834 
2835     if (Amount == 0)
2836       return I;
2837 
2838     // Factor out the amount that gets handled inside the sequence
2839     // (Pushes of argument for frame setup, callee pops for frame destroy)
2840     Amount -= InternalAmt;
2841 
2842     // TODO: This is needed only if we require precise CFA.
2843     // If this is a callee-pop calling convention, emit a CFA adjust for
2844     // the amount the callee popped.
2845     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2846       BuildCFI(MBB, InsertPos, DL,
2847                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2848 
2849     // Add Amount to SP to destroy a frame, or subtract to setup.
2850     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2851 
2852     if (StackAdjustment) {
2853       // Merge with any previous or following adjustment instruction. Note: the
2854       // instructions merged with here do not have CFI, so their stack
2855       // adjustments do not feed into CfaAdjustment.
2856       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2857       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2858 
2859       if (StackAdjustment) {
2860         if (!(F.hasMinSize() &&
2861               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2862           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2863                                /*InEpilogue=*/false);
2864       }
2865     }
2866 
2867     if (DwarfCFI && !hasFP(MF)) {
2868       // If we don't have FP, but need to generate unwind information,
2869       // we need to set the correct CFA offset after the stack adjustment.
2870       // How much we adjust the CFA offset depends on whether we're emitting
2871       // CFI only for EH purposes or for debugging. EH only requires the CFA
2872       // offset to be correct at each call site, while for debugging we want
2873       // it to be more precise.
2874 
2875       int64_t CfaAdjustment = -StackAdjustment;
2876       // TODO: When not using precise CFA, we also need to adjust for the
2877       // InternalAmt here.
2878       if (CfaAdjustment) {
2879         BuildCFI(MBB, InsertPos, DL,
2880                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
2881                                                          CfaAdjustment));
2882       }
2883     }
2884 
2885     return I;
2886   }
2887 
2888   if (isDestroy && InternalAmt && !blockEndIsUnreachable(MBB, I)) {
2889     // If we are performing frame pointer elimination and if the callee pops
2890     // something off the stack pointer, add it back.  We do this until we have
2891     // more advanced stack pointer tracking ability.
2892     // We are not tracking the stack pointer adjustment by the callee, so make
2893     // sure we restore the stack pointer immediately after the call, there may
2894     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2895     MachineBasicBlock::iterator CI = I;
2896     MachineBasicBlock::iterator B = MBB.begin();
2897     while (CI != B && !std::prev(CI)->isCall())
2898       --CI;
2899     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2900   }
2901 
2902   return I;
2903 }
2904 
2905 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2906   assert(MBB.getParent() && "Block is not attached to a function!");
2907   const MachineFunction &MF = *MBB.getParent();
2908   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2909 }
2910 
2911 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2912   assert(MBB.getParent() && "Block is not attached to a function!");
2913 
2914   // Win64 has strict requirements in terms of epilogue and we are
2915   // not taking a chance at messing with them.
2916   // I.e., unless this block is already an exit block, we can't use
2917   // it as an epilogue.
2918   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2919     return false;
2920 
2921   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2922     return true;
2923 
2924   // If we cannot use LEA to adjust SP, we may need to use ADD, which
2925   // clobbers the EFLAGS. Check that we do not need to preserve it,
2926   // otherwise, conservatively assume this is not
2927   // safe to insert the epilogue here.
2928   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2929 }
2930 
2931 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2932   // If we may need to emit frameless compact unwind information, give
2933   // up as this is currently broken: PR25614.
2934   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2935          // The lowering of segmented stack and HiPE only support entry blocks
2936          // as prologue blocks: PR26107.
2937          // This limitation may be lifted if we fix:
2938          // - adjustForSegmentedStacks
2939          // - adjustForHiPEPrologue
2940          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2941          !MF.shouldSplitStack();
2942 }
2943 
2944 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2945     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2946     const DebugLoc &DL, bool RestoreSP) const {
2947   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2948   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2949   assert(STI.is32Bit() && !Uses64BitFramePtr &&
2950          "restoring EBP/ESI on non-32-bit target");
2951 
2952   MachineFunction &MF = *MBB.getParent();
2953   Register FramePtr = TRI->getFrameRegister(MF);
2954   Register BasePtr = TRI->getBaseRegister();
2955   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2956   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2957   MachineFrameInfo &MFI = MF.getFrameInfo();
2958 
2959   // FIXME: Don't set FrameSetup flag in catchret case.
2960 
2961   int FI = FuncInfo.EHRegNodeFrameIndex;
2962   int EHRegSize = MFI.getObjectSize(FI);
2963 
2964   if (RestoreSP) {
2965     // MOV32rm -EHRegSize(%ebp), %esp
2966     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2967                  X86::EBP, true, -EHRegSize)
2968         .setMIFlag(MachineInstr::FrameSetup);
2969   }
2970 
2971   unsigned UsedReg;
2972   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2973   int EndOffset = -EHRegOffset - EHRegSize;
2974   FuncInfo.EHRegNodeEndOffset = EndOffset;
2975 
2976   if (UsedReg == FramePtr) {
2977     // ADD $offset, %ebp
2978     unsigned ADDri = getADDriOpcode(false, EndOffset);
2979     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2980         .addReg(FramePtr)
2981         .addImm(EndOffset)
2982         .setMIFlag(MachineInstr::FrameSetup)
2983         ->getOperand(3)
2984         .setIsDead();
2985     assert(EndOffset >= 0 &&
2986            "end of registration object above normal EBP position!");
2987   } else if (UsedReg == BasePtr) {
2988     // LEA offset(%ebp), %esi
2989     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2990                  FramePtr, false, EndOffset)
2991         .setMIFlag(MachineInstr::FrameSetup);
2992     // MOV32rm SavedEBPOffset(%esi), %ebp
2993     assert(X86FI->getHasSEHFramePtrSave());
2994     int Offset =
2995         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2996     assert(UsedReg == BasePtr);
2997     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2998                  UsedReg, true, Offset)
2999         .setMIFlag(MachineInstr::FrameSetup);
3000   } else {
3001     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3002   }
3003   return MBBI;
3004 }
3005 
3006 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3007   return TRI->getSlotSize();
3008 }
3009 
3010 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
3011     const {
3012   return TRI->getDwarfRegNum(StackPtr, true);
3013 }
3014 
3015 namespace {
3016 // Struct used by orderFrameObjects to help sort the stack objects.
3017 struct X86FrameSortingObject {
3018   bool IsValid = false;         // true if we care about this Object.
3019   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
3020   unsigned ObjectSize = 0;      // Size of Object in bytes.
3021   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
3022   unsigned ObjectNumUses = 0;   // Object static number of uses.
3023 };
3024 
3025 // The comparison function we use for std::sort to order our local
3026 // stack symbols. The current algorithm is to use an estimated
3027 // "density". This takes into consideration the size and number of
3028 // uses each object has in order to roughly minimize code size.
3029 // So, for example, an object of size 16B that is referenced 5 times
3030 // will get higher priority than 4 4B objects referenced 1 time each.
3031 // It's not perfect and we may be able to squeeze a few more bytes out of
3032 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3033 // fringe end can have special consideration, given their size is less
3034 // important, etc.), but the algorithmic complexity grows too much to be
3035 // worth the extra gains we get. This gets us pretty close.
3036 // The final order leaves us with objects with highest priority going
3037 // at the end of our list.
3038 struct X86FrameSortingComparator {
3039   inline bool operator()(const X86FrameSortingObject &A,
3040                          const X86FrameSortingObject &B) {
3041     uint64_t DensityAScaled, DensityBScaled;
3042 
3043     // For consistency in our comparison, all invalid objects are placed
3044     // at the end. This also allows us to stop walking when we hit the
3045     // first invalid item after it's all sorted.
3046     if (!A.IsValid)
3047       return false;
3048     if (!B.IsValid)
3049       return true;
3050 
3051     // The density is calculated by doing :
3052     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
3053     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
3054     // Since this approach may cause inconsistencies in
3055     // the floating point <, >, == comparisons, depending on the floating
3056     // point model with which the compiler was built, we're going
3057     // to scale both sides by multiplying with
3058     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3059     // the division and, with it, the need for any floating point
3060     // arithmetic.
3061     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3062       static_cast<uint64_t>(B.ObjectSize);
3063     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3064       static_cast<uint64_t>(A.ObjectSize);
3065 
3066     // If the two densities are equal, prioritize highest alignment
3067     // objects. This allows for similar alignment objects
3068     // to be packed together (given the same density).
3069     // There's room for improvement here, also, since we can pack
3070     // similar alignment (different density) objects next to each
3071     // other to save padding. This will also require further
3072     // complexity/iterations, and the overall gain isn't worth it,
3073     // in general. Something to keep in mind, though.
3074     if (DensityAScaled == DensityBScaled)
3075       return A.ObjectAlignment < B.ObjectAlignment;
3076 
3077     return DensityAScaled < DensityBScaled;
3078   }
3079 };
3080 } // namespace
3081 
3082 // Order the symbols in the local stack.
3083 // We want to place the local stack objects in some sort of sensible order.
3084 // The heuristic we use is to try and pack them according to static number
3085 // of uses and size of object in order to minimize code size.
3086 void X86FrameLowering::orderFrameObjects(
3087     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3088   const MachineFrameInfo &MFI = MF.getFrameInfo();
3089 
3090   // Don't waste time if there's nothing to do.
3091   if (ObjectsToAllocate.empty())
3092     return;
3093 
3094   // Create an array of all MFI objects. We won't need all of these
3095   // objects, but we're going to create a full array of them to make
3096   // it easier to index into when we're counting "uses" down below.
3097   // We want to be able to easily/cheaply access an object by simply
3098   // indexing into it, instead of having to search for it every time.
3099   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3100 
3101   // Walk the objects we care about and mark them as such in our working
3102   // struct.
3103   for (auto &Obj : ObjectsToAllocate) {
3104     SortingObjects[Obj].IsValid = true;
3105     SortingObjects[Obj].ObjectIndex = Obj;
3106     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3107     // Set the size.
3108     int ObjectSize = MFI.getObjectSize(Obj);
3109     if (ObjectSize == 0)
3110       // Variable size. Just use 4.
3111       SortingObjects[Obj].ObjectSize = 4;
3112     else
3113       SortingObjects[Obj].ObjectSize = ObjectSize;
3114   }
3115 
3116   // Count the number of uses for each object.
3117   for (auto &MBB : MF) {
3118     for (auto &MI : MBB) {
3119       if (MI.isDebugInstr())
3120         continue;
3121       for (const MachineOperand &MO : MI.operands()) {
3122         // Check to see if it's a local stack symbol.
3123         if (!MO.isFI())
3124           continue;
3125         int Index = MO.getIndex();
3126         // Check to see if it falls within our range, and is tagged
3127         // to require ordering.
3128         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3129             SortingObjects[Index].IsValid)
3130           SortingObjects[Index].ObjectNumUses++;
3131       }
3132     }
3133   }
3134 
3135   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3136   // info).
3137   llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3138 
3139   // Now modify the original list to represent the final order that
3140   // we want. The order will depend on whether we're going to access them
3141   // from the stack pointer or the frame pointer. For SP, the list should
3142   // end up with the END containing objects that we want with smaller offsets.
3143   // For FP, it should be flipped.
3144   int i = 0;
3145   for (auto &Obj : SortingObjects) {
3146     // All invalid items are sorted at the end, so it's safe to stop.
3147     if (!Obj.IsValid)
3148       break;
3149     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3150   }
3151 
3152   // Flip it if we're accessing off of the FP.
3153   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3154     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3155 }
3156 
3157 
3158 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3159   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3160   unsigned Offset = 16;
3161   // RBP is immediately pushed.
3162   Offset += SlotSize;
3163   // All callee-saved registers are then pushed.
3164   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3165   // Every funclet allocates enough stack space for the largest outgoing call.
3166   Offset += getWinEHFuncletFrameSize(MF);
3167   return Offset;
3168 }
3169 
3170 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3171     MachineFunction &MF, RegScavenger *RS) const {
3172   // Mark the function as not having WinCFI. We will set it back to true in
3173   // emitPrologue if it gets called and emits CFI.
3174   MF.setHasWinCFI(false);
3175 
3176   // If this function isn't doing Win64-style C++ EH, we don't need to do
3177   // anything.
3178   const Function &F = MF.getFunction();
3179   if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3180       classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3181     return;
3182 
3183   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3184   // relative to RSP after the prologue.  Find the offset of the last fixed
3185   // object, so that we can allocate a slot immediately following it. If there
3186   // were no fixed objects, use offset -SlotSize, which is immediately after the
3187   // return address. Fixed objects have negative frame indices.
3188   MachineFrameInfo &MFI = MF.getFrameInfo();
3189   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3190   int64_t MinFixedObjOffset = -SlotSize;
3191   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3192     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3193 
3194   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3195     for (WinEHHandlerType &H : TBME.HandlerArray) {
3196       int FrameIndex = H.CatchObj.FrameIndex;
3197       if (FrameIndex != INT_MAX) {
3198         // Ensure alignment.
3199         unsigned Align = MFI.getObjectAlignment(FrameIndex);
3200         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3201         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3202         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3203       }
3204     }
3205   }
3206 
3207   // Ensure alignment.
3208   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3209   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3210   int UnwindHelpFI =
3211       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3212   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3213 
3214   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3215   // other frame setup instructions.
3216   MachineBasicBlock &MBB = MF.front();
3217   auto MBBI = MBB.begin();
3218   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3219     ++MBBI;
3220 
3221   DebugLoc DL = MBB.findDebugLoc(MBBI);
3222   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3223                     UnwindHelpFI)
3224       .addImm(-2);
3225 }
3226