1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/EHPersonalities.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCObjectFileInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include <cstdlib> 39 40 #define DEBUG_TYPE "x86-fl" 41 42 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 43 STATISTIC(NumFrameExtraProbe, 44 "Number of extra stack probes generated in prologue"); 45 STATISTIC(NumFunctionUsingPush2Pop2, "Number of funtions using push2/pop2"); 46 47 using namespace llvm; 48 49 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 50 MaybeAlign StackAlignOverride) 51 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 52 STI.is64Bit() ? -8 : -4), 53 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 54 // Cache a bunch of frame-related predicates for this subtarget. 55 SlotSize = TRI->getSlotSize(); 56 Is64Bit = STI.is64Bit(); 57 IsLP64 = STI.isTarget64BitLP64(); 58 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 59 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 60 StackPtr = TRI->getStackRegister(); 61 } 62 63 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 64 return !MF.getFrameInfo().hasVarSizedObjects() && 65 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 66 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 67 } 68 69 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 70 /// call frame pseudos can be simplified. Having a FP, as in the default 71 /// implementation, is not sufficient here since we can't always use it. 72 /// Use a more nuanced condition. 73 bool X86FrameLowering::canSimplifyCallFramePseudos( 74 const MachineFunction &MF) const { 75 return hasReservedCallFrame(MF) || 76 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 77 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 78 TRI->hasBasePointer(MF); 79 } 80 81 // needsFrameIndexResolution - Do we need to perform FI resolution for 82 // this function. Normally, this is required only when the function 83 // has any stack objects. However, FI resolution actually has another job, 84 // not apparent from the title - it resolves callframesetup/destroy 85 // that were not simplified earlier. 86 // So, this is required for x86 functions that have push sequences even 87 // when there are no stack objects. 88 bool X86FrameLowering::needsFrameIndexResolution( 89 const MachineFunction &MF) const { 90 return MF.getFrameInfo().hasStackObjects() || 91 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 92 } 93 94 /// hasFP - Return true if the specified function should have a dedicated frame 95 /// pointer register. This is true if the function has variable sized allocas 96 /// or if frame pointer elimination is disabled. 97 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 98 const MachineFrameInfo &MFI = MF.getFrameInfo(); 99 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 100 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 101 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 102 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 103 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 104 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 105 MFI.hasStackMap() || MFI.hasPatchPoint() || 106 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); 107 } 108 109 static unsigned getSUBriOpcode(bool IsLP64) { 110 return IsLP64 ? X86::SUB64ri32 : X86::SUB32ri; 111 } 112 113 static unsigned getADDriOpcode(bool IsLP64) { 114 return IsLP64 ? X86::ADD64ri32 : X86::ADD32ri; 115 } 116 117 static unsigned getSUBrrOpcode(bool IsLP64) { 118 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 119 } 120 121 static unsigned getADDrrOpcode(bool IsLP64) { 122 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 123 } 124 125 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 126 return IsLP64 ? X86::AND64ri32 : X86::AND32ri; 127 } 128 129 static unsigned getLEArOpcode(bool IsLP64) { 130 return IsLP64 ? X86::LEA64r : X86::LEA32r; 131 } 132 133 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 134 if (Use64BitReg) { 135 if (isUInt<32>(Imm)) 136 return X86::MOV32ri64; 137 if (isInt<32>(Imm)) 138 return X86::MOV64ri32; 139 return X86::MOV64ri; 140 } 141 return X86::MOV32ri; 142 } 143 144 // Push-Pop Acceleration (PPX) hint is used to indicate that the POP reads the 145 // value written by the PUSH from the stack. The processor tracks these marked 146 // instructions internally and fast-forwards register data between matching PUSH 147 // and POP instructions, without going through memory or through the training 148 // loop of the Fast Store Forwarding Predictor (FSFP). Instead, a more efficient 149 // memory-renaming optimization can be used. 150 // 151 // The PPX hint is purely a performance hint. Instructions with this hint have 152 // the same functional semantics as those without. PPX hints set by the 153 // compiler that violate the balancing rule may turn off the PPX optimization, 154 // but they will not affect program semantics. 155 // 156 // Hence, PPX is used for balanced spill/reloads (Exceptions and setjmp/longjmp 157 // are not considered). 158 // 159 // PUSH2 and POP2 are instructions for (respectively) pushing/popping 2 160 // GPRs at a time to/from the stack. 161 static unsigned getPUSHOpcode(const X86Subtarget &ST) { 162 return ST.is64Bit() ? (ST.hasPPX() ? X86::PUSHP64r : X86::PUSH64r) 163 : X86::PUSH32r; 164 } 165 static unsigned getPOPOpcode(const X86Subtarget &ST) { 166 return ST.is64Bit() ? (ST.hasPPX() ? X86::POPP64r : X86::POP64r) 167 : X86::POP32r; 168 } 169 static unsigned getPUSH2Opcode(const X86Subtarget &ST) { 170 return ST.hasPPX() ? X86::PUSH2P : X86::PUSH2; 171 } 172 static unsigned getPOP2Opcode(const X86Subtarget &ST) { 173 return ST.hasPPX() ? X86::POP2P : X86::POP2; 174 } 175 176 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 177 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 178 unsigned Reg = RegMask.PhysReg; 179 180 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 181 Reg == X86::AH || Reg == X86::AL) 182 return true; 183 } 184 185 return false; 186 } 187 188 /// Check if the flags need to be preserved before the terminators. 189 /// This would be the case, if the eflags is live-in of the region 190 /// composed by the terminators or live-out of that region, without 191 /// being defined by a terminator. 192 static bool 193 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 194 for (const MachineInstr &MI : MBB.terminators()) { 195 bool BreakNext = false; 196 for (const MachineOperand &MO : MI.operands()) { 197 if (!MO.isReg()) 198 continue; 199 Register Reg = MO.getReg(); 200 if (Reg != X86::EFLAGS) 201 continue; 202 203 // This terminator needs an eflags that is not defined 204 // by a previous another terminator: 205 // EFLAGS is live-in of the region composed by the terminators. 206 if (!MO.isDef()) 207 return true; 208 // This terminator defines the eflags, i.e., we don't need to preserve it. 209 // However, we still need to check this specific terminator does not 210 // read a live-in value. 211 BreakNext = true; 212 } 213 // We found a definition of the eflags, no need to preserve them. 214 if (BreakNext) 215 return false; 216 } 217 218 // None of the terminators use or define the eflags. 219 // Check if they are live-out, that would imply we need to preserve them. 220 for (const MachineBasicBlock *Succ : MBB.successors()) 221 if (Succ->isLiveIn(X86::EFLAGS)) 222 return true; 223 224 return false; 225 } 226 227 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 228 /// stack pointer by a constant value. 229 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 230 MachineBasicBlock::iterator &MBBI, 231 const DebugLoc &DL, int64_t NumBytes, 232 bool InEpilogue) const { 233 bool isSub = NumBytes < 0; 234 uint64_t Offset = isSub ? -NumBytes : NumBytes; 235 MachineInstr::MIFlag Flag = 236 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 237 238 uint64_t Chunk = (1LL << 31) - 1; 239 240 MachineFunction &MF = *MBB.getParent(); 241 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 242 const X86TargetLowering &TLI = *STI.getTargetLowering(); 243 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 244 245 // It's ok to not take into account large chunks when probing, as the 246 // allocation is split in smaller chunks anyway. 247 if (EmitInlineStackProbe && !InEpilogue) { 248 249 // This pseudo-instruction is going to be expanded, potentially using a 250 // loop, by inlineStackProbe(). 251 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 252 return; 253 } else if (Offset > Chunk) { 254 // Rather than emit a long series of instructions for large offsets, 255 // load the offset into a register and do one sub/add 256 unsigned Reg = 0; 257 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 258 259 if (isSub && !isEAXLiveIn(MBB)) 260 Reg = Rax; 261 else 262 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 263 264 unsigned AddSubRROpc = 265 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 266 if (Reg) { 267 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) 268 .addImm(Offset) 269 .setMIFlag(Flag); 270 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 271 .addReg(StackPtr) 272 .addReg(Reg); 273 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 274 return; 275 } else if (Offset > 8 * Chunk) { 276 // If we would need more than 8 add or sub instructions (a >16GB stack 277 // frame), it's worth spilling RAX to materialize this immediate. 278 // pushq %rax 279 // movabsq +-$Offset+-SlotSize, %rax 280 // addq %rsp, %rax 281 // xchg %rax, (%rsp) 282 // movq (%rsp), %rsp 283 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 284 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 285 .addReg(Rax, RegState::Kill) 286 .setMIFlag(Flag); 287 // Subtract is not commutative, so negate the offset and always use add. 288 // Subtract 8 less and add 8 more to account for the PUSH we just did. 289 if (isSub) 290 Offset = -(Offset - SlotSize); 291 else 292 Offset = Offset + SlotSize; 293 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) 294 .addImm(Offset) 295 .setMIFlag(Flag); 296 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 297 .addReg(Rax) 298 .addReg(StackPtr); 299 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 300 // Exchange the new SP in RAX with the top of the stack. 301 addRegOffset( 302 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 303 StackPtr, false, 0); 304 // Load new SP from the top of the stack into RSP. 305 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 306 StackPtr, false, 0); 307 return; 308 } 309 } 310 311 while (Offset) { 312 uint64_t ThisVal = std::min(Offset, Chunk); 313 if (ThisVal == SlotSize) { 314 // Use push / pop for slot sized adjustments as a size optimization. We 315 // need to find a dead register when using pop. 316 unsigned Reg = isSub ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 317 : TRI->findDeadCallerSavedReg(MBB, MBBI); 318 if (Reg) { 319 unsigned Opc = isSub ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 320 : (Is64Bit ? X86::POP64r : X86::POP32r); 321 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 322 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 323 .setMIFlag(Flag); 324 Offset -= ThisVal; 325 continue; 326 } 327 } 328 329 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 330 .setMIFlag(Flag); 331 332 Offset -= ThisVal; 333 } 334 } 335 336 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 337 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 338 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 339 assert(Offset != 0 && "zero offset stack adjustment requested"); 340 341 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 342 // is tricky. 343 bool UseLEA; 344 if (!InEpilogue) { 345 // Check if inserting the prologue at the beginning 346 // of MBB would require to use LEA operations. 347 // We need to use LEA operations if EFLAGS is live in, because 348 // it means an instruction will read it before it gets defined. 349 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 350 } else { 351 // If we can use LEA for SP but we shouldn't, check that none 352 // of the terminators uses the eflags. Otherwise we will insert 353 // a ADD that will redefine the eflags and break the condition. 354 // Alternatively, we could move the ADD, but this may not be possible 355 // and is an optimization anyway. 356 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 357 if (UseLEA && !STI.useLeaForSP()) 358 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 359 // If that assert breaks, that means we do not do the right thing 360 // in canUseAsEpilogue. 361 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 362 "We shouldn't have allowed this insertion point"); 363 } 364 365 MachineInstrBuilder MI; 366 if (UseLEA) { 367 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 368 TII.get(getLEArOpcode(Uses64BitFramePtr)), 369 StackPtr), 370 StackPtr, false, Offset); 371 } else { 372 bool IsSub = Offset < 0; 373 uint64_t AbsOffset = IsSub ? -Offset : Offset; 374 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr) 375 : getADDriOpcode(Uses64BitFramePtr); 376 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 377 .addReg(StackPtr) 378 .addImm(AbsOffset); 379 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 380 } 381 return MI; 382 } 383 384 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 385 MachineBasicBlock::iterator &MBBI, 386 bool doMergeWithPrevious) const { 387 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 388 (!doMergeWithPrevious && MBBI == MBB.end())) 389 return 0; 390 391 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 392 393 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 394 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 395 // instruction, and that there are no DBG_VALUE or other instructions between 396 // ADD/SUB/LEA and its corresponding CFI instruction. 397 /* TODO: Add support for the case where there are multiple CFI instructions 398 below the ADD/SUB/LEA, e.g.: 399 ... 400 add 401 cfi_def_cfa_offset 402 cfi_offset 403 ... 404 */ 405 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 406 PI = std::prev(PI); 407 408 unsigned Opc = PI->getOpcode(); 409 int Offset = 0; 410 411 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD32ri) && 412 PI->getOperand(0).getReg() == StackPtr) { 413 assert(PI->getOperand(1).getReg() == StackPtr); 414 Offset = PI->getOperand(2).getImm(); 415 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 416 PI->getOperand(0).getReg() == StackPtr && 417 PI->getOperand(1).getReg() == StackPtr && 418 PI->getOperand(2).getImm() == 1 && 419 PI->getOperand(3).getReg() == X86::NoRegister && 420 PI->getOperand(5).getReg() == X86::NoRegister) { 421 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 422 Offset = PI->getOperand(4).getImm(); 423 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB32ri) && 424 PI->getOperand(0).getReg() == StackPtr) { 425 assert(PI->getOperand(1).getReg() == StackPtr); 426 Offset = -PI->getOperand(2).getImm(); 427 } else 428 return 0; 429 430 PI = MBB.erase(PI); 431 if (PI != MBB.end() && PI->isCFIInstruction()) { 432 auto CIs = MBB.getParent()->getFrameInstructions(); 433 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 434 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 435 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 436 PI = MBB.erase(PI); 437 } 438 if (!doMergeWithPrevious) 439 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 440 441 return Offset; 442 } 443 444 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 445 MachineBasicBlock::iterator MBBI, 446 const DebugLoc &DL, 447 const MCCFIInstruction &CFIInst, 448 MachineInstr::MIFlag Flag) const { 449 MachineFunction &MF = *MBB.getParent(); 450 unsigned CFIIndex = MF.addFrameInst(CFIInst); 451 452 if (CFIInst.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 453 MF.getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true); 454 455 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 456 .addCFIIndex(CFIIndex) 457 .setMIFlag(Flag); 458 } 459 460 /// Emits Dwarf Info specifying offsets of callee saved registers and 461 /// frame pointer. This is called only when basic block sections are enabled. 462 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 463 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 464 MachineFunction &MF = *MBB.getParent(); 465 if (!hasFP(MF)) { 466 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 467 return; 468 } 469 const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo(); 470 const Register FramePtr = TRI->getFrameRegister(MF); 471 const Register MachineFramePtr = 472 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 473 : FramePtr; 474 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 475 // Offset = space for return address + size of the frame pointer itself. 476 int64_t Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 477 BuildCFI(MBB, MBBI, DebugLoc{}, 478 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 479 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 480 } 481 482 void X86FrameLowering::emitCalleeSavedFrameMoves( 483 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 484 const DebugLoc &DL, bool IsPrologue) const { 485 MachineFunction &MF = *MBB.getParent(); 486 MachineFrameInfo &MFI = MF.getFrameInfo(); 487 const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo(); 488 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 489 490 // Add callee saved registers to move list. 491 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 492 493 // Calculate offsets. 494 for (const CalleeSavedInfo &I : CSI) { 495 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 496 Register Reg = I.getReg(); 497 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 498 499 if (IsPrologue) { 500 if (X86FI->getStackPtrSaveMI()) { 501 // +2*SlotSize because there is return address and ebp at the bottom 502 // of the stack. 503 // | retaddr | 504 // | ebp | 505 // | |<--ebp 506 Offset += 2 * SlotSize; 507 SmallString<64> CfaExpr; 508 CfaExpr.push_back(dwarf::DW_CFA_expression); 509 uint8_t buffer[16]; 510 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 511 CfaExpr.push_back(2); 512 Register FramePtr = TRI->getFrameRegister(MF); 513 const Register MachineFramePtr = 514 STI.isTarget64BitILP32() 515 ? Register(getX86SubSuperRegister(FramePtr, 64)) 516 : FramePtr; 517 unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true); 518 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr)); 519 CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer)); 520 BuildCFI(MBB, MBBI, DL, 521 MCCFIInstruction::createEscape(nullptr, CfaExpr.str()), 522 MachineInstr::FrameSetup); 523 } else { 524 BuildCFI(MBB, MBBI, DL, 525 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 526 } 527 } else { 528 BuildCFI(MBB, MBBI, DL, 529 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 530 } 531 } 532 if (auto *MI = X86FI->getStackPtrSaveMI()) { 533 int FI = MI->getOperand(1).getIndex(); 534 int64_t Offset = MFI.getObjectOffset(FI) + 2 * SlotSize; 535 SmallString<64> CfaExpr; 536 Register FramePtr = TRI->getFrameRegister(MF); 537 const Register MachineFramePtr = 538 STI.isTarget64BitILP32() 539 ? Register(getX86SubSuperRegister(FramePtr, 64)) 540 : FramePtr; 541 unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true); 542 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr)); 543 uint8_t buffer[16]; 544 CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer)); 545 CfaExpr.push_back(dwarf::DW_OP_deref); 546 547 SmallString<64> DefCfaExpr; 548 DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression); 549 DefCfaExpr.append(buffer, buffer + encodeSLEB128(CfaExpr.size(), buffer)); 550 DefCfaExpr.append(CfaExpr.str()); 551 // DW_CFA_def_cfa_expression: DW_OP_breg5 offset, DW_OP_deref 552 BuildCFI(MBB, MBBI, DL, 553 MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str()), 554 MachineInstr::FrameSetup); 555 } 556 } 557 558 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 559 MachineBasicBlock &MBB) const { 560 const MachineFunction &MF = *MBB.getParent(); 561 562 // Insertion point. 563 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 564 565 // Fake a debug loc. 566 DebugLoc DL; 567 if (MBBI != MBB.end()) 568 DL = MBBI->getDebugLoc(); 569 570 // Zero out FP stack if referenced. Do this outside of the loop below so that 571 // it's done only once. 572 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 573 for (MCRegister Reg : RegsToZero.set_bits()) { 574 if (!X86::RFP80RegClass.contains(Reg)) 575 continue; 576 577 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; 578 for (unsigned i = 0; i != NumFPRegs; ++i) 579 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); 580 581 for (unsigned i = 0; i != NumFPRegs; ++i) 582 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); 583 break; 584 } 585 586 // For GPRs, we only care to clear out the 32-bit register. 587 BitVector GPRsToZero(TRI->getNumRegs()); 588 for (MCRegister Reg : RegsToZero.set_bits()) 589 if (TRI->isGeneralPurposeRegister(MF, Reg)) { 590 GPRsToZero.set(getX86SubSuperRegister(Reg, 32)); 591 RegsToZero.reset(Reg); 592 } 593 594 // Zero out the GPRs first. 595 for (MCRegister Reg : GPRsToZero.set_bits()) 596 TII.buildClearRegister(Reg, MBB, MBBI, DL); 597 598 // Zero out the remaining registers. 599 for (MCRegister Reg : RegsToZero.set_bits()) 600 TII.buildClearRegister(Reg, MBB, MBBI, DL); 601 } 602 603 void X86FrameLowering::emitStackProbe( 604 MachineFunction &MF, MachineBasicBlock &MBB, 605 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 606 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 607 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 608 if (STI.isTargetWindowsCoreCLR()) { 609 if (InProlog) { 610 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 611 .addImm(0 /* no explicit stack size */); 612 } else { 613 emitStackProbeInline(MF, MBB, MBBI, DL, false); 614 } 615 } else { 616 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 617 } 618 } 619 620 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 621 return STI.isOSWindows() && !STI.isTargetWin64(); 622 } 623 624 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 625 MachineBasicBlock &PrologMBB) const { 626 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 627 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 628 }); 629 if (Where != PrologMBB.end()) { 630 DebugLoc DL = PrologMBB.findDebugLoc(Where); 631 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 632 Where->eraseFromParent(); 633 } 634 } 635 636 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 637 MachineBasicBlock &MBB, 638 MachineBasicBlock::iterator MBBI, 639 const DebugLoc &DL, 640 bool InProlog) const { 641 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 642 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 643 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 644 else 645 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 646 } 647 648 void X86FrameLowering::emitStackProbeInlineGeneric( 649 MachineFunction &MF, MachineBasicBlock &MBB, 650 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 651 MachineInstr &AllocWithProbe = *MBBI; 652 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 653 654 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 655 const X86TargetLowering &TLI = *STI.getTargetLowering(); 656 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 657 "different expansion expected for CoreCLR 64 bit"); 658 659 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 660 uint64_t ProbeChunk = StackProbeSize * 8; 661 662 uint64_t MaxAlign = 663 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 664 665 // Synthesize a loop or unroll it, depending on the number of iterations. 666 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 667 // between the unaligned rsp and current rsp. 668 if (Offset > ProbeChunk) { 669 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 670 MaxAlign % StackProbeSize); 671 } else { 672 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 673 MaxAlign % StackProbeSize); 674 } 675 } 676 677 void X86FrameLowering::emitStackProbeInlineGenericBlock( 678 MachineFunction &MF, MachineBasicBlock &MBB, 679 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 680 uint64_t AlignOffset) const { 681 682 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 683 const bool HasFP = hasFP(MF); 684 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 685 const X86TargetLowering &TLI = *STI.getTargetLowering(); 686 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 687 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 688 689 uint64_t CurrentOffset = 0; 690 691 assert(AlignOffset < StackProbeSize); 692 693 // If the offset is so small it fits within a page, there's nothing to do. 694 if (StackProbeSize < Offset + AlignOffset) { 695 696 uint64_t StackAdjustment = StackProbeSize - AlignOffset; 697 BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false) 698 .setMIFlag(MachineInstr::FrameSetup); 699 if (!HasFP && NeedsDwarfCFI) { 700 BuildCFI( 701 MBB, MBBI, DL, 702 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 703 } 704 705 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 706 .setMIFlag(MachineInstr::FrameSetup), 707 StackPtr, false, 0) 708 .addImm(0) 709 .setMIFlag(MachineInstr::FrameSetup); 710 NumFrameExtraProbe++; 711 CurrentOffset = StackProbeSize - AlignOffset; 712 } 713 714 // For the next N - 1 pages, just probe. I tried to take advantage of 715 // natural probes but it implies much more logic and there was very few 716 // interesting natural probes to interleave. 717 while (CurrentOffset + StackProbeSize < Offset) { 718 BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false) 719 .setMIFlag(MachineInstr::FrameSetup); 720 721 if (!HasFP && NeedsDwarfCFI) { 722 BuildCFI( 723 MBB, MBBI, DL, 724 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 725 } 726 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 727 .setMIFlag(MachineInstr::FrameSetup), 728 StackPtr, false, 0) 729 .addImm(0) 730 .setMIFlag(MachineInstr::FrameSetup); 731 NumFrameExtraProbe++; 732 CurrentOffset += StackProbeSize; 733 } 734 735 // No need to probe the tail, it is smaller than a Page. 736 uint64_t ChunkSize = Offset - CurrentOffset; 737 if (ChunkSize == SlotSize) { 738 // Use push for slot sized adjustments as a size optimization, 739 // like emitSPUpdate does when not probing. 740 unsigned Reg = Is64Bit ? X86::RAX : X86::EAX; 741 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 742 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 743 .addReg(Reg, RegState::Undef) 744 .setMIFlag(MachineInstr::FrameSetup); 745 } else { 746 BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false) 747 .setMIFlag(MachineInstr::FrameSetup); 748 } 749 // No need to adjust Dwarf CFA offset here, the last position of the stack has 750 // been defined 751 } 752 753 void X86FrameLowering::emitStackProbeInlineGenericLoop( 754 MachineFunction &MF, MachineBasicBlock &MBB, 755 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 756 uint64_t AlignOffset) const { 757 assert(Offset && "null offset"); 758 759 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 760 MachineBasicBlock::LQR_Live && 761 "Inline stack probe loop will clobber live EFLAGS."); 762 763 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 764 const bool HasFP = hasFP(MF); 765 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 766 const X86TargetLowering &TLI = *STI.getTargetLowering(); 767 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 768 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 769 770 if (AlignOffset) { 771 if (AlignOffset < StackProbeSize) { 772 // Perform a first smaller allocation followed by a probe. 773 BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false) 774 .setMIFlag(MachineInstr::FrameSetup); 775 776 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 777 .setMIFlag(MachineInstr::FrameSetup), 778 StackPtr, false, 0) 779 .addImm(0) 780 .setMIFlag(MachineInstr::FrameSetup); 781 NumFrameExtraProbe++; 782 Offset -= AlignOffset; 783 } 784 } 785 786 // Synthesize a loop 787 NumFrameLoopProbe++; 788 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 789 790 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 791 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 792 793 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 794 MF.insert(MBBIter, testMBB); 795 MF.insert(MBBIter, tailMBB); 796 797 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 798 : Is64Bit ? X86::R11D 799 : X86::EAX; 800 801 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 802 .addReg(StackPtr) 803 .setMIFlag(MachineInstr::FrameSetup); 804 805 // save loop bound 806 { 807 const unsigned BoundOffset = alignDown(Offset, StackProbeSize); 808 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr); 809 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 810 .addReg(FinalStackProbed) 811 .addImm(BoundOffset) 812 .setMIFlag(MachineInstr::FrameSetup); 813 814 // while in the loop, use loop-invariant reg for CFI, 815 // instead of the stack pointer, which changes during the loop 816 if (!HasFP && NeedsDwarfCFI) { 817 // x32 uses the same DWARF register numbers as x86-64, 818 // so there isn't a register number for r11d, we must use r11 instead 819 const Register DwarfFinalStackProbed = 820 STI.isTarget64BitILP32() 821 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 822 : FinalStackProbed; 823 824 BuildCFI(MBB, MBBI, DL, 825 MCCFIInstruction::createDefCfaRegister( 826 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 827 BuildCFI(MBB, MBBI, DL, 828 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 829 } 830 } 831 832 // allocate a page 833 BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize, 834 /*InEpilogue=*/false) 835 .setMIFlag(MachineInstr::FrameSetup); 836 837 // touch the page 838 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 839 .setMIFlag(MachineInstr::FrameSetup), 840 StackPtr, false, 0) 841 .addImm(0) 842 .setMIFlag(MachineInstr::FrameSetup); 843 844 // cmp with stack pointer bound 845 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 846 .addReg(StackPtr) 847 .addReg(FinalStackProbed) 848 .setMIFlag(MachineInstr::FrameSetup); 849 850 // jump 851 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 852 .addMBB(testMBB) 853 .addImm(X86::COND_NE) 854 .setMIFlag(MachineInstr::FrameSetup); 855 testMBB->addSuccessor(testMBB); 856 testMBB->addSuccessor(tailMBB); 857 858 // BB management 859 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 860 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 861 MBB.addSuccessor(testMBB); 862 863 // handle tail 864 const uint64_t TailOffset = Offset % StackProbeSize; 865 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 866 if (TailOffset) { 867 BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset, 868 /*InEpilogue=*/false) 869 .setMIFlag(MachineInstr::FrameSetup); 870 } 871 872 // after the loop, switch back to stack pointer for CFI 873 if (!HasFP && NeedsDwarfCFI) { 874 // x32 uses the same DWARF register numbers as x86-64, 875 // so there isn't a register number for esp, we must use rsp instead 876 const Register DwarfStackPtr = 877 STI.isTarget64BitILP32() 878 ? Register(getX86SubSuperRegister(StackPtr, 64)) 879 : Register(StackPtr); 880 881 BuildCFI(*tailMBB, TailMBBIter, DL, 882 MCCFIInstruction::createDefCfaRegister( 883 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 884 } 885 886 // Update Live In information 887 fullyRecomputeLiveIns({tailMBB, testMBB}); 888 } 889 890 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 891 MachineFunction &MF, MachineBasicBlock &MBB, 892 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 893 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 894 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 895 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 896 const TargetInstrInfo &TII = *STI.getInstrInfo(); 897 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 898 899 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 900 MachineBasicBlock::LQR_Live && 901 "Inline stack probe loop will clobber live EFLAGS."); 902 903 // RAX contains the number of bytes of desired stack adjustment. 904 // The handling here assumes this value has already been updated so as to 905 // maintain stack alignment. 906 // 907 // We need to exit with RSP modified by this amount and execute suitable 908 // page touches to notify the OS that we're growing the stack responsibly. 909 // All stack probing must be done without modifying RSP. 910 // 911 // MBB: 912 // SizeReg = RAX; 913 // ZeroReg = 0 914 // CopyReg = RSP 915 // Flags, TestReg = CopyReg - SizeReg 916 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 917 // LimitReg = gs magic thread env access 918 // if FinalReg >= LimitReg goto ContinueMBB 919 // RoundBB: 920 // RoundReg = page address of FinalReg 921 // LoopMBB: 922 // LoopReg = PHI(LimitReg,ProbeReg) 923 // ProbeReg = LoopReg - PageSize 924 // [ProbeReg] = 0 925 // if (ProbeReg > RoundReg) goto LoopMBB 926 // ContinueMBB: 927 // RSP = RSP - RAX 928 // [rest of original MBB] 929 930 // Set up the new basic blocks 931 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 932 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 933 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 934 935 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 936 MF.insert(MBBIter, RoundMBB); 937 MF.insert(MBBIter, LoopMBB); 938 MF.insert(MBBIter, ContinueMBB); 939 940 // Split MBB and move the tail portion down to ContinueMBB. 941 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 942 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 943 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 944 945 // Some useful constants 946 const int64_t ThreadEnvironmentStackLimit = 0x10; 947 const int64_t PageSize = 0x1000; 948 const int64_t PageMask = ~(PageSize - 1); 949 950 // Registers we need. For the normal case we use virtual 951 // registers. For the prolog expansion we use RAX, RCX and RDX. 952 MachineRegisterInfo &MRI = MF.getRegInfo(); 953 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 954 const Register 955 SizeReg = InProlog ? X86::RAX : MRI.createVirtualRegister(RegClass), 956 ZeroReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), 957 CopyReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), 958 TestReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), 959 FinalReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), 960 RoundedReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), 961 LimitReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), 962 JoinReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), 963 ProbeReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass); 964 965 // SP-relative offsets where we can save RCX and RDX. 966 int64_t RCXShadowSlot = 0; 967 int64_t RDXShadowSlot = 0; 968 969 // If inlining in the prolog, save RCX and RDX. 970 if (InProlog) { 971 // Compute the offsets. We need to account for things already 972 // pushed onto the stack at this point: return address, frame 973 // pointer (if used), and callee saves. 974 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 975 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 976 const bool HasFP = hasFP(MF); 977 978 // Check if we need to spill RCX and/or RDX. 979 // Here we assume that no earlier prologue instruction changes RCX and/or 980 // RDX, so checking the block live-ins is enough. 981 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 982 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 983 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 984 // Assign the initial slot to both registers, then change RDX's slot if both 985 // need to be spilled. 986 if (IsRCXLiveIn) 987 RCXShadowSlot = InitSlot; 988 if (IsRDXLiveIn) 989 RDXShadowSlot = InitSlot; 990 if (IsRDXLiveIn && IsRCXLiveIn) 991 RDXShadowSlot += 8; 992 // Emit the saves if needed. 993 if (IsRCXLiveIn) 994 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 995 RCXShadowSlot) 996 .addReg(X86::RCX); 997 if (IsRDXLiveIn) 998 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 999 RDXShadowSlot) 1000 .addReg(X86::RDX); 1001 } else { 1002 // Not in the prolog. Copy RAX to a virtual reg. 1003 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 1004 } 1005 1006 // Add code to MBB to check for overflow and set the new target stack pointer 1007 // to zero if so. 1008 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 1009 .addReg(ZeroReg, RegState::Undef) 1010 .addReg(ZeroReg, RegState::Undef); 1011 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 1012 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 1013 .addReg(CopyReg) 1014 .addReg(SizeReg); 1015 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 1016 .addReg(TestReg) 1017 .addReg(ZeroReg) 1018 .addImm(X86::COND_B); 1019 1020 // FinalReg now holds final stack pointer value, or zero if 1021 // allocation would overflow. Compare against the current stack 1022 // limit from the thread environment block. Note this limit is the 1023 // lowest touched page on the stack, not the point at which the OS 1024 // will cause an overflow exception, so this is just an optimization 1025 // to avoid unnecessarily touching pages that are below the current 1026 // SP but already committed to the stack by the OS. 1027 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 1028 .addReg(0) 1029 .addImm(1) 1030 .addReg(0) 1031 .addImm(ThreadEnvironmentStackLimit) 1032 .addReg(X86::GS); 1033 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 1034 // Jump if the desired stack pointer is at or above the stack limit. 1035 BuildMI(&MBB, DL, TII.get(X86::JCC_1)) 1036 .addMBB(ContinueMBB) 1037 .addImm(X86::COND_AE); 1038 1039 // Add code to roundMBB to round the final stack pointer to a page boundary. 1040 RoundMBB->addLiveIn(FinalReg); 1041 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 1042 .addReg(FinalReg) 1043 .addImm(PageMask); 1044 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 1045 1046 // LimitReg now holds the current stack limit, RoundedReg page-rounded 1047 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 1048 // and probe until we reach RoundedReg. 1049 if (!InProlog) { 1050 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 1051 .addReg(LimitReg) 1052 .addMBB(RoundMBB) 1053 .addReg(ProbeReg) 1054 .addMBB(LoopMBB); 1055 } 1056 1057 LoopMBB->addLiveIn(JoinReg); 1058 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 1059 false, -PageSize); 1060 1061 // Probe by storing a byte onto the stack. 1062 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 1063 .addReg(ProbeReg) 1064 .addImm(1) 1065 .addReg(0) 1066 .addImm(0) 1067 .addReg(0) 1068 .addImm(0); 1069 1070 LoopMBB->addLiveIn(RoundedReg); 1071 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 1072 .addReg(RoundedReg) 1073 .addReg(ProbeReg); 1074 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)) 1075 .addMBB(LoopMBB) 1076 .addImm(X86::COND_NE); 1077 1078 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 1079 1080 // If in prolog, restore RDX and RCX. 1081 if (InProlog) { 1082 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 1083 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1084 TII.get(X86::MOV64rm), X86::RCX), 1085 X86::RSP, false, RCXShadowSlot); 1086 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 1087 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1088 TII.get(X86::MOV64rm), X86::RDX), 1089 X86::RSP, false, RDXShadowSlot); 1090 } 1091 1092 // Now that the probing is done, add code to continueMBB to update 1093 // the stack pointer for real. 1094 ContinueMBB->addLiveIn(SizeReg); 1095 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 1096 .addReg(X86::RSP) 1097 .addReg(SizeReg); 1098 1099 // Add the control flow edges we need. 1100 MBB.addSuccessor(ContinueMBB); 1101 MBB.addSuccessor(RoundMBB); 1102 RoundMBB->addSuccessor(LoopMBB); 1103 LoopMBB->addSuccessor(ContinueMBB); 1104 LoopMBB->addSuccessor(LoopMBB); 1105 1106 // Mark all the instructions added to the prolog as frame setup. 1107 if (InProlog) { 1108 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1109 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1110 } 1111 for (MachineInstr &MI : *RoundMBB) { 1112 MI.setFlag(MachineInstr::FrameSetup); 1113 } 1114 for (MachineInstr &MI : *LoopMBB) { 1115 MI.setFlag(MachineInstr::FrameSetup); 1116 } 1117 for (MachineInstr &MI : 1118 llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) { 1119 MI.setFlag(MachineInstr::FrameSetup); 1120 } 1121 } 1122 } 1123 1124 void X86FrameLowering::emitStackProbeCall( 1125 MachineFunction &MF, MachineBasicBlock &MBB, 1126 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1127 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1128 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1129 1130 // FIXME: Add indirect thunk support and remove this. 1131 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1132 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1133 "code model and indirect thunks not yet implemented."); 1134 1135 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 1136 MachineBasicBlock::LQR_Live && 1137 "Stack probe calls will clobber live EFLAGS."); 1138 1139 unsigned CallOp; 1140 if (Is64Bit) 1141 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1142 else 1143 CallOp = X86::CALLpcrel32; 1144 1145 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1146 1147 MachineInstrBuilder CI; 1148 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1149 1150 // All current stack probes take AX and SP as input, clobber flags, and 1151 // preserve all registers. x86_64 probes leave RSP unmodified. 1152 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1153 // For the large code model, we have to call through a register. Use R11, 1154 // as it is scratch in all supported calling conventions. 1155 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1156 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1157 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1158 } else { 1159 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1160 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1161 } 1162 1163 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1164 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1165 CI.addReg(AX, RegState::Implicit) 1166 .addReg(SP, RegState::Implicit) 1167 .addReg(AX, RegState::Define | RegState::Implicit) 1168 .addReg(SP, RegState::Define | RegState::Implicit) 1169 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1170 1171 MachineInstr *ModInst = CI; 1172 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1173 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1174 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1175 // themselves. They also does not clobber %rax so we can reuse it when 1176 // adjusting %rsp. 1177 // All other platforms do not specify a particular ABI for the stack probe 1178 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1179 ModInst = 1180 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1181 .addReg(SP) 1182 .addReg(AX); 1183 } 1184 1185 // DebugInfo variable locations -- if there's an instruction number for the 1186 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1187 // modifies SP. 1188 if (InstrNum) { 1189 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1190 // Label destination operand of the subtract. 1191 MF.makeDebugValueSubstitution(*InstrNum, 1192 {ModInst->getDebugInstrNum(), 0}); 1193 } else { 1194 // Label the call. The operand number is the penultimate operand, zero 1195 // based. 1196 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1197 MF.makeDebugValueSubstitution( 1198 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1199 } 1200 } 1201 1202 if (InProlog) { 1203 // Apply the frame setup flag to all inserted instrs. 1204 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1205 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1206 } 1207 } 1208 1209 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1210 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1211 // and might require smaller successive adjustments. 1212 const uint64_t Win64MaxSEHOffset = 128; 1213 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1214 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1215 return SEHFrameOffset & -16; 1216 } 1217 1218 // If we're forcing a stack realignment we can't rely on just the frame 1219 // info, we need to know the ABI stack alignment as well in case we 1220 // have a call out. Otherwise just make sure we have some alignment - we'll 1221 // go with the minimum SlotSize. 1222 uint64_t 1223 X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1224 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1225 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1226 Align StackAlign = getStackAlign(); 1227 bool HasRealign = MF.getFunction().hasFnAttribute("stackrealign"); 1228 if (HasRealign) { 1229 if (MFI.hasCalls()) 1230 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1231 else if (MaxAlign < SlotSize) 1232 MaxAlign = Align(SlotSize); 1233 } 1234 1235 if (!Is64Bit && MF.getFunction().getCallingConv() == CallingConv::X86_INTR) { 1236 if (HasRealign) 1237 MaxAlign = (MaxAlign > 16) ? MaxAlign : Align(16); 1238 else 1239 MaxAlign = Align(16); 1240 } 1241 return MaxAlign.value(); 1242 } 1243 1244 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1245 MachineBasicBlock::iterator MBBI, 1246 const DebugLoc &DL, unsigned Reg, 1247 uint64_t MaxAlign) const { 1248 uint64_t Val = -MaxAlign; 1249 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1250 1251 MachineFunction &MF = *MBB.getParent(); 1252 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1253 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1254 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1255 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1256 1257 // We want to make sure that (in worst case) less than StackProbeSize bytes 1258 // are not probed after the AND. This assumption is used in 1259 // emitStackProbeInlineGeneric. 1260 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1261 { 1262 NumFrameLoopProbe++; 1263 MachineBasicBlock *entryMBB = 1264 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1265 MachineBasicBlock *headMBB = 1266 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1267 MachineBasicBlock *bodyMBB = 1268 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1269 MachineBasicBlock *footMBB = 1270 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1271 1272 MachineFunction::iterator MBBIter = MBB.getIterator(); 1273 MF.insert(MBBIter, entryMBB); 1274 MF.insert(MBBIter, headMBB); 1275 MF.insert(MBBIter, bodyMBB); 1276 MF.insert(MBBIter, footMBB); 1277 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1278 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1279 : Is64Bit ? X86::R11D 1280 : X86::EAX; 1281 1282 // Setup entry block 1283 { 1284 1285 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1286 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1287 .addReg(StackPtr) 1288 .setMIFlag(MachineInstr::FrameSetup); 1289 MachineInstr *MI = 1290 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1291 .addReg(FinalStackProbed) 1292 .addImm(Val) 1293 .setMIFlag(MachineInstr::FrameSetup); 1294 1295 // The EFLAGS implicit def is dead. 1296 MI->getOperand(3).setIsDead(); 1297 1298 BuildMI(entryMBB, DL, 1299 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1300 .addReg(FinalStackProbed) 1301 .addReg(StackPtr) 1302 .setMIFlag(MachineInstr::FrameSetup); 1303 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1304 .addMBB(&MBB) 1305 .addImm(X86::COND_E) 1306 .setMIFlag(MachineInstr::FrameSetup); 1307 entryMBB->addSuccessor(headMBB); 1308 entryMBB->addSuccessor(&MBB); 1309 } 1310 1311 // Loop entry block 1312 1313 { 1314 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr); 1315 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1316 .addReg(StackPtr) 1317 .addImm(StackProbeSize) 1318 .setMIFlag(MachineInstr::FrameSetup); 1319 1320 BuildMI(headMBB, DL, 1321 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1322 .addReg(StackPtr) 1323 .addReg(FinalStackProbed) 1324 .setMIFlag(MachineInstr::FrameSetup); 1325 1326 // jump to the footer if StackPtr < FinalStackProbed 1327 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1328 .addMBB(footMBB) 1329 .addImm(X86::COND_B) 1330 .setMIFlag(MachineInstr::FrameSetup); 1331 1332 headMBB->addSuccessor(bodyMBB); 1333 headMBB->addSuccessor(footMBB); 1334 } 1335 1336 // setup loop body 1337 { 1338 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1339 .setMIFlag(MachineInstr::FrameSetup), 1340 StackPtr, false, 0) 1341 .addImm(0) 1342 .setMIFlag(MachineInstr::FrameSetup); 1343 1344 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr); 1345 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1346 .addReg(StackPtr) 1347 .addImm(StackProbeSize) 1348 .setMIFlag(MachineInstr::FrameSetup); 1349 1350 // cmp with stack pointer bound 1351 BuildMI(bodyMBB, DL, 1352 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1353 .addReg(FinalStackProbed) 1354 .addReg(StackPtr) 1355 .setMIFlag(MachineInstr::FrameSetup); 1356 1357 // jump back while FinalStackProbed < StackPtr 1358 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1359 .addMBB(bodyMBB) 1360 .addImm(X86::COND_B) 1361 .setMIFlag(MachineInstr::FrameSetup); 1362 bodyMBB->addSuccessor(bodyMBB); 1363 bodyMBB->addSuccessor(footMBB); 1364 } 1365 1366 // setup loop footer 1367 { 1368 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1369 .addReg(FinalStackProbed) 1370 .setMIFlag(MachineInstr::FrameSetup); 1371 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1372 .setMIFlag(MachineInstr::FrameSetup), 1373 StackPtr, false, 0) 1374 .addImm(0) 1375 .setMIFlag(MachineInstr::FrameSetup); 1376 footMBB->addSuccessor(&MBB); 1377 } 1378 1379 fullyRecomputeLiveIns({footMBB, bodyMBB, headMBB, &MBB}); 1380 } 1381 } else { 1382 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1383 .addReg(Reg) 1384 .addImm(Val) 1385 .setMIFlag(MachineInstr::FrameSetup); 1386 1387 // The EFLAGS implicit def is dead. 1388 MI->getOperand(3).setIsDead(); 1389 } 1390 } 1391 1392 bool X86FrameLowering::has128ByteRedZone(const MachineFunction &MF) const { 1393 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1394 // clobbered by any interrupt handler. 1395 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1396 "MF used frame lowering for wrong subtarget"); 1397 const Function &Fn = MF.getFunction(); 1398 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1399 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1400 } 1401 1402 /// Return true if we need to use the restricted Windows x64 prologue and 1403 /// epilogue code patterns that can be described with WinCFI (.seh_* 1404 /// directives). 1405 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1406 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1407 } 1408 1409 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1410 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1411 } 1412 1413 /// Return true if an opcode is part of the REP group of instructions 1414 static bool isOpcodeRep(unsigned Opcode) { 1415 switch (Opcode) { 1416 case X86::REPNE_PREFIX: 1417 case X86::REP_MOVSB_32: 1418 case X86::REP_MOVSB_64: 1419 case X86::REP_MOVSD_32: 1420 case X86::REP_MOVSD_64: 1421 case X86::REP_MOVSQ_32: 1422 case X86::REP_MOVSQ_64: 1423 case X86::REP_MOVSW_32: 1424 case X86::REP_MOVSW_64: 1425 case X86::REP_PREFIX: 1426 case X86::REP_STOSB_32: 1427 case X86::REP_STOSB_64: 1428 case X86::REP_STOSD_32: 1429 case X86::REP_STOSD_64: 1430 case X86::REP_STOSQ_32: 1431 case X86::REP_STOSQ_64: 1432 case X86::REP_STOSW_32: 1433 case X86::REP_STOSW_64: 1434 return true; 1435 default: 1436 break; 1437 } 1438 return false; 1439 } 1440 1441 /// emitPrologue - Push callee-saved registers onto the stack, which 1442 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1443 /// space for local variables. Also emit labels used by the exception handler to 1444 /// generate the exception handling frames. 1445 1446 /* 1447 Here's a gist of what gets emitted: 1448 1449 ; Establish frame pointer, if needed 1450 [if needs FP] 1451 push %rbp 1452 .cfi_def_cfa_offset 16 1453 .cfi_offset %rbp, -16 1454 .seh_pushreg %rpb 1455 mov %rsp, %rbp 1456 .cfi_def_cfa_register %rbp 1457 1458 ; Spill general-purpose registers 1459 [for all callee-saved GPRs] 1460 pushq %<reg> 1461 [if not needs FP] 1462 .cfi_def_cfa_offset (offset from RETADDR) 1463 .seh_pushreg %<reg> 1464 1465 ; If the required stack alignment > default stack alignment 1466 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1467 ; of unknown size in the stack frame. 1468 [if stack needs re-alignment] 1469 and $MASK, %rsp 1470 1471 ; Allocate space for locals 1472 [if target is Windows and allocated space > 4096 bytes] 1473 ; Windows needs special care for allocations larger 1474 ; than one page. 1475 mov $NNN, %rax 1476 call ___chkstk_ms/___chkstk 1477 sub %rax, %rsp 1478 [else] 1479 sub $NNN, %rsp 1480 1481 [if needs FP] 1482 .seh_stackalloc (size of XMM spill slots) 1483 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1484 [else] 1485 .seh_stackalloc NNN 1486 1487 ; Spill XMMs 1488 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1489 ; they may get spilled on any platform, if the current function 1490 ; calls @llvm.eh.unwind.init 1491 [if needs FP] 1492 [for all callee-saved XMM registers] 1493 movaps %<xmm reg>, -MMM(%rbp) 1494 [for all callee-saved XMM registers] 1495 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1496 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1497 [else] 1498 [for all callee-saved XMM registers] 1499 movaps %<xmm reg>, KKK(%rsp) 1500 [for all callee-saved XMM registers] 1501 .seh_savexmm %<xmm reg>, KKK 1502 1503 .seh_endprologue 1504 1505 [if needs base pointer] 1506 mov %rsp, %rbx 1507 [if needs to restore base pointer] 1508 mov %rsp, -MMM(%rbp) 1509 1510 ; Emit CFI info 1511 [if needs FP] 1512 [for all callee-saved registers] 1513 .cfi_offset %<reg>, (offset from %rbp) 1514 [else] 1515 .cfi_def_cfa_offset (offset from RETADDR) 1516 [for all callee-saved registers] 1517 .cfi_offset %<reg>, (offset from %rsp) 1518 1519 Notes: 1520 - .seh directives are emitted only for Windows 64 ABI 1521 - .cv_fpo directives are emitted on win32 when emitting CodeView 1522 - .cfi directives are emitted for all other ABIs 1523 - for 32-bit code, substitute %e?? registers for %r?? 1524 */ 1525 1526 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1527 MachineBasicBlock &MBB) const { 1528 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1529 "MF used frame lowering for wrong subtarget"); 1530 MachineBasicBlock::iterator MBBI = MBB.begin(); 1531 MachineFrameInfo &MFI = MF.getFrameInfo(); 1532 const Function &Fn = MF.getFunction(); 1533 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1534 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1535 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1536 bool IsFunclet = MBB.isEHFuncletEntry(); 1537 EHPersonality Personality = EHPersonality::Unknown; 1538 if (Fn.hasPersonalityFn()) 1539 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1540 bool FnHasClrFunclet = 1541 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1542 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1543 bool HasFP = hasFP(MF); 1544 bool IsWin64Prologue = isWin64Prologue(MF); 1545 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1546 // FIXME: Emit FPO data for EH funclets. 1547 bool NeedsWinFPO = !IsFunclet && STI.isTargetWin32() && 1548 MF.getFunction().getParent()->getCodeViewFlag(); 1549 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1550 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1551 Register FramePtr = TRI->getFrameRegister(MF); 1552 const Register MachineFramePtr = 1553 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 1554 : FramePtr; 1555 Register BasePtr = TRI->getBaseRegister(); 1556 bool HasWinCFI = false; 1557 1558 // Debug location must be unknown since the first debug location is used 1559 // to determine the end of the prologue. 1560 DebugLoc DL; 1561 Register ArgBaseReg; 1562 1563 // Emit extra prolog for argument stack slot reference. 1564 if (auto *MI = X86FI->getStackPtrSaveMI()) { 1565 // MI is lea instruction that created in X86ArgumentStackSlotPass. 1566 // Creat extra prolog for stack realignment. 1567 ArgBaseReg = MI->getOperand(0).getReg(); 1568 // leal 4(%esp), %basereg 1569 // .cfi_def_cfa %basereg, 0 1570 // andl $-128, %esp 1571 // pushl -4(%basereg) 1572 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r), 1573 ArgBaseReg) 1574 .addUse(StackPtr) 1575 .addImm(1) 1576 .addUse(X86::NoRegister) 1577 .addImm(SlotSize) 1578 .addUse(X86::NoRegister) 1579 .setMIFlag(MachineInstr::FrameSetup); 1580 if (NeedsDwarfCFI) { 1581 // .cfi_def_cfa %basereg, 0 1582 unsigned DwarfStackPtr = TRI->getDwarfRegNum(ArgBaseReg, true); 1583 BuildCFI(MBB, MBBI, DL, 1584 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, 0), 1585 MachineInstr::FrameSetup); 1586 } 1587 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1588 int64_t Offset = -(int64_t)SlotSize; 1589 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm)) 1590 .addReg(ArgBaseReg) 1591 .addImm(1) 1592 .addReg(X86::NoRegister) 1593 .addImm(Offset) 1594 .addReg(X86::NoRegister) 1595 .setMIFlag(MachineInstr::FrameSetup); 1596 } 1597 1598 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1599 // tail call. 1600 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1601 if (TailCallArgReserveSize && IsWin64Prologue) 1602 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1603 1604 const bool EmitStackProbeCall = 1605 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1606 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1607 1608 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1609 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1610 case SwiftAsyncFramePointerMode::DeploymentBased: 1611 if (STI.swiftAsyncContextIsDynamicallySet()) { 1612 // The special symbol below is absolute and has a *value* suitable to be 1613 // combined with the frame pointer directly. 1614 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1615 .addUse(MachineFramePtr) 1616 .addUse(X86::RIP) 1617 .addImm(1) 1618 .addUse(X86::NoRegister) 1619 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1620 X86II::MO_GOTPCREL) 1621 .addUse(X86::NoRegister); 1622 break; 1623 } 1624 [[fallthrough]]; 1625 1626 case SwiftAsyncFramePointerMode::Always: 1627 assert( 1628 !IsWin64Prologue && 1629 "win64 prologue does not set the bit 60 in the saved frame pointer"); 1630 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1631 .addUse(MachineFramePtr) 1632 .addImm(60) 1633 .setMIFlag(MachineInstr::FrameSetup); 1634 break; 1635 1636 case SwiftAsyncFramePointerMode::Never: 1637 break; 1638 } 1639 } 1640 1641 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1642 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1643 // stack alignment. 1644 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1645 Fn.arg_size() == 2) { 1646 StackSize += 8; 1647 MFI.setStackSize(StackSize); 1648 1649 // Update the stack pointer by pushing a register. This is the instruction 1650 // emitted that would be end up being emitted by a call to `emitSPUpdate`. 1651 // Hard-coding the update to a push avoids emitting a second 1652 // `STACKALLOC_W_PROBING` instruction in the save block: We know that stack 1653 // probing isn't needed anyways for an 8-byte update. 1654 // Pushing a register leaves us in a similar situation to a regular 1655 // function call where we know that the address at (rsp-8) is writeable. 1656 // That way we avoid any off-by-ones with stack probing for additional 1657 // stack pointer updates later on. 1658 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1659 .addReg(X86::RAX, RegState::Undef) 1660 .setMIFlag(MachineInstr::FrameSetup); 1661 } 1662 1663 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1664 // function, and use up to 128 bytes of stack space, don't have a frame 1665 // pointer, calls, or dynamic alloca then we do not need to adjust the 1666 // stack pointer (we fit in the Red Zone). We also check that we don't 1667 // push and pop from the stack. 1668 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1669 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1670 !MFI.adjustsStack() && // No calls. 1671 !EmitStackProbeCall && // No stack probes. 1672 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1673 !MF.shouldSplitStack()) { // Regular stack 1674 uint64_t MinSize = 1675 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1676 if (HasFP) 1677 MinSize += SlotSize; 1678 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1679 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1680 MFI.setStackSize(StackSize); 1681 } 1682 1683 // Insert stack pointer adjustment for later moving of return addr. Only 1684 // applies to tail call optimized functions where the callee argument stack 1685 // size is bigger than the callers. 1686 if (TailCallArgReserveSize != 0) { 1687 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1688 /*InEpilogue=*/false) 1689 .setMIFlag(MachineInstr::FrameSetup); 1690 } 1691 1692 // Mapping for machine moves: 1693 // 1694 // DST: VirtualFP AND 1695 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1696 // ELSE => DW_CFA_def_cfa 1697 // 1698 // SRC: VirtualFP AND 1699 // DST: Register => DW_CFA_def_cfa_register 1700 // 1701 // ELSE 1702 // OFFSET < 0 => DW_CFA_offset_extended_sf 1703 // REG < 64 => DW_CFA_offset + Reg 1704 // ELSE => DW_CFA_offset_extended 1705 1706 uint64_t NumBytes = 0; 1707 int stackGrowth = -SlotSize; 1708 1709 // Find the funclet establisher parameter 1710 Register Establisher = X86::NoRegister; 1711 if (IsClrFunclet) 1712 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1713 else if (IsFunclet) 1714 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1715 1716 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1717 // Immediately spill establisher into the home slot. 1718 // The runtime cares about this. 1719 // MOV64mr %rdx, 16(%rsp) 1720 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1721 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1722 .addReg(Establisher) 1723 .setMIFlag(MachineInstr::FrameSetup); 1724 MBB.addLiveIn(Establisher); 1725 } 1726 1727 if (HasFP) { 1728 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1729 1730 // Calculate required stack adjustment. 1731 uint64_t FrameSize = StackSize - SlotSize; 1732 NumBytes = 1733 FrameSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1734 1735 // Callee-saved registers are pushed on stack before the stack is realigned. 1736 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1737 NumBytes = alignTo(NumBytes, MaxAlign); 1738 1739 // Save EBP/RBP into the appropriate stack slot. 1740 BuildMI(MBB, MBBI, DL, 1741 TII.get(getPUSHOpcode(MF.getSubtarget<X86Subtarget>()))) 1742 .addReg(MachineFramePtr, RegState::Kill) 1743 .setMIFlag(MachineInstr::FrameSetup); 1744 1745 if (NeedsDwarfCFI && !ArgBaseReg.isValid()) { 1746 // Mark the place where EBP/RBP was saved. 1747 // Define the current CFA rule to use the provided offset. 1748 assert(StackSize); 1749 BuildCFI(MBB, MBBI, DL, 1750 MCCFIInstruction::cfiDefCfaOffset( 1751 nullptr, -2 * stackGrowth + (int)TailCallArgReserveSize), 1752 MachineInstr::FrameSetup); 1753 1754 // Change the rule for the FramePtr to be an "offset" rule. 1755 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1756 BuildCFI(MBB, MBBI, DL, 1757 MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, 1758 2 * stackGrowth - 1759 (int)TailCallArgReserveSize), 1760 MachineInstr::FrameSetup); 1761 } 1762 1763 if (NeedsWinCFI) { 1764 HasWinCFI = true; 1765 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1766 .addImm(FramePtr) 1767 .setMIFlag(MachineInstr::FrameSetup); 1768 } 1769 1770 if (!IsFunclet) { 1771 if (X86FI->hasSwiftAsyncContext()) { 1772 assert(!IsWin64Prologue && 1773 "win64 prologue does not store async context right below rbp"); 1774 const auto &Attrs = MF.getFunction().getAttributes(); 1775 1776 // Before we update the live frame pointer we have to ensure there's a 1777 // valid (or null) asynchronous context in its slot just before FP in 1778 // the frame record, so store it now. 1779 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1780 // We have an initial context in r14, store it just before the frame 1781 // pointer. 1782 MBB.addLiveIn(X86::R14); 1783 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1784 .addReg(X86::R14) 1785 .setMIFlag(MachineInstr::FrameSetup); 1786 } else { 1787 // No initial context, store null so that there's no pointer that 1788 // could be misused. 1789 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i32)) 1790 .addImm(0) 1791 .setMIFlag(MachineInstr::FrameSetup); 1792 } 1793 1794 if (NeedsWinCFI) { 1795 HasWinCFI = true; 1796 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1797 .addImm(X86::R14) 1798 .setMIFlag(MachineInstr::FrameSetup); 1799 } 1800 1801 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1802 .addUse(X86::RSP) 1803 .addImm(1) 1804 .addUse(X86::NoRegister) 1805 .addImm(8) 1806 .addUse(X86::NoRegister) 1807 .setMIFlag(MachineInstr::FrameSetup); 1808 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri32), X86::RSP) 1809 .addUse(X86::RSP) 1810 .addImm(8) 1811 .setMIFlag(MachineInstr::FrameSetup); 1812 } 1813 1814 if (!IsWin64Prologue && !IsFunclet) { 1815 // Update EBP with the new base value. 1816 if (!X86FI->hasSwiftAsyncContext()) 1817 BuildMI(MBB, MBBI, DL, 1818 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1819 FramePtr) 1820 .addReg(StackPtr) 1821 .setMIFlag(MachineInstr::FrameSetup); 1822 1823 if (NeedsDwarfCFI) { 1824 if (ArgBaseReg.isValid()) { 1825 SmallString<64> CfaExpr; 1826 CfaExpr.push_back(dwarf::DW_CFA_expression); 1827 uint8_t buffer[16]; 1828 unsigned DwarfReg = TRI->getDwarfRegNum(MachineFramePtr, true); 1829 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 1830 CfaExpr.push_back(2); 1831 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg)); 1832 CfaExpr.push_back(0); 1833 // DW_CFA_expression: reg5 DW_OP_breg5 +0 1834 BuildCFI(MBB, MBBI, DL, 1835 MCCFIInstruction::createEscape(nullptr, CfaExpr.str()), 1836 MachineInstr::FrameSetup); 1837 } else { 1838 // Mark effective beginning of when frame pointer becomes valid. 1839 // Define the current CFA to use the EBP/RBP register. 1840 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1841 BuildCFI( 1842 MBB, MBBI, DL, 1843 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr), 1844 MachineInstr::FrameSetup); 1845 } 1846 } 1847 1848 if (NeedsWinFPO) { 1849 // .cv_fpo_setframe $FramePtr 1850 HasWinCFI = true; 1851 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1852 .addImm(FramePtr) 1853 .addImm(0) 1854 .setMIFlag(MachineInstr::FrameSetup); 1855 } 1856 } 1857 } 1858 } else { 1859 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1860 NumBytes = 1861 StackSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1862 } 1863 1864 // Update the offset adjustment, which is mainly used by codeview to translate 1865 // from ESP to VFRAME relative local variable offsets. 1866 if (!IsFunclet) { 1867 if (HasFP && TRI->hasStackRealignment(MF)) 1868 MFI.setOffsetAdjustment(-NumBytes); 1869 else 1870 MFI.setOffsetAdjustment(-StackSize); 1871 } 1872 1873 // For EH funclets, only allocate enough space for outgoing calls. Save the 1874 // NumBytes value that we would've used for the parent frame. 1875 unsigned ParentFrameNumBytes = NumBytes; 1876 if (IsFunclet) 1877 NumBytes = getWinEHFuncletFrameSize(MF); 1878 1879 // Skip the callee-saved push instructions. 1880 bool PushedRegs = false; 1881 int StackOffset = 2 * stackGrowth; 1882 MachineBasicBlock::const_iterator LastCSPush = MBBI; 1883 auto IsCSPush = [&](const MachineBasicBlock::iterator &MBBI) { 1884 if (MBBI == MBB.end() || !MBBI->getFlag(MachineInstr::FrameSetup)) 1885 return false; 1886 unsigned Opc = MBBI->getOpcode(); 1887 return Opc == X86::PUSH32r || Opc == X86::PUSH64r || Opc == X86::PUSHP64r || 1888 Opc == X86::PUSH2 || Opc == X86::PUSH2P; 1889 }; 1890 1891 while (IsCSPush(MBBI)) { 1892 PushedRegs = true; 1893 Register Reg = MBBI->getOperand(0).getReg(); 1894 LastCSPush = MBBI; 1895 ++MBBI; 1896 unsigned Opc = LastCSPush->getOpcode(); 1897 1898 if (!HasFP && NeedsDwarfCFI) { 1899 // Mark callee-saved push instruction. 1900 // Define the current CFA rule to use the provided offset. 1901 assert(StackSize); 1902 // Compared to push, push2 introduces more stack offset (one more 1903 // register). 1904 if (Opc == X86::PUSH2 || Opc == X86::PUSH2P) 1905 StackOffset += stackGrowth; 1906 BuildCFI(MBB, MBBI, DL, 1907 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset), 1908 MachineInstr::FrameSetup); 1909 StackOffset += stackGrowth; 1910 } 1911 1912 if (NeedsWinCFI) { 1913 HasWinCFI = true; 1914 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1915 .addImm(Reg) 1916 .setMIFlag(MachineInstr::FrameSetup); 1917 if (Opc == X86::PUSH2 || Opc == X86::PUSH2P) 1918 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1919 .addImm(LastCSPush->getOperand(1).getReg()) 1920 .setMIFlag(MachineInstr::FrameSetup); 1921 } 1922 } 1923 1924 // Realign stack after we pushed callee-saved registers (so that we'll be 1925 // able to calculate their offsets from the frame pointer). 1926 // Don't do this for Win64, it needs to realign the stack after the prologue. 1927 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF) && 1928 !ArgBaseReg.isValid()) { 1929 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1930 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1931 1932 if (NeedsWinCFI) { 1933 HasWinCFI = true; 1934 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1935 .addImm(MaxAlign) 1936 .setMIFlag(MachineInstr::FrameSetup); 1937 } 1938 } 1939 1940 // If there is an SUB32ri of ESP immediately before this instruction, merge 1941 // the two. This can be the case when tail call elimination is enabled and 1942 // the callee has more arguments then the caller. 1943 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1944 1945 // Adjust stack pointer: ESP -= numbytes. 1946 1947 // Windows and cygwin/mingw require a prologue helper routine when allocating 1948 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1949 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1950 // stack and adjust the stack pointer in one go. The 64-bit version of 1951 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1952 // responsible for adjusting the stack pointer. Touching the stack at 4K 1953 // increments is necessary to ensure that the guard pages used by the OS 1954 // virtual memory manager are allocated in correct sequence. 1955 uint64_t AlignedNumBytes = NumBytes; 1956 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1957 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1958 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1959 assert(!X86FI->getUsesRedZone() && 1960 "The Red Zone is not accounted for in stack probes"); 1961 1962 // Check whether EAX is livein for this block. 1963 bool isEAXAlive = isEAXLiveIn(MBB); 1964 1965 if (isEAXAlive) { 1966 if (Is64Bit) { 1967 // Save RAX 1968 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1969 .addReg(X86::RAX, RegState::Kill) 1970 .setMIFlag(MachineInstr::FrameSetup); 1971 } else { 1972 // Save EAX 1973 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1974 .addReg(X86::EAX, RegState::Kill) 1975 .setMIFlag(MachineInstr::FrameSetup); 1976 } 1977 } 1978 1979 if (Is64Bit) { 1980 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1981 // Function prologue is responsible for adjusting the stack pointer. 1982 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1983 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 1984 .addImm(Alloc) 1985 .setMIFlag(MachineInstr::FrameSetup); 1986 } else { 1987 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1988 // We'll also use 4 already allocated bytes for EAX. 1989 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1990 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1991 .setMIFlag(MachineInstr::FrameSetup); 1992 } 1993 1994 // Call __chkstk, __chkstk_ms, or __alloca. 1995 emitStackProbe(MF, MBB, MBBI, DL, true); 1996 1997 if (isEAXAlive) { 1998 // Restore RAX/EAX 1999 MachineInstr *MI; 2000 if (Is64Bit) 2001 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 2002 StackPtr, false, NumBytes - 8); 2003 else 2004 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 2005 StackPtr, false, NumBytes - 4); 2006 MI->setFlag(MachineInstr::FrameSetup); 2007 MBB.insert(MBBI, MI); 2008 } 2009 } else if (NumBytes) { 2010 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 2011 } 2012 2013 if (NeedsWinCFI && NumBytes) { 2014 HasWinCFI = true; 2015 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 2016 .addImm(NumBytes) 2017 .setMIFlag(MachineInstr::FrameSetup); 2018 } 2019 2020 int SEHFrameOffset = 0; 2021 unsigned SPOrEstablisher; 2022 if (IsFunclet) { 2023 if (IsClrFunclet) { 2024 // The establisher parameter passed to a CLR funclet is actually a pointer 2025 // to the (mostly empty) frame of its nearest enclosing funclet; we have 2026 // to find the root function establisher frame by loading the PSPSym from 2027 // the intermediate frame. 2028 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 2029 MachinePointerInfo NoInfo; 2030 MBB.addLiveIn(Establisher); 2031 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 2032 Establisher, false, PSPSlotOffset) 2033 .addMemOperand(MF.getMachineMemOperand( 2034 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 2035 ; 2036 // Save the root establisher back into the current funclet's (mostly 2037 // empty) frame, in case a sub-funclet or the GC needs it. 2038 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 2039 false, PSPSlotOffset) 2040 .addReg(Establisher) 2041 .addMemOperand(MF.getMachineMemOperand( 2042 NoInfo, 2043 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2044 SlotSize, Align(SlotSize))); 2045 } 2046 SPOrEstablisher = Establisher; 2047 } else { 2048 SPOrEstablisher = StackPtr; 2049 } 2050 2051 if (IsWin64Prologue && HasFP) { 2052 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 2053 // this calculation on the incoming establisher, which holds the value of 2054 // RSP from the parent frame at the end of the prologue. 2055 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 2056 if (SEHFrameOffset) 2057 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 2058 SPOrEstablisher, false, SEHFrameOffset); 2059 else 2060 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 2061 .addReg(SPOrEstablisher); 2062 2063 // If this is not a funclet, emit the CFI describing our frame pointer. 2064 if (NeedsWinCFI && !IsFunclet) { 2065 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 2066 HasWinCFI = true; 2067 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 2068 .addImm(FramePtr) 2069 .addImm(SEHFrameOffset) 2070 .setMIFlag(MachineInstr::FrameSetup); 2071 if (isAsynchronousEHPersonality(Personality)) 2072 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 2073 } 2074 } else if (IsFunclet && STI.is32Bit()) { 2075 // Reset EBP / ESI to something good for funclets. 2076 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 2077 // If we're a catch funclet, we can be returned to via catchret. Save ESP 2078 // into the registration node so that the runtime will restore it for us. 2079 if (!MBB.isCleanupFuncletEntry()) { 2080 assert(Personality == EHPersonality::MSVC_CXX); 2081 Register FrameReg; 2082 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 2083 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2084 // ESP is the first field, so no extra displacement is needed. 2085 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 2086 false, EHRegOffset) 2087 .addReg(X86::ESP); 2088 } 2089 } 2090 2091 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 2092 const MachineInstr &FrameInstr = *MBBI; 2093 ++MBBI; 2094 2095 if (NeedsWinCFI) { 2096 int FI; 2097 if (Register Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 2098 if (X86::FR64RegClass.contains(Reg)) { 2099 int Offset; 2100 Register IgnoredFrameReg; 2101 if (IsWin64Prologue && IsFunclet) 2102 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 2103 else 2104 Offset = 2105 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 2106 SEHFrameOffset; 2107 2108 HasWinCFI = true; 2109 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 2110 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 2111 .addImm(Reg) 2112 .addImm(Offset) 2113 .setMIFlag(MachineInstr::FrameSetup); 2114 } 2115 } 2116 } 2117 } 2118 2119 if (NeedsWinCFI && HasWinCFI) 2120 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 2121 .setMIFlag(MachineInstr::FrameSetup); 2122 2123 if (FnHasClrFunclet && !IsFunclet) { 2124 // Save the so-called Initial-SP (i.e. the value of the stack pointer 2125 // immediately after the prolog) into the PSPSlot so that funclets 2126 // and the GC can recover it. 2127 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 2128 auto PSPInfo = MachinePointerInfo::getFixedStack( 2129 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 2130 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 2131 PSPSlotOffset) 2132 .addReg(StackPtr) 2133 .addMemOperand(MF.getMachineMemOperand( 2134 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2135 SlotSize, Align(SlotSize))); 2136 } 2137 2138 // Realign stack after we spilled callee-saved registers (so that we'll be 2139 // able to calculate their offsets from the frame pointer). 2140 // Win64 requires aligning the stack after the prologue. 2141 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 2142 assert(HasFP && "There should be a frame pointer if stack is realigned."); 2143 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 2144 } 2145 2146 // We already dealt with stack realignment and funclets above. 2147 if (IsFunclet && STI.is32Bit()) 2148 return; 2149 2150 // If we need a base pointer, set it up here. It's whatever the value 2151 // of the stack pointer is at this point. Any variable size objects 2152 // will be allocated after this, so we can still use the base pointer 2153 // to reference locals. 2154 if (TRI->hasBasePointer(MF)) { 2155 // Update the base pointer with the current stack pointer. 2156 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 2157 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 2158 .addReg(SPOrEstablisher) 2159 .setMIFlag(MachineInstr::FrameSetup); 2160 if (X86FI->getRestoreBasePointer()) { 2161 // Stash value of base pointer. Saving RSP instead of EBP shortens 2162 // dependence chain. Used by SjLj EH. 2163 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2164 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), FramePtr, true, 2165 X86FI->getRestoreBasePointerOffset()) 2166 .addReg(SPOrEstablisher) 2167 .setMIFlag(MachineInstr::FrameSetup); 2168 } 2169 2170 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 2171 // Stash the value of the frame pointer relative to the base pointer for 2172 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 2173 // it recovers the frame pointer from the base pointer rather than the 2174 // other way around. 2175 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2176 Register UsedReg; 2177 int Offset = 2178 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 2179 .getFixed(); 2180 assert(UsedReg == BasePtr); 2181 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 2182 .addReg(FramePtr) 2183 .setMIFlag(MachineInstr::FrameSetup); 2184 } 2185 } 2186 if (ArgBaseReg.isValid()) { 2187 // Save argument base pointer. 2188 auto *MI = X86FI->getStackPtrSaveMI(); 2189 int FI = MI->getOperand(1).getIndex(); 2190 unsigned MOVmr = Is64Bit ? X86::MOV64mr : X86::MOV32mr; 2191 // movl %basereg, offset(%ebp) 2192 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), FI) 2193 .addReg(ArgBaseReg) 2194 .setMIFlag(MachineInstr::FrameSetup); 2195 } 2196 2197 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 2198 // Mark end of stack pointer adjustment. 2199 if (!HasFP && NumBytes) { 2200 // Define the current CFA rule to use the provided offset. 2201 assert(StackSize); 2202 BuildCFI( 2203 MBB, MBBI, DL, 2204 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth), 2205 MachineInstr::FrameSetup); 2206 } 2207 2208 // Emit DWARF info specifying the offsets of the callee-saved registers. 2209 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 2210 } 2211 2212 // X86 Interrupt handling function cannot assume anything about the direction 2213 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 2214 // in each prologue of interrupt handler function. 2215 // 2216 // Create "cld" instruction only in these cases: 2217 // 1. The interrupt handling function uses any of the "rep" instructions. 2218 // 2. Interrupt handling function calls another function. 2219 // 3. If there are any inline asm blocks, as we do not know what they do 2220 // 2221 // TODO: We should also emit cld if we detect the use of std, but as of now, 2222 // the compiler does not even emit that instruction or even define it, so in 2223 // practice, this would only happen with inline asm, which we cover anyway. 2224 if (Fn.getCallingConv() == CallingConv::X86_INTR) { 2225 bool NeedsCLD = false; 2226 2227 for (const MachineBasicBlock &B : MF) { 2228 for (const MachineInstr &MI : B) { 2229 if (MI.isCall()) { 2230 NeedsCLD = true; 2231 break; 2232 } 2233 2234 if (isOpcodeRep(MI.getOpcode())) { 2235 NeedsCLD = true; 2236 break; 2237 } 2238 2239 if (MI.isInlineAsm()) { 2240 // TODO: Parse asm for rep instructions or call sites? 2241 // For now, let's play it safe and emit a cld instruction 2242 // just in case. 2243 NeedsCLD = true; 2244 break; 2245 } 2246 } 2247 } 2248 2249 if (NeedsCLD) { 2250 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 2251 .setMIFlag(MachineInstr::FrameSetup); 2252 } 2253 } 2254 2255 // At this point we know if the function has WinCFI or not. 2256 MF.setHasWinCFI(HasWinCFI); 2257 } 2258 2259 bool X86FrameLowering::canUseLEAForSPInEpilogue( 2260 const MachineFunction &MF) const { 2261 // We can't use LEA instructions for adjusting the stack pointer if we don't 2262 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 2263 // to deallocate the stack. 2264 // This means that we can use LEA for SP in two situations: 2265 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 2266 // 2. We *have* a frame pointer which means we are permitted to use LEA. 2267 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 2268 } 2269 2270 static bool isFuncletReturnInstr(MachineInstr &MI) { 2271 switch (MI.getOpcode()) { 2272 case X86::CATCHRET: 2273 case X86::CLEANUPRET: 2274 return true; 2275 default: 2276 return false; 2277 } 2278 llvm_unreachable("impossible"); 2279 } 2280 2281 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2282 // stack. It holds a pointer to the bottom of the root function frame. The 2283 // establisher frame pointer passed to a nested funclet may point to the 2284 // (mostly empty) frame of its parent funclet, but it will need to find 2285 // the frame of the root function to access locals. To facilitate this, 2286 // every funclet copies the pointer to the bottom of the root function 2287 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2288 // same offset for the PSPSym in the root function frame that's used in the 2289 // funclets' frames allows each funclet to dynamically accept any ancestor 2290 // frame as its establisher argument (the runtime doesn't guarantee the 2291 // immediate parent for some reason lost to history), and also allows the GC, 2292 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2293 // frame with only a single offset reported for the entire method. 2294 unsigned 2295 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2296 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2297 Register SPReg; 2298 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2299 /*IgnoreSPUpdates*/ true) 2300 .getFixed(); 2301 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2302 return static_cast<unsigned>(Offset); 2303 } 2304 2305 unsigned 2306 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2307 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2308 // This is the size of the pushed CSRs. 2309 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2310 // This is the size of callee saved XMMs. 2311 const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2312 unsigned XMMSize = 2313 WinEHXMMSlotInfo.size() * TRI->getSpillSize(X86::VR128RegClass); 2314 // This is the amount of stack a funclet needs to allocate. 2315 unsigned UsedSize; 2316 EHPersonality Personality = 2317 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2318 if (Personality == EHPersonality::CoreCLR) { 2319 // CLR funclets need to hold enough space to include the PSPSym, at the 2320 // same offset from the stack pointer (immediately after the prolog) as it 2321 // resides at in the main function. 2322 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2323 } else { 2324 // Other funclets just need enough stack for outgoing call arguments. 2325 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2326 } 2327 // RBP is not included in the callee saved register block. After pushing RBP, 2328 // everything is 16 byte aligned. Everything we allocate before an outgoing 2329 // call must also be 16 byte aligned. 2330 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2331 // Subtract out the size of the callee saved registers. This is how much stack 2332 // each funclet will allocate. 2333 return FrameSizeMinusRBP + XMMSize - CSSize; 2334 } 2335 2336 static bool isTailCallOpcode(unsigned Opc) { 2337 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2338 Opc == X86::TCRETURNmi || Opc == X86::TCRETURNri64 || 2339 Opc == X86::TCRETURNdi64 || Opc == X86::TCRETURNmi64; 2340 } 2341 2342 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2343 MachineBasicBlock &MBB) const { 2344 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2345 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2346 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2347 MachineBasicBlock::iterator MBBI = Terminator; 2348 DebugLoc DL; 2349 if (MBBI != MBB.end()) 2350 DL = MBBI->getDebugLoc(); 2351 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2352 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2353 Register FramePtr = TRI->getFrameRegister(MF); 2354 Register MachineFramePtr = 2355 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2356 2357 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2358 bool NeedsWin64CFI = 2359 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2360 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2361 2362 // Get the number of bytes to allocate from the FrameInfo. 2363 uint64_t StackSize = MFI.getStackSize(); 2364 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2365 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2366 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2367 bool HasFP = hasFP(MF); 2368 uint64_t NumBytes = 0; 2369 2370 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2371 !MF.getTarget().getTargetTriple().isOSWindows()) && 2372 MF.needsFrameMoves(); 2373 2374 Register ArgBaseReg; 2375 if (auto *MI = X86FI->getStackPtrSaveMI()) { 2376 unsigned Opc = X86::LEA32r; 2377 Register StackReg = X86::ESP; 2378 ArgBaseReg = MI->getOperand(0).getReg(); 2379 if (STI.is64Bit()) { 2380 Opc = X86::LEA64r; 2381 StackReg = X86::RSP; 2382 } 2383 // leal -4(%basereg), %esp 2384 // .cfi_def_cfa %esp, 4 2385 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackReg) 2386 .addUse(ArgBaseReg) 2387 .addImm(1) 2388 .addUse(X86::NoRegister) 2389 .addImm(-(int64_t)SlotSize) 2390 .addUse(X86::NoRegister) 2391 .setMIFlag(MachineInstr::FrameDestroy); 2392 if (NeedsDwarfCFI) { 2393 unsigned DwarfStackPtr = TRI->getDwarfRegNum(StackReg, true); 2394 BuildCFI(MBB, MBBI, DL, 2395 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2396 MachineInstr::FrameDestroy); 2397 --MBBI; 2398 } 2399 --MBBI; 2400 } 2401 2402 if (IsFunclet) { 2403 assert(HasFP && "EH funclets without FP not yet implemented"); 2404 NumBytes = getWinEHFuncletFrameSize(MF); 2405 } else if (HasFP) { 2406 // Calculate required stack adjustment. 2407 uint64_t FrameSize = StackSize - SlotSize; 2408 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2409 2410 // Callee-saved registers were pushed on stack before the stack was 2411 // realigned. 2412 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2413 NumBytes = alignTo(FrameSize, MaxAlign); 2414 } else { 2415 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2416 } 2417 uint64_t SEHStackAllocAmt = NumBytes; 2418 2419 // AfterPop is the position to insert .cfi_restore. 2420 MachineBasicBlock::iterator AfterPop = MBBI; 2421 if (HasFP) { 2422 if (X86FI->hasSwiftAsyncContext()) { 2423 // Discard the context. 2424 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2425 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/ true); 2426 } 2427 // Pop EBP. 2428 BuildMI(MBB, MBBI, DL, 2429 TII.get(getPOPOpcode(MF.getSubtarget<X86Subtarget>())), 2430 MachineFramePtr) 2431 .setMIFlag(MachineInstr::FrameDestroy); 2432 2433 // We need to reset FP to its untagged state on return. Bit 60 is currently 2434 // used to show the presence of an extended frame. 2435 if (X86FI->hasSwiftAsyncContext()) { 2436 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), MachineFramePtr) 2437 .addUse(MachineFramePtr) 2438 .addImm(60) 2439 .setMIFlag(MachineInstr::FrameDestroy); 2440 } 2441 2442 if (NeedsDwarfCFI) { 2443 if (!ArgBaseReg.isValid()) { 2444 unsigned DwarfStackPtr = 2445 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2446 BuildCFI(MBB, MBBI, DL, 2447 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2448 MachineInstr::FrameDestroy); 2449 } 2450 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2451 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2452 BuildCFI(MBB, AfterPop, DL, 2453 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr), 2454 MachineInstr::FrameDestroy); 2455 --MBBI; 2456 --AfterPop; 2457 } 2458 --MBBI; 2459 } 2460 } 2461 2462 MachineBasicBlock::iterator FirstCSPop = MBBI; 2463 // Skip the callee-saved pop instructions. 2464 while (MBBI != MBB.begin()) { 2465 MachineBasicBlock::iterator PI = std::prev(MBBI); 2466 unsigned Opc = PI->getOpcode(); 2467 2468 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2469 if (!PI->getFlag(MachineInstr::FrameDestroy) || 2470 (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::BTR64ri8 && 2471 Opc != X86::ADD64ri32 && Opc != X86::POPP64r && Opc != X86::POP2 && 2472 Opc != X86::POP2P && Opc != X86::LEA64r)) 2473 break; 2474 FirstCSPop = PI; 2475 } 2476 2477 --MBBI; 2478 } 2479 if (ArgBaseReg.isValid()) { 2480 // Restore argument base pointer. 2481 auto *MI = X86FI->getStackPtrSaveMI(); 2482 int FI = MI->getOperand(1).getIndex(); 2483 unsigned MOVrm = Is64Bit ? X86::MOV64rm : X86::MOV32rm; 2484 // movl offset(%ebp), %basereg 2485 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVrm), ArgBaseReg), FI) 2486 .setMIFlag(MachineInstr::FrameDestroy); 2487 } 2488 MBBI = FirstCSPop; 2489 2490 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2491 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2492 2493 if (MBBI != MBB.end()) 2494 DL = MBBI->getDebugLoc(); 2495 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2496 // instruction, merge the two instructions. 2497 if (NumBytes || MFI.hasVarSizedObjects()) 2498 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2499 2500 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2501 // slot before popping them off! Same applies for the case, when stack was 2502 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2503 // will not do realignment or dynamic stack allocation. 2504 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2505 !IsFunclet) { 2506 if (TRI->hasStackRealignment(MF)) 2507 MBBI = FirstCSPop; 2508 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2509 uint64_t LEAAmount = 2510 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2511 2512 if (X86FI->hasSwiftAsyncContext()) 2513 LEAAmount -= 16; 2514 2515 // There are only two legal forms of epilogue: 2516 // - add SEHAllocationSize, %rsp 2517 // - lea SEHAllocationSize(%FramePtr), %rsp 2518 // 2519 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2520 // However, we may use this sequence if we have a frame pointer because the 2521 // effects of the prologue can safely be undone. 2522 if (LEAAmount != 0) { 2523 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2524 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), FramePtr, 2525 false, LEAAmount); 2526 --MBBI; 2527 } else { 2528 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2529 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr).addReg(FramePtr); 2530 --MBBI; 2531 } 2532 } else if (NumBytes) { 2533 // Adjust stack pointer back: ESP += numbytes. 2534 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2535 if (!HasFP && NeedsDwarfCFI) { 2536 // Define the current CFA rule to use the provided offset. 2537 BuildCFI(MBB, MBBI, DL, 2538 MCCFIInstruction::cfiDefCfaOffset( 2539 nullptr, CSSize + TailCallArgReserveSize + SlotSize), 2540 MachineInstr::FrameDestroy); 2541 } 2542 --MBBI; 2543 } 2544 2545 // Windows unwinder will not invoke function's exception handler if IP is 2546 // either in prologue or in epilogue. This behavior causes a problem when a 2547 // call immediately precedes an epilogue, because the return address points 2548 // into the epilogue. To cope with that, we insert an epilogue marker here, 2549 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2550 // final emitted code. 2551 if (NeedsWin64CFI && MF.hasWinCFI()) 2552 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2553 2554 if (!HasFP && NeedsDwarfCFI) { 2555 MBBI = FirstCSPop; 2556 int64_t Offset = -(int64_t)CSSize - SlotSize; 2557 // Mark callee-saved pop instruction. 2558 // Define the current CFA rule to use the provided offset. 2559 while (MBBI != MBB.end()) { 2560 MachineBasicBlock::iterator PI = MBBI; 2561 unsigned Opc = PI->getOpcode(); 2562 ++MBBI; 2563 if (Opc == X86::POP32r || Opc == X86::POP64r || Opc == X86::POPP64r || 2564 Opc == X86::POP2 || Opc == X86::POP2P) { 2565 Offset += SlotSize; 2566 // Compared to pop, pop2 introduces more stack offset (one more 2567 // register). 2568 if (Opc == X86::POP2 || Opc == X86::POP2P) 2569 Offset += SlotSize; 2570 BuildCFI(MBB, MBBI, DL, 2571 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset), 2572 MachineInstr::FrameDestroy); 2573 } 2574 } 2575 } 2576 2577 // Emit DWARF info specifying the restores of the callee-saved registers. 2578 // For epilogue with return inside or being other block without successor, 2579 // no need to generate .cfi_restore for callee-saved registers. 2580 if (NeedsDwarfCFI && !MBB.succ_empty()) 2581 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2582 2583 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2584 // Add the return addr area delta back since we are not tail calling. 2585 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2586 assert(Offset >= 0 && "TCDelta should never be positive"); 2587 if (Offset) { 2588 // Check for possible merge with preceding ADD instruction. 2589 Offset += mergeSPUpdates(MBB, Terminator, true); 2590 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2591 } 2592 } 2593 2594 // Emit tilerelease for AMX kernel. 2595 if (X86FI->getAMXProgModel() == AMXProgModelEnum::ManagedRA) 2596 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2597 } 2598 2599 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2600 int FI, 2601 Register &FrameReg) const { 2602 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2603 2604 bool IsFixed = MFI.isFixedObjectIndex(FI); 2605 // We can't calculate offset from frame pointer if the stack is realigned, 2606 // so enforce usage of stack/base pointer. The base pointer is used when we 2607 // have dynamic allocas in addition to dynamic realignment. 2608 if (TRI->hasBasePointer(MF)) 2609 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2610 else if (TRI->hasStackRealignment(MF)) 2611 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2612 else 2613 FrameReg = TRI->getFrameRegister(MF); 2614 2615 // Offset will hold the offset from the stack pointer at function entry to the 2616 // object. 2617 // We need to factor in additional offsets applied during the prologue to the 2618 // frame, base, and stack pointer depending on which is used. 2619 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2620 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2621 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2622 uint64_t StackSize = MFI.getStackSize(); 2623 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2624 int64_t FPDelta = 0; 2625 2626 // In an x86 interrupt, remove the offset we added to account for the return 2627 // address from any stack object allocated in the caller's frame. Interrupts 2628 // do not have a standard return address. Fixed objects in the current frame, 2629 // such as SSE register spills, should not get this treatment. 2630 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2631 Offset >= 0) { 2632 Offset += getOffsetOfLocalArea(); 2633 } 2634 2635 if (IsWin64Prologue) { 2636 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2637 2638 // Calculate required stack adjustment. 2639 uint64_t FrameSize = StackSize - SlotSize; 2640 // If required, include space for extra hidden slot for stashing base 2641 // pointer. 2642 if (X86FI->getRestoreBasePointer()) 2643 FrameSize += SlotSize; 2644 uint64_t NumBytes = FrameSize - CSSize; 2645 2646 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2647 if (FI && FI == X86FI->getFAIndex()) 2648 return StackOffset::getFixed(-SEHFrameOffset); 2649 2650 // FPDelta is the offset from the "traditional" FP location of the old base 2651 // pointer followed by return address and the location required by the 2652 // restricted Win64 prologue. 2653 // Add FPDelta to all offsets below that go through the frame pointer. 2654 FPDelta = FrameSize - SEHFrameOffset; 2655 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2656 "FPDelta isn't aligned per the Win64 ABI!"); 2657 } 2658 2659 if (FrameReg == TRI->getFramePtr()) { 2660 // Skip saved EBP/RBP 2661 Offset += SlotSize; 2662 2663 // Account for restricted Windows prologue. 2664 Offset += FPDelta; 2665 2666 // Skip the RETADDR move area 2667 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2668 if (TailCallReturnAddrDelta < 0) 2669 Offset -= TailCallReturnAddrDelta; 2670 2671 return StackOffset::getFixed(Offset); 2672 } 2673 2674 // FrameReg is either the stack pointer or a base pointer. But the base is 2675 // located at the end of the statically known StackSize so the distinction 2676 // doesn't really matter. 2677 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2678 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2679 return StackOffset::getFixed(Offset + StackSize); 2680 } 2681 2682 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2683 Register &FrameReg) const { 2684 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2685 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2686 const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2687 const auto it = WinEHXMMSlotInfo.find(FI); 2688 2689 if (it == WinEHXMMSlotInfo.end()) 2690 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2691 2692 FrameReg = TRI->getStackRegister(); 2693 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2694 it->second; 2695 } 2696 2697 StackOffset 2698 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2699 Register &FrameReg, 2700 int Adjustment) const { 2701 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2702 FrameReg = TRI->getStackRegister(); 2703 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2704 getOffsetOfLocalArea() + Adjustment); 2705 } 2706 2707 StackOffset 2708 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2709 int FI, Register &FrameReg, 2710 bool IgnoreSPUpdates) const { 2711 2712 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2713 // Does not include any dynamic realign. 2714 const uint64_t StackSize = MFI.getStackSize(); 2715 // LLVM arranges the stack as follows: 2716 // ... 2717 // ARG2 2718 // ARG1 2719 // RETADDR 2720 // PUSH RBP <-- RBP points here 2721 // PUSH CSRs 2722 // ~~~~~~~ <-- possible stack realignment (non-win64) 2723 // ... 2724 // STACK OBJECTS 2725 // ... <-- RSP after prologue points here 2726 // ~~~~~~~ <-- possible stack realignment (win64) 2727 // 2728 // if (hasVarSizedObjects()): 2729 // ... <-- "base pointer" (ESI/RBX) points here 2730 // DYNAMIC ALLOCAS 2731 // ... <-- RSP points here 2732 // 2733 // Case 1: In the simple case of no stack realignment and no dynamic 2734 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2735 // with fixed offsets from RSP. 2736 // 2737 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2738 // stack objects are addressed with RBP and regular stack objects with RSP. 2739 // 2740 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2741 // to address stack arguments for outgoing calls and nothing else. The "base 2742 // pointer" points to local variables, and RBP points to fixed objects. 2743 // 2744 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2745 // answer we give is relative to the SP after the prologue, and not the 2746 // SP in the middle of the function. 2747 2748 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2749 !STI.isTargetWin64()) 2750 return getFrameIndexReference(MF, FI, FrameReg); 2751 2752 // If !hasReservedCallFrame the function might have SP adjustement in the 2753 // body. So, even though the offset is statically known, it depends on where 2754 // we are in the function. 2755 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2756 return getFrameIndexReference(MF, FI, FrameReg); 2757 2758 // We don't handle tail calls, and shouldn't be seeing them either. 2759 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2760 "we don't handle this case!"); 2761 2762 // This is how the math works out: 2763 // 2764 // %rsp grows (i.e. gets lower) left to right. Each box below is 2765 // one word (eight bytes). Obj0 is the stack slot we're trying to 2766 // get to. 2767 // 2768 // ---------------------------------- 2769 // | BP | Obj0 | Obj1 | ... | ObjN | 2770 // ---------------------------------- 2771 // ^ ^ ^ ^ 2772 // A B C E 2773 // 2774 // A is the incoming stack pointer. 2775 // (B - A) is the local area offset (-8 for x86-64) [1] 2776 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2777 // 2778 // |(E - B)| is the StackSize (absolute value, positive). For a 2779 // stack that grown down, this works out to be (B - E). [3] 2780 // 2781 // E is also the value of %rsp after stack has been set up, and we 2782 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2783 // (C - E) == (C - A) - (B - A) + (B - E) 2784 // { Using [1], [2] and [3] above } 2785 // == getObjectOffset - LocalAreaOffset + StackSize 2786 2787 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2788 } 2789 2790 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2791 MachineFunction &MF, const TargetRegisterInfo *TRI, 2792 std::vector<CalleeSavedInfo> &CSI) const { 2793 MachineFrameInfo &MFI = MF.getFrameInfo(); 2794 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2795 2796 unsigned CalleeSavedFrameSize = 0; 2797 unsigned XMMCalleeSavedFrameSize = 0; 2798 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2799 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2800 2801 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2802 2803 if (TailCallReturnAddrDelta < 0) { 2804 // create RETURNADDR area 2805 // arg 2806 // arg 2807 // RETADDR 2808 // { ... 2809 // RETADDR area 2810 // ... 2811 // } 2812 // [EBP] 2813 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2814 TailCallReturnAddrDelta - SlotSize, true); 2815 } 2816 2817 // Spill the BasePtr if it's used. 2818 if (this->TRI->hasBasePointer(MF)) { 2819 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2820 if (MF.hasEHFunclets()) { 2821 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2822 X86FI->setHasSEHFramePtrSave(true); 2823 X86FI->setSEHFramePtrSaveIndex(FI); 2824 } 2825 } 2826 2827 if (hasFP(MF)) { 2828 // emitPrologue always spills frame register the first thing. 2829 SpillSlotOffset -= SlotSize; 2830 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2831 2832 // The async context lives directly before the frame pointer, and we 2833 // allocate a second slot to preserve stack alignment. 2834 if (X86FI->hasSwiftAsyncContext()) { 2835 SpillSlotOffset -= SlotSize; 2836 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2837 SpillSlotOffset -= SlotSize; 2838 } 2839 2840 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2841 // the frame register, we can delete it from CSI list and not have to worry 2842 // about avoiding it later. 2843 Register FPReg = TRI->getFrameRegister(MF); 2844 for (unsigned i = 0; i < CSI.size(); ++i) { 2845 if (TRI->regsOverlap(CSI[i].getReg(), FPReg)) { 2846 CSI.erase(CSI.begin() + i); 2847 break; 2848 } 2849 } 2850 } 2851 2852 // Strategy: 2853 // 1. Use push2 when 2854 // a) number of CSR > 1 if no need padding 2855 // b) number of CSR > 2 if need padding 2856 // 2. When the number of CSR push is odd 2857 // a. Start to use push2 from the 1st push if stack is 16B aligned. 2858 // b. Start to use push2 from the 2nd push if stack is not 16B aligned. 2859 // 3. When the number of CSR push is even, start to use push2 from the 1st 2860 // push and make the stack 16B aligned before the push 2861 unsigned NumRegsForPush2 = 0; 2862 if (STI.hasPush2Pop2()) { 2863 unsigned NumCSGPR = llvm::count_if(CSI, [](const CalleeSavedInfo &I) { 2864 return X86::GR64RegClass.contains(I.getReg()); 2865 }); 2866 bool NeedPadding = (SpillSlotOffset % 16 != 0) && (NumCSGPR % 2 == 0); 2867 bool UsePush2Pop2 = NeedPadding ? NumCSGPR > 2 : NumCSGPR > 1; 2868 X86FI->setPadForPush2Pop2(NeedPadding && UsePush2Pop2); 2869 NumRegsForPush2 = UsePush2Pop2 ? alignDown(NumCSGPR, 2) : 0; 2870 if (X86FI->padForPush2Pop2()) { 2871 SpillSlotOffset -= SlotSize; 2872 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2873 } 2874 } 2875 2876 // Assign slots for GPRs. It increases frame size. 2877 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2878 Register Reg = I.getReg(); 2879 2880 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2881 continue; 2882 2883 // A CSR is a candidate for push2/pop2 when it's slot offset is 16B aligned 2884 // or only an odd number of registers in the candidates. 2885 if (X86FI->getNumCandidatesForPush2Pop2() < NumRegsForPush2 && 2886 (SpillSlotOffset % 16 == 0 || 2887 X86FI->getNumCandidatesForPush2Pop2() % 2)) 2888 X86FI->addCandidateForPush2Pop2(Reg); 2889 2890 SpillSlotOffset -= SlotSize; 2891 CalleeSavedFrameSize += SlotSize; 2892 2893 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2894 I.setFrameIdx(SlotIndex); 2895 } 2896 2897 // Adjust the offset of spill slot as we know the accurate callee saved frame 2898 // size. 2899 if (X86FI->getRestoreBasePointer()) { 2900 SpillSlotOffset -= SlotSize; 2901 CalleeSavedFrameSize += SlotSize; 2902 2903 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2904 // TODO: saving the slot index is better? 2905 X86FI->setRestoreBasePointer(CalleeSavedFrameSize); 2906 } 2907 assert(X86FI->getNumCandidatesForPush2Pop2() % 2 == 0 && 2908 "Expect even candidates for push2/pop2"); 2909 if (X86FI->getNumCandidatesForPush2Pop2()) 2910 ++NumFunctionUsingPush2Pop2; 2911 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2912 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2913 2914 // Assign slots for XMMs. 2915 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2916 Register Reg = I.getReg(); 2917 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2918 continue; 2919 2920 // If this is k-register make sure we lookup via the largest legal type. 2921 MVT VT = MVT::Other; 2922 if (X86::VK16RegClass.contains(Reg)) 2923 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2924 2925 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2926 unsigned Size = TRI->getSpillSize(*RC); 2927 Align Alignment = TRI->getSpillAlign(*RC); 2928 // ensure alignment 2929 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2930 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2931 2932 // spill into slot 2933 SpillSlotOffset -= Size; 2934 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2935 I.setFrameIdx(SlotIndex); 2936 MFI.ensureMaxAlignment(Alignment); 2937 2938 // Save the start offset and size of XMM in stack frame for funclets. 2939 if (X86::VR128RegClass.contains(Reg)) { 2940 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2941 XMMCalleeSavedFrameSize += Size; 2942 } 2943 } 2944 2945 return true; 2946 } 2947 2948 bool X86FrameLowering::spillCalleeSavedRegisters( 2949 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2950 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2951 DebugLoc DL = MBB.findDebugLoc(MI); 2952 2953 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2954 // for us, and there are no XMM CSRs on Win32. 2955 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2956 return true; 2957 2958 // Push GPRs. It increases frame size. 2959 const MachineFunction &MF = *MBB.getParent(); 2960 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2961 if (X86FI->padForPush2Pop2()) 2962 emitSPUpdate(MBB, MI, DL, -(int64_t)SlotSize, /*InEpilogue=*/false); 2963 2964 // Update LiveIn of the basic block and decide whether we can add a kill flag 2965 // to the use. 2966 auto UpdateLiveInCheckCanKill = [&](Register Reg) { 2967 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2968 // Do not set a kill flag on values that are also marked as live-in. This 2969 // happens with the @llvm-returnaddress intrinsic and with arguments 2970 // passed in callee saved registers. 2971 // Omitting the kill flags is conservatively correct even if the live-in 2972 // is not used after all. 2973 if (MRI.isLiveIn(Reg)) 2974 return false; 2975 MBB.addLiveIn(Reg); 2976 // Check if any subregister is live-in 2977 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) 2978 if (MRI.isLiveIn(*AReg)) 2979 return false; 2980 return true; 2981 }; 2982 auto UpdateLiveInGetKillRegState = [&](Register Reg) { 2983 return getKillRegState(UpdateLiveInCheckCanKill(Reg)); 2984 }; 2985 2986 for (auto RI = CSI.rbegin(), RE = CSI.rend(); RI != RE; ++RI) { 2987 Register Reg = RI->getReg(); 2988 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2989 continue; 2990 2991 if (X86FI->isCandidateForPush2Pop2(Reg)) { 2992 Register Reg2 = (++RI)->getReg(); 2993 BuildMI(MBB, MI, DL, TII.get(getPUSH2Opcode(STI))) 2994 .addReg(Reg, UpdateLiveInGetKillRegState(Reg)) 2995 .addReg(Reg2, UpdateLiveInGetKillRegState(Reg2)) 2996 .setMIFlag(MachineInstr::FrameSetup); 2997 } else { 2998 BuildMI(MBB, MI, DL, TII.get(getPUSHOpcode(STI))) 2999 .addReg(Reg, UpdateLiveInGetKillRegState(Reg)) 3000 .setMIFlag(MachineInstr::FrameSetup); 3001 } 3002 } 3003 3004 if (X86FI->getRestoreBasePointer()) { 3005 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 3006 Register BaseReg = this->TRI->getBaseRegister(); 3007 BuildMI(MBB, MI, DL, TII.get(Opc)) 3008 .addReg(BaseReg, getKillRegState(true)) 3009 .setMIFlag(MachineInstr::FrameSetup); 3010 } 3011 3012 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 3013 // It can be done by spilling XMMs to stack frame. 3014 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 3015 Register Reg = I.getReg(); 3016 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 3017 continue; 3018 3019 // If this is k-register make sure we lookup via the largest legal type. 3020 MVT VT = MVT::Other; 3021 if (X86::VK16RegClass.contains(Reg)) 3022 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 3023 3024 // Add the callee-saved register as live-in. It's killed at the spill. 3025 MBB.addLiveIn(Reg); 3026 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 3027 3028 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI, 3029 Register()); 3030 --MI; 3031 MI->setFlag(MachineInstr::FrameSetup); 3032 ++MI; 3033 } 3034 3035 return true; 3036 } 3037 3038 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 3039 MachineBasicBlock::iterator MBBI, 3040 MachineInstr *CatchRet) const { 3041 // SEH shouldn't use catchret. 3042 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 3043 MBB.getParent()->getFunction().getPersonalityFn())) && 3044 "SEH should not use CATCHRET"); 3045 const DebugLoc &DL = CatchRet->getDebugLoc(); 3046 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 3047 3048 // Fill EAX/RAX with the address of the target block. 3049 if (STI.is64Bit()) { 3050 // LEA64r CatchRetTarget(%rip), %rax 3051 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 3052 .addReg(X86::RIP) 3053 .addImm(0) 3054 .addReg(0) 3055 .addMBB(CatchRetTarget) 3056 .addReg(0); 3057 } else { 3058 // MOV32ri $CatchRetTarget, %eax 3059 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 3060 .addMBB(CatchRetTarget); 3061 } 3062 3063 // Record that we've taken the address of CatchRetTarget and no longer just 3064 // reference it in a terminator. 3065 CatchRetTarget->setMachineBlockAddressTaken(); 3066 } 3067 3068 bool X86FrameLowering::restoreCalleeSavedRegisters( 3069 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 3070 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 3071 if (CSI.empty()) 3072 return false; 3073 3074 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 3075 // Don't restore CSRs in 32-bit EH funclets. Matches 3076 // spillCalleeSavedRegisters. 3077 if (STI.is32Bit()) 3078 return true; 3079 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 3080 // funclets. emitEpilogue transforms these to normal jumps. 3081 if (MI->getOpcode() == X86::CATCHRET) { 3082 const Function &F = MBB.getParent()->getFunction(); 3083 bool IsSEH = isAsynchronousEHPersonality( 3084 classifyEHPersonality(F.getPersonalityFn())); 3085 if (IsSEH) 3086 return true; 3087 } 3088 } 3089 3090 DebugLoc DL = MBB.findDebugLoc(MI); 3091 3092 // Reload XMMs from stack frame. 3093 for (const CalleeSavedInfo &I : CSI) { 3094 Register Reg = I.getReg(); 3095 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 3096 continue; 3097 3098 // If this is k-register make sure we lookup via the largest legal type. 3099 MVT VT = MVT::Other; 3100 if (X86::VK16RegClass.contains(Reg)) 3101 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 3102 3103 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 3104 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI, 3105 Register()); 3106 } 3107 3108 // Clear the stack slot for spill base pointer register. 3109 MachineFunction &MF = *MBB.getParent(); 3110 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3111 if (X86FI->getRestoreBasePointer()) { 3112 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 3113 Register BaseReg = this->TRI->getBaseRegister(); 3114 BuildMI(MBB, MI, DL, TII.get(Opc), BaseReg) 3115 .setMIFlag(MachineInstr::FrameDestroy); 3116 } 3117 3118 // POP GPRs. 3119 for (auto I = CSI.begin(), E = CSI.end(); I != E; ++I) { 3120 Register Reg = I->getReg(); 3121 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 3122 continue; 3123 3124 if (X86FI->isCandidateForPush2Pop2(Reg)) 3125 BuildMI(MBB, MI, DL, TII.get(getPOP2Opcode(STI)), Reg) 3126 .addReg((++I)->getReg(), RegState::Define) 3127 .setMIFlag(MachineInstr::FrameDestroy); 3128 else 3129 BuildMI(MBB, MI, DL, TII.get(getPOPOpcode(STI)), Reg) 3130 .setMIFlag(MachineInstr::FrameDestroy); 3131 } 3132 if (X86FI->padForPush2Pop2()) 3133 emitSPUpdate(MBB, MI, DL, SlotSize, /*InEpilogue=*/true); 3134 3135 return true; 3136 } 3137 3138 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 3139 BitVector &SavedRegs, 3140 RegScavenger *RS) const { 3141 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 3142 3143 // Spill the BasePtr if it's used. 3144 if (TRI->hasBasePointer(MF)) { 3145 Register BasePtr = TRI->getBaseRegister(); 3146 if (STI.isTarget64BitILP32()) 3147 BasePtr = getX86SubSuperRegister(BasePtr, 64); 3148 SavedRegs.set(BasePtr); 3149 } 3150 } 3151 3152 static bool HasNestArgument(const MachineFunction *MF) { 3153 const Function &F = MF->getFunction(); 3154 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 3155 I++) { 3156 if (I->hasNestAttr() && !I->use_empty()) 3157 return true; 3158 } 3159 return false; 3160 } 3161 3162 /// GetScratchRegister - Get a temp register for performing work in the 3163 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 3164 /// and the properties of the function either one or two registers will be 3165 /// needed. Set primary to true for the first register, false for the second. 3166 static unsigned GetScratchRegister(bool Is64Bit, bool IsLP64, 3167 const MachineFunction &MF, bool Primary) { 3168 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 3169 3170 // Erlang stuff. 3171 if (CallingConvention == CallingConv::HiPE) { 3172 if (Is64Bit) 3173 return Primary ? X86::R14 : X86::R13; 3174 else 3175 return Primary ? X86::EBX : X86::EDI; 3176 } 3177 3178 if (Is64Bit) { 3179 if (IsLP64) 3180 return Primary ? X86::R11 : X86::R12; 3181 else 3182 return Primary ? X86::R11D : X86::R12D; 3183 } 3184 3185 bool IsNested = HasNestArgument(&MF); 3186 3187 if (CallingConvention == CallingConv::X86_FastCall || 3188 CallingConvention == CallingConv::Fast || 3189 CallingConvention == CallingConv::Tail) { 3190 if (IsNested) 3191 report_fatal_error("Segmented stacks does not support fastcall with " 3192 "nested function."); 3193 return Primary ? X86::EAX : X86::ECX; 3194 } 3195 if (IsNested) 3196 return Primary ? X86::EDX : X86::EAX; 3197 return Primary ? X86::ECX : X86::EAX; 3198 } 3199 3200 // The stack limit in the TCB is set to this many bytes above the actual stack 3201 // limit. 3202 static const uint64_t kSplitStackAvailable = 256; 3203 3204 void X86FrameLowering::adjustForSegmentedStacks( 3205 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3206 MachineFrameInfo &MFI = MF.getFrameInfo(); 3207 uint64_t StackSize; 3208 unsigned TlsReg, TlsOffset; 3209 DebugLoc DL; 3210 3211 // To support shrink-wrapping we would need to insert the new blocks 3212 // at the right place and update the branches to PrologueMBB. 3213 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3214 3215 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3216 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3217 "Scratch register is live-in"); 3218 3219 if (MF.getFunction().isVarArg()) 3220 report_fatal_error("Segmented stacks do not support vararg functions."); 3221 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 3222 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 3223 !STI.isTargetDragonFly()) 3224 report_fatal_error("Segmented stacks not supported on this platform."); 3225 3226 // Eventually StackSize will be calculated by a link-time pass; which will 3227 // also decide whether checking code needs to be injected into this particular 3228 // prologue. 3229 StackSize = MFI.getStackSize(); 3230 3231 if (!MFI.needsSplitStackProlog()) 3232 return; 3233 3234 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 3235 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 3236 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3237 bool IsNested = false; 3238 3239 // We need to know if the function has a nest argument only in 64 bit mode. 3240 if (Is64Bit) 3241 IsNested = HasNestArgument(&MF); 3242 3243 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 3244 // allocMBB needs to be last (terminating) instruction. 3245 3246 for (const auto &LI : PrologueMBB.liveins()) { 3247 allocMBB->addLiveIn(LI); 3248 checkMBB->addLiveIn(LI); 3249 } 3250 3251 if (IsNested) 3252 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 3253 3254 MF.push_front(allocMBB); 3255 MF.push_front(checkMBB); 3256 3257 // When the frame size is less than 256 we just compare the stack 3258 // boundary directly to the value of the stack pointer, per gcc. 3259 bool CompareStackPointer = StackSize < kSplitStackAvailable; 3260 3261 // Read the limit off the current stacklet off the stack_guard location. 3262 if (Is64Bit) { 3263 if (STI.isTargetLinux()) { 3264 TlsReg = X86::FS; 3265 TlsOffset = IsLP64 ? 0x70 : 0x40; 3266 } else if (STI.isTargetDarwin()) { 3267 TlsReg = X86::GS; 3268 TlsOffset = 0x60 + 90 * 8; // See pthread_machdep.h. Steal TLS slot 90. 3269 } else if (STI.isTargetWin64()) { 3270 TlsReg = X86::GS; 3271 TlsOffset = 0x28; // pvArbitrary, reserved for application use 3272 } else if (STI.isTargetFreeBSD()) { 3273 TlsReg = X86::FS; 3274 TlsOffset = 0x18; 3275 } else if (STI.isTargetDragonFly()) { 3276 TlsReg = X86::FS; 3277 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 3278 } else { 3279 report_fatal_error("Segmented stacks not supported on this platform."); 3280 } 3281 3282 if (CompareStackPointer) 3283 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 3284 else 3285 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), 3286 ScratchReg) 3287 .addReg(X86::RSP) 3288 .addImm(1) 3289 .addReg(0) 3290 .addImm(-StackSize) 3291 .addReg(0); 3292 3293 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)) 3294 .addReg(ScratchReg) 3295 .addReg(0) 3296 .addImm(1) 3297 .addReg(0) 3298 .addImm(TlsOffset) 3299 .addReg(TlsReg); 3300 } else { 3301 if (STI.isTargetLinux()) { 3302 TlsReg = X86::GS; 3303 TlsOffset = 0x30; 3304 } else if (STI.isTargetDarwin()) { 3305 TlsReg = X86::GS; 3306 TlsOffset = 0x48 + 90 * 4; 3307 } else if (STI.isTargetWin32()) { 3308 TlsReg = X86::FS; 3309 TlsOffset = 0x14; // pvArbitrary, reserved for application use 3310 } else if (STI.isTargetDragonFly()) { 3311 TlsReg = X86::FS; 3312 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 3313 } else if (STI.isTargetFreeBSD()) { 3314 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 3315 } else { 3316 report_fatal_error("Segmented stacks not supported on this platform."); 3317 } 3318 3319 if (CompareStackPointer) 3320 ScratchReg = X86::ESP; 3321 else 3322 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg) 3323 .addReg(X86::ESP) 3324 .addImm(1) 3325 .addReg(0) 3326 .addImm(-StackSize) 3327 .addReg(0); 3328 3329 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 3330 STI.isTargetDragonFly()) { 3331 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3332 .addReg(ScratchReg) 3333 .addReg(0) 3334 .addImm(0) 3335 .addReg(0) 3336 .addImm(TlsOffset) 3337 .addReg(TlsReg); 3338 } else if (STI.isTargetDarwin()) { 3339 3340 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 3341 unsigned ScratchReg2; 3342 bool SaveScratch2; 3343 if (CompareStackPointer) { 3344 // The primary scratch register is available for holding the TLS offset. 3345 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3346 SaveScratch2 = false; 3347 } else { 3348 // Need to use a second register to hold the TLS offset 3349 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 3350 3351 // Unfortunately, with fastcc the second scratch register may hold an 3352 // argument. 3353 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 3354 } 3355 3356 // If Scratch2 is live-in then it needs to be saved. 3357 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 3358 "Scratch register is live-in and not saved"); 3359 3360 if (SaveScratch2) 3361 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 3362 .addReg(ScratchReg2, RegState::Kill); 3363 3364 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 3365 .addImm(TlsOffset); 3366 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3367 .addReg(ScratchReg) 3368 .addReg(ScratchReg2) 3369 .addImm(1) 3370 .addReg(0) 3371 .addImm(0) 3372 .addReg(TlsReg); 3373 3374 if (SaveScratch2) 3375 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 3376 } 3377 } 3378 3379 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 3380 // It jumps to normal execution of the function body. 3381 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)) 3382 .addMBB(&PrologueMBB) 3383 .addImm(X86::COND_A); 3384 3385 // On 32 bit we first push the arguments size and then the frame size. On 64 3386 // bit, we pass the stack frame size in r10 and the argument size in r11. 3387 if (Is64Bit) { 3388 // Functions with nested arguments use R10, so it needs to be saved across 3389 // the call to _morestack 3390 3391 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 3392 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 3393 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 3394 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 3395 3396 if (IsNested) 3397 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 3398 3399 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 3400 .addImm(StackSize); 3401 BuildMI(allocMBB, DL, 3402 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 3403 Reg11) 3404 .addImm(X86FI->getArgumentStackSize()); 3405 } else { 3406 BuildMI(allocMBB, DL, TII.get(X86::PUSH32i)) 3407 .addImm(X86FI->getArgumentStackSize()); 3408 BuildMI(allocMBB, DL, TII.get(X86::PUSH32i)).addImm(StackSize); 3409 } 3410 3411 // __morestack is in libgcc 3412 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3413 // Under the large code model, we cannot assume that __morestack lives 3414 // within 2^31 bytes of the call site, so we cannot use pc-relative 3415 // addressing. We cannot perform the call via a temporary register, 3416 // as the rax register may be used to store the static chain, and all 3417 // other suitable registers may be either callee-save or used for 3418 // parameter passing. We cannot use the stack at this point either 3419 // because __morestack manipulates the stack directly. 3420 // 3421 // To avoid these issues, perform an indirect call via a read-only memory 3422 // location containing the address. 3423 // 3424 // This solution is not perfect, as it assumes that the .rodata section 3425 // is laid out within 2^31 bytes of each function body, but this seems 3426 // to be sufficient for JIT. 3427 // FIXME: Add retpoline support and remove the error here.. 3428 if (STI.useIndirectThunkCalls()) 3429 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3430 "code model and thunks not yet implemented."); 3431 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3432 .addReg(X86::RIP) 3433 .addImm(0) 3434 .addReg(0) 3435 .addExternalSymbol("__morestack_addr") 3436 .addReg(0); 3437 } else { 3438 if (Is64Bit) 3439 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3440 .addExternalSymbol("__morestack"); 3441 else 3442 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3443 .addExternalSymbol("__morestack"); 3444 } 3445 3446 if (IsNested) 3447 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3448 else 3449 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3450 3451 allocMBB->addSuccessor(&PrologueMBB); 3452 3453 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3454 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3455 3456 #ifdef EXPENSIVE_CHECKS 3457 MF.verify(); 3458 #endif 3459 } 3460 3461 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3462 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3463 /// to fields it needs, through a named metadata node "hipe.literals" containing 3464 /// name-value pairs. 3465 static unsigned getHiPELiteral(NamedMDNode *HiPELiteralsMD, 3466 const StringRef LiteralName) { 3467 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3468 MDNode *Node = HiPELiteralsMD->getOperand(i); 3469 if (Node->getNumOperands() != 2) 3470 continue; 3471 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3472 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3473 if (!NodeName || !NodeVal) 3474 continue; 3475 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3476 if (ValConst && NodeName->getString() == LiteralName) { 3477 return ValConst->getZExtValue(); 3478 } 3479 } 3480 3481 report_fatal_error("HiPE literal " + LiteralName + 3482 " required but not provided"); 3483 } 3484 3485 // Return true if there are no non-ehpad successors to MBB and there are no 3486 // non-meta instructions between MBBI and MBB.end(). 3487 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3488 MachineBasicBlock::const_iterator MBBI) { 3489 return llvm::all_of( 3490 MBB.successors(), 3491 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3492 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3493 return MI.isMetaInstruction(); 3494 }); 3495 } 3496 3497 /// Erlang programs may need a special prologue to handle the stack size they 3498 /// might need at runtime. That is because Erlang/OTP does not implement a C 3499 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3500 /// (for more information see Eric Stenman's Ph.D. thesis: 3501 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3502 /// 3503 /// CheckStack: 3504 /// temp0 = sp - MaxStack 3505 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3506 /// OldStart: 3507 /// ... 3508 /// IncStack: 3509 /// call inc_stack # doubles the stack space 3510 /// temp0 = sp - MaxStack 3511 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3512 void X86FrameLowering::adjustForHiPEPrologue( 3513 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3514 MachineFrameInfo &MFI = MF.getFrameInfo(); 3515 DebugLoc DL; 3516 3517 // To support shrink-wrapping we would need to insert the new blocks 3518 // at the right place and update the branches to PrologueMBB. 3519 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3520 3521 // HiPE-specific values 3522 NamedMDNode *HiPELiteralsMD = 3523 MF.getFunction().getParent()->getNamedMetadata("hipe.literals"); 3524 if (!HiPELiteralsMD) 3525 report_fatal_error( 3526 "Can't generate HiPE prologue without runtime parameters"); 3527 const unsigned HipeLeafWords = getHiPELiteral( 3528 HiPELiteralsMD, Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3529 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3530 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3531 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs 3532 ? MF.getFunction().arg_size() - CCRegisteredArgs 3533 : 0; 3534 unsigned MaxStack = MFI.getStackSize() + CallerStkArity * SlotSize + SlotSize; 3535 3536 assert(STI.isTargetLinux() && 3537 "HiPE prologue is only supported on Linux operating systems."); 3538 3539 // Compute the largest caller's frame that is needed to fit the callees' 3540 // frames. This 'MaxStack' is computed from: 3541 // 3542 // a) the fixed frame size, which is the space needed for all spilled temps, 3543 // b) outgoing on-stack parameter areas, and 3544 // c) the minimum stack space this function needs to make available for the 3545 // functions it calls (a tunable ABI property). 3546 if (MFI.hasCalls()) { 3547 unsigned MoreStackForCalls = 0; 3548 3549 for (auto &MBB : MF) { 3550 for (auto &MI : MBB) { 3551 if (!MI.isCall()) 3552 continue; 3553 3554 // Get callee operand. 3555 const MachineOperand &MO = MI.getOperand(0); 3556 3557 // Only take account of global function calls (no closures etc.). 3558 if (!MO.isGlobal()) 3559 continue; 3560 3561 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3562 if (!F) 3563 continue; 3564 3565 // Do not update 'MaxStack' for primitive and built-in functions 3566 // (encoded with names either starting with "erlang."/"bif_" or not 3567 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3568 // "_", such as the BIF "suspend_0") as they are executed on another 3569 // stack. 3570 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3571 F->getName().find_first_of("._") == StringRef::npos) 3572 continue; 3573 3574 unsigned CalleeStkArity = F->arg_size() > CCRegisteredArgs 3575 ? F->arg_size() - CCRegisteredArgs 3576 : 0; 3577 if (HipeLeafWords - 1 > CalleeStkArity) 3578 MoreStackForCalls = 3579 std::max(MoreStackForCalls, 3580 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3581 } 3582 } 3583 MaxStack += MoreStackForCalls; 3584 } 3585 3586 // If the stack frame needed is larger than the guaranteed then runtime checks 3587 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3588 if (MaxStack > Guaranteed) { 3589 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3590 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3591 3592 for (const auto &LI : PrologueMBB.liveins()) { 3593 stackCheckMBB->addLiveIn(LI); 3594 incStackMBB->addLiveIn(LI); 3595 } 3596 3597 MF.push_front(incStackMBB); 3598 MF.push_front(stackCheckMBB); 3599 3600 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3601 unsigned LEAop, CMPop, CALLop; 3602 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3603 if (Is64Bit) { 3604 SPReg = X86::RSP; 3605 PReg = X86::RBP; 3606 LEAop = X86::LEA64r; 3607 CMPop = X86::CMP64rm; 3608 CALLop = X86::CALL64pcrel32; 3609 } else { 3610 SPReg = X86::ESP; 3611 PReg = X86::EBP; 3612 LEAop = X86::LEA32r; 3613 CMPop = X86::CMP32rm; 3614 CALLop = X86::CALLpcrel32; 3615 } 3616 3617 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3618 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3619 "HiPE prologue scratch register is live-in"); 3620 3621 // Create new MBB for StackCheck: 3622 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), SPReg, 3623 false, -MaxStack); 3624 // SPLimitOffset is in a fixed heap location (pointed by BP). 3625 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)).addReg(ScratchReg), 3626 PReg, false, SPLimitOffset); 3627 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)) 3628 .addMBB(&PrologueMBB) 3629 .addImm(X86::COND_AE); 3630 3631 // Create new MBB for IncStack: 3632 BuildMI(incStackMBB, DL, TII.get(CALLop)).addExternalSymbol("inc_stack_0"); 3633 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), SPReg, 3634 false, -MaxStack); 3635 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)).addReg(ScratchReg), 3636 PReg, false, SPLimitOffset); 3637 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)) 3638 .addMBB(incStackMBB) 3639 .addImm(X86::COND_LE); 3640 3641 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3642 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3643 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3644 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3645 } 3646 #ifdef EXPENSIVE_CHECKS 3647 MF.verify(); 3648 #endif 3649 } 3650 3651 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3652 MachineBasicBlock::iterator MBBI, 3653 const DebugLoc &DL, 3654 int Offset) const { 3655 if (Offset <= 0) 3656 return false; 3657 3658 if (Offset % SlotSize) 3659 return false; 3660 3661 int NumPops = Offset / SlotSize; 3662 // This is only worth it if we have at most 2 pops. 3663 if (NumPops != 1 && NumPops != 2) 3664 return false; 3665 3666 // Handle only the trivial case where the adjustment directly follows 3667 // a call. This is the most common one, anyway. 3668 if (MBBI == MBB.begin()) 3669 return false; 3670 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3671 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3672 return false; 3673 3674 unsigned Regs[2]; 3675 unsigned FoundRegs = 0; 3676 3677 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3678 const MachineOperand &RegMask = Prev->getOperand(1); 3679 3680 auto &RegClass = 3681 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3682 // Try to find up to NumPops free registers. 3683 for (auto Candidate : RegClass) { 3684 // Poor man's liveness: 3685 // Since we're immediately after a call, any register that is clobbered 3686 // by the call and not defined by it can be considered dead. 3687 if (!RegMask.clobbersPhysReg(Candidate)) 3688 continue; 3689 3690 // Don't clobber reserved registers 3691 if (MRI.isReserved(Candidate)) 3692 continue; 3693 3694 bool IsDef = false; 3695 for (const MachineOperand &MO : Prev->implicit_operands()) { 3696 if (MO.isReg() && MO.isDef() && 3697 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3698 IsDef = true; 3699 break; 3700 } 3701 } 3702 3703 if (IsDef) 3704 continue; 3705 3706 Regs[FoundRegs++] = Candidate; 3707 if (FoundRegs == (unsigned)NumPops) 3708 break; 3709 } 3710 3711 if (FoundRegs == 0) 3712 return false; 3713 3714 // If we found only one free register, but need two, reuse the same one twice. 3715 while (FoundRegs < (unsigned)NumPops) 3716 Regs[FoundRegs++] = Regs[0]; 3717 3718 for (int i = 0; i < NumPops; ++i) 3719 BuildMI(MBB, MBBI, DL, TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), 3720 Regs[i]); 3721 3722 return true; 3723 } 3724 3725 MachineBasicBlock::iterator X86FrameLowering::eliminateCallFramePseudoInstr( 3726 MachineFunction &MF, MachineBasicBlock &MBB, 3727 MachineBasicBlock::iterator I) const { 3728 bool reserveCallFrame = hasReservedCallFrame(MF); 3729 unsigned Opcode = I->getOpcode(); 3730 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3731 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3732 uint64_t Amount = TII.getFrameSize(*I); 3733 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3734 I = MBB.erase(I); 3735 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3736 3737 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3738 // typically because the function is marked noreturn (abort, throw, 3739 // assert_fail, etc). 3740 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3741 return I; 3742 3743 if (!reserveCallFrame) { 3744 // If the stack pointer can be changed after prologue, turn the 3745 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3746 // adjcallstackdown instruction into 'add ESP, <amt>' 3747 3748 // We need to keep the stack aligned properly. To do this, we round the 3749 // amount of space needed for the outgoing arguments up to the next 3750 // alignment boundary. 3751 Amount = alignTo(Amount, getStackAlign()); 3752 3753 const Function &F = MF.getFunction(); 3754 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3755 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3756 3757 // If we have any exception handlers in this function, and we adjust 3758 // the SP before calls, we may need to indicate this to the unwinder 3759 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3760 // Amount == 0, because the preceding function may have set a non-0 3761 // GNU_ARGS_SIZE. 3762 // TODO: We don't need to reset this between subsequent functions, 3763 // if it didn't change. 3764 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3765 3766 if (HasDwarfEHHandlers && !isDestroy && 3767 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3768 BuildCFI(MBB, InsertPos, DL, 3769 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3770 3771 if (Amount == 0) 3772 return I; 3773 3774 // Factor out the amount that gets handled inside the sequence 3775 // (Pushes of argument for frame setup, callee pops for frame destroy) 3776 Amount -= InternalAmt; 3777 3778 // TODO: This is needed only if we require precise CFA. 3779 // If this is a callee-pop calling convention, emit a CFA adjust for 3780 // the amount the callee popped. 3781 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3782 BuildCFI(MBB, InsertPos, DL, 3783 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3784 3785 // Add Amount to SP to destroy a frame, or subtract to setup. 3786 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3787 3788 if (StackAdjustment) { 3789 // Merge with any previous or following adjustment instruction. Note: the 3790 // instructions merged with here do not have CFI, so their stack 3791 // adjustments do not feed into CfaAdjustment. 3792 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3793 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3794 3795 if (StackAdjustment) { 3796 if (!(F.hasMinSize() && 3797 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3798 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3799 /*InEpilogue=*/false); 3800 } 3801 } 3802 3803 if (DwarfCFI && !hasFP(MF)) { 3804 // If we don't have FP, but need to generate unwind information, 3805 // we need to set the correct CFA offset after the stack adjustment. 3806 // How much we adjust the CFA offset depends on whether we're emitting 3807 // CFI only for EH purposes or for debugging. EH only requires the CFA 3808 // offset to be correct at each call site, while for debugging we want 3809 // it to be more precise. 3810 3811 int64_t CfaAdjustment = -StackAdjustment; 3812 // TODO: When not using precise CFA, we also need to adjust for the 3813 // InternalAmt here. 3814 if (CfaAdjustment) { 3815 BuildCFI( 3816 MBB, InsertPos, DL, 3817 MCCFIInstruction::createAdjustCfaOffset(nullptr, CfaAdjustment)); 3818 } 3819 } 3820 3821 return I; 3822 } 3823 3824 if (InternalAmt) { 3825 MachineBasicBlock::iterator CI = I; 3826 MachineBasicBlock::iterator B = MBB.begin(); 3827 while (CI != B && !std::prev(CI)->isCall()) 3828 --CI; 3829 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3830 } 3831 3832 return I; 3833 } 3834 3835 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3836 assert(MBB.getParent() && "Block is not attached to a function!"); 3837 const MachineFunction &MF = *MBB.getParent(); 3838 if (!MBB.isLiveIn(X86::EFLAGS)) 3839 return true; 3840 3841 // If stack probes have to loop inline or call, that will clobber EFLAGS. 3842 // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock. 3843 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 3844 const X86TargetLowering &TLI = *STI.getTargetLowering(); 3845 if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF)) 3846 return false; 3847 3848 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3849 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3850 } 3851 3852 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3853 assert(MBB.getParent() && "Block is not attached to a function!"); 3854 3855 // Win64 has strict requirements in terms of epilogue and we are 3856 // not taking a chance at messing with them. 3857 // I.e., unless this block is already an exit block, we can't use 3858 // it as an epilogue. 3859 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3860 return false; 3861 3862 // Swift async context epilogue has a BTR instruction that clobbers parts of 3863 // EFLAGS. 3864 const MachineFunction &MF = *MBB.getParent(); 3865 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3866 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3867 3868 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3869 return true; 3870 3871 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3872 // clobbers the EFLAGS. Check that we do not need to preserve it, 3873 // otherwise, conservatively assume this is not 3874 // safe to insert the epilogue here. 3875 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3876 } 3877 3878 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3879 // If we may need to emit frameless compact unwind information, give 3880 // up as this is currently broken: PR25614. 3881 bool CompactUnwind = 3882 MF.getContext().getObjectFileInfo()->getCompactUnwindSection() != nullptr; 3883 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3884 !CompactUnwind) && 3885 // The lowering of segmented stack and HiPE only support entry 3886 // blocks as prologue blocks: PR26107. This limitation may be 3887 // lifted if we fix: 3888 // - adjustForSegmentedStacks 3889 // - adjustForHiPEPrologue 3890 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3891 !MF.shouldSplitStack(); 3892 } 3893 3894 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3895 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3896 const DebugLoc &DL, bool RestoreSP) const { 3897 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3898 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3899 assert(STI.is32Bit() && !Uses64BitFramePtr && 3900 "restoring EBP/ESI on non-32-bit target"); 3901 3902 MachineFunction &MF = *MBB.getParent(); 3903 Register FramePtr = TRI->getFrameRegister(MF); 3904 Register BasePtr = TRI->getBaseRegister(); 3905 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3906 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3907 MachineFrameInfo &MFI = MF.getFrameInfo(); 3908 3909 // FIXME: Don't set FrameSetup flag in catchret case. 3910 3911 int FI = FuncInfo.EHRegNodeFrameIndex; 3912 int EHRegSize = MFI.getObjectSize(FI); 3913 3914 if (RestoreSP) { 3915 // MOV32rm -EHRegSize(%ebp), %esp 3916 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3917 X86::EBP, true, -EHRegSize) 3918 .setMIFlag(MachineInstr::FrameSetup); 3919 } 3920 3921 Register UsedReg; 3922 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3923 int EndOffset = -EHRegOffset - EHRegSize; 3924 FuncInfo.EHRegNodeEndOffset = EndOffset; 3925 3926 if (UsedReg == FramePtr) { 3927 // ADD $offset, %ebp 3928 unsigned ADDri = getADDriOpcode(false); 3929 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3930 .addReg(FramePtr) 3931 .addImm(EndOffset) 3932 .setMIFlag(MachineInstr::FrameSetup) 3933 ->getOperand(3) 3934 .setIsDead(); 3935 assert(EndOffset >= 0 && 3936 "end of registration object above normal EBP position!"); 3937 } else if (UsedReg == BasePtr) { 3938 // LEA offset(%ebp), %esi 3939 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3940 FramePtr, false, EndOffset) 3941 .setMIFlag(MachineInstr::FrameSetup); 3942 // MOV32rm SavedEBPOffset(%esi), %ebp 3943 assert(X86FI->getHasSEHFramePtrSave()); 3944 int Offset = 3945 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3946 .getFixed(); 3947 assert(UsedReg == BasePtr); 3948 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3949 UsedReg, true, Offset) 3950 .setMIFlag(MachineInstr::FrameSetup); 3951 } else { 3952 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3953 } 3954 return MBBI; 3955 } 3956 3957 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3958 return TRI->getSlotSize(); 3959 } 3960 3961 Register 3962 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3963 return StackPtr; 3964 } 3965 3966 TargetFrameLowering::DwarfFrameBase 3967 X86FrameLowering::getDwarfFrameBase(const MachineFunction &MF) const { 3968 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 3969 Register FrameRegister = RI->getFrameRegister(MF); 3970 if (getInitialCFARegister(MF) == FrameRegister && 3971 MF.getInfo<X86MachineFunctionInfo>()->hasCFIAdjustCfa()) { 3972 DwarfFrameBase FrameBase; 3973 FrameBase.Kind = DwarfFrameBase::CFA; 3974 FrameBase.Location.Offset = 3975 -MF.getFrameInfo().getStackSize() - getInitialCFAOffset(MF); 3976 return FrameBase; 3977 } 3978 3979 return DwarfFrameBase{DwarfFrameBase::Register, {FrameRegister}}; 3980 } 3981 3982 namespace { 3983 // Struct used by orderFrameObjects to help sort the stack objects. 3984 struct X86FrameSortingObject { 3985 bool IsValid = false; // true if we care about this Object. 3986 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3987 unsigned ObjectSize = 0; // Size of Object in bytes. 3988 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3989 unsigned ObjectNumUses = 0; // Object static number of uses. 3990 }; 3991 3992 // The comparison function we use for std::sort to order our local 3993 // stack symbols. The current algorithm is to use an estimated 3994 // "density". This takes into consideration the size and number of 3995 // uses each object has in order to roughly minimize code size. 3996 // So, for example, an object of size 16B that is referenced 5 times 3997 // will get higher priority than 4 4B objects referenced 1 time each. 3998 // It's not perfect and we may be able to squeeze a few more bytes out of 3999 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 4000 // fringe end can have special consideration, given their size is less 4001 // important, etc.), but the algorithmic complexity grows too much to be 4002 // worth the extra gains we get. This gets us pretty close. 4003 // The final order leaves us with objects with highest priority going 4004 // at the end of our list. 4005 struct X86FrameSortingComparator { 4006 inline bool operator()(const X86FrameSortingObject &A, 4007 const X86FrameSortingObject &B) const { 4008 uint64_t DensityAScaled, DensityBScaled; 4009 4010 // For consistency in our comparison, all invalid objects are placed 4011 // at the end. This also allows us to stop walking when we hit the 4012 // first invalid item after it's all sorted. 4013 if (!A.IsValid) 4014 return false; 4015 if (!B.IsValid) 4016 return true; 4017 4018 // The density is calculated by doing : 4019 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 4020 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 4021 // Since this approach may cause inconsistencies in 4022 // the floating point <, >, == comparisons, depending on the floating 4023 // point model with which the compiler was built, we're going 4024 // to scale both sides by multiplying with 4025 // A.ObjectSize * B.ObjectSize. This ends up factoring away 4026 // the division and, with it, the need for any floating point 4027 // arithmetic. 4028 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 4029 static_cast<uint64_t>(B.ObjectSize); 4030 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 4031 static_cast<uint64_t>(A.ObjectSize); 4032 4033 // If the two densities are equal, prioritize highest alignment 4034 // objects. This allows for similar alignment objects 4035 // to be packed together (given the same density). 4036 // There's room for improvement here, also, since we can pack 4037 // similar alignment (different density) objects next to each 4038 // other to save padding. This will also require further 4039 // complexity/iterations, and the overall gain isn't worth it, 4040 // in general. Something to keep in mind, though. 4041 if (DensityAScaled == DensityBScaled) 4042 return A.ObjectAlignment < B.ObjectAlignment; 4043 4044 return DensityAScaled < DensityBScaled; 4045 } 4046 }; 4047 } // namespace 4048 4049 // Order the symbols in the local stack. 4050 // We want to place the local stack objects in some sort of sensible order. 4051 // The heuristic we use is to try and pack them according to static number 4052 // of uses and size of object in order to minimize code size. 4053 void X86FrameLowering::orderFrameObjects( 4054 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 4055 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4056 4057 // Don't waste time if there's nothing to do. 4058 if (ObjectsToAllocate.empty()) 4059 return; 4060 4061 // Create an array of all MFI objects. We won't need all of these 4062 // objects, but we're going to create a full array of them to make 4063 // it easier to index into when we're counting "uses" down below. 4064 // We want to be able to easily/cheaply access an object by simply 4065 // indexing into it, instead of having to search for it every time. 4066 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 4067 4068 // Walk the objects we care about and mark them as such in our working 4069 // struct. 4070 for (auto &Obj : ObjectsToAllocate) { 4071 SortingObjects[Obj].IsValid = true; 4072 SortingObjects[Obj].ObjectIndex = Obj; 4073 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 4074 // Set the size. 4075 int ObjectSize = MFI.getObjectSize(Obj); 4076 if (ObjectSize == 0) 4077 // Variable size. Just use 4. 4078 SortingObjects[Obj].ObjectSize = 4; 4079 else 4080 SortingObjects[Obj].ObjectSize = ObjectSize; 4081 } 4082 4083 // Count the number of uses for each object. 4084 for (auto &MBB : MF) { 4085 for (auto &MI : MBB) { 4086 if (MI.isDebugInstr()) 4087 continue; 4088 for (const MachineOperand &MO : MI.operands()) { 4089 // Check to see if it's a local stack symbol. 4090 if (!MO.isFI()) 4091 continue; 4092 int Index = MO.getIndex(); 4093 // Check to see if it falls within our range, and is tagged 4094 // to require ordering. 4095 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 4096 SortingObjects[Index].IsValid) 4097 SortingObjects[Index].ObjectNumUses++; 4098 } 4099 } 4100 } 4101 4102 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 4103 // info). 4104 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 4105 4106 // Now modify the original list to represent the final order that 4107 // we want. The order will depend on whether we're going to access them 4108 // from the stack pointer or the frame pointer. For SP, the list should 4109 // end up with the END containing objects that we want with smaller offsets. 4110 // For FP, it should be flipped. 4111 int i = 0; 4112 for (auto &Obj : SortingObjects) { 4113 // All invalid items are sorted at the end, so it's safe to stop. 4114 if (!Obj.IsValid) 4115 break; 4116 ObjectsToAllocate[i++] = Obj.ObjectIndex; 4117 } 4118 4119 // Flip it if we're accessing off of the FP. 4120 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 4121 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 4122 } 4123 4124 unsigned 4125 X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 4126 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 4127 unsigned Offset = 16; 4128 // RBP is immediately pushed. 4129 Offset += SlotSize; 4130 // All callee-saved registers are then pushed. 4131 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 4132 // Every funclet allocates enough stack space for the largest outgoing call. 4133 Offset += getWinEHFuncletFrameSize(MF); 4134 return Offset; 4135 } 4136 4137 void X86FrameLowering::processFunctionBeforeFrameFinalized( 4138 MachineFunction &MF, RegScavenger *RS) const { 4139 // Mark the function as not having WinCFI. We will set it back to true in 4140 // emitPrologue if it gets called and emits CFI. 4141 MF.setHasWinCFI(false); 4142 4143 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 4144 // aligned. The format doesn't support misaligned stack adjustments. 4145 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 4146 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 4147 4148 // If this function isn't doing Win64-style C++ EH, we don't need to do 4149 // anything. 4150 if (STI.is64Bit() && MF.hasEHFunclets() && 4151 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 4152 EHPersonality::MSVC_CXX) { 4153 adjustFrameForMsvcCxxEh(MF); 4154 } 4155 } 4156 4157 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 4158 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 4159 // relative to RSP after the prologue. Find the offset of the last fixed 4160 // object, so that we can allocate a slot immediately following it. If there 4161 // were no fixed objects, use offset -SlotSize, which is immediately after the 4162 // return address. Fixed objects have negative frame indices. 4163 MachineFrameInfo &MFI = MF.getFrameInfo(); 4164 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 4165 int64_t MinFixedObjOffset = -SlotSize; 4166 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 4167 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 4168 4169 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 4170 for (WinEHHandlerType &H : TBME.HandlerArray) { 4171 int FrameIndex = H.CatchObj.FrameIndex; 4172 if (FrameIndex != INT_MAX) { 4173 // Ensure alignment. 4174 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 4175 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 4176 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 4177 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 4178 } 4179 } 4180 } 4181 4182 // Ensure alignment. 4183 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 4184 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 4185 int UnwindHelpFI = 4186 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 4187 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 4188 4189 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 4190 // other frame setup instructions. 4191 MachineBasicBlock &MBB = MF.front(); 4192 auto MBBI = MBB.begin(); 4193 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 4194 ++MBBI; 4195 4196 DebugLoc DL = MBB.findDebugLoc(MBBI); 4197 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 4198 UnwindHelpFI) 4199 .addImm(-2); 4200 } 4201 4202 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 4203 MachineFunction &MF, RegScavenger *RS) const { 4204 auto *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 4205 4206 if (STI.is32Bit() && MF.hasEHFunclets()) 4207 restoreWinEHStackPointersInParent(MF); 4208 // We have emitted prolog and epilog. Don't need stack pointer saving 4209 // instruction any more. 4210 if (MachineInstr *MI = X86FI->getStackPtrSaveMI()) { 4211 MI->eraseFromParent(); 4212 X86FI->setStackPtrSaveMI(nullptr); 4213 } 4214 } 4215 4216 void X86FrameLowering::restoreWinEHStackPointersInParent( 4217 MachineFunction &MF) const { 4218 // 32-bit functions have to restore stack pointers when control is transferred 4219 // back to the parent function. These blocks are identified as eh pads that 4220 // are not funclet entries. 4221 bool IsSEH = isAsynchronousEHPersonality( 4222 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 4223 for (MachineBasicBlock &MBB : MF) { 4224 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 4225 if (NeedsRestore) 4226 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 4227 /*RestoreSP=*/IsSEH); 4228 } 4229 } 4230