xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FrameLowering.cpp (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <cstdlib>
35 
36 #define DEBUG_TYPE "x86-fl"
37 
38 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
39 STATISTIC(NumFrameExtraProbe,
40           "Number of extra stack probes generated in prologue");
41 
42 using namespace llvm;
43 
44 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
45                                    MaybeAlign StackAlignOverride)
46     : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
47                           STI.is64Bit() ? -8 : -4),
48       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
49   // Cache a bunch of frame-related predicates for this subtarget.
50   SlotSize = TRI->getSlotSize();
51   Is64Bit = STI.is64Bit();
52   IsLP64 = STI.isTarget64BitLP64();
53   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
54   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
55   StackPtr = TRI->getStackRegister();
56 }
57 
58 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
59   return !MF.getFrameInfo().hasVarSizedObjects() &&
60          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
61          !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
62 }
63 
64 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
65 /// call frame pseudos can be simplified.  Having a FP, as in the default
66 /// implementation, is not sufficient here since we can't always use it.
67 /// Use a more nuanced condition.
68 bool
69 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
70   return hasReservedCallFrame(MF) ||
71          MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
72          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
73          TRI->hasBasePointer(MF);
74 }
75 
76 // needsFrameIndexResolution - Do we need to perform FI resolution for
77 // this function. Normally, this is required only when the function
78 // has any stack objects. However, FI resolution actually has another job,
79 // not apparent from the title - it resolves callframesetup/destroy
80 // that were not simplified earlier.
81 // So, this is required for x86 functions that have push sequences even
82 // when there are no stack objects.
83 bool
84 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
85   return MF.getFrameInfo().hasStackObjects() ||
86          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
87 }
88 
89 /// hasFP - Return true if the specified function should have a dedicated frame
90 /// pointer register.  This is true if the function has variable sized allocas
91 /// or if frame pointer elimination is disabled.
92 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
93   const MachineFrameInfo &MFI = MF.getFrameInfo();
94   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
95           TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() ||
96           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
97           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
98           MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
99           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
100           MFI.hasStackMap() || MFI.hasPatchPoint() ||
101           MFI.hasCopyImplyingStackAdjustment());
102 }
103 
104 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
105   if (IsLP64) {
106     if (isInt<8>(Imm))
107       return X86::SUB64ri8;
108     return X86::SUB64ri32;
109   } else {
110     if (isInt<8>(Imm))
111       return X86::SUB32ri8;
112     return X86::SUB32ri;
113   }
114 }
115 
116 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
117   if (IsLP64) {
118     if (isInt<8>(Imm))
119       return X86::ADD64ri8;
120     return X86::ADD64ri32;
121   } else {
122     if (isInt<8>(Imm))
123       return X86::ADD32ri8;
124     return X86::ADD32ri;
125   }
126 }
127 
128 static unsigned getSUBrrOpcode(bool IsLP64) {
129   return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
130 }
131 
132 static unsigned getADDrrOpcode(bool IsLP64) {
133   return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
134 }
135 
136 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
137   if (IsLP64) {
138     if (isInt<8>(Imm))
139       return X86::AND64ri8;
140     return X86::AND64ri32;
141   }
142   if (isInt<8>(Imm))
143     return X86::AND32ri8;
144   return X86::AND32ri;
145 }
146 
147 static unsigned getLEArOpcode(bool IsLP64) {
148   return IsLP64 ? X86::LEA64r : X86::LEA32r;
149 }
150 
151 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
152 /// when it reaches the "return" instruction. We can then pop a stack object
153 /// to this register without worry about clobbering it.
154 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
155                                        MachineBasicBlock::iterator &MBBI,
156                                        const X86RegisterInfo *TRI,
157                                        bool Is64Bit) {
158   const MachineFunction *MF = MBB.getParent();
159   if (MF->callsEHReturn())
160     return 0;
161 
162   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
163 
164   if (MBBI == MBB.end())
165     return 0;
166 
167   switch (MBBI->getOpcode()) {
168   default: return 0;
169   case TargetOpcode::PATCHABLE_RET:
170   case X86::RET:
171   case X86::RETL:
172   case X86::RETQ:
173   case X86::RETIL:
174   case X86::RETIQ:
175   case X86::TCRETURNdi:
176   case X86::TCRETURNri:
177   case X86::TCRETURNmi:
178   case X86::TCRETURNdi64:
179   case X86::TCRETURNri64:
180   case X86::TCRETURNmi64:
181   case X86::EH_RETURN:
182   case X86::EH_RETURN64: {
183     SmallSet<uint16_t, 8> Uses;
184     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
185       MachineOperand &MO = MBBI->getOperand(i);
186       if (!MO.isReg() || MO.isDef())
187         continue;
188       Register Reg = MO.getReg();
189       if (!Reg)
190         continue;
191       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
192         Uses.insert(*AI);
193     }
194 
195     for (auto CS : AvailableRegs)
196       if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
197           CS != X86::ESP)
198         return CS;
199   }
200   }
201 
202   return 0;
203 }
204 
205 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
206   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
207     unsigned Reg = RegMask.PhysReg;
208 
209     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
210         Reg == X86::AH || Reg == X86::AL)
211       return true;
212   }
213 
214   return false;
215 }
216 
217 /// Check if the flags need to be preserved before the terminators.
218 /// This would be the case, if the eflags is live-in of the region
219 /// composed by the terminators or live-out of that region, without
220 /// being defined by a terminator.
221 static bool
222 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
223   for (const MachineInstr &MI : MBB.terminators()) {
224     bool BreakNext = false;
225     for (const MachineOperand &MO : MI.operands()) {
226       if (!MO.isReg())
227         continue;
228       Register Reg = MO.getReg();
229       if (Reg != X86::EFLAGS)
230         continue;
231 
232       // This terminator needs an eflags that is not defined
233       // by a previous another terminator:
234       // EFLAGS is live-in of the region composed by the terminators.
235       if (!MO.isDef())
236         return true;
237       // This terminator defines the eflags, i.e., we don't need to preserve it.
238       // However, we still need to check this specific terminator does not
239       // read a live-in value.
240       BreakNext = true;
241     }
242     // We found a definition of the eflags, no need to preserve them.
243     if (BreakNext)
244       return false;
245   }
246 
247   // None of the terminators use or define the eflags.
248   // Check if they are live-out, that would imply we need to preserve them.
249   for (const MachineBasicBlock *Succ : MBB.successors())
250     if (Succ->isLiveIn(X86::EFLAGS))
251       return true;
252 
253   return false;
254 }
255 
256 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
257 /// stack pointer by a constant value.
258 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
259                                     MachineBasicBlock::iterator &MBBI,
260                                     const DebugLoc &DL,
261                                     int64_t NumBytes, bool InEpilogue) const {
262   bool isSub = NumBytes < 0;
263   uint64_t Offset = isSub ? -NumBytes : NumBytes;
264   MachineInstr::MIFlag Flag =
265       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
266 
267   uint64_t Chunk = (1LL << 31) - 1;
268 
269   MachineFunction &MF = *MBB.getParent();
270   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
271   const X86TargetLowering &TLI = *STI.getTargetLowering();
272   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
273 
274   // It's ok to not take into account large chunks when probing, as the
275   // allocation is split in smaller chunks anyway.
276   if (EmitInlineStackProbe && !InEpilogue) {
277 
278     // This pseudo-instruction is going to be expanded, potentially using a
279     // loop, by inlineStackProbe().
280     BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
281     return;
282   } else if (Offset > Chunk) {
283     // Rather than emit a long series of instructions for large offsets,
284     // load the offset into a register and do one sub/add
285     unsigned Reg = 0;
286     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
287 
288     if (isSub && !isEAXLiveIn(MBB))
289       Reg = Rax;
290     else
291       Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
292 
293     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
294     unsigned AddSubRROpc =
295         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
296     if (Reg) {
297       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
298           .addImm(Offset)
299           .setMIFlag(Flag);
300       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
301                              .addReg(StackPtr)
302                              .addReg(Reg);
303       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
304       return;
305     } else if (Offset > 8 * Chunk) {
306       // If we would need more than 8 add or sub instructions (a >16GB stack
307       // frame), it's worth spilling RAX to materialize this immediate.
308       //   pushq %rax
309       //   movabsq +-$Offset+-SlotSize, %rax
310       //   addq %rsp, %rax
311       //   xchg %rax, (%rsp)
312       //   movq (%rsp), %rsp
313       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
314       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
315           .addReg(Rax, RegState::Kill)
316           .setMIFlag(Flag);
317       // Subtract is not commutative, so negate the offset and always use add.
318       // Subtract 8 less and add 8 more to account for the PUSH we just did.
319       if (isSub)
320         Offset = -(Offset - SlotSize);
321       else
322         Offset = Offset + SlotSize;
323       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
324           .addImm(Offset)
325           .setMIFlag(Flag);
326       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
327                              .addReg(Rax)
328                              .addReg(StackPtr);
329       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
330       // Exchange the new SP in RAX with the top of the stack.
331       addRegOffset(
332           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
333           StackPtr, false, 0);
334       // Load new SP from the top of the stack into RSP.
335       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
336                    StackPtr, false, 0);
337       return;
338     }
339   }
340 
341   while (Offset) {
342     uint64_t ThisVal = std::min(Offset, Chunk);
343     if (ThisVal == SlotSize) {
344       // Use push / pop for slot sized adjustments as a size optimization. We
345       // need to find a dead register when using pop.
346       unsigned Reg = isSub
347         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
348         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
349       if (Reg) {
350         unsigned Opc = isSub
351           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
352           : (Is64Bit ? X86::POP64r  : X86::POP32r);
353         BuildMI(MBB, MBBI, DL, TII.get(Opc))
354             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
355             .setMIFlag(Flag);
356         Offset -= ThisVal;
357         continue;
358       }
359     }
360 
361     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
362         .setMIFlag(Flag);
363 
364     Offset -= ThisVal;
365   }
366 }
367 
368 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
369     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
370     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
371   assert(Offset != 0 && "zero offset stack adjustment requested");
372 
373   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
374   // is tricky.
375   bool UseLEA;
376   if (!InEpilogue) {
377     // Check if inserting the prologue at the beginning
378     // of MBB would require to use LEA operations.
379     // We need to use LEA operations if EFLAGS is live in, because
380     // it means an instruction will read it before it gets defined.
381     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
382   } else {
383     // If we can use LEA for SP but we shouldn't, check that none
384     // of the terminators uses the eflags. Otherwise we will insert
385     // a ADD that will redefine the eflags and break the condition.
386     // Alternatively, we could move the ADD, but this may not be possible
387     // and is an optimization anyway.
388     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
389     if (UseLEA && !STI.useLeaForSP())
390       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
391     // If that assert breaks, that means we do not do the right thing
392     // in canUseAsEpilogue.
393     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
394            "We shouldn't have allowed this insertion point");
395   }
396 
397   MachineInstrBuilder MI;
398   if (UseLEA) {
399     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
400                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
401                               StackPtr),
402                       StackPtr, false, Offset);
403   } else {
404     bool IsSub = Offset < 0;
405     uint64_t AbsOffset = IsSub ? -Offset : Offset;
406     const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
407                                : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
408     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
409              .addReg(StackPtr)
410              .addImm(AbsOffset);
411     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
412   }
413   return MI;
414 }
415 
416 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
417                                      MachineBasicBlock::iterator &MBBI,
418                                      bool doMergeWithPrevious) const {
419   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
420       (!doMergeWithPrevious && MBBI == MBB.end()))
421     return 0;
422 
423   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
424 
425   PI = skipDebugInstructionsBackward(PI, MBB.begin());
426   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
427   // instruction, and that there are no DBG_VALUE or other instructions between
428   // ADD/SUB/LEA and its corresponding CFI instruction.
429   /* TODO: Add support for the case where there are multiple CFI instructions
430     below the ADD/SUB/LEA, e.g.:
431     ...
432     add
433     cfi_def_cfa_offset
434     cfi_offset
435     ...
436   */
437   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
438     PI = std::prev(PI);
439 
440   unsigned Opc = PI->getOpcode();
441   int Offset = 0;
442 
443   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
444        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
445       PI->getOperand(0).getReg() == StackPtr){
446     assert(PI->getOperand(1).getReg() == StackPtr);
447     Offset = PI->getOperand(2).getImm();
448   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
449              PI->getOperand(0).getReg() == StackPtr &&
450              PI->getOperand(1).getReg() == StackPtr &&
451              PI->getOperand(2).getImm() == 1 &&
452              PI->getOperand(3).getReg() == X86::NoRegister &&
453              PI->getOperand(5).getReg() == X86::NoRegister) {
454     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
455     Offset = PI->getOperand(4).getImm();
456   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
457               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
458              PI->getOperand(0).getReg() == StackPtr) {
459     assert(PI->getOperand(1).getReg() == StackPtr);
460     Offset = -PI->getOperand(2).getImm();
461   } else
462     return 0;
463 
464   PI = MBB.erase(PI);
465   if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
466   if (!doMergeWithPrevious)
467     MBBI = skipDebugInstructionsForward(PI, MBB.end());
468 
469   return Offset;
470 }
471 
472 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
473                                 MachineBasicBlock::iterator MBBI,
474                                 const DebugLoc &DL,
475                                 const MCCFIInstruction &CFIInst) const {
476   MachineFunction &MF = *MBB.getParent();
477   unsigned CFIIndex = MF.addFrameInst(CFIInst);
478   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
479       .addCFIIndex(CFIIndex);
480 }
481 
482 /// Emits Dwarf Info specifying offsets of callee saved registers and
483 /// frame pointer. This is called only when basic block sections are enabled.
484 void X86FrameLowering::emitCalleeSavedFrameMoves(
485     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
486   MachineFunction &MF = *MBB.getParent();
487   if (!hasFP(MF)) {
488     emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
489     return;
490   }
491   const MachineModuleInfo &MMI = MF.getMMI();
492   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
493   const unsigned FramePtr = TRI->getFrameRegister(MF);
494   const unsigned MachineFramePtr =
495       STI.isTarget64BitILP32() ? unsigned(getX86SubSuperRegister(FramePtr, 64))
496                                : FramePtr;
497   unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
498   // Offset = space for return address + size of the frame pointer itself.
499   unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
500   BuildCFI(MBB, MBBI, DebugLoc{},
501            MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
502   emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
503 }
504 
505 void X86FrameLowering::emitCalleeSavedFrameMoves(
506     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
507     const DebugLoc &DL, bool IsPrologue) const {
508   MachineFunction &MF = *MBB.getParent();
509   MachineFrameInfo &MFI = MF.getFrameInfo();
510   MachineModuleInfo &MMI = MF.getMMI();
511   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
512 
513   // Add callee saved registers to move list.
514   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
515   if (CSI.empty()) return;
516 
517   // Calculate offsets.
518   for (std::vector<CalleeSavedInfo>::const_iterator
519          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
520     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
521     unsigned Reg = I->getReg();
522     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
523 
524     if (IsPrologue) {
525       BuildCFI(MBB, MBBI, DL,
526                MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
527     } else {
528       BuildCFI(MBB, MBBI, DL,
529                MCCFIInstruction::createRestore(nullptr, DwarfReg));
530     }
531   }
532 }
533 
534 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
535                                       MachineBasicBlock &MBB,
536                                       MachineBasicBlock::iterator MBBI,
537                                       const DebugLoc &DL, bool InProlog) const {
538   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
539   if (STI.isTargetWindowsCoreCLR()) {
540     if (InProlog) {
541       BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
542           .addImm(0 /* no explicit stack size */);
543     } else {
544       emitStackProbeInline(MF, MBB, MBBI, DL, false);
545     }
546   } else {
547     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
548   }
549 }
550 
551 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
552                                         MachineBasicBlock &PrologMBB) const {
553   auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
554     return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
555   });
556   if (Where != PrologMBB.end()) {
557     DebugLoc DL = PrologMBB.findDebugLoc(Where);
558     emitStackProbeInline(MF, PrologMBB, Where, DL, true);
559     Where->eraseFromParent();
560   }
561 }
562 
563 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
564                                             MachineBasicBlock &MBB,
565                                             MachineBasicBlock::iterator MBBI,
566                                             const DebugLoc &DL,
567                                             bool InProlog) const {
568   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
569   if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
570     emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
571   else
572     emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
573 }
574 
575 void X86FrameLowering::emitStackProbeInlineGeneric(
576     MachineFunction &MF, MachineBasicBlock &MBB,
577     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
578   MachineInstr &AllocWithProbe = *MBBI;
579   uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
580 
581   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
582   const X86TargetLowering &TLI = *STI.getTargetLowering();
583   assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
584          "different expansion expected for CoreCLR 64 bit");
585 
586   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
587   uint64_t ProbeChunk = StackProbeSize * 8;
588 
589   // Synthesize a loop or unroll it, depending on the number of iterations.
590   if (Offset > ProbeChunk) {
591     emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset);
592   } else {
593     emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset);
594   }
595 }
596 
597 void X86FrameLowering::emitStackProbeInlineGenericBlock(
598     MachineFunction &MF, MachineBasicBlock &MBB,
599     MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
600     uint64_t Offset) const {
601 
602   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
603   const X86TargetLowering &TLI = *STI.getTargetLowering();
604   const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
605   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
606   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
607   uint64_t CurrentOffset = 0;
608   // 0 Thanks to return address being saved on the stack
609   uint64_t CurrentProbeOffset = 0;
610 
611   // For the first N - 1 pages, just probe. I tried to take advantage of
612   // natural probes but it implies much more logic and there was very few
613   // interesting natural probes to interleave.
614   while (CurrentOffset + StackProbeSize < Offset) {
615     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
616                            .addReg(StackPtr)
617                            .addImm(StackProbeSize)
618                            .setMIFlag(MachineInstr::FrameSetup);
619     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
620 
621 
622     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
623                      .setMIFlag(MachineInstr::FrameSetup),
624                  StackPtr, false, 0)
625         .addImm(0)
626         .setMIFlag(MachineInstr::FrameSetup);
627     NumFrameExtraProbe++;
628     CurrentOffset += StackProbeSize;
629     CurrentProbeOffset += StackProbeSize;
630   }
631 
632   uint64_t ChunkSize = Offset - CurrentOffset;
633   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
634                          .addReg(StackPtr)
635                          .addImm(ChunkSize)
636                          .setMIFlag(MachineInstr::FrameSetup);
637   MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
638 }
639 
640 void X86FrameLowering::emitStackProbeInlineGenericLoop(
641     MachineFunction &MF, MachineBasicBlock &MBB,
642     MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
643     uint64_t Offset) const {
644   assert(Offset && "null offset");
645 
646   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
647   const X86TargetLowering &TLI = *STI.getTargetLowering();
648   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
649   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
650 
651   // Synthesize a loop
652   NumFrameLoopProbe++;
653   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
654 
655   MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
656   MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
657 
658   MachineFunction::iterator MBBIter = ++MBB.getIterator();
659   MF.insert(MBBIter, testMBB);
660   MF.insert(MBBIter, tailMBB);
661 
662   Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;
663   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
664       .addReg(StackPtr)
665       .setMIFlag(MachineInstr::FrameSetup);
666 
667   // save loop bound
668   {
669     const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
670     BuildMI(MBB, MBBI, DL, TII.get(Opc), FinalStackProbed)
671         .addReg(FinalStackProbed)
672         .addImm(Offset / StackProbeSize * StackProbeSize)
673         .setMIFlag(MachineInstr::FrameSetup);
674   }
675 
676   // allocate a page
677   {
678     const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
679     BuildMI(testMBB, DL, TII.get(Opc), StackPtr)
680         .addReg(StackPtr)
681         .addImm(StackProbeSize)
682         .setMIFlag(MachineInstr::FrameSetup);
683   }
684 
685   // touch the page
686   addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
687                    .setMIFlag(MachineInstr::FrameSetup),
688                StackPtr, false, 0)
689       .addImm(0)
690       .setMIFlag(MachineInstr::FrameSetup);
691 
692   // cmp with stack pointer bound
693   BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
694       .addReg(StackPtr)
695       .addReg(FinalStackProbed)
696       .setMIFlag(MachineInstr::FrameSetup);
697 
698   // jump
699   BuildMI(testMBB, DL, TII.get(X86::JCC_1))
700       .addMBB(testMBB)
701       .addImm(X86::COND_NE)
702       .setMIFlag(MachineInstr::FrameSetup);
703   testMBB->addSuccessor(testMBB);
704   testMBB->addSuccessor(tailMBB);
705 
706   // BB management
707   tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
708   tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
709   MBB.addSuccessor(testMBB);
710 
711   // handle tail
712   unsigned TailOffset = Offset % StackProbeSize;
713   if (TailOffset) {
714     const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset);
715     BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr)
716         .addReg(StackPtr)
717         .addImm(TailOffset)
718         .setMIFlag(MachineInstr::FrameSetup);
719   }
720 
721   // Update Live In information
722   recomputeLiveIns(*testMBB);
723   recomputeLiveIns(*tailMBB);
724 }
725 
726 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
727     MachineFunction &MF, MachineBasicBlock &MBB,
728     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
729   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
730   assert(STI.is64Bit() && "different expansion needed for 32 bit");
731   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
732   const TargetInstrInfo &TII = *STI.getInstrInfo();
733   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
734 
735   // RAX contains the number of bytes of desired stack adjustment.
736   // The handling here assumes this value has already been updated so as to
737   // maintain stack alignment.
738   //
739   // We need to exit with RSP modified by this amount and execute suitable
740   // page touches to notify the OS that we're growing the stack responsibly.
741   // All stack probing must be done without modifying RSP.
742   //
743   // MBB:
744   //    SizeReg = RAX;
745   //    ZeroReg = 0
746   //    CopyReg = RSP
747   //    Flags, TestReg = CopyReg - SizeReg
748   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
749   //    LimitReg = gs magic thread env access
750   //    if FinalReg >= LimitReg goto ContinueMBB
751   // RoundBB:
752   //    RoundReg = page address of FinalReg
753   // LoopMBB:
754   //    LoopReg = PHI(LimitReg,ProbeReg)
755   //    ProbeReg = LoopReg - PageSize
756   //    [ProbeReg] = 0
757   //    if (ProbeReg > RoundReg) goto LoopMBB
758   // ContinueMBB:
759   //    RSP = RSP - RAX
760   //    [rest of original MBB]
761 
762   // Set up the new basic blocks
763   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
764   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
765   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
766 
767   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
768   MF.insert(MBBIter, RoundMBB);
769   MF.insert(MBBIter, LoopMBB);
770   MF.insert(MBBIter, ContinueMBB);
771 
772   // Split MBB and move the tail portion down to ContinueMBB.
773   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
774   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
775   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
776 
777   // Some useful constants
778   const int64_t ThreadEnvironmentStackLimit = 0x10;
779   const int64_t PageSize = 0x1000;
780   const int64_t PageMask = ~(PageSize - 1);
781 
782   // Registers we need. For the normal case we use virtual
783   // registers. For the prolog expansion we use RAX, RCX and RDX.
784   MachineRegisterInfo &MRI = MF.getRegInfo();
785   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
786   const Register SizeReg = InProlog ? X86::RAX
787                                     : MRI.createVirtualRegister(RegClass),
788                  ZeroReg = InProlog ? X86::RCX
789                                     : MRI.createVirtualRegister(RegClass),
790                  CopyReg = InProlog ? X86::RDX
791                                     : MRI.createVirtualRegister(RegClass),
792                  TestReg = InProlog ? X86::RDX
793                                     : MRI.createVirtualRegister(RegClass),
794                  FinalReg = InProlog ? X86::RDX
795                                      : MRI.createVirtualRegister(RegClass),
796                  RoundedReg = InProlog ? X86::RDX
797                                        : MRI.createVirtualRegister(RegClass),
798                  LimitReg = InProlog ? X86::RCX
799                                      : MRI.createVirtualRegister(RegClass),
800                  JoinReg = InProlog ? X86::RCX
801                                     : MRI.createVirtualRegister(RegClass),
802                  ProbeReg = InProlog ? X86::RCX
803                                      : MRI.createVirtualRegister(RegClass);
804 
805   // SP-relative offsets where we can save RCX and RDX.
806   int64_t RCXShadowSlot = 0;
807   int64_t RDXShadowSlot = 0;
808 
809   // If inlining in the prolog, save RCX and RDX.
810   if (InProlog) {
811     // Compute the offsets. We need to account for things already
812     // pushed onto the stack at this point: return address, frame
813     // pointer (if used), and callee saves.
814     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
815     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
816     const bool HasFP = hasFP(MF);
817 
818     // Check if we need to spill RCX and/or RDX.
819     // Here we assume that no earlier prologue instruction changes RCX and/or
820     // RDX, so checking the block live-ins is enough.
821     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
822     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
823     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
824     // Assign the initial slot to both registers, then change RDX's slot if both
825     // need to be spilled.
826     if (IsRCXLiveIn)
827       RCXShadowSlot = InitSlot;
828     if (IsRDXLiveIn)
829       RDXShadowSlot = InitSlot;
830     if (IsRDXLiveIn && IsRCXLiveIn)
831       RDXShadowSlot += 8;
832     // Emit the saves if needed.
833     if (IsRCXLiveIn)
834       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
835                    RCXShadowSlot)
836           .addReg(X86::RCX);
837     if (IsRDXLiveIn)
838       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
839                    RDXShadowSlot)
840           .addReg(X86::RDX);
841   } else {
842     // Not in the prolog. Copy RAX to a virtual reg.
843     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
844   }
845 
846   // Add code to MBB to check for overflow and set the new target stack pointer
847   // to zero if so.
848   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
849       .addReg(ZeroReg, RegState::Undef)
850       .addReg(ZeroReg, RegState::Undef);
851   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
852   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
853       .addReg(CopyReg)
854       .addReg(SizeReg);
855   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
856       .addReg(TestReg)
857       .addReg(ZeroReg)
858       .addImm(X86::COND_B);
859 
860   // FinalReg now holds final stack pointer value, or zero if
861   // allocation would overflow. Compare against the current stack
862   // limit from the thread environment block. Note this limit is the
863   // lowest touched page on the stack, not the point at which the OS
864   // will cause an overflow exception, so this is just an optimization
865   // to avoid unnecessarily touching pages that are below the current
866   // SP but already committed to the stack by the OS.
867   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
868       .addReg(0)
869       .addImm(1)
870       .addReg(0)
871       .addImm(ThreadEnvironmentStackLimit)
872       .addReg(X86::GS);
873   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
874   // Jump if the desired stack pointer is at or above the stack limit.
875   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
876 
877   // Add code to roundMBB to round the final stack pointer to a page boundary.
878   RoundMBB->addLiveIn(FinalReg);
879   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
880       .addReg(FinalReg)
881       .addImm(PageMask);
882   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
883 
884   // LimitReg now holds the current stack limit, RoundedReg page-rounded
885   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
886   // and probe until we reach RoundedReg.
887   if (!InProlog) {
888     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
889         .addReg(LimitReg)
890         .addMBB(RoundMBB)
891         .addReg(ProbeReg)
892         .addMBB(LoopMBB);
893   }
894 
895   LoopMBB->addLiveIn(JoinReg);
896   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
897                false, -PageSize);
898 
899   // Probe by storing a byte onto the stack.
900   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
901       .addReg(ProbeReg)
902       .addImm(1)
903       .addReg(0)
904       .addImm(0)
905       .addReg(0)
906       .addImm(0);
907 
908   LoopMBB->addLiveIn(RoundedReg);
909   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
910       .addReg(RoundedReg)
911       .addReg(ProbeReg);
912   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
913 
914   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
915 
916   // If in prolog, restore RDX and RCX.
917   if (InProlog) {
918     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
919       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
920                            TII.get(X86::MOV64rm), X86::RCX),
921                    X86::RSP, false, RCXShadowSlot);
922     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
923       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
924                            TII.get(X86::MOV64rm), X86::RDX),
925                    X86::RSP, false, RDXShadowSlot);
926   }
927 
928   // Now that the probing is done, add code to continueMBB to update
929   // the stack pointer for real.
930   ContinueMBB->addLiveIn(SizeReg);
931   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
932       .addReg(X86::RSP)
933       .addReg(SizeReg);
934 
935   // Add the control flow edges we need.
936   MBB.addSuccessor(ContinueMBB);
937   MBB.addSuccessor(RoundMBB);
938   RoundMBB->addSuccessor(LoopMBB);
939   LoopMBB->addSuccessor(ContinueMBB);
940   LoopMBB->addSuccessor(LoopMBB);
941 
942   // Mark all the instructions added to the prolog as frame setup.
943   if (InProlog) {
944     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
945       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
946     }
947     for (MachineInstr &MI : *RoundMBB) {
948       MI.setFlag(MachineInstr::FrameSetup);
949     }
950     for (MachineInstr &MI : *LoopMBB) {
951       MI.setFlag(MachineInstr::FrameSetup);
952     }
953     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
954          CMBBI != ContinueMBBI; ++CMBBI) {
955       CMBBI->setFlag(MachineInstr::FrameSetup);
956     }
957   }
958 }
959 
960 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
961                                           MachineBasicBlock &MBB,
962                                           MachineBasicBlock::iterator MBBI,
963                                           const DebugLoc &DL,
964                                           bool InProlog) const {
965   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
966 
967   // FIXME: Add indirect thunk support and remove this.
968   if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
969     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
970                        "code model and indirect thunks not yet implemented.");
971 
972   unsigned CallOp;
973   if (Is64Bit)
974     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
975   else
976     CallOp = X86::CALLpcrel32;
977 
978   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
979 
980   MachineInstrBuilder CI;
981   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
982 
983   // All current stack probes take AX and SP as input, clobber flags, and
984   // preserve all registers. x86_64 probes leave RSP unmodified.
985   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
986     // For the large code model, we have to call through a register. Use R11,
987     // as it is scratch in all supported calling conventions.
988     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
989         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
990     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
991   } else {
992     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
993         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
994   }
995 
996   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
997   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
998   CI.addReg(AX, RegState::Implicit)
999       .addReg(SP, RegState::Implicit)
1000       .addReg(AX, RegState::Define | RegState::Implicit)
1001       .addReg(SP, RegState::Define | RegState::Implicit)
1002       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1003 
1004   if (STI.isTargetWin64() || !STI.isOSWindows()) {
1005     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1006     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1007     // themselves. They also does not clobber %rax so we can reuse it when
1008     // adjusting %rsp.
1009     // All other platforms do not specify a particular ABI for the stack probe
1010     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1011     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1012         .addReg(SP)
1013         .addReg(AX);
1014   }
1015 
1016   if (InProlog) {
1017     // Apply the frame setup flag to all inserted instrs.
1018     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1019       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1020   }
1021 }
1022 
1023 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1024   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1025   // and might require smaller successive adjustments.
1026   const uint64_t Win64MaxSEHOffset = 128;
1027   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1028   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1029   return SEHFrameOffset & -16;
1030 }
1031 
1032 // If we're forcing a stack realignment we can't rely on just the frame
1033 // info, we need to know the ABI stack alignment as well in case we
1034 // have a call out.  Otherwise just make sure we have some alignment - we'll
1035 // go with the minimum SlotSize.
1036 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1037   const MachineFrameInfo &MFI = MF.getFrameInfo();
1038   Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1039   Align StackAlign = getStackAlign();
1040   if (MF.getFunction().hasFnAttribute("stackrealign")) {
1041     if (MFI.hasCalls())
1042       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1043     else if (MaxAlign < SlotSize)
1044       MaxAlign = Align(SlotSize);
1045   }
1046   return MaxAlign.value();
1047 }
1048 
1049 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1050                                           MachineBasicBlock::iterator MBBI,
1051                                           const DebugLoc &DL, unsigned Reg,
1052                                           uint64_t MaxAlign) const {
1053   uint64_t Val = -MaxAlign;
1054   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1055   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1056                          .addReg(Reg)
1057                          .addImm(Val)
1058                          .setMIFlag(MachineInstr::FrameSetup);
1059 
1060   // The EFLAGS implicit def is dead.
1061   MI->getOperand(3).setIsDead();
1062 }
1063 
1064 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1065   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1066   // clobbered by any interrupt handler.
1067   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1068          "MF used frame lowering for wrong subtarget");
1069   const Function &Fn = MF.getFunction();
1070   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1071   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1072 }
1073 
1074 
1075 /// emitPrologue - Push callee-saved registers onto the stack, which
1076 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1077 /// space for local variables. Also emit labels used by the exception handler to
1078 /// generate the exception handling frames.
1079 
1080 /*
1081   Here's a gist of what gets emitted:
1082 
1083   ; Establish frame pointer, if needed
1084   [if needs FP]
1085       push  %rbp
1086       .cfi_def_cfa_offset 16
1087       .cfi_offset %rbp, -16
1088       .seh_pushreg %rpb
1089       mov  %rsp, %rbp
1090       .cfi_def_cfa_register %rbp
1091 
1092   ; Spill general-purpose registers
1093   [for all callee-saved GPRs]
1094       pushq %<reg>
1095       [if not needs FP]
1096          .cfi_def_cfa_offset (offset from RETADDR)
1097       .seh_pushreg %<reg>
1098 
1099   ; If the required stack alignment > default stack alignment
1100   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
1101   ; of unknown size in the stack frame.
1102   [if stack needs re-alignment]
1103       and  $MASK, %rsp
1104 
1105   ; Allocate space for locals
1106   [if target is Windows and allocated space > 4096 bytes]
1107       ; Windows needs special care for allocations larger
1108       ; than one page.
1109       mov $NNN, %rax
1110       call ___chkstk_ms/___chkstk
1111       sub  %rax, %rsp
1112   [else]
1113       sub  $NNN, %rsp
1114 
1115   [if needs FP]
1116       .seh_stackalloc (size of XMM spill slots)
1117       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1118   [else]
1119       .seh_stackalloc NNN
1120 
1121   ; Spill XMMs
1122   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1123   ; they may get spilled on any platform, if the current function
1124   ; calls @llvm.eh.unwind.init
1125   [if needs FP]
1126       [for all callee-saved XMM registers]
1127           movaps  %<xmm reg>, -MMM(%rbp)
1128       [for all callee-saved XMM registers]
1129           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1130               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1131   [else]
1132       [for all callee-saved XMM registers]
1133           movaps  %<xmm reg>, KKK(%rsp)
1134       [for all callee-saved XMM registers]
1135           .seh_savexmm %<xmm reg>, KKK
1136 
1137   .seh_endprologue
1138 
1139   [if needs base pointer]
1140       mov  %rsp, %rbx
1141       [if needs to restore base pointer]
1142           mov %rsp, -MMM(%rbp)
1143 
1144   ; Emit CFI info
1145   [if needs FP]
1146       [for all callee-saved registers]
1147           .cfi_offset %<reg>, (offset from %rbp)
1148   [else]
1149        .cfi_def_cfa_offset (offset from RETADDR)
1150       [for all callee-saved registers]
1151           .cfi_offset %<reg>, (offset from %rsp)
1152 
1153   Notes:
1154   - .seh directives are emitted only for Windows 64 ABI
1155   - .cv_fpo directives are emitted on win32 when emitting CodeView
1156   - .cfi directives are emitted for all other ABIs
1157   - for 32-bit code, substitute %e?? registers for %r??
1158 */
1159 
1160 void X86FrameLowering::emitPrologue(MachineFunction &MF,
1161                                     MachineBasicBlock &MBB) const {
1162   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1163          "MF used frame lowering for wrong subtarget");
1164   MachineBasicBlock::iterator MBBI = MBB.begin();
1165   MachineFrameInfo &MFI = MF.getFrameInfo();
1166   const Function &Fn = MF.getFunction();
1167   MachineModuleInfo &MMI = MF.getMMI();
1168   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1169   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1170   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
1171   bool IsFunclet = MBB.isEHFuncletEntry();
1172   EHPersonality Personality = EHPersonality::Unknown;
1173   if (Fn.hasPersonalityFn())
1174     Personality = classifyEHPersonality(Fn.getPersonalityFn());
1175   bool FnHasClrFunclet =
1176       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1177   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1178   bool HasFP = hasFP(MF);
1179   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1180   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1181   // FIXME: Emit FPO data for EH funclets.
1182   bool NeedsWinFPO =
1183       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1184   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1185   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
1186   Register FramePtr = TRI->getFrameRegister(MF);
1187   const Register MachineFramePtr =
1188       STI.isTarget64BitILP32()
1189           ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1190   Register BasePtr = TRI->getBaseRegister();
1191   bool HasWinCFI = false;
1192 
1193   // Debug location must be unknown since the first debug location is used
1194   // to determine the end of the prologue.
1195   DebugLoc DL;
1196 
1197   // Add RETADDR move area to callee saved frame size.
1198   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1199   if (TailCallReturnAddrDelta && IsWin64Prologue)
1200     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1201 
1202   if (TailCallReturnAddrDelta < 0)
1203     X86FI->setCalleeSavedFrameSize(
1204       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1205 
1206   const bool EmitStackProbeCall =
1207       STI.getTargetLowering()->hasStackProbeSymbol(MF);
1208   unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1209 
1210   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1211   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1212   // stack alignment.
1213   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1214       Fn.arg_size() == 2) {
1215     StackSize += 8;
1216     MFI.setStackSize(StackSize);
1217     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1218   }
1219 
1220   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1221   // function, and use up to 128 bytes of stack space, don't have a frame
1222   // pointer, calls, or dynamic alloca then we do not need to adjust the
1223   // stack pointer (we fit in the Red Zone). We also check that we don't
1224   // push and pop from the stack.
1225   if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) &&
1226       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1227       !MFI.adjustsStack() &&                   // No calls.
1228       !EmitStackProbeCall &&                   // No stack probes.
1229       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1230       !MF.shouldSplitStack()) {                // Regular stack
1231     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1232     if (HasFP) MinSize += SlotSize;
1233     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1234     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1235     MFI.setStackSize(StackSize);
1236   }
1237 
1238   // Insert stack pointer adjustment for later moving of return addr.  Only
1239   // applies to tail call optimized functions where the callee argument stack
1240   // size is bigger than the callers.
1241   if (TailCallReturnAddrDelta < 0) {
1242     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1243                          /*InEpilogue=*/false)
1244         .setMIFlag(MachineInstr::FrameSetup);
1245   }
1246 
1247   // Mapping for machine moves:
1248   //
1249   //   DST: VirtualFP AND
1250   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1251   //        ELSE                        => DW_CFA_def_cfa
1252   //
1253   //   SRC: VirtualFP AND
1254   //        DST: Register               => DW_CFA_def_cfa_register
1255   //
1256   //   ELSE
1257   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1258   //        REG < 64                    => DW_CFA_offset + Reg
1259   //        ELSE                        => DW_CFA_offset_extended
1260 
1261   uint64_t NumBytes = 0;
1262   int stackGrowth = -SlotSize;
1263 
1264   // Find the funclet establisher parameter
1265   Register Establisher = X86::NoRegister;
1266   if (IsClrFunclet)
1267     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1268   else if (IsFunclet)
1269     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1270 
1271   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1272     // Immediately spill establisher into the home slot.
1273     // The runtime cares about this.
1274     // MOV64mr %rdx, 16(%rsp)
1275     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1276     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1277         .addReg(Establisher)
1278         .setMIFlag(MachineInstr::FrameSetup);
1279     MBB.addLiveIn(Establisher);
1280   }
1281 
1282   if (HasFP) {
1283     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1284 
1285     // Calculate required stack adjustment.
1286     uint64_t FrameSize = StackSize - SlotSize;
1287     // If required, include space for extra hidden slot for stashing base pointer.
1288     if (X86FI->getRestoreBasePointer())
1289       FrameSize += SlotSize;
1290 
1291     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1292 
1293     // Callee-saved registers are pushed on stack before the stack is realigned.
1294     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1295       NumBytes = alignTo(NumBytes, MaxAlign);
1296 
1297     // Save EBP/RBP into the appropriate stack slot.
1298     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1299       .addReg(MachineFramePtr, RegState::Kill)
1300       .setMIFlag(MachineInstr::FrameSetup);
1301 
1302     if (NeedsDwarfCFI) {
1303       // Mark the place where EBP/RBP was saved.
1304       // Define the current CFA rule to use the provided offset.
1305       assert(StackSize);
1306       BuildCFI(MBB, MBBI, DL,
1307                MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth));
1308 
1309       // Change the rule for the FramePtr to be an "offset" rule.
1310       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1311       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1312                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1313     }
1314 
1315     if (NeedsWinCFI) {
1316       HasWinCFI = true;
1317       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1318           .addImm(FramePtr)
1319           .setMIFlag(MachineInstr::FrameSetup);
1320     }
1321 
1322     if (!IsWin64Prologue && !IsFunclet) {
1323       // Update EBP with the new base value.
1324       BuildMI(MBB, MBBI, DL,
1325               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1326               FramePtr)
1327           .addReg(StackPtr)
1328           .setMIFlag(MachineInstr::FrameSetup);
1329 
1330       if (NeedsDwarfCFI) {
1331         // Mark effective beginning of when frame pointer becomes valid.
1332         // Define the current CFA to use the EBP/RBP register.
1333         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1334         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1335                                     nullptr, DwarfFramePtr));
1336       }
1337 
1338       if (NeedsWinFPO) {
1339         // .cv_fpo_setframe $FramePtr
1340         HasWinCFI = true;
1341         BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1342             .addImm(FramePtr)
1343             .addImm(0)
1344             .setMIFlag(MachineInstr::FrameSetup);
1345       }
1346     }
1347   } else {
1348     assert(!IsFunclet && "funclets without FPs not yet implemented");
1349     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1350   }
1351 
1352   // Update the offset adjustment, which is mainly used by codeview to translate
1353   // from ESP to VFRAME relative local variable offsets.
1354   if (!IsFunclet) {
1355     if (HasFP && TRI->needsStackRealignment(MF))
1356       MFI.setOffsetAdjustment(-NumBytes);
1357     else
1358       MFI.setOffsetAdjustment(-StackSize);
1359   }
1360 
1361   // For EH funclets, only allocate enough space for outgoing calls. Save the
1362   // NumBytes value that we would've used for the parent frame.
1363   unsigned ParentFrameNumBytes = NumBytes;
1364   if (IsFunclet)
1365     NumBytes = getWinEHFuncletFrameSize(MF);
1366 
1367   // Skip the callee-saved push instructions.
1368   bool PushedRegs = false;
1369   int StackOffset = 2 * stackGrowth;
1370 
1371   while (MBBI != MBB.end() &&
1372          MBBI->getFlag(MachineInstr::FrameSetup) &&
1373          (MBBI->getOpcode() == X86::PUSH32r ||
1374           MBBI->getOpcode() == X86::PUSH64r)) {
1375     PushedRegs = true;
1376     Register Reg = MBBI->getOperand(0).getReg();
1377     ++MBBI;
1378 
1379     if (!HasFP && NeedsDwarfCFI) {
1380       // Mark callee-saved push instruction.
1381       // Define the current CFA rule to use the provided offset.
1382       assert(StackSize);
1383       BuildCFI(MBB, MBBI, DL,
1384                MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset));
1385       StackOffset += stackGrowth;
1386     }
1387 
1388     if (NeedsWinCFI) {
1389       HasWinCFI = true;
1390       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1391           .addImm(Reg)
1392           .setMIFlag(MachineInstr::FrameSetup);
1393     }
1394   }
1395 
1396   // Realign stack after we pushed callee-saved registers (so that we'll be
1397   // able to calculate their offsets from the frame pointer).
1398   // Don't do this for Win64, it needs to realign the stack after the prologue.
1399   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1400     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1401     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1402 
1403     if (NeedsWinCFI) {
1404       HasWinCFI = true;
1405       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1406           .addImm(MaxAlign)
1407           .setMIFlag(MachineInstr::FrameSetup);
1408     }
1409   }
1410 
1411   // If there is an SUB32ri of ESP immediately before this instruction, merge
1412   // the two. This can be the case when tail call elimination is enabled and
1413   // the callee has more arguments then the caller.
1414   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1415 
1416   // Adjust stack pointer: ESP -= numbytes.
1417 
1418   // Windows and cygwin/mingw require a prologue helper routine when allocating
1419   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1420   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1421   // stack and adjust the stack pointer in one go.  The 64-bit version of
1422   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1423   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1424   // increments is necessary to ensure that the guard pages used by the OS
1425   // virtual memory manager are allocated in correct sequence.
1426   uint64_t AlignedNumBytes = NumBytes;
1427   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1428     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1429   if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1430     assert(!X86FI->getUsesRedZone() &&
1431            "The Red Zone is not accounted for in stack probes");
1432 
1433     // Check whether EAX is livein for this block.
1434     bool isEAXAlive = isEAXLiveIn(MBB);
1435 
1436     if (isEAXAlive) {
1437       if (Is64Bit) {
1438         // Save RAX
1439         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1440           .addReg(X86::RAX, RegState::Kill)
1441           .setMIFlag(MachineInstr::FrameSetup);
1442       } else {
1443         // Save EAX
1444         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1445           .addReg(X86::EAX, RegState::Kill)
1446           .setMIFlag(MachineInstr::FrameSetup);
1447       }
1448     }
1449 
1450     if (Is64Bit) {
1451       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1452       // Function prologue is responsible for adjusting the stack pointer.
1453       int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1454       if (isUInt<32>(Alloc)) {
1455         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1456             .addImm(Alloc)
1457             .setMIFlag(MachineInstr::FrameSetup);
1458       } else if (isInt<32>(Alloc)) {
1459         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1460             .addImm(Alloc)
1461             .setMIFlag(MachineInstr::FrameSetup);
1462       } else {
1463         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1464             .addImm(Alloc)
1465             .setMIFlag(MachineInstr::FrameSetup);
1466       }
1467     } else {
1468       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1469       // We'll also use 4 already allocated bytes for EAX.
1470       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1471           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1472           .setMIFlag(MachineInstr::FrameSetup);
1473     }
1474 
1475     // Call __chkstk, __chkstk_ms, or __alloca.
1476     emitStackProbe(MF, MBB, MBBI, DL, true);
1477 
1478     if (isEAXAlive) {
1479       // Restore RAX/EAX
1480       MachineInstr *MI;
1481       if (Is64Bit)
1482         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1483                           StackPtr, false, NumBytes - 8);
1484       else
1485         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1486                           StackPtr, false, NumBytes - 4);
1487       MI->setFlag(MachineInstr::FrameSetup);
1488       MBB.insert(MBBI, MI);
1489     }
1490   } else if (NumBytes) {
1491     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1492   }
1493 
1494   if (NeedsWinCFI && NumBytes) {
1495     HasWinCFI = true;
1496     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1497         .addImm(NumBytes)
1498         .setMIFlag(MachineInstr::FrameSetup);
1499   }
1500 
1501   int SEHFrameOffset = 0;
1502   unsigned SPOrEstablisher;
1503   if (IsFunclet) {
1504     if (IsClrFunclet) {
1505       // The establisher parameter passed to a CLR funclet is actually a pointer
1506       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1507       // to find the root function establisher frame by loading the PSPSym from
1508       // the intermediate frame.
1509       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1510       MachinePointerInfo NoInfo;
1511       MBB.addLiveIn(Establisher);
1512       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1513                    Establisher, false, PSPSlotOffset)
1514           .addMemOperand(MF.getMachineMemOperand(
1515               NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
1516       ;
1517       // Save the root establisher back into the current funclet's (mostly
1518       // empty) frame, in case a sub-funclet or the GC needs it.
1519       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1520                    false, PSPSlotOffset)
1521           .addReg(Establisher)
1522           .addMemOperand(MF.getMachineMemOperand(
1523               NoInfo,
1524               MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1525               SlotSize, Align(SlotSize)));
1526     }
1527     SPOrEstablisher = Establisher;
1528   } else {
1529     SPOrEstablisher = StackPtr;
1530   }
1531 
1532   if (IsWin64Prologue && HasFP) {
1533     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1534     // this calculation on the incoming establisher, which holds the value of
1535     // RSP from the parent frame at the end of the prologue.
1536     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1537     if (SEHFrameOffset)
1538       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1539                    SPOrEstablisher, false, SEHFrameOffset);
1540     else
1541       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1542           .addReg(SPOrEstablisher);
1543 
1544     // If this is not a funclet, emit the CFI describing our frame pointer.
1545     if (NeedsWinCFI && !IsFunclet) {
1546       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1547       HasWinCFI = true;
1548       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1549           .addImm(FramePtr)
1550           .addImm(SEHFrameOffset)
1551           .setMIFlag(MachineInstr::FrameSetup);
1552       if (isAsynchronousEHPersonality(Personality))
1553         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1554     }
1555   } else if (IsFunclet && STI.is32Bit()) {
1556     // Reset EBP / ESI to something good for funclets.
1557     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1558     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1559     // into the registration node so that the runtime will restore it for us.
1560     if (!MBB.isCleanupFuncletEntry()) {
1561       assert(Personality == EHPersonality::MSVC_CXX);
1562       Register FrameReg;
1563       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1564       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1565       // ESP is the first field, so no extra displacement is needed.
1566       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1567                    false, EHRegOffset)
1568           .addReg(X86::ESP);
1569     }
1570   }
1571 
1572   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1573     const MachineInstr &FrameInstr = *MBBI;
1574     ++MBBI;
1575 
1576     if (NeedsWinCFI) {
1577       int FI;
1578       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1579         if (X86::FR64RegClass.contains(Reg)) {
1580           int Offset;
1581           Register IgnoredFrameReg;
1582           if (IsWin64Prologue && IsFunclet)
1583             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1584           else
1585             Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
1586                      SEHFrameOffset;
1587 
1588           HasWinCFI = true;
1589           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1590           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1591               .addImm(Reg)
1592               .addImm(Offset)
1593               .setMIFlag(MachineInstr::FrameSetup);
1594         }
1595       }
1596     }
1597   }
1598 
1599   if (NeedsWinCFI && HasWinCFI)
1600     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1601         .setMIFlag(MachineInstr::FrameSetup);
1602 
1603   if (FnHasClrFunclet && !IsFunclet) {
1604     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1605     // immediately after the prolog)  into the PSPSlot so that funclets
1606     // and the GC can recover it.
1607     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1608     auto PSPInfo = MachinePointerInfo::getFixedStack(
1609         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1610     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1611                  PSPSlotOffset)
1612         .addReg(StackPtr)
1613         .addMemOperand(MF.getMachineMemOperand(
1614             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1615             SlotSize, Align(SlotSize)));
1616   }
1617 
1618   // Realign stack after we spilled callee-saved registers (so that we'll be
1619   // able to calculate their offsets from the frame pointer).
1620   // Win64 requires aligning the stack after the prologue.
1621   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1622     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1623     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1624   }
1625 
1626   // We already dealt with stack realignment and funclets above.
1627   if (IsFunclet && STI.is32Bit())
1628     return;
1629 
1630   // If we need a base pointer, set it up here. It's whatever the value
1631   // of the stack pointer is at this point. Any variable size objects
1632   // will be allocated after this, so we can still use the base pointer
1633   // to reference locals.
1634   if (TRI->hasBasePointer(MF)) {
1635     // Update the base pointer with the current stack pointer.
1636     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1637     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1638       .addReg(SPOrEstablisher)
1639       .setMIFlag(MachineInstr::FrameSetup);
1640     if (X86FI->getRestoreBasePointer()) {
1641       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1642       // dependence chain. Used by SjLj EH.
1643       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1644       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1645                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1646         .addReg(SPOrEstablisher)
1647         .setMIFlag(MachineInstr::FrameSetup);
1648     }
1649 
1650     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1651       // Stash the value of the frame pointer relative to the base pointer for
1652       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1653       // it recovers the frame pointer from the base pointer rather than the
1654       // other way around.
1655       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1656       Register UsedReg;
1657       int Offset =
1658           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1659       assert(UsedReg == BasePtr);
1660       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1661           .addReg(FramePtr)
1662           .setMIFlag(MachineInstr::FrameSetup);
1663     }
1664   }
1665 
1666   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1667     // Mark end of stack pointer adjustment.
1668     if (!HasFP && NumBytes) {
1669       // Define the current CFA rule to use the provided offset.
1670       assert(StackSize);
1671       BuildCFI(
1672           MBB, MBBI, DL,
1673           MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth));
1674     }
1675 
1676     // Emit DWARF info specifying the offsets of the callee-saved registers.
1677     emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
1678   }
1679 
1680   // X86 Interrupt handling function cannot assume anything about the direction
1681   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1682   // in each prologue of interrupt handler function.
1683   //
1684   // FIXME: Create "cld" instruction only in these cases:
1685   // 1. The interrupt handling function uses any of the "rep" instructions.
1686   // 2. Interrupt handling function calls another function.
1687   //
1688   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1689     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1690         .setMIFlag(MachineInstr::FrameSetup);
1691 
1692   // At this point we know if the function has WinCFI or not.
1693   MF.setHasWinCFI(HasWinCFI);
1694 }
1695 
1696 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1697     const MachineFunction &MF) const {
1698   // We can't use LEA instructions for adjusting the stack pointer if we don't
1699   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1700   // to deallocate the stack.
1701   // This means that we can use LEA for SP in two situations:
1702   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1703   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1704   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1705 }
1706 
1707 static bool isFuncletReturnInstr(MachineInstr &MI) {
1708   switch (MI.getOpcode()) {
1709   case X86::CATCHRET:
1710   case X86::CLEANUPRET:
1711     return true;
1712   default:
1713     return false;
1714   }
1715   llvm_unreachable("impossible");
1716 }
1717 
1718 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1719 // stack. It holds a pointer to the bottom of the root function frame.  The
1720 // establisher frame pointer passed to a nested funclet may point to the
1721 // (mostly empty) frame of its parent funclet, but it will need to find
1722 // the frame of the root function to access locals.  To facilitate this,
1723 // every funclet copies the pointer to the bottom of the root function
1724 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1725 // same offset for the PSPSym in the root function frame that's used in the
1726 // funclets' frames allows each funclet to dynamically accept any ancestor
1727 // frame as its establisher argument (the runtime doesn't guarantee the
1728 // immediate parent for some reason lost to history), and also allows the GC,
1729 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1730 // frame with only a single offset reported for the entire method.
1731 unsigned
1732 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1733   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1734   Register SPReg;
1735   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1736                                               /*IgnoreSPUpdates*/ true);
1737   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1738   return static_cast<unsigned>(Offset);
1739 }
1740 
1741 unsigned
1742 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1743   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1744   // This is the size of the pushed CSRs.
1745   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1746   // This is the size of callee saved XMMs.
1747   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1748   unsigned XMMSize = WinEHXMMSlotInfo.size() *
1749                      TRI->getSpillSize(X86::VR128RegClass);
1750   // This is the amount of stack a funclet needs to allocate.
1751   unsigned UsedSize;
1752   EHPersonality Personality =
1753       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1754   if (Personality == EHPersonality::CoreCLR) {
1755     // CLR funclets need to hold enough space to include the PSPSym, at the
1756     // same offset from the stack pointer (immediately after the prolog) as it
1757     // resides at in the main function.
1758     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1759   } else {
1760     // Other funclets just need enough stack for outgoing call arguments.
1761     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1762   }
1763   // RBP is not included in the callee saved register block. After pushing RBP,
1764   // everything is 16 byte aligned. Everything we allocate before an outgoing
1765   // call must also be 16 byte aligned.
1766   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
1767   // Subtract out the size of the callee saved registers. This is how much stack
1768   // each funclet will allocate.
1769   return FrameSizeMinusRBP + XMMSize - CSSize;
1770 }
1771 
1772 static bool isTailCallOpcode(unsigned Opc) {
1773     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1774         Opc == X86::TCRETURNmi ||
1775         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1776         Opc == X86::TCRETURNmi64;
1777 }
1778 
1779 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1780                                     MachineBasicBlock &MBB) const {
1781   const MachineFrameInfo &MFI = MF.getFrameInfo();
1782   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1783   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1784   MachineBasicBlock::iterator MBBI = Terminator;
1785   DebugLoc DL;
1786   if (MBBI != MBB.end())
1787     DL = MBBI->getDebugLoc();
1788   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1789   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1790   Register FramePtr = TRI->getFrameRegister(MF);
1791   unsigned MachineFramePtr =
1792       Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1793 
1794   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1795   bool NeedsWin64CFI =
1796       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1797   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1798 
1799   // Get the number of bytes to allocate from the FrameInfo.
1800   uint64_t StackSize = MFI.getStackSize();
1801   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1802   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1803   bool HasFP = hasFP(MF);
1804   uint64_t NumBytes = 0;
1805 
1806   bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1807                         !MF.getTarget().getTargetTriple().isOSWindows()) &&
1808                        MF.needsFrameMoves();
1809 
1810   if (IsFunclet) {
1811     assert(HasFP && "EH funclets without FP not yet implemented");
1812     NumBytes = getWinEHFuncletFrameSize(MF);
1813   } else if (HasFP) {
1814     // Calculate required stack adjustment.
1815     uint64_t FrameSize = StackSize - SlotSize;
1816     NumBytes = FrameSize - CSSize;
1817 
1818     // Callee-saved registers were pushed on stack before the stack was
1819     // realigned.
1820     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1821       NumBytes = alignTo(FrameSize, MaxAlign);
1822   } else {
1823     NumBytes = StackSize - CSSize;
1824   }
1825   uint64_t SEHStackAllocAmt = NumBytes;
1826 
1827   // AfterPop is the position to insert .cfi_restore.
1828   MachineBasicBlock::iterator AfterPop = MBBI;
1829   if (HasFP) {
1830     // Pop EBP.
1831     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1832             MachineFramePtr)
1833         .setMIFlag(MachineInstr::FrameDestroy);
1834     if (NeedsDwarfCFI) {
1835       unsigned DwarfStackPtr =
1836           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1837       BuildCFI(MBB, MBBI, DL,
1838                MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize));
1839       if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
1840         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1841         BuildCFI(MBB, AfterPop, DL,
1842                  MCCFIInstruction::createRestore(nullptr, DwarfFramePtr));
1843         --MBBI;
1844         --AfterPop;
1845       }
1846       --MBBI;
1847     }
1848   }
1849 
1850   MachineBasicBlock::iterator FirstCSPop = MBBI;
1851   // Skip the callee-saved pop instructions.
1852   while (MBBI != MBB.begin()) {
1853     MachineBasicBlock::iterator PI = std::prev(MBBI);
1854     unsigned Opc = PI->getOpcode();
1855 
1856     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1857       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1858           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1859         break;
1860       FirstCSPop = PI;
1861     }
1862 
1863     --MBBI;
1864   }
1865   MBBI = FirstCSPop;
1866 
1867   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1868     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1869 
1870   if (MBBI != MBB.end())
1871     DL = MBBI->getDebugLoc();
1872 
1873   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1874   // instruction, merge the two instructions.
1875   if (NumBytes || MFI.hasVarSizedObjects())
1876     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1877 
1878   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1879   // slot before popping them off! Same applies for the case, when stack was
1880   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1881   // will not do realignment or dynamic stack allocation.
1882   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1883       !IsFunclet) {
1884     if (TRI->needsStackRealignment(MF))
1885       MBBI = FirstCSPop;
1886     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1887     uint64_t LEAAmount =
1888         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1889 
1890     // There are only two legal forms of epilogue:
1891     // - add SEHAllocationSize, %rsp
1892     // - lea SEHAllocationSize(%FramePtr), %rsp
1893     //
1894     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1895     // However, we may use this sequence if we have a frame pointer because the
1896     // effects of the prologue can safely be undone.
1897     if (LEAAmount != 0) {
1898       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1899       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1900                    FramePtr, false, LEAAmount);
1901       --MBBI;
1902     } else {
1903       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1904       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1905         .addReg(FramePtr);
1906       --MBBI;
1907     }
1908   } else if (NumBytes) {
1909     // Adjust stack pointer back: ESP += numbytes.
1910     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1911     if (!hasFP(MF) && NeedsDwarfCFI) {
1912       // Define the current CFA rule to use the provided offset.
1913       BuildCFI(MBB, MBBI, DL,
1914                MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize));
1915     }
1916     --MBBI;
1917   }
1918 
1919   // Windows unwinder will not invoke function's exception handler if IP is
1920   // either in prologue or in epilogue.  This behavior causes a problem when a
1921   // call immediately precedes an epilogue, because the return address points
1922   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1923   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1924   // final emitted code.
1925   if (NeedsWin64CFI && MF.hasWinCFI())
1926     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1927 
1928   if (!hasFP(MF) && NeedsDwarfCFI) {
1929     MBBI = FirstCSPop;
1930     int64_t Offset = -CSSize - SlotSize;
1931     // Mark callee-saved pop instruction.
1932     // Define the current CFA rule to use the provided offset.
1933     while (MBBI != MBB.end()) {
1934       MachineBasicBlock::iterator PI = MBBI;
1935       unsigned Opc = PI->getOpcode();
1936       ++MBBI;
1937       if (Opc == X86::POP32r || Opc == X86::POP64r) {
1938         Offset += SlotSize;
1939         BuildCFI(MBB, MBBI, DL,
1940                  MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset));
1941       }
1942     }
1943   }
1944 
1945   // Emit DWARF info specifying the restores of the callee-saved registers.
1946   // For epilogue with return inside or being other block without successor,
1947   // no need to generate .cfi_restore for callee-saved registers.
1948   if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) {
1949     emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
1950   }
1951 
1952   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1953     // Add the return addr area delta back since we are not tail calling.
1954     int Offset = -1 * X86FI->getTCReturnAddrDelta();
1955     assert(Offset >= 0 && "TCDelta should never be positive");
1956     if (Offset) {
1957       // Check for possible merge with preceding ADD instruction.
1958       Offset += mergeSPUpdates(MBB, Terminator, true);
1959       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1960     }
1961   }
1962 }
1963 
1964 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1965                                              Register &FrameReg) const {
1966   const MachineFrameInfo &MFI = MF.getFrameInfo();
1967 
1968   bool IsFixed = MFI.isFixedObjectIndex(FI);
1969   // We can't calculate offset from frame pointer if the stack is realigned,
1970   // so enforce usage of stack/base pointer.  The base pointer is used when we
1971   // have dynamic allocas in addition to dynamic realignment.
1972   if (TRI->hasBasePointer(MF))
1973     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1974   else if (TRI->needsStackRealignment(MF))
1975     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1976   else
1977     FrameReg = TRI->getFrameRegister(MF);
1978 
1979   // Offset will hold the offset from the stack pointer at function entry to the
1980   // object.
1981   // We need to factor in additional offsets applied during the prologue to the
1982   // frame, base, and stack pointer depending on which is used.
1983   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1984   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1985   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1986   uint64_t StackSize = MFI.getStackSize();
1987   bool HasFP = hasFP(MF);
1988   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1989   int64_t FPDelta = 0;
1990 
1991   // In an x86 interrupt, remove the offset we added to account for the return
1992   // address from any stack object allocated in the caller's frame. Interrupts
1993   // do not have a standard return address. Fixed objects in the current frame,
1994   // such as SSE register spills, should not get this treatment.
1995   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
1996       Offset >= 0) {
1997     Offset += getOffsetOfLocalArea();
1998   }
1999 
2000   if (IsWin64Prologue) {
2001     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2002 
2003     // Calculate required stack adjustment.
2004     uint64_t FrameSize = StackSize - SlotSize;
2005     // If required, include space for extra hidden slot for stashing base pointer.
2006     if (X86FI->getRestoreBasePointer())
2007       FrameSize += SlotSize;
2008     uint64_t NumBytes = FrameSize - CSSize;
2009 
2010     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2011     if (FI && FI == X86FI->getFAIndex())
2012       return -SEHFrameOffset;
2013 
2014     // FPDelta is the offset from the "traditional" FP location of the old base
2015     // pointer followed by return address and the location required by the
2016     // restricted Win64 prologue.
2017     // Add FPDelta to all offsets below that go through the frame pointer.
2018     FPDelta = FrameSize - SEHFrameOffset;
2019     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2020            "FPDelta isn't aligned per the Win64 ABI!");
2021   }
2022 
2023 
2024   if (TRI->hasBasePointer(MF)) {
2025     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
2026     if (FI < 0) {
2027       // Skip the saved EBP.
2028       return Offset + SlotSize + FPDelta;
2029     } else {
2030       assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2031       return Offset + StackSize;
2032     }
2033   } else if (TRI->needsStackRealignment(MF)) {
2034     if (FI < 0) {
2035       // Skip the saved EBP.
2036       return Offset + SlotSize + FPDelta;
2037     } else {
2038       assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2039       return Offset + StackSize;
2040     }
2041     // FIXME: Support tail calls
2042   } else {
2043     if (!HasFP)
2044       return Offset + StackSize;
2045 
2046     // Skip the saved EBP.
2047     Offset += SlotSize;
2048 
2049     // Skip the RETADDR move area
2050     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2051     if (TailCallReturnAddrDelta < 0)
2052       Offset -= TailCallReturnAddrDelta;
2053   }
2054 
2055   return Offset + FPDelta;
2056 }
2057 
2058 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2059                                               Register &FrameReg) const {
2060   const MachineFrameInfo &MFI = MF.getFrameInfo();
2061   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2062   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2063   const auto it = WinEHXMMSlotInfo.find(FI);
2064 
2065   if (it == WinEHXMMSlotInfo.end())
2066     return getFrameIndexReference(MF, FI, FrameReg);
2067 
2068   FrameReg = TRI->getStackRegister();
2069   return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2070          it->second;
2071 }
2072 
2073 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
2074                                                int FI, Register &FrameReg,
2075                                                int Adjustment) const {
2076   const MachineFrameInfo &MFI = MF.getFrameInfo();
2077   FrameReg = TRI->getStackRegister();
2078   return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
2079 }
2080 
2081 int X86FrameLowering::getFrameIndexReferencePreferSP(
2082     const MachineFunction &MF, int FI, Register &FrameReg,
2083     bool IgnoreSPUpdates) const {
2084 
2085   const MachineFrameInfo &MFI = MF.getFrameInfo();
2086   // Does not include any dynamic realign.
2087   const uint64_t StackSize = MFI.getStackSize();
2088   // LLVM arranges the stack as follows:
2089   //   ...
2090   //   ARG2
2091   //   ARG1
2092   //   RETADDR
2093   //   PUSH RBP   <-- RBP points here
2094   //   PUSH CSRs
2095   //   ~~~~~~~    <-- possible stack realignment (non-win64)
2096   //   ...
2097   //   STACK OBJECTS
2098   //   ...        <-- RSP after prologue points here
2099   //   ~~~~~~~    <-- possible stack realignment (win64)
2100   //
2101   // if (hasVarSizedObjects()):
2102   //   ...        <-- "base pointer" (ESI/RBX) points here
2103   //   DYNAMIC ALLOCAS
2104   //   ...        <-- RSP points here
2105   //
2106   // Case 1: In the simple case of no stack realignment and no dynamic
2107   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2108   // with fixed offsets from RSP.
2109   //
2110   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2111   // stack objects are addressed with RBP and regular stack objects with RSP.
2112   //
2113   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2114   // to address stack arguments for outgoing calls and nothing else. The "base
2115   // pointer" points to local variables, and RBP points to fixed objects.
2116   //
2117   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2118   // answer we give is relative to the SP after the prologue, and not the
2119   // SP in the middle of the function.
2120 
2121   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
2122       !STI.isTargetWin64())
2123     return getFrameIndexReference(MF, FI, FrameReg);
2124 
2125   // If !hasReservedCallFrame the function might have SP adjustement in the
2126   // body.  So, even though the offset is statically known, it depends on where
2127   // we are in the function.
2128   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2129     return getFrameIndexReference(MF, FI, FrameReg);
2130 
2131   // We don't handle tail calls, and shouldn't be seeing them either.
2132   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2133          "we don't handle this case!");
2134 
2135   // This is how the math works out:
2136   //
2137   //  %rsp grows (i.e. gets lower) left to right. Each box below is
2138   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
2139   //  get to.
2140   //
2141   //    ----------------------------------
2142   //    | BP | Obj0 | Obj1 | ... | ObjN |
2143   //    ----------------------------------
2144   //    ^    ^      ^                   ^
2145   //    A    B      C                   E
2146   //
2147   // A is the incoming stack pointer.
2148   // (B - A) is the local area offset (-8 for x86-64) [1]
2149   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2150   //
2151   // |(E - B)| is the StackSize (absolute value, positive).  For a
2152   // stack that grown down, this works out to be (B - E). [3]
2153   //
2154   // E is also the value of %rsp after stack has been set up, and we
2155   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
2156   // (C - E) == (C - A) - (B - A) + (B - E)
2157   //            { Using [1], [2] and [3] above }
2158   //         == getObjectOffset - LocalAreaOffset + StackSize
2159 
2160   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2161 }
2162 
2163 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2164     MachineFunction &MF, const TargetRegisterInfo *TRI,
2165     std::vector<CalleeSavedInfo> &CSI) const {
2166   MachineFrameInfo &MFI = MF.getFrameInfo();
2167   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2168 
2169   unsigned CalleeSavedFrameSize = 0;
2170   unsigned XMMCalleeSavedFrameSize = 0;
2171   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2172   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2173 
2174   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2175 
2176   if (TailCallReturnAddrDelta < 0) {
2177     // create RETURNADDR area
2178     //   arg
2179     //   arg
2180     //   RETADDR
2181     //   { ...
2182     //     RETADDR area
2183     //     ...
2184     //   }
2185     //   [EBP]
2186     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2187                            TailCallReturnAddrDelta - SlotSize, true);
2188   }
2189 
2190   // Spill the BasePtr if it's used.
2191   if (this->TRI->hasBasePointer(MF)) {
2192     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2193     if (MF.hasEHFunclets()) {
2194       int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2195       X86FI->setHasSEHFramePtrSave(true);
2196       X86FI->setSEHFramePtrSaveIndex(FI);
2197     }
2198   }
2199 
2200   if (hasFP(MF)) {
2201     // emitPrologue always spills frame register the first thing.
2202     SpillSlotOffset -= SlotSize;
2203     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2204 
2205     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2206     // the frame register, we can delete it from CSI list and not have to worry
2207     // about avoiding it later.
2208     Register FPReg = TRI->getFrameRegister(MF);
2209     for (unsigned i = 0; i < CSI.size(); ++i) {
2210       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2211         CSI.erase(CSI.begin() + i);
2212         break;
2213       }
2214     }
2215   }
2216 
2217   // Assign slots for GPRs. It increases frame size.
2218   for (unsigned i = CSI.size(); i != 0; --i) {
2219     unsigned Reg = CSI[i - 1].getReg();
2220 
2221     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2222       continue;
2223 
2224     SpillSlotOffset -= SlotSize;
2225     CalleeSavedFrameSize += SlotSize;
2226 
2227     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2228     CSI[i - 1].setFrameIdx(SlotIndex);
2229   }
2230 
2231   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2232   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2233 
2234   // Assign slots for XMMs.
2235   for (unsigned i = CSI.size(); i != 0; --i) {
2236     unsigned Reg = CSI[i - 1].getReg();
2237     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2238       continue;
2239 
2240     // If this is k-register make sure we lookup via the largest legal type.
2241     MVT VT = MVT::Other;
2242     if (X86::VK16RegClass.contains(Reg))
2243       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2244 
2245     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2246     unsigned Size = TRI->getSpillSize(*RC);
2247     Align Alignment = TRI->getSpillAlign(*RC);
2248     // ensure alignment
2249     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2250     SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2251 
2252     // spill into slot
2253     SpillSlotOffset -= Size;
2254     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2255     CSI[i - 1].setFrameIdx(SlotIndex);
2256     MFI.ensureMaxAlignment(Alignment);
2257 
2258     // Save the start offset and size of XMM in stack frame for funclets.
2259     if (X86::VR128RegClass.contains(Reg)) {
2260       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2261       XMMCalleeSavedFrameSize += Size;
2262     }
2263   }
2264 
2265   return true;
2266 }
2267 
2268 bool X86FrameLowering::spillCalleeSavedRegisters(
2269     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2270     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2271   DebugLoc DL = MBB.findDebugLoc(MI);
2272 
2273   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2274   // for us, and there are no XMM CSRs on Win32.
2275   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2276     return true;
2277 
2278   // Push GPRs. It increases frame size.
2279   const MachineFunction &MF = *MBB.getParent();
2280   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2281   for (unsigned i = CSI.size(); i != 0; --i) {
2282     unsigned Reg = CSI[i - 1].getReg();
2283 
2284     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2285       continue;
2286 
2287     const MachineRegisterInfo &MRI = MF.getRegInfo();
2288     bool isLiveIn = MRI.isLiveIn(Reg);
2289     if (!isLiveIn)
2290       MBB.addLiveIn(Reg);
2291 
2292     // Decide whether we can add a kill flag to the use.
2293     bool CanKill = !isLiveIn;
2294     // Check if any subregister is live-in
2295     if (CanKill) {
2296       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2297         if (MRI.isLiveIn(*AReg)) {
2298           CanKill = false;
2299           break;
2300         }
2301       }
2302     }
2303 
2304     // Do not set a kill flag on values that are also marked as live-in. This
2305     // happens with the @llvm-returnaddress intrinsic and with arguments
2306     // passed in callee saved registers.
2307     // Omitting the kill flags is conservatively correct even if the live-in
2308     // is not used after all.
2309     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2310       .setMIFlag(MachineInstr::FrameSetup);
2311   }
2312 
2313   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2314   // It can be done by spilling XMMs to stack frame.
2315   for (unsigned i = CSI.size(); i != 0; --i) {
2316     unsigned Reg = CSI[i-1].getReg();
2317     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2318       continue;
2319 
2320     // If this is k-register make sure we lookup via the largest legal type.
2321     MVT VT = MVT::Other;
2322     if (X86::VK16RegClass.contains(Reg))
2323       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2324 
2325     // Add the callee-saved register as live-in. It's killed at the spill.
2326     MBB.addLiveIn(Reg);
2327     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2328 
2329     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2330                             TRI);
2331     --MI;
2332     MI->setFlag(MachineInstr::FrameSetup);
2333     ++MI;
2334   }
2335 
2336   return true;
2337 }
2338 
2339 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2340                                                MachineBasicBlock::iterator MBBI,
2341                                                MachineInstr *CatchRet) const {
2342   // SEH shouldn't use catchret.
2343   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2344              MBB.getParent()->getFunction().getPersonalityFn())) &&
2345          "SEH should not use CATCHRET");
2346   DebugLoc DL = CatchRet->getDebugLoc();
2347   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2348 
2349   // Fill EAX/RAX with the address of the target block.
2350   if (STI.is64Bit()) {
2351     // LEA64r CatchRetTarget(%rip), %rax
2352     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2353         .addReg(X86::RIP)
2354         .addImm(0)
2355         .addReg(0)
2356         .addMBB(CatchRetTarget)
2357         .addReg(0);
2358   } else {
2359     // MOV32ri $CatchRetTarget, %eax
2360     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2361         .addMBB(CatchRetTarget);
2362   }
2363 
2364   // Record that we've taken the address of CatchRetTarget and no longer just
2365   // reference it in a terminator.
2366   CatchRetTarget->setHasAddressTaken();
2367 }
2368 
2369 bool X86FrameLowering::restoreCalleeSavedRegisters(
2370     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2371     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2372   if (CSI.empty())
2373     return false;
2374 
2375   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2376     // Don't restore CSRs in 32-bit EH funclets. Matches
2377     // spillCalleeSavedRegisters.
2378     if (STI.is32Bit())
2379       return true;
2380     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2381     // funclets. emitEpilogue transforms these to normal jumps.
2382     if (MI->getOpcode() == X86::CATCHRET) {
2383       const Function &F = MBB.getParent()->getFunction();
2384       bool IsSEH = isAsynchronousEHPersonality(
2385           classifyEHPersonality(F.getPersonalityFn()));
2386       if (IsSEH)
2387         return true;
2388     }
2389   }
2390 
2391   DebugLoc DL = MBB.findDebugLoc(MI);
2392 
2393   // Reload XMMs from stack frame.
2394   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2395     unsigned Reg = CSI[i].getReg();
2396     if (X86::GR64RegClass.contains(Reg) ||
2397         X86::GR32RegClass.contains(Reg))
2398       continue;
2399 
2400     // If this is k-register make sure we lookup via the largest legal type.
2401     MVT VT = MVT::Other;
2402     if (X86::VK16RegClass.contains(Reg))
2403       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2404 
2405     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2406     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2407   }
2408 
2409   // POP GPRs.
2410   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2411   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2412     unsigned Reg = CSI[i].getReg();
2413     if (!X86::GR64RegClass.contains(Reg) &&
2414         !X86::GR32RegClass.contains(Reg))
2415       continue;
2416 
2417     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2418         .setMIFlag(MachineInstr::FrameDestroy);
2419   }
2420   return true;
2421 }
2422 
2423 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2424                                             BitVector &SavedRegs,
2425                                             RegScavenger *RS) const {
2426   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2427 
2428   // Spill the BasePtr if it's used.
2429   if (TRI->hasBasePointer(MF)){
2430     Register BasePtr = TRI->getBaseRegister();
2431     if (STI.isTarget64BitILP32())
2432       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2433     SavedRegs.set(BasePtr);
2434   }
2435 }
2436 
2437 static bool
2438 HasNestArgument(const MachineFunction *MF) {
2439   const Function &F = MF->getFunction();
2440   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2441        I != E; I++) {
2442     if (I->hasNestAttr() && !I->use_empty())
2443       return true;
2444   }
2445   return false;
2446 }
2447 
2448 /// GetScratchRegister - Get a temp register for performing work in the
2449 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2450 /// and the properties of the function either one or two registers will be
2451 /// needed. Set primary to true for the first register, false for the second.
2452 static unsigned
2453 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2454   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2455 
2456   // Erlang stuff.
2457   if (CallingConvention == CallingConv::HiPE) {
2458     if (Is64Bit)
2459       return Primary ? X86::R14 : X86::R13;
2460     else
2461       return Primary ? X86::EBX : X86::EDI;
2462   }
2463 
2464   if (Is64Bit) {
2465     if (IsLP64)
2466       return Primary ? X86::R11 : X86::R12;
2467     else
2468       return Primary ? X86::R11D : X86::R12D;
2469   }
2470 
2471   bool IsNested = HasNestArgument(&MF);
2472 
2473   if (CallingConvention == CallingConv::X86_FastCall ||
2474       CallingConvention == CallingConv::Fast ||
2475       CallingConvention == CallingConv::Tail) {
2476     if (IsNested)
2477       report_fatal_error("Segmented stacks does not support fastcall with "
2478                          "nested function.");
2479     return Primary ? X86::EAX : X86::ECX;
2480   }
2481   if (IsNested)
2482     return Primary ? X86::EDX : X86::EAX;
2483   return Primary ? X86::ECX : X86::EAX;
2484 }
2485 
2486 // The stack limit in the TCB is set to this many bytes above the actual stack
2487 // limit.
2488 static const uint64_t kSplitStackAvailable = 256;
2489 
2490 void X86FrameLowering::adjustForSegmentedStacks(
2491     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2492   MachineFrameInfo &MFI = MF.getFrameInfo();
2493   uint64_t StackSize;
2494   unsigned TlsReg, TlsOffset;
2495   DebugLoc DL;
2496 
2497   // To support shrink-wrapping we would need to insert the new blocks
2498   // at the right place and update the branches to PrologueMBB.
2499   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2500 
2501   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2502   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2503          "Scratch register is live-in");
2504 
2505   if (MF.getFunction().isVarArg())
2506     report_fatal_error("Segmented stacks do not support vararg functions.");
2507   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2508       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2509       !STI.isTargetDragonFly())
2510     report_fatal_error("Segmented stacks not supported on this platform.");
2511 
2512   // Eventually StackSize will be calculated by a link-time pass; which will
2513   // also decide whether checking code needs to be injected into this particular
2514   // prologue.
2515   StackSize = MFI.getStackSize();
2516 
2517   // Do not generate a prologue for leaf functions with a stack of size zero.
2518   // For non-leaf functions we have to allow for the possibility that the
2519   // callis to a non-split function, as in PR37807. This function could also
2520   // take the address of a non-split function. When the linker tries to adjust
2521   // its non-existent prologue, it would fail with an error. Mark the object
2522   // file so that such failures are not errors. See this Go language bug-report
2523   // https://go-review.googlesource.com/c/go/+/148819/
2524   if (StackSize == 0 && !MFI.hasTailCall()) {
2525     MF.getMMI().setHasNosplitStack(true);
2526     return;
2527   }
2528 
2529   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2530   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2531   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2532   bool IsNested = false;
2533 
2534   // We need to know if the function has a nest argument only in 64 bit mode.
2535   if (Is64Bit)
2536     IsNested = HasNestArgument(&MF);
2537 
2538   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2539   // allocMBB needs to be last (terminating) instruction.
2540 
2541   for (const auto &LI : PrologueMBB.liveins()) {
2542     allocMBB->addLiveIn(LI);
2543     checkMBB->addLiveIn(LI);
2544   }
2545 
2546   if (IsNested)
2547     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2548 
2549   MF.push_front(allocMBB);
2550   MF.push_front(checkMBB);
2551 
2552   // When the frame size is less than 256 we just compare the stack
2553   // boundary directly to the value of the stack pointer, per gcc.
2554   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2555 
2556   // Read the limit off the current stacklet off the stack_guard location.
2557   if (Is64Bit) {
2558     if (STI.isTargetLinux()) {
2559       TlsReg = X86::FS;
2560       TlsOffset = IsLP64 ? 0x70 : 0x40;
2561     } else if (STI.isTargetDarwin()) {
2562       TlsReg = X86::GS;
2563       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2564     } else if (STI.isTargetWin64()) {
2565       TlsReg = X86::GS;
2566       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2567     } else if (STI.isTargetFreeBSD()) {
2568       TlsReg = X86::FS;
2569       TlsOffset = 0x18;
2570     } else if (STI.isTargetDragonFly()) {
2571       TlsReg = X86::FS;
2572       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2573     } else {
2574       report_fatal_error("Segmented stacks not supported on this platform.");
2575     }
2576 
2577     if (CompareStackPointer)
2578       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2579     else
2580       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2581         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2582 
2583     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2584       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2585   } else {
2586     if (STI.isTargetLinux()) {
2587       TlsReg = X86::GS;
2588       TlsOffset = 0x30;
2589     } else if (STI.isTargetDarwin()) {
2590       TlsReg = X86::GS;
2591       TlsOffset = 0x48 + 90*4;
2592     } else if (STI.isTargetWin32()) {
2593       TlsReg = X86::FS;
2594       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2595     } else if (STI.isTargetDragonFly()) {
2596       TlsReg = X86::FS;
2597       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2598     } else if (STI.isTargetFreeBSD()) {
2599       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2600     } else {
2601       report_fatal_error("Segmented stacks not supported on this platform.");
2602     }
2603 
2604     if (CompareStackPointer)
2605       ScratchReg = X86::ESP;
2606     else
2607       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2608         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2609 
2610     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2611         STI.isTargetDragonFly()) {
2612       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2613         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2614     } else if (STI.isTargetDarwin()) {
2615 
2616       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2617       unsigned ScratchReg2;
2618       bool SaveScratch2;
2619       if (CompareStackPointer) {
2620         // The primary scratch register is available for holding the TLS offset.
2621         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2622         SaveScratch2 = false;
2623       } else {
2624         // Need to use a second register to hold the TLS offset
2625         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2626 
2627         // Unfortunately, with fastcc the second scratch register may hold an
2628         // argument.
2629         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2630       }
2631 
2632       // If Scratch2 is live-in then it needs to be saved.
2633       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2634              "Scratch register is live-in and not saved");
2635 
2636       if (SaveScratch2)
2637         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2638           .addReg(ScratchReg2, RegState::Kill);
2639 
2640       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2641         .addImm(TlsOffset);
2642       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2643         .addReg(ScratchReg)
2644         .addReg(ScratchReg2).addImm(1).addReg(0)
2645         .addImm(0)
2646         .addReg(TlsReg);
2647 
2648       if (SaveScratch2)
2649         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2650     }
2651   }
2652 
2653   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2654   // It jumps to normal execution of the function body.
2655   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2656 
2657   // On 32 bit we first push the arguments size and then the frame size. On 64
2658   // bit, we pass the stack frame size in r10 and the argument size in r11.
2659   if (Is64Bit) {
2660     // Functions with nested arguments use R10, so it needs to be saved across
2661     // the call to _morestack
2662 
2663     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2664     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2665     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2666     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2667     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2668 
2669     if (IsNested)
2670       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2671 
2672     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2673       .addImm(StackSize);
2674     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2675       .addImm(X86FI->getArgumentStackSize());
2676   } else {
2677     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2678       .addImm(X86FI->getArgumentStackSize());
2679     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2680       .addImm(StackSize);
2681   }
2682 
2683   // __morestack is in libgcc
2684   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2685     // Under the large code model, we cannot assume that __morestack lives
2686     // within 2^31 bytes of the call site, so we cannot use pc-relative
2687     // addressing. We cannot perform the call via a temporary register,
2688     // as the rax register may be used to store the static chain, and all
2689     // other suitable registers may be either callee-save or used for
2690     // parameter passing. We cannot use the stack at this point either
2691     // because __morestack manipulates the stack directly.
2692     //
2693     // To avoid these issues, perform an indirect call via a read-only memory
2694     // location containing the address.
2695     //
2696     // This solution is not perfect, as it assumes that the .rodata section
2697     // is laid out within 2^31 bytes of each function body, but this seems
2698     // to be sufficient for JIT.
2699     // FIXME: Add retpoline support and remove the error here..
2700     if (STI.useIndirectThunkCalls())
2701       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2702                          "code model and thunks not yet implemented.");
2703     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2704         .addReg(X86::RIP)
2705         .addImm(0)
2706         .addReg(0)
2707         .addExternalSymbol("__morestack_addr")
2708         .addReg(0);
2709     MF.getMMI().setUsesMorestackAddr(true);
2710   } else {
2711     if (Is64Bit)
2712       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2713         .addExternalSymbol("__morestack");
2714     else
2715       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2716         .addExternalSymbol("__morestack");
2717   }
2718 
2719   if (IsNested)
2720     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2721   else
2722     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2723 
2724   allocMBB->addSuccessor(&PrologueMBB);
2725 
2726   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2727   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2728 
2729 #ifdef EXPENSIVE_CHECKS
2730   MF.verify();
2731 #endif
2732 }
2733 
2734 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2735 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2736 /// to fields it needs, through a named metadata node "hipe.literals" containing
2737 /// name-value pairs.
2738 static unsigned getHiPELiteral(
2739     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2740   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2741     MDNode *Node = HiPELiteralsMD->getOperand(i);
2742     if (Node->getNumOperands() != 2) continue;
2743     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2744     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2745     if (!NodeName || !NodeVal) continue;
2746     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2747     if (ValConst && NodeName->getString() == LiteralName) {
2748       return ValConst->getZExtValue();
2749     }
2750   }
2751 
2752   report_fatal_error("HiPE literal " + LiteralName
2753                      + " required but not provided");
2754 }
2755 
2756 // Return true if there are no non-ehpad successors to MBB and there are no
2757 // non-meta instructions between MBBI and MBB.end().
2758 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
2759                                   MachineBasicBlock::const_iterator MBBI) {
2760   return std::all_of(
2761              MBB.succ_begin(), MBB.succ_end(),
2762              [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
2763          std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
2764            return MI.isMetaInstruction();
2765          });
2766 }
2767 
2768 /// Erlang programs may need a special prologue to handle the stack size they
2769 /// might need at runtime. That is because Erlang/OTP does not implement a C
2770 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2771 /// (for more information see Eric Stenman's Ph.D. thesis:
2772 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2773 ///
2774 /// CheckStack:
2775 ///       temp0 = sp - MaxStack
2776 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2777 /// OldStart:
2778 ///       ...
2779 /// IncStack:
2780 ///       call inc_stack   # doubles the stack space
2781 ///       temp0 = sp - MaxStack
2782 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2783 void X86FrameLowering::adjustForHiPEPrologue(
2784     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2785   MachineFrameInfo &MFI = MF.getFrameInfo();
2786   DebugLoc DL;
2787 
2788   // To support shrink-wrapping we would need to insert the new blocks
2789   // at the right place and update the branches to PrologueMBB.
2790   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2791 
2792   // HiPE-specific values
2793   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2794     ->getNamedMetadata("hipe.literals");
2795   if (!HiPELiteralsMD)
2796     report_fatal_error(
2797         "Can't generate HiPE prologue without runtime parameters");
2798   const unsigned HipeLeafWords
2799     = getHiPELiteral(HiPELiteralsMD,
2800                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2801   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2802   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2803   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2804                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2805   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2806 
2807   assert(STI.isTargetLinux() &&
2808          "HiPE prologue is only supported on Linux operating systems.");
2809 
2810   // Compute the largest caller's frame that is needed to fit the callees'
2811   // frames. This 'MaxStack' is computed from:
2812   //
2813   // a) the fixed frame size, which is the space needed for all spilled temps,
2814   // b) outgoing on-stack parameter areas, and
2815   // c) the minimum stack space this function needs to make available for the
2816   //    functions it calls (a tunable ABI property).
2817   if (MFI.hasCalls()) {
2818     unsigned MoreStackForCalls = 0;
2819 
2820     for (auto &MBB : MF) {
2821       for (auto &MI : MBB) {
2822         if (!MI.isCall())
2823           continue;
2824 
2825         // Get callee operand.
2826         const MachineOperand &MO = MI.getOperand(0);
2827 
2828         // Only take account of global function calls (no closures etc.).
2829         if (!MO.isGlobal())
2830           continue;
2831 
2832         const Function *F = dyn_cast<Function>(MO.getGlobal());
2833         if (!F)
2834           continue;
2835 
2836         // Do not update 'MaxStack' for primitive and built-in functions
2837         // (encoded with names either starting with "erlang."/"bif_" or not
2838         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2839         // "_", such as the BIF "suspend_0") as they are executed on another
2840         // stack.
2841         if (F->getName().find("erlang.") != StringRef::npos ||
2842             F->getName().find("bif_") != StringRef::npos ||
2843             F->getName().find_first_of("._") == StringRef::npos)
2844           continue;
2845 
2846         unsigned CalleeStkArity =
2847           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2848         if (HipeLeafWords - 1 > CalleeStkArity)
2849           MoreStackForCalls = std::max(MoreStackForCalls,
2850                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2851       }
2852     }
2853     MaxStack += MoreStackForCalls;
2854   }
2855 
2856   // If the stack frame needed is larger than the guaranteed then runtime checks
2857   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2858   if (MaxStack > Guaranteed) {
2859     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2860     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2861 
2862     for (const auto &LI : PrologueMBB.liveins()) {
2863       stackCheckMBB->addLiveIn(LI);
2864       incStackMBB->addLiveIn(LI);
2865     }
2866 
2867     MF.push_front(incStackMBB);
2868     MF.push_front(stackCheckMBB);
2869 
2870     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2871     unsigned LEAop, CMPop, CALLop;
2872     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2873     if (Is64Bit) {
2874       SPReg = X86::RSP;
2875       PReg  = X86::RBP;
2876       LEAop = X86::LEA64r;
2877       CMPop = X86::CMP64rm;
2878       CALLop = X86::CALL64pcrel32;
2879     } else {
2880       SPReg = X86::ESP;
2881       PReg  = X86::EBP;
2882       LEAop = X86::LEA32r;
2883       CMPop = X86::CMP32rm;
2884       CALLop = X86::CALLpcrel32;
2885     }
2886 
2887     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2888     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2889            "HiPE prologue scratch register is live-in");
2890 
2891     // Create new MBB for StackCheck:
2892     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2893                  SPReg, false, -MaxStack);
2894     // SPLimitOffset is in a fixed heap location (pointed by BP).
2895     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2896                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2897     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
2898 
2899     // Create new MBB for IncStack:
2900     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2901       addExternalSymbol("inc_stack_0");
2902     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2903                  SPReg, false, -MaxStack);
2904     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2905                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2906     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
2907 
2908     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2909     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2910     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2911     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2912   }
2913 #ifdef EXPENSIVE_CHECKS
2914   MF.verify();
2915 #endif
2916 }
2917 
2918 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2919                                            MachineBasicBlock::iterator MBBI,
2920                                            const DebugLoc &DL,
2921                                            int Offset) const {
2922 
2923   if (Offset <= 0)
2924     return false;
2925 
2926   if (Offset % SlotSize)
2927     return false;
2928 
2929   int NumPops = Offset / SlotSize;
2930   // This is only worth it if we have at most 2 pops.
2931   if (NumPops != 1 && NumPops != 2)
2932     return false;
2933 
2934   // Handle only the trivial case where the adjustment directly follows
2935   // a call. This is the most common one, anyway.
2936   if (MBBI == MBB.begin())
2937     return false;
2938   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2939   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2940     return false;
2941 
2942   unsigned Regs[2];
2943   unsigned FoundRegs = 0;
2944 
2945   auto &MRI = MBB.getParent()->getRegInfo();
2946   auto RegMask = Prev->getOperand(1);
2947 
2948   auto &RegClass =
2949       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2950   // Try to find up to NumPops free registers.
2951   for (auto Candidate : RegClass) {
2952 
2953     // Poor man's liveness:
2954     // Since we're immediately after a call, any register that is clobbered
2955     // by the call and not defined by it can be considered dead.
2956     if (!RegMask.clobbersPhysReg(Candidate))
2957       continue;
2958 
2959     // Don't clobber reserved registers
2960     if (MRI.isReserved(Candidate))
2961       continue;
2962 
2963     bool IsDef = false;
2964     for (const MachineOperand &MO : Prev->implicit_operands()) {
2965       if (MO.isReg() && MO.isDef() &&
2966           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2967         IsDef = true;
2968         break;
2969       }
2970     }
2971 
2972     if (IsDef)
2973       continue;
2974 
2975     Regs[FoundRegs++] = Candidate;
2976     if (FoundRegs == (unsigned)NumPops)
2977       break;
2978   }
2979 
2980   if (FoundRegs == 0)
2981     return false;
2982 
2983   // If we found only one free register, but need two, reuse the same one twice.
2984   while (FoundRegs < (unsigned)NumPops)
2985     Regs[FoundRegs++] = Regs[0];
2986 
2987   for (int i = 0; i < NumPops; ++i)
2988     BuildMI(MBB, MBBI, DL,
2989             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2990 
2991   return true;
2992 }
2993 
2994 MachineBasicBlock::iterator X86FrameLowering::
2995 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2996                               MachineBasicBlock::iterator I) const {
2997   bool reserveCallFrame = hasReservedCallFrame(MF);
2998   unsigned Opcode = I->getOpcode();
2999   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3000   DebugLoc DL = I->getDebugLoc();
3001   uint64_t Amount = TII.getFrameSize(*I);
3002   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3003   I = MBB.erase(I);
3004   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3005 
3006   // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3007   // typically because the function is marked noreturn (abort, throw,
3008   // assert_fail, etc).
3009   if (isDestroy && blockEndIsUnreachable(MBB, I))
3010     return I;
3011 
3012   if (!reserveCallFrame) {
3013     // If the stack pointer can be changed after prologue, turn the
3014     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3015     // adjcallstackdown instruction into 'add ESP, <amt>'
3016 
3017     // We need to keep the stack aligned properly.  To do this, we round the
3018     // amount of space needed for the outgoing arguments up to the next
3019     // alignment boundary.
3020     Amount = alignTo(Amount, getStackAlign());
3021 
3022     const Function &F = MF.getFunction();
3023     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3024     bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3025 
3026     // If we have any exception handlers in this function, and we adjust
3027     // the SP before calls, we may need to indicate this to the unwinder
3028     // using GNU_ARGS_SIZE. Note that this may be necessary even when
3029     // Amount == 0, because the preceding function may have set a non-0
3030     // GNU_ARGS_SIZE.
3031     // TODO: We don't need to reset this between subsequent functions,
3032     // if it didn't change.
3033     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3034 
3035     if (HasDwarfEHHandlers && !isDestroy &&
3036         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3037       BuildCFI(MBB, InsertPos, DL,
3038                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3039 
3040     if (Amount == 0)
3041       return I;
3042 
3043     // Factor out the amount that gets handled inside the sequence
3044     // (Pushes of argument for frame setup, callee pops for frame destroy)
3045     Amount -= InternalAmt;
3046 
3047     // TODO: This is needed only if we require precise CFA.
3048     // If this is a callee-pop calling convention, emit a CFA adjust for
3049     // the amount the callee popped.
3050     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3051       BuildCFI(MBB, InsertPos, DL,
3052                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3053 
3054     // Add Amount to SP to destroy a frame, or subtract to setup.
3055     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3056 
3057     if (StackAdjustment) {
3058       // Merge with any previous or following adjustment instruction. Note: the
3059       // instructions merged with here do not have CFI, so their stack
3060       // adjustments do not feed into CfaAdjustment.
3061       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3062       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3063 
3064       if (StackAdjustment) {
3065         if (!(F.hasMinSize() &&
3066               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3067           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3068                                /*InEpilogue=*/false);
3069       }
3070     }
3071 
3072     if (DwarfCFI && !hasFP(MF)) {
3073       // If we don't have FP, but need to generate unwind information,
3074       // we need to set the correct CFA offset after the stack adjustment.
3075       // How much we adjust the CFA offset depends on whether we're emitting
3076       // CFI only for EH purposes or for debugging. EH only requires the CFA
3077       // offset to be correct at each call site, while for debugging we want
3078       // it to be more precise.
3079 
3080       int64_t CfaAdjustment = -StackAdjustment;
3081       // TODO: When not using precise CFA, we also need to adjust for the
3082       // InternalAmt here.
3083       if (CfaAdjustment) {
3084         BuildCFI(MBB, InsertPos, DL,
3085                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
3086                                                          CfaAdjustment));
3087       }
3088     }
3089 
3090     return I;
3091   }
3092 
3093   if (InternalAmt) {
3094     MachineBasicBlock::iterator CI = I;
3095     MachineBasicBlock::iterator B = MBB.begin();
3096     while (CI != B && !std::prev(CI)->isCall())
3097       --CI;
3098     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3099   }
3100 
3101   return I;
3102 }
3103 
3104 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3105   assert(MBB.getParent() && "Block is not attached to a function!");
3106   const MachineFunction &MF = *MBB.getParent();
3107   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
3108 }
3109 
3110 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3111   assert(MBB.getParent() && "Block is not attached to a function!");
3112 
3113   // Win64 has strict requirements in terms of epilogue and we are
3114   // not taking a chance at messing with them.
3115   // I.e., unless this block is already an exit block, we can't use
3116   // it as an epilogue.
3117   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3118     return false;
3119 
3120   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3121     return true;
3122 
3123   // If we cannot use LEA to adjust SP, we may need to use ADD, which
3124   // clobbers the EFLAGS. Check that we do not need to preserve it,
3125   // otherwise, conservatively assume this is not
3126   // safe to insert the epilogue here.
3127   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3128 }
3129 
3130 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3131   // If we may need to emit frameless compact unwind information, give
3132   // up as this is currently broken: PR25614.
3133   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
3134          // The lowering of segmented stack and HiPE only support entry blocks
3135          // as prologue blocks: PR26107.
3136          // This limitation may be lifted if we fix:
3137          // - adjustForSegmentedStacks
3138          // - adjustForHiPEPrologue
3139          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3140          !MF.shouldSplitStack();
3141 }
3142 
3143 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3144     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3145     const DebugLoc &DL, bool RestoreSP) const {
3146   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3147   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3148   assert(STI.is32Bit() && !Uses64BitFramePtr &&
3149          "restoring EBP/ESI on non-32-bit target");
3150 
3151   MachineFunction &MF = *MBB.getParent();
3152   Register FramePtr = TRI->getFrameRegister(MF);
3153   Register BasePtr = TRI->getBaseRegister();
3154   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3155   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3156   MachineFrameInfo &MFI = MF.getFrameInfo();
3157 
3158   // FIXME: Don't set FrameSetup flag in catchret case.
3159 
3160   int FI = FuncInfo.EHRegNodeFrameIndex;
3161   int EHRegSize = MFI.getObjectSize(FI);
3162 
3163   if (RestoreSP) {
3164     // MOV32rm -EHRegSize(%ebp), %esp
3165     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3166                  X86::EBP, true, -EHRegSize)
3167         .setMIFlag(MachineInstr::FrameSetup);
3168   }
3169 
3170   Register UsedReg;
3171   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
3172   int EndOffset = -EHRegOffset - EHRegSize;
3173   FuncInfo.EHRegNodeEndOffset = EndOffset;
3174 
3175   if (UsedReg == FramePtr) {
3176     // ADD $offset, %ebp
3177     unsigned ADDri = getADDriOpcode(false, EndOffset);
3178     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3179         .addReg(FramePtr)
3180         .addImm(EndOffset)
3181         .setMIFlag(MachineInstr::FrameSetup)
3182         ->getOperand(3)
3183         .setIsDead();
3184     assert(EndOffset >= 0 &&
3185            "end of registration object above normal EBP position!");
3186   } else if (UsedReg == BasePtr) {
3187     // LEA offset(%ebp), %esi
3188     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3189                  FramePtr, false, EndOffset)
3190         .setMIFlag(MachineInstr::FrameSetup);
3191     // MOV32rm SavedEBPOffset(%esi), %ebp
3192     assert(X86FI->getHasSEHFramePtrSave());
3193     int Offset =
3194         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
3195     assert(UsedReg == BasePtr);
3196     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3197                  UsedReg, true, Offset)
3198         .setMIFlag(MachineInstr::FrameSetup);
3199   } else {
3200     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3201   }
3202   return MBBI;
3203 }
3204 
3205 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3206   return TRI->getSlotSize();
3207 }
3208 
3209 Register
3210 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3211   return TRI->getDwarfRegNum(StackPtr, true);
3212 }
3213 
3214 namespace {
3215 // Struct used by orderFrameObjects to help sort the stack objects.
3216 struct X86FrameSortingObject {
3217   bool IsValid = false;         // true if we care about this Object.
3218   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
3219   unsigned ObjectSize = 0;      // Size of Object in bytes.
3220   Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3221   unsigned ObjectNumUses = 0;   // Object static number of uses.
3222 };
3223 
3224 // The comparison function we use for std::sort to order our local
3225 // stack symbols. The current algorithm is to use an estimated
3226 // "density". This takes into consideration the size and number of
3227 // uses each object has in order to roughly minimize code size.
3228 // So, for example, an object of size 16B that is referenced 5 times
3229 // will get higher priority than 4 4B objects referenced 1 time each.
3230 // It's not perfect and we may be able to squeeze a few more bytes out of
3231 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3232 // fringe end can have special consideration, given their size is less
3233 // important, etc.), but the algorithmic complexity grows too much to be
3234 // worth the extra gains we get. This gets us pretty close.
3235 // The final order leaves us with objects with highest priority going
3236 // at the end of our list.
3237 struct X86FrameSortingComparator {
3238   inline bool operator()(const X86FrameSortingObject &A,
3239                          const X86FrameSortingObject &B) {
3240     uint64_t DensityAScaled, DensityBScaled;
3241 
3242     // For consistency in our comparison, all invalid objects are placed
3243     // at the end. This also allows us to stop walking when we hit the
3244     // first invalid item after it's all sorted.
3245     if (!A.IsValid)
3246       return false;
3247     if (!B.IsValid)
3248       return true;
3249 
3250     // The density is calculated by doing :
3251     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
3252     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
3253     // Since this approach may cause inconsistencies in
3254     // the floating point <, >, == comparisons, depending on the floating
3255     // point model with which the compiler was built, we're going
3256     // to scale both sides by multiplying with
3257     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3258     // the division and, with it, the need for any floating point
3259     // arithmetic.
3260     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3261       static_cast<uint64_t>(B.ObjectSize);
3262     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3263       static_cast<uint64_t>(A.ObjectSize);
3264 
3265     // If the two densities are equal, prioritize highest alignment
3266     // objects. This allows for similar alignment objects
3267     // to be packed together (given the same density).
3268     // There's room for improvement here, also, since we can pack
3269     // similar alignment (different density) objects next to each
3270     // other to save padding. This will also require further
3271     // complexity/iterations, and the overall gain isn't worth it,
3272     // in general. Something to keep in mind, though.
3273     if (DensityAScaled == DensityBScaled)
3274       return A.ObjectAlignment < B.ObjectAlignment;
3275 
3276     return DensityAScaled < DensityBScaled;
3277   }
3278 };
3279 } // namespace
3280 
3281 // Order the symbols in the local stack.
3282 // We want to place the local stack objects in some sort of sensible order.
3283 // The heuristic we use is to try and pack them according to static number
3284 // of uses and size of object in order to minimize code size.
3285 void X86FrameLowering::orderFrameObjects(
3286     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3287   const MachineFrameInfo &MFI = MF.getFrameInfo();
3288 
3289   // Don't waste time if there's nothing to do.
3290   if (ObjectsToAllocate.empty())
3291     return;
3292 
3293   // Create an array of all MFI objects. We won't need all of these
3294   // objects, but we're going to create a full array of them to make
3295   // it easier to index into when we're counting "uses" down below.
3296   // We want to be able to easily/cheaply access an object by simply
3297   // indexing into it, instead of having to search for it every time.
3298   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3299 
3300   // Walk the objects we care about and mark them as such in our working
3301   // struct.
3302   for (auto &Obj : ObjectsToAllocate) {
3303     SortingObjects[Obj].IsValid = true;
3304     SortingObjects[Obj].ObjectIndex = Obj;
3305     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3306     // Set the size.
3307     int ObjectSize = MFI.getObjectSize(Obj);
3308     if (ObjectSize == 0)
3309       // Variable size. Just use 4.
3310       SortingObjects[Obj].ObjectSize = 4;
3311     else
3312       SortingObjects[Obj].ObjectSize = ObjectSize;
3313   }
3314 
3315   // Count the number of uses for each object.
3316   for (auto &MBB : MF) {
3317     for (auto &MI : MBB) {
3318       if (MI.isDebugInstr())
3319         continue;
3320       for (const MachineOperand &MO : MI.operands()) {
3321         // Check to see if it's a local stack symbol.
3322         if (!MO.isFI())
3323           continue;
3324         int Index = MO.getIndex();
3325         // Check to see if it falls within our range, and is tagged
3326         // to require ordering.
3327         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3328             SortingObjects[Index].IsValid)
3329           SortingObjects[Index].ObjectNumUses++;
3330       }
3331     }
3332   }
3333 
3334   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3335   // info).
3336   llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3337 
3338   // Now modify the original list to represent the final order that
3339   // we want. The order will depend on whether we're going to access them
3340   // from the stack pointer or the frame pointer. For SP, the list should
3341   // end up with the END containing objects that we want with smaller offsets.
3342   // For FP, it should be flipped.
3343   int i = 0;
3344   for (auto &Obj : SortingObjects) {
3345     // All invalid items are sorted at the end, so it's safe to stop.
3346     if (!Obj.IsValid)
3347       break;
3348     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3349   }
3350 
3351   // Flip it if we're accessing off of the FP.
3352   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3353     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3354 }
3355 
3356 
3357 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3358   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3359   unsigned Offset = 16;
3360   // RBP is immediately pushed.
3361   Offset += SlotSize;
3362   // All callee-saved registers are then pushed.
3363   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3364   // Every funclet allocates enough stack space for the largest outgoing call.
3365   Offset += getWinEHFuncletFrameSize(MF);
3366   return Offset;
3367 }
3368 
3369 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3370     MachineFunction &MF, RegScavenger *RS) const {
3371   // Mark the function as not having WinCFI. We will set it back to true in
3372   // emitPrologue if it gets called and emits CFI.
3373   MF.setHasWinCFI(false);
3374 
3375   // If this function isn't doing Win64-style C++ EH, we don't need to do
3376   // anything.
3377   const Function &F = MF.getFunction();
3378   if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3379       classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3380     return;
3381 
3382   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3383   // relative to RSP after the prologue.  Find the offset of the last fixed
3384   // object, so that we can allocate a slot immediately following it. If there
3385   // were no fixed objects, use offset -SlotSize, which is immediately after the
3386   // return address. Fixed objects have negative frame indices.
3387   MachineFrameInfo &MFI = MF.getFrameInfo();
3388   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3389   int64_t MinFixedObjOffset = -SlotSize;
3390   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3391     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3392 
3393   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3394     for (WinEHHandlerType &H : TBME.HandlerArray) {
3395       int FrameIndex = H.CatchObj.FrameIndex;
3396       if (FrameIndex != INT_MAX) {
3397         // Ensure alignment.
3398         unsigned Align = MFI.getObjectAlign(FrameIndex).value();
3399         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3400         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3401         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3402       }
3403     }
3404   }
3405 
3406   // Ensure alignment.
3407   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3408   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3409   int UnwindHelpFI =
3410       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3411   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3412 
3413   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3414   // other frame setup instructions.
3415   MachineBasicBlock &MBB = MF.front();
3416   auto MBBI = MBB.begin();
3417   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3418     ++MBBI;
3419 
3420   DebugLoc DL = MBB.findDebugLoc(MBBI);
3421   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3422                     UnwindHelpFI)
3423       .addImm(-2);
3424 }
3425 
3426 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3427     MachineFunction &MF, RegScavenger *RS) const {
3428   if (STI.is32Bit() && MF.hasEHFunclets())
3429     restoreWinEHStackPointersInParent(MF);
3430 }
3431 
3432 void X86FrameLowering::restoreWinEHStackPointersInParent(
3433     MachineFunction &MF) const {
3434   // 32-bit functions have to restore stack pointers when control is transferred
3435   // back to the parent function. These blocks are identified as eh pads that
3436   // are not funclet entries.
3437   bool IsSEH = isAsynchronousEHPersonality(
3438       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
3439   for (MachineBasicBlock &MBB : MF) {
3440     bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
3441     if (NeedsRestore)
3442       restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
3443                                   /*RestoreSP=*/IsSEH);
3444   }
3445 }
3446