1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetOptions.h" 34 #include <cstdlib> 35 36 #define DEBUG_TYPE "x86-fl" 37 38 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 39 STATISTIC(NumFrameExtraProbe, 40 "Number of extra stack probes generated in prologue"); 41 42 using namespace llvm; 43 44 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 45 MaybeAlign StackAlignOverride) 46 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 47 STI.is64Bit() ? -8 : -4), 48 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 49 // Cache a bunch of frame-related predicates for this subtarget. 50 SlotSize = TRI->getSlotSize(); 51 Is64Bit = STI.is64Bit(); 52 IsLP64 = STI.isTarget64BitLP64(); 53 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 54 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 55 StackPtr = TRI->getStackRegister(); 56 } 57 58 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 59 return !MF.getFrameInfo().hasVarSizedObjects() && 60 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 61 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 62 } 63 64 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 65 /// call frame pseudos can be simplified. Having a FP, as in the default 66 /// implementation, is not sufficient here since we can't always use it. 67 /// Use a more nuanced condition. 68 bool 69 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 70 return hasReservedCallFrame(MF) || 71 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 72 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 73 TRI->hasBasePointer(MF); 74 } 75 76 // needsFrameIndexResolution - Do we need to perform FI resolution for 77 // this function. Normally, this is required only when the function 78 // has any stack objects. However, FI resolution actually has another job, 79 // not apparent from the title - it resolves callframesetup/destroy 80 // that were not simplified earlier. 81 // So, this is required for x86 functions that have push sequences even 82 // when there are no stack objects. 83 bool 84 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 85 return MF.getFrameInfo().hasStackObjects() || 86 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 87 } 88 89 /// hasFP - Return true if the specified function should have a dedicated frame 90 /// pointer register. This is true if the function has variable sized allocas 91 /// or if frame pointer elimination is disabled. 92 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 93 const MachineFrameInfo &MFI = MF.getFrameInfo(); 94 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 95 TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() || 96 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 97 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 98 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 99 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 100 MFI.hasStackMap() || MFI.hasPatchPoint() || 101 MFI.hasCopyImplyingStackAdjustment()); 102 } 103 104 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 105 if (IsLP64) { 106 if (isInt<8>(Imm)) 107 return X86::SUB64ri8; 108 return X86::SUB64ri32; 109 } else { 110 if (isInt<8>(Imm)) 111 return X86::SUB32ri8; 112 return X86::SUB32ri; 113 } 114 } 115 116 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 117 if (IsLP64) { 118 if (isInt<8>(Imm)) 119 return X86::ADD64ri8; 120 return X86::ADD64ri32; 121 } else { 122 if (isInt<8>(Imm)) 123 return X86::ADD32ri8; 124 return X86::ADD32ri; 125 } 126 } 127 128 static unsigned getSUBrrOpcode(bool IsLP64) { 129 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 130 } 131 132 static unsigned getADDrrOpcode(bool IsLP64) { 133 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 134 } 135 136 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 137 if (IsLP64) { 138 if (isInt<8>(Imm)) 139 return X86::AND64ri8; 140 return X86::AND64ri32; 141 } 142 if (isInt<8>(Imm)) 143 return X86::AND32ri8; 144 return X86::AND32ri; 145 } 146 147 static unsigned getLEArOpcode(bool IsLP64) { 148 return IsLP64 ? X86::LEA64r : X86::LEA32r; 149 } 150 151 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live 152 /// when it reaches the "return" instruction. We can then pop a stack object 153 /// to this register without worry about clobbering it. 154 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB, 155 MachineBasicBlock::iterator &MBBI, 156 const X86RegisterInfo *TRI, 157 bool Is64Bit) { 158 const MachineFunction *MF = MBB.getParent(); 159 if (MF->callsEHReturn()) 160 return 0; 161 162 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF); 163 164 if (MBBI == MBB.end()) 165 return 0; 166 167 switch (MBBI->getOpcode()) { 168 default: return 0; 169 case TargetOpcode::PATCHABLE_RET: 170 case X86::RET: 171 case X86::RETL: 172 case X86::RETQ: 173 case X86::RETIL: 174 case X86::RETIQ: 175 case X86::TCRETURNdi: 176 case X86::TCRETURNri: 177 case X86::TCRETURNmi: 178 case X86::TCRETURNdi64: 179 case X86::TCRETURNri64: 180 case X86::TCRETURNmi64: 181 case X86::EH_RETURN: 182 case X86::EH_RETURN64: { 183 SmallSet<uint16_t, 8> Uses; 184 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) { 185 MachineOperand &MO = MBBI->getOperand(i); 186 if (!MO.isReg() || MO.isDef()) 187 continue; 188 Register Reg = MO.getReg(); 189 if (!Reg) 190 continue; 191 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 192 Uses.insert(*AI); 193 } 194 195 for (auto CS : AvailableRegs) 196 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP && 197 CS != X86::ESP) 198 return CS; 199 } 200 } 201 202 return 0; 203 } 204 205 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 206 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 207 unsigned Reg = RegMask.PhysReg; 208 209 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 210 Reg == X86::AH || Reg == X86::AL) 211 return true; 212 } 213 214 return false; 215 } 216 217 /// Check if the flags need to be preserved before the terminators. 218 /// This would be the case, if the eflags is live-in of the region 219 /// composed by the terminators or live-out of that region, without 220 /// being defined by a terminator. 221 static bool 222 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 223 for (const MachineInstr &MI : MBB.terminators()) { 224 bool BreakNext = false; 225 for (const MachineOperand &MO : MI.operands()) { 226 if (!MO.isReg()) 227 continue; 228 Register Reg = MO.getReg(); 229 if (Reg != X86::EFLAGS) 230 continue; 231 232 // This terminator needs an eflags that is not defined 233 // by a previous another terminator: 234 // EFLAGS is live-in of the region composed by the terminators. 235 if (!MO.isDef()) 236 return true; 237 // This terminator defines the eflags, i.e., we don't need to preserve it. 238 // However, we still need to check this specific terminator does not 239 // read a live-in value. 240 BreakNext = true; 241 } 242 // We found a definition of the eflags, no need to preserve them. 243 if (BreakNext) 244 return false; 245 } 246 247 // None of the terminators use or define the eflags. 248 // Check if they are live-out, that would imply we need to preserve them. 249 for (const MachineBasicBlock *Succ : MBB.successors()) 250 if (Succ->isLiveIn(X86::EFLAGS)) 251 return true; 252 253 return false; 254 } 255 256 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 257 /// stack pointer by a constant value. 258 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 259 MachineBasicBlock::iterator &MBBI, 260 const DebugLoc &DL, 261 int64_t NumBytes, bool InEpilogue) const { 262 bool isSub = NumBytes < 0; 263 uint64_t Offset = isSub ? -NumBytes : NumBytes; 264 MachineInstr::MIFlag Flag = 265 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 266 267 uint64_t Chunk = (1LL << 31) - 1; 268 269 MachineFunction &MF = *MBB.getParent(); 270 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 271 const X86TargetLowering &TLI = *STI.getTargetLowering(); 272 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 273 274 // It's ok to not take into account large chunks when probing, as the 275 // allocation is split in smaller chunks anyway. 276 if (EmitInlineStackProbe && !InEpilogue) { 277 278 // This pseudo-instruction is going to be expanded, potentially using a 279 // loop, by inlineStackProbe(). 280 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 281 return; 282 } else if (Offset > Chunk) { 283 // Rather than emit a long series of instructions for large offsets, 284 // load the offset into a register and do one sub/add 285 unsigned Reg = 0; 286 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 287 288 if (isSub && !isEAXLiveIn(MBB)) 289 Reg = Rax; 290 else 291 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 292 293 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 294 unsigned AddSubRROpc = 295 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 296 if (Reg) { 297 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 298 .addImm(Offset) 299 .setMIFlag(Flag); 300 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 301 .addReg(StackPtr) 302 .addReg(Reg); 303 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 304 return; 305 } else if (Offset > 8 * Chunk) { 306 // If we would need more than 8 add or sub instructions (a >16GB stack 307 // frame), it's worth spilling RAX to materialize this immediate. 308 // pushq %rax 309 // movabsq +-$Offset+-SlotSize, %rax 310 // addq %rsp, %rax 311 // xchg %rax, (%rsp) 312 // movq (%rsp), %rsp 313 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 314 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 315 .addReg(Rax, RegState::Kill) 316 .setMIFlag(Flag); 317 // Subtract is not commutative, so negate the offset and always use add. 318 // Subtract 8 less and add 8 more to account for the PUSH we just did. 319 if (isSub) 320 Offset = -(Offset - SlotSize); 321 else 322 Offset = Offset + SlotSize; 323 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 324 .addImm(Offset) 325 .setMIFlag(Flag); 326 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 327 .addReg(Rax) 328 .addReg(StackPtr); 329 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 330 // Exchange the new SP in RAX with the top of the stack. 331 addRegOffset( 332 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 333 StackPtr, false, 0); 334 // Load new SP from the top of the stack into RSP. 335 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 336 StackPtr, false, 0); 337 return; 338 } 339 } 340 341 while (Offset) { 342 uint64_t ThisVal = std::min(Offset, Chunk); 343 if (ThisVal == SlotSize) { 344 // Use push / pop for slot sized adjustments as a size optimization. We 345 // need to find a dead register when using pop. 346 unsigned Reg = isSub 347 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 348 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit); 349 if (Reg) { 350 unsigned Opc = isSub 351 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 352 : (Is64Bit ? X86::POP64r : X86::POP32r); 353 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 354 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 355 .setMIFlag(Flag); 356 Offset -= ThisVal; 357 continue; 358 } 359 } 360 361 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 362 .setMIFlag(Flag); 363 364 Offset -= ThisVal; 365 } 366 } 367 368 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 369 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 370 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 371 assert(Offset != 0 && "zero offset stack adjustment requested"); 372 373 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 374 // is tricky. 375 bool UseLEA; 376 if (!InEpilogue) { 377 // Check if inserting the prologue at the beginning 378 // of MBB would require to use LEA operations. 379 // We need to use LEA operations if EFLAGS is live in, because 380 // it means an instruction will read it before it gets defined. 381 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 382 } else { 383 // If we can use LEA for SP but we shouldn't, check that none 384 // of the terminators uses the eflags. Otherwise we will insert 385 // a ADD that will redefine the eflags and break the condition. 386 // Alternatively, we could move the ADD, but this may not be possible 387 // and is an optimization anyway. 388 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 389 if (UseLEA && !STI.useLeaForSP()) 390 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 391 // If that assert breaks, that means we do not do the right thing 392 // in canUseAsEpilogue. 393 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 394 "We shouldn't have allowed this insertion point"); 395 } 396 397 MachineInstrBuilder MI; 398 if (UseLEA) { 399 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 400 TII.get(getLEArOpcode(Uses64BitFramePtr)), 401 StackPtr), 402 StackPtr, false, Offset); 403 } else { 404 bool IsSub = Offset < 0; 405 uint64_t AbsOffset = IsSub ? -Offset : Offset; 406 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 407 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 408 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 409 .addReg(StackPtr) 410 .addImm(AbsOffset); 411 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 412 } 413 return MI; 414 } 415 416 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 417 MachineBasicBlock::iterator &MBBI, 418 bool doMergeWithPrevious) const { 419 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 420 (!doMergeWithPrevious && MBBI == MBB.end())) 421 return 0; 422 423 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 424 425 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 426 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 427 // instruction, and that there are no DBG_VALUE or other instructions between 428 // ADD/SUB/LEA and its corresponding CFI instruction. 429 /* TODO: Add support for the case where there are multiple CFI instructions 430 below the ADD/SUB/LEA, e.g.: 431 ... 432 add 433 cfi_def_cfa_offset 434 cfi_offset 435 ... 436 */ 437 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 438 PI = std::prev(PI); 439 440 unsigned Opc = PI->getOpcode(); 441 int Offset = 0; 442 443 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 444 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 445 PI->getOperand(0).getReg() == StackPtr){ 446 assert(PI->getOperand(1).getReg() == StackPtr); 447 Offset = PI->getOperand(2).getImm(); 448 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 449 PI->getOperand(0).getReg() == StackPtr && 450 PI->getOperand(1).getReg() == StackPtr && 451 PI->getOperand(2).getImm() == 1 && 452 PI->getOperand(3).getReg() == X86::NoRegister && 453 PI->getOperand(5).getReg() == X86::NoRegister) { 454 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 455 Offset = PI->getOperand(4).getImm(); 456 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 457 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 458 PI->getOperand(0).getReg() == StackPtr) { 459 assert(PI->getOperand(1).getReg() == StackPtr); 460 Offset = -PI->getOperand(2).getImm(); 461 } else 462 return 0; 463 464 PI = MBB.erase(PI); 465 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 466 if (!doMergeWithPrevious) 467 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 468 469 return Offset; 470 } 471 472 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 473 MachineBasicBlock::iterator MBBI, 474 const DebugLoc &DL, 475 const MCCFIInstruction &CFIInst) const { 476 MachineFunction &MF = *MBB.getParent(); 477 unsigned CFIIndex = MF.addFrameInst(CFIInst); 478 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 479 .addCFIIndex(CFIIndex); 480 } 481 482 /// Emits Dwarf Info specifying offsets of callee saved registers and 483 /// frame pointer. This is called only when basic block sections are enabled. 484 void X86FrameLowering::emitCalleeSavedFrameMoves( 485 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 486 MachineFunction &MF = *MBB.getParent(); 487 if (!hasFP(MF)) { 488 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 489 return; 490 } 491 const MachineModuleInfo &MMI = MF.getMMI(); 492 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 493 const unsigned FramePtr = TRI->getFrameRegister(MF); 494 const unsigned MachineFramePtr = 495 STI.isTarget64BitILP32() ? unsigned(getX86SubSuperRegister(FramePtr, 64)) 496 : FramePtr; 497 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 498 // Offset = space for return address + size of the frame pointer itself. 499 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 500 BuildCFI(MBB, MBBI, DebugLoc{}, 501 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 502 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 503 } 504 505 void X86FrameLowering::emitCalleeSavedFrameMoves( 506 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 507 const DebugLoc &DL, bool IsPrologue) const { 508 MachineFunction &MF = *MBB.getParent(); 509 MachineFrameInfo &MFI = MF.getFrameInfo(); 510 MachineModuleInfo &MMI = MF.getMMI(); 511 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 512 513 // Add callee saved registers to move list. 514 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 515 if (CSI.empty()) return; 516 517 // Calculate offsets. 518 for (std::vector<CalleeSavedInfo>::const_iterator 519 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 520 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 521 unsigned Reg = I->getReg(); 522 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 523 524 if (IsPrologue) { 525 BuildCFI(MBB, MBBI, DL, 526 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 527 } else { 528 BuildCFI(MBB, MBBI, DL, 529 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 530 } 531 } 532 } 533 534 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 535 MachineBasicBlock &MBB, 536 MachineBasicBlock::iterator MBBI, 537 const DebugLoc &DL, bool InProlog) const { 538 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 539 if (STI.isTargetWindowsCoreCLR()) { 540 if (InProlog) { 541 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 542 .addImm(0 /* no explicit stack size */); 543 } else { 544 emitStackProbeInline(MF, MBB, MBBI, DL, false); 545 } 546 } else { 547 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 548 } 549 } 550 551 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 552 MachineBasicBlock &PrologMBB) const { 553 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 554 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 555 }); 556 if (Where != PrologMBB.end()) { 557 DebugLoc DL = PrologMBB.findDebugLoc(Where); 558 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 559 Where->eraseFromParent(); 560 } 561 } 562 563 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 564 MachineBasicBlock &MBB, 565 MachineBasicBlock::iterator MBBI, 566 const DebugLoc &DL, 567 bool InProlog) const { 568 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 569 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 570 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 571 else 572 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 573 } 574 575 void X86FrameLowering::emitStackProbeInlineGeneric( 576 MachineFunction &MF, MachineBasicBlock &MBB, 577 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 578 MachineInstr &AllocWithProbe = *MBBI; 579 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 580 581 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 582 const X86TargetLowering &TLI = *STI.getTargetLowering(); 583 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 584 "different expansion expected for CoreCLR 64 bit"); 585 586 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 587 uint64_t ProbeChunk = StackProbeSize * 8; 588 589 // Synthesize a loop or unroll it, depending on the number of iterations. 590 if (Offset > ProbeChunk) { 591 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset); 592 } else { 593 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset); 594 } 595 } 596 597 void X86FrameLowering::emitStackProbeInlineGenericBlock( 598 MachineFunction &MF, MachineBasicBlock &MBB, 599 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 600 uint64_t Offset) const { 601 602 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 603 const X86TargetLowering &TLI = *STI.getTargetLowering(); 604 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 605 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 606 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 607 uint64_t CurrentOffset = 0; 608 // 0 Thanks to return address being saved on the stack 609 uint64_t CurrentProbeOffset = 0; 610 611 // For the first N - 1 pages, just probe. I tried to take advantage of 612 // natural probes but it implies much more logic and there was very few 613 // interesting natural probes to interleave. 614 while (CurrentOffset + StackProbeSize < Offset) { 615 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 616 .addReg(StackPtr) 617 .addImm(StackProbeSize) 618 .setMIFlag(MachineInstr::FrameSetup); 619 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 620 621 622 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 623 .setMIFlag(MachineInstr::FrameSetup), 624 StackPtr, false, 0) 625 .addImm(0) 626 .setMIFlag(MachineInstr::FrameSetup); 627 NumFrameExtraProbe++; 628 CurrentOffset += StackProbeSize; 629 CurrentProbeOffset += StackProbeSize; 630 } 631 632 uint64_t ChunkSize = Offset - CurrentOffset; 633 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 634 .addReg(StackPtr) 635 .addImm(ChunkSize) 636 .setMIFlag(MachineInstr::FrameSetup); 637 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 638 } 639 640 void X86FrameLowering::emitStackProbeInlineGenericLoop( 641 MachineFunction &MF, MachineBasicBlock &MBB, 642 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 643 uint64_t Offset) const { 644 assert(Offset && "null offset"); 645 646 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 647 const X86TargetLowering &TLI = *STI.getTargetLowering(); 648 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 649 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 650 651 // Synthesize a loop 652 NumFrameLoopProbe++; 653 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 654 655 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 656 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 657 658 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 659 MF.insert(MBBIter, testMBB); 660 MF.insert(MBBIter, tailMBB); 661 662 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D; 663 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 664 .addReg(StackPtr) 665 .setMIFlag(MachineInstr::FrameSetup); 666 667 // save loop bound 668 { 669 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 670 BuildMI(MBB, MBBI, DL, TII.get(Opc), FinalStackProbed) 671 .addReg(FinalStackProbed) 672 .addImm(Offset / StackProbeSize * StackProbeSize) 673 .setMIFlag(MachineInstr::FrameSetup); 674 } 675 676 // allocate a page 677 { 678 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 679 BuildMI(testMBB, DL, TII.get(Opc), StackPtr) 680 .addReg(StackPtr) 681 .addImm(StackProbeSize) 682 .setMIFlag(MachineInstr::FrameSetup); 683 } 684 685 // touch the page 686 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 687 .setMIFlag(MachineInstr::FrameSetup), 688 StackPtr, false, 0) 689 .addImm(0) 690 .setMIFlag(MachineInstr::FrameSetup); 691 692 // cmp with stack pointer bound 693 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 694 .addReg(StackPtr) 695 .addReg(FinalStackProbed) 696 .setMIFlag(MachineInstr::FrameSetup); 697 698 // jump 699 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 700 .addMBB(testMBB) 701 .addImm(X86::COND_NE) 702 .setMIFlag(MachineInstr::FrameSetup); 703 testMBB->addSuccessor(testMBB); 704 testMBB->addSuccessor(tailMBB); 705 706 // BB management 707 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 708 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 709 MBB.addSuccessor(testMBB); 710 711 // handle tail 712 unsigned TailOffset = Offset % StackProbeSize; 713 if (TailOffset) { 714 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 715 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 716 .addReg(StackPtr) 717 .addImm(TailOffset) 718 .setMIFlag(MachineInstr::FrameSetup); 719 } 720 721 // Update Live In information 722 recomputeLiveIns(*testMBB); 723 recomputeLiveIns(*tailMBB); 724 } 725 726 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 727 MachineFunction &MF, MachineBasicBlock &MBB, 728 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 729 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 730 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 731 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 732 const TargetInstrInfo &TII = *STI.getInstrInfo(); 733 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 734 735 // RAX contains the number of bytes of desired stack adjustment. 736 // The handling here assumes this value has already been updated so as to 737 // maintain stack alignment. 738 // 739 // We need to exit with RSP modified by this amount and execute suitable 740 // page touches to notify the OS that we're growing the stack responsibly. 741 // All stack probing must be done without modifying RSP. 742 // 743 // MBB: 744 // SizeReg = RAX; 745 // ZeroReg = 0 746 // CopyReg = RSP 747 // Flags, TestReg = CopyReg - SizeReg 748 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 749 // LimitReg = gs magic thread env access 750 // if FinalReg >= LimitReg goto ContinueMBB 751 // RoundBB: 752 // RoundReg = page address of FinalReg 753 // LoopMBB: 754 // LoopReg = PHI(LimitReg,ProbeReg) 755 // ProbeReg = LoopReg - PageSize 756 // [ProbeReg] = 0 757 // if (ProbeReg > RoundReg) goto LoopMBB 758 // ContinueMBB: 759 // RSP = RSP - RAX 760 // [rest of original MBB] 761 762 // Set up the new basic blocks 763 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 764 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 765 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 766 767 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 768 MF.insert(MBBIter, RoundMBB); 769 MF.insert(MBBIter, LoopMBB); 770 MF.insert(MBBIter, ContinueMBB); 771 772 // Split MBB and move the tail portion down to ContinueMBB. 773 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 774 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 775 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 776 777 // Some useful constants 778 const int64_t ThreadEnvironmentStackLimit = 0x10; 779 const int64_t PageSize = 0x1000; 780 const int64_t PageMask = ~(PageSize - 1); 781 782 // Registers we need. For the normal case we use virtual 783 // registers. For the prolog expansion we use RAX, RCX and RDX. 784 MachineRegisterInfo &MRI = MF.getRegInfo(); 785 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 786 const Register SizeReg = InProlog ? X86::RAX 787 : MRI.createVirtualRegister(RegClass), 788 ZeroReg = InProlog ? X86::RCX 789 : MRI.createVirtualRegister(RegClass), 790 CopyReg = InProlog ? X86::RDX 791 : MRI.createVirtualRegister(RegClass), 792 TestReg = InProlog ? X86::RDX 793 : MRI.createVirtualRegister(RegClass), 794 FinalReg = InProlog ? X86::RDX 795 : MRI.createVirtualRegister(RegClass), 796 RoundedReg = InProlog ? X86::RDX 797 : MRI.createVirtualRegister(RegClass), 798 LimitReg = InProlog ? X86::RCX 799 : MRI.createVirtualRegister(RegClass), 800 JoinReg = InProlog ? X86::RCX 801 : MRI.createVirtualRegister(RegClass), 802 ProbeReg = InProlog ? X86::RCX 803 : MRI.createVirtualRegister(RegClass); 804 805 // SP-relative offsets where we can save RCX and RDX. 806 int64_t RCXShadowSlot = 0; 807 int64_t RDXShadowSlot = 0; 808 809 // If inlining in the prolog, save RCX and RDX. 810 if (InProlog) { 811 // Compute the offsets. We need to account for things already 812 // pushed onto the stack at this point: return address, frame 813 // pointer (if used), and callee saves. 814 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 815 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 816 const bool HasFP = hasFP(MF); 817 818 // Check if we need to spill RCX and/or RDX. 819 // Here we assume that no earlier prologue instruction changes RCX and/or 820 // RDX, so checking the block live-ins is enough. 821 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 822 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 823 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 824 // Assign the initial slot to both registers, then change RDX's slot if both 825 // need to be spilled. 826 if (IsRCXLiveIn) 827 RCXShadowSlot = InitSlot; 828 if (IsRDXLiveIn) 829 RDXShadowSlot = InitSlot; 830 if (IsRDXLiveIn && IsRCXLiveIn) 831 RDXShadowSlot += 8; 832 // Emit the saves if needed. 833 if (IsRCXLiveIn) 834 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 835 RCXShadowSlot) 836 .addReg(X86::RCX); 837 if (IsRDXLiveIn) 838 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 839 RDXShadowSlot) 840 .addReg(X86::RDX); 841 } else { 842 // Not in the prolog. Copy RAX to a virtual reg. 843 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 844 } 845 846 // Add code to MBB to check for overflow and set the new target stack pointer 847 // to zero if so. 848 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 849 .addReg(ZeroReg, RegState::Undef) 850 .addReg(ZeroReg, RegState::Undef); 851 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 852 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 853 .addReg(CopyReg) 854 .addReg(SizeReg); 855 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 856 .addReg(TestReg) 857 .addReg(ZeroReg) 858 .addImm(X86::COND_B); 859 860 // FinalReg now holds final stack pointer value, or zero if 861 // allocation would overflow. Compare against the current stack 862 // limit from the thread environment block. Note this limit is the 863 // lowest touched page on the stack, not the point at which the OS 864 // will cause an overflow exception, so this is just an optimization 865 // to avoid unnecessarily touching pages that are below the current 866 // SP but already committed to the stack by the OS. 867 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 868 .addReg(0) 869 .addImm(1) 870 .addReg(0) 871 .addImm(ThreadEnvironmentStackLimit) 872 .addReg(X86::GS); 873 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 874 // Jump if the desired stack pointer is at or above the stack limit. 875 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 876 877 // Add code to roundMBB to round the final stack pointer to a page boundary. 878 RoundMBB->addLiveIn(FinalReg); 879 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 880 .addReg(FinalReg) 881 .addImm(PageMask); 882 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 883 884 // LimitReg now holds the current stack limit, RoundedReg page-rounded 885 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 886 // and probe until we reach RoundedReg. 887 if (!InProlog) { 888 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 889 .addReg(LimitReg) 890 .addMBB(RoundMBB) 891 .addReg(ProbeReg) 892 .addMBB(LoopMBB); 893 } 894 895 LoopMBB->addLiveIn(JoinReg); 896 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 897 false, -PageSize); 898 899 // Probe by storing a byte onto the stack. 900 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 901 .addReg(ProbeReg) 902 .addImm(1) 903 .addReg(0) 904 .addImm(0) 905 .addReg(0) 906 .addImm(0); 907 908 LoopMBB->addLiveIn(RoundedReg); 909 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 910 .addReg(RoundedReg) 911 .addReg(ProbeReg); 912 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 913 914 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 915 916 // If in prolog, restore RDX and RCX. 917 if (InProlog) { 918 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 919 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 920 TII.get(X86::MOV64rm), X86::RCX), 921 X86::RSP, false, RCXShadowSlot); 922 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 923 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 924 TII.get(X86::MOV64rm), X86::RDX), 925 X86::RSP, false, RDXShadowSlot); 926 } 927 928 // Now that the probing is done, add code to continueMBB to update 929 // the stack pointer for real. 930 ContinueMBB->addLiveIn(SizeReg); 931 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 932 .addReg(X86::RSP) 933 .addReg(SizeReg); 934 935 // Add the control flow edges we need. 936 MBB.addSuccessor(ContinueMBB); 937 MBB.addSuccessor(RoundMBB); 938 RoundMBB->addSuccessor(LoopMBB); 939 LoopMBB->addSuccessor(ContinueMBB); 940 LoopMBB->addSuccessor(LoopMBB); 941 942 // Mark all the instructions added to the prolog as frame setup. 943 if (InProlog) { 944 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 945 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 946 } 947 for (MachineInstr &MI : *RoundMBB) { 948 MI.setFlag(MachineInstr::FrameSetup); 949 } 950 for (MachineInstr &MI : *LoopMBB) { 951 MI.setFlag(MachineInstr::FrameSetup); 952 } 953 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 954 CMBBI != ContinueMBBI; ++CMBBI) { 955 CMBBI->setFlag(MachineInstr::FrameSetup); 956 } 957 } 958 } 959 960 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 961 MachineBasicBlock &MBB, 962 MachineBasicBlock::iterator MBBI, 963 const DebugLoc &DL, 964 bool InProlog) const { 965 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 966 967 // FIXME: Add indirect thunk support and remove this. 968 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 969 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 970 "code model and indirect thunks not yet implemented."); 971 972 unsigned CallOp; 973 if (Is64Bit) 974 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 975 else 976 CallOp = X86::CALLpcrel32; 977 978 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 979 980 MachineInstrBuilder CI; 981 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 982 983 // All current stack probes take AX and SP as input, clobber flags, and 984 // preserve all registers. x86_64 probes leave RSP unmodified. 985 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 986 // For the large code model, we have to call through a register. Use R11, 987 // as it is scratch in all supported calling conventions. 988 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 989 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 990 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 991 } else { 992 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 993 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 994 } 995 996 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 997 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 998 CI.addReg(AX, RegState::Implicit) 999 .addReg(SP, RegState::Implicit) 1000 .addReg(AX, RegState::Define | RegState::Implicit) 1001 .addReg(SP, RegState::Define | RegState::Implicit) 1002 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1003 1004 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1005 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1006 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1007 // themselves. They also does not clobber %rax so we can reuse it when 1008 // adjusting %rsp. 1009 // All other platforms do not specify a particular ABI for the stack probe 1010 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1011 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1012 .addReg(SP) 1013 .addReg(AX); 1014 } 1015 1016 if (InProlog) { 1017 // Apply the frame setup flag to all inserted instrs. 1018 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1019 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1020 } 1021 } 1022 1023 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1024 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1025 // and might require smaller successive adjustments. 1026 const uint64_t Win64MaxSEHOffset = 128; 1027 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1028 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1029 return SEHFrameOffset & -16; 1030 } 1031 1032 // If we're forcing a stack realignment we can't rely on just the frame 1033 // info, we need to know the ABI stack alignment as well in case we 1034 // have a call out. Otherwise just make sure we have some alignment - we'll 1035 // go with the minimum SlotSize. 1036 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1037 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1038 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1039 Align StackAlign = getStackAlign(); 1040 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1041 if (MFI.hasCalls()) 1042 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1043 else if (MaxAlign < SlotSize) 1044 MaxAlign = Align(SlotSize); 1045 } 1046 return MaxAlign.value(); 1047 } 1048 1049 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1050 MachineBasicBlock::iterator MBBI, 1051 const DebugLoc &DL, unsigned Reg, 1052 uint64_t MaxAlign) const { 1053 uint64_t Val = -MaxAlign; 1054 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1055 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1056 .addReg(Reg) 1057 .addImm(Val) 1058 .setMIFlag(MachineInstr::FrameSetup); 1059 1060 // The EFLAGS implicit def is dead. 1061 MI->getOperand(3).setIsDead(); 1062 } 1063 1064 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1065 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1066 // clobbered by any interrupt handler. 1067 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1068 "MF used frame lowering for wrong subtarget"); 1069 const Function &Fn = MF.getFunction(); 1070 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1071 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1072 } 1073 1074 1075 /// emitPrologue - Push callee-saved registers onto the stack, which 1076 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1077 /// space for local variables. Also emit labels used by the exception handler to 1078 /// generate the exception handling frames. 1079 1080 /* 1081 Here's a gist of what gets emitted: 1082 1083 ; Establish frame pointer, if needed 1084 [if needs FP] 1085 push %rbp 1086 .cfi_def_cfa_offset 16 1087 .cfi_offset %rbp, -16 1088 .seh_pushreg %rpb 1089 mov %rsp, %rbp 1090 .cfi_def_cfa_register %rbp 1091 1092 ; Spill general-purpose registers 1093 [for all callee-saved GPRs] 1094 pushq %<reg> 1095 [if not needs FP] 1096 .cfi_def_cfa_offset (offset from RETADDR) 1097 .seh_pushreg %<reg> 1098 1099 ; If the required stack alignment > default stack alignment 1100 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1101 ; of unknown size in the stack frame. 1102 [if stack needs re-alignment] 1103 and $MASK, %rsp 1104 1105 ; Allocate space for locals 1106 [if target is Windows and allocated space > 4096 bytes] 1107 ; Windows needs special care for allocations larger 1108 ; than one page. 1109 mov $NNN, %rax 1110 call ___chkstk_ms/___chkstk 1111 sub %rax, %rsp 1112 [else] 1113 sub $NNN, %rsp 1114 1115 [if needs FP] 1116 .seh_stackalloc (size of XMM spill slots) 1117 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1118 [else] 1119 .seh_stackalloc NNN 1120 1121 ; Spill XMMs 1122 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1123 ; they may get spilled on any platform, if the current function 1124 ; calls @llvm.eh.unwind.init 1125 [if needs FP] 1126 [for all callee-saved XMM registers] 1127 movaps %<xmm reg>, -MMM(%rbp) 1128 [for all callee-saved XMM registers] 1129 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1130 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1131 [else] 1132 [for all callee-saved XMM registers] 1133 movaps %<xmm reg>, KKK(%rsp) 1134 [for all callee-saved XMM registers] 1135 .seh_savexmm %<xmm reg>, KKK 1136 1137 .seh_endprologue 1138 1139 [if needs base pointer] 1140 mov %rsp, %rbx 1141 [if needs to restore base pointer] 1142 mov %rsp, -MMM(%rbp) 1143 1144 ; Emit CFI info 1145 [if needs FP] 1146 [for all callee-saved registers] 1147 .cfi_offset %<reg>, (offset from %rbp) 1148 [else] 1149 .cfi_def_cfa_offset (offset from RETADDR) 1150 [for all callee-saved registers] 1151 .cfi_offset %<reg>, (offset from %rsp) 1152 1153 Notes: 1154 - .seh directives are emitted only for Windows 64 ABI 1155 - .cv_fpo directives are emitted on win32 when emitting CodeView 1156 - .cfi directives are emitted for all other ABIs 1157 - for 32-bit code, substitute %e?? registers for %r?? 1158 */ 1159 1160 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1161 MachineBasicBlock &MBB) const { 1162 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1163 "MF used frame lowering for wrong subtarget"); 1164 MachineBasicBlock::iterator MBBI = MBB.begin(); 1165 MachineFrameInfo &MFI = MF.getFrameInfo(); 1166 const Function &Fn = MF.getFunction(); 1167 MachineModuleInfo &MMI = MF.getMMI(); 1168 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1169 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1170 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1171 bool IsFunclet = MBB.isEHFuncletEntry(); 1172 EHPersonality Personality = EHPersonality::Unknown; 1173 if (Fn.hasPersonalityFn()) 1174 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1175 bool FnHasClrFunclet = 1176 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1177 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1178 bool HasFP = hasFP(MF); 1179 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1180 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1181 // FIXME: Emit FPO data for EH funclets. 1182 bool NeedsWinFPO = 1183 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1184 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1185 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 1186 Register FramePtr = TRI->getFrameRegister(MF); 1187 const Register MachineFramePtr = 1188 STI.isTarget64BitILP32() 1189 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1190 Register BasePtr = TRI->getBaseRegister(); 1191 bool HasWinCFI = false; 1192 1193 // Debug location must be unknown since the first debug location is used 1194 // to determine the end of the prologue. 1195 DebugLoc DL; 1196 1197 // Add RETADDR move area to callee saved frame size. 1198 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1199 if (TailCallReturnAddrDelta && IsWin64Prologue) 1200 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1201 1202 if (TailCallReturnAddrDelta < 0) 1203 X86FI->setCalleeSavedFrameSize( 1204 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1205 1206 const bool EmitStackProbeCall = 1207 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1208 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1209 1210 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1211 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1212 // stack alignment. 1213 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1214 Fn.arg_size() == 2) { 1215 StackSize += 8; 1216 MFI.setStackSize(StackSize); 1217 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1218 } 1219 1220 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1221 // function, and use up to 128 bytes of stack space, don't have a frame 1222 // pointer, calls, or dynamic alloca then we do not need to adjust the 1223 // stack pointer (we fit in the Red Zone). We also check that we don't 1224 // push and pop from the stack. 1225 if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) && 1226 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1227 !MFI.adjustsStack() && // No calls. 1228 !EmitStackProbeCall && // No stack probes. 1229 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1230 !MF.shouldSplitStack()) { // Regular stack 1231 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1232 if (HasFP) MinSize += SlotSize; 1233 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1234 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1235 MFI.setStackSize(StackSize); 1236 } 1237 1238 // Insert stack pointer adjustment for later moving of return addr. Only 1239 // applies to tail call optimized functions where the callee argument stack 1240 // size is bigger than the callers. 1241 if (TailCallReturnAddrDelta < 0) { 1242 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1243 /*InEpilogue=*/false) 1244 .setMIFlag(MachineInstr::FrameSetup); 1245 } 1246 1247 // Mapping for machine moves: 1248 // 1249 // DST: VirtualFP AND 1250 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1251 // ELSE => DW_CFA_def_cfa 1252 // 1253 // SRC: VirtualFP AND 1254 // DST: Register => DW_CFA_def_cfa_register 1255 // 1256 // ELSE 1257 // OFFSET < 0 => DW_CFA_offset_extended_sf 1258 // REG < 64 => DW_CFA_offset + Reg 1259 // ELSE => DW_CFA_offset_extended 1260 1261 uint64_t NumBytes = 0; 1262 int stackGrowth = -SlotSize; 1263 1264 // Find the funclet establisher parameter 1265 Register Establisher = X86::NoRegister; 1266 if (IsClrFunclet) 1267 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1268 else if (IsFunclet) 1269 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1270 1271 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1272 // Immediately spill establisher into the home slot. 1273 // The runtime cares about this. 1274 // MOV64mr %rdx, 16(%rsp) 1275 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1276 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1277 .addReg(Establisher) 1278 .setMIFlag(MachineInstr::FrameSetup); 1279 MBB.addLiveIn(Establisher); 1280 } 1281 1282 if (HasFP) { 1283 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1284 1285 // Calculate required stack adjustment. 1286 uint64_t FrameSize = StackSize - SlotSize; 1287 // If required, include space for extra hidden slot for stashing base pointer. 1288 if (X86FI->getRestoreBasePointer()) 1289 FrameSize += SlotSize; 1290 1291 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1292 1293 // Callee-saved registers are pushed on stack before the stack is realigned. 1294 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1295 NumBytes = alignTo(NumBytes, MaxAlign); 1296 1297 // Save EBP/RBP into the appropriate stack slot. 1298 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1299 .addReg(MachineFramePtr, RegState::Kill) 1300 .setMIFlag(MachineInstr::FrameSetup); 1301 1302 if (NeedsDwarfCFI) { 1303 // Mark the place where EBP/RBP was saved. 1304 // Define the current CFA rule to use the provided offset. 1305 assert(StackSize); 1306 BuildCFI(MBB, MBBI, DL, 1307 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1308 1309 // Change the rule for the FramePtr to be an "offset" rule. 1310 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1311 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1312 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1313 } 1314 1315 if (NeedsWinCFI) { 1316 HasWinCFI = true; 1317 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1318 .addImm(FramePtr) 1319 .setMIFlag(MachineInstr::FrameSetup); 1320 } 1321 1322 if (!IsWin64Prologue && !IsFunclet) { 1323 // Update EBP with the new base value. 1324 BuildMI(MBB, MBBI, DL, 1325 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1326 FramePtr) 1327 .addReg(StackPtr) 1328 .setMIFlag(MachineInstr::FrameSetup); 1329 1330 if (NeedsDwarfCFI) { 1331 // Mark effective beginning of when frame pointer becomes valid. 1332 // Define the current CFA to use the EBP/RBP register. 1333 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1334 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1335 nullptr, DwarfFramePtr)); 1336 } 1337 1338 if (NeedsWinFPO) { 1339 // .cv_fpo_setframe $FramePtr 1340 HasWinCFI = true; 1341 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1342 .addImm(FramePtr) 1343 .addImm(0) 1344 .setMIFlag(MachineInstr::FrameSetup); 1345 } 1346 } 1347 } else { 1348 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1349 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1350 } 1351 1352 // Update the offset adjustment, which is mainly used by codeview to translate 1353 // from ESP to VFRAME relative local variable offsets. 1354 if (!IsFunclet) { 1355 if (HasFP && TRI->needsStackRealignment(MF)) 1356 MFI.setOffsetAdjustment(-NumBytes); 1357 else 1358 MFI.setOffsetAdjustment(-StackSize); 1359 } 1360 1361 // For EH funclets, only allocate enough space for outgoing calls. Save the 1362 // NumBytes value that we would've used for the parent frame. 1363 unsigned ParentFrameNumBytes = NumBytes; 1364 if (IsFunclet) 1365 NumBytes = getWinEHFuncletFrameSize(MF); 1366 1367 // Skip the callee-saved push instructions. 1368 bool PushedRegs = false; 1369 int StackOffset = 2 * stackGrowth; 1370 1371 while (MBBI != MBB.end() && 1372 MBBI->getFlag(MachineInstr::FrameSetup) && 1373 (MBBI->getOpcode() == X86::PUSH32r || 1374 MBBI->getOpcode() == X86::PUSH64r)) { 1375 PushedRegs = true; 1376 Register Reg = MBBI->getOperand(0).getReg(); 1377 ++MBBI; 1378 1379 if (!HasFP && NeedsDwarfCFI) { 1380 // Mark callee-saved push instruction. 1381 // Define the current CFA rule to use the provided offset. 1382 assert(StackSize); 1383 BuildCFI(MBB, MBBI, DL, 1384 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1385 StackOffset += stackGrowth; 1386 } 1387 1388 if (NeedsWinCFI) { 1389 HasWinCFI = true; 1390 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1391 .addImm(Reg) 1392 .setMIFlag(MachineInstr::FrameSetup); 1393 } 1394 } 1395 1396 // Realign stack after we pushed callee-saved registers (so that we'll be 1397 // able to calculate their offsets from the frame pointer). 1398 // Don't do this for Win64, it needs to realign the stack after the prologue. 1399 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1400 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1401 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1402 1403 if (NeedsWinCFI) { 1404 HasWinCFI = true; 1405 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1406 .addImm(MaxAlign) 1407 .setMIFlag(MachineInstr::FrameSetup); 1408 } 1409 } 1410 1411 // If there is an SUB32ri of ESP immediately before this instruction, merge 1412 // the two. This can be the case when tail call elimination is enabled and 1413 // the callee has more arguments then the caller. 1414 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1415 1416 // Adjust stack pointer: ESP -= numbytes. 1417 1418 // Windows and cygwin/mingw require a prologue helper routine when allocating 1419 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1420 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1421 // stack and adjust the stack pointer in one go. The 64-bit version of 1422 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1423 // responsible for adjusting the stack pointer. Touching the stack at 4K 1424 // increments is necessary to ensure that the guard pages used by the OS 1425 // virtual memory manager are allocated in correct sequence. 1426 uint64_t AlignedNumBytes = NumBytes; 1427 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1428 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1429 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1430 assert(!X86FI->getUsesRedZone() && 1431 "The Red Zone is not accounted for in stack probes"); 1432 1433 // Check whether EAX is livein for this block. 1434 bool isEAXAlive = isEAXLiveIn(MBB); 1435 1436 if (isEAXAlive) { 1437 if (Is64Bit) { 1438 // Save RAX 1439 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1440 .addReg(X86::RAX, RegState::Kill) 1441 .setMIFlag(MachineInstr::FrameSetup); 1442 } else { 1443 // Save EAX 1444 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1445 .addReg(X86::EAX, RegState::Kill) 1446 .setMIFlag(MachineInstr::FrameSetup); 1447 } 1448 } 1449 1450 if (Is64Bit) { 1451 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1452 // Function prologue is responsible for adjusting the stack pointer. 1453 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1454 if (isUInt<32>(Alloc)) { 1455 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1456 .addImm(Alloc) 1457 .setMIFlag(MachineInstr::FrameSetup); 1458 } else if (isInt<32>(Alloc)) { 1459 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1460 .addImm(Alloc) 1461 .setMIFlag(MachineInstr::FrameSetup); 1462 } else { 1463 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1464 .addImm(Alloc) 1465 .setMIFlag(MachineInstr::FrameSetup); 1466 } 1467 } else { 1468 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1469 // We'll also use 4 already allocated bytes for EAX. 1470 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1471 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1472 .setMIFlag(MachineInstr::FrameSetup); 1473 } 1474 1475 // Call __chkstk, __chkstk_ms, or __alloca. 1476 emitStackProbe(MF, MBB, MBBI, DL, true); 1477 1478 if (isEAXAlive) { 1479 // Restore RAX/EAX 1480 MachineInstr *MI; 1481 if (Is64Bit) 1482 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1483 StackPtr, false, NumBytes - 8); 1484 else 1485 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1486 StackPtr, false, NumBytes - 4); 1487 MI->setFlag(MachineInstr::FrameSetup); 1488 MBB.insert(MBBI, MI); 1489 } 1490 } else if (NumBytes) { 1491 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1492 } 1493 1494 if (NeedsWinCFI && NumBytes) { 1495 HasWinCFI = true; 1496 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1497 .addImm(NumBytes) 1498 .setMIFlag(MachineInstr::FrameSetup); 1499 } 1500 1501 int SEHFrameOffset = 0; 1502 unsigned SPOrEstablisher; 1503 if (IsFunclet) { 1504 if (IsClrFunclet) { 1505 // The establisher parameter passed to a CLR funclet is actually a pointer 1506 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1507 // to find the root function establisher frame by loading the PSPSym from 1508 // the intermediate frame. 1509 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1510 MachinePointerInfo NoInfo; 1511 MBB.addLiveIn(Establisher); 1512 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1513 Establisher, false, PSPSlotOffset) 1514 .addMemOperand(MF.getMachineMemOperand( 1515 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1516 ; 1517 // Save the root establisher back into the current funclet's (mostly 1518 // empty) frame, in case a sub-funclet or the GC needs it. 1519 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1520 false, PSPSlotOffset) 1521 .addReg(Establisher) 1522 .addMemOperand(MF.getMachineMemOperand( 1523 NoInfo, 1524 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1525 SlotSize, Align(SlotSize))); 1526 } 1527 SPOrEstablisher = Establisher; 1528 } else { 1529 SPOrEstablisher = StackPtr; 1530 } 1531 1532 if (IsWin64Prologue && HasFP) { 1533 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1534 // this calculation on the incoming establisher, which holds the value of 1535 // RSP from the parent frame at the end of the prologue. 1536 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1537 if (SEHFrameOffset) 1538 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1539 SPOrEstablisher, false, SEHFrameOffset); 1540 else 1541 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1542 .addReg(SPOrEstablisher); 1543 1544 // If this is not a funclet, emit the CFI describing our frame pointer. 1545 if (NeedsWinCFI && !IsFunclet) { 1546 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1547 HasWinCFI = true; 1548 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1549 .addImm(FramePtr) 1550 .addImm(SEHFrameOffset) 1551 .setMIFlag(MachineInstr::FrameSetup); 1552 if (isAsynchronousEHPersonality(Personality)) 1553 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1554 } 1555 } else if (IsFunclet && STI.is32Bit()) { 1556 // Reset EBP / ESI to something good for funclets. 1557 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1558 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1559 // into the registration node so that the runtime will restore it for us. 1560 if (!MBB.isCleanupFuncletEntry()) { 1561 assert(Personality == EHPersonality::MSVC_CXX); 1562 Register FrameReg; 1563 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1564 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg); 1565 // ESP is the first field, so no extra displacement is needed. 1566 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1567 false, EHRegOffset) 1568 .addReg(X86::ESP); 1569 } 1570 } 1571 1572 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1573 const MachineInstr &FrameInstr = *MBBI; 1574 ++MBBI; 1575 1576 if (NeedsWinCFI) { 1577 int FI; 1578 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1579 if (X86::FR64RegClass.contains(Reg)) { 1580 int Offset; 1581 Register IgnoredFrameReg; 1582 if (IsWin64Prologue && IsFunclet) 1583 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1584 else 1585 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) + 1586 SEHFrameOffset; 1587 1588 HasWinCFI = true; 1589 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1590 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1591 .addImm(Reg) 1592 .addImm(Offset) 1593 .setMIFlag(MachineInstr::FrameSetup); 1594 } 1595 } 1596 } 1597 } 1598 1599 if (NeedsWinCFI && HasWinCFI) 1600 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1601 .setMIFlag(MachineInstr::FrameSetup); 1602 1603 if (FnHasClrFunclet && !IsFunclet) { 1604 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1605 // immediately after the prolog) into the PSPSlot so that funclets 1606 // and the GC can recover it. 1607 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1608 auto PSPInfo = MachinePointerInfo::getFixedStack( 1609 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1610 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1611 PSPSlotOffset) 1612 .addReg(StackPtr) 1613 .addMemOperand(MF.getMachineMemOperand( 1614 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1615 SlotSize, Align(SlotSize))); 1616 } 1617 1618 // Realign stack after we spilled callee-saved registers (so that we'll be 1619 // able to calculate their offsets from the frame pointer). 1620 // Win64 requires aligning the stack after the prologue. 1621 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1622 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1623 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1624 } 1625 1626 // We already dealt with stack realignment and funclets above. 1627 if (IsFunclet && STI.is32Bit()) 1628 return; 1629 1630 // If we need a base pointer, set it up here. It's whatever the value 1631 // of the stack pointer is at this point. Any variable size objects 1632 // will be allocated after this, so we can still use the base pointer 1633 // to reference locals. 1634 if (TRI->hasBasePointer(MF)) { 1635 // Update the base pointer with the current stack pointer. 1636 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1637 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1638 .addReg(SPOrEstablisher) 1639 .setMIFlag(MachineInstr::FrameSetup); 1640 if (X86FI->getRestoreBasePointer()) { 1641 // Stash value of base pointer. Saving RSP instead of EBP shortens 1642 // dependence chain. Used by SjLj EH. 1643 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1644 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1645 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1646 .addReg(SPOrEstablisher) 1647 .setMIFlag(MachineInstr::FrameSetup); 1648 } 1649 1650 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1651 // Stash the value of the frame pointer relative to the base pointer for 1652 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1653 // it recovers the frame pointer from the base pointer rather than the 1654 // other way around. 1655 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1656 Register UsedReg; 1657 int Offset = 1658 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 1659 assert(UsedReg == BasePtr); 1660 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1661 .addReg(FramePtr) 1662 .setMIFlag(MachineInstr::FrameSetup); 1663 } 1664 } 1665 1666 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1667 // Mark end of stack pointer adjustment. 1668 if (!HasFP && NumBytes) { 1669 // Define the current CFA rule to use the provided offset. 1670 assert(StackSize); 1671 BuildCFI( 1672 MBB, MBBI, DL, 1673 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1674 } 1675 1676 // Emit DWARF info specifying the offsets of the callee-saved registers. 1677 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1678 } 1679 1680 // X86 Interrupt handling function cannot assume anything about the direction 1681 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1682 // in each prologue of interrupt handler function. 1683 // 1684 // FIXME: Create "cld" instruction only in these cases: 1685 // 1. The interrupt handling function uses any of the "rep" instructions. 1686 // 2. Interrupt handling function calls another function. 1687 // 1688 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1689 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1690 .setMIFlag(MachineInstr::FrameSetup); 1691 1692 // At this point we know if the function has WinCFI or not. 1693 MF.setHasWinCFI(HasWinCFI); 1694 } 1695 1696 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1697 const MachineFunction &MF) const { 1698 // We can't use LEA instructions for adjusting the stack pointer if we don't 1699 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1700 // to deallocate the stack. 1701 // This means that we can use LEA for SP in two situations: 1702 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1703 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1704 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1705 } 1706 1707 static bool isFuncletReturnInstr(MachineInstr &MI) { 1708 switch (MI.getOpcode()) { 1709 case X86::CATCHRET: 1710 case X86::CLEANUPRET: 1711 return true; 1712 default: 1713 return false; 1714 } 1715 llvm_unreachable("impossible"); 1716 } 1717 1718 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1719 // stack. It holds a pointer to the bottom of the root function frame. The 1720 // establisher frame pointer passed to a nested funclet may point to the 1721 // (mostly empty) frame of its parent funclet, but it will need to find 1722 // the frame of the root function to access locals. To facilitate this, 1723 // every funclet copies the pointer to the bottom of the root function 1724 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1725 // same offset for the PSPSym in the root function frame that's used in the 1726 // funclets' frames allows each funclet to dynamically accept any ancestor 1727 // frame as its establisher argument (the runtime doesn't guarantee the 1728 // immediate parent for some reason lost to history), and also allows the GC, 1729 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1730 // frame with only a single offset reported for the entire method. 1731 unsigned 1732 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1733 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1734 Register SPReg; 1735 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1736 /*IgnoreSPUpdates*/ true); 1737 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1738 return static_cast<unsigned>(Offset); 1739 } 1740 1741 unsigned 1742 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1743 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1744 // This is the size of the pushed CSRs. 1745 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1746 // This is the size of callee saved XMMs. 1747 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1748 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1749 TRI->getSpillSize(X86::VR128RegClass); 1750 // This is the amount of stack a funclet needs to allocate. 1751 unsigned UsedSize; 1752 EHPersonality Personality = 1753 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1754 if (Personality == EHPersonality::CoreCLR) { 1755 // CLR funclets need to hold enough space to include the PSPSym, at the 1756 // same offset from the stack pointer (immediately after the prolog) as it 1757 // resides at in the main function. 1758 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1759 } else { 1760 // Other funclets just need enough stack for outgoing call arguments. 1761 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1762 } 1763 // RBP is not included in the callee saved register block. After pushing RBP, 1764 // everything is 16 byte aligned. Everything we allocate before an outgoing 1765 // call must also be 16 byte aligned. 1766 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 1767 // Subtract out the size of the callee saved registers. This is how much stack 1768 // each funclet will allocate. 1769 return FrameSizeMinusRBP + XMMSize - CSSize; 1770 } 1771 1772 static bool isTailCallOpcode(unsigned Opc) { 1773 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1774 Opc == X86::TCRETURNmi || 1775 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1776 Opc == X86::TCRETURNmi64; 1777 } 1778 1779 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1780 MachineBasicBlock &MBB) const { 1781 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1782 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1783 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1784 MachineBasicBlock::iterator MBBI = Terminator; 1785 DebugLoc DL; 1786 if (MBBI != MBB.end()) 1787 DL = MBBI->getDebugLoc(); 1788 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1789 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1790 Register FramePtr = TRI->getFrameRegister(MF); 1791 unsigned MachineFramePtr = 1792 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1793 1794 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1795 bool NeedsWin64CFI = 1796 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1797 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1798 1799 // Get the number of bytes to allocate from the FrameInfo. 1800 uint64_t StackSize = MFI.getStackSize(); 1801 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1802 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1803 bool HasFP = hasFP(MF); 1804 uint64_t NumBytes = 0; 1805 1806 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 1807 !MF.getTarget().getTargetTriple().isOSWindows()) && 1808 MF.needsFrameMoves(); 1809 1810 if (IsFunclet) { 1811 assert(HasFP && "EH funclets without FP not yet implemented"); 1812 NumBytes = getWinEHFuncletFrameSize(MF); 1813 } else if (HasFP) { 1814 // Calculate required stack adjustment. 1815 uint64_t FrameSize = StackSize - SlotSize; 1816 NumBytes = FrameSize - CSSize; 1817 1818 // Callee-saved registers were pushed on stack before the stack was 1819 // realigned. 1820 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1821 NumBytes = alignTo(FrameSize, MaxAlign); 1822 } else { 1823 NumBytes = StackSize - CSSize; 1824 } 1825 uint64_t SEHStackAllocAmt = NumBytes; 1826 1827 // AfterPop is the position to insert .cfi_restore. 1828 MachineBasicBlock::iterator AfterPop = MBBI; 1829 if (HasFP) { 1830 // Pop EBP. 1831 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1832 MachineFramePtr) 1833 .setMIFlag(MachineInstr::FrameDestroy); 1834 if (NeedsDwarfCFI) { 1835 unsigned DwarfStackPtr = 1836 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 1837 BuildCFI(MBB, MBBI, DL, 1838 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 1839 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 1840 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1841 BuildCFI(MBB, AfterPop, DL, 1842 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 1843 --MBBI; 1844 --AfterPop; 1845 } 1846 --MBBI; 1847 } 1848 } 1849 1850 MachineBasicBlock::iterator FirstCSPop = MBBI; 1851 // Skip the callee-saved pop instructions. 1852 while (MBBI != MBB.begin()) { 1853 MachineBasicBlock::iterator PI = std::prev(MBBI); 1854 unsigned Opc = PI->getOpcode(); 1855 1856 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1857 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1858 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1859 break; 1860 FirstCSPop = PI; 1861 } 1862 1863 --MBBI; 1864 } 1865 MBBI = FirstCSPop; 1866 1867 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 1868 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 1869 1870 if (MBBI != MBB.end()) 1871 DL = MBBI->getDebugLoc(); 1872 1873 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1874 // instruction, merge the two instructions. 1875 if (NumBytes || MFI.hasVarSizedObjects()) 1876 NumBytes += mergeSPUpdates(MBB, MBBI, true); 1877 1878 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1879 // slot before popping them off! Same applies for the case, when stack was 1880 // realigned. Don't do this if this was a funclet epilogue, since the funclets 1881 // will not do realignment or dynamic stack allocation. 1882 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 1883 !IsFunclet) { 1884 if (TRI->needsStackRealignment(MF)) 1885 MBBI = FirstCSPop; 1886 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 1887 uint64_t LEAAmount = 1888 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 1889 1890 // There are only two legal forms of epilogue: 1891 // - add SEHAllocationSize, %rsp 1892 // - lea SEHAllocationSize(%FramePtr), %rsp 1893 // 1894 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 1895 // However, we may use this sequence if we have a frame pointer because the 1896 // effects of the prologue can safely be undone. 1897 if (LEAAmount != 0) { 1898 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 1899 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 1900 FramePtr, false, LEAAmount); 1901 --MBBI; 1902 } else { 1903 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 1904 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 1905 .addReg(FramePtr); 1906 --MBBI; 1907 } 1908 } else if (NumBytes) { 1909 // Adjust stack pointer back: ESP += numbytes. 1910 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 1911 if (!hasFP(MF) && NeedsDwarfCFI) { 1912 // Define the current CFA rule to use the provided offset. 1913 BuildCFI(MBB, MBBI, DL, 1914 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize)); 1915 } 1916 --MBBI; 1917 } 1918 1919 // Windows unwinder will not invoke function's exception handler if IP is 1920 // either in prologue or in epilogue. This behavior causes a problem when a 1921 // call immediately precedes an epilogue, because the return address points 1922 // into the epilogue. To cope with that, we insert an epilogue marker here, 1923 // then replace it with a 'nop' if it ends up immediately after a CALL in the 1924 // final emitted code. 1925 if (NeedsWin64CFI && MF.hasWinCFI()) 1926 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 1927 1928 if (!hasFP(MF) && NeedsDwarfCFI) { 1929 MBBI = FirstCSPop; 1930 int64_t Offset = -CSSize - SlotSize; 1931 // Mark callee-saved pop instruction. 1932 // Define the current CFA rule to use the provided offset. 1933 while (MBBI != MBB.end()) { 1934 MachineBasicBlock::iterator PI = MBBI; 1935 unsigned Opc = PI->getOpcode(); 1936 ++MBBI; 1937 if (Opc == X86::POP32r || Opc == X86::POP64r) { 1938 Offset += SlotSize; 1939 BuildCFI(MBB, MBBI, DL, 1940 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 1941 } 1942 } 1943 } 1944 1945 // Emit DWARF info specifying the restores of the callee-saved registers. 1946 // For epilogue with return inside or being other block without successor, 1947 // no need to generate .cfi_restore for callee-saved registers. 1948 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) { 1949 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 1950 } 1951 1952 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 1953 // Add the return addr area delta back since we are not tail calling. 1954 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 1955 assert(Offset >= 0 && "TCDelta should never be positive"); 1956 if (Offset) { 1957 // Check for possible merge with preceding ADD instruction. 1958 Offset += mergeSPUpdates(MBB, Terminator, true); 1959 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 1960 } 1961 } 1962 } 1963 1964 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 1965 Register &FrameReg) const { 1966 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1967 1968 bool IsFixed = MFI.isFixedObjectIndex(FI); 1969 // We can't calculate offset from frame pointer if the stack is realigned, 1970 // so enforce usage of stack/base pointer. The base pointer is used when we 1971 // have dynamic allocas in addition to dynamic realignment. 1972 if (TRI->hasBasePointer(MF)) 1973 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 1974 else if (TRI->needsStackRealignment(MF)) 1975 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 1976 else 1977 FrameReg = TRI->getFrameRegister(MF); 1978 1979 // Offset will hold the offset from the stack pointer at function entry to the 1980 // object. 1981 // We need to factor in additional offsets applied during the prologue to the 1982 // frame, base, and stack pointer depending on which is used. 1983 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 1984 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1985 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1986 uint64_t StackSize = MFI.getStackSize(); 1987 bool HasFP = hasFP(MF); 1988 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1989 int64_t FPDelta = 0; 1990 1991 // In an x86 interrupt, remove the offset we added to account for the return 1992 // address from any stack object allocated in the caller's frame. Interrupts 1993 // do not have a standard return address. Fixed objects in the current frame, 1994 // such as SSE register spills, should not get this treatment. 1995 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 1996 Offset >= 0) { 1997 Offset += getOffsetOfLocalArea(); 1998 } 1999 2000 if (IsWin64Prologue) { 2001 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2002 2003 // Calculate required stack adjustment. 2004 uint64_t FrameSize = StackSize - SlotSize; 2005 // If required, include space for extra hidden slot for stashing base pointer. 2006 if (X86FI->getRestoreBasePointer()) 2007 FrameSize += SlotSize; 2008 uint64_t NumBytes = FrameSize - CSSize; 2009 2010 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2011 if (FI && FI == X86FI->getFAIndex()) 2012 return -SEHFrameOffset; 2013 2014 // FPDelta is the offset from the "traditional" FP location of the old base 2015 // pointer followed by return address and the location required by the 2016 // restricted Win64 prologue. 2017 // Add FPDelta to all offsets below that go through the frame pointer. 2018 FPDelta = FrameSize - SEHFrameOffset; 2019 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2020 "FPDelta isn't aligned per the Win64 ABI!"); 2021 } 2022 2023 2024 if (TRI->hasBasePointer(MF)) { 2025 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 2026 if (FI < 0) { 2027 // Skip the saved EBP. 2028 return Offset + SlotSize + FPDelta; 2029 } else { 2030 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2031 return Offset + StackSize; 2032 } 2033 } else if (TRI->needsStackRealignment(MF)) { 2034 if (FI < 0) { 2035 // Skip the saved EBP. 2036 return Offset + SlotSize + FPDelta; 2037 } else { 2038 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2039 return Offset + StackSize; 2040 } 2041 // FIXME: Support tail calls 2042 } else { 2043 if (!HasFP) 2044 return Offset + StackSize; 2045 2046 // Skip the saved EBP. 2047 Offset += SlotSize; 2048 2049 // Skip the RETADDR move area 2050 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2051 if (TailCallReturnAddrDelta < 0) 2052 Offset -= TailCallReturnAddrDelta; 2053 } 2054 2055 return Offset + FPDelta; 2056 } 2057 2058 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2059 Register &FrameReg) const { 2060 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2061 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2062 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2063 const auto it = WinEHXMMSlotInfo.find(FI); 2064 2065 if (it == WinEHXMMSlotInfo.end()) 2066 return getFrameIndexReference(MF, FI, FrameReg); 2067 2068 FrameReg = TRI->getStackRegister(); 2069 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2070 it->second; 2071 } 2072 2073 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, 2074 int FI, Register &FrameReg, 2075 int Adjustment) const { 2076 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2077 FrameReg = TRI->getStackRegister(); 2078 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment; 2079 } 2080 2081 int X86FrameLowering::getFrameIndexReferencePreferSP( 2082 const MachineFunction &MF, int FI, Register &FrameReg, 2083 bool IgnoreSPUpdates) const { 2084 2085 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2086 // Does not include any dynamic realign. 2087 const uint64_t StackSize = MFI.getStackSize(); 2088 // LLVM arranges the stack as follows: 2089 // ... 2090 // ARG2 2091 // ARG1 2092 // RETADDR 2093 // PUSH RBP <-- RBP points here 2094 // PUSH CSRs 2095 // ~~~~~~~ <-- possible stack realignment (non-win64) 2096 // ... 2097 // STACK OBJECTS 2098 // ... <-- RSP after prologue points here 2099 // ~~~~~~~ <-- possible stack realignment (win64) 2100 // 2101 // if (hasVarSizedObjects()): 2102 // ... <-- "base pointer" (ESI/RBX) points here 2103 // DYNAMIC ALLOCAS 2104 // ... <-- RSP points here 2105 // 2106 // Case 1: In the simple case of no stack realignment and no dynamic 2107 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2108 // with fixed offsets from RSP. 2109 // 2110 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2111 // stack objects are addressed with RBP and regular stack objects with RSP. 2112 // 2113 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2114 // to address stack arguments for outgoing calls and nothing else. The "base 2115 // pointer" points to local variables, and RBP points to fixed objects. 2116 // 2117 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2118 // answer we give is relative to the SP after the prologue, and not the 2119 // SP in the middle of the function. 2120 2121 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 2122 !STI.isTargetWin64()) 2123 return getFrameIndexReference(MF, FI, FrameReg); 2124 2125 // If !hasReservedCallFrame the function might have SP adjustement in the 2126 // body. So, even though the offset is statically known, it depends on where 2127 // we are in the function. 2128 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2129 return getFrameIndexReference(MF, FI, FrameReg); 2130 2131 // We don't handle tail calls, and shouldn't be seeing them either. 2132 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2133 "we don't handle this case!"); 2134 2135 // This is how the math works out: 2136 // 2137 // %rsp grows (i.e. gets lower) left to right. Each box below is 2138 // one word (eight bytes). Obj0 is the stack slot we're trying to 2139 // get to. 2140 // 2141 // ---------------------------------- 2142 // | BP | Obj0 | Obj1 | ... | ObjN | 2143 // ---------------------------------- 2144 // ^ ^ ^ ^ 2145 // A B C E 2146 // 2147 // A is the incoming stack pointer. 2148 // (B - A) is the local area offset (-8 for x86-64) [1] 2149 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2150 // 2151 // |(E - B)| is the StackSize (absolute value, positive). For a 2152 // stack that grown down, this works out to be (B - E). [3] 2153 // 2154 // E is also the value of %rsp after stack has been set up, and we 2155 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2156 // (C - E) == (C - A) - (B - A) + (B - E) 2157 // { Using [1], [2] and [3] above } 2158 // == getObjectOffset - LocalAreaOffset + StackSize 2159 2160 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2161 } 2162 2163 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2164 MachineFunction &MF, const TargetRegisterInfo *TRI, 2165 std::vector<CalleeSavedInfo> &CSI) const { 2166 MachineFrameInfo &MFI = MF.getFrameInfo(); 2167 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2168 2169 unsigned CalleeSavedFrameSize = 0; 2170 unsigned XMMCalleeSavedFrameSize = 0; 2171 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2172 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2173 2174 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2175 2176 if (TailCallReturnAddrDelta < 0) { 2177 // create RETURNADDR area 2178 // arg 2179 // arg 2180 // RETADDR 2181 // { ... 2182 // RETADDR area 2183 // ... 2184 // } 2185 // [EBP] 2186 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2187 TailCallReturnAddrDelta - SlotSize, true); 2188 } 2189 2190 // Spill the BasePtr if it's used. 2191 if (this->TRI->hasBasePointer(MF)) { 2192 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2193 if (MF.hasEHFunclets()) { 2194 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2195 X86FI->setHasSEHFramePtrSave(true); 2196 X86FI->setSEHFramePtrSaveIndex(FI); 2197 } 2198 } 2199 2200 if (hasFP(MF)) { 2201 // emitPrologue always spills frame register the first thing. 2202 SpillSlotOffset -= SlotSize; 2203 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2204 2205 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2206 // the frame register, we can delete it from CSI list and not have to worry 2207 // about avoiding it later. 2208 Register FPReg = TRI->getFrameRegister(MF); 2209 for (unsigned i = 0; i < CSI.size(); ++i) { 2210 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2211 CSI.erase(CSI.begin() + i); 2212 break; 2213 } 2214 } 2215 } 2216 2217 // Assign slots for GPRs. It increases frame size. 2218 for (unsigned i = CSI.size(); i != 0; --i) { 2219 unsigned Reg = CSI[i - 1].getReg(); 2220 2221 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2222 continue; 2223 2224 SpillSlotOffset -= SlotSize; 2225 CalleeSavedFrameSize += SlotSize; 2226 2227 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2228 CSI[i - 1].setFrameIdx(SlotIndex); 2229 } 2230 2231 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2232 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2233 2234 // Assign slots for XMMs. 2235 for (unsigned i = CSI.size(); i != 0; --i) { 2236 unsigned Reg = CSI[i - 1].getReg(); 2237 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2238 continue; 2239 2240 // If this is k-register make sure we lookup via the largest legal type. 2241 MVT VT = MVT::Other; 2242 if (X86::VK16RegClass.contains(Reg)) 2243 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2244 2245 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2246 unsigned Size = TRI->getSpillSize(*RC); 2247 Align Alignment = TRI->getSpillAlign(*RC); 2248 // ensure alignment 2249 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2250 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2251 2252 // spill into slot 2253 SpillSlotOffset -= Size; 2254 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2255 CSI[i - 1].setFrameIdx(SlotIndex); 2256 MFI.ensureMaxAlignment(Alignment); 2257 2258 // Save the start offset and size of XMM in stack frame for funclets. 2259 if (X86::VR128RegClass.contains(Reg)) { 2260 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2261 XMMCalleeSavedFrameSize += Size; 2262 } 2263 } 2264 2265 return true; 2266 } 2267 2268 bool X86FrameLowering::spillCalleeSavedRegisters( 2269 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2270 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2271 DebugLoc DL = MBB.findDebugLoc(MI); 2272 2273 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2274 // for us, and there are no XMM CSRs on Win32. 2275 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2276 return true; 2277 2278 // Push GPRs. It increases frame size. 2279 const MachineFunction &MF = *MBB.getParent(); 2280 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2281 for (unsigned i = CSI.size(); i != 0; --i) { 2282 unsigned Reg = CSI[i - 1].getReg(); 2283 2284 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2285 continue; 2286 2287 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2288 bool isLiveIn = MRI.isLiveIn(Reg); 2289 if (!isLiveIn) 2290 MBB.addLiveIn(Reg); 2291 2292 // Decide whether we can add a kill flag to the use. 2293 bool CanKill = !isLiveIn; 2294 // Check if any subregister is live-in 2295 if (CanKill) { 2296 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2297 if (MRI.isLiveIn(*AReg)) { 2298 CanKill = false; 2299 break; 2300 } 2301 } 2302 } 2303 2304 // Do not set a kill flag on values that are also marked as live-in. This 2305 // happens with the @llvm-returnaddress intrinsic and with arguments 2306 // passed in callee saved registers. 2307 // Omitting the kill flags is conservatively correct even if the live-in 2308 // is not used after all. 2309 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2310 .setMIFlag(MachineInstr::FrameSetup); 2311 } 2312 2313 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2314 // It can be done by spilling XMMs to stack frame. 2315 for (unsigned i = CSI.size(); i != 0; --i) { 2316 unsigned Reg = CSI[i-1].getReg(); 2317 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2318 continue; 2319 2320 // If this is k-register make sure we lookup via the largest legal type. 2321 MVT VT = MVT::Other; 2322 if (X86::VK16RegClass.contains(Reg)) 2323 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2324 2325 // Add the callee-saved register as live-in. It's killed at the spill. 2326 MBB.addLiveIn(Reg); 2327 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2328 2329 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2330 TRI); 2331 --MI; 2332 MI->setFlag(MachineInstr::FrameSetup); 2333 ++MI; 2334 } 2335 2336 return true; 2337 } 2338 2339 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2340 MachineBasicBlock::iterator MBBI, 2341 MachineInstr *CatchRet) const { 2342 // SEH shouldn't use catchret. 2343 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2344 MBB.getParent()->getFunction().getPersonalityFn())) && 2345 "SEH should not use CATCHRET"); 2346 DebugLoc DL = CatchRet->getDebugLoc(); 2347 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2348 2349 // Fill EAX/RAX with the address of the target block. 2350 if (STI.is64Bit()) { 2351 // LEA64r CatchRetTarget(%rip), %rax 2352 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2353 .addReg(X86::RIP) 2354 .addImm(0) 2355 .addReg(0) 2356 .addMBB(CatchRetTarget) 2357 .addReg(0); 2358 } else { 2359 // MOV32ri $CatchRetTarget, %eax 2360 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2361 .addMBB(CatchRetTarget); 2362 } 2363 2364 // Record that we've taken the address of CatchRetTarget and no longer just 2365 // reference it in a terminator. 2366 CatchRetTarget->setHasAddressTaken(); 2367 } 2368 2369 bool X86FrameLowering::restoreCalleeSavedRegisters( 2370 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2371 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2372 if (CSI.empty()) 2373 return false; 2374 2375 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2376 // Don't restore CSRs in 32-bit EH funclets. Matches 2377 // spillCalleeSavedRegisters. 2378 if (STI.is32Bit()) 2379 return true; 2380 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2381 // funclets. emitEpilogue transforms these to normal jumps. 2382 if (MI->getOpcode() == X86::CATCHRET) { 2383 const Function &F = MBB.getParent()->getFunction(); 2384 bool IsSEH = isAsynchronousEHPersonality( 2385 classifyEHPersonality(F.getPersonalityFn())); 2386 if (IsSEH) 2387 return true; 2388 } 2389 } 2390 2391 DebugLoc DL = MBB.findDebugLoc(MI); 2392 2393 // Reload XMMs from stack frame. 2394 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2395 unsigned Reg = CSI[i].getReg(); 2396 if (X86::GR64RegClass.contains(Reg) || 2397 X86::GR32RegClass.contains(Reg)) 2398 continue; 2399 2400 // If this is k-register make sure we lookup via the largest legal type. 2401 MVT VT = MVT::Other; 2402 if (X86::VK16RegClass.contains(Reg)) 2403 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2404 2405 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2406 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2407 } 2408 2409 // POP GPRs. 2410 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2411 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2412 unsigned Reg = CSI[i].getReg(); 2413 if (!X86::GR64RegClass.contains(Reg) && 2414 !X86::GR32RegClass.contains(Reg)) 2415 continue; 2416 2417 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2418 .setMIFlag(MachineInstr::FrameDestroy); 2419 } 2420 return true; 2421 } 2422 2423 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2424 BitVector &SavedRegs, 2425 RegScavenger *RS) const { 2426 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2427 2428 // Spill the BasePtr if it's used. 2429 if (TRI->hasBasePointer(MF)){ 2430 Register BasePtr = TRI->getBaseRegister(); 2431 if (STI.isTarget64BitILP32()) 2432 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2433 SavedRegs.set(BasePtr); 2434 } 2435 } 2436 2437 static bool 2438 HasNestArgument(const MachineFunction *MF) { 2439 const Function &F = MF->getFunction(); 2440 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2441 I != E; I++) { 2442 if (I->hasNestAttr() && !I->use_empty()) 2443 return true; 2444 } 2445 return false; 2446 } 2447 2448 /// GetScratchRegister - Get a temp register for performing work in the 2449 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2450 /// and the properties of the function either one or two registers will be 2451 /// needed. Set primary to true for the first register, false for the second. 2452 static unsigned 2453 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2454 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2455 2456 // Erlang stuff. 2457 if (CallingConvention == CallingConv::HiPE) { 2458 if (Is64Bit) 2459 return Primary ? X86::R14 : X86::R13; 2460 else 2461 return Primary ? X86::EBX : X86::EDI; 2462 } 2463 2464 if (Is64Bit) { 2465 if (IsLP64) 2466 return Primary ? X86::R11 : X86::R12; 2467 else 2468 return Primary ? X86::R11D : X86::R12D; 2469 } 2470 2471 bool IsNested = HasNestArgument(&MF); 2472 2473 if (CallingConvention == CallingConv::X86_FastCall || 2474 CallingConvention == CallingConv::Fast || 2475 CallingConvention == CallingConv::Tail) { 2476 if (IsNested) 2477 report_fatal_error("Segmented stacks does not support fastcall with " 2478 "nested function."); 2479 return Primary ? X86::EAX : X86::ECX; 2480 } 2481 if (IsNested) 2482 return Primary ? X86::EDX : X86::EAX; 2483 return Primary ? X86::ECX : X86::EAX; 2484 } 2485 2486 // The stack limit in the TCB is set to this many bytes above the actual stack 2487 // limit. 2488 static const uint64_t kSplitStackAvailable = 256; 2489 2490 void X86FrameLowering::adjustForSegmentedStacks( 2491 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2492 MachineFrameInfo &MFI = MF.getFrameInfo(); 2493 uint64_t StackSize; 2494 unsigned TlsReg, TlsOffset; 2495 DebugLoc DL; 2496 2497 // To support shrink-wrapping we would need to insert the new blocks 2498 // at the right place and update the branches to PrologueMBB. 2499 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2500 2501 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2502 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2503 "Scratch register is live-in"); 2504 2505 if (MF.getFunction().isVarArg()) 2506 report_fatal_error("Segmented stacks do not support vararg functions."); 2507 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2508 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2509 !STI.isTargetDragonFly()) 2510 report_fatal_error("Segmented stacks not supported on this platform."); 2511 2512 // Eventually StackSize will be calculated by a link-time pass; which will 2513 // also decide whether checking code needs to be injected into this particular 2514 // prologue. 2515 StackSize = MFI.getStackSize(); 2516 2517 // Do not generate a prologue for leaf functions with a stack of size zero. 2518 // For non-leaf functions we have to allow for the possibility that the 2519 // callis to a non-split function, as in PR37807. This function could also 2520 // take the address of a non-split function. When the linker tries to adjust 2521 // its non-existent prologue, it would fail with an error. Mark the object 2522 // file so that such failures are not errors. See this Go language bug-report 2523 // https://go-review.googlesource.com/c/go/+/148819/ 2524 if (StackSize == 0 && !MFI.hasTailCall()) { 2525 MF.getMMI().setHasNosplitStack(true); 2526 return; 2527 } 2528 2529 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2530 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2531 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2532 bool IsNested = false; 2533 2534 // We need to know if the function has a nest argument only in 64 bit mode. 2535 if (Is64Bit) 2536 IsNested = HasNestArgument(&MF); 2537 2538 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2539 // allocMBB needs to be last (terminating) instruction. 2540 2541 for (const auto &LI : PrologueMBB.liveins()) { 2542 allocMBB->addLiveIn(LI); 2543 checkMBB->addLiveIn(LI); 2544 } 2545 2546 if (IsNested) 2547 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2548 2549 MF.push_front(allocMBB); 2550 MF.push_front(checkMBB); 2551 2552 // When the frame size is less than 256 we just compare the stack 2553 // boundary directly to the value of the stack pointer, per gcc. 2554 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2555 2556 // Read the limit off the current stacklet off the stack_guard location. 2557 if (Is64Bit) { 2558 if (STI.isTargetLinux()) { 2559 TlsReg = X86::FS; 2560 TlsOffset = IsLP64 ? 0x70 : 0x40; 2561 } else if (STI.isTargetDarwin()) { 2562 TlsReg = X86::GS; 2563 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2564 } else if (STI.isTargetWin64()) { 2565 TlsReg = X86::GS; 2566 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2567 } else if (STI.isTargetFreeBSD()) { 2568 TlsReg = X86::FS; 2569 TlsOffset = 0x18; 2570 } else if (STI.isTargetDragonFly()) { 2571 TlsReg = X86::FS; 2572 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2573 } else { 2574 report_fatal_error("Segmented stacks not supported on this platform."); 2575 } 2576 2577 if (CompareStackPointer) 2578 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2579 else 2580 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2581 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2582 2583 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2584 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2585 } else { 2586 if (STI.isTargetLinux()) { 2587 TlsReg = X86::GS; 2588 TlsOffset = 0x30; 2589 } else if (STI.isTargetDarwin()) { 2590 TlsReg = X86::GS; 2591 TlsOffset = 0x48 + 90*4; 2592 } else if (STI.isTargetWin32()) { 2593 TlsReg = X86::FS; 2594 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2595 } else if (STI.isTargetDragonFly()) { 2596 TlsReg = X86::FS; 2597 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2598 } else if (STI.isTargetFreeBSD()) { 2599 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2600 } else { 2601 report_fatal_error("Segmented stacks not supported on this platform."); 2602 } 2603 2604 if (CompareStackPointer) 2605 ScratchReg = X86::ESP; 2606 else 2607 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2608 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2609 2610 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2611 STI.isTargetDragonFly()) { 2612 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2613 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2614 } else if (STI.isTargetDarwin()) { 2615 2616 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2617 unsigned ScratchReg2; 2618 bool SaveScratch2; 2619 if (CompareStackPointer) { 2620 // The primary scratch register is available for holding the TLS offset. 2621 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2622 SaveScratch2 = false; 2623 } else { 2624 // Need to use a second register to hold the TLS offset 2625 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2626 2627 // Unfortunately, with fastcc the second scratch register may hold an 2628 // argument. 2629 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2630 } 2631 2632 // If Scratch2 is live-in then it needs to be saved. 2633 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2634 "Scratch register is live-in and not saved"); 2635 2636 if (SaveScratch2) 2637 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2638 .addReg(ScratchReg2, RegState::Kill); 2639 2640 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2641 .addImm(TlsOffset); 2642 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2643 .addReg(ScratchReg) 2644 .addReg(ScratchReg2).addImm(1).addReg(0) 2645 .addImm(0) 2646 .addReg(TlsReg); 2647 2648 if (SaveScratch2) 2649 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2650 } 2651 } 2652 2653 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2654 // It jumps to normal execution of the function body. 2655 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2656 2657 // On 32 bit we first push the arguments size and then the frame size. On 64 2658 // bit, we pass the stack frame size in r10 and the argument size in r11. 2659 if (Is64Bit) { 2660 // Functions with nested arguments use R10, so it needs to be saved across 2661 // the call to _morestack 2662 2663 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2664 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2665 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2666 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2667 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2668 2669 if (IsNested) 2670 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2671 2672 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2673 .addImm(StackSize); 2674 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2675 .addImm(X86FI->getArgumentStackSize()); 2676 } else { 2677 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2678 .addImm(X86FI->getArgumentStackSize()); 2679 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2680 .addImm(StackSize); 2681 } 2682 2683 // __morestack is in libgcc 2684 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2685 // Under the large code model, we cannot assume that __morestack lives 2686 // within 2^31 bytes of the call site, so we cannot use pc-relative 2687 // addressing. We cannot perform the call via a temporary register, 2688 // as the rax register may be used to store the static chain, and all 2689 // other suitable registers may be either callee-save or used for 2690 // parameter passing. We cannot use the stack at this point either 2691 // because __morestack manipulates the stack directly. 2692 // 2693 // To avoid these issues, perform an indirect call via a read-only memory 2694 // location containing the address. 2695 // 2696 // This solution is not perfect, as it assumes that the .rodata section 2697 // is laid out within 2^31 bytes of each function body, but this seems 2698 // to be sufficient for JIT. 2699 // FIXME: Add retpoline support and remove the error here.. 2700 if (STI.useIndirectThunkCalls()) 2701 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2702 "code model and thunks not yet implemented."); 2703 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2704 .addReg(X86::RIP) 2705 .addImm(0) 2706 .addReg(0) 2707 .addExternalSymbol("__morestack_addr") 2708 .addReg(0); 2709 MF.getMMI().setUsesMorestackAddr(true); 2710 } else { 2711 if (Is64Bit) 2712 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2713 .addExternalSymbol("__morestack"); 2714 else 2715 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2716 .addExternalSymbol("__morestack"); 2717 } 2718 2719 if (IsNested) 2720 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2721 else 2722 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2723 2724 allocMBB->addSuccessor(&PrologueMBB); 2725 2726 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2727 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2728 2729 #ifdef EXPENSIVE_CHECKS 2730 MF.verify(); 2731 #endif 2732 } 2733 2734 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2735 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2736 /// to fields it needs, through a named metadata node "hipe.literals" containing 2737 /// name-value pairs. 2738 static unsigned getHiPELiteral( 2739 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2740 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2741 MDNode *Node = HiPELiteralsMD->getOperand(i); 2742 if (Node->getNumOperands() != 2) continue; 2743 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2744 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2745 if (!NodeName || !NodeVal) continue; 2746 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2747 if (ValConst && NodeName->getString() == LiteralName) { 2748 return ValConst->getZExtValue(); 2749 } 2750 } 2751 2752 report_fatal_error("HiPE literal " + LiteralName 2753 + " required but not provided"); 2754 } 2755 2756 // Return true if there are no non-ehpad successors to MBB and there are no 2757 // non-meta instructions between MBBI and MBB.end(). 2758 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 2759 MachineBasicBlock::const_iterator MBBI) { 2760 return std::all_of( 2761 MBB.succ_begin(), MBB.succ_end(), 2762 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 2763 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 2764 return MI.isMetaInstruction(); 2765 }); 2766 } 2767 2768 /// Erlang programs may need a special prologue to handle the stack size they 2769 /// might need at runtime. That is because Erlang/OTP does not implement a C 2770 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2771 /// (for more information see Eric Stenman's Ph.D. thesis: 2772 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2773 /// 2774 /// CheckStack: 2775 /// temp0 = sp - MaxStack 2776 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2777 /// OldStart: 2778 /// ... 2779 /// IncStack: 2780 /// call inc_stack # doubles the stack space 2781 /// temp0 = sp - MaxStack 2782 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2783 void X86FrameLowering::adjustForHiPEPrologue( 2784 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2785 MachineFrameInfo &MFI = MF.getFrameInfo(); 2786 DebugLoc DL; 2787 2788 // To support shrink-wrapping we would need to insert the new blocks 2789 // at the right place and update the branches to PrologueMBB. 2790 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2791 2792 // HiPE-specific values 2793 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2794 ->getNamedMetadata("hipe.literals"); 2795 if (!HiPELiteralsMD) 2796 report_fatal_error( 2797 "Can't generate HiPE prologue without runtime parameters"); 2798 const unsigned HipeLeafWords 2799 = getHiPELiteral(HiPELiteralsMD, 2800 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2801 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2802 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2803 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2804 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2805 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2806 2807 assert(STI.isTargetLinux() && 2808 "HiPE prologue is only supported on Linux operating systems."); 2809 2810 // Compute the largest caller's frame that is needed to fit the callees' 2811 // frames. This 'MaxStack' is computed from: 2812 // 2813 // a) the fixed frame size, which is the space needed for all spilled temps, 2814 // b) outgoing on-stack parameter areas, and 2815 // c) the minimum stack space this function needs to make available for the 2816 // functions it calls (a tunable ABI property). 2817 if (MFI.hasCalls()) { 2818 unsigned MoreStackForCalls = 0; 2819 2820 for (auto &MBB : MF) { 2821 for (auto &MI : MBB) { 2822 if (!MI.isCall()) 2823 continue; 2824 2825 // Get callee operand. 2826 const MachineOperand &MO = MI.getOperand(0); 2827 2828 // Only take account of global function calls (no closures etc.). 2829 if (!MO.isGlobal()) 2830 continue; 2831 2832 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2833 if (!F) 2834 continue; 2835 2836 // Do not update 'MaxStack' for primitive and built-in functions 2837 // (encoded with names either starting with "erlang."/"bif_" or not 2838 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2839 // "_", such as the BIF "suspend_0") as they are executed on another 2840 // stack. 2841 if (F->getName().find("erlang.") != StringRef::npos || 2842 F->getName().find("bif_") != StringRef::npos || 2843 F->getName().find_first_of("._") == StringRef::npos) 2844 continue; 2845 2846 unsigned CalleeStkArity = 2847 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2848 if (HipeLeafWords - 1 > CalleeStkArity) 2849 MoreStackForCalls = std::max(MoreStackForCalls, 2850 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2851 } 2852 } 2853 MaxStack += MoreStackForCalls; 2854 } 2855 2856 // If the stack frame needed is larger than the guaranteed then runtime checks 2857 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2858 if (MaxStack > Guaranteed) { 2859 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 2860 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 2861 2862 for (const auto &LI : PrologueMBB.liveins()) { 2863 stackCheckMBB->addLiveIn(LI); 2864 incStackMBB->addLiveIn(LI); 2865 } 2866 2867 MF.push_front(incStackMBB); 2868 MF.push_front(stackCheckMBB); 2869 2870 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 2871 unsigned LEAop, CMPop, CALLop; 2872 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 2873 if (Is64Bit) { 2874 SPReg = X86::RSP; 2875 PReg = X86::RBP; 2876 LEAop = X86::LEA64r; 2877 CMPop = X86::CMP64rm; 2878 CALLop = X86::CALL64pcrel32; 2879 } else { 2880 SPReg = X86::ESP; 2881 PReg = X86::EBP; 2882 LEAop = X86::LEA32r; 2883 CMPop = X86::CMP32rm; 2884 CALLop = X86::CALLpcrel32; 2885 } 2886 2887 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2888 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2889 "HiPE prologue scratch register is live-in"); 2890 2891 // Create new MBB for StackCheck: 2892 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 2893 SPReg, false, -MaxStack); 2894 // SPLimitOffset is in a fixed heap location (pointed by BP). 2895 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 2896 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2897 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 2898 2899 // Create new MBB for IncStack: 2900 BuildMI(incStackMBB, DL, TII.get(CALLop)). 2901 addExternalSymbol("inc_stack_0"); 2902 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 2903 SPReg, false, -MaxStack); 2904 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 2905 .addReg(ScratchReg), PReg, false, SPLimitOffset); 2906 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 2907 2908 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 2909 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 2910 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 2911 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 2912 } 2913 #ifdef EXPENSIVE_CHECKS 2914 MF.verify(); 2915 #endif 2916 } 2917 2918 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 2919 MachineBasicBlock::iterator MBBI, 2920 const DebugLoc &DL, 2921 int Offset) const { 2922 2923 if (Offset <= 0) 2924 return false; 2925 2926 if (Offset % SlotSize) 2927 return false; 2928 2929 int NumPops = Offset / SlotSize; 2930 // This is only worth it if we have at most 2 pops. 2931 if (NumPops != 1 && NumPops != 2) 2932 return false; 2933 2934 // Handle only the trivial case where the adjustment directly follows 2935 // a call. This is the most common one, anyway. 2936 if (MBBI == MBB.begin()) 2937 return false; 2938 MachineBasicBlock::iterator Prev = std::prev(MBBI); 2939 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 2940 return false; 2941 2942 unsigned Regs[2]; 2943 unsigned FoundRegs = 0; 2944 2945 auto &MRI = MBB.getParent()->getRegInfo(); 2946 auto RegMask = Prev->getOperand(1); 2947 2948 auto &RegClass = 2949 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 2950 // Try to find up to NumPops free registers. 2951 for (auto Candidate : RegClass) { 2952 2953 // Poor man's liveness: 2954 // Since we're immediately after a call, any register that is clobbered 2955 // by the call and not defined by it can be considered dead. 2956 if (!RegMask.clobbersPhysReg(Candidate)) 2957 continue; 2958 2959 // Don't clobber reserved registers 2960 if (MRI.isReserved(Candidate)) 2961 continue; 2962 2963 bool IsDef = false; 2964 for (const MachineOperand &MO : Prev->implicit_operands()) { 2965 if (MO.isReg() && MO.isDef() && 2966 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 2967 IsDef = true; 2968 break; 2969 } 2970 } 2971 2972 if (IsDef) 2973 continue; 2974 2975 Regs[FoundRegs++] = Candidate; 2976 if (FoundRegs == (unsigned)NumPops) 2977 break; 2978 } 2979 2980 if (FoundRegs == 0) 2981 return false; 2982 2983 // If we found only one free register, but need two, reuse the same one twice. 2984 while (FoundRegs < (unsigned)NumPops) 2985 Regs[FoundRegs++] = Regs[0]; 2986 2987 for (int i = 0; i < NumPops; ++i) 2988 BuildMI(MBB, MBBI, DL, 2989 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 2990 2991 return true; 2992 } 2993 2994 MachineBasicBlock::iterator X86FrameLowering:: 2995 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 2996 MachineBasicBlock::iterator I) const { 2997 bool reserveCallFrame = hasReservedCallFrame(MF); 2998 unsigned Opcode = I->getOpcode(); 2999 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3000 DebugLoc DL = I->getDebugLoc(); 3001 uint64_t Amount = TII.getFrameSize(*I); 3002 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3003 I = MBB.erase(I); 3004 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3005 3006 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3007 // typically because the function is marked noreturn (abort, throw, 3008 // assert_fail, etc). 3009 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3010 return I; 3011 3012 if (!reserveCallFrame) { 3013 // If the stack pointer can be changed after prologue, turn the 3014 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3015 // adjcallstackdown instruction into 'add ESP, <amt>' 3016 3017 // We need to keep the stack aligned properly. To do this, we round the 3018 // amount of space needed for the outgoing arguments up to the next 3019 // alignment boundary. 3020 Amount = alignTo(Amount, getStackAlign()); 3021 3022 const Function &F = MF.getFunction(); 3023 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3024 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3025 3026 // If we have any exception handlers in this function, and we adjust 3027 // the SP before calls, we may need to indicate this to the unwinder 3028 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3029 // Amount == 0, because the preceding function may have set a non-0 3030 // GNU_ARGS_SIZE. 3031 // TODO: We don't need to reset this between subsequent functions, 3032 // if it didn't change. 3033 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3034 3035 if (HasDwarfEHHandlers && !isDestroy && 3036 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3037 BuildCFI(MBB, InsertPos, DL, 3038 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3039 3040 if (Amount == 0) 3041 return I; 3042 3043 // Factor out the amount that gets handled inside the sequence 3044 // (Pushes of argument for frame setup, callee pops for frame destroy) 3045 Amount -= InternalAmt; 3046 3047 // TODO: This is needed only if we require precise CFA. 3048 // If this is a callee-pop calling convention, emit a CFA adjust for 3049 // the amount the callee popped. 3050 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3051 BuildCFI(MBB, InsertPos, DL, 3052 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3053 3054 // Add Amount to SP to destroy a frame, or subtract to setup. 3055 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3056 3057 if (StackAdjustment) { 3058 // Merge with any previous or following adjustment instruction. Note: the 3059 // instructions merged with here do not have CFI, so their stack 3060 // adjustments do not feed into CfaAdjustment. 3061 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3062 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3063 3064 if (StackAdjustment) { 3065 if (!(F.hasMinSize() && 3066 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3067 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3068 /*InEpilogue=*/false); 3069 } 3070 } 3071 3072 if (DwarfCFI && !hasFP(MF)) { 3073 // If we don't have FP, but need to generate unwind information, 3074 // we need to set the correct CFA offset after the stack adjustment. 3075 // How much we adjust the CFA offset depends on whether we're emitting 3076 // CFI only for EH purposes or for debugging. EH only requires the CFA 3077 // offset to be correct at each call site, while for debugging we want 3078 // it to be more precise. 3079 3080 int64_t CfaAdjustment = -StackAdjustment; 3081 // TODO: When not using precise CFA, we also need to adjust for the 3082 // InternalAmt here. 3083 if (CfaAdjustment) { 3084 BuildCFI(MBB, InsertPos, DL, 3085 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3086 CfaAdjustment)); 3087 } 3088 } 3089 3090 return I; 3091 } 3092 3093 if (InternalAmt) { 3094 MachineBasicBlock::iterator CI = I; 3095 MachineBasicBlock::iterator B = MBB.begin(); 3096 while (CI != B && !std::prev(CI)->isCall()) 3097 --CI; 3098 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3099 } 3100 3101 return I; 3102 } 3103 3104 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3105 assert(MBB.getParent() && "Block is not attached to a function!"); 3106 const MachineFunction &MF = *MBB.getParent(); 3107 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 3108 } 3109 3110 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3111 assert(MBB.getParent() && "Block is not attached to a function!"); 3112 3113 // Win64 has strict requirements in terms of epilogue and we are 3114 // not taking a chance at messing with them. 3115 // I.e., unless this block is already an exit block, we can't use 3116 // it as an epilogue. 3117 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3118 return false; 3119 3120 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3121 return true; 3122 3123 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3124 // clobbers the EFLAGS. Check that we do not need to preserve it, 3125 // otherwise, conservatively assume this is not 3126 // safe to insert the epilogue here. 3127 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3128 } 3129 3130 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3131 // If we may need to emit frameless compact unwind information, give 3132 // up as this is currently broken: PR25614. 3133 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) && 3134 // The lowering of segmented stack and HiPE only support entry blocks 3135 // as prologue blocks: PR26107. 3136 // This limitation may be lifted if we fix: 3137 // - adjustForSegmentedStacks 3138 // - adjustForHiPEPrologue 3139 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3140 !MF.shouldSplitStack(); 3141 } 3142 3143 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3144 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3145 const DebugLoc &DL, bool RestoreSP) const { 3146 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3147 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3148 assert(STI.is32Bit() && !Uses64BitFramePtr && 3149 "restoring EBP/ESI on non-32-bit target"); 3150 3151 MachineFunction &MF = *MBB.getParent(); 3152 Register FramePtr = TRI->getFrameRegister(MF); 3153 Register BasePtr = TRI->getBaseRegister(); 3154 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3155 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3156 MachineFrameInfo &MFI = MF.getFrameInfo(); 3157 3158 // FIXME: Don't set FrameSetup flag in catchret case. 3159 3160 int FI = FuncInfo.EHRegNodeFrameIndex; 3161 int EHRegSize = MFI.getObjectSize(FI); 3162 3163 if (RestoreSP) { 3164 // MOV32rm -EHRegSize(%ebp), %esp 3165 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3166 X86::EBP, true, -EHRegSize) 3167 .setMIFlag(MachineInstr::FrameSetup); 3168 } 3169 3170 Register UsedReg; 3171 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg); 3172 int EndOffset = -EHRegOffset - EHRegSize; 3173 FuncInfo.EHRegNodeEndOffset = EndOffset; 3174 3175 if (UsedReg == FramePtr) { 3176 // ADD $offset, %ebp 3177 unsigned ADDri = getADDriOpcode(false, EndOffset); 3178 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3179 .addReg(FramePtr) 3180 .addImm(EndOffset) 3181 .setMIFlag(MachineInstr::FrameSetup) 3182 ->getOperand(3) 3183 .setIsDead(); 3184 assert(EndOffset >= 0 && 3185 "end of registration object above normal EBP position!"); 3186 } else if (UsedReg == BasePtr) { 3187 // LEA offset(%ebp), %esi 3188 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3189 FramePtr, false, EndOffset) 3190 .setMIFlag(MachineInstr::FrameSetup); 3191 // MOV32rm SavedEBPOffset(%esi), %ebp 3192 assert(X86FI->getHasSEHFramePtrSave()); 3193 int Offset = 3194 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg); 3195 assert(UsedReg == BasePtr); 3196 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3197 UsedReg, true, Offset) 3198 .setMIFlag(MachineInstr::FrameSetup); 3199 } else { 3200 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3201 } 3202 return MBBI; 3203 } 3204 3205 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3206 return TRI->getSlotSize(); 3207 } 3208 3209 Register 3210 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3211 return TRI->getDwarfRegNum(StackPtr, true); 3212 } 3213 3214 namespace { 3215 // Struct used by orderFrameObjects to help sort the stack objects. 3216 struct X86FrameSortingObject { 3217 bool IsValid = false; // true if we care about this Object. 3218 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3219 unsigned ObjectSize = 0; // Size of Object in bytes. 3220 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3221 unsigned ObjectNumUses = 0; // Object static number of uses. 3222 }; 3223 3224 // The comparison function we use for std::sort to order our local 3225 // stack symbols. The current algorithm is to use an estimated 3226 // "density". This takes into consideration the size and number of 3227 // uses each object has in order to roughly minimize code size. 3228 // So, for example, an object of size 16B that is referenced 5 times 3229 // will get higher priority than 4 4B objects referenced 1 time each. 3230 // It's not perfect and we may be able to squeeze a few more bytes out of 3231 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3232 // fringe end can have special consideration, given their size is less 3233 // important, etc.), but the algorithmic complexity grows too much to be 3234 // worth the extra gains we get. This gets us pretty close. 3235 // The final order leaves us with objects with highest priority going 3236 // at the end of our list. 3237 struct X86FrameSortingComparator { 3238 inline bool operator()(const X86FrameSortingObject &A, 3239 const X86FrameSortingObject &B) { 3240 uint64_t DensityAScaled, DensityBScaled; 3241 3242 // For consistency in our comparison, all invalid objects are placed 3243 // at the end. This also allows us to stop walking when we hit the 3244 // first invalid item after it's all sorted. 3245 if (!A.IsValid) 3246 return false; 3247 if (!B.IsValid) 3248 return true; 3249 3250 // The density is calculated by doing : 3251 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3252 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3253 // Since this approach may cause inconsistencies in 3254 // the floating point <, >, == comparisons, depending on the floating 3255 // point model with which the compiler was built, we're going 3256 // to scale both sides by multiplying with 3257 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3258 // the division and, with it, the need for any floating point 3259 // arithmetic. 3260 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3261 static_cast<uint64_t>(B.ObjectSize); 3262 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3263 static_cast<uint64_t>(A.ObjectSize); 3264 3265 // If the two densities are equal, prioritize highest alignment 3266 // objects. This allows for similar alignment objects 3267 // to be packed together (given the same density). 3268 // There's room for improvement here, also, since we can pack 3269 // similar alignment (different density) objects next to each 3270 // other to save padding. This will also require further 3271 // complexity/iterations, and the overall gain isn't worth it, 3272 // in general. Something to keep in mind, though. 3273 if (DensityAScaled == DensityBScaled) 3274 return A.ObjectAlignment < B.ObjectAlignment; 3275 3276 return DensityAScaled < DensityBScaled; 3277 } 3278 }; 3279 } // namespace 3280 3281 // Order the symbols in the local stack. 3282 // We want to place the local stack objects in some sort of sensible order. 3283 // The heuristic we use is to try and pack them according to static number 3284 // of uses and size of object in order to minimize code size. 3285 void X86FrameLowering::orderFrameObjects( 3286 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3287 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3288 3289 // Don't waste time if there's nothing to do. 3290 if (ObjectsToAllocate.empty()) 3291 return; 3292 3293 // Create an array of all MFI objects. We won't need all of these 3294 // objects, but we're going to create a full array of them to make 3295 // it easier to index into when we're counting "uses" down below. 3296 // We want to be able to easily/cheaply access an object by simply 3297 // indexing into it, instead of having to search for it every time. 3298 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3299 3300 // Walk the objects we care about and mark them as such in our working 3301 // struct. 3302 for (auto &Obj : ObjectsToAllocate) { 3303 SortingObjects[Obj].IsValid = true; 3304 SortingObjects[Obj].ObjectIndex = Obj; 3305 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3306 // Set the size. 3307 int ObjectSize = MFI.getObjectSize(Obj); 3308 if (ObjectSize == 0) 3309 // Variable size. Just use 4. 3310 SortingObjects[Obj].ObjectSize = 4; 3311 else 3312 SortingObjects[Obj].ObjectSize = ObjectSize; 3313 } 3314 3315 // Count the number of uses for each object. 3316 for (auto &MBB : MF) { 3317 for (auto &MI : MBB) { 3318 if (MI.isDebugInstr()) 3319 continue; 3320 for (const MachineOperand &MO : MI.operands()) { 3321 // Check to see if it's a local stack symbol. 3322 if (!MO.isFI()) 3323 continue; 3324 int Index = MO.getIndex(); 3325 // Check to see if it falls within our range, and is tagged 3326 // to require ordering. 3327 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3328 SortingObjects[Index].IsValid) 3329 SortingObjects[Index].ObjectNumUses++; 3330 } 3331 } 3332 } 3333 3334 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3335 // info). 3336 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3337 3338 // Now modify the original list to represent the final order that 3339 // we want. The order will depend on whether we're going to access them 3340 // from the stack pointer or the frame pointer. For SP, the list should 3341 // end up with the END containing objects that we want with smaller offsets. 3342 // For FP, it should be flipped. 3343 int i = 0; 3344 for (auto &Obj : SortingObjects) { 3345 // All invalid items are sorted at the end, so it's safe to stop. 3346 if (!Obj.IsValid) 3347 break; 3348 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3349 } 3350 3351 // Flip it if we're accessing off of the FP. 3352 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3353 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3354 } 3355 3356 3357 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3358 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3359 unsigned Offset = 16; 3360 // RBP is immediately pushed. 3361 Offset += SlotSize; 3362 // All callee-saved registers are then pushed. 3363 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3364 // Every funclet allocates enough stack space for the largest outgoing call. 3365 Offset += getWinEHFuncletFrameSize(MF); 3366 return Offset; 3367 } 3368 3369 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3370 MachineFunction &MF, RegScavenger *RS) const { 3371 // Mark the function as not having WinCFI. We will set it back to true in 3372 // emitPrologue if it gets called and emits CFI. 3373 MF.setHasWinCFI(false); 3374 3375 // If this function isn't doing Win64-style C++ EH, we don't need to do 3376 // anything. 3377 const Function &F = MF.getFunction(); 3378 if (!STI.is64Bit() || !MF.hasEHFunclets() || 3379 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX) 3380 return; 3381 3382 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3383 // relative to RSP after the prologue. Find the offset of the last fixed 3384 // object, so that we can allocate a slot immediately following it. If there 3385 // were no fixed objects, use offset -SlotSize, which is immediately after the 3386 // return address. Fixed objects have negative frame indices. 3387 MachineFrameInfo &MFI = MF.getFrameInfo(); 3388 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3389 int64_t MinFixedObjOffset = -SlotSize; 3390 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3391 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3392 3393 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3394 for (WinEHHandlerType &H : TBME.HandlerArray) { 3395 int FrameIndex = H.CatchObj.FrameIndex; 3396 if (FrameIndex != INT_MAX) { 3397 // Ensure alignment. 3398 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3399 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3400 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3401 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3402 } 3403 } 3404 } 3405 3406 // Ensure alignment. 3407 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3408 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3409 int UnwindHelpFI = 3410 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3411 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3412 3413 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3414 // other frame setup instructions. 3415 MachineBasicBlock &MBB = MF.front(); 3416 auto MBBI = MBB.begin(); 3417 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3418 ++MBBI; 3419 3420 DebugLoc DL = MBB.findDebugLoc(MBBI); 3421 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3422 UnwindHelpFI) 3423 .addImm(-2); 3424 } 3425 3426 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3427 MachineFunction &MF, RegScavenger *RS) const { 3428 if (STI.is32Bit() && MF.hasEHFunclets()) 3429 restoreWinEHStackPointersInParent(MF); 3430 } 3431 3432 void X86FrameLowering::restoreWinEHStackPointersInParent( 3433 MachineFunction &MF) const { 3434 // 32-bit functions have to restore stack pointers when control is transferred 3435 // back to the parent function. These blocks are identified as eh pads that 3436 // are not funclet entries. 3437 bool IsSEH = isAsynchronousEHPersonality( 3438 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3439 for (MachineBasicBlock &MBB : MF) { 3440 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3441 if (NeedsRestore) 3442 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3443 /*RestoreSP=*/IsSEH); 3444 } 3445 } 3446