1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include <cstdlib> 36 37 #define DEBUG_TYPE "x86-fl" 38 39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 40 STATISTIC(NumFrameExtraProbe, 41 "Number of extra stack probes generated in prologue"); 42 43 using namespace llvm; 44 45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 46 MaybeAlign StackAlignOverride) 47 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 48 STI.is64Bit() ? -8 : -4), 49 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 50 // Cache a bunch of frame-related predicates for this subtarget. 51 SlotSize = TRI->getSlotSize(); 52 Is64Bit = STI.is64Bit(); 53 IsLP64 = STI.isTarget64BitLP64(); 54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 55 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 56 StackPtr = TRI->getStackRegister(); 57 } 58 59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 60 return !MF.getFrameInfo().hasVarSizedObjects() && 61 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 62 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 63 } 64 65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 66 /// call frame pseudos can be simplified. Having a FP, as in the default 67 /// implementation, is not sufficient here since we can't always use it. 68 /// Use a more nuanced condition. 69 bool 70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 71 return hasReservedCallFrame(MF) || 72 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 73 (hasFP(MF) && !TRI->needsStackRealignment(MF)) || 74 TRI->hasBasePointer(MF); 75 } 76 77 // needsFrameIndexResolution - Do we need to perform FI resolution for 78 // this function. Normally, this is required only when the function 79 // has any stack objects. However, FI resolution actually has another job, 80 // not apparent from the title - it resolves callframesetup/destroy 81 // that were not simplified earlier. 82 // So, this is required for x86 functions that have push sequences even 83 // when there are no stack objects. 84 bool 85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 86 return MF.getFrameInfo().hasStackObjects() || 87 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 88 } 89 90 /// hasFP - Return true if the specified function should have a dedicated frame 91 /// pointer register. This is true if the function has variable sized allocas 92 /// or if frame pointer elimination is disabled. 93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 94 const MachineFrameInfo &MFI = MF.getFrameInfo(); 95 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 96 TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() || 97 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 98 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 99 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 100 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 101 MFI.hasStackMap() || MFI.hasPatchPoint() || 102 MFI.hasCopyImplyingStackAdjustment()); 103 } 104 105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 106 if (IsLP64) { 107 if (isInt<8>(Imm)) 108 return X86::SUB64ri8; 109 return X86::SUB64ri32; 110 } else { 111 if (isInt<8>(Imm)) 112 return X86::SUB32ri8; 113 return X86::SUB32ri; 114 } 115 } 116 117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 118 if (IsLP64) { 119 if (isInt<8>(Imm)) 120 return X86::ADD64ri8; 121 return X86::ADD64ri32; 122 } else { 123 if (isInt<8>(Imm)) 124 return X86::ADD32ri8; 125 return X86::ADD32ri; 126 } 127 } 128 129 static unsigned getSUBrrOpcode(bool IsLP64) { 130 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 131 } 132 133 static unsigned getADDrrOpcode(bool IsLP64) { 134 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 135 } 136 137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 138 if (IsLP64) { 139 if (isInt<8>(Imm)) 140 return X86::AND64ri8; 141 return X86::AND64ri32; 142 } 143 if (isInt<8>(Imm)) 144 return X86::AND32ri8; 145 return X86::AND32ri; 146 } 147 148 static unsigned getLEArOpcode(bool IsLP64) { 149 return IsLP64 ? X86::LEA64r : X86::LEA32r; 150 } 151 152 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 153 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 154 unsigned Reg = RegMask.PhysReg; 155 156 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 157 Reg == X86::AH || Reg == X86::AL) 158 return true; 159 } 160 161 return false; 162 } 163 164 /// Check if the flags need to be preserved before the terminators. 165 /// This would be the case, if the eflags is live-in of the region 166 /// composed by the terminators or live-out of that region, without 167 /// being defined by a terminator. 168 static bool 169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 170 for (const MachineInstr &MI : MBB.terminators()) { 171 bool BreakNext = false; 172 for (const MachineOperand &MO : MI.operands()) { 173 if (!MO.isReg()) 174 continue; 175 Register Reg = MO.getReg(); 176 if (Reg != X86::EFLAGS) 177 continue; 178 179 // This terminator needs an eflags that is not defined 180 // by a previous another terminator: 181 // EFLAGS is live-in of the region composed by the terminators. 182 if (!MO.isDef()) 183 return true; 184 // This terminator defines the eflags, i.e., we don't need to preserve it. 185 // However, we still need to check this specific terminator does not 186 // read a live-in value. 187 BreakNext = true; 188 } 189 // We found a definition of the eflags, no need to preserve them. 190 if (BreakNext) 191 return false; 192 } 193 194 // None of the terminators use or define the eflags. 195 // Check if they are live-out, that would imply we need to preserve them. 196 for (const MachineBasicBlock *Succ : MBB.successors()) 197 if (Succ->isLiveIn(X86::EFLAGS)) 198 return true; 199 200 return false; 201 } 202 203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 204 /// stack pointer by a constant value. 205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 206 MachineBasicBlock::iterator &MBBI, 207 const DebugLoc &DL, 208 int64_t NumBytes, bool InEpilogue) const { 209 bool isSub = NumBytes < 0; 210 uint64_t Offset = isSub ? -NumBytes : NumBytes; 211 MachineInstr::MIFlag Flag = 212 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 213 214 uint64_t Chunk = (1LL << 31) - 1; 215 216 MachineFunction &MF = *MBB.getParent(); 217 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 218 const X86TargetLowering &TLI = *STI.getTargetLowering(); 219 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 220 221 // It's ok to not take into account large chunks when probing, as the 222 // allocation is split in smaller chunks anyway. 223 if (EmitInlineStackProbe && !InEpilogue) { 224 225 // This pseudo-instruction is going to be expanded, potentially using a 226 // loop, by inlineStackProbe(). 227 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 228 return; 229 } else if (Offset > Chunk) { 230 // Rather than emit a long series of instructions for large offsets, 231 // load the offset into a register and do one sub/add 232 unsigned Reg = 0; 233 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 234 235 if (isSub && !isEAXLiveIn(MBB)) 236 Reg = Rax; 237 else 238 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 239 240 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 241 unsigned AddSubRROpc = 242 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 243 if (Reg) { 244 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 245 .addImm(Offset) 246 .setMIFlag(Flag); 247 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 248 .addReg(StackPtr) 249 .addReg(Reg); 250 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 251 return; 252 } else if (Offset > 8 * Chunk) { 253 // If we would need more than 8 add or sub instructions (a >16GB stack 254 // frame), it's worth spilling RAX to materialize this immediate. 255 // pushq %rax 256 // movabsq +-$Offset+-SlotSize, %rax 257 // addq %rsp, %rax 258 // xchg %rax, (%rsp) 259 // movq (%rsp), %rsp 260 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 261 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 262 .addReg(Rax, RegState::Kill) 263 .setMIFlag(Flag); 264 // Subtract is not commutative, so negate the offset and always use add. 265 // Subtract 8 less and add 8 more to account for the PUSH we just did. 266 if (isSub) 267 Offset = -(Offset - SlotSize); 268 else 269 Offset = Offset + SlotSize; 270 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 271 .addImm(Offset) 272 .setMIFlag(Flag); 273 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 274 .addReg(Rax) 275 .addReg(StackPtr); 276 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 277 // Exchange the new SP in RAX with the top of the stack. 278 addRegOffset( 279 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 280 StackPtr, false, 0); 281 // Load new SP from the top of the stack into RSP. 282 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 283 StackPtr, false, 0); 284 return; 285 } 286 } 287 288 while (Offset) { 289 uint64_t ThisVal = std::min(Offset, Chunk); 290 if (ThisVal == SlotSize) { 291 // Use push / pop for slot sized adjustments as a size optimization. We 292 // need to find a dead register when using pop. 293 unsigned Reg = isSub 294 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 295 : TRI->findDeadCallerSavedReg(MBB, MBBI); 296 if (Reg) { 297 unsigned Opc = isSub 298 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 299 : (Is64Bit ? X86::POP64r : X86::POP32r); 300 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 301 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 302 .setMIFlag(Flag); 303 Offset -= ThisVal; 304 continue; 305 } 306 } 307 308 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 309 .setMIFlag(Flag); 310 311 Offset -= ThisVal; 312 } 313 } 314 315 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 316 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 317 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 318 assert(Offset != 0 && "zero offset stack adjustment requested"); 319 320 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 321 // is tricky. 322 bool UseLEA; 323 if (!InEpilogue) { 324 // Check if inserting the prologue at the beginning 325 // of MBB would require to use LEA operations. 326 // We need to use LEA operations if EFLAGS is live in, because 327 // it means an instruction will read it before it gets defined. 328 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 329 } else { 330 // If we can use LEA for SP but we shouldn't, check that none 331 // of the terminators uses the eflags. Otherwise we will insert 332 // a ADD that will redefine the eflags and break the condition. 333 // Alternatively, we could move the ADD, but this may not be possible 334 // and is an optimization anyway. 335 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 336 if (UseLEA && !STI.useLeaForSP()) 337 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 338 // If that assert breaks, that means we do not do the right thing 339 // in canUseAsEpilogue. 340 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 341 "We shouldn't have allowed this insertion point"); 342 } 343 344 MachineInstrBuilder MI; 345 if (UseLEA) { 346 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 347 TII.get(getLEArOpcode(Uses64BitFramePtr)), 348 StackPtr), 349 StackPtr, false, Offset); 350 } else { 351 bool IsSub = Offset < 0; 352 uint64_t AbsOffset = IsSub ? -Offset : Offset; 353 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 354 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 355 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 356 .addReg(StackPtr) 357 .addImm(AbsOffset); 358 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 359 } 360 return MI; 361 } 362 363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 364 MachineBasicBlock::iterator &MBBI, 365 bool doMergeWithPrevious) const { 366 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 367 (!doMergeWithPrevious && MBBI == MBB.end())) 368 return 0; 369 370 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 371 372 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 373 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 374 // instruction, and that there are no DBG_VALUE or other instructions between 375 // ADD/SUB/LEA and its corresponding CFI instruction. 376 /* TODO: Add support for the case where there are multiple CFI instructions 377 below the ADD/SUB/LEA, e.g.: 378 ... 379 add 380 cfi_def_cfa_offset 381 cfi_offset 382 ... 383 */ 384 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 385 PI = std::prev(PI); 386 387 unsigned Opc = PI->getOpcode(); 388 int Offset = 0; 389 390 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 391 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 392 PI->getOperand(0).getReg() == StackPtr){ 393 assert(PI->getOperand(1).getReg() == StackPtr); 394 Offset = PI->getOperand(2).getImm(); 395 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 396 PI->getOperand(0).getReg() == StackPtr && 397 PI->getOperand(1).getReg() == StackPtr && 398 PI->getOperand(2).getImm() == 1 && 399 PI->getOperand(3).getReg() == X86::NoRegister && 400 PI->getOperand(5).getReg() == X86::NoRegister) { 401 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 402 Offset = PI->getOperand(4).getImm(); 403 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 404 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 405 PI->getOperand(0).getReg() == StackPtr) { 406 assert(PI->getOperand(1).getReg() == StackPtr); 407 Offset = -PI->getOperand(2).getImm(); 408 } else 409 return 0; 410 411 PI = MBB.erase(PI); 412 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI); 413 if (!doMergeWithPrevious) 414 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 415 416 return Offset; 417 } 418 419 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 420 MachineBasicBlock::iterator MBBI, 421 const DebugLoc &DL, 422 const MCCFIInstruction &CFIInst) const { 423 MachineFunction &MF = *MBB.getParent(); 424 unsigned CFIIndex = MF.addFrameInst(CFIInst); 425 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 426 .addCFIIndex(CFIIndex); 427 } 428 429 /// Emits Dwarf Info specifying offsets of callee saved registers and 430 /// frame pointer. This is called only when basic block sections are enabled. 431 void X86FrameLowering::emitCalleeSavedFrameMoves( 432 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 433 MachineFunction &MF = *MBB.getParent(); 434 if (!hasFP(MF)) { 435 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 436 return; 437 } 438 const MachineModuleInfo &MMI = MF.getMMI(); 439 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 440 const Register FramePtr = TRI->getFrameRegister(MF); 441 const Register MachineFramePtr = 442 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 443 : FramePtr; 444 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 445 // Offset = space for return address + size of the frame pointer itself. 446 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 447 BuildCFI(MBB, MBBI, DebugLoc{}, 448 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 449 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 450 } 451 452 void X86FrameLowering::emitCalleeSavedFrameMoves( 453 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 454 const DebugLoc &DL, bool IsPrologue) const { 455 MachineFunction &MF = *MBB.getParent(); 456 MachineFrameInfo &MFI = MF.getFrameInfo(); 457 MachineModuleInfo &MMI = MF.getMMI(); 458 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 459 460 // Add callee saved registers to move list. 461 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 462 if (CSI.empty()) return; 463 464 // Calculate offsets. 465 for (std::vector<CalleeSavedInfo>::const_iterator 466 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 467 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 468 unsigned Reg = I->getReg(); 469 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 470 471 if (IsPrologue) { 472 BuildCFI(MBB, MBBI, DL, 473 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 474 } else { 475 BuildCFI(MBB, MBBI, DL, 476 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 477 } 478 } 479 } 480 481 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 482 MachineBasicBlock &MBB, 483 MachineBasicBlock::iterator MBBI, 484 const DebugLoc &DL, bool InProlog) const { 485 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 486 if (STI.isTargetWindowsCoreCLR()) { 487 if (InProlog) { 488 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 489 .addImm(0 /* no explicit stack size */); 490 } else { 491 emitStackProbeInline(MF, MBB, MBBI, DL, false); 492 } 493 } else { 494 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 495 } 496 } 497 498 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 499 MachineBasicBlock &PrologMBB) const { 500 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 501 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 502 }); 503 if (Where != PrologMBB.end()) { 504 DebugLoc DL = PrologMBB.findDebugLoc(Where); 505 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 506 Where->eraseFromParent(); 507 } 508 } 509 510 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 511 MachineBasicBlock &MBB, 512 MachineBasicBlock::iterator MBBI, 513 const DebugLoc &DL, 514 bool InProlog) const { 515 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 516 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 517 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 518 else 519 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 520 } 521 522 void X86FrameLowering::emitStackProbeInlineGeneric( 523 MachineFunction &MF, MachineBasicBlock &MBB, 524 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 525 MachineInstr &AllocWithProbe = *MBBI; 526 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 527 528 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 529 const X86TargetLowering &TLI = *STI.getTargetLowering(); 530 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 531 "different expansion expected for CoreCLR 64 bit"); 532 533 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 534 uint64_t ProbeChunk = StackProbeSize * 8; 535 536 uint64_t MaxAlign = 537 TRI->needsStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 538 539 // Synthesize a loop or unroll it, depending on the number of iterations. 540 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 541 // between the unaligned rsp and current rsp. 542 if (Offset > ProbeChunk) { 543 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 544 MaxAlign % StackProbeSize); 545 } else { 546 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 547 MaxAlign % StackProbeSize); 548 } 549 } 550 551 void X86FrameLowering::emitStackProbeInlineGenericBlock( 552 MachineFunction &MF, MachineBasicBlock &MBB, 553 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 554 uint64_t AlignOffset) const { 555 556 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 557 const X86TargetLowering &TLI = *STI.getTargetLowering(); 558 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 559 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 560 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 561 562 uint64_t CurrentOffset = 0; 563 564 assert(AlignOffset < StackProbeSize); 565 566 // If the offset is so small it fits within a page, there's nothing to do. 567 if (StackProbeSize < Offset + AlignOffset) { 568 569 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 570 .addReg(StackPtr) 571 .addImm(StackProbeSize - AlignOffset) 572 .setMIFlag(MachineInstr::FrameSetup); 573 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 574 575 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 576 .setMIFlag(MachineInstr::FrameSetup), 577 StackPtr, false, 0) 578 .addImm(0) 579 .setMIFlag(MachineInstr::FrameSetup); 580 NumFrameExtraProbe++; 581 CurrentOffset = StackProbeSize - AlignOffset; 582 } 583 584 // For the next N - 1 pages, just probe. I tried to take advantage of 585 // natural probes but it implies much more logic and there was very few 586 // interesting natural probes to interleave. 587 while (CurrentOffset + StackProbeSize < Offset) { 588 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 589 .addReg(StackPtr) 590 .addImm(StackProbeSize) 591 .setMIFlag(MachineInstr::FrameSetup); 592 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 593 594 595 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 596 .setMIFlag(MachineInstr::FrameSetup), 597 StackPtr, false, 0) 598 .addImm(0) 599 .setMIFlag(MachineInstr::FrameSetup); 600 NumFrameExtraProbe++; 601 CurrentOffset += StackProbeSize; 602 } 603 604 // No need to probe the tail, it is smaller than a Page. 605 uint64_t ChunkSize = Offset - CurrentOffset; 606 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 607 .addReg(StackPtr) 608 .addImm(ChunkSize) 609 .setMIFlag(MachineInstr::FrameSetup); 610 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 611 } 612 613 void X86FrameLowering::emitStackProbeInlineGenericLoop( 614 MachineFunction &MF, MachineBasicBlock &MBB, 615 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 616 uint64_t AlignOffset) const { 617 assert(Offset && "null offset"); 618 619 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 620 const X86TargetLowering &TLI = *STI.getTargetLowering(); 621 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 622 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 623 624 if (AlignOffset) { 625 if (AlignOffset < StackProbeSize) { 626 // Perform a first smaller allocation followed by a probe. 627 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 628 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 629 .addReg(StackPtr) 630 .addImm(AlignOffset) 631 .setMIFlag(MachineInstr::FrameSetup); 632 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 633 634 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 635 .setMIFlag(MachineInstr::FrameSetup), 636 StackPtr, false, 0) 637 .addImm(0) 638 .setMIFlag(MachineInstr::FrameSetup); 639 NumFrameExtraProbe++; 640 Offset -= AlignOffset; 641 } 642 } 643 644 // Synthesize a loop 645 NumFrameLoopProbe++; 646 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 647 648 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 649 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 650 651 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 652 MF.insert(MBBIter, testMBB); 653 MF.insert(MBBIter, tailMBB); 654 655 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D; 656 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 657 .addReg(StackPtr) 658 .setMIFlag(MachineInstr::FrameSetup); 659 660 // save loop bound 661 { 662 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset); 663 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 664 .addReg(FinalStackProbed) 665 .addImm(Offset / StackProbeSize * StackProbeSize) 666 .setMIFlag(MachineInstr::FrameSetup); 667 } 668 669 // allocate a page 670 { 671 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 672 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 673 .addReg(StackPtr) 674 .addImm(StackProbeSize) 675 .setMIFlag(MachineInstr::FrameSetup); 676 } 677 678 // touch the page 679 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 680 .setMIFlag(MachineInstr::FrameSetup), 681 StackPtr, false, 0) 682 .addImm(0) 683 .setMIFlag(MachineInstr::FrameSetup); 684 685 // cmp with stack pointer bound 686 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 687 .addReg(StackPtr) 688 .addReg(FinalStackProbed) 689 .setMIFlag(MachineInstr::FrameSetup); 690 691 // jump 692 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 693 .addMBB(testMBB) 694 .addImm(X86::COND_NE) 695 .setMIFlag(MachineInstr::FrameSetup); 696 testMBB->addSuccessor(testMBB); 697 testMBB->addSuccessor(tailMBB); 698 699 // BB management 700 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 701 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 702 MBB.addSuccessor(testMBB); 703 704 // handle tail 705 unsigned TailOffset = Offset % StackProbeSize; 706 if (TailOffset) { 707 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 708 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 709 .addReg(StackPtr) 710 .addImm(TailOffset) 711 .setMIFlag(MachineInstr::FrameSetup); 712 } 713 714 // Update Live In information 715 recomputeLiveIns(*testMBB); 716 recomputeLiveIns(*tailMBB); 717 } 718 719 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 720 MachineFunction &MF, MachineBasicBlock &MBB, 721 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 722 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 723 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 724 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 725 const TargetInstrInfo &TII = *STI.getInstrInfo(); 726 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 727 728 // RAX contains the number of bytes of desired stack adjustment. 729 // The handling here assumes this value has already been updated so as to 730 // maintain stack alignment. 731 // 732 // We need to exit with RSP modified by this amount and execute suitable 733 // page touches to notify the OS that we're growing the stack responsibly. 734 // All stack probing must be done without modifying RSP. 735 // 736 // MBB: 737 // SizeReg = RAX; 738 // ZeroReg = 0 739 // CopyReg = RSP 740 // Flags, TestReg = CopyReg - SizeReg 741 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 742 // LimitReg = gs magic thread env access 743 // if FinalReg >= LimitReg goto ContinueMBB 744 // RoundBB: 745 // RoundReg = page address of FinalReg 746 // LoopMBB: 747 // LoopReg = PHI(LimitReg,ProbeReg) 748 // ProbeReg = LoopReg - PageSize 749 // [ProbeReg] = 0 750 // if (ProbeReg > RoundReg) goto LoopMBB 751 // ContinueMBB: 752 // RSP = RSP - RAX 753 // [rest of original MBB] 754 755 // Set up the new basic blocks 756 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 757 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 758 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 759 760 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 761 MF.insert(MBBIter, RoundMBB); 762 MF.insert(MBBIter, LoopMBB); 763 MF.insert(MBBIter, ContinueMBB); 764 765 // Split MBB and move the tail portion down to ContinueMBB. 766 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 767 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 768 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 769 770 // Some useful constants 771 const int64_t ThreadEnvironmentStackLimit = 0x10; 772 const int64_t PageSize = 0x1000; 773 const int64_t PageMask = ~(PageSize - 1); 774 775 // Registers we need. For the normal case we use virtual 776 // registers. For the prolog expansion we use RAX, RCX and RDX. 777 MachineRegisterInfo &MRI = MF.getRegInfo(); 778 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 779 const Register SizeReg = InProlog ? X86::RAX 780 : MRI.createVirtualRegister(RegClass), 781 ZeroReg = InProlog ? X86::RCX 782 : MRI.createVirtualRegister(RegClass), 783 CopyReg = InProlog ? X86::RDX 784 : MRI.createVirtualRegister(RegClass), 785 TestReg = InProlog ? X86::RDX 786 : MRI.createVirtualRegister(RegClass), 787 FinalReg = InProlog ? X86::RDX 788 : MRI.createVirtualRegister(RegClass), 789 RoundedReg = InProlog ? X86::RDX 790 : MRI.createVirtualRegister(RegClass), 791 LimitReg = InProlog ? X86::RCX 792 : MRI.createVirtualRegister(RegClass), 793 JoinReg = InProlog ? X86::RCX 794 : MRI.createVirtualRegister(RegClass), 795 ProbeReg = InProlog ? X86::RCX 796 : MRI.createVirtualRegister(RegClass); 797 798 // SP-relative offsets where we can save RCX and RDX. 799 int64_t RCXShadowSlot = 0; 800 int64_t RDXShadowSlot = 0; 801 802 // If inlining in the prolog, save RCX and RDX. 803 if (InProlog) { 804 // Compute the offsets. We need to account for things already 805 // pushed onto the stack at this point: return address, frame 806 // pointer (if used), and callee saves. 807 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 808 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 809 const bool HasFP = hasFP(MF); 810 811 // Check if we need to spill RCX and/or RDX. 812 // Here we assume that no earlier prologue instruction changes RCX and/or 813 // RDX, so checking the block live-ins is enough. 814 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 815 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 816 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 817 // Assign the initial slot to both registers, then change RDX's slot if both 818 // need to be spilled. 819 if (IsRCXLiveIn) 820 RCXShadowSlot = InitSlot; 821 if (IsRDXLiveIn) 822 RDXShadowSlot = InitSlot; 823 if (IsRDXLiveIn && IsRCXLiveIn) 824 RDXShadowSlot += 8; 825 // Emit the saves if needed. 826 if (IsRCXLiveIn) 827 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 828 RCXShadowSlot) 829 .addReg(X86::RCX); 830 if (IsRDXLiveIn) 831 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 832 RDXShadowSlot) 833 .addReg(X86::RDX); 834 } else { 835 // Not in the prolog. Copy RAX to a virtual reg. 836 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 837 } 838 839 // Add code to MBB to check for overflow and set the new target stack pointer 840 // to zero if so. 841 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 842 .addReg(ZeroReg, RegState::Undef) 843 .addReg(ZeroReg, RegState::Undef); 844 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 845 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 846 .addReg(CopyReg) 847 .addReg(SizeReg); 848 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 849 .addReg(TestReg) 850 .addReg(ZeroReg) 851 .addImm(X86::COND_B); 852 853 // FinalReg now holds final stack pointer value, or zero if 854 // allocation would overflow. Compare against the current stack 855 // limit from the thread environment block. Note this limit is the 856 // lowest touched page on the stack, not the point at which the OS 857 // will cause an overflow exception, so this is just an optimization 858 // to avoid unnecessarily touching pages that are below the current 859 // SP but already committed to the stack by the OS. 860 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 861 .addReg(0) 862 .addImm(1) 863 .addReg(0) 864 .addImm(ThreadEnvironmentStackLimit) 865 .addReg(X86::GS); 866 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 867 // Jump if the desired stack pointer is at or above the stack limit. 868 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 869 870 // Add code to roundMBB to round the final stack pointer to a page boundary. 871 RoundMBB->addLiveIn(FinalReg); 872 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 873 .addReg(FinalReg) 874 .addImm(PageMask); 875 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 876 877 // LimitReg now holds the current stack limit, RoundedReg page-rounded 878 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 879 // and probe until we reach RoundedReg. 880 if (!InProlog) { 881 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 882 .addReg(LimitReg) 883 .addMBB(RoundMBB) 884 .addReg(ProbeReg) 885 .addMBB(LoopMBB); 886 } 887 888 LoopMBB->addLiveIn(JoinReg); 889 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 890 false, -PageSize); 891 892 // Probe by storing a byte onto the stack. 893 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 894 .addReg(ProbeReg) 895 .addImm(1) 896 .addReg(0) 897 .addImm(0) 898 .addReg(0) 899 .addImm(0); 900 901 LoopMBB->addLiveIn(RoundedReg); 902 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 903 .addReg(RoundedReg) 904 .addReg(ProbeReg); 905 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 906 907 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 908 909 // If in prolog, restore RDX and RCX. 910 if (InProlog) { 911 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 912 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 913 TII.get(X86::MOV64rm), X86::RCX), 914 X86::RSP, false, RCXShadowSlot); 915 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 916 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 917 TII.get(X86::MOV64rm), X86::RDX), 918 X86::RSP, false, RDXShadowSlot); 919 } 920 921 // Now that the probing is done, add code to continueMBB to update 922 // the stack pointer for real. 923 ContinueMBB->addLiveIn(SizeReg); 924 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 925 .addReg(X86::RSP) 926 .addReg(SizeReg); 927 928 // Add the control flow edges we need. 929 MBB.addSuccessor(ContinueMBB); 930 MBB.addSuccessor(RoundMBB); 931 RoundMBB->addSuccessor(LoopMBB); 932 LoopMBB->addSuccessor(ContinueMBB); 933 LoopMBB->addSuccessor(LoopMBB); 934 935 // Mark all the instructions added to the prolog as frame setup. 936 if (InProlog) { 937 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 938 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 939 } 940 for (MachineInstr &MI : *RoundMBB) { 941 MI.setFlag(MachineInstr::FrameSetup); 942 } 943 for (MachineInstr &MI : *LoopMBB) { 944 MI.setFlag(MachineInstr::FrameSetup); 945 } 946 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 947 CMBBI != ContinueMBBI; ++CMBBI) { 948 CMBBI->setFlag(MachineInstr::FrameSetup); 949 } 950 } 951 } 952 953 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 954 MachineBasicBlock &MBB, 955 MachineBasicBlock::iterator MBBI, 956 const DebugLoc &DL, 957 bool InProlog) const { 958 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 959 960 // FIXME: Add indirect thunk support and remove this. 961 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 962 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 963 "code model and indirect thunks not yet implemented."); 964 965 unsigned CallOp; 966 if (Is64Bit) 967 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 968 else 969 CallOp = X86::CALLpcrel32; 970 971 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 972 973 MachineInstrBuilder CI; 974 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 975 976 // All current stack probes take AX and SP as input, clobber flags, and 977 // preserve all registers. x86_64 probes leave RSP unmodified. 978 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 979 // For the large code model, we have to call through a register. Use R11, 980 // as it is scratch in all supported calling conventions. 981 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 982 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 983 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 984 } else { 985 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 986 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 987 } 988 989 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 990 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 991 CI.addReg(AX, RegState::Implicit) 992 .addReg(SP, RegState::Implicit) 993 .addReg(AX, RegState::Define | RegState::Implicit) 994 .addReg(SP, RegState::Define | RegState::Implicit) 995 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 996 997 if (STI.isTargetWin64() || !STI.isOSWindows()) { 998 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 999 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1000 // themselves. They also does not clobber %rax so we can reuse it when 1001 // adjusting %rsp. 1002 // All other platforms do not specify a particular ABI for the stack probe 1003 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1004 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1005 .addReg(SP) 1006 .addReg(AX); 1007 } 1008 1009 if (InProlog) { 1010 // Apply the frame setup flag to all inserted instrs. 1011 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1012 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1013 } 1014 } 1015 1016 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1017 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1018 // and might require smaller successive adjustments. 1019 const uint64_t Win64MaxSEHOffset = 128; 1020 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1021 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1022 return SEHFrameOffset & -16; 1023 } 1024 1025 // If we're forcing a stack realignment we can't rely on just the frame 1026 // info, we need to know the ABI stack alignment as well in case we 1027 // have a call out. Otherwise just make sure we have some alignment - we'll 1028 // go with the minimum SlotSize. 1029 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1030 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1031 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1032 Align StackAlign = getStackAlign(); 1033 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1034 if (MFI.hasCalls()) 1035 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1036 else if (MaxAlign < SlotSize) 1037 MaxAlign = Align(SlotSize); 1038 } 1039 return MaxAlign.value(); 1040 } 1041 1042 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1043 MachineBasicBlock::iterator MBBI, 1044 const DebugLoc &DL, unsigned Reg, 1045 uint64_t MaxAlign) const { 1046 uint64_t Val = -MaxAlign; 1047 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1048 1049 MachineFunction &MF = *MBB.getParent(); 1050 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1051 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1052 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1053 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1054 1055 // We want to make sure that (in worst case) less than StackProbeSize bytes 1056 // are not probed after the AND. This assumption is used in 1057 // emitStackProbeInlineGeneric. 1058 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1059 { 1060 NumFrameLoopProbe++; 1061 MachineBasicBlock *entryMBB = 1062 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1063 MachineBasicBlock *headMBB = 1064 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1065 MachineBasicBlock *bodyMBB = 1066 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1067 MachineBasicBlock *footMBB = 1068 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1069 1070 MachineFunction::iterator MBBIter = MBB.getIterator(); 1071 MF.insert(MBBIter, entryMBB); 1072 MF.insert(MBBIter, headMBB); 1073 MF.insert(MBBIter, bodyMBB); 1074 MF.insert(MBBIter, footMBB); 1075 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1076 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D; 1077 1078 // Setup entry block 1079 { 1080 1081 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1082 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1083 .addReg(StackPtr) 1084 .setMIFlag(MachineInstr::FrameSetup); 1085 MachineInstr *MI = 1086 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1087 .addReg(FinalStackProbed) 1088 .addImm(Val) 1089 .setMIFlag(MachineInstr::FrameSetup); 1090 1091 // The EFLAGS implicit def is dead. 1092 MI->getOperand(3).setIsDead(); 1093 1094 BuildMI(entryMBB, DL, 1095 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1096 .addReg(FinalStackProbed) 1097 .addReg(StackPtr) 1098 .setMIFlag(MachineInstr::FrameSetup); 1099 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1100 .addMBB(&MBB) 1101 .addImm(X86::COND_E) 1102 .setMIFlag(MachineInstr::FrameSetup); 1103 entryMBB->addSuccessor(headMBB); 1104 entryMBB->addSuccessor(&MBB); 1105 } 1106 1107 // Loop entry block 1108 1109 { 1110 const unsigned SUBOpc = 1111 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1112 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1113 .addReg(StackPtr) 1114 .addImm(StackProbeSize) 1115 .setMIFlag(MachineInstr::FrameSetup); 1116 1117 BuildMI(headMBB, DL, 1118 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1119 .addReg(FinalStackProbed) 1120 .addReg(StackPtr) 1121 .setMIFlag(MachineInstr::FrameSetup); 1122 1123 // jump 1124 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1125 .addMBB(footMBB) 1126 .addImm(X86::COND_B) 1127 .setMIFlag(MachineInstr::FrameSetup); 1128 1129 headMBB->addSuccessor(bodyMBB); 1130 headMBB->addSuccessor(footMBB); 1131 } 1132 1133 // setup loop body 1134 { 1135 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1136 .setMIFlag(MachineInstr::FrameSetup), 1137 StackPtr, false, 0) 1138 .addImm(0) 1139 .setMIFlag(MachineInstr::FrameSetup); 1140 1141 const unsigned SUBOpc = 1142 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1143 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1144 .addReg(StackPtr) 1145 .addImm(StackProbeSize) 1146 .setMIFlag(MachineInstr::FrameSetup); 1147 1148 // cmp with stack pointer bound 1149 BuildMI(bodyMBB, DL, 1150 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1151 .addReg(FinalStackProbed) 1152 .addReg(StackPtr) 1153 .setMIFlag(MachineInstr::FrameSetup); 1154 1155 // jump 1156 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1157 .addMBB(bodyMBB) 1158 .addImm(X86::COND_B) 1159 .setMIFlag(MachineInstr::FrameSetup); 1160 bodyMBB->addSuccessor(bodyMBB); 1161 bodyMBB->addSuccessor(footMBB); 1162 } 1163 1164 // setup loop footer 1165 { 1166 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1167 .addReg(FinalStackProbed) 1168 .setMIFlag(MachineInstr::FrameSetup); 1169 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1170 .setMIFlag(MachineInstr::FrameSetup), 1171 StackPtr, false, 0) 1172 .addImm(0) 1173 .setMIFlag(MachineInstr::FrameSetup); 1174 footMBB->addSuccessor(&MBB); 1175 } 1176 1177 recomputeLiveIns(*headMBB); 1178 recomputeLiveIns(*bodyMBB); 1179 recomputeLiveIns(*footMBB); 1180 recomputeLiveIns(MBB); 1181 } 1182 } else { 1183 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1184 .addReg(Reg) 1185 .addImm(Val) 1186 .setMIFlag(MachineInstr::FrameSetup); 1187 1188 // The EFLAGS implicit def is dead. 1189 MI->getOperand(3).setIsDead(); 1190 } 1191 } 1192 1193 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1194 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1195 // clobbered by any interrupt handler. 1196 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1197 "MF used frame lowering for wrong subtarget"); 1198 const Function &Fn = MF.getFunction(); 1199 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1200 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1201 } 1202 1203 1204 /// emitPrologue - Push callee-saved registers onto the stack, which 1205 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1206 /// space for local variables. Also emit labels used by the exception handler to 1207 /// generate the exception handling frames. 1208 1209 /* 1210 Here's a gist of what gets emitted: 1211 1212 ; Establish frame pointer, if needed 1213 [if needs FP] 1214 push %rbp 1215 .cfi_def_cfa_offset 16 1216 .cfi_offset %rbp, -16 1217 .seh_pushreg %rpb 1218 mov %rsp, %rbp 1219 .cfi_def_cfa_register %rbp 1220 1221 ; Spill general-purpose registers 1222 [for all callee-saved GPRs] 1223 pushq %<reg> 1224 [if not needs FP] 1225 .cfi_def_cfa_offset (offset from RETADDR) 1226 .seh_pushreg %<reg> 1227 1228 ; If the required stack alignment > default stack alignment 1229 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1230 ; of unknown size in the stack frame. 1231 [if stack needs re-alignment] 1232 and $MASK, %rsp 1233 1234 ; Allocate space for locals 1235 [if target is Windows and allocated space > 4096 bytes] 1236 ; Windows needs special care for allocations larger 1237 ; than one page. 1238 mov $NNN, %rax 1239 call ___chkstk_ms/___chkstk 1240 sub %rax, %rsp 1241 [else] 1242 sub $NNN, %rsp 1243 1244 [if needs FP] 1245 .seh_stackalloc (size of XMM spill slots) 1246 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1247 [else] 1248 .seh_stackalloc NNN 1249 1250 ; Spill XMMs 1251 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1252 ; they may get spilled on any platform, if the current function 1253 ; calls @llvm.eh.unwind.init 1254 [if needs FP] 1255 [for all callee-saved XMM registers] 1256 movaps %<xmm reg>, -MMM(%rbp) 1257 [for all callee-saved XMM registers] 1258 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1259 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1260 [else] 1261 [for all callee-saved XMM registers] 1262 movaps %<xmm reg>, KKK(%rsp) 1263 [for all callee-saved XMM registers] 1264 .seh_savexmm %<xmm reg>, KKK 1265 1266 .seh_endprologue 1267 1268 [if needs base pointer] 1269 mov %rsp, %rbx 1270 [if needs to restore base pointer] 1271 mov %rsp, -MMM(%rbp) 1272 1273 ; Emit CFI info 1274 [if needs FP] 1275 [for all callee-saved registers] 1276 .cfi_offset %<reg>, (offset from %rbp) 1277 [else] 1278 .cfi_def_cfa_offset (offset from RETADDR) 1279 [for all callee-saved registers] 1280 .cfi_offset %<reg>, (offset from %rsp) 1281 1282 Notes: 1283 - .seh directives are emitted only for Windows 64 ABI 1284 - .cv_fpo directives are emitted on win32 when emitting CodeView 1285 - .cfi directives are emitted for all other ABIs 1286 - for 32-bit code, substitute %e?? registers for %r?? 1287 */ 1288 1289 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1290 MachineBasicBlock &MBB) const { 1291 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1292 "MF used frame lowering for wrong subtarget"); 1293 MachineBasicBlock::iterator MBBI = MBB.begin(); 1294 MachineFrameInfo &MFI = MF.getFrameInfo(); 1295 const Function &Fn = MF.getFunction(); 1296 MachineModuleInfo &MMI = MF.getMMI(); 1297 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1298 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1299 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1300 bool IsFunclet = MBB.isEHFuncletEntry(); 1301 EHPersonality Personality = EHPersonality::Unknown; 1302 if (Fn.hasPersonalityFn()) 1303 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1304 bool FnHasClrFunclet = 1305 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1306 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1307 bool HasFP = hasFP(MF); 1308 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1309 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1310 // FIXME: Emit FPO data for EH funclets. 1311 bool NeedsWinFPO = 1312 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1313 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1314 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 1315 Register FramePtr = TRI->getFrameRegister(MF); 1316 const Register MachineFramePtr = 1317 STI.isTarget64BitILP32() 1318 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1319 Register BasePtr = TRI->getBaseRegister(); 1320 bool HasWinCFI = false; 1321 1322 // Debug location must be unknown since the first debug location is used 1323 // to determine the end of the prologue. 1324 DebugLoc DL; 1325 1326 // Add RETADDR move area to callee saved frame size. 1327 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1328 if (TailCallReturnAddrDelta && IsWin64Prologue) 1329 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1330 1331 if (TailCallReturnAddrDelta < 0) 1332 X86FI->setCalleeSavedFrameSize( 1333 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1334 1335 const bool EmitStackProbeCall = 1336 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1337 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1338 1339 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1340 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1341 // stack alignment. 1342 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1343 Fn.arg_size() == 2) { 1344 StackSize += 8; 1345 MFI.setStackSize(StackSize); 1346 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1347 } 1348 1349 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1350 // function, and use up to 128 bytes of stack space, don't have a frame 1351 // pointer, calls, or dynamic alloca then we do not need to adjust the 1352 // stack pointer (we fit in the Red Zone). We also check that we don't 1353 // push and pop from the stack. 1354 if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) && 1355 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1356 !MFI.adjustsStack() && // No calls. 1357 !EmitStackProbeCall && // No stack probes. 1358 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1359 !MF.shouldSplitStack()) { // Regular stack 1360 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1361 if (HasFP) MinSize += SlotSize; 1362 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1363 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1364 MFI.setStackSize(StackSize); 1365 } 1366 1367 // Insert stack pointer adjustment for later moving of return addr. Only 1368 // applies to tail call optimized functions where the callee argument stack 1369 // size is bigger than the callers. 1370 if (TailCallReturnAddrDelta < 0) { 1371 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1372 /*InEpilogue=*/false) 1373 .setMIFlag(MachineInstr::FrameSetup); 1374 } 1375 1376 // Mapping for machine moves: 1377 // 1378 // DST: VirtualFP AND 1379 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1380 // ELSE => DW_CFA_def_cfa 1381 // 1382 // SRC: VirtualFP AND 1383 // DST: Register => DW_CFA_def_cfa_register 1384 // 1385 // ELSE 1386 // OFFSET < 0 => DW_CFA_offset_extended_sf 1387 // REG < 64 => DW_CFA_offset + Reg 1388 // ELSE => DW_CFA_offset_extended 1389 1390 uint64_t NumBytes = 0; 1391 int stackGrowth = -SlotSize; 1392 1393 // Find the funclet establisher parameter 1394 Register Establisher = X86::NoRegister; 1395 if (IsClrFunclet) 1396 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1397 else if (IsFunclet) 1398 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1399 1400 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1401 // Immediately spill establisher into the home slot. 1402 // The runtime cares about this. 1403 // MOV64mr %rdx, 16(%rsp) 1404 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1405 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1406 .addReg(Establisher) 1407 .setMIFlag(MachineInstr::FrameSetup); 1408 MBB.addLiveIn(Establisher); 1409 } 1410 1411 if (HasFP) { 1412 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1413 1414 // Calculate required stack adjustment. 1415 uint64_t FrameSize = StackSize - SlotSize; 1416 // If required, include space for extra hidden slot for stashing base pointer. 1417 if (X86FI->getRestoreBasePointer()) 1418 FrameSize += SlotSize; 1419 1420 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1421 1422 // Callee-saved registers are pushed on stack before the stack is realigned. 1423 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1424 NumBytes = alignTo(NumBytes, MaxAlign); 1425 1426 // Save EBP/RBP into the appropriate stack slot. 1427 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1428 .addReg(MachineFramePtr, RegState::Kill) 1429 .setMIFlag(MachineInstr::FrameSetup); 1430 1431 if (NeedsDwarfCFI) { 1432 // Mark the place where EBP/RBP was saved. 1433 // Define the current CFA rule to use the provided offset. 1434 assert(StackSize); 1435 BuildCFI(MBB, MBBI, DL, 1436 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1437 1438 // Change the rule for the FramePtr to be an "offset" rule. 1439 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1440 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1441 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1442 } 1443 1444 if (NeedsWinCFI) { 1445 HasWinCFI = true; 1446 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1447 .addImm(FramePtr) 1448 .setMIFlag(MachineInstr::FrameSetup); 1449 } 1450 1451 if (!IsWin64Prologue && !IsFunclet) { 1452 // Update EBP with the new base value. 1453 BuildMI(MBB, MBBI, DL, 1454 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1455 FramePtr) 1456 .addReg(StackPtr) 1457 .setMIFlag(MachineInstr::FrameSetup); 1458 1459 if (NeedsDwarfCFI) { 1460 // Mark effective beginning of when frame pointer becomes valid. 1461 // Define the current CFA to use the EBP/RBP register. 1462 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1463 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister( 1464 nullptr, DwarfFramePtr)); 1465 } 1466 1467 if (NeedsWinFPO) { 1468 // .cv_fpo_setframe $FramePtr 1469 HasWinCFI = true; 1470 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1471 .addImm(FramePtr) 1472 .addImm(0) 1473 .setMIFlag(MachineInstr::FrameSetup); 1474 } 1475 } 1476 } else { 1477 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1478 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1479 } 1480 1481 // Update the offset adjustment, which is mainly used by codeview to translate 1482 // from ESP to VFRAME relative local variable offsets. 1483 if (!IsFunclet) { 1484 if (HasFP && TRI->needsStackRealignment(MF)) 1485 MFI.setOffsetAdjustment(-NumBytes); 1486 else 1487 MFI.setOffsetAdjustment(-StackSize); 1488 } 1489 1490 // For EH funclets, only allocate enough space for outgoing calls. Save the 1491 // NumBytes value that we would've used for the parent frame. 1492 unsigned ParentFrameNumBytes = NumBytes; 1493 if (IsFunclet) 1494 NumBytes = getWinEHFuncletFrameSize(MF); 1495 1496 // Skip the callee-saved push instructions. 1497 bool PushedRegs = false; 1498 int StackOffset = 2 * stackGrowth; 1499 1500 while (MBBI != MBB.end() && 1501 MBBI->getFlag(MachineInstr::FrameSetup) && 1502 (MBBI->getOpcode() == X86::PUSH32r || 1503 MBBI->getOpcode() == X86::PUSH64r)) { 1504 PushedRegs = true; 1505 Register Reg = MBBI->getOperand(0).getReg(); 1506 ++MBBI; 1507 1508 if (!HasFP && NeedsDwarfCFI) { 1509 // Mark callee-saved push instruction. 1510 // Define the current CFA rule to use the provided offset. 1511 assert(StackSize); 1512 BuildCFI(MBB, MBBI, DL, 1513 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1514 StackOffset += stackGrowth; 1515 } 1516 1517 if (NeedsWinCFI) { 1518 HasWinCFI = true; 1519 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1520 .addImm(Reg) 1521 .setMIFlag(MachineInstr::FrameSetup); 1522 } 1523 } 1524 1525 // Realign stack after we pushed callee-saved registers (so that we'll be 1526 // able to calculate their offsets from the frame pointer). 1527 // Don't do this for Win64, it needs to realign the stack after the prologue. 1528 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) { 1529 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1530 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1531 1532 if (NeedsWinCFI) { 1533 HasWinCFI = true; 1534 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1535 .addImm(MaxAlign) 1536 .setMIFlag(MachineInstr::FrameSetup); 1537 } 1538 } 1539 1540 // If there is an SUB32ri of ESP immediately before this instruction, merge 1541 // the two. This can be the case when tail call elimination is enabled and 1542 // the callee has more arguments then the caller. 1543 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1544 1545 // Adjust stack pointer: ESP -= numbytes. 1546 1547 // Windows and cygwin/mingw require a prologue helper routine when allocating 1548 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1549 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1550 // stack and adjust the stack pointer in one go. The 64-bit version of 1551 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1552 // responsible for adjusting the stack pointer. Touching the stack at 4K 1553 // increments is necessary to ensure that the guard pages used by the OS 1554 // virtual memory manager are allocated in correct sequence. 1555 uint64_t AlignedNumBytes = NumBytes; 1556 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) 1557 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1558 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1559 assert(!X86FI->getUsesRedZone() && 1560 "The Red Zone is not accounted for in stack probes"); 1561 1562 // Check whether EAX is livein for this block. 1563 bool isEAXAlive = isEAXLiveIn(MBB); 1564 1565 if (isEAXAlive) { 1566 if (Is64Bit) { 1567 // Save RAX 1568 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1569 .addReg(X86::RAX, RegState::Kill) 1570 .setMIFlag(MachineInstr::FrameSetup); 1571 } else { 1572 // Save EAX 1573 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1574 .addReg(X86::EAX, RegState::Kill) 1575 .setMIFlag(MachineInstr::FrameSetup); 1576 } 1577 } 1578 1579 if (Is64Bit) { 1580 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1581 // Function prologue is responsible for adjusting the stack pointer. 1582 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1583 if (isUInt<32>(Alloc)) { 1584 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1585 .addImm(Alloc) 1586 .setMIFlag(MachineInstr::FrameSetup); 1587 } else if (isInt<32>(Alloc)) { 1588 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1589 .addImm(Alloc) 1590 .setMIFlag(MachineInstr::FrameSetup); 1591 } else { 1592 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1593 .addImm(Alloc) 1594 .setMIFlag(MachineInstr::FrameSetup); 1595 } 1596 } else { 1597 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1598 // We'll also use 4 already allocated bytes for EAX. 1599 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1600 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1601 .setMIFlag(MachineInstr::FrameSetup); 1602 } 1603 1604 // Call __chkstk, __chkstk_ms, or __alloca. 1605 emitStackProbe(MF, MBB, MBBI, DL, true); 1606 1607 if (isEAXAlive) { 1608 // Restore RAX/EAX 1609 MachineInstr *MI; 1610 if (Is64Bit) 1611 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1612 StackPtr, false, NumBytes - 8); 1613 else 1614 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1615 StackPtr, false, NumBytes - 4); 1616 MI->setFlag(MachineInstr::FrameSetup); 1617 MBB.insert(MBBI, MI); 1618 } 1619 } else if (NumBytes) { 1620 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1621 } 1622 1623 if (NeedsWinCFI && NumBytes) { 1624 HasWinCFI = true; 1625 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1626 .addImm(NumBytes) 1627 .setMIFlag(MachineInstr::FrameSetup); 1628 } 1629 1630 int SEHFrameOffset = 0; 1631 unsigned SPOrEstablisher; 1632 if (IsFunclet) { 1633 if (IsClrFunclet) { 1634 // The establisher parameter passed to a CLR funclet is actually a pointer 1635 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1636 // to find the root function establisher frame by loading the PSPSym from 1637 // the intermediate frame. 1638 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1639 MachinePointerInfo NoInfo; 1640 MBB.addLiveIn(Establisher); 1641 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1642 Establisher, false, PSPSlotOffset) 1643 .addMemOperand(MF.getMachineMemOperand( 1644 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1645 ; 1646 // Save the root establisher back into the current funclet's (mostly 1647 // empty) frame, in case a sub-funclet or the GC needs it. 1648 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1649 false, PSPSlotOffset) 1650 .addReg(Establisher) 1651 .addMemOperand(MF.getMachineMemOperand( 1652 NoInfo, 1653 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1654 SlotSize, Align(SlotSize))); 1655 } 1656 SPOrEstablisher = Establisher; 1657 } else { 1658 SPOrEstablisher = StackPtr; 1659 } 1660 1661 if (IsWin64Prologue && HasFP) { 1662 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1663 // this calculation on the incoming establisher, which holds the value of 1664 // RSP from the parent frame at the end of the prologue. 1665 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1666 if (SEHFrameOffset) 1667 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1668 SPOrEstablisher, false, SEHFrameOffset); 1669 else 1670 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1671 .addReg(SPOrEstablisher); 1672 1673 // If this is not a funclet, emit the CFI describing our frame pointer. 1674 if (NeedsWinCFI && !IsFunclet) { 1675 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1676 HasWinCFI = true; 1677 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1678 .addImm(FramePtr) 1679 .addImm(SEHFrameOffset) 1680 .setMIFlag(MachineInstr::FrameSetup); 1681 if (isAsynchronousEHPersonality(Personality)) 1682 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1683 } 1684 } else if (IsFunclet && STI.is32Bit()) { 1685 // Reset EBP / ESI to something good for funclets. 1686 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1687 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1688 // into the registration node so that the runtime will restore it for us. 1689 if (!MBB.isCleanupFuncletEntry()) { 1690 assert(Personality == EHPersonality::MSVC_CXX); 1691 Register FrameReg; 1692 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1693 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1694 // ESP is the first field, so no extra displacement is needed. 1695 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1696 false, EHRegOffset) 1697 .addReg(X86::ESP); 1698 } 1699 } 1700 1701 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1702 const MachineInstr &FrameInstr = *MBBI; 1703 ++MBBI; 1704 1705 if (NeedsWinCFI) { 1706 int FI; 1707 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1708 if (X86::FR64RegClass.contains(Reg)) { 1709 int Offset; 1710 Register IgnoredFrameReg; 1711 if (IsWin64Prologue && IsFunclet) 1712 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1713 else 1714 Offset = 1715 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1716 SEHFrameOffset; 1717 1718 HasWinCFI = true; 1719 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1720 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1721 .addImm(Reg) 1722 .addImm(Offset) 1723 .setMIFlag(MachineInstr::FrameSetup); 1724 } 1725 } 1726 } 1727 } 1728 1729 if (NeedsWinCFI && HasWinCFI) 1730 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1731 .setMIFlag(MachineInstr::FrameSetup); 1732 1733 if (FnHasClrFunclet && !IsFunclet) { 1734 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1735 // immediately after the prolog) into the PSPSlot so that funclets 1736 // and the GC can recover it. 1737 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1738 auto PSPInfo = MachinePointerInfo::getFixedStack( 1739 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1740 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1741 PSPSlotOffset) 1742 .addReg(StackPtr) 1743 .addMemOperand(MF.getMachineMemOperand( 1744 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1745 SlotSize, Align(SlotSize))); 1746 } 1747 1748 // Realign stack after we spilled callee-saved registers (so that we'll be 1749 // able to calculate their offsets from the frame pointer). 1750 // Win64 requires aligning the stack after the prologue. 1751 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) { 1752 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1753 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1754 } 1755 1756 // We already dealt with stack realignment and funclets above. 1757 if (IsFunclet && STI.is32Bit()) 1758 return; 1759 1760 // If we need a base pointer, set it up here. It's whatever the value 1761 // of the stack pointer is at this point. Any variable size objects 1762 // will be allocated after this, so we can still use the base pointer 1763 // to reference locals. 1764 if (TRI->hasBasePointer(MF)) { 1765 // Update the base pointer with the current stack pointer. 1766 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1767 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1768 .addReg(SPOrEstablisher) 1769 .setMIFlag(MachineInstr::FrameSetup); 1770 if (X86FI->getRestoreBasePointer()) { 1771 // Stash value of base pointer. Saving RSP instead of EBP shortens 1772 // dependence chain. Used by SjLj EH. 1773 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1774 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1775 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1776 .addReg(SPOrEstablisher) 1777 .setMIFlag(MachineInstr::FrameSetup); 1778 } 1779 1780 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1781 // Stash the value of the frame pointer relative to the base pointer for 1782 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1783 // it recovers the frame pointer from the base pointer rather than the 1784 // other way around. 1785 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1786 Register UsedReg; 1787 int Offset = 1788 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 1789 .getFixed(); 1790 assert(UsedReg == BasePtr); 1791 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1792 .addReg(FramePtr) 1793 .setMIFlag(MachineInstr::FrameSetup); 1794 } 1795 } 1796 1797 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1798 // Mark end of stack pointer adjustment. 1799 if (!HasFP && NumBytes) { 1800 // Define the current CFA rule to use the provided offset. 1801 assert(StackSize); 1802 BuildCFI( 1803 MBB, MBBI, DL, 1804 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1805 } 1806 1807 // Emit DWARF info specifying the offsets of the callee-saved registers. 1808 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1809 } 1810 1811 // X86 Interrupt handling function cannot assume anything about the direction 1812 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1813 // in each prologue of interrupt handler function. 1814 // 1815 // FIXME: Create "cld" instruction only in these cases: 1816 // 1. The interrupt handling function uses any of the "rep" instructions. 1817 // 2. Interrupt handling function calls another function. 1818 // 1819 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1820 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1821 .setMIFlag(MachineInstr::FrameSetup); 1822 1823 // At this point we know if the function has WinCFI or not. 1824 MF.setHasWinCFI(HasWinCFI); 1825 } 1826 1827 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1828 const MachineFunction &MF) const { 1829 // We can't use LEA instructions for adjusting the stack pointer if we don't 1830 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1831 // to deallocate the stack. 1832 // This means that we can use LEA for SP in two situations: 1833 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1834 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1835 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1836 } 1837 1838 static bool isFuncletReturnInstr(MachineInstr &MI) { 1839 switch (MI.getOpcode()) { 1840 case X86::CATCHRET: 1841 case X86::CLEANUPRET: 1842 return true; 1843 default: 1844 return false; 1845 } 1846 llvm_unreachable("impossible"); 1847 } 1848 1849 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1850 // stack. It holds a pointer to the bottom of the root function frame. The 1851 // establisher frame pointer passed to a nested funclet may point to the 1852 // (mostly empty) frame of its parent funclet, but it will need to find 1853 // the frame of the root function to access locals. To facilitate this, 1854 // every funclet copies the pointer to the bottom of the root function 1855 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1856 // same offset for the PSPSym in the root function frame that's used in the 1857 // funclets' frames allows each funclet to dynamically accept any ancestor 1858 // frame as its establisher argument (the runtime doesn't guarantee the 1859 // immediate parent for some reason lost to history), and also allows the GC, 1860 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1861 // frame with only a single offset reported for the entire method. 1862 unsigned 1863 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1864 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1865 Register SPReg; 1866 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1867 /*IgnoreSPUpdates*/ true) 1868 .getFixed(); 1869 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1870 return static_cast<unsigned>(Offset); 1871 } 1872 1873 unsigned 1874 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1875 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1876 // This is the size of the pushed CSRs. 1877 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1878 // This is the size of callee saved XMMs. 1879 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1880 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1881 TRI->getSpillSize(X86::VR128RegClass); 1882 // This is the amount of stack a funclet needs to allocate. 1883 unsigned UsedSize; 1884 EHPersonality Personality = 1885 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1886 if (Personality == EHPersonality::CoreCLR) { 1887 // CLR funclets need to hold enough space to include the PSPSym, at the 1888 // same offset from the stack pointer (immediately after the prolog) as it 1889 // resides at in the main function. 1890 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1891 } else { 1892 // Other funclets just need enough stack for outgoing call arguments. 1893 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1894 } 1895 // RBP is not included in the callee saved register block. After pushing RBP, 1896 // everything is 16 byte aligned. Everything we allocate before an outgoing 1897 // call must also be 16 byte aligned. 1898 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 1899 // Subtract out the size of the callee saved registers. This is how much stack 1900 // each funclet will allocate. 1901 return FrameSizeMinusRBP + XMMSize - CSSize; 1902 } 1903 1904 static bool isTailCallOpcode(unsigned Opc) { 1905 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1906 Opc == X86::TCRETURNmi || 1907 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1908 Opc == X86::TCRETURNmi64; 1909 } 1910 1911 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1912 MachineBasicBlock &MBB) const { 1913 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1914 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1915 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1916 MachineBasicBlock::iterator MBBI = Terminator; 1917 DebugLoc DL; 1918 if (MBBI != MBB.end()) 1919 DL = MBBI->getDebugLoc(); 1920 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 1921 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 1922 Register FramePtr = TRI->getFrameRegister(MF); 1923 Register MachineFramePtr = 1924 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1925 1926 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1927 bool NeedsWin64CFI = 1928 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 1929 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 1930 1931 // Get the number of bytes to allocate from the FrameInfo. 1932 uint64_t StackSize = MFI.getStackSize(); 1933 uint64_t MaxAlign = calculateMaxStackAlign(MF); 1934 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1935 bool HasFP = hasFP(MF); 1936 uint64_t NumBytes = 0; 1937 1938 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 1939 !MF.getTarget().getTargetTriple().isOSWindows()) && 1940 MF.needsFrameMoves(); 1941 1942 if (IsFunclet) { 1943 assert(HasFP && "EH funclets without FP not yet implemented"); 1944 NumBytes = getWinEHFuncletFrameSize(MF); 1945 } else if (HasFP) { 1946 // Calculate required stack adjustment. 1947 uint64_t FrameSize = StackSize - SlotSize; 1948 NumBytes = FrameSize - CSSize; 1949 1950 // Callee-saved registers were pushed on stack before the stack was 1951 // realigned. 1952 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue) 1953 NumBytes = alignTo(FrameSize, MaxAlign); 1954 } else { 1955 NumBytes = StackSize - CSSize; 1956 } 1957 uint64_t SEHStackAllocAmt = NumBytes; 1958 1959 // AfterPop is the position to insert .cfi_restore. 1960 MachineBasicBlock::iterator AfterPop = MBBI; 1961 if (HasFP) { 1962 // Pop EBP. 1963 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 1964 MachineFramePtr) 1965 .setMIFlag(MachineInstr::FrameDestroy); 1966 if (NeedsDwarfCFI) { 1967 unsigned DwarfStackPtr = 1968 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 1969 BuildCFI(MBB, MBBI, DL, 1970 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 1971 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 1972 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1973 BuildCFI(MBB, AfterPop, DL, 1974 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 1975 --MBBI; 1976 --AfterPop; 1977 } 1978 --MBBI; 1979 } 1980 } 1981 1982 MachineBasicBlock::iterator FirstCSPop = MBBI; 1983 // Skip the callee-saved pop instructions. 1984 while (MBBI != MBB.begin()) { 1985 MachineBasicBlock::iterator PI = std::prev(MBBI); 1986 unsigned Opc = PI->getOpcode(); 1987 1988 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 1989 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 1990 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy))) 1991 break; 1992 FirstCSPop = PI; 1993 } 1994 1995 --MBBI; 1996 } 1997 MBBI = FirstCSPop; 1998 1999 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2000 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2001 2002 if (MBBI != MBB.end()) 2003 DL = MBBI->getDebugLoc(); 2004 2005 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2006 // instruction, merge the two instructions. 2007 if (NumBytes || MFI.hasVarSizedObjects()) 2008 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2009 2010 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2011 // slot before popping them off! Same applies for the case, when stack was 2012 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2013 // will not do realignment or dynamic stack allocation. 2014 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) && 2015 !IsFunclet) { 2016 if (TRI->needsStackRealignment(MF)) 2017 MBBI = FirstCSPop; 2018 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2019 uint64_t LEAAmount = 2020 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2021 2022 // There are only two legal forms of epilogue: 2023 // - add SEHAllocationSize, %rsp 2024 // - lea SEHAllocationSize(%FramePtr), %rsp 2025 // 2026 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2027 // However, we may use this sequence if we have a frame pointer because the 2028 // effects of the prologue can safely be undone. 2029 if (LEAAmount != 0) { 2030 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2031 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2032 FramePtr, false, LEAAmount); 2033 --MBBI; 2034 } else { 2035 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2036 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2037 .addReg(FramePtr); 2038 --MBBI; 2039 } 2040 } else if (NumBytes) { 2041 // Adjust stack pointer back: ESP += numbytes. 2042 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2043 if (!hasFP(MF) && NeedsDwarfCFI) { 2044 // Define the current CFA rule to use the provided offset. 2045 BuildCFI(MBB, MBBI, DL, 2046 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize)); 2047 } 2048 --MBBI; 2049 } 2050 2051 // Windows unwinder will not invoke function's exception handler if IP is 2052 // either in prologue or in epilogue. This behavior causes a problem when a 2053 // call immediately precedes an epilogue, because the return address points 2054 // into the epilogue. To cope with that, we insert an epilogue marker here, 2055 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2056 // final emitted code. 2057 if (NeedsWin64CFI && MF.hasWinCFI()) 2058 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2059 2060 if (!hasFP(MF) && NeedsDwarfCFI) { 2061 MBBI = FirstCSPop; 2062 int64_t Offset = -CSSize - SlotSize; 2063 // Mark callee-saved pop instruction. 2064 // Define the current CFA rule to use the provided offset. 2065 while (MBBI != MBB.end()) { 2066 MachineBasicBlock::iterator PI = MBBI; 2067 unsigned Opc = PI->getOpcode(); 2068 ++MBBI; 2069 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2070 Offset += SlotSize; 2071 BuildCFI(MBB, MBBI, DL, 2072 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2073 } 2074 } 2075 } 2076 2077 // Emit DWARF info specifying the restores of the callee-saved registers. 2078 // For epilogue with return inside or being other block without successor, 2079 // no need to generate .cfi_restore for callee-saved registers. 2080 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) { 2081 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2082 } 2083 2084 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2085 // Add the return addr area delta back since we are not tail calling. 2086 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2087 assert(Offset >= 0 && "TCDelta should never be positive"); 2088 if (Offset) { 2089 // Check for possible merge with preceding ADD instruction. 2090 Offset += mergeSPUpdates(MBB, Terminator, true); 2091 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2092 } 2093 } 2094 2095 // Emit tilerelease for AMX kernel. 2096 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2097 if (!MRI.reg_nodbg_empty(X86::TMMCFG)) 2098 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2099 } 2100 2101 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2102 int FI, 2103 Register &FrameReg) const { 2104 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2105 2106 bool IsFixed = MFI.isFixedObjectIndex(FI); 2107 // We can't calculate offset from frame pointer if the stack is realigned, 2108 // so enforce usage of stack/base pointer. The base pointer is used when we 2109 // have dynamic allocas in addition to dynamic realignment. 2110 if (TRI->hasBasePointer(MF)) 2111 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2112 else if (TRI->needsStackRealignment(MF)) 2113 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2114 else 2115 FrameReg = TRI->getFrameRegister(MF); 2116 2117 // Offset will hold the offset from the stack pointer at function entry to the 2118 // object. 2119 // We need to factor in additional offsets applied during the prologue to the 2120 // frame, base, and stack pointer depending on which is used. 2121 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2122 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2123 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2124 uint64_t StackSize = MFI.getStackSize(); 2125 bool HasFP = hasFP(MF); 2126 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2127 int64_t FPDelta = 0; 2128 2129 // In an x86 interrupt, remove the offset we added to account for the return 2130 // address from any stack object allocated in the caller's frame. Interrupts 2131 // do not have a standard return address. Fixed objects in the current frame, 2132 // such as SSE register spills, should not get this treatment. 2133 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2134 Offset >= 0) { 2135 Offset += getOffsetOfLocalArea(); 2136 } 2137 2138 if (IsWin64Prologue) { 2139 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2140 2141 // Calculate required stack adjustment. 2142 uint64_t FrameSize = StackSize - SlotSize; 2143 // If required, include space for extra hidden slot for stashing base pointer. 2144 if (X86FI->getRestoreBasePointer()) 2145 FrameSize += SlotSize; 2146 uint64_t NumBytes = FrameSize - CSSize; 2147 2148 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2149 if (FI && FI == X86FI->getFAIndex()) 2150 return StackOffset::getFixed(-SEHFrameOffset); 2151 2152 // FPDelta is the offset from the "traditional" FP location of the old base 2153 // pointer followed by return address and the location required by the 2154 // restricted Win64 prologue. 2155 // Add FPDelta to all offsets below that go through the frame pointer. 2156 FPDelta = FrameSize - SEHFrameOffset; 2157 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2158 "FPDelta isn't aligned per the Win64 ABI!"); 2159 } 2160 2161 2162 if (TRI->hasBasePointer(MF)) { 2163 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 2164 if (FI < 0) { 2165 // Skip the saved EBP. 2166 return StackOffset::getFixed(Offset + SlotSize + FPDelta); 2167 } else { 2168 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2169 return StackOffset::getFixed(Offset + StackSize); 2170 } 2171 } else if (TRI->needsStackRealignment(MF)) { 2172 if (FI < 0) { 2173 // Skip the saved EBP. 2174 return StackOffset::getFixed(Offset + SlotSize + FPDelta); 2175 } else { 2176 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2177 return StackOffset::getFixed(Offset + StackSize); 2178 } 2179 // FIXME: Support tail calls 2180 } else { 2181 if (!HasFP) 2182 return StackOffset::getFixed(Offset + StackSize); 2183 2184 // Skip the saved EBP. 2185 Offset += SlotSize; 2186 2187 // Skip the RETADDR move area 2188 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2189 if (TailCallReturnAddrDelta < 0) 2190 Offset -= TailCallReturnAddrDelta; 2191 } 2192 2193 return StackOffset::getFixed(Offset + FPDelta); 2194 } 2195 2196 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2197 Register &FrameReg) const { 2198 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2199 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2200 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2201 const auto it = WinEHXMMSlotInfo.find(FI); 2202 2203 if (it == WinEHXMMSlotInfo.end()) 2204 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2205 2206 FrameReg = TRI->getStackRegister(); 2207 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2208 it->second; 2209 } 2210 2211 StackOffset 2212 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2213 Register &FrameReg, 2214 int Adjustment) const { 2215 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2216 FrameReg = TRI->getStackRegister(); 2217 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2218 getOffsetOfLocalArea() + Adjustment); 2219 } 2220 2221 StackOffset 2222 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2223 int FI, Register &FrameReg, 2224 bool IgnoreSPUpdates) const { 2225 2226 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2227 // Does not include any dynamic realign. 2228 const uint64_t StackSize = MFI.getStackSize(); 2229 // LLVM arranges the stack as follows: 2230 // ... 2231 // ARG2 2232 // ARG1 2233 // RETADDR 2234 // PUSH RBP <-- RBP points here 2235 // PUSH CSRs 2236 // ~~~~~~~ <-- possible stack realignment (non-win64) 2237 // ... 2238 // STACK OBJECTS 2239 // ... <-- RSP after prologue points here 2240 // ~~~~~~~ <-- possible stack realignment (win64) 2241 // 2242 // if (hasVarSizedObjects()): 2243 // ... <-- "base pointer" (ESI/RBX) points here 2244 // DYNAMIC ALLOCAS 2245 // ... <-- RSP points here 2246 // 2247 // Case 1: In the simple case of no stack realignment and no dynamic 2248 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2249 // with fixed offsets from RSP. 2250 // 2251 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2252 // stack objects are addressed with RBP and regular stack objects with RSP. 2253 // 2254 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2255 // to address stack arguments for outgoing calls and nothing else. The "base 2256 // pointer" points to local variables, and RBP points to fixed objects. 2257 // 2258 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2259 // answer we give is relative to the SP after the prologue, and not the 2260 // SP in the middle of the function. 2261 2262 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) && 2263 !STI.isTargetWin64()) 2264 return getFrameIndexReference(MF, FI, FrameReg); 2265 2266 // If !hasReservedCallFrame the function might have SP adjustement in the 2267 // body. So, even though the offset is statically known, it depends on where 2268 // we are in the function. 2269 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2270 return getFrameIndexReference(MF, FI, FrameReg); 2271 2272 // We don't handle tail calls, and shouldn't be seeing them either. 2273 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2274 "we don't handle this case!"); 2275 2276 // This is how the math works out: 2277 // 2278 // %rsp grows (i.e. gets lower) left to right. Each box below is 2279 // one word (eight bytes). Obj0 is the stack slot we're trying to 2280 // get to. 2281 // 2282 // ---------------------------------- 2283 // | BP | Obj0 | Obj1 | ... | ObjN | 2284 // ---------------------------------- 2285 // ^ ^ ^ ^ 2286 // A B C E 2287 // 2288 // A is the incoming stack pointer. 2289 // (B - A) is the local area offset (-8 for x86-64) [1] 2290 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2291 // 2292 // |(E - B)| is the StackSize (absolute value, positive). For a 2293 // stack that grown down, this works out to be (B - E). [3] 2294 // 2295 // E is also the value of %rsp after stack has been set up, and we 2296 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2297 // (C - E) == (C - A) - (B - A) + (B - E) 2298 // { Using [1], [2] and [3] above } 2299 // == getObjectOffset - LocalAreaOffset + StackSize 2300 2301 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2302 } 2303 2304 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2305 MachineFunction &MF, const TargetRegisterInfo *TRI, 2306 std::vector<CalleeSavedInfo> &CSI) const { 2307 MachineFrameInfo &MFI = MF.getFrameInfo(); 2308 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2309 2310 unsigned CalleeSavedFrameSize = 0; 2311 unsigned XMMCalleeSavedFrameSize = 0; 2312 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2313 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2314 2315 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2316 2317 if (TailCallReturnAddrDelta < 0) { 2318 // create RETURNADDR area 2319 // arg 2320 // arg 2321 // RETADDR 2322 // { ... 2323 // RETADDR area 2324 // ... 2325 // } 2326 // [EBP] 2327 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2328 TailCallReturnAddrDelta - SlotSize, true); 2329 } 2330 2331 // Spill the BasePtr if it's used. 2332 if (this->TRI->hasBasePointer(MF)) { 2333 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2334 if (MF.hasEHFunclets()) { 2335 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2336 X86FI->setHasSEHFramePtrSave(true); 2337 X86FI->setSEHFramePtrSaveIndex(FI); 2338 } 2339 } 2340 2341 if (hasFP(MF)) { 2342 // emitPrologue always spills frame register the first thing. 2343 SpillSlotOffset -= SlotSize; 2344 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2345 2346 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2347 // the frame register, we can delete it from CSI list and not have to worry 2348 // about avoiding it later. 2349 Register FPReg = TRI->getFrameRegister(MF); 2350 for (unsigned i = 0; i < CSI.size(); ++i) { 2351 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2352 CSI.erase(CSI.begin() + i); 2353 break; 2354 } 2355 } 2356 } 2357 2358 // Assign slots for GPRs. It increases frame size. 2359 for (unsigned i = CSI.size(); i != 0; --i) { 2360 unsigned Reg = CSI[i - 1].getReg(); 2361 2362 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2363 continue; 2364 2365 SpillSlotOffset -= SlotSize; 2366 CalleeSavedFrameSize += SlotSize; 2367 2368 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2369 CSI[i - 1].setFrameIdx(SlotIndex); 2370 } 2371 2372 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2373 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2374 2375 // Assign slots for XMMs. 2376 for (unsigned i = CSI.size(); i != 0; --i) { 2377 unsigned Reg = CSI[i - 1].getReg(); 2378 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2379 continue; 2380 2381 // If this is k-register make sure we lookup via the largest legal type. 2382 MVT VT = MVT::Other; 2383 if (X86::VK16RegClass.contains(Reg)) 2384 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2385 2386 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2387 unsigned Size = TRI->getSpillSize(*RC); 2388 Align Alignment = TRI->getSpillAlign(*RC); 2389 // ensure alignment 2390 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2391 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2392 2393 // spill into slot 2394 SpillSlotOffset -= Size; 2395 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2396 CSI[i - 1].setFrameIdx(SlotIndex); 2397 MFI.ensureMaxAlignment(Alignment); 2398 2399 // Save the start offset and size of XMM in stack frame for funclets. 2400 if (X86::VR128RegClass.contains(Reg)) { 2401 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2402 XMMCalleeSavedFrameSize += Size; 2403 } 2404 } 2405 2406 return true; 2407 } 2408 2409 bool X86FrameLowering::spillCalleeSavedRegisters( 2410 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2411 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2412 DebugLoc DL = MBB.findDebugLoc(MI); 2413 2414 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2415 // for us, and there are no XMM CSRs on Win32. 2416 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2417 return true; 2418 2419 // Push GPRs. It increases frame size. 2420 const MachineFunction &MF = *MBB.getParent(); 2421 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2422 for (unsigned i = CSI.size(); i != 0; --i) { 2423 unsigned Reg = CSI[i - 1].getReg(); 2424 2425 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2426 continue; 2427 2428 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2429 bool isLiveIn = MRI.isLiveIn(Reg); 2430 if (!isLiveIn) 2431 MBB.addLiveIn(Reg); 2432 2433 // Decide whether we can add a kill flag to the use. 2434 bool CanKill = !isLiveIn; 2435 // Check if any subregister is live-in 2436 if (CanKill) { 2437 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2438 if (MRI.isLiveIn(*AReg)) { 2439 CanKill = false; 2440 break; 2441 } 2442 } 2443 } 2444 2445 // Do not set a kill flag on values that are also marked as live-in. This 2446 // happens with the @llvm-returnaddress intrinsic and with arguments 2447 // passed in callee saved registers. 2448 // Omitting the kill flags is conservatively correct even if the live-in 2449 // is not used after all. 2450 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2451 .setMIFlag(MachineInstr::FrameSetup); 2452 } 2453 2454 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2455 // It can be done by spilling XMMs to stack frame. 2456 for (unsigned i = CSI.size(); i != 0; --i) { 2457 unsigned Reg = CSI[i-1].getReg(); 2458 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2459 continue; 2460 2461 // If this is k-register make sure we lookup via the largest legal type. 2462 MVT VT = MVT::Other; 2463 if (X86::VK16RegClass.contains(Reg)) 2464 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2465 2466 // Add the callee-saved register as live-in. It's killed at the spill. 2467 MBB.addLiveIn(Reg); 2468 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2469 2470 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2471 TRI); 2472 --MI; 2473 MI->setFlag(MachineInstr::FrameSetup); 2474 ++MI; 2475 } 2476 2477 return true; 2478 } 2479 2480 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2481 MachineBasicBlock::iterator MBBI, 2482 MachineInstr *CatchRet) const { 2483 // SEH shouldn't use catchret. 2484 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2485 MBB.getParent()->getFunction().getPersonalityFn())) && 2486 "SEH should not use CATCHRET"); 2487 DebugLoc DL = CatchRet->getDebugLoc(); 2488 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2489 2490 // Fill EAX/RAX with the address of the target block. 2491 if (STI.is64Bit()) { 2492 // LEA64r CatchRetTarget(%rip), %rax 2493 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2494 .addReg(X86::RIP) 2495 .addImm(0) 2496 .addReg(0) 2497 .addMBB(CatchRetTarget) 2498 .addReg(0); 2499 } else { 2500 // MOV32ri $CatchRetTarget, %eax 2501 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2502 .addMBB(CatchRetTarget); 2503 } 2504 2505 // Record that we've taken the address of CatchRetTarget and no longer just 2506 // reference it in a terminator. 2507 CatchRetTarget->setHasAddressTaken(); 2508 } 2509 2510 bool X86FrameLowering::restoreCalleeSavedRegisters( 2511 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2512 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2513 if (CSI.empty()) 2514 return false; 2515 2516 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2517 // Don't restore CSRs in 32-bit EH funclets. Matches 2518 // spillCalleeSavedRegisters. 2519 if (STI.is32Bit()) 2520 return true; 2521 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2522 // funclets. emitEpilogue transforms these to normal jumps. 2523 if (MI->getOpcode() == X86::CATCHRET) { 2524 const Function &F = MBB.getParent()->getFunction(); 2525 bool IsSEH = isAsynchronousEHPersonality( 2526 classifyEHPersonality(F.getPersonalityFn())); 2527 if (IsSEH) 2528 return true; 2529 } 2530 } 2531 2532 DebugLoc DL = MBB.findDebugLoc(MI); 2533 2534 // Reload XMMs from stack frame. 2535 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2536 unsigned Reg = CSI[i].getReg(); 2537 if (X86::GR64RegClass.contains(Reg) || 2538 X86::GR32RegClass.contains(Reg)) 2539 continue; 2540 2541 // If this is k-register make sure we lookup via the largest legal type. 2542 MVT VT = MVT::Other; 2543 if (X86::VK16RegClass.contains(Reg)) 2544 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2545 2546 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2547 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2548 } 2549 2550 // POP GPRs. 2551 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2552 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2553 unsigned Reg = CSI[i].getReg(); 2554 if (!X86::GR64RegClass.contains(Reg) && 2555 !X86::GR32RegClass.contains(Reg)) 2556 continue; 2557 2558 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2559 .setMIFlag(MachineInstr::FrameDestroy); 2560 } 2561 return true; 2562 } 2563 2564 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2565 BitVector &SavedRegs, 2566 RegScavenger *RS) const { 2567 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2568 2569 // Spill the BasePtr if it's used. 2570 if (TRI->hasBasePointer(MF)){ 2571 Register BasePtr = TRI->getBaseRegister(); 2572 if (STI.isTarget64BitILP32()) 2573 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2574 SavedRegs.set(BasePtr); 2575 } 2576 } 2577 2578 static bool 2579 HasNestArgument(const MachineFunction *MF) { 2580 const Function &F = MF->getFunction(); 2581 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2582 I != E; I++) { 2583 if (I->hasNestAttr() && !I->use_empty()) 2584 return true; 2585 } 2586 return false; 2587 } 2588 2589 /// GetScratchRegister - Get a temp register for performing work in the 2590 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2591 /// and the properties of the function either one or two registers will be 2592 /// needed. Set primary to true for the first register, false for the second. 2593 static unsigned 2594 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2595 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2596 2597 // Erlang stuff. 2598 if (CallingConvention == CallingConv::HiPE) { 2599 if (Is64Bit) 2600 return Primary ? X86::R14 : X86::R13; 2601 else 2602 return Primary ? X86::EBX : X86::EDI; 2603 } 2604 2605 if (Is64Bit) { 2606 if (IsLP64) 2607 return Primary ? X86::R11 : X86::R12; 2608 else 2609 return Primary ? X86::R11D : X86::R12D; 2610 } 2611 2612 bool IsNested = HasNestArgument(&MF); 2613 2614 if (CallingConvention == CallingConv::X86_FastCall || 2615 CallingConvention == CallingConv::Fast || 2616 CallingConvention == CallingConv::Tail) { 2617 if (IsNested) 2618 report_fatal_error("Segmented stacks does not support fastcall with " 2619 "nested function."); 2620 return Primary ? X86::EAX : X86::ECX; 2621 } 2622 if (IsNested) 2623 return Primary ? X86::EDX : X86::EAX; 2624 return Primary ? X86::ECX : X86::EAX; 2625 } 2626 2627 // The stack limit in the TCB is set to this many bytes above the actual stack 2628 // limit. 2629 static const uint64_t kSplitStackAvailable = 256; 2630 2631 void X86FrameLowering::adjustForSegmentedStacks( 2632 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2633 MachineFrameInfo &MFI = MF.getFrameInfo(); 2634 uint64_t StackSize; 2635 unsigned TlsReg, TlsOffset; 2636 DebugLoc DL; 2637 2638 // To support shrink-wrapping we would need to insert the new blocks 2639 // at the right place and update the branches to PrologueMBB. 2640 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2641 2642 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2643 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2644 "Scratch register is live-in"); 2645 2646 if (MF.getFunction().isVarArg()) 2647 report_fatal_error("Segmented stacks do not support vararg functions."); 2648 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2649 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2650 !STI.isTargetDragonFly()) 2651 report_fatal_error("Segmented stacks not supported on this platform."); 2652 2653 // Eventually StackSize will be calculated by a link-time pass; which will 2654 // also decide whether checking code needs to be injected into this particular 2655 // prologue. 2656 StackSize = MFI.getStackSize(); 2657 2658 // Do not generate a prologue for leaf functions with a stack of size zero. 2659 // For non-leaf functions we have to allow for the possibility that the 2660 // callis to a non-split function, as in PR37807. This function could also 2661 // take the address of a non-split function. When the linker tries to adjust 2662 // its non-existent prologue, it would fail with an error. Mark the object 2663 // file so that such failures are not errors. See this Go language bug-report 2664 // https://go-review.googlesource.com/c/go/+/148819/ 2665 if (StackSize == 0 && !MFI.hasTailCall()) { 2666 MF.getMMI().setHasNosplitStack(true); 2667 return; 2668 } 2669 2670 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2671 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2672 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2673 bool IsNested = false; 2674 2675 // We need to know if the function has a nest argument only in 64 bit mode. 2676 if (Is64Bit) 2677 IsNested = HasNestArgument(&MF); 2678 2679 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2680 // allocMBB needs to be last (terminating) instruction. 2681 2682 for (const auto &LI : PrologueMBB.liveins()) { 2683 allocMBB->addLiveIn(LI); 2684 checkMBB->addLiveIn(LI); 2685 } 2686 2687 if (IsNested) 2688 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2689 2690 MF.push_front(allocMBB); 2691 MF.push_front(checkMBB); 2692 2693 // When the frame size is less than 256 we just compare the stack 2694 // boundary directly to the value of the stack pointer, per gcc. 2695 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2696 2697 // Read the limit off the current stacklet off the stack_guard location. 2698 if (Is64Bit) { 2699 if (STI.isTargetLinux()) { 2700 TlsReg = X86::FS; 2701 TlsOffset = IsLP64 ? 0x70 : 0x40; 2702 } else if (STI.isTargetDarwin()) { 2703 TlsReg = X86::GS; 2704 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2705 } else if (STI.isTargetWin64()) { 2706 TlsReg = X86::GS; 2707 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2708 } else if (STI.isTargetFreeBSD()) { 2709 TlsReg = X86::FS; 2710 TlsOffset = 0x18; 2711 } else if (STI.isTargetDragonFly()) { 2712 TlsReg = X86::FS; 2713 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2714 } else { 2715 report_fatal_error("Segmented stacks not supported on this platform."); 2716 } 2717 2718 if (CompareStackPointer) 2719 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2720 else 2721 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2722 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2723 2724 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2725 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2726 } else { 2727 if (STI.isTargetLinux()) { 2728 TlsReg = X86::GS; 2729 TlsOffset = 0x30; 2730 } else if (STI.isTargetDarwin()) { 2731 TlsReg = X86::GS; 2732 TlsOffset = 0x48 + 90*4; 2733 } else if (STI.isTargetWin32()) { 2734 TlsReg = X86::FS; 2735 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2736 } else if (STI.isTargetDragonFly()) { 2737 TlsReg = X86::FS; 2738 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2739 } else if (STI.isTargetFreeBSD()) { 2740 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2741 } else { 2742 report_fatal_error("Segmented stacks not supported on this platform."); 2743 } 2744 2745 if (CompareStackPointer) 2746 ScratchReg = X86::ESP; 2747 else 2748 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2749 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2750 2751 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2752 STI.isTargetDragonFly()) { 2753 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2754 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2755 } else if (STI.isTargetDarwin()) { 2756 2757 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2758 unsigned ScratchReg2; 2759 bool SaveScratch2; 2760 if (CompareStackPointer) { 2761 // The primary scratch register is available for holding the TLS offset. 2762 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2763 SaveScratch2 = false; 2764 } else { 2765 // Need to use a second register to hold the TLS offset 2766 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2767 2768 // Unfortunately, with fastcc the second scratch register may hold an 2769 // argument. 2770 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2771 } 2772 2773 // If Scratch2 is live-in then it needs to be saved. 2774 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2775 "Scratch register is live-in and not saved"); 2776 2777 if (SaveScratch2) 2778 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2779 .addReg(ScratchReg2, RegState::Kill); 2780 2781 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2782 .addImm(TlsOffset); 2783 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2784 .addReg(ScratchReg) 2785 .addReg(ScratchReg2).addImm(1).addReg(0) 2786 .addImm(0) 2787 .addReg(TlsReg); 2788 2789 if (SaveScratch2) 2790 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2791 } 2792 } 2793 2794 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2795 // It jumps to normal execution of the function body. 2796 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2797 2798 // On 32 bit we first push the arguments size and then the frame size. On 64 2799 // bit, we pass the stack frame size in r10 and the argument size in r11. 2800 if (Is64Bit) { 2801 // Functions with nested arguments use R10, so it needs to be saved across 2802 // the call to _morestack 2803 2804 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2805 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2806 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2807 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2808 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2809 2810 if (IsNested) 2811 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2812 2813 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2814 .addImm(StackSize); 2815 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2816 .addImm(X86FI->getArgumentStackSize()); 2817 } else { 2818 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2819 .addImm(X86FI->getArgumentStackSize()); 2820 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2821 .addImm(StackSize); 2822 } 2823 2824 // __morestack is in libgcc 2825 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2826 // Under the large code model, we cannot assume that __morestack lives 2827 // within 2^31 bytes of the call site, so we cannot use pc-relative 2828 // addressing. We cannot perform the call via a temporary register, 2829 // as the rax register may be used to store the static chain, and all 2830 // other suitable registers may be either callee-save or used for 2831 // parameter passing. We cannot use the stack at this point either 2832 // because __morestack manipulates the stack directly. 2833 // 2834 // To avoid these issues, perform an indirect call via a read-only memory 2835 // location containing the address. 2836 // 2837 // This solution is not perfect, as it assumes that the .rodata section 2838 // is laid out within 2^31 bytes of each function body, but this seems 2839 // to be sufficient for JIT. 2840 // FIXME: Add retpoline support and remove the error here.. 2841 if (STI.useIndirectThunkCalls()) 2842 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2843 "code model and thunks not yet implemented."); 2844 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2845 .addReg(X86::RIP) 2846 .addImm(0) 2847 .addReg(0) 2848 .addExternalSymbol("__morestack_addr") 2849 .addReg(0); 2850 MF.getMMI().setUsesMorestackAddr(true); 2851 } else { 2852 if (Is64Bit) 2853 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2854 .addExternalSymbol("__morestack"); 2855 else 2856 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2857 .addExternalSymbol("__morestack"); 2858 } 2859 2860 if (IsNested) 2861 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2862 else 2863 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2864 2865 allocMBB->addSuccessor(&PrologueMBB); 2866 2867 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2868 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2869 2870 #ifdef EXPENSIVE_CHECKS 2871 MF.verify(); 2872 #endif 2873 } 2874 2875 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2876 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2877 /// to fields it needs, through a named metadata node "hipe.literals" containing 2878 /// name-value pairs. 2879 static unsigned getHiPELiteral( 2880 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2881 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2882 MDNode *Node = HiPELiteralsMD->getOperand(i); 2883 if (Node->getNumOperands() != 2) continue; 2884 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 2885 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 2886 if (!NodeName || !NodeVal) continue; 2887 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 2888 if (ValConst && NodeName->getString() == LiteralName) { 2889 return ValConst->getZExtValue(); 2890 } 2891 } 2892 2893 report_fatal_error("HiPE literal " + LiteralName 2894 + " required but not provided"); 2895 } 2896 2897 // Return true if there are no non-ehpad successors to MBB and there are no 2898 // non-meta instructions between MBBI and MBB.end(). 2899 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 2900 MachineBasicBlock::const_iterator MBBI) { 2901 return llvm::all_of( 2902 MBB.successors(), 2903 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 2904 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 2905 return MI.isMetaInstruction(); 2906 }); 2907 } 2908 2909 /// Erlang programs may need a special prologue to handle the stack size they 2910 /// might need at runtime. That is because Erlang/OTP does not implement a C 2911 /// stack but uses a custom implementation of hybrid stack/heap architecture. 2912 /// (for more information see Eric Stenman's Ph.D. thesis: 2913 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 2914 /// 2915 /// CheckStack: 2916 /// temp0 = sp - MaxStack 2917 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2918 /// OldStart: 2919 /// ... 2920 /// IncStack: 2921 /// call inc_stack # doubles the stack space 2922 /// temp0 = sp - MaxStack 2923 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 2924 void X86FrameLowering::adjustForHiPEPrologue( 2925 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2926 MachineFrameInfo &MFI = MF.getFrameInfo(); 2927 DebugLoc DL; 2928 2929 // To support shrink-wrapping we would need to insert the new blocks 2930 // at the right place and update the branches to PrologueMBB. 2931 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2932 2933 // HiPE-specific values 2934 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 2935 ->getNamedMetadata("hipe.literals"); 2936 if (!HiPELiteralsMD) 2937 report_fatal_error( 2938 "Can't generate HiPE prologue without runtime parameters"); 2939 const unsigned HipeLeafWords 2940 = getHiPELiteral(HiPELiteralsMD, 2941 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 2942 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 2943 const unsigned Guaranteed = HipeLeafWords * SlotSize; 2944 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 2945 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 2946 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 2947 2948 assert(STI.isTargetLinux() && 2949 "HiPE prologue is only supported on Linux operating systems."); 2950 2951 // Compute the largest caller's frame that is needed to fit the callees' 2952 // frames. This 'MaxStack' is computed from: 2953 // 2954 // a) the fixed frame size, which is the space needed for all spilled temps, 2955 // b) outgoing on-stack parameter areas, and 2956 // c) the minimum stack space this function needs to make available for the 2957 // functions it calls (a tunable ABI property). 2958 if (MFI.hasCalls()) { 2959 unsigned MoreStackForCalls = 0; 2960 2961 for (auto &MBB : MF) { 2962 for (auto &MI : MBB) { 2963 if (!MI.isCall()) 2964 continue; 2965 2966 // Get callee operand. 2967 const MachineOperand &MO = MI.getOperand(0); 2968 2969 // Only take account of global function calls (no closures etc.). 2970 if (!MO.isGlobal()) 2971 continue; 2972 2973 const Function *F = dyn_cast<Function>(MO.getGlobal()); 2974 if (!F) 2975 continue; 2976 2977 // Do not update 'MaxStack' for primitive and built-in functions 2978 // (encoded with names either starting with "erlang."/"bif_" or not 2979 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 2980 // "_", such as the BIF "suspend_0") as they are executed on another 2981 // stack. 2982 if (F->getName().find("erlang.") != StringRef::npos || 2983 F->getName().find("bif_") != StringRef::npos || 2984 F->getName().find_first_of("._") == StringRef::npos) 2985 continue; 2986 2987 unsigned CalleeStkArity = 2988 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 2989 if (HipeLeafWords - 1 > CalleeStkArity) 2990 MoreStackForCalls = std::max(MoreStackForCalls, 2991 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 2992 } 2993 } 2994 MaxStack += MoreStackForCalls; 2995 } 2996 2997 // If the stack frame needed is larger than the guaranteed then runtime checks 2998 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 2999 if (MaxStack > Guaranteed) { 3000 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3001 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3002 3003 for (const auto &LI : PrologueMBB.liveins()) { 3004 stackCheckMBB->addLiveIn(LI); 3005 incStackMBB->addLiveIn(LI); 3006 } 3007 3008 MF.push_front(incStackMBB); 3009 MF.push_front(stackCheckMBB); 3010 3011 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3012 unsigned LEAop, CMPop, CALLop; 3013 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3014 if (Is64Bit) { 3015 SPReg = X86::RSP; 3016 PReg = X86::RBP; 3017 LEAop = X86::LEA64r; 3018 CMPop = X86::CMP64rm; 3019 CALLop = X86::CALL64pcrel32; 3020 } else { 3021 SPReg = X86::ESP; 3022 PReg = X86::EBP; 3023 LEAop = X86::LEA32r; 3024 CMPop = X86::CMP32rm; 3025 CALLop = X86::CALLpcrel32; 3026 } 3027 3028 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3029 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3030 "HiPE prologue scratch register is live-in"); 3031 3032 // Create new MBB for StackCheck: 3033 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3034 SPReg, false, -MaxStack); 3035 // SPLimitOffset is in a fixed heap location (pointed by BP). 3036 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3037 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3038 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3039 3040 // Create new MBB for IncStack: 3041 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3042 addExternalSymbol("inc_stack_0"); 3043 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3044 SPReg, false, -MaxStack); 3045 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3046 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3047 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3048 3049 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3050 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3051 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3052 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3053 } 3054 #ifdef EXPENSIVE_CHECKS 3055 MF.verify(); 3056 #endif 3057 } 3058 3059 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3060 MachineBasicBlock::iterator MBBI, 3061 const DebugLoc &DL, 3062 int Offset) const { 3063 if (Offset <= 0) 3064 return false; 3065 3066 if (Offset % SlotSize) 3067 return false; 3068 3069 int NumPops = Offset / SlotSize; 3070 // This is only worth it if we have at most 2 pops. 3071 if (NumPops != 1 && NumPops != 2) 3072 return false; 3073 3074 // Handle only the trivial case where the adjustment directly follows 3075 // a call. This is the most common one, anyway. 3076 if (MBBI == MBB.begin()) 3077 return false; 3078 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3079 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3080 return false; 3081 3082 unsigned Regs[2]; 3083 unsigned FoundRegs = 0; 3084 3085 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3086 const MachineOperand &RegMask = Prev->getOperand(1); 3087 3088 auto &RegClass = 3089 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3090 // Try to find up to NumPops free registers. 3091 for (auto Candidate : RegClass) { 3092 // Poor man's liveness: 3093 // Since we're immediately after a call, any register that is clobbered 3094 // by the call and not defined by it can be considered dead. 3095 if (!RegMask.clobbersPhysReg(Candidate)) 3096 continue; 3097 3098 // Don't clobber reserved registers 3099 if (MRI.isReserved(Candidate)) 3100 continue; 3101 3102 bool IsDef = false; 3103 for (const MachineOperand &MO : Prev->implicit_operands()) { 3104 if (MO.isReg() && MO.isDef() && 3105 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3106 IsDef = true; 3107 break; 3108 } 3109 } 3110 3111 if (IsDef) 3112 continue; 3113 3114 Regs[FoundRegs++] = Candidate; 3115 if (FoundRegs == (unsigned)NumPops) 3116 break; 3117 } 3118 3119 if (FoundRegs == 0) 3120 return false; 3121 3122 // If we found only one free register, but need two, reuse the same one twice. 3123 while (FoundRegs < (unsigned)NumPops) 3124 Regs[FoundRegs++] = Regs[0]; 3125 3126 for (int i = 0; i < NumPops; ++i) 3127 BuildMI(MBB, MBBI, DL, 3128 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3129 3130 return true; 3131 } 3132 3133 MachineBasicBlock::iterator X86FrameLowering:: 3134 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3135 MachineBasicBlock::iterator I) const { 3136 bool reserveCallFrame = hasReservedCallFrame(MF); 3137 unsigned Opcode = I->getOpcode(); 3138 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3139 DebugLoc DL = I->getDebugLoc(); 3140 uint64_t Amount = TII.getFrameSize(*I); 3141 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3142 I = MBB.erase(I); 3143 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3144 3145 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3146 // typically because the function is marked noreturn (abort, throw, 3147 // assert_fail, etc). 3148 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3149 return I; 3150 3151 if (!reserveCallFrame) { 3152 // If the stack pointer can be changed after prologue, turn the 3153 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3154 // adjcallstackdown instruction into 'add ESP, <amt>' 3155 3156 // We need to keep the stack aligned properly. To do this, we round the 3157 // amount of space needed for the outgoing arguments up to the next 3158 // alignment boundary. 3159 Amount = alignTo(Amount, getStackAlign()); 3160 3161 const Function &F = MF.getFunction(); 3162 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3163 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3164 3165 // If we have any exception handlers in this function, and we adjust 3166 // the SP before calls, we may need to indicate this to the unwinder 3167 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3168 // Amount == 0, because the preceding function may have set a non-0 3169 // GNU_ARGS_SIZE. 3170 // TODO: We don't need to reset this between subsequent functions, 3171 // if it didn't change. 3172 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3173 3174 if (HasDwarfEHHandlers && !isDestroy && 3175 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3176 BuildCFI(MBB, InsertPos, DL, 3177 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3178 3179 if (Amount == 0) 3180 return I; 3181 3182 // Factor out the amount that gets handled inside the sequence 3183 // (Pushes of argument for frame setup, callee pops for frame destroy) 3184 Amount -= InternalAmt; 3185 3186 // TODO: This is needed only if we require precise CFA. 3187 // If this is a callee-pop calling convention, emit a CFA adjust for 3188 // the amount the callee popped. 3189 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3190 BuildCFI(MBB, InsertPos, DL, 3191 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3192 3193 // Add Amount to SP to destroy a frame, or subtract to setup. 3194 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3195 3196 if (StackAdjustment) { 3197 // Merge with any previous or following adjustment instruction. Note: the 3198 // instructions merged with here do not have CFI, so their stack 3199 // adjustments do not feed into CfaAdjustment. 3200 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3201 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3202 3203 if (StackAdjustment) { 3204 if (!(F.hasMinSize() && 3205 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3206 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3207 /*InEpilogue=*/false); 3208 } 3209 } 3210 3211 if (DwarfCFI && !hasFP(MF)) { 3212 // If we don't have FP, but need to generate unwind information, 3213 // we need to set the correct CFA offset after the stack adjustment. 3214 // How much we adjust the CFA offset depends on whether we're emitting 3215 // CFI only for EH purposes or for debugging. EH only requires the CFA 3216 // offset to be correct at each call site, while for debugging we want 3217 // it to be more precise. 3218 3219 int64_t CfaAdjustment = -StackAdjustment; 3220 // TODO: When not using precise CFA, we also need to adjust for the 3221 // InternalAmt here. 3222 if (CfaAdjustment) { 3223 BuildCFI(MBB, InsertPos, DL, 3224 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3225 CfaAdjustment)); 3226 } 3227 } 3228 3229 return I; 3230 } 3231 3232 if (InternalAmt) { 3233 MachineBasicBlock::iterator CI = I; 3234 MachineBasicBlock::iterator B = MBB.begin(); 3235 while (CI != B && !std::prev(CI)->isCall()) 3236 --CI; 3237 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3238 } 3239 3240 return I; 3241 } 3242 3243 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3244 assert(MBB.getParent() && "Block is not attached to a function!"); 3245 const MachineFunction &MF = *MBB.getParent(); 3246 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS); 3247 } 3248 3249 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3250 assert(MBB.getParent() && "Block is not attached to a function!"); 3251 3252 // Win64 has strict requirements in terms of epilogue and we are 3253 // not taking a chance at messing with them. 3254 // I.e., unless this block is already an exit block, we can't use 3255 // it as an epilogue. 3256 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3257 return false; 3258 3259 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3260 return true; 3261 3262 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3263 // clobbers the EFLAGS. Check that we do not need to preserve it, 3264 // otherwise, conservatively assume this is not 3265 // safe to insert the epilogue here. 3266 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3267 } 3268 3269 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3270 // If we may need to emit frameless compact unwind information, give 3271 // up as this is currently broken: PR25614. 3272 bool CompactUnwind = 3273 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3274 nullptr; 3275 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3276 !CompactUnwind) && 3277 // The lowering of segmented stack and HiPE only support entry 3278 // blocks as prologue blocks: PR26107. This limitation may be 3279 // lifted if we fix: 3280 // - adjustForSegmentedStacks 3281 // - adjustForHiPEPrologue 3282 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3283 !MF.shouldSplitStack(); 3284 } 3285 3286 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3287 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3288 const DebugLoc &DL, bool RestoreSP) const { 3289 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3290 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3291 assert(STI.is32Bit() && !Uses64BitFramePtr && 3292 "restoring EBP/ESI on non-32-bit target"); 3293 3294 MachineFunction &MF = *MBB.getParent(); 3295 Register FramePtr = TRI->getFrameRegister(MF); 3296 Register BasePtr = TRI->getBaseRegister(); 3297 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3298 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3299 MachineFrameInfo &MFI = MF.getFrameInfo(); 3300 3301 // FIXME: Don't set FrameSetup flag in catchret case. 3302 3303 int FI = FuncInfo.EHRegNodeFrameIndex; 3304 int EHRegSize = MFI.getObjectSize(FI); 3305 3306 if (RestoreSP) { 3307 // MOV32rm -EHRegSize(%ebp), %esp 3308 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3309 X86::EBP, true, -EHRegSize) 3310 .setMIFlag(MachineInstr::FrameSetup); 3311 } 3312 3313 Register UsedReg; 3314 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3315 int EndOffset = -EHRegOffset - EHRegSize; 3316 FuncInfo.EHRegNodeEndOffset = EndOffset; 3317 3318 if (UsedReg == FramePtr) { 3319 // ADD $offset, %ebp 3320 unsigned ADDri = getADDriOpcode(false, EndOffset); 3321 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3322 .addReg(FramePtr) 3323 .addImm(EndOffset) 3324 .setMIFlag(MachineInstr::FrameSetup) 3325 ->getOperand(3) 3326 .setIsDead(); 3327 assert(EndOffset >= 0 && 3328 "end of registration object above normal EBP position!"); 3329 } else if (UsedReg == BasePtr) { 3330 // LEA offset(%ebp), %esi 3331 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3332 FramePtr, false, EndOffset) 3333 .setMIFlag(MachineInstr::FrameSetup); 3334 // MOV32rm SavedEBPOffset(%esi), %ebp 3335 assert(X86FI->getHasSEHFramePtrSave()); 3336 int Offset = 3337 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3338 .getFixed(); 3339 assert(UsedReg == BasePtr); 3340 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3341 UsedReg, true, Offset) 3342 .setMIFlag(MachineInstr::FrameSetup); 3343 } else { 3344 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3345 } 3346 return MBBI; 3347 } 3348 3349 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3350 return TRI->getSlotSize(); 3351 } 3352 3353 Register 3354 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3355 return TRI->getDwarfRegNum(StackPtr, true); 3356 } 3357 3358 namespace { 3359 // Struct used by orderFrameObjects to help sort the stack objects. 3360 struct X86FrameSortingObject { 3361 bool IsValid = false; // true if we care about this Object. 3362 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3363 unsigned ObjectSize = 0; // Size of Object in bytes. 3364 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3365 unsigned ObjectNumUses = 0; // Object static number of uses. 3366 }; 3367 3368 // The comparison function we use for std::sort to order our local 3369 // stack symbols. The current algorithm is to use an estimated 3370 // "density". This takes into consideration the size and number of 3371 // uses each object has in order to roughly minimize code size. 3372 // So, for example, an object of size 16B that is referenced 5 times 3373 // will get higher priority than 4 4B objects referenced 1 time each. 3374 // It's not perfect and we may be able to squeeze a few more bytes out of 3375 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3376 // fringe end can have special consideration, given their size is less 3377 // important, etc.), but the algorithmic complexity grows too much to be 3378 // worth the extra gains we get. This gets us pretty close. 3379 // The final order leaves us with objects with highest priority going 3380 // at the end of our list. 3381 struct X86FrameSortingComparator { 3382 inline bool operator()(const X86FrameSortingObject &A, 3383 const X86FrameSortingObject &B) const { 3384 uint64_t DensityAScaled, DensityBScaled; 3385 3386 // For consistency in our comparison, all invalid objects are placed 3387 // at the end. This also allows us to stop walking when we hit the 3388 // first invalid item after it's all sorted. 3389 if (!A.IsValid) 3390 return false; 3391 if (!B.IsValid) 3392 return true; 3393 3394 // The density is calculated by doing : 3395 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3396 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3397 // Since this approach may cause inconsistencies in 3398 // the floating point <, >, == comparisons, depending on the floating 3399 // point model with which the compiler was built, we're going 3400 // to scale both sides by multiplying with 3401 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3402 // the division and, with it, the need for any floating point 3403 // arithmetic. 3404 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3405 static_cast<uint64_t>(B.ObjectSize); 3406 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3407 static_cast<uint64_t>(A.ObjectSize); 3408 3409 // If the two densities are equal, prioritize highest alignment 3410 // objects. This allows for similar alignment objects 3411 // to be packed together (given the same density). 3412 // There's room for improvement here, also, since we can pack 3413 // similar alignment (different density) objects next to each 3414 // other to save padding. This will also require further 3415 // complexity/iterations, and the overall gain isn't worth it, 3416 // in general. Something to keep in mind, though. 3417 if (DensityAScaled == DensityBScaled) 3418 return A.ObjectAlignment < B.ObjectAlignment; 3419 3420 return DensityAScaled < DensityBScaled; 3421 } 3422 }; 3423 } // namespace 3424 3425 // Order the symbols in the local stack. 3426 // We want to place the local stack objects in some sort of sensible order. 3427 // The heuristic we use is to try and pack them according to static number 3428 // of uses and size of object in order to minimize code size. 3429 void X86FrameLowering::orderFrameObjects( 3430 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3431 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3432 3433 // Don't waste time if there's nothing to do. 3434 if (ObjectsToAllocate.empty()) 3435 return; 3436 3437 // Create an array of all MFI objects. We won't need all of these 3438 // objects, but we're going to create a full array of them to make 3439 // it easier to index into when we're counting "uses" down below. 3440 // We want to be able to easily/cheaply access an object by simply 3441 // indexing into it, instead of having to search for it every time. 3442 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3443 3444 // Walk the objects we care about and mark them as such in our working 3445 // struct. 3446 for (auto &Obj : ObjectsToAllocate) { 3447 SortingObjects[Obj].IsValid = true; 3448 SortingObjects[Obj].ObjectIndex = Obj; 3449 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3450 // Set the size. 3451 int ObjectSize = MFI.getObjectSize(Obj); 3452 if (ObjectSize == 0) 3453 // Variable size. Just use 4. 3454 SortingObjects[Obj].ObjectSize = 4; 3455 else 3456 SortingObjects[Obj].ObjectSize = ObjectSize; 3457 } 3458 3459 // Count the number of uses for each object. 3460 for (auto &MBB : MF) { 3461 for (auto &MI : MBB) { 3462 if (MI.isDebugInstr()) 3463 continue; 3464 for (const MachineOperand &MO : MI.operands()) { 3465 // Check to see if it's a local stack symbol. 3466 if (!MO.isFI()) 3467 continue; 3468 int Index = MO.getIndex(); 3469 // Check to see if it falls within our range, and is tagged 3470 // to require ordering. 3471 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3472 SortingObjects[Index].IsValid) 3473 SortingObjects[Index].ObjectNumUses++; 3474 } 3475 } 3476 } 3477 3478 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3479 // info). 3480 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3481 3482 // Now modify the original list to represent the final order that 3483 // we want. The order will depend on whether we're going to access them 3484 // from the stack pointer or the frame pointer. For SP, the list should 3485 // end up with the END containing objects that we want with smaller offsets. 3486 // For FP, it should be flipped. 3487 int i = 0; 3488 for (auto &Obj : SortingObjects) { 3489 // All invalid items are sorted at the end, so it's safe to stop. 3490 if (!Obj.IsValid) 3491 break; 3492 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3493 } 3494 3495 // Flip it if we're accessing off of the FP. 3496 if (!TRI->needsStackRealignment(MF) && hasFP(MF)) 3497 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3498 } 3499 3500 3501 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3502 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3503 unsigned Offset = 16; 3504 // RBP is immediately pushed. 3505 Offset += SlotSize; 3506 // All callee-saved registers are then pushed. 3507 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3508 // Every funclet allocates enough stack space for the largest outgoing call. 3509 Offset += getWinEHFuncletFrameSize(MF); 3510 return Offset; 3511 } 3512 3513 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3514 MachineFunction &MF, RegScavenger *RS) const { 3515 // Mark the function as not having WinCFI. We will set it back to true in 3516 // emitPrologue if it gets called and emits CFI. 3517 MF.setHasWinCFI(false); 3518 3519 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3520 // aligned. The format doesn't support misaligned stack adjustments. 3521 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3522 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3523 3524 // If this function isn't doing Win64-style C++ EH, we don't need to do 3525 // anything. 3526 if (STI.is64Bit() && MF.hasEHFunclets() && 3527 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3528 EHPersonality::MSVC_CXX) { 3529 adjustFrameForMsvcCxxEh(MF); 3530 } 3531 } 3532 3533 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3534 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3535 // relative to RSP after the prologue. Find the offset of the last fixed 3536 // object, so that we can allocate a slot immediately following it. If there 3537 // were no fixed objects, use offset -SlotSize, which is immediately after the 3538 // return address. Fixed objects have negative frame indices. 3539 MachineFrameInfo &MFI = MF.getFrameInfo(); 3540 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3541 int64_t MinFixedObjOffset = -SlotSize; 3542 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3543 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3544 3545 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3546 for (WinEHHandlerType &H : TBME.HandlerArray) { 3547 int FrameIndex = H.CatchObj.FrameIndex; 3548 if (FrameIndex != INT_MAX) { 3549 // Ensure alignment. 3550 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3551 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3552 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3553 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3554 } 3555 } 3556 } 3557 3558 // Ensure alignment. 3559 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3560 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3561 int UnwindHelpFI = 3562 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3563 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3564 3565 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3566 // other frame setup instructions. 3567 MachineBasicBlock &MBB = MF.front(); 3568 auto MBBI = MBB.begin(); 3569 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3570 ++MBBI; 3571 3572 DebugLoc DL = MBB.findDebugLoc(MBBI); 3573 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3574 UnwindHelpFI) 3575 .addImm(-2); 3576 } 3577 3578 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3579 MachineFunction &MF, RegScavenger *RS) const { 3580 if (STI.is32Bit() && MF.hasEHFunclets()) 3581 restoreWinEHStackPointersInParent(MF); 3582 } 3583 3584 void X86FrameLowering::restoreWinEHStackPointersInParent( 3585 MachineFunction &MF) const { 3586 // 32-bit functions have to restore stack pointers when control is transferred 3587 // back to the parent function. These blocks are identified as eh pads that 3588 // are not funclet entries. 3589 bool IsSEH = isAsynchronousEHPersonality( 3590 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3591 for (MachineBasicBlock &MBB : MF) { 3592 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3593 if (NeedsRestore) 3594 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3595 /*RestoreSP=*/IsSEH); 3596 } 3597 } 3598