xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FrameLowering.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCObjectFileInfo.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include <cstdlib>
36 
37 #define DEBUG_TYPE "x86-fl"
38 
39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
40 STATISTIC(NumFrameExtraProbe,
41           "Number of extra stack probes generated in prologue");
42 
43 using namespace llvm;
44 
45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
46                                    MaybeAlign StackAlignOverride)
47     : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
48                           STI.is64Bit() ? -8 : -4),
49       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
50   // Cache a bunch of frame-related predicates for this subtarget.
51   SlotSize = TRI->getSlotSize();
52   Is64Bit = STI.is64Bit();
53   IsLP64 = STI.isTarget64BitLP64();
54   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
55   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
56   StackPtr = TRI->getStackRegister();
57 }
58 
59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
60   return !MF.getFrameInfo().hasVarSizedObjects() &&
61          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
62          !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
63 }
64 
65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
66 /// call frame pseudos can be simplified.  Having a FP, as in the default
67 /// implementation, is not sufficient here since we can't always use it.
68 /// Use a more nuanced condition.
69 bool
70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
71   return hasReservedCallFrame(MF) ||
72          MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
73          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
74          TRI->hasBasePointer(MF);
75 }
76 
77 // needsFrameIndexResolution - Do we need to perform FI resolution for
78 // this function. Normally, this is required only when the function
79 // has any stack objects. However, FI resolution actually has another job,
80 // not apparent from the title - it resolves callframesetup/destroy
81 // that were not simplified earlier.
82 // So, this is required for x86 functions that have push sequences even
83 // when there are no stack objects.
84 bool
85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
86   return MF.getFrameInfo().hasStackObjects() ||
87          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
88 }
89 
90 /// hasFP - Return true if the specified function should have a dedicated frame
91 /// pointer register.  This is true if the function has variable sized allocas
92 /// or if frame pointer elimination is disabled.
93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
94   const MachineFrameInfo &MFI = MF.getFrameInfo();
95   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
96           TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects() ||
97           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
98           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
99           MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
100           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
101           MFI.hasStackMap() || MFI.hasPatchPoint() ||
102           MFI.hasCopyImplyingStackAdjustment());
103 }
104 
105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
106   if (IsLP64) {
107     if (isInt<8>(Imm))
108       return X86::SUB64ri8;
109     return X86::SUB64ri32;
110   } else {
111     if (isInt<8>(Imm))
112       return X86::SUB32ri8;
113     return X86::SUB32ri;
114   }
115 }
116 
117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
118   if (IsLP64) {
119     if (isInt<8>(Imm))
120       return X86::ADD64ri8;
121     return X86::ADD64ri32;
122   } else {
123     if (isInt<8>(Imm))
124       return X86::ADD32ri8;
125     return X86::ADD32ri;
126   }
127 }
128 
129 static unsigned getSUBrrOpcode(bool IsLP64) {
130   return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
131 }
132 
133 static unsigned getADDrrOpcode(bool IsLP64) {
134   return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
135 }
136 
137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
138   if (IsLP64) {
139     if (isInt<8>(Imm))
140       return X86::AND64ri8;
141     return X86::AND64ri32;
142   }
143   if (isInt<8>(Imm))
144     return X86::AND32ri8;
145   return X86::AND32ri;
146 }
147 
148 static unsigned getLEArOpcode(bool IsLP64) {
149   return IsLP64 ? X86::LEA64r : X86::LEA32r;
150 }
151 
152 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
153   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
154     unsigned Reg = RegMask.PhysReg;
155 
156     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
157         Reg == X86::AH || Reg == X86::AL)
158       return true;
159   }
160 
161   return false;
162 }
163 
164 /// Check if the flags need to be preserved before the terminators.
165 /// This would be the case, if the eflags is live-in of the region
166 /// composed by the terminators or live-out of that region, without
167 /// being defined by a terminator.
168 static bool
169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
170   for (const MachineInstr &MI : MBB.terminators()) {
171     bool BreakNext = false;
172     for (const MachineOperand &MO : MI.operands()) {
173       if (!MO.isReg())
174         continue;
175       Register Reg = MO.getReg();
176       if (Reg != X86::EFLAGS)
177         continue;
178 
179       // This terminator needs an eflags that is not defined
180       // by a previous another terminator:
181       // EFLAGS is live-in of the region composed by the terminators.
182       if (!MO.isDef())
183         return true;
184       // This terminator defines the eflags, i.e., we don't need to preserve it.
185       // However, we still need to check this specific terminator does not
186       // read a live-in value.
187       BreakNext = true;
188     }
189     // We found a definition of the eflags, no need to preserve them.
190     if (BreakNext)
191       return false;
192   }
193 
194   // None of the terminators use or define the eflags.
195   // Check if they are live-out, that would imply we need to preserve them.
196   for (const MachineBasicBlock *Succ : MBB.successors())
197     if (Succ->isLiveIn(X86::EFLAGS))
198       return true;
199 
200   return false;
201 }
202 
203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
204 /// stack pointer by a constant value.
205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
206                                     MachineBasicBlock::iterator &MBBI,
207                                     const DebugLoc &DL,
208                                     int64_t NumBytes, bool InEpilogue) const {
209   bool isSub = NumBytes < 0;
210   uint64_t Offset = isSub ? -NumBytes : NumBytes;
211   MachineInstr::MIFlag Flag =
212       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
213 
214   uint64_t Chunk = (1LL << 31) - 1;
215 
216   MachineFunction &MF = *MBB.getParent();
217   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
218   const X86TargetLowering &TLI = *STI.getTargetLowering();
219   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
220 
221   // It's ok to not take into account large chunks when probing, as the
222   // allocation is split in smaller chunks anyway.
223   if (EmitInlineStackProbe && !InEpilogue) {
224 
225     // This pseudo-instruction is going to be expanded, potentially using a
226     // loop, by inlineStackProbe().
227     BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
228     return;
229   } else if (Offset > Chunk) {
230     // Rather than emit a long series of instructions for large offsets,
231     // load the offset into a register and do one sub/add
232     unsigned Reg = 0;
233     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
234 
235     if (isSub && !isEAXLiveIn(MBB))
236       Reg = Rax;
237     else
238       Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
239 
240     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
241     unsigned AddSubRROpc =
242         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
243     if (Reg) {
244       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
245           .addImm(Offset)
246           .setMIFlag(Flag);
247       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
248                              .addReg(StackPtr)
249                              .addReg(Reg);
250       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
251       return;
252     } else if (Offset > 8 * Chunk) {
253       // If we would need more than 8 add or sub instructions (a >16GB stack
254       // frame), it's worth spilling RAX to materialize this immediate.
255       //   pushq %rax
256       //   movabsq +-$Offset+-SlotSize, %rax
257       //   addq %rsp, %rax
258       //   xchg %rax, (%rsp)
259       //   movq (%rsp), %rsp
260       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
261       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
262           .addReg(Rax, RegState::Kill)
263           .setMIFlag(Flag);
264       // Subtract is not commutative, so negate the offset and always use add.
265       // Subtract 8 less and add 8 more to account for the PUSH we just did.
266       if (isSub)
267         Offset = -(Offset - SlotSize);
268       else
269         Offset = Offset + SlotSize;
270       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
271           .addImm(Offset)
272           .setMIFlag(Flag);
273       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
274                              .addReg(Rax)
275                              .addReg(StackPtr);
276       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
277       // Exchange the new SP in RAX with the top of the stack.
278       addRegOffset(
279           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
280           StackPtr, false, 0);
281       // Load new SP from the top of the stack into RSP.
282       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
283                    StackPtr, false, 0);
284       return;
285     }
286   }
287 
288   while (Offset) {
289     uint64_t ThisVal = std::min(Offset, Chunk);
290     if (ThisVal == SlotSize) {
291       // Use push / pop for slot sized adjustments as a size optimization. We
292       // need to find a dead register when using pop.
293       unsigned Reg = isSub
294         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
295         : TRI->findDeadCallerSavedReg(MBB, MBBI);
296       if (Reg) {
297         unsigned Opc = isSub
298           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
299           : (Is64Bit ? X86::POP64r  : X86::POP32r);
300         BuildMI(MBB, MBBI, DL, TII.get(Opc))
301             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
302             .setMIFlag(Flag);
303         Offset -= ThisVal;
304         continue;
305       }
306     }
307 
308     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
309         .setMIFlag(Flag);
310 
311     Offset -= ThisVal;
312   }
313 }
314 
315 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
316     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
317     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
318   assert(Offset != 0 && "zero offset stack adjustment requested");
319 
320   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
321   // is tricky.
322   bool UseLEA;
323   if (!InEpilogue) {
324     // Check if inserting the prologue at the beginning
325     // of MBB would require to use LEA operations.
326     // We need to use LEA operations if EFLAGS is live in, because
327     // it means an instruction will read it before it gets defined.
328     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
329   } else {
330     // If we can use LEA for SP but we shouldn't, check that none
331     // of the terminators uses the eflags. Otherwise we will insert
332     // a ADD that will redefine the eflags and break the condition.
333     // Alternatively, we could move the ADD, but this may not be possible
334     // and is an optimization anyway.
335     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
336     if (UseLEA && !STI.useLeaForSP())
337       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
338     // If that assert breaks, that means we do not do the right thing
339     // in canUseAsEpilogue.
340     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
341            "We shouldn't have allowed this insertion point");
342   }
343 
344   MachineInstrBuilder MI;
345   if (UseLEA) {
346     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
347                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
348                               StackPtr),
349                       StackPtr, false, Offset);
350   } else {
351     bool IsSub = Offset < 0;
352     uint64_t AbsOffset = IsSub ? -Offset : Offset;
353     const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
354                                : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
355     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
356              .addReg(StackPtr)
357              .addImm(AbsOffset);
358     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
359   }
360   return MI;
361 }
362 
363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
364                                      MachineBasicBlock::iterator &MBBI,
365                                      bool doMergeWithPrevious) const {
366   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
367       (!doMergeWithPrevious && MBBI == MBB.end()))
368     return 0;
369 
370   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
371 
372   PI = skipDebugInstructionsBackward(PI, MBB.begin());
373   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
374   // instruction, and that there are no DBG_VALUE or other instructions between
375   // ADD/SUB/LEA and its corresponding CFI instruction.
376   /* TODO: Add support for the case where there are multiple CFI instructions
377     below the ADD/SUB/LEA, e.g.:
378     ...
379     add
380     cfi_def_cfa_offset
381     cfi_offset
382     ...
383   */
384   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
385     PI = std::prev(PI);
386 
387   unsigned Opc = PI->getOpcode();
388   int Offset = 0;
389 
390   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
391        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
392       PI->getOperand(0).getReg() == StackPtr){
393     assert(PI->getOperand(1).getReg() == StackPtr);
394     Offset = PI->getOperand(2).getImm();
395   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
396              PI->getOperand(0).getReg() == StackPtr &&
397              PI->getOperand(1).getReg() == StackPtr &&
398              PI->getOperand(2).getImm() == 1 &&
399              PI->getOperand(3).getReg() == X86::NoRegister &&
400              PI->getOperand(5).getReg() == X86::NoRegister) {
401     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
402     Offset = PI->getOperand(4).getImm();
403   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
404               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
405              PI->getOperand(0).getReg() == StackPtr) {
406     assert(PI->getOperand(1).getReg() == StackPtr);
407     Offset = -PI->getOperand(2).getImm();
408   } else
409     return 0;
410 
411   PI = MBB.erase(PI);
412   if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
413   if (!doMergeWithPrevious)
414     MBBI = skipDebugInstructionsForward(PI, MBB.end());
415 
416   return Offset;
417 }
418 
419 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
420                                 MachineBasicBlock::iterator MBBI,
421                                 const DebugLoc &DL,
422                                 const MCCFIInstruction &CFIInst) const {
423   MachineFunction &MF = *MBB.getParent();
424   unsigned CFIIndex = MF.addFrameInst(CFIInst);
425   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
426       .addCFIIndex(CFIIndex);
427 }
428 
429 /// Emits Dwarf Info specifying offsets of callee saved registers and
430 /// frame pointer. This is called only when basic block sections are enabled.
431 void X86FrameLowering::emitCalleeSavedFrameMoves(
432     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
433   MachineFunction &MF = *MBB.getParent();
434   if (!hasFP(MF)) {
435     emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
436     return;
437   }
438   const MachineModuleInfo &MMI = MF.getMMI();
439   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
440   const Register FramePtr = TRI->getFrameRegister(MF);
441   const Register MachineFramePtr =
442       STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
443                                : FramePtr;
444   unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
445   // Offset = space for return address + size of the frame pointer itself.
446   unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
447   BuildCFI(MBB, MBBI, DebugLoc{},
448            MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
449   emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
450 }
451 
452 void X86FrameLowering::emitCalleeSavedFrameMoves(
453     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
454     const DebugLoc &DL, bool IsPrologue) const {
455   MachineFunction &MF = *MBB.getParent();
456   MachineFrameInfo &MFI = MF.getFrameInfo();
457   MachineModuleInfo &MMI = MF.getMMI();
458   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
459 
460   // Add callee saved registers to move list.
461   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
462   if (CSI.empty()) return;
463 
464   // Calculate offsets.
465   for (std::vector<CalleeSavedInfo>::const_iterator
466          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
467     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
468     unsigned Reg = I->getReg();
469     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
470 
471     if (IsPrologue) {
472       BuildCFI(MBB, MBBI, DL,
473                MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
474     } else {
475       BuildCFI(MBB, MBBI, DL,
476                MCCFIInstruction::createRestore(nullptr, DwarfReg));
477     }
478   }
479 }
480 
481 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
482                                       MachineBasicBlock &MBB,
483                                       MachineBasicBlock::iterator MBBI,
484                                       const DebugLoc &DL, bool InProlog) const {
485   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
486   if (STI.isTargetWindowsCoreCLR()) {
487     if (InProlog) {
488       BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
489           .addImm(0 /* no explicit stack size */);
490     } else {
491       emitStackProbeInline(MF, MBB, MBBI, DL, false);
492     }
493   } else {
494     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
495   }
496 }
497 
498 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
499                                         MachineBasicBlock &PrologMBB) const {
500   auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
501     return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
502   });
503   if (Where != PrologMBB.end()) {
504     DebugLoc DL = PrologMBB.findDebugLoc(Where);
505     emitStackProbeInline(MF, PrologMBB, Where, DL, true);
506     Where->eraseFromParent();
507   }
508 }
509 
510 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
511                                             MachineBasicBlock &MBB,
512                                             MachineBasicBlock::iterator MBBI,
513                                             const DebugLoc &DL,
514                                             bool InProlog) const {
515   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
516   if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
517     emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
518   else
519     emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
520 }
521 
522 void X86FrameLowering::emitStackProbeInlineGeneric(
523     MachineFunction &MF, MachineBasicBlock &MBB,
524     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
525   MachineInstr &AllocWithProbe = *MBBI;
526   uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
527 
528   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
529   const X86TargetLowering &TLI = *STI.getTargetLowering();
530   assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
531          "different expansion expected for CoreCLR 64 bit");
532 
533   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
534   uint64_t ProbeChunk = StackProbeSize * 8;
535 
536   uint64_t MaxAlign =
537       TRI->needsStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
538 
539   // Synthesize a loop or unroll it, depending on the number of iterations.
540   // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
541   // between the unaligned rsp and current rsp.
542   if (Offset > ProbeChunk) {
543     emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
544                                     MaxAlign % StackProbeSize);
545   } else {
546     emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
547                                      MaxAlign % StackProbeSize);
548   }
549 }
550 
551 void X86FrameLowering::emitStackProbeInlineGenericBlock(
552     MachineFunction &MF, MachineBasicBlock &MBB,
553     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
554     uint64_t AlignOffset) const {
555 
556   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
557   const X86TargetLowering &TLI = *STI.getTargetLowering();
558   const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset);
559   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
560   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
561 
562   uint64_t CurrentOffset = 0;
563 
564   assert(AlignOffset < StackProbeSize);
565 
566   // If the offset is so small it fits within a page, there's nothing to do.
567   if (StackProbeSize < Offset + AlignOffset) {
568 
569     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
570                            .addReg(StackPtr)
571                            .addImm(StackProbeSize - AlignOffset)
572                            .setMIFlag(MachineInstr::FrameSetup);
573     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
574 
575     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
576                      .setMIFlag(MachineInstr::FrameSetup),
577                  StackPtr, false, 0)
578         .addImm(0)
579         .setMIFlag(MachineInstr::FrameSetup);
580     NumFrameExtraProbe++;
581     CurrentOffset = StackProbeSize - AlignOffset;
582   }
583 
584   // For the next N - 1 pages, just probe. I tried to take advantage of
585   // natural probes but it implies much more logic and there was very few
586   // interesting natural probes to interleave.
587   while (CurrentOffset + StackProbeSize < Offset) {
588     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
589                            .addReg(StackPtr)
590                            .addImm(StackProbeSize)
591                            .setMIFlag(MachineInstr::FrameSetup);
592     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
593 
594 
595     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
596                      .setMIFlag(MachineInstr::FrameSetup),
597                  StackPtr, false, 0)
598         .addImm(0)
599         .setMIFlag(MachineInstr::FrameSetup);
600     NumFrameExtraProbe++;
601     CurrentOffset += StackProbeSize;
602   }
603 
604   // No need to probe the tail, it is smaller than a Page.
605   uint64_t ChunkSize = Offset - CurrentOffset;
606   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
607                          .addReg(StackPtr)
608                          .addImm(ChunkSize)
609                          .setMIFlag(MachineInstr::FrameSetup);
610   MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
611 }
612 
613 void X86FrameLowering::emitStackProbeInlineGenericLoop(
614     MachineFunction &MF, MachineBasicBlock &MBB,
615     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
616     uint64_t AlignOffset) const {
617   assert(Offset && "null offset");
618 
619   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
620   const X86TargetLowering &TLI = *STI.getTargetLowering();
621   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
622   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
623 
624   if (AlignOffset) {
625     if (AlignOffset < StackProbeSize) {
626       // Perform a first smaller allocation followed by a probe.
627       const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset);
628       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr)
629                              .addReg(StackPtr)
630                              .addImm(AlignOffset)
631                              .setMIFlag(MachineInstr::FrameSetup);
632       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
633 
634       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
635                        .setMIFlag(MachineInstr::FrameSetup),
636                    StackPtr, false, 0)
637           .addImm(0)
638           .setMIFlag(MachineInstr::FrameSetup);
639       NumFrameExtraProbe++;
640       Offset -= AlignOffset;
641     }
642   }
643 
644   // Synthesize a loop
645   NumFrameLoopProbe++;
646   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
647 
648   MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
649   MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
650 
651   MachineFunction::iterator MBBIter = ++MBB.getIterator();
652   MF.insert(MBBIter, testMBB);
653   MF.insert(MBBIter, tailMBB);
654 
655   Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;
656   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
657       .addReg(StackPtr)
658       .setMIFlag(MachineInstr::FrameSetup);
659 
660   // save loop bound
661   {
662     const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset);
663     BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
664         .addReg(FinalStackProbed)
665         .addImm(Offset / StackProbeSize * StackProbeSize)
666         .setMIFlag(MachineInstr::FrameSetup);
667   }
668 
669   // allocate a page
670   {
671     const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
672     BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr)
673         .addReg(StackPtr)
674         .addImm(StackProbeSize)
675         .setMIFlag(MachineInstr::FrameSetup);
676   }
677 
678   // touch the page
679   addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
680                    .setMIFlag(MachineInstr::FrameSetup),
681                StackPtr, false, 0)
682       .addImm(0)
683       .setMIFlag(MachineInstr::FrameSetup);
684 
685   // cmp with stack pointer bound
686   BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
687       .addReg(StackPtr)
688       .addReg(FinalStackProbed)
689       .setMIFlag(MachineInstr::FrameSetup);
690 
691   // jump
692   BuildMI(testMBB, DL, TII.get(X86::JCC_1))
693       .addMBB(testMBB)
694       .addImm(X86::COND_NE)
695       .setMIFlag(MachineInstr::FrameSetup);
696   testMBB->addSuccessor(testMBB);
697   testMBB->addSuccessor(tailMBB);
698 
699   // BB management
700   tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
701   tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
702   MBB.addSuccessor(testMBB);
703 
704   // handle tail
705   unsigned TailOffset = Offset % StackProbeSize;
706   if (TailOffset) {
707     const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset);
708     BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr)
709         .addReg(StackPtr)
710         .addImm(TailOffset)
711         .setMIFlag(MachineInstr::FrameSetup);
712   }
713 
714   // Update Live In information
715   recomputeLiveIns(*testMBB);
716   recomputeLiveIns(*tailMBB);
717 }
718 
719 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
720     MachineFunction &MF, MachineBasicBlock &MBB,
721     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
722   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
723   assert(STI.is64Bit() && "different expansion needed for 32 bit");
724   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
725   const TargetInstrInfo &TII = *STI.getInstrInfo();
726   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
727 
728   // RAX contains the number of bytes of desired stack adjustment.
729   // The handling here assumes this value has already been updated so as to
730   // maintain stack alignment.
731   //
732   // We need to exit with RSP modified by this amount and execute suitable
733   // page touches to notify the OS that we're growing the stack responsibly.
734   // All stack probing must be done without modifying RSP.
735   //
736   // MBB:
737   //    SizeReg = RAX;
738   //    ZeroReg = 0
739   //    CopyReg = RSP
740   //    Flags, TestReg = CopyReg - SizeReg
741   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
742   //    LimitReg = gs magic thread env access
743   //    if FinalReg >= LimitReg goto ContinueMBB
744   // RoundBB:
745   //    RoundReg = page address of FinalReg
746   // LoopMBB:
747   //    LoopReg = PHI(LimitReg,ProbeReg)
748   //    ProbeReg = LoopReg - PageSize
749   //    [ProbeReg] = 0
750   //    if (ProbeReg > RoundReg) goto LoopMBB
751   // ContinueMBB:
752   //    RSP = RSP - RAX
753   //    [rest of original MBB]
754 
755   // Set up the new basic blocks
756   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
757   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
758   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
759 
760   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
761   MF.insert(MBBIter, RoundMBB);
762   MF.insert(MBBIter, LoopMBB);
763   MF.insert(MBBIter, ContinueMBB);
764 
765   // Split MBB and move the tail portion down to ContinueMBB.
766   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
767   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
768   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
769 
770   // Some useful constants
771   const int64_t ThreadEnvironmentStackLimit = 0x10;
772   const int64_t PageSize = 0x1000;
773   const int64_t PageMask = ~(PageSize - 1);
774 
775   // Registers we need. For the normal case we use virtual
776   // registers. For the prolog expansion we use RAX, RCX and RDX.
777   MachineRegisterInfo &MRI = MF.getRegInfo();
778   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
779   const Register SizeReg = InProlog ? X86::RAX
780                                     : MRI.createVirtualRegister(RegClass),
781                  ZeroReg = InProlog ? X86::RCX
782                                     : MRI.createVirtualRegister(RegClass),
783                  CopyReg = InProlog ? X86::RDX
784                                     : MRI.createVirtualRegister(RegClass),
785                  TestReg = InProlog ? X86::RDX
786                                     : MRI.createVirtualRegister(RegClass),
787                  FinalReg = InProlog ? X86::RDX
788                                      : MRI.createVirtualRegister(RegClass),
789                  RoundedReg = InProlog ? X86::RDX
790                                        : MRI.createVirtualRegister(RegClass),
791                  LimitReg = InProlog ? X86::RCX
792                                      : MRI.createVirtualRegister(RegClass),
793                  JoinReg = InProlog ? X86::RCX
794                                     : MRI.createVirtualRegister(RegClass),
795                  ProbeReg = InProlog ? X86::RCX
796                                      : MRI.createVirtualRegister(RegClass);
797 
798   // SP-relative offsets where we can save RCX and RDX.
799   int64_t RCXShadowSlot = 0;
800   int64_t RDXShadowSlot = 0;
801 
802   // If inlining in the prolog, save RCX and RDX.
803   if (InProlog) {
804     // Compute the offsets. We need to account for things already
805     // pushed onto the stack at this point: return address, frame
806     // pointer (if used), and callee saves.
807     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
808     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
809     const bool HasFP = hasFP(MF);
810 
811     // Check if we need to spill RCX and/or RDX.
812     // Here we assume that no earlier prologue instruction changes RCX and/or
813     // RDX, so checking the block live-ins is enough.
814     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
815     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
816     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
817     // Assign the initial slot to both registers, then change RDX's slot if both
818     // need to be spilled.
819     if (IsRCXLiveIn)
820       RCXShadowSlot = InitSlot;
821     if (IsRDXLiveIn)
822       RDXShadowSlot = InitSlot;
823     if (IsRDXLiveIn && IsRCXLiveIn)
824       RDXShadowSlot += 8;
825     // Emit the saves if needed.
826     if (IsRCXLiveIn)
827       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
828                    RCXShadowSlot)
829           .addReg(X86::RCX);
830     if (IsRDXLiveIn)
831       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
832                    RDXShadowSlot)
833           .addReg(X86::RDX);
834   } else {
835     // Not in the prolog. Copy RAX to a virtual reg.
836     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
837   }
838 
839   // Add code to MBB to check for overflow and set the new target stack pointer
840   // to zero if so.
841   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
842       .addReg(ZeroReg, RegState::Undef)
843       .addReg(ZeroReg, RegState::Undef);
844   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
845   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
846       .addReg(CopyReg)
847       .addReg(SizeReg);
848   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
849       .addReg(TestReg)
850       .addReg(ZeroReg)
851       .addImm(X86::COND_B);
852 
853   // FinalReg now holds final stack pointer value, or zero if
854   // allocation would overflow. Compare against the current stack
855   // limit from the thread environment block. Note this limit is the
856   // lowest touched page on the stack, not the point at which the OS
857   // will cause an overflow exception, so this is just an optimization
858   // to avoid unnecessarily touching pages that are below the current
859   // SP but already committed to the stack by the OS.
860   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
861       .addReg(0)
862       .addImm(1)
863       .addReg(0)
864       .addImm(ThreadEnvironmentStackLimit)
865       .addReg(X86::GS);
866   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
867   // Jump if the desired stack pointer is at or above the stack limit.
868   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
869 
870   // Add code to roundMBB to round the final stack pointer to a page boundary.
871   RoundMBB->addLiveIn(FinalReg);
872   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
873       .addReg(FinalReg)
874       .addImm(PageMask);
875   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
876 
877   // LimitReg now holds the current stack limit, RoundedReg page-rounded
878   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
879   // and probe until we reach RoundedReg.
880   if (!InProlog) {
881     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
882         .addReg(LimitReg)
883         .addMBB(RoundMBB)
884         .addReg(ProbeReg)
885         .addMBB(LoopMBB);
886   }
887 
888   LoopMBB->addLiveIn(JoinReg);
889   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
890                false, -PageSize);
891 
892   // Probe by storing a byte onto the stack.
893   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
894       .addReg(ProbeReg)
895       .addImm(1)
896       .addReg(0)
897       .addImm(0)
898       .addReg(0)
899       .addImm(0);
900 
901   LoopMBB->addLiveIn(RoundedReg);
902   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
903       .addReg(RoundedReg)
904       .addReg(ProbeReg);
905   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
906 
907   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
908 
909   // If in prolog, restore RDX and RCX.
910   if (InProlog) {
911     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
912       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
913                            TII.get(X86::MOV64rm), X86::RCX),
914                    X86::RSP, false, RCXShadowSlot);
915     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
916       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
917                            TII.get(X86::MOV64rm), X86::RDX),
918                    X86::RSP, false, RDXShadowSlot);
919   }
920 
921   // Now that the probing is done, add code to continueMBB to update
922   // the stack pointer for real.
923   ContinueMBB->addLiveIn(SizeReg);
924   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
925       .addReg(X86::RSP)
926       .addReg(SizeReg);
927 
928   // Add the control flow edges we need.
929   MBB.addSuccessor(ContinueMBB);
930   MBB.addSuccessor(RoundMBB);
931   RoundMBB->addSuccessor(LoopMBB);
932   LoopMBB->addSuccessor(ContinueMBB);
933   LoopMBB->addSuccessor(LoopMBB);
934 
935   // Mark all the instructions added to the prolog as frame setup.
936   if (InProlog) {
937     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
938       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
939     }
940     for (MachineInstr &MI : *RoundMBB) {
941       MI.setFlag(MachineInstr::FrameSetup);
942     }
943     for (MachineInstr &MI : *LoopMBB) {
944       MI.setFlag(MachineInstr::FrameSetup);
945     }
946     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
947          CMBBI != ContinueMBBI; ++CMBBI) {
948       CMBBI->setFlag(MachineInstr::FrameSetup);
949     }
950   }
951 }
952 
953 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
954                                           MachineBasicBlock &MBB,
955                                           MachineBasicBlock::iterator MBBI,
956                                           const DebugLoc &DL,
957                                           bool InProlog) const {
958   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
959 
960   // FIXME: Add indirect thunk support and remove this.
961   if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
962     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
963                        "code model and indirect thunks not yet implemented.");
964 
965   unsigned CallOp;
966   if (Is64Bit)
967     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
968   else
969     CallOp = X86::CALLpcrel32;
970 
971   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
972 
973   MachineInstrBuilder CI;
974   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
975 
976   // All current stack probes take AX and SP as input, clobber flags, and
977   // preserve all registers. x86_64 probes leave RSP unmodified.
978   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
979     // For the large code model, we have to call through a register. Use R11,
980     // as it is scratch in all supported calling conventions.
981     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
982         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
983     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
984   } else {
985     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
986         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
987   }
988 
989   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
990   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
991   CI.addReg(AX, RegState::Implicit)
992       .addReg(SP, RegState::Implicit)
993       .addReg(AX, RegState::Define | RegState::Implicit)
994       .addReg(SP, RegState::Define | RegState::Implicit)
995       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
996 
997   if (STI.isTargetWin64() || !STI.isOSWindows()) {
998     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
999     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1000     // themselves. They also does not clobber %rax so we can reuse it when
1001     // adjusting %rsp.
1002     // All other platforms do not specify a particular ABI for the stack probe
1003     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1004     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1005         .addReg(SP)
1006         .addReg(AX);
1007   }
1008 
1009   if (InProlog) {
1010     // Apply the frame setup flag to all inserted instrs.
1011     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1012       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1013   }
1014 }
1015 
1016 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1017   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1018   // and might require smaller successive adjustments.
1019   const uint64_t Win64MaxSEHOffset = 128;
1020   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1021   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1022   return SEHFrameOffset & -16;
1023 }
1024 
1025 // If we're forcing a stack realignment we can't rely on just the frame
1026 // info, we need to know the ABI stack alignment as well in case we
1027 // have a call out.  Otherwise just make sure we have some alignment - we'll
1028 // go with the minimum SlotSize.
1029 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1030   const MachineFrameInfo &MFI = MF.getFrameInfo();
1031   Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1032   Align StackAlign = getStackAlign();
1033   if (MF.getFunction().hasFnAttribute("stackrealign")) {
1034     if (MFI.hasCalls())
1035       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1036     else if (MaxAlign < SlotSize)
1037       MaxAlign = Align(SlotSize);
1038   }
1039   return MaxAlign.value();
1040 }
1041 
1042 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1043                                           MachineBasicBlock::iterator MBBI,
1044                                           const DebugLoc &DL, unsigned Reg,
1045                                           uint64_t MaxAlign) const {
1046   uint64_t Val = -MaxAlign;
1047   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1048 
1049   MachineFunction &MF = *MBB.getParent();
1050   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1051   const X86TargetLowering &TLI = *STI.getTargetLowering();
1052   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1053   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1054 
1055   // We want to make sure that (in worst case) less than StackProbeSize bytes
1056   // are not probed after the AND. This assumption is used in
1057   // emitStackProbeInlineGeneric.
1058   if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1059     {
1060       NumFrameLoopProbe++;
1061       MachineBasicBlock *entryMBB =
1062           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1063       MachineBasicBlock *headMBB =
1064           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1065       MachineBasicBlock *bodyMBB =
1066           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1067       MachineBasicBlock *footMBB =
1068           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1069 
1070       MachineFunction::iterator MBBIter = MBB.getIterator();
1071       MF.insert(MBBIter, entryMBB);
1072       MF.insert(MBBIter, headMBB);
1073       MF.insert(MBBIter, bodyMBB);
1074       MF.insert(MBBIter, footMBB);
1075       const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1076       Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 : X86::R11D;
1077 
1078       // Setup entry block
1079       {
1080 
1081         entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1082         BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1083             .addReg(StackPtr)
1084             .setMIFlag(MachineInstr::FrameSetup);
1085         MachineInstr *MI =
1086             BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1087                 .addReg(FinalStackProbed)
1088                 .addImm(Val)
1089                 .setMIFlag(MachineInstr::FrameSetup);
1090 
1091         // The EFLAGS implicit def is dead.
1092         MI->getOperand(3).setIsDead();
1093 
1094         BuildMI(entryMBB, DL,
1095                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1096             .addReg(FinalStackProbed)
1097             .addReg(StackPtr)
1098             .setMIFlag(MachineInstr::FrameSetup);
1099         BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1100             .addMBB(&MBB)
1101             .addImm(X86::COND_E)
1102             .setMIFlag(MachineInstr::FrameSetup);
1103         entryMBB->addSuccessor(headMBB);
1104         entryMBB->addSuccessor(&MBB);
1105       }
1106 
1107       // Loop entry block
1108 
1109       {
1110         const unsigned SUBOpc =
1111             getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1112         BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1113             .addReg(StackPtr)
1114             .addImm(StackProbeSize)
1115             .setMIFlag(MachineInstr::FrameSetup);
1116 
1117         BuildMI(headMBB, DL,
1118                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1119             .addReg(FinalStackProbed)
1120             .addReg(StackPtr)
1121             .setMIFlag(MachineInstr::FrameSetup);
1122 
1123         // jump
1124         BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1125             .addMBB(footMBB)
1126             .addImm(X86::COND_B)
1127             .setMIFlag(MachineInstr::FrameSetup);
1128 
1129         headMBB->addSuccessor(bodyMBB);
1130         headMBB->addSuccessor(footMBB);
1131       }
1132 
1133       // setup loop body
1134       {
1135         addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1136                          .setMIFlag(MachineInstr::FrameSetup),
1137                      StackPtr, false, 0)
1138             .addImm(0)
1139             .setMIFlag(MachineInstr::FrameSetup);
1140 
1141         const unsigned SUBOpc =
1142             getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1143         BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1144             .addReg(StackPtr)
1145             .addImm(StackProbeSize)
1146             .setMIFlag(MachineInstr::FrameSetup);
1147 
1148         // cmp with stack pointer bound
1149         BuildMI(bodyMBB, DL,
1150                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1151             .addReg(FinalStackProbed)
1152             .addReg(StackPtr)
1153             .setMIFlag(MachineInstr::FrameSetup);
1154 
1155         // jump
1156         BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1157             .addMBB(bodyMBB)
1158             .addImm(X86::COND_B)
1159             .setMIFlag(MachineInstr::FrameSetup);
1160         bodyMBB->addSuccessor(bodyMBB);
1161         bodyMBB->addSuccessor(footMBB);
1162       }
1163 
1164       // setup loop footer
1165       {
1166         BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1167             .addReg(FinalStackProbed)
1168             .setMIFlag(MachineInstr::FrameSetup);
1169         addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1170                          .setMIFlag(MachineInstr::FrameSetup),
1171                      StackPtr, false, 0)
1172             .addImm(0)
1173             .setMIFlag(MachineInstr::FrameSetup);
1174         footMBB->addSuccessor(&MBB);
1175       }
1176 
1177       recomputeLiveIns(*headMBB);
1178       recomputeLiveIns(*bodyMBB);
1179       recomputeLiveIns(*footMBB);
1180       recomputeLiveIns(MBB);
1181     }
1182   } else {
1183     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1184                            .addReg(Reg)
1185                            .addImm(Val)
1186                            .setMIFlag(MachineInstr::FrameSetup);
1187 
1188     // The EFLAGS implicit def is dead.
1189     MI->getOperand(3).setIsDead();
1190   }
1191 }
1192 
1193 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1194   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1195   // clobbered by any interrupt handler.
1196   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1197          "MF used frame lowering for wrong subtarget");
1198   const Function &Fn = MF.getFunction();
1199   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1200   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1201 }
1202 
1203 
1204 /// emitPrologue - Push callee-saved registers onto the stack, which
1205 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1206 /// space for local variables. Also emit labels used by the exception handler to
1207 /// generate the exception handling frames.
1208 
1209 /*
1210   Here's a gist of what gets emitted:
1211 
1212   ; Establish frame pointer, if needed
1213   [if needs FP]
1214       push  %rbp
1215       .cfi_def_cfa_offset 16
1216       .cfi_offset %rbp, -16
1217       .seh_pushreg %rpb
1218       mov  %rsp, %rbp
1219       .cfi_def_cfa_register %rbp
1220 
1221   ; Spill general-purpose registers
1222   [for all callee-saved GPRs]
1223       pushq %<reg>
1224       [if not needs FP]
1225          .cfi_def_cfa_offset (offset from RETADDR)
1226       .seh_pushreg %<reg>
1227 
1228   ; If the required stack alignment > default stack alignment
1229   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
1230   ; of unknown size in the stack frame.
1231   [if stack needs re-alignment]
1232       and  $MASK, %rsp
1233 
1234   ; Allocate space for locals
1235   [if target is Windows and allocated space > 4096 bytes]
1236       ; Windows needs special care for allocations larger
1237       ; than one page.
1238       mov $NNN, %rax
1239       call ___chkstk_ms/___chkstk
1240       sub  %rax, %rsp
1241   [else]
1242       sub  $NNN, %rsp
1243 
1244   [if needs FP]
1245       .seh_stackalloc (size of XMM spill slots)
1246       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1247   [else]
1248       .seh_stackalloc NNN
1249 
1250   ; Spill XMMs
1251   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1252   ; they may get spilled on any platform, if the current function
1253   ; calls @llvm.eh.unwind.init
1254   [if needs FP]
1255       [for all callee-saved XMM registers]
1256           movaps  %<xmm reg>, -MMM(%rbp)
1257       [for all callee-saved XMM registers]
1258           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1259               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1260   [else]
1261       [for all callee-saved XMM registers]
1262           movaps  %<xmm reg>, KKK(%rsp)
1263       [for all callee-saved XMM registers]
1264           .seh_savexmm %<xmm reg>, KKK
1265 
1266   .seh_endprologue
1267 
1268   [if needs base pointer]
1269       mov  %rsp, %rbx
1270       [if needs to restore base pointer]
1271           mov %rsp, -MMM(%rbp)
1272 
1273   ; Emit CFI info
1274   [if needs FP]
1275       [for all callee-saved registers]
1276           .cfi_offset %<reg>, (offset from %rbp)
1277   [else]
1278        .cfi_def_cfa_offset (offset from RETADDR)
1279       [for all callee-saved registers]
1280           .cfi_offset %<reg>, (offset from %rsp)
1281 
1282   Notes:
1283   - .seh directives are emitted only for Windows 64 ABI
1284   - .cv_fpo directives are emitted on win32 when emitting CodeView
1285   - .cfi directives are emitted for all other ABIs
1286   - for 32-bit code, substitute %e?? registers for %r??
1287 */
1288 
1289 void X86FrameLowering::emitPrologue(MachineFunction &MF,
1290                                     MachineBasicBlock &MBB) const {
1291   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1292          "MF used frame lowering for wrong subtarget");
1293   MachineBasicBlock::iterator MBBI = MBB.begin();
1294   MachineFrameInfo &MFI = MF.getFrameInfo();
1295   const Function &Fn = MF.getFunction();
1296   MachineModuleInfo &MMI = MF.getMMI();
1297   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1298   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1299   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
1300   bool IsFunclet = MBB.isEHFuncletEntry();
1301   EHPersonality Personality = EHPersonality::Unknown;
1302   if (Fn.hasPersonalityFn())
1303     Personality = classifyEHPersonality(Fn.getPersonalityFn());
1304   bool FnHasClrFunclet =
1305       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1306   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1307   bool HasFP = hasFP(MF);
1308   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1309   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1310   // FIXME: Emit FPO data for EH funclets.
1311   bool NeedsWinFPO =
1312       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1313   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1314   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
1315   Register FramePtr = TRI->getFrameRegister(MF);
1316   const Register MachineFramePtr =
1317       STI.isTarget64BitILP32()
1318           ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1319   Register BasePtr = TRI->getBaseRegister();
1320   bool HasWinCFI = false;
1321 
1322   // Debug location must be unknown since the first debug location is used
1323   // to determine the end of the prologue.
1324   DebugLoc DL;
1325 
1326   // Add RETADDR move area to callee saved frame size.
1327   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1328   if (TailCallReturnAddrDelta && IsWin64Prologue)
1329     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1330 
1331   if (TailCallReturnAddrDelta < 0)
1332     X86FI->setCalleeSavedFrameSize(
1333       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1334 
1335   const bool EmitStackProbeCall =
1336       STI.getTargetLowering()->hasStackProbeSymbol(MF);
1337   unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1338 
1339   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1340   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1341   // stack alignment.
1342   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1343       Fn.arg_size() == 2) {
1344     StackSize += 8;
1345     MFI.setStackSize(StackSize);
1346     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1347   }
1348 
1349   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1350   // function, and use up to 128 bytes of stack space, don't have a frame
1351   // pointer, calls, or dynamic alloca then we do not need to adjust the
1352   // stack pointer (we fit in the Red Zone). We also check that we don't
1353   // push and pop from the stack.
1354   if (has128ByteRedZone(MF) && !TRI->needsStackRealignment(MF) &&
1355       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1356       !MFI.adjustsStack() &&                   // No calls.
1357       !EmitStackProbeCall &&                   // No stack probes.
1358       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1359       !MF.shouldSplitStack()) {                // Regular stack
1360     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1361     if (HasFP) MinSize += SlotSize;
1362     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1363     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1364     MFI.setStackSize(StackSize);
1365   }
1366 
1367   // Insert stack pointer adjustment for later moving of return addr.  Only
1368   // applies to tail call optimized functions where the callee argument stack
1369   // size is bigger than the callers.
1370   if (TailCallReturnAddrDelta < 0) {
1371     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1372                          /*InEpilogue=*/false)
1373         .setMIFlag(MachineInstr::FrameSetup);
1374   }
1375 
1376   // Mapping for machine moves:
1377   //
1378   //   DST: VirtualFP AND
1379   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1380   //        ELSE                        => DW_CFA_def_cfa
1381   //
1382   //   SRC: VirtualFP AND
1383   //        DST: Register               => DW_CFA_def_cfa_register
1384   //
1385   //   ELSE
1386   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1387   //        REG < 64                    => DW_CFA_offset + Reg
1388   //        ELSE                        => DW_CFA_offset_extended
1389 
1390   uint64_t NumBytes = 0;
1391   int stackGrowth = -SlotSize;
1392 
1393   // Find the funclet establisher parameter
1394   Register Establisher = X86::NoRegister;
1395   if (IsClrFunclet)
1396     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1397   else if (IsFunclet)
1398     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1399 
1400   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1401     // Immediately spill establisher into the home slot.
1402     // The runtime cares about this.
1403     // MOV64mr %rdx, 16(%rsp)
1404     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1405     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1406         .addReg(Establisher)
1407         .setMIFlag(MachineInstr::FrameSetup);
1408     MBB.addLiveIn(Establisher);
1409   }
1410 
1411   if (HasFP) {
1412     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1413 
1414     // Calculate required stack adjustment.
1415     uint64_t FrameSize = StackSize - SlotSize;
1416     // If required, include space for extra hidden slot for stashing base pointer.
1417     if (X86FI->getRestoreBasePointer())
1418       FrameSize += SlotSize;
1419 
1420     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1421 
1422     // Callee-saved registers are pushed on stack before the stack is realigned.
1423     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1424       NumBytes = alignTo(NumBytes, MaxAlign);
1425 
1426     // Save EBP/RBP into the appropriate stack slot.
1427     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1428       .addReg(MachineFramePtr, RegState::Kill)
1429       .setMIFlag(MachineInstr::FrameSetup);
1430 
1431     if (NeedsDwarfCFI) {
1432       // Mark the place where EBP/RBP was saved.
1433       // Define the current CFA rule to use the provided offset.
1434       assert(StackSize);
1435       BuildCFI(MBB, MBBI, DL,
1436                MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth));
1437 
1438       // Change the rule for the FramePtr to be an "offset" rule.
1439       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1440       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1441                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1442     }
1443 
1444     if (NeedsWinCFI) {
1445       HasWinCFI = true;
1446       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1447           .addImm(FramePtr)
1448           .setMIFlag(MachineInstr::FrameSetup);
1449     }
1450 
1451     if (!IsWin64Prologue && !IsFunclet) {
1452       // Update EBP with the new base value.
1453       BuildMI(MBB, MBBI, DL,
1454               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1455               FramePtr)
1456           .addReg(StackPtr)
1457           .setMIFlag(MachineInstr::FrameSetup);
1458 
1459       if (NeedsDwarfCFI) {
1460         // Mark effective beginning of when frame pointer becomes valid.
1461         // Define the current CFA to use the EBP/RBP register.
1462         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1463         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1464                                     nullptr, DwarfFramePtr));
1465       }
1466 
1467       if (NeedsWinFPO) {
1468         // .cv_fpo_setframe $FramePtr
1469         HasWinCFI = true;
1470         BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1471             .addImm(FramePtr)
1472             .addImm(0)
1473             .setMIFlag(MachineInstr::FrameSetup);
1474       }
1475     }
1476   } else {
1477     assert(!IsFunclet && "funclets without FPs not yet implemented");
1478     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1479   }
1480 
1481   // Update the offset adjustment, which is mainly used by codeview to translate
1482   // from ESP to VFRAME relative local variable offsets.
1483   if (!IsFunclet) {
1484     if (HasFP && TRI->needsStackRealignment(MF))
1485       MFI.setOffsetAdjustment(-NumBytes);
1486     else
1487       MFI.setOffsetAdjustment(-StackSize);
1488   }
1489 
1490   // For EH funclets, only allocate enough space for outgoing calls. Save the
1491   // NumBytes value that we would've used for the parent frame.
1492   unsigned ParentFrameNumBytes = NumBytes;
1493   if (IsFunclet)
1494     NumBytes = getWinEHFuncletFrameSize(MF);
1495 
1496   // Skip the callee-saved push instructions.
1497   bool PushedRegs = false;
1498   int StackOffset = 2 * stackGrowth;
1499 
1500   while (MBBI != MBB.end() &&
1501          MBBI->getFlag(MachineInstr::FrameSetup) &&
1502          (MBBI->getOpcode() == X86::PUSH32r ||
1503           MBBI->getOpcode() == X86::PUSH64r)) {
1504     PushedRegs = true;
1505     Register Reg = MBBI->getOperand(0).getReg();
1506     ++MBBI;
1507 
1508     if (!HasFP && NeedsDwarfCFI) {
1509       // Mark callee-saved push instruction.
1510       // Define the current CFA rule to use the provided offset.
1511       assert(StackSize);
1512       BuildCFI(MBB, MBBI, DL,
1513                MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset));
1514       StackOffset += stackGrowth;
1515     }
1516 
1517     if (NeedsWinCFI) {
1518       HasWinCFI = true;
1519       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1520           .addImm(Reg)
1521           .setMIFlag(MachineInstr::FrameSetup);
1522     }
1523   }
1524 
1525   // Realign stack after we pushed callee-saved registers (so that we'll be
1526   // able to calculate their offsets from the frame pointer).
1527   // Don't do this for Win64, it needs to realign the stack after the prologue.
1528   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1529     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1530     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1531 
1532     if (NeedsWinCFI) {
1533       HasWinCFI = true;
1534       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1535           .addImm(MaxAlign)
1536           .setMIFlag(MachineInstr::FrameSetup);
1537     }
1538   }
1539 
1540   // If there is an SUB32ri of ESP immediately before this instruction, merge
1541   // the two. This can be the case when tail call elimination is enabled and
1542   // the callee has more arguments then the caller.
1543   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1544 
1545   // Adjust stack pointer: ESP -= numbytes.
1546 
1547   // Windows and cygwin/mingw require a prologue helper routine when allocating
1548   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1549   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1550   // stack and adjust the stack pointer in one go.  The 64-bit version of
1551   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1552   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1553   // increments is necessary to ensure that the guard pages used by the OS
1554   // virtual memory manager are allocated in correct sequence.
1555   uint64_t AlignedNumBytes = NumBytes;
1556   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1557     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1558   if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1559     assert(!X86FI->getUsesRedZone() &&
1560            "The Red Zone is not accounted for in stack probes");
1561 
1562     // Check whether EAX is livein for this block.
1563     bool isEAXAlive = isEAXLiveIn(MBB);
1564 
1565     if (isEAXAlive) {
1566       if (Is64Bit) {
1567         // Save RAX
1568         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1569           .addReg(X86::RAX, RegState::Kill)
1570           .setMIFlag(MachineInstr::FrameSetup);
1571       } else {
1572         // Save EAX
1573         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1574           .addReg(X86::EAX, RegState::Kill)
1575           .setMIFlag(MachineInstr::FrameSetup);
1576       }
1577     }
1578 
1579     if (Is64Bit) {
1580       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1581       // Function prologue is responsible for adjusting the stack pointer.
1582       int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1583       if (isUInt<32>(Alloc)) {
1584         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1585             .addImm(Alloc)
1586             .setMIFlag(MachineInstr::FrameSetup);
1587       } else if (isInt<32>(Alloc)) {
1588         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1589             .addImm(Alloc)
1590             .setMIFlag(MachineInstr::FrameSetup);
1591       } else {
1592         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1593             .addImm(Alloc)
1594             .setMIFlag(MachineInstr::FrameSetup);
1595       }
1596     } else {
1597       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1598       // We'll also use 4 already allocated bytes for EAX.
1599       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1600           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1601           .setMIFlag(MachineInstr::FrameSetup);
1602     }
1603 
1604     // Call __chkstk, __chkstk_ms, or __alloca.
1605     emitStackProbe(MF, MBB, MBBI, DL, true);
1606 
1607     if (isEAXAlive) {
1608       // Restore RAX/EAX
1609       MachineInstr *MI;
1610       if (Is64Bit)
1611         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1612                           StackPtr, false, NumBytes - 8);
1613       else
1614         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1615                           StackPtr, false, NumBytes - 4);
1616       MI->setFlag(MachineInstr::FrameSetup);
1617       MBB.insert(MBBI, MI);
1618     }
1619   } else if (NumBytes) {
1620     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1621   }
1622 
1623   if (NeedsWinCFI && NumBytes) {
1624     HasWinCFI = true;
1625     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1626         .addImm(NumBytes)
1627         .setMIFlag(MachineInstr::FrameSetup);
1628   }
1629 
1630   int SEHFrameOffset = 0;
1631   unsigned SPOrEstablisher;
1632   if (IsFunclet) {
1633     if (IsClrFunclet) {
1634       // The establisher parameter passed to a CLR funclet is actually a pointer
1635       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1636       // to find the root function establisher frame by loading the PSPSym from
1637       // the intermediate frame.
1638       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1639       MachinePointerInfo NoInfo;
1640       MBB.addLiveIn(Establisher);
1641       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1642                    Establisher, false, PSPSlotOffset)
1643           .addMemOperand(MF.getMachineMemOperand(
1644               NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
1645       ;
1646       // Save the root establisher back into the current funclet's (mostly
1647       // empty) frame, in case a sub-funclet or the GC needs it.
1648       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1649                    false, PSPSlotOffset)
1650           .addReg(Establisher)
1651           .addMemOperand(MF.getMachineMemOperand(
1652               NoInfo,
1653               MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1654               SlotSize, Align(SlotSize)));
1655     }
1656     SPOrEstablisher = Establisher;
1657   } else {
1658     SPOrEstablisher = StackPtr;
1659   }
1660 
1661   if (IsWin64Prologue && HasFP) {
1662     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1663     // this calculation on the incoming establisher, which holds the value of
1664     // RSP from the parent frame at the end of the prologue.
1665     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1666     if (SEHFrameOffset)
1667       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1668                    SPOrEstablisher, false, SEHFrameOffset);
1669     else
1670       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1671           .addReg(SPOrEstablisher);
1672 
1673     // If this is not a funclet, emit the CFI describing our frame pointer.
1674     if (NeedsWinCFI && !IsFunclet) {
1675       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1676       HasWinCFI = true;
1677       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1678           .addImm(FramePtr)
1679           .addImm(SEHFrameOffset)
1680           .setMIFlag(MachineInstr::FrameSetup);
1681       if (isAsynchronousEHPersonality(Personality))
1682         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1683     }
1684   } else if (IsFunclet && STI.is32Bit()) {
1685     // Reset EBP / ESI to something good for funclets.
1686     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1687     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1688     // into the registration node so that the runtime will restore it for us.
1689     if (!MBB.isCleanupFuncletEntry()) {
1690       assert(Personality == EHPersonality::MSVC_CXX);
1691       Register FrameReg;
1692       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1693       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
1694       // ESP is the first field, so no extra displacement is needed.
1695       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1696                    false, EHRegOffset)
1697           .addReg(X86::ESP);
1698     }
1699   }
1700 
1701   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1702     const MachineInstr &FrameInstr = *MBBI;
1703     ++MBBI;
1704 
1705     if (NeedsWinCFI) {
1706       int FI;
1707       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1708         if (X86::FR64RegClass.contains(Reg)) {
1709           int Offset;
1710           Register IgnoredFrameReg;
1711           if (IsWin64Prologue && IsFunclet)
1712             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1713           else
1714             Offset =
1715                 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
1716                 SEHFrameOffset;
1717 
1718           HasWinCFI = true;
1719           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1720           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1721               .addImm(Reg)
1722               .addImm(Offset)
1723               .setMIFlag(MachineInstr::FrameSetup);
1724         }
1725       }
1726     }
1727   }
1728 
1729   if (NeedsWinCFI && HasWinCFI)
1730     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1731         .setMIFlag(MachineInstr::FrameSetup);
1732 
1733   if (FnHasClrFunclet && !IsFunclet) {
1734     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1735     // immediately after the prolog)  into the PSPSlot so that funclets
1736     // and the GC can recover it.
1737     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1738     auto PSPInfo = MachinePointerInfo::getFixedStack(
1739         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1740     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1741                  PSPSlotOffset)
1742         .addReg(StackPtr)
1743         .addMemOperand(MF.getMachineMemOperand(
1744             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1745             SlotSize, Align(SlotSize)));
1746   }
1747 
1748   // Realign stack after we spilled callee-saved registers (so that we'll be
1749   // able to calculate their offsets from the frame pointer).
1750   // Win64 requires aligning the stack after the prologue.
1751   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1752     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1753     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1754   }
1755 
1756   // We already dealt with stack realignment and funclets above.
1757   if (IsFunclet && STI.is32Bit())
1758     return;
1759 
1760   // If we need a base pointer, set it up here. It's whatever the value
1761   // of the stack pointer is at this point. Any variable size objects
1762   // will be allocated after this, so we can still use the base pointer
1763   // to reference locals.
1764   if (TRI->hasBasePointer(MF)) {
1765     // Update the base pointer with the current stack pointer.
1766     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1767     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1768       .addReg(SPOrEstablisher)
1769       .setMIFlag(MachineInstr::FrameSetup);
1770     if (X86FI->getRestoreBasePointer()) {
1771       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1772       // dependence chain. Used by SjLj EH.
1773       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1774       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1775                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1776         .addReg(SPOrEstablisher)
1777         .setMIFlag(MachineInstr::FrameSetup);
1778     }
1779 
1780     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1781       // Stash the value of the frame pointer relative to the base pointer for
1782       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1783       // it recovers the frame pointer from the base pointer rather than the
1784       // other way around.
1785       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1786       Register UsedReg;
1787       int Offset =
1788           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
1789               .getFixed();
1790       assert(UsedReg == BasePtr);
1791       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1792           .addReg(FramePtr)
1793           .setMIFlag(MachineInstr::FrameSetup);
1794     }
1795   }
1796 
1797   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1798     // Mark end of stack pointer adjustment.
1799     if (!HasFP && NumBytes) {
1800       // Define the current CFA rule to use the provided offset.
1801       assert(StackSize);
1802       BuildCFI(
1803           MBB, MBBI, DL,
1804           MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth));
1805     }
1806 
1807     // Emit DWARF info specifying the offsets of the callee-saved registers.
1808     emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
1809   }
1810 
1811   // X86 Interrupt handling function cannot assume anything about the direction
1812   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1813   // in each prologue of interrupt handler function.
1814   //
1815   // FIXME: Create "cld" instruction only in these cases:
1816   // 1. The interrupt handling function uses any of the "rep" instructions.
1817   // 2. Interrupt handling function calls another function.
1818   //
1819   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1820     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1821         .setMIFlag(MachineInstr::FrameSetup);
1822 
1823   // At this point we know if the function has WinCFI or not.
1824   MF.setHasWinCFI(HasWinCFI);
1825 }
1826 
1827 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1828     const MachineFunction &MF) const {
1829   // We can't use LEA instructions for adjusting the stack pointer if we don't
1830   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1831   // to deallocate the stack.
1832   // This means that we can use LEA for SP in two situations:
1833   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1834   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1835   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1836 }
1837 
1838 static bool isFuncletReturnInstr(MachineInstr &MI) {
1839   switch (MI.getOpcode()) {
1840   case X86::CATCHRET:
1841   case X86::CLEANUPRET:
1842     return true;
1843   default:
1844     return false;
1845   }
1846   llvm_unreachable("impossible");
1847 }
1848 
1849 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1850 // stack. It holds a pointer to the bottom of the root function frame.  The
1851 // establisher frame pointer passed to a nested funclet may point to the
1852 // (mostly empty) frame of its parent funclet, but it will need to find
1853 // the frame of the root function to access locals.  To facilitate this,
1854 // every funclet copies the pointer to the bottom of the root function
1855 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1856 // same offset for the PSPSym in the root function frame that's used in the
1857 // funclets' frames allows each funclet to dynamically accept any ancestor
1858 // frame as its establisher argument (the runtime doesn't guarantee the
1859 // immediate parent for some reason lost to history), and also allows the GC,
1860 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1861 // frame with only a single offset reported for the entire method.
1862 unsigned
1863 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1864   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1865   Register SPReg;
1866   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1867                                               /*IgnoreSPUpdates*/ true)
1868                    .getFixed();
1869   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1870   return static_cast<unsigned>(Offset);
1871 }
1872 
1873 unsigned
1874 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1875   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1876   // This is the size of the pushed CSRs.
1877   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1878   // This is the size of callee saved XMMs.
1879   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1880   unsigned XMMSize = WinEHXMMSlotInfo.size() *
1881                      TRI->getSpillSize(X86::VR128RegClass);
1882   // This is the amount of stack a funclet needs to allocate.
1883   unsigned UsedSize;
1884   EHPersonality Personality =
1885       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1886   if (Personality == EHPersonality::CoreCLR) {
1887     // CLR funclets need to hold enough space to include the PSPSym, at the
1888     // same offset from the stack pointer (immediately after the prolog) as it
1889     // resides at in the main function.
1890     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1891   } else {
1892     // Other funclets just need enough stack for outgoing call arguments.
1893     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1894   }
1895   // RBP is not included in the callee saved register block. After pushing RBP,
1896   // everything is 16 byte aligned. Everything we allocate before an outgoing
1897   // call must also be 16 byte aligned.
1898   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
1899   // Subtract out the size of the callee saved registers. This is how much stack
1900   // each funclet will allocate.
1901   return FrameSizeMinusRBP + XMMSize - CSSize;
1902 }
1903 
1904 static bool isTailCallOpcode(unsigned Opc) {
1905     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1906         Opc == X86::TCRETURNmi ||
1907         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1908         Opc == X86::TCRETURNmi64;
1909 }
1910 
1911 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1912                                     MachineBasicBlock &MBB) const {
1913   const MachineFrameInfo &MFI = MF.getFrameInfo();
1914   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1915   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1916   MachineBasicBlock::iterator MBBI = Terminator;
1917   DebugLoc DL;
1918   if (MBBI != MBB.end())
1919     DL = MBBI->getDebugLoc();
1920   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1921   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1922   Register FramePtr = TRI->getFrameRegister(MF);
1923   Register MachineFramePtr =
1924       Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1925 
1926   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1927   bool NeedsWin64CFI =
1928       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1929   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1930 
1931   // Get the number of bytes to allocate from the FrameInfo.
1932   uint64_t StackSize = MFI.getStackSize();
1933   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1934   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1935   bool HasFP = hasFP(MF);
1936   uint64_t NumBytes = 0;
1937 
1938   bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1939                         !MF.getTarget().getTargetTriple().isOSWindows()) &&
1940                        MF.needsFrameMoves();
1941 
1942   if (IsFunclet) {
1943     assert(HasFP && "EH funclets without FP not yet implemented");
1944     NumBytes = getWinEHFuncletFrameSize(MF);
1945   } else if (HasFP) {
1946     // Calculate required stack adjustment.
1947     uint64_t FrameSize = StackSize - SlotSize;
1948     NumBytes = FrameSize - CSSize;
1949 
1950     // Callee-saved registers were pushed on stack before the stack was
1951     // realigned.
1952     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1953       NumBytes = alignTo(FrameSize, MaxAlign);
1954   } else {
1955     NumBytes = StackSize - CSSize;
1956   }
1957   uint64_t SEHStackAllocAmt = NumBytes;
1958 
1959   // AfterPop is the position to insert .cfi_restore.
1960   MachineBasicBlock::iterator AfterPop = MBBI;
1961   if (HasFP) {
1962     // Pop EBP.
1963     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1964             MachineFramePtr)
1965         .setMIFlag(MachineInstr::FrameDestroy);
1966     if (NeedsDwarfCFI) {
1967       unsigned DwarfStackPtr =
1968           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1969       BuildCFI(MBB, MBBI, DL,
1970                MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize));
1971       if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
1972         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1973         BuildCFI(MBB, AfterPop, DL,
1974                  MCCFIInstruction::createRestore(nullptr, DwarfFramePtr));
1975         --MBBI;
1976         --AfterPop;
1977       }
1978       --MBBI;
1979     }
1980   }
1981 
1982   MachineBasicBlock::iterator FirstCSPop = MBBI;
1983   // Skip the callee-saved pop instructions.
1984   while (MBBI != MBB.begin()) {
1985     MachineBasicBlock::iterator PI = std::prev(MBBI);
1986     unsigned Opc = PI->getOpcode();
1987 
1988     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1989       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1990           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1991         break;
1992       FirstCSPop = PI;
1993     }
1994 
1995     --MBBI;
1996   }
1997   MBBI = FirstCSPop;
1998 
1999   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2000     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2001 
2002   if (MBBI != MBB.end())
2003     DL = MBBI->getDebugLoc();
2004 
2005   // If there is an ADD32ri or SUB32ri of ESP immediately before this
2006   // instruction, merge the two instructions.
2007   if (NumBytes || MFI.hasVarSizedObjects())
2008     NumBytes += mergeSPUpdates(MBB, MBBI, true);
2009 
2010   // If dynamic alloca is used, then reset esp to point to the last callee-saved
2011   // slot before popping them off! Same applies for the case, when stack was
2012   // realigned. Don't do this if this was a funclet epilogue, since the funclets
2013   // will not do realignment or dynamic stack allocation.
2014   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
2015       !IsFunclet) {
2016     if (TRI->needsStackRealignment(MF))
2017       MBBI = FirstCSPop;
2018     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2019     uint64_t LEAAmount =
2020         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2021 
2022     // There are only two legal forms of epilogue:
2023     // - add SEHAllocationSize, %rsp
2024     // - lea SEHAllocationSize(%FramePtr), %rsp
2025     //
2026     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2027     // However, we may use this sequence if we have a frame pointer because the
2028     // effects of the prologue can safely be undone.
2029     if (LEAAmount != 0) {
2030       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2031       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
2032                    FramePtr, false, LEAAmount);
2033       --MBBI;
2034     } else {
2035       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2036       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
2037         .addReg(FramePtr);
2038       --MBBI;
2039     }
2040   } else if (NumBytes) {
2041     // Adjust stack pointer back: ESP += numbytes.
2042     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2043     if (!hasFP(MF) && NeedsDwarfCFI) {
2044       // Define the current CFA rule to use the provided offset.
2045       BuildCFI(MBB, MBBI, DL,
2046                MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize));
2047     }
2048     --MBBI;
2049   }
2050 
2051   // Windows unwinder will not invoke function's exception handler if IP is
2052   // either in prologue or in epilogue.  This behavior causes a problem when a
2053   // call immediately precedes an epilogue, because the return address points
2054   // into the epilogue.  To cope with that, we insert an epilogue marker here,
2055   // then replace it with a 'nop' if it ends up immediately after a CALL in the
2056   // final emitted code.
2057   if (NeedsWin64CFI && MF.hasWinCFI())
2058     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2059 
2060   if (!hasFP(MF) && NeedsDwarfCFI) {
2061     MBBI = FirstCSPop;
2062     int64_t Offset = -CSSize - SlotSize;
2063     // Mark callee-saved pop instruction.
2064     // Define the current CFA rule to use the provided offset.
2065     while (MBBI != MBB.end()) {
2066       MachineBasicBlock::iterator PI = MBBI;
2067       unsigned Opc = PI->getOpcode();
2068       ++MBBI;
2069       if (Opc == X86::POP32r || Opc == X86::POP64r) {
2070         Offset += SlotSize;
2071         BuildCFI(MBB, MBBI, DL,
2072                  MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset));
2073       }
2074     }
2075   }
2076 
2077   // Emit DWARF info specifying the restores of the callee-saved registers.
2078   // For epilogue with return inside or being other block without successor,
2079   // no need to generate .cfi_restore for callee-saved registers.
2080   if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) {
2081     emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2082   }
2083 
2084   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2085     // Add the return addr area delta back since we are not tail calling.
2086     int Offset = -1 * X86FI->getTCReturnAddrDelta();
2087     assert(Offset >= 0 && "TCDelta should never be positive");
2088     if (Offset) {
2089       // Check for possible merge with preceding ADD instruction.
2090       Offset += mergeSPUpdates(MBB, Terminator, true);
2091       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2092     }
2093   }
2094 
2095   // Emit tilerelease for AMX kernel.
2096   const MachineRegisterInfo &MRI = MF.getRegInfo();
2097   if (!MRI.reg_nodbg_empty(X86::TMMCFG))
2098     BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2099 }
2100 
2101 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2102                                                      int FI,
2103                                                      Register &FrameReg) const {
2104   const MachineFrameInfo &MFI = MF.getFrameInfo();
2105 
2106   bool IsFixed = MFI.isFixedObjectIndex(FI);
2107   // We can't calculate offset from frame pointer if the stack is realigned,
2108   // so enforce usage of stack/base pointer.  The base pointer is used when we
2109   // have dynamic allocas in addition to dynamic realignment.
2110   if (TRI->hasBasePointer(MF))
2111     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2112   else if (TRI->needsStackRealignment(MF))
2113     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2114   else
2115     FrameReg = TRI->getFrameRegister(MF);
2116 
2117   // Offset will hold the offset from the stack pointer at function entry to the
2118   // object.
2119   // We need to factor in additional offsets applied during the prologue to the
2120   // frame, base, and stack pointer depending on which is used.
2121   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2122   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2123   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2124   uint64_t StackSize = MFI.getStackSize();
2125   bool HasFP = hasFP(MF);
2126   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2127   int64_t FPDelta = 0;
2128 
2129   // In an x86 interrupt, remove the offset we added to account for the return
2130   // address from any stack object allocated in the caller's frame. Interrupts
2131   // do not have a standard return address. Fixed objects in the current frame,
2132   // such as SSE register spills, should not get this treatment.
2133   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2134       Offset >= 0) {
2135     Offset += getOffsetOfLocalArea();
2136   }
2137 
2138   if (IsWin64Prologue) {
2139     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2140 
2141     // Calculate required stack adjustment.
2142     uint64_t FrameSize = StackSize - SlotSize;
2143     // If required, include space for extra hidden slot for stashing base pointer.
2144     if (X86FI->getRestoreBasePointer())
2145       FrameSize += SlotSize;
2146     uint64_t NumBytes = FrameSize - CSSize;
2147 
2148     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2149     if (FI && FI == X86FI->getFAIndex())
2150       return StackOffset::getFixed(-SEHFrameOffset);
2151 
2152     // FPDelta is the offset from the "traditional" FP location of the old base
2153     // pointer followed by return address and the location required by the
2154     // restricted Win64 prologue.
2155     // Add FPDelta to all offsets below that go through the frame pointer.
2156     FPDelta = FrameSize - SEHFrameOffset;
2157     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2158            "FPDelta isn't aligned per the Win64 ABI!");
2159   }
2160 
2161 
2162   if (TRI->hasBasePointer(MF)) {
2163     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
2164     if (FI < 0) {
2165       // Skip the saved EBP.
2166       return StackOffset::getFixed(Offset + SlotSize + FPDelta);
2167     } else {
2168       assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2169       return StackOffset::getFixed(Offset + StackSize);
2170     }
2171   } else if (TRI->needsStackRealignment(MF)) {
2172     if (FI < 0) {
2173       // Skip the saved EBP.
2174       return StackOffset::getFixed(Offset + SlotSize + FPDelta);
2175     } else {
2176       assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2177       return StackOffset::getFixed(Offset + StackSize);
2178     }
2179     // FIXME: Support tail calls
2180   } else {
2181     if (!HasFP)
2182       return StackOffset::getFixed(Offset + StackSize);
2183 
2184     // Skip the saved EBP.
2185     Offset += SlotSize;
2186 
2187     // Skip the RETADDR move area
2188     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2189     if (TailCallReturnAddrDelta < 0)
2190       Offset -= TailCallReturnAddrDelta;
2191   }
2192 
2193   return StackOffset::getFixed(Offset + FPDelta);
2194 }
2195 
2196 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2197                                               Register &FrameReg) const {
2198   const MachineFrameInfo &MFI = MF.getFrameInfo();
2199   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2200   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2201   const auto it = WinEHXMMSlotInfo.find(FI);
2202 
2203   if (it == WinEHXMMSlotInfo.end())
2204     return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2205 
2206   FrameReg = TRI->getStackRegister();
2207   return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2208          it->second;
2209 }
2210 
2211 StackOffset
2212 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2213                                            Register &FrameReg,
2214                                            int Adjustment) const {
2215   const MachineFrameInfo &MFI = MF.getFrameInfo();
2216   FrameReg = TRI->getStackRegister();
2217   return StackOffset::getFixed(MFI.getObjectOffset(FI) -
2218                                getOffsetOfLocalArea() + Adjustment);
2219 }
2220 
2221 StackOffset
2222 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2223                                                  int FI, Register &FrameReg,
2224                                                  bool IgnoreSPUpdates) const {
2225 
2226   const MachineFrameInfo &MFI = MF.getFrameInfo();
2227   // Does not include any dynamic realign.
2228   const uint64_t StackSize = MFI.getStackSize();
2229   // LLVM arranges the stack as follows:
2230   //   ...
2231   //   ARG2
2232   //   ARG1
2233   //   RETADDR
2234   //   PUSH RBP   <-- RBP points here
2235   //   PUSH CSRs
2236   //   ~~~~~~~    <-- possible stack realignment (non-win64)
2237   //   ...
2238   //   STACK OBJECTS
2239   //   ...        <-- RSP after prologue points here
2240   //   ~~~~~~~    <-- possible stack realignment (win64)
2241   //
2242   // if (hasVarSizedObjects()):
2243   //   ...        <-- "base pointer" (ESI/RBX) points here
2244   //   DYNAMIC ALLOCAS
2245   //   ...        <-- RSP points here
2246   //
2247   // Case 1: In the simple case of no stack realignment and no dynamic
2248   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2249   // with fixed offsets from RSP.
2250   //
2251   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2252   // stack objects are addressed with RBP and regular stack objects with RSP.
2253   //
2254   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2255   // to address stack arguments for outgoing calls and nothing else. The "base
2256   // pointer" points to local variables, and RBP points to fixed objects.
2257   //
2258   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2259   // answer we give is relative to the SP after the prologue, and not the
2260   // SP in the middle of the function.
2261 
2262   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
2263       !STI.isTargetWin64())
2264     return getFrameIndexReference(MF, FI, FrameReg);
2265 
2266   // If !hasReservedCallFrame the function might have SP adjustement in the
2267   // body.  So, even though the offset is statically known, it depends on where
2268   // we are in the function.
2269   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2270     return getFrameIndexReference(MF, FI, FrameReg);
2271 
2272   // We don't handle tail calls, and shouldn't be seeing them either.
2273   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2274          "we don't handle this case!");
2275 
2276   // This is how the math works out:
2277   //
2278   //  %rsp grows (i.e. gets lower) left to right. Each box below is
2279   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
2280   //  get to.
2281   //
2282   //    ----------------------------------
2283   //    | BP | Obj0 | Obj1 | ... | ObjN |
2284   //    ----------------------------------
2285   //    ^    ^      ^                   ^
2286   //    A    B      C                   E
2287   //
2288   // A is the incoming stack pointer.
2289   // (B - A) is the local area offset (-8 for x86-64) [1]
2290   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2291   //
2292   // |(E - B)| is the StackSize (absolute value, positive).  For a
2293   // stack that grown down, this works out to be (B - E). [3]
2294   //
2295   // E is also the value of %rsp after stack has been set up, and we
2296   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
2297   // (C - E) == (C - A) - (B - A) + (B - E)
2298   //            { Using [1], [2] and [3] above }
2299   //         == getObjectOffset - LocalAreaOffset + StackSize
2300 
2301   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2302 }
2303 
2304 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2305     MachineFunction &MF, const TargetRegisterInfo *TRI,
2306     std::vector<CalleeSavedInfo> &CSI) const {
2307   MachineFrameInfo &MFI = MF.getFrameInfo();
2308   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2309 
2310   unsigned CalleeSavedFrameSize = 0;
2311   unsigned XMMCalleeSavedFrameSize = 0;
2312   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2313   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2314 
2315   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2316 
2317   if (TailCallReturnAddrDelta < 0) {
2318     // create RETURNADDR area
2319     //   arg
2320     //   arg
2321     //   RETADDR
2322     //   { ...
2323     //     RETADDR area
2324     //     ...
2325     //   }
2326     //   [EBP]
2327     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2328                            TailCallReturnAddrDelta - SlotSize, true);
2329   }
2330 
2331   // Spill the BasePtr if it's used.
2332   if (this->TRI->hasBasePointer(MF)) {
2333     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2334     if (MF.hasEHFunclets()) {
2335       int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2336       X86FI->setHasSEHFramePtrSave(true);
2337       X86FI->setSEHFramePtrSaveIndex(FI);
2338     }
2339   }
2340 
2341   if (hasFP(MF)) {
2342     // emitPrologue always spills frame register the first thing.
2343     SpillSlotOffset -= SlotSize;
2344     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2345 
2346     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2347     // the frame register, we can delete it from CSI list and not have to worry
2348     // about avoiding it later.
2349     Register FPReg = TRI->getFrameRegister(MF);
2350     for (unsigned i = 0; i < CSI.size(); ++i) {
2351       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2352         CSI.erase(CSI.begin() + i);
2353         break;
2354       }
2355     }
2356   }
2357 
2358   // Assign slots for GPRs. It increases frame size.
2359   for (unsigned i = CSI.size(); i != 0; --i) {
2360     unsigned Reg = CSI[i - 1].getReg();
2361 
2362     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2363       continue;
2364 
2365     SpillSlotOffset -= SlotSize;
2366     CalleeSavedFrameSize += SlotSize;
2367 
2368     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2369     CSI[i - 1].setFrameIdx(SlotIndex);
2370   }
2371 
2372   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2373   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2374 
2375   // Assign slots for XMMs.
2376   for (unsigned i = CSI.size(); i != 0; --i) {
2377     unsigned Reg = CSI[i - 1].getReg();
2378     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2379       continue;
2380 
2381     // If this is k-register make sure we lookup via the largest legal type.
2382     MVT VT = MVT::Other;
2383     if (X86::VK16RegClass.contains(Reg))
2384       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2385 
2386     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2387     unsigned Size = TRI->getSpillSize(*RC);
2388     Align Alignment = TRI->getSpillAlign(*RC);
2389     // ensure alignment
2390     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2391     SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2392 
2393     // spill into slot
2394     SpillSlotOffset -= Size;
2395     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2396     CSI[i - 1].setFrameIdx(SlotIndex);
2397     MFI.ensureMaxAlignment(Alignment);
2398 
2399     // Save the start offset and size of XMM in stack frame for funclets.
2400     if (X86::VR128RegClass.contains(Reg)) {
2401       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2402       XMMCalleeSavedFrameSize += Size;
2403     }
2404   }
2405 
2406   return true;
2407 }
2408 
2409 bool X86FrameLowering::spillCalleeSavedRegisters(
2410     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2411     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2412   DebugLoc DL = MBB.findDebugLoc(MI);
2413 
2414   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2415   // for us, and there are no XMM CSRs on Win32.
2416   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2417     return true;
2418 
2419   // Push GPRs. It increases frame size.
2420   const MachineFunction &MF = *MBB.getParent();
2421   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2422   for (unsigned i = CSI.size(); i != 0; --i) {
2423     unsigned Reg = CSI[i - 1].getReg();
2424 
2425     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2426       continue;
2427 
2428     const MachineRegisterInfo &MRI = MF.getRegInfo();
2429     bool isLiveIn = MRI.isLiveIn(Reg);
2430     if (!isLiveIn)
2431       MBB.addLiveIn(Reg);
2432 
2433     // Decide whether we can add a kill flag to the use.
2434     bool CanKill = !isLiveIn;
2435     // Check if any subregister is live-in
2436     if (CanKill) {
2437       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2438         if (MRI.isLiveIn(*AReg)) {
2439           CanKill = false;
2440           break;
2441         }
2442       }
2443     }
2444 
2445     // Do not set a kill flag on values that are also marked as live-in. This
2446     // happens with the @llvm-returnaddress intrinsic and with arguments
2447     // passed in callee saved registers.
2448     // Omitting the kill flags is conservatively correct even if the live-in
2449     // is not used after all.
2450     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2451       .setMIFlag(MachineInstr::FrameSetup);
2452   }
2453 
2454   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2455   // It can be done by spilling XMMs to stack frame.
2456   for (unsigned i = CSI.size(); i != 0; --i) {
2457     unsigned Reg = CSI[i-1].getReg();
2458     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2459       continue;
2460 
2461     // If this is k-register make sure we lookup via the largest legal type.
2462     MVT VT = MVT::Other;
2463     if (X86::VK16RegClass.contains(Reg))
2464       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2465 
2466     // Add the callee-saved register as live-in. It's killed at the spill.
2467     MBB.addLiveIn(Reg);
2468     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2469 
2470     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2471                             TRI);
2472     --MI;
2473     MI->setFlag(MachineInstr::FrameSetup);
2474     ++MI;
2475   }
2476 
2477   return true;
2478 }
2479 
2480 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2481                                                MachineBasicBlock::iterator MBBI,
2482                                                MachineInstr *CatchRet) const {
2483   // SEH shouldn't use catchret.
2484   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2485              MBB.getParent()->getFunction().getPersonalityFn())) &&
2486          "SEH should not use CATCHRET");
2487   DebugLoc DL = CatchRet->getDebugLoc();
2488   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2489 
2490   // Fill EAX/RAX with the address of the target block.
2491   if (STI.is64Bit()) {
2492     // LEA64r CatchRetTarget(%rip), %rax
2493     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2494         .addReg(X86::RIP)
2495         .addImm(0)
2496         .addReg(0)
2497         .addMBB(CatchRetTarget)
2498         .addReg(0);
2499   } else {
2500     // MOV32ri $CatchRetTarget, %eax
2501     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2502         .addMBB(CatchRetTarget);
2503   }
2504 
2505   // Record that we've taken the address of CatchRetTarget and no longer just
2506   // reference it in a terminator.
2507   CatchRetTarget->setHasAddressTaken();
2508 }
2509 
2510 bool X86FrameLowering::restoreCalleeSavedRegisters(
2511     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2512     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2513   if (CSI.empty())
2514     return false;
2515 
2516   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2517     // Don't restore CSRs in 32-bit EH funclets. Matches
2518     // spillCalleeSavedRegisters.
2519     if (STI.is32Bit())
2520       return true;
2521     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2522     // funclets. emitEpilogue transforms these to normal jumps.
2523     if (MI->getOpcode() == X86::CATCHRET) {
2524       const Function &F = MBB.getParent()->getFunction();
2525       bool IsSEH = isAsynchronousEHPersonality(
2526           classifyEHPersonality(F.getPersonalityFn()));
2527       if (IsSEH)
2528         return true;
2529     }
2530   }
2531 
2532   DebugLoc DL = MBB.findDebugLoc(MI);
2533 
2534   // Reload XMMs from stack frame.
2535   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2536     unsigned Reg = CSI[i].getReg();
2537     if (X86::GR64RegClass.contains(Reg) ||
2538         X86::GR32RegClass.contains(Reg))
2539       continue;
2540 
2541     // If this is k-register make sure we lookup via the largest legal type.
2542     MVT VT = MVT::Other;
2543     if (X86::VK16RegClass.contains(Reg))
2544       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2545 
2546     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2547     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2548   }
2549 
2550   // POP GPRs.
2551   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2552   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2553     unsigned Reg = CSI[i].getReg();
2554     if (!X86::GR64RegClass.contains(Reg) &&
2555         !X86::GR32RegClass.contains(Reg))
2556       continue;
2557 
2558     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2559         .setMIFlag(MachineInstr::FrameDestroy);
2560   }
2561   return true;
2562 }
2563 
2564 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2565                                             BitVector &SavedRegs,
2566                                             RegScavenger *RS) const {
2567   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2568 
2569   // Spill the BasePtr if it's used.
2570   if (TRI->hasBasePointer(MF)){
2571     Register BasePtr = TRI->getBaseRegister();
2572     if (STI.isTarget64BitILP32())
2573       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2574     SavedRegs.set(BasePtr);
2575   }
2576 }
2577 
2578 static bool
2579 HasNestArgument(const MachineFunction *MF) {
2580   const Function &F = MF->getFunction();
2581   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2582        I != E; I++) {
2583     if (I->hasNestAttr() && !I->use_empty())
2584       return true;
2585   }
2586   return false;
2587 }
2588 
2589 /// GetScratchRegister - Get a temp register for performing work in the
2590 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2591 /// and the properties of the function either one or two registers will be
2592 /// needed. Set primary to true for the first register, false for the second.
2593 static unsigned
2594 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2595   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2596 
2597   // Erlang stuff.
2598   if (CallingConvention == CallingConv::HiPE) {
2599     if (Is64Bit)
2600       return Primary ? X86::R14 : X86::R13;
2601     else
2602       return Primary ? X86::EBX : X86::EDI;
2603   }
2604 
2605   if (Is64Bit) {
2606     if (IsLP64)
2607       return Primary ? X86::R11 : X86::R12;
2608     else
2609       return Primary ? X86::R11D : X86::R12D;
2610   }
2611 
2612   bool IsNested = HasNestArgument(&MF);
2613 
2614   if (CallingConvention == CallingConv::X86_FastCall ||
2615       CallingConvention == CallingConv::Fast ||
2616       CallingConvention == CallingConv::Tail) {
2617     if (IsNested)
2618       report_fatal_error("Segmented stacks does not support fastcall with "
2619                          "nested function.");
2620     return Primary ? X86::EAX : X86::ECX;
2621   }
2622   if (IsNested)
2623     return Primary ? X86::EDX : X86::EAX;
2624   return Primary ? X86::ECX : X86::EAX;
2625 }
2626 
2627 // The stack limit in the TCB is set to this many bytes above the actual stack
2628 // limit.
2629 static const uint64_t kSplitStackAvailable = 256;
2630 
2631 void X86FrameLowering::adjustForSegmentedStacks(
2632     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2633   MachineFrameInfo &MFI = MF.getFrameInfo();
2634   uint64_t StackSize;
2635   unsigned TlsReg, TlsOffset;
2636   DebugLoc DL;
2637 
2638   // To support shrink-wrapping we would need to insert the new blocks
2639   // at the right place and update the branches to PrologueMBB.
2640   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2641 
2642   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2643   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2644          "Scratch register is live-in");
2645 
2646   if (MF.getFunction().isVarArg())
2647     report_fatal_error("Segmented stacks do not support vararg functions.");
2648   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2649       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2650       !STI.isTargetDragonFly())
2651     report_fatal_error("Segmented stacks not supported on this platform.");
2652 
2653   // Eventually StackSize will be calculated by a link-time pass; which will
2654   // also decide whether checking code needs to be injected into this particular
2655   // prologue.
2656   StackSize = MFI.getStackSize();
2657 
2658   // Do not generate a prologue for leaf functions with a stack of size zero.
2659   // For non-leaf functions we have to allow for the possibility that the
2660   // callis to a non-split function, as in PR37807. This function could also
2661   // take the address of a non-split function. When the linker tries to adjust
2662   // its non-existent prologue, it would fail with an error. Mark the object
2663   // file so that such failures are not errors. See this Go language bug-report
2664   // https://go-review.googlesource.com/c/go/+/148819/
2665   if (StackSize == 0 && !MFI.hasTailCall()) {
2666     MF.getMMI().setHasNosplitStack(true);
2667     return;
2668   }
2669 
2670   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2671   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2672   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2673   bool IsNested = false;
2674 
2675   // We need to know if the function has a nest argument only in 64 bit mode.
2676   if (Is64Bit)
2677     IsNested = HasNestArgument(&MF);
2678 
2679   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2680   // allocMBB needs to be last (terminating) instruction.
2681 
2682   for (const auto &LI : PrologueMBB.liveins()) {
2683     allocMBB->addLiveIn(LI);
2684     checkMBB->addLiveIn(LI);
2685   }
2686 
2687   if (IsNested)
2688     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2689 
2690   MF.push_front(allocMBB);
2691   MF.push_front(checkMBB);
2692 
2693   // When the frame size is less than 256 we just compare the stack
2694   // boundary directly to the value of the stack pointer, per gcc.
2695   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2696 
2697   // Read the limit off the current stacklet off the stack_guard location.
2698   if (Is64Bit) {
2699     if (STI.isTargetLinux()) {
2700       TlsReg = X86::FS;
2701       TlsOffset = IsLP64 ? 0x70 : 0x40;
2702     } else if (STI.isTargetDarwin()) {
2703       TlsReg = X86::GS;
2704       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2705     } else if (STI.isTargetWin64()) {
2706       TlsReg = X86::GS;
2707       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2708     } else if (STI.isTargetFreeBSD()) {
2709       TlsReg = X86::FS;
2710       TlsOffset = 0x18;
2711     } else if (STI.isTargetDragonFly()) {
2712       TlsReg = X86::FS;
2713       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2714     } else {
2715       report_fatal_error("Segmented stacks not supported on this platform.");
2716     }
2717 
2718     if (CompareStackPointer)
2719       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2720     else
2721       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2722         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2723 
2724     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2725       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2726   } else {
2727     if (STI.isTargetLinux()) {
2728       TlsReg = X86::GS;
2729       TlsOffset = 0x30;
2730     } else if (STI.isTargetDarwin()) {
2731       TlsReg = X86::GS;
2732       TlsOffset = 0x48 + 90*4;
2733     } else if (STI.isTargetWin32()) {
2734       TlsReg = X86::FS;
2735       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2736     } else if (STI.isTargetDragonFly()) {
2737       TlsReg = X86::FS;
2738       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2739     } else if (STI.isTargetFreeBSD()) {
2740       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2741     } else {
2742       report_fatal_error("Segmented stacks not supported on this platform.");
2743     }
2744 
2745     if (CompareStackPointer)
2746       ScratchReg = X86::ESP;
2747     else
2748       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2749         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2750 
2751     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2752         STI.isTargetDragonFly()) {
2753       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2754         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2755     } else if (STI.isTargetDarwin()) {
2756 
2757       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2758       unsigned ScratchReg2;
2759       bool SaveScratch2;
2760       if (CompareStackPointer) {
2761         // The primary scratch register is available for holding the TLS offset.
2762         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2763         SaveScratch2 = false;
2764       } else {
2765         // Need to use a second register to hold the TLS offset
2766         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2767 
2768         // Unfortunately, with fastcc the second scratch register may hold an
2769         // argument.
2770         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2771       }
2772 
2773       // If Scratch2 is live-in then it needs to be saved.
2774       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2775              "Scratch register is live-in and not saved");
2776 
2777       if (SaveScratch2)
2778         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2779           .addReg(ScratchReg2, RegState::Kill);
2780 
2781       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2782         .addImm(TlsOffset);
2783       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2784         .addReg(ScratchReg)
2785         .addReg(ScratchReg2).addImm(1).addReg(0)
2786         .addImm(0)
2787         .addReg(TlsReg);
2788 
2789       if (SaveScratch2)
2790         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2791     }
2792   }
2793 
2794   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2795   // It jumps to normal execution of the function body.
2796   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2797 
2798   // On 32 bit we first push the arguments size and then the frame size. On 64
2799   // bit, we pass the stack frame size in r10 and the argument size in r11.
2800   if (Is64Bit) {
2801     // Functions with nested arguments use R10, so it needs to be saved across
2802     // the call to _morestack
2803 
2804     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2805     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2806     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2807     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2808     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2809 
2810     if (IsNested)
2811       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2812 
2813     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2814       .addImm(StackSize);
2815     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2816       .addImm(X86FI->getArgumentStackSize());
2817   } else {
2818     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2819       .addImm(X86FI->getArgumentStackSize());
2820     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2821       .addImm(StackSize);
2822   }
2823 
2824   // __morestack is in libgcc
2825   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2826     // Under the large code model, we cannot assume that __morestack lives
2827     // within 2^31 bytes of the call site, so we cannot use pc-relative
2828     // addressing. We cannot perform the call via a temporary register,
2829     // as the rax register may be used to store the static chain, and all
2830     // other suitable registers may be either callee-save or used for
2831     // parameter passing. We cannot use the stack at this point either
2832     // because __morestack manipulates the stack directly.
2833     //
2834     // To avoid these issues, perform an indirect call via a read-only memory
2835     // location containing the address.
2836     //
2837     // This solution is not perfect, as it assumes that the .rodata section
2838     // is laid out within 2^31 bytes of each function body, but this seems
2839     // to be sufficient for JIT.
2840     // FIXME: Add retpoline support and remove the error here..
2841     if (STI.useIndirectThunkCalls())
2842       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2843                          "code model and thunks not yet implemented.");
2844     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2845         .addReg(X86::RIP)
2846         .addImm(0)
2847         .addReg(0)
2848         .addExternalSymbol("__morestack_addr")
2849         .addReg(0);
2850     MF.getMMI().setUsesMorestackAddr(true);
2851   } else {
2852     if (Is64Bit)
2853       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2854         .addExternalSymbol("__morestack");
2855     else
2856       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2857         .addExternalSymbol("__morestack");
2858   }
2859 
2860   if (IsNested)
2861     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2862   else
2863     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2864 
2865   allocMBB->addSuccessor(&PrologueMBB);
2866 
2867   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2868   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2869 
2870 #ifdef EXPENSIVE_CHECKS
2871   MF.verify();
2872 #endif
2873 }
2874 
2875 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2876 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2877 /// to fields it needs, through a named metadata node "hipe.literals" containing
2878 /// name-value pairs.
2879 static unsigned getHiPELiteral(
2880     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2881   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2882     MDNode *Node = HiPELiteralsMD->getOperand(i);
2883     if (Node->getNumOperands() != 2) continue;
2884     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2885     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2886     if (!NodeName || !NodeVal) continue;
2887     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2888     if (ValConst && NodeName->getString() == LiteralName) {
2889       return ValConst->getZExtValue();
2890     }
2891   }
2892 
2893   report_fatal_error("HiPE literal " + LiteralName
2894                      + " required but not provided");
2895 }
2896 
2897 // Return true if there are no non-ehpad successors to MBB and there are no
2898 // non-meta instructions between MBBI and MBB.end().
2899 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
2900                                   MachineBasicBlock::const_iterator MBBI) {
2901   return llvm::all_of(
2902              MBB.successors(),
2903              [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
2904          std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
2905            return MI.isMetaInstruction();
2906          });
2907 }
2908 
2909 /// Erlang programs may need a special prologue to handle the stack size they
2910 /// might need at runtime. That is because Erlang/OTP does not implement a C
2911 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2912 /// (for more information see Eric Stenman's Ph.D. thesis:
2913 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2914 ///
2915 /// CheckStack:
2916 ///       temp0 = sp - MaxStack
2917 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2918 /// OldStart:
2919 ///       ...
2920 /// IncStack:
2921 ///       call inc_stack   # doubles the stack space
2922 ///       temp0 = sp - MaxStack
2923 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2924 void X86FrameLowering::adjustForHiPEPrologue(
2925     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2926   MachineFrameInfo &MFI = MF.getFrameInfo();
2927   DebugLoc DL;
2928 
2929   // To support shrink-wrapping we would need to insert the new blocks
2930   // at the right place and update the branches to PrologueMBB.
2931   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2932 
2933   // HiPE-specific values
2934   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2935     ->getNamedMetadata("hipe.literals");
2936   if (!HiPELiteralsMD)
2937     report_fatal_error(
2938         "Can't generate HiPE prologue without runtime parameters");
2939   const unsigned HipeLeafWords
2940     = getHiPELiteral(HiPELiteralsMD,
2941                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2942   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2943   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2944   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2945                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2946   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2947 
2948   assert(STI.isTargetLinux() &&
2949          "HiPE prologue is only supported on Linux operating systems.");
2950 
2951   // Compute the largest caller's frame that is needed to fit the callees'
2952   // frames. This 'MaxStack' is computed from:
2953   //
2954   // a) the fixed frame size, which is the space needed for all spilled temps,
2955   // b) outgoing on-stack parameter areas, and
2956   // c) the minimum stack space this function needs to make available for the
2957   //    functions it calls (a tunable ABI property).
2958   if (MFI.hasCalls()) {
2959     unsigned MoreStackForCalls = 0;
2960 
2961     for (auto &MBB : MF) {
2962       for (auto &MI : MBB) {
2963         if (!MI.isCall())
2964           continue;
2965 
2966         // Get callee operand.
2967         const MachineOperand &MO = MI.getOperand(0);
2968 
2969         // Only take account of global function calls (no closures etc.).
2970         if (!MO.isGlobal())
2971           continue;
2972 
2973         const Function *F = dyn_cast<Function>(MO.getGlobal());
2974         if (!F)
2975           continue;
2976 
2977         // Do not update 'MaxStack' for primitive and built-in functions
2978         // (encoded with names either starting with "erlang."/"bif_" or not
2979         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2980         // "_", such as the BIF "suspend_0") as they are executed on another
2981         // stack.
2982         if (F->getName().find("erlang.") != StringRef::npos ||
2983             F->getName().find("bif_") != StringRef::npos ||
2984             F->getName().find_first_of("._") == StringRef::npos)
2985           continue;
2986 
2987         unsigned CalleeStkArity =
2988           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2989         if (HipeLeafWords - 1 > CalleeStkArity)
2990           MoreStackForCalls = std::max(MoreStackForCalls,
2991                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2992       }
2993     }
2994     MaxStack += MoreStackForCalls;
2995   }
2996 
2997   // If the stack frame needed is larger than the guaranteed then runtime checks
2998   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2999   if (MaxStack > Guaranteed) {
3000     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3001     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3002 
3003     for (const auto &LI : PrologueMBB.liveins()) {
3004       stackCheckMBB->addLiveIn(LI);
3005       incStackMBB->addLiveIn(LI);
3006     }
3007 
3008     MF.push_front(incStackMBB);
3009     MF.push_front(stackCheckMBB);
3010 
3011     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3012     unsigned LEAop, CMPop, CALLop;
3013     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3014     if (Is64Bit) {
3015       SPReg = X86::RSP;
3016       PReg  = X86::RBP;
3017       LEAop = X86::LEA64r;
3018       CMPop = X86::CMP64rm;
3019       CALLop = X86::CALL64pcrel32;
3020     } else {
3021       SPReg = X86::ESP;
3022       PReg  = X86::EBP;
3023       LEAop = X86::LEA32r;
3024       CMPop = X86::CMP32rm;
3025       CALLop = X86::CALLpcrel32;
3026     }
3027 
3028     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3029     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3030            "HiPE prologue scratch register is live-in");
3031 
3032     // Create new MBB for StackCheck:
3033     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
3034                  SPReg, false, -MaxStack);
3035     // SPLimitOffset is in a fixed heap location (pointed by BP).
3036     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
3037                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
3038     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
3039 
3040     // Create new MBB for IncStack:
3041     BuildMI(incStackMBB, DL, TII.get(CALLop)).
3042       addExternalSymbol("inc_stack_0");
3043     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
3044                  SPReg, false, -MaxStack);
3045     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
3046                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
3047     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
3048 
3049     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3050     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3051     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3052     incStackMBB->addSuccessor(incStackMBB, {1, 100});
3053   }
3054 #ifdef EXPENSIVE_CHECKS
3055   MF.verify();
3056 #endif
3057 }
3058 
3059 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3060                                            MachineBasicBlock::iterator MBBI,
3061                                            const DebugLoc &DL,
3062                                            int Offset) const {
3063   if (Offset <= 0)
3064     return false;
3065 
3066   if (Offset % SlotSize)
3067     return false;
3068 
3069   int NumPops = Offset / SlotSize;
3070   // This is only worth it if we have at most 2 pops.
3071   if (NumPops != 1 && NumPops != 2)
3072     return false;
3073 
3074   // Handle only the trivial case where the adjustment directly follows
3075   // a call. This is the most common one, anyway.
3076   if (MBBI == MBB.begin())
3077     return false;
3078   MachineBasicBlock::iterator Prev = std::prev(MBBI);
3079   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3080     return false;
3081 
3082   unsigned Regs[2];
3083   unsigned FoundRegs = 0;
3084 
3085   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3086   const MachineOperand &RegMask = Prev->getOperand(1);
3087 
3088   auto &RegClass =
3089       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3090   // Try to find up to NumPops free registers.
3091   for (auto Candidate : RegClass) {
3092     // Poor man's liveness:
3093     // Since we're immediately after a call, any register that is clobbered
3094     // by the call and not defined by it can be considered dead.
3095     if (!RegMask.clobbersPhysReg(Candidate))
3096       continue;
3097 
3098     // Don't clobber reserved registers
3099     if (MRI.isReserved(Candidate))
3100       continue;
3101 
3102     bool IsDef = false;
3103     for (const MachineOperand &MO : Prev->implicit_operands()) {
3104       if (MO.isReg() && MO.isDef() &&
3105           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3106         IsDef = true;
3107         break;
3108       }
3109     }
3110 
3111     if (IsDef)
3112       continue;
3113 
3114     Regs[FoundRegs++] = Candidate;
3115     if (FoundRegs == (unsigned)NumPops)
3116       break;
3117   }
3118 
3119   if (FoundRegs == 0)
3120     return false;
3121 
3122   // If we found only one free register, but need two, reuse the same one twice.
3123   while (FoundRegs < (unsigned)NumPops)
3124     Regs[FoundRegs++] = Regs[0];
3125 
3126   for (int i = 0; i < NumPops; ++i)
3127     BuildMI(MBB, MBBI, DL,
3128             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
3129 
3130   return true;
3131 }
3132 
3133 MachineBasicBlock::iterator X86FrameLowering::
3134 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
3135                               MachineBasicBlock::iterator I) const {
3136   bool reserveCallFrame = hasReservedCallFrame(MF);
3137   unsigned Opcode = I->getOpcode();
3138   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3139   DebugLoc DL = I->getDebugLoc();
3140   uint64_t Amount = TII.getFrameSize(*I);
3141   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3142   I = MBB.erase(I);
3143   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3144 
3145   // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3146   // typically because the function is marked noreturn (abort, throw,
3147   // assert_fail, etc).
3148   if (isDestroy && blockEndIsUnreachable(MBB, I))
3149     return I;
3150 
3151   if (!reserveCallFrame) {
3152     // If the stack pointer can be changed after prologue, turn the
3153     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3154     // adjcallstackdown instruction into 'add ESP, <amt>'
3155 
3156     // We need to keep the stack aligned properly.  To do this, we round the
3157     // amount of space needed for the outgoing arguments up to the next
3158     // alignment boundary.
3159     Amount = alignTo(Amount, getStackAlign());
3160 
3161     const Function &F = MF.getFunction();
3162     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3163     bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3164 
3165     // If we have any exception handlers in this function, and we adjust
3166     // the SP before calls, we may need to indicate this to the unwinder
3167     // using GNU_ARGS_SIZE. Note that this may be necessary even when
3168     // Amount == 0, because the preceding function may have set a non-0
3169     // GNU_ARGS_SIZE.
3170     // TODO: We don't need to reset this between subsequent functions,
3171     // if it didn't change.
3172     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3173 
3174     if (HasDwarfEHHandlers && !isDestroy &&
3175         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3176       BuildCFI(MBB, InsertPos, DL,
3177                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3178 
3179     if (Amount == 0)
3180       return I;
3181 
3182     // Factor out the amount that gets handled inside the sequence
3183     // (Pushes of argument for frame setup, callee pops for frame destroy)
3184     Amount -= InternalAmt;
3185 
3186     // TODO: This is needed only if we require precise CFA.
3187     // If this is a callee-pop calling convention, emit a CFA adjust for
3188     // the amount the callee popped.
3189     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3190       BuildCFI(MBB, InsertPos, DL,
3191                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3192 
3193     // Add Amount to SP to destroy a frame, or subtract to setup.
3194     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3195 
3196     if (StackAdjustment) {
3197       // Merge with any previous or following adjustment instruction. Note: the
3198       // instructions merged with here do not have CFI, so their stack
3199       // adjustments do not feed into CfaAdjustment.
3200       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3201       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3202 
3203       if (StackAdjustment) {
3204         if (!(F.hasMinSize() &&
3205               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3206           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3207                                /*InEpilogue=*/false);
3208       }
3209     }
3210 
3211     if (DwarfCFI && !hasFP(MF)) {
3212       // If we don't have FP, but need to generate unwind information,
3213       // we need to set the correct CFA offset after the stack adjustment.
3214       // How much we adjust the CFA offset depends on whether we're emitting
3215       // CFI only for EH purposes or for debugging. EH only requires the CFA
3216       // offset to be correct at each call site, while for debugging we want
3217       // it to be more precise.
3218 
3219       int64_t CfaAdjustment = -StackAdjustment;
3220       // TODO: When not using precise CFA, we also need to adjust for the
3221       // InternalAmt here.
3222       if (CfaAdjustment) {
3223         BuildCFI(MBB, InsertPos, DL,
3224                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
3225                                                          CfaAdjustment));
3226       }
3227     }
3228 
3229     return I;
3230   }
3231 
3232   if (InternalAmt) {
3233     MachineBasicBlock::iterator CI = I;
3234     MachineBasicBlock::iterator B = MBB.begin();
3235     while (CI != B && !std::prev(CI)->isCall())
3236       --CI;
3237     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3238   }
3239 
3240   return I;
3241 }
3242 
3243 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3244   assert(MBB.getParent() && "Block is not attached to a function!");
3245   const MachineFunction &MF = *MBB.getParent();
3246   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
3247 }
3248 
3249 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3250   assert(MBB.getParent() && "Block is not attached to a function!");
3251 
3252   // Win64 has strict requirements in terms of epilogue and we are
3253   // not taking a chance at messing with them.
3254   // I.e., unless this block is already an exit block, we can't use
3255   // it as an epilogue.
3256   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3257     return false;
3258 
3259   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3260     return true;
3261 
3262   // If we cannot use LEA to adjust SP, we may need to use ADD, which
3263   // clobbers the EFLAGS. Check that we do not need to preserve it,
3264   // otherwise, conservatively assume this is not
3265   // safe to insert the epilogue here.
3266   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3267 }
3268 
3269 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3270   // If we may need to emit frameless compact unwind information, give
3271   // up as this is currently broken: PR25614.
3272   bool CompactUnwind =
3273       MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3274       nullptr;
3275   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3276           !CompactUnwind) &&
3277          // The lowering of segmented stack and HiPE only support entry
3278          // blocks as prologue blocks: PR26107. This limitation may be
3279          // lifted if we fix:
3280          // - adjustForSegmentedStacks
3281          // - adjustForHiPEPrologue
3282          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3283          !MF.shouldSplitStack();
3284 }
3285 
3286 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3287     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3288     const DebugLoc &DL, bool RestoreSP) const {
3289   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3290   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3291   assert(STI.is32Bit() && !Uses64BitFramePtr &&
3292          "restoring EBP/ESI on non-32-bit target");
3293 
3294   MachineFunction &MF = *MBB.getParent();
3295   Register FramePtr = TRI->getFrameRegister(MF);
3296   Register BasePtr = TRI->getBaseRegister();
3297   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3298   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3299   MachineFrameInfo &MFI = MF.getFrameInfo();
3300 
3301   // FIXME: Don't set FrameSetup flag in catchret case.
3302 
3303   int FI = FuncInfo.EHRegNodeFrameIndex;
3304   int EHRegSize = MFI.getObjectSize(FI);
3305 
3306   if (RestoreSP) {
3307     // MOV32rm -EHRegSize(%ebp), %esp
3308     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3309                  X86::EBP, true, -EHRegSize)
3310         .setMIFlag(MachineInstr::FrameSetup);
3311   }
3312 
3313   Register UsedReg;
3314   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
3315   int EndOffset = -EHRegOffset - EHRegSize;
3316   FuncInfo.EHRegNodeEndOffset = EndOffset;
3317 
3318   if (UsedReg == FramePtr) {
3319     // ADD $offset, %ebp
3320     unsigned ADDri = getADDriOpcode(false, EndOffset);
3321     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3322         .addReg(FramePtr)
3323         .addImm(EndOffset)
3324         .setMIFlag(MachineInstr::FrameSetup)
3325         ->getOperand(3)
3326         .setIsDead();
3327     assert(EndOffset >= 0 &&
3328            "end of registration object above normal EBP position!");
3329   } else if (UsedReg == BasePtr) {
3330     // LEA offset(%ebp), %esi
3331     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3332                  FramePtr, false, EndOffset)
3333         .setMIFlag(MachineInstr::FrameSetup);
3334     // MOV32rm SavedEBPOffset(%esi), %ebp
3335     assert(X86FI->getHasSEHFramePtrSave());
3336     int Offset =
3337         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
3338             .getFixed();
3339     assert(UsedReg == BasePtr);
3340     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3341                  UsedReg, true, Offset)
3342         .setMIFlag(MachineInstr::FrameSetup);
3343   } else {
3344     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3345   }
3346   return MBBI;
3347 }
3348 
3349 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3350   return TRI->getSlotSize();
3351 }
3352 
3353 Register
3354 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3355   return TRI->getDwarfRegNum(StackPtr, true);
3356 }
3357 
3358 namespace {
3359 // Struct used by orderFrameObjects to help sort the stack objects.
3360 struct X86FrameSortingObject {
3361   bool IsValid = false;         // true if we care about this Object.
3362   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
3363   unsigned ObjectSize = 0;      // Size of Object in bytes.
3364   Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3365   unsigned ObjectNumUses = 0;   // Object static number of uses.
3366 };
3367 
3368 // The comparison function we use for std::sort to order our local
3369 // stack symbols. The current algorithm is to use an estimated
3370 // "density". This takes into consideration the size and number of
3371 // uses each object has in order to roughly minimize code size.
3372 // So, for example, an object of size 16B that is referenced 5 times
3373 // will get higher priority than 4 4B objects referenced 1 time each.
3374 // It's not perfect and we may be able to squeeze a few more bytes out of
3375 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3376 // fringe end can have special consideration, given their size is less
3377 // important, etc.), but the algorithmic complexity grows too much to be
3378 // worth the extra gains we get. This gets us pretty close.
3379 // The final order leaves us with objects with highest priority going
3380 // at the end of our list.
3381 struct X86FrameSortingComparator {
3382   inline bool operator()(const X86FrameSortingObject &A,
3383                          const X86FrameSortingObject &B) const {
3384     uint64_t DensityAScaled, DensityBScaled;
3385 
3386     // For consistency in our comparison, all invalid objects are placed
3387     // at the end. This also allows us to stop walking when we hit the
3388     // first invalid item after it's all sorted.
3389     if (!A.IsValid)
3390       return false;
3391     if (!B.IsValid)
3392       return true;
3393 
3394     // The density is calculated by doing :
3395     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
3396     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
3397     // Since this approach may cause inconsistencies in
3398     // the floating point <, >, == comparisons, depending on the floating
3399     // point model with which the compiler was built, we're going
3400     // to scale both sides by multiplying with
3401     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3402     // the division and, with it, the need for any floating point
3403     // arithmetic.
3404     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3405       static_cast<uint64_t>(B.ObjectSize);
3406     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3407       static_cast<uint64_t>(A.ObjectSize);
3408 
3409     // If the two densities are equal, prioritize highest alignment
3410     // objects. This allows for similar alignment objects
3411     // to be packed together (given the same density).
3412     // There's room for improvement here, also, since we can pack
3413     // similar alignment (different density) objects next to each
3414     // other to save padding. This will also require further
3415     // complexity/iterations, and the overall gain isn't worth it,
3416     // in general. Something to keep in mind, though.
3417     if (DensityAScaled == DensityBScaled)
3418       return A.ObjectAlignment < B.ObjectAlignment;
3419 
3420     return DensityAScaled < DensityBScaled;
3421   }
3422 };
3423 } // namespace
3424 
3425 // Order the symbols in the local stack.
3426 // We want to place the local stack objects in some sort of sensible order.
3427 // The heuristic we use is to try and pack them according to static number
3428 // of uses and size of object in order to minimize code size.
3429 void X86FrameLowering::orderFrameObjects(
3430     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3431   const MachineFrameInfo &MFI = MF.getFrameInfo();
3432 
3433   // Don't waste time if there's nothing to do.
3434   if (ObjectsToAllocate.empty())
3435     return;
3436 
3437   // Create an array of all MFI objects. We won't need all of these
3438   // objects, but we're going to create a full array of them to make
3439   // it easier to index into when we're counting "uses" down below.
3440   // We want to be able to easily/cheaply access an object by simply
3441   // indexing into it, instead of having to search for it every time.
3442   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3443 
3444   // Walk the objects we care about and mark them as such in our working
3445   // struct.
3446   for (auto &Obj : ObjectsToAllocate) {
3447     SortingObjects[Obj].IsValid = true;
3448     SortingObjects[Obj].ObjectIndex = Obj;
3449     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3450     // Set the size.
3451     int ObjectSize = MFI.getObjectSize(Obj);
3452     if (ObjectSize == 0)
3453       // Variable size. Just use 4.
3454       SortingObjects[Obj].ObjectSize = 4;
3455     else
3456       SortingObjects[Obj].ObjectSize = ObjectSize;
3457   }
3458 
3459   // Count the number of uses for each object.
3460   for (auto &MBB : MF) {
3461     for (auto &MI : MBB) {
3462       if (MI.isDebugInstr())
3463         continue;
3464       for (const MachineOperand &MO : MI.operands()) {
3465         // Check to see if it's a local stack symbol.
3466         if (!MO.isFI())
3467           continue;
3468         int Index = MO.getIndex();
3469         // Check to see if it falls within our range, and is tagged
3470         // to require ordering.
3471         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3472             SortingObjects[Index].IsValid)
3473           SortingObjects[Index].ObjectNumUses++;
3474       }
3475     }
3476   }
3477 
3478   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3479   // info).
3480   llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3481 
3482   // Now modify the original list to represent the final order that
3483   // we want. The order will depend on whether we're going to access them
3484   // from the stack pointer or the frame pointer. For SP, the list should
3485   // end up with the END containing objects that we want with smaller offsets.
3486   // For FP, it should be flipped.
3487   int i = 0;
3488   for (auto &Obj : SortingObjects) {
3489     // All invalid items are sorted at the end, so it's safe to stop.
3490     if (!Obj.IsValid)
3491       break;
3492     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3493   }
3494 
3495   // Flip it if we're accessing off of the FP.
3496   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3497     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3498 }
3499 
3500 
3501 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3502   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3503   unsigned Offset = 16;
3504   // RBP is immediately pushed.
3505   Offset += SlotSize;
3506   // All callee-saved registers are then pushed.
3507   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3508   // Every funclet allocates enough stack space for the largest outgoing call.
3509   Offset += getWinEHFuncletFrameSize(MF);
3510   return Offset;
3511 }
3512 
3513 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3514     MachineFunction &MF, RegScavenger *RS) const {
3515   // Mark the function as not having WinCFI. We will set it back to true in
3516   // emitPrologue if it gets called and emits CFI.
3517   MF.setHasWinCFI(false);
3518 
3519   // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
3520   // aligned. The format doesn't support misaligned stack adjustments.
3521   if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
3522     MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
3523 
3524   // If this function isn't doing Win64-style C++ EH, we don't need to do
3525   // anything.
3526   if (STI.is64Bit() && MF.hasEHFunclets() &&
3527       classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
3528           EHPersonality::MSVC_CXX) {
3529     adjustFrameForMsvcCxxEh(MF);
3530   }
3531 }
3532 
3533 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
3534   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3535   // relative to RSP after the prologue.  Find the offset of the last fixed
3536   // object, so that we can allocate a slot immediately following it. If there
3537   // were no fixed objects, use offset -SlotSize, which is immediately after the
3538   // return address. Fixed objects have negative frame indices.
3539   MachineFrameInfo &MFI = MF.getFrameInfo();
3540   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3541   int64_t MinFixedObjOffset = -SlotSize;
3542   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3543     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3544 
3545   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3546     for (WinEHHandlerType &H : TBME.HandlerArray) {
3547       int FrameIndex = H.CatchObj.FrameIndex;
3548       if (FrameIndex != INT_MAX) {
3549         // Ensure alignment.
3550         unsigned Align = MFI.getObjectAlign(FrameIndex).value();
3551         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3552         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3553         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3554       }
3555     }
3556   }
3557 
3558   // Ensure alignment.
3559   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3560   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3561   int UnwindHelpFI =
3562       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3563   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3564 
3565   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3566   // other frame setup instructions.
3567   MachineBasicBlock &MBB = MF.front();
3568   auto MBBI = MBB.begin();
3569   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3570     ++MBBI;
3571 
3572   DebugLoc DL = MBB.findDebugLoc(MBBI);
3573   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3574                     UnwindHelpFI)
3575       .addImm(-2);
3576 }
3577 
3578 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3579     MachineFunction &MF, RegScavenger *RS) const {
3580   if (STI.is32Bit() && MF.hasEHFunclets())
3581     restoreWinEHStackPointersInParent(MF);
3582 }
3583 
3584 void X86FrameLowering::restoreWinEHStackPointersInParent(
3585     MachineFunction &MF) const {
3586   // 32-bit functions have to restore stack pointers when control is transferred
3587   // back to the parent function. These blocks are identified as eh pads that
3588   // are not funclet entries.
3589   bool IsSEH = isAsynchronousEHPersonality(
3590       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
3591   for (MachineBasicBlock &MBB : MF) {
3592     bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
3593     if (NeedsRestore)
3594       restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
3595                                   /*RestoreSP=*/IsSEH);
3596   }
3597 }
3598