1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrInfo.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/WinEHFuncInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/EHPersonalities.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCObjectFileInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include <cstdlib> 39 40 #define DEBUG_TYPE "x86-fl" 41 42 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 43 STATISTIC(NumFrameExtraProbe, 44 "Number of extra stack probes generated in prologue"); 45 46 using namespace llvm; 47 48 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 49 MaybeAlign StackAlignOverride) 50 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 51 STI.is64Bit() ? -8 : -4), 52 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 53 // Cache a bunch of frame-related predicates for this subtarget. 54 SlotSize = TRI->getSlotSize(); 55 Is64Bit = STI.is64Bit(); 56 IsLP64 = STI.isTarget64BitLP64(); 57 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 58 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 59 StackPtr = TRI->getStackRegister(); 60 } 61 62 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 63 return !MF.getFrameInfo().hasVarSizedObjects() && 64 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 65 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 66 } 67 68 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 69 /// call frame pseudos can be simplified. Having a FP, as in the default 70 /// implementation, is not sufficient here since we can't always use it. 71 /// Use a more nuanced condition. 72 bool 73 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 74 return hasReservedCallFrame(MF) || 75 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 76 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 77 TRI->hasBasePointer(MF); 78 } 79 80 // needsFrameIndexResolution - Do we need to perform FI resolution for 81 // this function. Normally, this is required only when the function 82 // has any stack objects. However, FI resolution actually has another job, 83 // not apparent from the title - it resolves callframesetup/destroy 84 // that were not simplified earlier. 85 // So, this is required for x86 functions that have push sequences even 86 // when there are no stack objects. 87 bool 88 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 89 return MF.getFrameInfo().hasStackObjects() || 90 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 91 } 92 93 /// hasFP - Return true if the specified function should have a dedicated frame 94 /// pointer register. This is true if the function has variable sized allocas 95 /// or if frame pointer elimination is disabled. 96 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 97 const MachineFrameInfo &MFI = MF.getFrameInfo(); 98 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 99 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 100 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 101 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 102 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 103 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 104 MFI.hasStackMap() || MFI.hasPatchPoint() || 105 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); 106 } 107 108 static unsigned getSUBriOpcode(bool IsLP64) { 109 return IsLP64 ? X86::SUB64ri32 : X86::SUB32ri; 110 } 111 112 static unsigned getADDriOpcode(bool IsLP64) { 113 return IsLP64 ? X86::ADD64ri32 : X86::ADD32ri; 114 } 115 116 static unsigned getSUBrrOpcode(bool IsLP64) { 117 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 118 } 119 120 static unsigned getADDrrOpcode(bool IsLP64) { 121 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 122 } 123 124 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 125 return IsLP64 ? X86::AND64ri32 : X86::AND32ri; 126 } 127 128 static unsigned getLEArOpcode(bool IsLP64) { 129 return IsLP64 ? X86::LEA64r : X86::LEA32r; 130 } 131 132 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 133 if (Use64BitReg) { 134 if (isUInt<32>(Imm)) 135 return X86::MOV32ri64; 136 if (isInt<32>(Imm)) 137 return X86::MOV64ri32; 138 return X86::MOV64ri; 139 } 140 return X86::MOV32ri; 141 } 142 143 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 144 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 145 unsigned Reg = RegMask.PhysReg; 146 147 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 148 Reg == X86::AH || Reg == X86::AL) 149 return true; 150 } 151 152 return false; 153 } 154 155 /// Check if the flags need to be preserved before the terminators. 156 /// This would be the case, if the eflags is live-in of the region 157 /// composed by the terminators or live-out of that region, without 158 /// being defined by a terminator. 159 static bool 160 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 161 for (const MachineInstr &MI : MBB.terminators()) { 162 bool BreakNext = false; 163 for (const MachineOperand &MO : MI.operands()) { 164 if (!MO.isReg()) 165 continue; 166 Register Reg = MO.getReg(); 167 if (Reg != X86::EFLAGS) 168 continue; 169 170 // This terminator needs an eflags that is not defined 171 // by a previous another terminator: 172 // EFLAGS is live-in of the region composed by the terminators. 173 if (!MO.isDef()) 174 return true; 175 // This terminator defines the eflags, i.e., we don't need to preserve it. 176 // However, we still need to check this specific terminator does not 177 // read a live-in value. 178 BreakNext = true; 179 } 180 // We found a definition of the eflags, no need to preserve them. 181 if (BreakNext) 182 return false; 183 } 184 185 // None of the terminators use or define the eflags. 186 // Check if they are live-out, that would imply we need to preserve them. 187 for (const MachineBasicBlock *Succ : MBB.successors()) 188 if (Succ->isLiveIn(X86::EFLAGS)) 189 return true; 190 191 return false; 192 } 193 194 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 195 /// stack pointer by a constant value. 196 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 197 MachineBasicBlock::iterator &MBBI, 198 const DebugLoc &DL, 199 int64_t NumBytes, bool InEpilogue) const { 200 bool isSub = NumBytes < 0; 201 uint64_t Offset = isSub ? -NumBytes : NumBytes; 202 MachineInstr::MIFlag Flag = 203 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 204 205 uint64_t Chunk = (1LL << 31) - 1; 206 207 MachineFunction &MF = *MBB.getParent(); 208 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 209 const X86TargetLowering &TLI = *STI.getTargetLowering(); 210 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 211 212 // It's ok to not take into account large chunks when probing, as the 213 // allocation is split in smaller chunks anyway. 214 if (EmitInlineStackProbe && !InEpilogue) { 215 216 // This pseudo-instruction is going to be expanded, potentially using a 217 // loop, by inlineStackProbe(). 218 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 219 return; 220 } else if (Offset > Chunk) { 221 // Rather than emit a long series of instructions for large offsets, 222 // load the offset into a register and do one sub/add 223 unsigned Reg = 0; 224 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 225 226 if (isSub && !isEAXLiveIn(MBB)) 227 Reg = Rax; 228 else 229 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 230 231 unsigned AddSubRROpc = 232 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 233 if (Reg) { 234 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) 235 .addImm(Offset) 236 .setMIFlag(Flag); 237 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 238 .addReg(StackPtr) 239 .addReg(Reg); 240 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 241 return; 242 } else if (Offset > 8 * Chunk) { 243 // If we would need more than 8 add or sub instructions (a >16GB stack 244 // frame), it's worth spilling RAX to materialize this immediate. 245 // pushq %rax 246 // movabsq +-$Offset+-SlotSize, %rax 247 // addq %rsp, %rax 248 // xchg %rax, (%rsp) 249 // movq (%rsp), %rsp 250 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 251 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 252 .addReg(Rax, RegState::Kill) 253 .setMIFlag(Flag); 254 // Subtract is not commutative, so negate the offset and always use add. 255 // Subtract 8 less and add 8 more to account for the PUSH we just did. 256 if (isSub) 257 Offset = -(Offset - SlotSize); 258 else 259 Offset = Offset + SlotSize; 260 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) 261 .addImm(Offset) 262 .setMIFlag(Flag); 263 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 264 .addReg(Rax) 265 .addReg(StackPtr); 266 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 267 // Exchange the new SP in RAX with the top of the stack. 268 addRegOffset( 269 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 270 StackPtr, false, 0); 271 // Load new SP from the top of the stack into RSP. 272 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 273 StackPtr, false, 0); 274 return; 275 } 276 } 277 278 while (Offset) { 279 uint64_t ThisVal = std::min(Offset, Chunk); 280 if (ThisVal == SlotSize) { 281 // Use push / pop for slot sized adjustments as a size optimization. We 282 // need to find a dead register when using pop. 283 unsigned Reg = isSub 284 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 285 : TRI->findDeadCallerSavedReg(MBB, MBBI); 286 if (Reg) { 287 unsigned Opc = isSub 288 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 289 : (Is64Bit ? X86::POP64r : X86::POP32r); 290 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 291 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 292 .setMIFlag(Flag); 293 Offset -= ThisVal; 294 continue; 295 } 296 } 297 298 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 299 .setMIFlag(Flag); 300 301 Offset -= ThisVal; 302 } 303 } 304 305 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 306 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 307 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 308 assert(Offset != 0 && "zero offset stack adjustment requested"); 309 310 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 311 // is tricky. 312 bool UseLEA; 313 if (!InEpilogue) { 314 // Check if inserting the prologue at the beginning 315 // of MBB would require to use LEA operations. 316 // We need to use LEA operations if EFLAGS is live in, because 317 // it means an instruction will read it before it gets defined. 318 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 319 } else { 320 // If we can use LEA for SP but we shouldn't, check that none 321 // of the terminators uses the eflags. Otherwise we will insert 322 // a ADD that will redefine the eflags and break the condition. 323 // Alternatively, we could move the ADD, but this may not be possible 324 // and is an optimization anyway. 325 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 326 if (UseLEA && !STI.useLeaForSP()) 327 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 328 // If that assert breaks, that means we do not do the right thing 329 // in canUseAsEpilogue. 330 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 331 "We shouldn't have allowed this insertion point"); 332 } 333 334 MachineInstrBuilder MI; 335 if (UseLEA) { 336 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 337 TII.get(getLEArOpcode(Uses64BitFramePtr)), 338 StackPtr), 339 StackPtr, false, Offset); 340 } else { 341 bool IsSub = Offset < 0; 342 uint64_t AbsOffset = IsSub ? -Offset : Offset; 343 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr) 344 : getADDriOpcode(Uses64BitFramePtr); 345 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 346 .addReg(StackPtr) 347 .addImm(AbsOffset); 348 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 349 } 350 return MI; 351 } 352 353 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 354 MachineBasicBlock::iterator &MBBI, 355 bool doMergeWithPrevious) const { 356 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 357 (!doMergeWithPrevious && MBBI == MBB.end())) 358 return 0; 359 360 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 361 362 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 363 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 364 // instruction, and that there are no DBG_VALUE or other instructions between 365 // ADD/SUB/LEA and its corresponding CFI instruction. 366 /* TODO: Add support for the case where there are multiple CFI instructions 367 below the ADD/SUB/LEA, e.g.: 368 ... 369 add 370 cfi_def_cfa_offset 371 cfi_offset 372 ... 373 */ 374 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 375 PI = std::prev(PI); 376 377 unsigned Opc = PI->getOpcode(); 378 int Offset = 0; 379 380 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD32ri) && 381 PI->getOperand(0).getReg() == StackPtr) { 382 assert(PI->getOperand(1).getReg() == StackPtr); 383 Offset = PI->getOperand(2).getImm(); 384 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 385 PI->getOperand(0).getReg() == StackPtr && 386 PI->getOperand(1).getReg() == StackPtr && 387 PI->getOperand(2).getImm() == 1 && 388 PI->getOperand(3).getReg() == X86::NoRegister && 389 PI->getOperand(5).getReg() == X86::NoRegister) { 390 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 391 Offset = PI->getOperand(4).getImm(); 392 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB32ri) && 393 PI->getOperand(0).getReg() == StackPtr) { 394 assert(PI->getOperand(1).getReg() == StackPtr); 395 Offset = -PI->getOperand(2).getImm(); 396 } else 397 return 0; 398 399 PI = MBB.erase(PI); 400 if (PI != MBB.end() && PI->isCFIInstruction()) { 401 auto CIs = MBB.getParent()->getFrameInstructions(); 402 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 403 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 404 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 405 PI = MBB.erase(PI); 406 } 407 if (!doMergeWithPrevious) 408 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 409 410 return Offset; 411 } 412 413 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 414 MachineBasicBlock::iterator MBBI, 415 const DebugLoc &DL, 416 const MCCFIInstruction &CFIInst, 417 MachineInstr::MIFlag Flag) const { 418 MachineFunction &MF = *MBB.getParent(); 419 unsigned CFIIndex = MF.addFrameInst(CFIInst); 420 421 if (CFIInst.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 422 MF.getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true); 423 424 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 425 .addCFIIndex(CFIIndex) 426 .setMIFlag(Flag); 427 } 428 429 /// Emits Dwarf Info specifying offsets of callee saved registers and 430 /// frame pointer. This is called only when basic block sections are enabled. 431 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 432 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 433 MachineFunction &MF = *MBB.getParent(); 434 if (!hasFP(MF)) { 435 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 436 return; 437 } 438 const MachineModuleInfo &MMI = MF.getMMI(); 439 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 440 const Register FramePtr = TRI->getFrameRegister(MF); 441 const Register MachineFramePtr = 442 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 443 : FramePtr; 444 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 445 // Offset = space for return address + size of the frame pointer itself. 446 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 447 BuildCFI(MBB, MBBI, DebugLoc{}, 448 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 449 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 450 } 451 452 void X86FrameLowering::emitCalleeSavedFrameMoves( 453 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 454 const DebugLoc &DL, bool IsPrologue) const { 455 MachineFunction &MF = *MBB.getParent(); 456 MachineFrameInfo &MFI = MF.getFrameInfo(); 457 MachineModuleInfo &MMI = MF.getMMI(); 458 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 459 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 460 461 // Add callee saved registers to move list. 462 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 463 464 // Calculate offsets. 465 for (const CalleeSavedInfo &I : CSI) { 466 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 467 Register Reg = I.getReg(); 468 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 469 470 if (IsPrologue) { 471 if (X86FI->getStackPtrSaveMI()) { 472 // +2*SlotSize because there is return address and ebp at the bottom 473 // of the stack. 474 // | retaddr | 475 // | ebp | 476 // | |<--ebp 477 Offset += 2 * SlotSize; 478 SmallString<64> CfaExpr; 479 CfaExpr.push_back(dwarf::DW_CFA_expression); 480 uint8_t buffer[16]; 481 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 482 CfaExpr.push_back(2); 483 Register FramePtr = TRI->getFrameRegister(MF); 484 const Register MachineFramePtr = 485 STI.isTarget64BitILP32() 486 ? Register(getX86SubSuperRegister(FramePtr, 64)) 487 : FramePtr; 488 unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true); 489 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr)); 490 CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer)); 491 BuildCFI(MBB, MBBI, DL, 492 MCCFIInstruction::createEscape(nullptr, CfaExpr.str()), 493 MachineInstr::FrameSetup); 494 } else { 495 BuildCFI(MBB, MBBI, DL, 496 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 497 } 498 } else { 499 BuildCFI(MBB, MBBI, DL, 500 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 501 } 502 } 503 if (auto *MI = X86FI->getStackPtrSaveMI()) { 504 int FI = MI->getOperand(1).getIndex(); 505 int64_t Offset = MFI.getObjectOffset(FI) + 2 * SlotSize; 506 SmallString<64> CfaExpr; 507 Register FramePtr = TRI->getFrameRegister(MF); 508 const Register MachineFramePtr = 509 STI.isTarget64BitILP32() 510 ? Register(getX86SubSuperRegister(FramePtr, 64)) 511 : FramePtr; 512 unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true); 513 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr)); 514 uint8_t buffer[16]; 515 CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer)); 516 CfaExpr.push_back(dwarf::DW_OP_deref); 517 518 SmallString<64> DefCfaExpr; 519 DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression); 520 DefCfaExpr.append(buffer, buffer + encodeSLEB128(CfaExpr.size(), buffer)); 521 DefCfaExpr.append(CfaExpr.str()); 522 // DW_CFA_def_cfa_expression: DW_OP_breg5 offset, DW_OP_deref 523 BuildCFI(MBB, MBBI, DL, 524 MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str()), 525 MachineInstr::FrameSetup); 526 } 527 } 528 529 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 530 MachineBasicBlock &MBB) const { 531 const MachineFunction &MF = *MBB.getParent(); 532 533 // Insertion point. 534 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 535 536 // Fake a debug loc. 537 DebugLoc DL; 538 if (MBBI != MBB.end()) 539 DL = MBBI->getDebugLoc(); 540 541 // Zero out FP stack if referenced. Do this outside of the loop below so that 542 // it's done only once. 543 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 544 for (MCRegister Reg : RegsToZero.set_bits()) { 545 if (!X86::RFP80RegClass.contains(Reg)) 546 continue; 547 548 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; 549 for (unsigned i = 0; i != NumFPRegs; ++i) 550 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0)); 551 552 for (unsigned i = 0; i != NumFPRegs; ++i) 553 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0); 554 break; 555 } 556 557 // For GPRs, we only care to clear out the 32-bit register. 558 BitVector GPRsToZero(TRI->getNumRegs()); 559 for (MCRegister Reg : RegsToZero.set_bits()) 560 if (TRI->isGeneralPurposeRegister(MF, Reg)) { 561 GPRsToZero.set(getX86SubSuperRegister(Reg, 32)); 562 RegsToZero.reset(Reg); 563 } 564 565 for (MCRegister Reg : GPRsToZero.set_bits()) 566 BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg) 567 .addReg(Reg, RegState::Undef) 568 .addReg(Reg, RegState::Undef); 569 570 // Zero out registers. 571 for (MCRegister Reg : RegsToZero.set_bits()) { 572 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) 573 // FIXME: Ignore MMX registers? 574 continue; 575 576 unsigned XorOp; 577 if (X86::VR128RegClass.contains(Reg)) { 578 // XMM# 579 if (!ST.hasSSE1()) 580 continue; 581 XorOp = X86::PXORrr; 582 } else if (X86::VR256RegClass.contains(Reg)) { 583 // YMM# 584 if (!ST.hasAVX()) 585 continue; 586 XorOp = X86::VPXORrr; 587 } else if (X86::VR512RegClass.contains(Reg)) { 588 // ZMM# 589 if (!ST.hasAVX512()) 590 continue; 591 XorOp = X86::VPXORYrr; 592 } else if (X86::VK1RegClass.contains(Reg) || 593 X86::VK2RegClass.contains(Reg) || 594 X86::VK4RegClass.contains(Reg) || 595 X86::VK8RegClass.contains(Reg) || 596 X86::VK16RegClass.contains(Reg)) { 597 if (!ST.hasVLX()) 598 continue; 599 XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; 600 } else { 601 continue; 602 } 603 604 BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg) 605 .addReg(Reg, RegState::Undef) 606 .addReg(Reg, RegState::Undef); 607 } 608 } 609 610 void X86FrameLowering::emitStackProbe( 611 MachineFunction &MF, MachineBasicBlock &MBB, 612 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 613 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 614 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 615 if (STI.isTargetWindowsCoreCLR()) { 616 if (InProlog) { 617 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 618 .addImm(0 /* no explicit stack size */); 619 } else { 620 emitStackProbeInline(MF, MBB, MBBI, DL, false); 621 } 622 } else { 623 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 624 } 625 } 626 627 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 628 return STI.isOSWindows() && !STI.isTargetWin64(); 629 } 630 631 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 632 MachineBasicBlock &PrologMBB) const { 633 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 634 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 635 }); 636 if (Where != PrologMBB.end()) { 637 DebugLoc DL = PrologMBB.findDebugLoc(Where); 638 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 639 Where->eraseFromParent(); 640 } 641 } 642 643 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 644 MachineBasicBlock &MBB, 645 MachineBasicBlock::iterator MBBI, 646 const DebugLoc &DL, 647 bool InProlog) const { 648 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 649 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 650 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 651 else 652 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 653 } 654 655 void X86FrameLowering::emitStackProbeInlineGeneric( 656 MachineFunction &MF, MachineBasicBlock &MBB, 657 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 658 MachineInstr &AllocWithProbe = *MBBI; 659 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 660 661 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 662 const X86TargetLowering &TLI = *STI.getTargetLowering(); 663 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 664 "different expansion expected for CoreCLR 64 bit"); 665 666 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 667 uint64_t ProbeChunk = StackProbeSize * 8; 668 669 uint64_t MaxAlign = 670 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 671 672 // Synthesize a loop or unroll it, depending on the number of iterations. 673 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 674 // between the unaligned rsp and current rsp. 675 if (Offset > ProbeChunk) { 676 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 677 MaxAlign % StackProbeSize); 678 } else { 679 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 680 MaxAlign % StackProbeSize); 681 } 682 } 683 684 void X86FrameLowering::emitStackProbeInlineGenericBlock( 685 MachineFunction &MF, MachineBasicBlock &MBB, 686 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 687 uint64_t AlignOffset) const { 688 689 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 690 const bool HasFP = hasFP(MF); 691 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 692 const X86TargetLowering &TLI = *STI.getTargetLowering(); 693 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 694 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 695 696 uint64_t CurrentOffset = 0; 697 698 assert(AlignOffset < StackProbeSize); 699 700 // If the offset is so small it fits within a page, there's nothing to do. 701 if (StackProbeSize < Offset + AlignOffset) { 702 703 uint64_t StackAdjustment = StackProbeSize - AlignOffset; 704 BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false) 705 .setMIFlag(MachineInstr::FrameSetup); 706 if (!HasFP && NeedsDwarfCFI) { 707 BuildCFI( 708 MBB, MBBI, DL, 709 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 710 } 711 712 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 713 .setMIFlag(MachineInstr::FrameSetup), 714 StackPtr, false, 0) 715 .addImm(0) 716 .setMIFlag(MachineInstr::FrameSetup); 717 NumFrameExtraProbe++; 718 CurrentOffset = StackProbeSize - AlignOffset; 719 } 720 721 // For the next N - 1 pages, just probe. I tried to take advantage of 722 // natural probes but it implies much more logic and there was very few 723 // interesting natural probes to interleave. 724 while (CurrentOffset + StackProbeSize < Offset) { 725 BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false) 726 .setMIFlag(MachineInstr::FrameSetup); 727 728 if (!HasFP && NeedsDwarfCFI) { 729 BuildCFI( 730 MBB, MBBI, DL, 731 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 732 } 733 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 734 .setMIFlag(MachineInstr::FrameSetup), 735 StackPtr, false, 0) 736 .addImm(0) 737 .setMIFlag(MachineInstr::FrameSetup); 738 NumFrameExtraProbe++; 739 CurrentOffset += StackProbeSize; 740 } 741 742 // No need to probe the tail, it is smaller than a Page. 743 uint64_t ChunkSize = Offset - CurrentOffset; 744 if (ChunkSize == SlotSize) { 745 // Use push for slot sized adjustments as a size optimization, 746 // like emitSPUpdate does when not probing. 747 unsigned Reg = Is64Bit ? X86::RAX : X86::EAX; 748 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 749 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 750 .addReg(Reg, RegState::Undef) 751 .setMIFlag(MachineInstr::FrameSetup); 752 } else { 753 BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false) 754 .setMIFlag(MachineInstr::FrameSetup); 755 } 756 // No need to adjust Dwarf CFA offset here, the last position of the stack has 757 // been defined 758 } 759 760 void X86FrameLowering::emitStackProbeInlineGenericLoop( 761 MachineFunction &MF, MachineBasicBlock &MBB, 762 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 763 uint64_t AlignOffset) const { 764 assert(Offset && "null offset"); 765 766 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 767 MachineBasicBlock::LQR_Live && 768 "Inline stack probe loop will clobber live EFLAGS."); 769 770 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 771 const bool HasFP = hasFP(MF); 772 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 773 const X86TargetLowering &TLI = *STI.getTargetLowering(); 774 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 775 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 776 777 if (AlignOffset) { 778 if (AlignOffset < StackProbeSize) { 779 // Perform a first smaller allocation followed by a probe. 780 BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false) 781 .setMIFlag(MachineInstr::FrameSetup); 782 783 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 784 .setMIFlag(MachineInstr::FrameSetup), 785 StackPtr, false, 0) 786 .addImm(0) 787 .setMIFlag(MachineInstr::FrameSetup); 788 NumFrameExtraProbe++; 789 Offset -= AlignOffset; 790 } 791 } 792 793 // Synthesize a loop 794 NumFrameLoopProbe++; 795 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 796 797 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 798 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 799 800 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 801 MF.insert(MBBIter, testMBB); 802 MF.insert(MBBIter, tailMBB); 803 804 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 805 : Is64Bit ? X86::R11D 806 : X86::EAX; 807 808 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 809 .addReg(StackPtr) 810 .setMIFlag(MachineInstr::FrameSetup); 811 812 // save loop bound 813 { 814 const unsigned BoundOffset = alignDown(Offset, StackProbeSize); 815 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr); 816 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 817 .addReg(FinalStackProbed) 818 .addImm(BoundOffset) 819 .setMIFlag(MachineInstr::FrameSetup); 820 821 // while in the loop, use loop-invariant reg for CFI, 822 // instead of the stack pointer, which changes during the loop 823 if (!HasFP && NeedsDwarfCFI) { 824 // x32 uses the same DWARF register numbers as x86-64, 825 // so there isn't a register number for r11d, we must use r11 instead 826 const Register DwarfFinalStackProbed = 827 STI.isTarget64BitILP32() 828 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 829 : FinalStackProbed; 830 831 BuildCFI(MBB, MBBI, DL, 832 MCCFIInstruction::createDefCfaRegister( 833 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 834 BuildCFI(MBB, MBBI, DL, 835 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 836 } 837 } 838 839 // allocate a page 840 BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize, 841 /*InEpilogue=*/false) 842 .setMIFlag(MachineInstr::FrameSetup); 843 844 // touch the page 845 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 846 .setMIFlag(MachineInstr::FrameSetup), 847 StackPtr, false, 0) 848 .addImm(0) 849 .setMIFlag(MachineInstr::FrameSetup); 850 851 // cmp with stack pointer bound 852 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 853 .addReg(StackPtr) 854 .addReg(FinalStackProbed) 855 .setMIFlag(MachineInstr::FrameSetup); 856 857 // jump 858 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 859 .addMBB(testMBB) 860 .addImm(X86::COND_NE) 861 .setMIFlag(MachineInstr::FrameSetup); 862 testMBB->addSuccessor(testMBB); 863 testMBB->addSuccessor(tailMBB); 864 865 // BB management 866 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 867 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 868 MBB.addSuccessor(testMBB); 869 870 // handle tail 871 const uint64_t TailOffset = Offset % StackProbeSize; 872 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 873 if (TailOffset) { 874 BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset, 875 /*InEpilogue=*/false) 876 .setMIFlag(MachineInstr::FrameSetup); 877 } 878 879 // after the loop, switch back to stack pointer for CFI 880 if (!HasFP && NeedsDwarfCFI) { 881 // x32 uses the same DWARF register numbers as x86-64, 882 // so there isn't a register number for esp, we must use rsp instead 883 const Register DwarfStackPtr = 884 STI.isTarget64BitILP32() 885 ? Register(getX86SubSuperRegister(StackPtr, 64)) 886 : Register(StackPtr); 887 888 BuildCFI(*tailMBB, TailMBBIter, DL, 889 MCCFIInstruction::createDefCfaRegister( 890 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 891 } 892 893 // Update Live In information 894 recomputeLiveIns(*testMBB); 895 recomputeLiveIns(*tailMBB); 896 } 897 898 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 899 MachineFunction &MF, MachineBasicBlock &MBB, 900 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 901 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 902 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 903 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 904 const TargetInstrInfo &TII = *STI.getInstrInfo(); 905 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 906 907 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 908 MachineBasicBlock::LQR_Live && 909 "Inline stack probe loop will clobber live EFLAGS."); 910 911 // RAX contains the number of bytes of desired stack adjustment. 912 // The handling here assumes this value has already been updated so as to 913 // maintain stack alignment. 914 // 915 // We need to exit with RSP modified by this amount and execute suitable 916 // page touches to notify the OS that we're growing the stack responsibly. 917 // All stack probing must be done without modifying RSP. 918 // 919 // MBB: 920 // SizeReg = RAX; 921 // ZeroReg = 0 922 // CopyReg = RSP 923 // Flags, TestReg = CopyReg - SizeReg 924 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 925 // LimitReg = gs magic thread env access 926 // if FinalReg >= LimitReg goto ContinueMBB 927 // RoundBB: 928 // RoundReg = page address of FinalReg 929 // LoopMBB: 930 // LoopReg = PHI(LimitReg,ProbeReg) 931 // ProbeReg = LoopReg - PageSize 932 // [ProbeReg] = 0 933 // if (ProbeReg > RoundReg) goto LoopMBB 934 // ContinueMBB: 935 // RSP = RSP - RAX 936 // [rest of original MBB] 937 938 // Set up the new basic blocks 939 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 940 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 941 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 942 943 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 944 MF.insert(MBBIter, RoundMBB); 945 MF.insert(MBBIter, LoopMBB); 946 MF.insert(MBBIter, ContinueMBB); 947 948 // Split MBB and move the tail portion down to ContinueMBB. 949 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 950 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 951 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 952 953 // Some useful constants 954 const int64_t ThreadEnvironmentStackLimit = 0x10; 955 const int64_t PageSize = 0x1000; 956 const int64_t PageMask = ~(PageSize - 1); 957 958 // Registers we need. For the normal case we use virtual 959 // registers. For the prolog expansion we use RAX, RCX and RDX. 960 MachineRegisterInfo &MRI = MF.getRegInfo(); 961 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 962 const Register SizeReg = InProlog ? X86::RAX 963 : MRI.createVirtualRegister(RegClass), 964 ZeroReg = InProlog ? X86::RCX 965 : MRI.createVirtualRegister(RegClass), 966 CopyReg = InProlog ? X86::RDX 967 : MRI.createVirtualRegister(RegClass), 968 TestReg = InProlog ? X86::RDX 969 : MRI.createVirtualRegister(RegClass), 970 FinalReg = InProlog ? X86::RDX 971 : MRI.createVirtualRegister(RegClass), 972 RoundedReg = InProlog ? X86::RDX 973 : MRI.createVirtualRegister(RegClass), 974 LimitReg = InProlog ? X86::RCX 975 : MRI.createVirtualRegister(RegClass), 976 JoinReg = InProlog ? X86::RCX 977 : MRI.createVirtualRegister(RegClass), 978 ProbeReg = InProlog ? X86::RCX 979 : MRI.createVirtualRegister(RegClass); 980 981 // SP-relative offsets where we can save RCX and RDX. 982 int64_t RCXShadowSlot = 0; 983 int64_t RDXShadowSlot = 0; 984 985 // If inlining in the prolog, save RCX and RDX. 986 if (InProlog) { 987 // Compute the offsets. We need to account for things already 988 // pushed onto the stack at this point: return address, frame 989 // pointer (if used), and callee saves. 990 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 991 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 992 const bool HasFP = hasFP(MF); 993 994 // Check if we need to spill RCX and/or RDX. 995 // Here we assume that no earlier prologue instruction changes RCX and/or 996 // RDX, so checking the block live-ins is enough. 997 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 998 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 999 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 1000 // Assign the initial slot to both registers, then change RDX's slot if both 1001 // need to be spilled. 1002 if (IsRCXLiveIn) 1003 RCXShadowSlot = InitSlot; 1004 if (IsRDXLiveIn) 1005 RDXShadowSlot = InitSlot; 1006 if (IsRDXLiveIn && IsRCXLiveIn) 1007 RDXShadowSlot += 8; 1008 // Emit the saves if needed. 1009 if (IsRCXLiveIn) 1010 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 1011 RCXShadowSlot) 1012 .addReg(X86::RCX); 1013 if (IsRDXLiveIn) 1014 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 1015 RDXShadowSlot) 1016 .addReg(X86::RDX); 1017 } else { 1018 // Not in the prolog. Copy RAX to a virtual reg. 1019 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 1020 } 1021 1022 // Add code to MBB to check for overflow and set the new target stack pointer 1023 // to zero if so. 1024 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 1025 .addReg(ZeroReg, RegState::Undef) 1026 .addReg(ZeroReg, RegState::Undef); 1027 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 1028 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 1029 .addReg(CopyReg) 1030 .addReg(SizeReg); 1031 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 1032 .addReg(TestReg) 1033 .addReg(ZeroReg) 1034 .addImm(X86::COND_B); 1035 1036 // FinalReg now holds final stack pointer value, or zero if 1037 // allocation would overflow. Compare against the current stack 1038 // limit from the thread environment block. Note this limit is the 1039 // lowest touched page on the stack, not the point at which the OS 1040 // will cause an overflow exception, so this is just an optimization 1041 // to avoid unnecessarily touching pages that are below the current 1042 // SP but already committed to the stack by the OS. 1043 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 1044 .addReg(0) 1045 .addImm(1) 1046 .addReg(0) 1047 .addImm(ThreadEnvironmentStackLimit) 1048 .addReg(X86::GS); 1049 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 1050 // Jump if the desired stack pointer is at or above the stack limit. 1051 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 1052 1053 // Add code to roundMBB to round the final stack pointer to a page boundary. 1054 RoundMBB->addLiveIn(FinalReg); 1055 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 1056 .addReg(FinalReg) 1057 .addImm(PageMask); 1058 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 1059 1060 // LimitReg now holds the current stack limit, RoundedReg page-rounded 1061 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 1062 // and probe until we reach RoundedReg. 1063 if (!InProlog) { 1064 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 1065 .addReg(LimitReg) 1066 .addMBB(RoundMBB) 1067 .addReg(ProbeReg) 1068 .addMBB(LoopMBB); 1069 } 1070 1071 LoopMBB->addLiveIn(JoinReg); 1072 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 1073 false, -PageSize); 1074 1075 // Probe by storing a byte onto the stack. 1076 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 1077 .addReg(ProbeReg) 1078 .addImm(1) 1079 .addReg(0) 1080 .addImm(0) 1081 .addReg(0) 1082 .addImm(0); 1083 1084 LoopMBB->addLiveIn(RoundedReg); 1085 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 1086 .addReg(RoundedReg) 1087 .addReg(ProbeReg); 1088 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 1089 1090 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 1091 1092 // If in prolog, restore RDX and RCX. 1093 if (InProlog) { 1094 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 1095 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1096 TII.get(X86::MOV64rm), X86::RCX), 1097 X86::RSP, false, RCXShadowSlot); 1098 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 1099 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 1100 TII.get(X86::MOV64rm), X86::RDX), 1101 X86::RSP, false, RDXShadowSlot); 1102 } 1103 1104 // Now that the probing is done, add code to continueMBB to update 1105 // the stack pointer for real. 1106 ContinueMBB->addLiveIn(SizeReg); 1107 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 1108 .addReg(X86::RSP) 1109 .addReg(SizeReg); 1110 1111 // Add the control flow edges we need. 1112 MBB.addSuccessor(ContinueMBB); 1113 MBB.addSuccessor(RoundMBB); 1114 RoundMBB->addSuccessor(LoopMBB); 1115 LoopMBB->addSuccessor(ContinueMBB); 1116 LoopMBB->addSuccessor(LoopMBB); 1117 1118 // Mark all the instructions added to the prolog as frame setup. 1119 if (InProlog) { 1120 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1121 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1122 } 1123 for (MachineInstr &MI : *RoundMBB) { 1124 MI.setFlag(MachineInstr::FrameSetup); 1125 } 1126 for (MachineInstr &MI : *LoopMBB) { 1127 MI.setFlag(MachineInstr::FrameSetup); 1128 } 1129 for (MachineInstr &MI : 1130 llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) { 1131 MI.setFlag(MachineInstr::FrameSetup); 1132 } 1133 } 1134 } 1135 1136 void X86FrameLowering::emitStackProbeCall( 1137 MachineFunction &MF, MachineBasicBlock &MBB, 1138 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1139 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1140 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1141 1142 // FIXME: Add indirect thunk support and remove this. 1143 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1144 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1145 "code model and indirect thunks not yet implemented."); 1146 1147 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != 1148 MachineBasicBlock::LQR_Live && 1149 "Stack probe calls will clobber live EFLAGS."); 1150 1151 unsigned CallOp; 1152 if (Is64Bit) 1153 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1154 else 1155 CallOp = X86::CALLpcrel32; 1156 1157 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1158 1159 MachineInstrBuilder CI; 1160 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1161 1162 // All current stack probes take AX and SP as input, clobber flags, and 1163 // preserve all registers. x86_64 probes leave RSP unmodified. 1164 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1165 // For the large code model, we have to call through a register. Use R11, 1166 // as it is scratch in all supported calling conventions. 1167 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1168 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1169 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1170 } else { 1171 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1172 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1173 } 1174 1175 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1176 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1177 CI.addReg(AX, RegState::Implicit) 1178 .addReg(SP, RegState::Implicit) 1179 .addReg(AX, RegState::Define | RegState::Implicit) 1180 .addReg(SP, RegState::Define | RegState::Implicit) 1181 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1182 1183 MachineInstr *ModInst = CI; 1184 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1185 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1186 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1187 // themselves. They also does not clobber %rax so we can reuse it when 1188 // adjusting %rsp. 1189 // All other platforms do not specify a particular ABI for the stack probe 1190 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1191 ModInst = 1192 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1193 .addReg(SP) 1194 .addReg(AX); 1195 } 1196 1197 // DebugInfo variable locations -- if there's an instruction number for the 1198 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1199 // modifies SP. 1200 if (InstrNum) { 1201 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1202 // Label destination operand of the subtract. 1203 MF.makeDebugValueSubstitution(*InstrNum, 1204 {ModInst->getDebugInstrNum(), 0}); 1205 } else { 1206 // Label the call. The operand number is the penultimate operand, zero 1207 // based. 1208 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1209 MF.makeDebugValueSubstitution( 1210 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1211 } 1212 } 1213 1214 if (InProlog) { 1215 // Apply the frame setup flag to all inserted instrs. 1216 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1217 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1218 } 1219 } 1220 1221 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1222 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1223 // and might require smaller successive adjustments. 1224 const uint64_t Win64MaxSEHOffset = 128; 1225 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1226 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1227 return SEHFrameOffset & -16; 1228 } 1229 1230 // If we're forcing a stack realignment we can't rely on just the frame 1231 // info, we need to know the ABI stack alignment as well in case we 1232 // have a call out. Otherwise just make sure we have some alignment - we'll 1233 // go with the minimum SlotSize. 1234 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1235 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1236 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1237 Align StackAlign = getStackAlign(); 1238 bool HasRealign = MF.getFunction().hasFnAttribute("stackrealign"); 1239 if (HasRealign) { 1240 if (MFI.hasCalls()) 1241 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1242 else if (MaxAlign < SlotSize) 1243 MaxAlign = Align(SlotSize); 1244 } 1245 1246 if (!Is64Bit && MF.getFunction().getCallingConv() == CallingConv::X86_INTR) { 1247 if (HasRealign) 1248 MaxAlign = (MaxAlign > 16) ? MaxAlign : Align(16); 1249 else 1250 MaxAlign = Align(16); 1251 } 1252 return MaxAlign.value(); 1253 } 1254 1255 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1256 MachineBasicBlock::iterator MBBI, 1257 const DebugLoc &DL, unsigned Reg, 1258 uint64_t MaxAlign) const { 1259 uint64_t Val = -MaxAlign; 1260 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1261 1262 MachineFunction &MF = *MBB.getParent(); 1263 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1264 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1265 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1266 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1267 1268 // We want to make sure that (in worst case) less than StackProbeSize bytes 1269 // are not probed after the AND. This assumption is used in 1270 // emitStackProbeInlineGeneric. 1271 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1272 { 1273 NumFrameLoopProbe++; 1274 MachineBasicBlock *entryMBB = 1275 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1276 MachineBasicBlock *headMBB = 1277 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1278 MachineBasicBlock *bodyMBB = 1279 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1280 MachineBasicBlock *footMBB = 1281 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1282 1283 MachineFunction::iterator MBBIter = MBB.getIterator(); 1284 MF.insert(MBBIter, entryMBB); 1285 MF.insert(MBBIter, headMBB); 1286 MF.insert(MBBIter, bodyMBB); 1287 MF.insert(MBBIter, footMBB); 1288 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1289 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1290 : Is64Bit ? X86::R11D 1291 : X86::EAX; 1292 1293 // Setup entry block 1294 { 1295 1296 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1297 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1298 .addReg(StackPtr) 1299 .setMIFlag(MachineInstr::FrameSetup); 1300 MachineInstr *MI = 1301 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1302 .addReg(FinalStackProbed) 1303 .addImm(Val) 1304 .setMIFlag(MachineInstr::FrameSetup); 1305 1306 // The EFLAGS implicit def is dead. 1307 MI->getOperand(3).setIsDead(); 1308 1309 BuildMI(entryMBB, DL, 1310 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1311 .addReg(FinalStackProbed) 1312 .addReg(StackPtr) 1313 .setMIFlag(MachineInstr::FrameSetup); 1314 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1315 .addMBB(&MBB) 1316 .addImm(X86::COND_E) 1317 .setMIFlag(MachineInstr::FrameSetup); 1318 entryMBB->addSuccessor(headMBB); 1319 entryMBB->addSuccessor(&MBB); 1320 } 1321 1322 // Loop entry block 1323 1324 { 1325 const unsigned SUBOpc = 1326 getSUBriOpcode(Uses64BitFramePtr); 1327 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1328 .addReg(StackPtr) 1329 .addImm(StackProbeSize) 1330 .setMIFlag(MachineInstr::FrameSetup); 1331 1332 BuildMI(headMBB, DL, 1333 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1334 .addReg(StackPtr) 1335 .addReg(FinalStackProbed) 1336 .setMIFlag(MachineInstr::FrameSetup); 1337 1338 // jump to the footer if StackPtr < FinalStackProbed 1339 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1340 .addMBB(footMBB) 1341 .addImm(X86::COND_B) 1342 .setMIFlag(MachineInstr::FrameSetup); 1343 1344 headMBB->addSuccessor(bodyMBB); 1345 headMBB->addSuccessor(footMBB); 1346 } 1347 1348 // setup loop body 1349 { 1350 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1351 .setMIFlag(MachineInstr::FrameSetup), 1352 StackPtr, false, 0) 1353 .addImm(0) 1354 .setMIFlag(MachineInstr::FrameSetup); 1355 1356 const unsigned SUBOpc = 1357 getSUBriOpcode(Uses64BitFramePtr); 1358 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1359 .addReg(StackPtr) 1360 .addImm(StackProbeSize) 1361 .setMIFlag(MachineInstr::FrameSetup); 1362 1363 // cmp with stack pointer bound 1364 BuildMI(bodyMBB, DL, 1365 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1366 .addReg(FinalStackProbed) 1367 .addReg(StackPtr) 1368 .setMIFlag(MachineInstr::FrameSetup); 1369 1370 // jump back while FinalStackProbed < StackPtr 1371 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1372 .addMBB(bodyMBB) 1373 .addImm(X86::COND_B) 1374 .setMIFlag(MachineInstr::FrameSetup); 1375 bodyMBB->addSuccessor(bodyMBB); 1376 bodyMBB->addSuccessor(footMBB); 1377 } 1378 1379 // setup loop footer 1380 { 1381 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1382 .addReg(FinalStackProbed) 1383 .setMIFlag(MachineInstr::FrameSetup); 1384 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1385 .setMIFlag(MachineInstr::FrameSetup), 1386 StackPtr, false, 0) 1387 .addImm(0) 1388 .setMIFlag(MachineInstr::FrameSetup); 1389 footMBB->addSuccessor(&MBB); 1390 } 1391 1392 recomputeLiveIns(*headMBB); 1393 recomputeLiveIns(*bodyMBB); 1394 recomputeLiveIns(*footMBB); 1395 recomputeLiveIns(MBB); 1396 } 1397 } else { 1398 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1399 .addReg(Reg) 1400 .addImm(Val) 1401 .setMIFlag(MachineInstr::FrameSetup); 1402 1403 // The EFLAGS implicit def is dead. 1404 MI->getOperand(3).setIsDead(); 1405 } 1406 } 1407 1408 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1409 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1410 // clobbered by any interrupt handler. 1411 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1412 "MF used frame lowering for wrong subtarget"); 1413 const Function &Fn = MF.getFunction(); 1414 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1415 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1416 } 1417 1418 /// Return true if we need to use the restricted Windows x64 prologue and 1419 /// epilogue code patterns that can be described with WinCFI (.seh_* 1420 /// directives). 1421 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1422 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1423 } 1424 1425 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1426 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1427 } 1428 1429 /// emitPrologue - Push callee-saved registers onto the stack, which 1430 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1431 /// space for local variables. Also emit labels used by the exception handler to 1432 /// generate the exception handling frames. 1433 1434 /* 1435 Here's a gist of what gets emitted: 1436 1437 ; Establish frame pointer, if needed 1438 [if needs FP] 1439 push %rbp 1440 .cfi_def_cfa_offset 16 1441 .cfi_offset %rbp, -16 1442 .seh_pushreg %rpb 1443 mov %rsp, %rbp 1444 .cfi_def_cfa_register %rbp 1445 1446 ; Spill general-purpose registers 1447 [for all callee-saved GPRs] 1448 pushq %<reg> 1449 [if not needs FP] 1450 .cfi_def_cfa_offset (offset from RETADDR) 1451 .seh_pushreg %<reg> 1452 1453 ; If the required stack alignment > default stack alignment 1454 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1455 ; of unknown size in the stack frame. 1456 [if stack needs re-alignment] 1457 and $MASK, %rsp 1458 1459 ; Allocate space for locals 1460 [if target is Windows and allocated space > 4096 bytes] 1461 ; Windows needs special care for allocations larger 1462 ; than one page. 1463 mov $NNN, %rax 1464 call ___chkstk_ms/___chkstk 1465 sub %rax, %rsp 1466 [else] 1467 sub $NNN, %rsp 1468 1469 [if needs FP] 1470 .seh_stackalloc (size of XMM spill slots) 1471 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1472 [else] 1473 .seh_stackalloc NNN 1474 1475 ; Spill XMMs 1476 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1477 ; they may get spilled on any platform, if the current function 1478 ; calls @llvm.eh.unwind.init 1479 [if needs FP] 1480 [for all callee-saved XMM registers] 1481 movaps %<xmm reg>, -MMM(%rbp) 1482 [for all callee-saved XMM registers] 1483 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1484 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1485 [else] 1486 [for all callee-saved XMM registers] 1487 movaps %<xmm reg>, KKK(%rsp) 1488 [for all callee-saved XMM registers] 1489 .seh_savexmm %<xmm reg>, KKK 1490 1491 .seh_endprologue 1492 1493 [if needs base pointer] 1494 mov %rsp, %rbx 1495 [if needs to restore base pointer] 1496 mov %rsp, -MMM(%rbp) 1497 1498 ; Emit CFI info 1499 [if needs FP] 1500 [for all callee-saved registers] 1501 .cfi_offset %<reg>, (offset from %rbp) 1502 [else] 1503 .cfi_def_cfa_offset (offset from RETADDR) 1504 [for all callee-saved registers] 1505 .cfi_offset %<reg>, (offset from %rsp) 1506 1507 Notes: 1508 - .seh directives are emitted only for Windows 64 ABI 1509 - .cv_fpo directives are emitted on win32 when emitting CodeView 1510 - .cfi directives are emitted for all other ABIs 1511 - for 32-bit code, substitute %e?? registers for %r?? 1512 */ 1513 1514 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1515 MachineBasicBlock &MBB) const { 1516 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1517 "MF used frame lowering for wrong subtarget"); 1518 MachineBasicBlock::iterator MBBI = MBB.begin(); 1519 MachineFrameInfo &MFI = MF.getFrameInfo(); 1520 const Function &Fn = MF.getFunction(); 1521 MachineModuleInfo &MMI = MF.getMMI(); 1522 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1523 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1524 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1525 bool IsFunclet = MBB.isEHFuncletEntry(); 1526 EHPersonality Personality = EHPersonality::Unknown; 1527 if (Fn.hasPersonalityFn()) 1528 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1529 bool FnHasClrFunclet = 1530 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1531 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1532 bool HasFP = hasFP(MF); 1533 bool IsWin64Prologue = isWin64Prologue(MF); 1534 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1535 // FIXME: Emit FPO data for EH funclets. 1536 bool NeedsWinFPO = 1537 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1538 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1539 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1540 Register FramePtr = TRI->getFrameRegister(MF); 1541 const Register MachineFramePtr = 1542 STI.isTarget64BitILP32() 1543 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1544 Register BasePtr = TRI->getBaseRegister(); 1545 bool HasWinCFI = false; 1546 1547 // Debug location must be unknown since the first debug location is used 1548 // to determine the end of the prologue. 1549 DebugLoc DL; 1550 Register ArgBaseReg; 1551 1552 // Emit extra prolog for argument stack slot reference. 1553 if (auto *MI = X86FI->getStackPtrSaveMI()) { 1554 // MI is lea instruction that created in X86ArgumentStackSlotPass. 1555 // Creat extra prolog for stack realignment. 1556 ArgBaseReg = MI->getOperand(0).getReg(); 1557 // leal 4(%esp), %basereg 1558 // .cfi_def_cfa %basereg, 0 1559 // andl $-128, %esp 1560 // pushl -4(%basereg) 1561 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r), 1562 ArgBaseReg) 1563 .addUse(StackPtr) 1564 .addImm(1) 1565 .addUse(X86::NoRegister) 1566 .addImm(SlotSize) 1567 .addUse(X86::NoRegister) 1568 .setMIFlag(MachineInstr::FrameSetup); 1569 if (NeedsDwarfCFI) { 1570 // .cfi_def_cfa %basereg, 0 1571 unsigned DwarfStackPtr = TRI->getDwarfRegNum(ArgBaseReg, true); 1572 BuildCFI(MBB, MBBI, DL, 1573 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, 0), 1574 MachineInstr::FrameSetup); 1575 } 1576 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1577 int64_t Offset = -(int64_t)SlotSize; 1578 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64rmm: X86::PUSH32rmm)) 1579 .addReg(ArgBaseReg) 1580 .addImm(1) 1581 .addReg(X86::NoRegister) 1582 .addImm(Offset) 1583 .addReg(X86::NoRegister) 1584 .setMIFlag(MachineInstr::FrameSetup); 1585 } 1586 1587 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1588 // tail call. 1589 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1590 if (TailCallArgReserveSize && IsWin64Prologue) 1591 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1592 1593 const bool EmitStackProbeCall = 1594 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1595 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1596 1597 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1598 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1599 case SwiftAsyncFramePointerMode::DeploymentBased: 1600 if (STI.swiftAsyncContextIsDynamicallySet()) { 1601 // The special symbol below is absolute and has a *value* suitable to be 1602 // combined with the frame pointer directly. 1603 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1604 .addUse(MachineFramePtr) 1605 .addUse(X86::RIP) 1606 .addImm(1) 1607 .addUse(X86::NoRegister) 1608 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1609 X86II::MO_GOTPCREL) 1610 .addUse(X86::NoRegister); 1611 break; 1612 } 1613 [[fallthrough]]; 1614 1615 case SwiftAsyncFramePointerMode::Always: 1616 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1617 .addUse(MachineFramePtr) 1618 .addImm(60) 1619 .setMIFlag(MachineInstr::FrameSetup); 1620 break; 1621 1622 case SwiftAsyncFramePointerMode::Never: 1623 break; 1624 } 1625 } 1626 1627 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1628 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1629 // stack alignment. 1630 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1631 Fn.arg_size() == 2) { 1632 StackSize += 8; 1633 MFI.setStackSize(StackSize); 1634 1635 // Update the stack pointer by pushing a register. This is the instruction 1636 // emitted that would be end up being emitted by a call to `emitSPUpdate`. 1637 // Hard-coding the update to a push avoids emitting a second 1638 // `STACKALLOC_W_PROBING` instruction in the save block: We know that stack 1639 // probing isn't needed anyways for an 8-byte update. 1640 // Pushing a register leaves us in a similar situation to a regular 1641 // function call where we know that the address at (rsp-8) is writeable. 1642 // That way we avoid any off-by-ones with stack probing for additional 1643 // stack pointer updates later on. 1644 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1645 .addReg(X86::RAX, RegState::Undef) 1646 .setMIFlag(MachineInstr::FrameSetup); 1647 } 1648 1649 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1650 // function, and use up to 128 bytes of stack space, don't have a frame 1651 // pointer, calls, or dynamic alloca then we do not need to adjust the 1652 // stack pointer (we fit in the Red Zone). We also check that we don't 1653 // push and pop from the stack. 1654 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1655 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1656 !MFI.adjustsStack() && // No calls. 1657 !EmitStackProbeCall && // No stack probes. 1658 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1659 !MF.shouldSplitStack()) { // Regular stack 1660 uint64_t MinSize = 1661 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1662 if (HasFP) MinSize += SlotSize; 1663 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1664 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1665 MFI.setStackSize(StackSize); 1666 } 1667 1668 // Insert stack pointer adjustment for later moving of return addr. Only 1669 // applies to tail call optimized functions where the callee argument stack 1670 // size is bigger than the callers. 1671 if (TailCallArgReserveSize != 0) { 1672 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1673 /*InEpilogue=*/false) 1674 .setMIFlag(MachineInstr::FrameSetup); 1675 } 1676 1677 // Mapping for machine moves: 1678 // 1679 // DST: VirtualFP AND 1680 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1681 // ELSE => DW_CFA_def_cfa 1682 // 1683 // SRC: VirtualFP AND 1684 // DST: Register => DW_CFA_def_cfa_register 1685 // 1686 // ELSE 1687 // OFFSET < 0 => DW_CFA_offset_extended_sf 1688 // REG < 64 => DW_CFA_offset + Reg 1689 // ELSE => DW_CFA_offset_extended 1690 1691 uint64_t NumBytes = 0; 1692 int stackGrowth = -SlotSize; 1693 1694 // Find the funclet establisher parameter 1695 Register Establisher = X86::NoRegister; 1696 if (IsClrFunclet) 1697 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1698 else if (IsFunclet) 1699 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1700 1701 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1702 // Immediately spill establisher into the home slot. 1703 // The runtime cares about this. 1704 // MOV64mr %rdx, 16(%rsp) 1705 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1706 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1707 .addReg(Establisher) 1708 .setMIFlag(MachineInstr::FrameSetup); 1709 MBB.addLiveIn(Establisher); 1710 } 1711 1712 if (HasFP) { 1713 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1714 1715 // Calculate required stack adjustment. 1716 uint64_t FrameSize = StackSize - SlotSize; 1717 NumBytes = FrameSize - 1718 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1719 1720 // Callee-saved registers are pushed on stack before the stack is realigned. 1721 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1722 NumBytes = alignTo(NumBytes, MaxAlign); 1723 1724 // Save EBP/RBP into the appropriate stack slot. 1725 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1726 .addReg(MachineFramePtr, RegState::Kill) 1727 .setMIFlag(MachineInstr::FrameSetup); 1728 1729 if (NeedsDwarfCFI && !ArgBaseReg.isValid()) { 1730 // Mark the place where EBP/RBP was saved. 1731 // Define the current CFA rule to use the provided offset. 1732 assert(StackSize); 1733 BuildCFI(MBB, MBBI, DL, 1734 MCCFIInstruction::cfiDefCfaOffset( 1735 nullptr, -2 * stackGrowth + (int)TailCallArgReserveSize), 1736 MachineInstr::FrameSetup); 1737 1738 // Change the rule for the FramePtr to be an "offset" rule. 1739 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1740 BuildCFI(MBB, MBBI, DL, 1741 MCCFIInstruction::createOffset(nullptr, DwarfFramePtr, 1742 2 * stackGrowth - 1743 (int)TailCallArgReserveSize), 1744 MachineInstr::FrameSetup); 1745 } 1746 1747 if (NeedsWinCFI) { 1748 HasWinCFI = true; 1749 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1750 .addImm(FramePtr) 1751 .setMIFlag(MachineInstr::FrameSetup); 1752 } 1753 1754 if (!IsFunclet) { 1755 if (X86FI->hasSwiftAsyncContext()) { 1756 const auto &Attrs = MF.getFunction().getAttributes(); 1757 1758 // Before we update the live frame pointer we have to ensure there's a 1759 // valid (or null) asynchronous context in its slot just before FP in 1760 // the frame record, so store it now. 1761 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1762 // We have an initial context in r14, store it just before the frame 1763 // pointer. 1764 MBB.addLiveIn(X86::R14); 1765 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1766 .addReg(X86::R14) 1767 .setMIFlag(MachineInstr::FrameSetup); 1768 } else { 1769 // No initial context, store null so that there's no pointer that 1770 // could be misused. 1771 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i32)) 1772 .addImm(0) 1773 .setMIFlag(MachineInstr::FrameSetup); 1774 } 1775 1776 if (NeedsWinCFI) { 1777 HasWinCFI = true; 1778 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1779 .addImm(X86::R14) 1780 .setMIFlag(MachineInstr::FrameSetup); 1781 } 1782 1783 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1784 .addUse(X86::RSP) 1785 .addImm(1) 1786 .addUse(X86::NoRegister) 1787 .addImm(8) 1788 .addUse(X86::NoRegister) 1789 .setMIFlag(MachineInstr::FrameSetup); 1790 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri32), X86::RSP) 1791 .addUse(X86::RSP) 1792 .addImm(8) 1793 .setMIFlag(MachineInstr::FrameSetup); 1794 } 1795 1796 if (!IsWin64Prologue && !IsFunclet) { 1797 // Update EBP with the new base value. 1798 if (!X86FI->hasSwiftAsyncContext()) 1799 BuildMI(MBB, MBBI, DL, 1800 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1801 FramePtr) 1802 .addReg(StackPtr) 1803 .setMIFlag(MachineInstr::FrameSetup); 1804 1805 if (NeedsDwarfCFI) { 1806 if (ArgBaseReg.isValid()) { 1807 SmallString<64> CfaExpr; 1808 CfaExpr.push_back(dwarf::DW_CFA_expression); 1809 uint8_t buffer[16]; 1810 unsigned DwarfReg = TRI->getDwarfRegNum(MachineFramePtr, true); 1811 CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer)); 1812 CfaExpr.push_back(2); 1813 CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg)); 1814 CfaExpr.push_back(0); 1815 // DW_CFA_expression: reg5 DW_OP_breg5 +0 1816 BuildCFI(MBB, MBBI, DL, 1817 MCCFIInstruction::createEscape(nullptr, CfaExpr.str()), 1818 MachineInstr::FrameSetup); 1819 } else { 1820 // Mark effective beginning of when frame pointer becomes valid. 1821 // Define the current CFA to use the EBP/RBP register. 1822 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1823 BuildCFI( 1824 MBB, MBBI, DL, 1825 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr), 1826 MachineInstr::FrameSetup); 1827 } 1828 } 1829 1830 if (NeedsWinFPO) { 1831 // .cv_fpo_setframe $FramePtr 1832 HasWinCFI = true; 1833 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1834 .addImm(FramePtr) 1835 .addImm(0) 1836 .setMIFlag(MachineInstr::FrameSetup); 1837 } 1838 } 1839 } 1840 } else { 1841 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1842 NumBytes = StackSize - 1843 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1844 } 1845 1846 // Update the offset adjustment, which is mainly used by codeview to translate 1847 // from ESP to VFRAME relative local variable offsets. 1848 if (!IsFunclet) { 1849 if (HasFP && TRI->hasStackRealignment(MF)) 1850 MFI.setOffsetAdjustment(-NumBytes); 1851 else 1852 MFI.setOffsetAdjustment(-StackSize); 1853 } 1854 1855 // For EH funclets, only allocate enough space for outgoing calls. Save the 1856 // NumBytes value that we would've used for the parent frame. 1857 unsigned ParentFrameNumBytes = NumBytes; 1858 if (IsFunclet) 1859 NumBytes = getWinEHFuncletFrameSize(MF); 1860 1861 // Skip the callee-saved push instructions. 1862 bool PushedRegs = false; 1863 int StackOffset = 2 * stackGrowth; 1864 1865 while (MBBI != MBB.end() && 1866 MBBI->getFlag(MachineInstr::FrameSetup) && 1867 (MBBI->getOpcode() == X86::PUSH32r || 1868 MBBI->getOpcode() == X86::PUSH64r)) { 1869 PushedRegs = true; 1870 Register Reg = MBBI->getOperand(0).getReg(); 1871 ++MBBI; 1872 1873 if (!HasFP && NeedsDwarfCFI) { 1874 // Mark callee-saved push instruction. 1875 // Define the current CFA rule to use the provided offset. 1876 assert(StackSize); 1877 BuildCFI(MBB, MBBI, DL, 1878 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset), 1879 MachineInstr::FrameSetup); 1880 StackOffset += stackGrowth; 1881 } 1882 1883 if (NeedsWinCFI) { 1884 HasWinCFI = true; 1885 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1886 .addImm(Reg) 1887 .setMIFlag(MachineInstr::FrameSetup); 1888 } 1889 } 1890 1891 // Realign stack after we pushed callee-saved registers (so that we'll be 1892 // able to calculate their offsets from the frame pointer). 1893 // Don't do this for Win64, it needs to realign the stack after the prologue. 1894 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF) && 1895 !ArgBaseReg.isValid()) { 1896 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1897 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1898 1899 if (NeedsWinCFI) { 1900 HasWinCFI = true; 1901 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1902 .addImm(MaxAlign) 1903 .setMIFlag(MachineInstr::FrameSetup); 1904 } 1905 } 1906 1907 // If there is an SUB32ri of ESP immediately before this instruction, merge 1908 // the two. This can be the case when tail call elimination is enabled and 1909 // the callee has more arguments then the caller. 1910 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1911 1912 // Adjust stack pointer: ESP -= numbytes. 1913 1914 // Windows and cygwin/mingw require a prologue helper routine when allocating 1915 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1916 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1917 // stack and adjust the stack pointer in one go. The 64-bit version of 1918 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1919 // responsible for adjusting the stack pointer. Touching the stack at 4K 1920 // increments is necessary to ensure that the guard pages used by the OS 1921 // virtual memory manager are allocated in correct sequence. 1922 uint64_t AlignedNumBytes = NumBytes; 1923 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1924 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1925 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1926 assert(!X86FI->getUsesRedZone() && 1927 "The Red Zone is not accounted for in stack probes"); 1928 1929 // Check whether EAX is livein for this block. 1930 bool isEAXAlive = isEAXLiveIn(MBB); 1931 1932 if (isEAXAlive) { 1933 if (Is64Bit) { 1934 // Save RAX 1935 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1936 .addReg(X86::RAX, RegState::Kill) 1937 .setMIFlag(MachineInstr::FrameSetup); 1938 } else { 1939 // Save EAX 1940 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1941 .addReg(X86::EAX, RegState::Kill) 1942 .setMIFlag(MachineInstr::FrameSetup); 1943 } 1944 } 1945 1946 if (Is64Bit) { 1947 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1948 // Function prologue is responsible for adjusting the stack pointer. 1949 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1950 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 1951 .addImm(Alloc) 1952 .setMIFlag(MachineInstr::FrameSetup); 1953 } else { 1954 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1955 // We'll also use 4 already allocated bytes for EAX. 1956 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1957 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1958 .setMIFlag(MachineInstr::FrameSetup); 1959 } 1960 1961 // Call __chkstk, __chkstk_ms, or __alloca. 1962 emitStackProbe(MF, MBB, MBBI, DL, true); 1963 1964 if (isEAXAlive) { 1965 // Restore RAX/EAX 1966 MachineInstr *MI; 1967 if (Is64Bit) 1968 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1969 StackPtr, false, NumBytes - 8); 1970 else 1971 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1972 StackPtr, false, NumBytes - 4); 1973 MI->setFlag(MachineInstr::FrameSetup); 1974 MBB.insert(MBBI, MI); 1975 } 1976 } else if (NumBytes) { 1977 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1978 } 1979 1980 if (NeedsWinCFI && NumBytes) { 1981 HasWinCFI = true; 1982 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1983 .addImm(NumBytes) 1984 .setMIFlag(MachineInstr::FrameSetup); 1985 } 1986 1987 int SEHFrameOffset = 0; 1988 unsigned SPOrEstablisher; 1989 if (IsFunclet) { 1990 if (IsClrFunclet) { 1991 // The establisher parameter passed to a CLR funclet is actually a pointer 1992 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1993 // to find the root function establisher frame by loading the PSPSym from 1994 // the intermediate frame. 1995 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1996 MachinePointerInfo NoInfo; 1997 MBB.addLiveIn(Establisher); 1998 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1999 Establisher, false, PSPSlotOffset) 2000 .addMemOperand(MF.getMachineMemOperand( 2001 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 2002 ; 2003 // Save the root establisher back into the current funclet's (mostly 2004 // empty) frame, in case a sub-funclet or the GC needs it. 2005 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 2006 false, PSPSlotOffset) 2007 .addReg(Establisher) 2008 .addMemOperand(MF.getMachineMemOperand( 2009 NoInfo, 2010 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2011 SlotSize, Align(SlotSize))); 2012 } 2013 SPOrEstablisher = Establisher; 2014 } else { 2015 SPOrEstablisher = StackPtr; 2016 } 2017 2018 if (IsWin64Prologue && HasFP) { 2019 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 2020 // this calculation on the incoming establisher, which holds the value of 2021 // RSP from the parent frame at the end of the prologue. 2022 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 2023 if (SEHFrameOffset) 2024 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 2025 SPOrEstablisher, false, SEHFrameOffset); 2026 else 2027 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 2028 .addReg(SPOrEstablisher); 2029 2030 // If this is not a funclet, emit the CFI describing our frame pointer. 2031 if (NeedsWinCFI && !IsFunclet) { 2032 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 2033 HasWinCFI = true; 2034 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 2035 .addImm(FramePtr) 2036 .addImm(SEHFrameOffset) 2037 .setMIFlag(MachineInstr::FrameSetup); 2038 if (isAsynchronousEHPersonality(Personality)) 2039 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 2040 } 2041 } else if (IsFunclet && STI.is32Bit()) { 2042 // Reset EBP / ESI to something good for funclets. 2043 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 2044 // If we're a catch funclet, we can be returned to via catchret. Save ESP 2045 // into the registration node so that the runtime will restore it for us. 2046 if (!MBB.isCleanupFuncletEntry()) { 2047 assert(Personality == EHPersonality::MSVC_CXX); 2048 Register FrameReg; 2049 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 2050 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2051 // ESP is the first field, so no extra displacement is needed. 2052 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 2053 false, EHRegOffset) 2054 .addReg(X86::ESP); 2055 } 2056 } 2057 2058 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 2059 const MachineInstr &FrameInstr = *MBBI; 2060 ++MBBI; 2061 2062 if (NeedsWinCFI) { 2063 int FI; 2064 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 2065 if (X86::FR64RegClass.contains(Reg)) { 2066 int Offset; 2067 Register IgnoredFrameReg; 2068 if (IsWin64Prologue && IsFunclet) 2069 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 2070 else 2071 Offset = 2072 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 2073 SEHFrameOffset; 2074 2075 HasWinCFI = true; 2076 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 2077 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 2078 .addImm(Reg) 2079 .addImm(Offset) 2080 .setMIFlag(MachineInstr::FrameSetup); 2081 } 2082 } 2083 } 2084 } 2085 2086 if (NeedsWinCFI && HasWinCFI) 2087 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 2088 .setMIFlag(MachineInstr::FrameSetup); 2089 2090 if (FnHasClrFunclet && !IsFunclet) { 2091 // Save the so-called Initial-SP (i.e. the value of the stack pointer 2092 // immediately after the prolog) into the PSPSlot so that funclets 2093 // and the GC can recover it. 2094 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 2095 auto PSPInfo = MachinePointerInfo::getFixedStack( 2096 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 2097 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 2098 PSPSlotOffset) 2099 .addReg(StackPtr) 2100 .addMemOperand(MF.getMachineMemOperand( 2101 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 2102 SlotSize, Align(SlotSize))); 2103 } 2104 2105 // Realign stack after we spilled callee-saved registers (so that we'll be 2106 // able to calculate their offsets from the frame pointer). 2107 // Win64 requires aligning the stack after the prologue. 2108 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 2109 assert(HasFP && "There should be a frame pointer if stack is realigned."); 2110 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 2111 } 2112 2113 // We already dealt with stack realignment and funclets above. 2114 if (IsFunclet && STI.is32Bit()) 2115 return; 2116 2117 // If we need a base pointer, set it up here. It's whatever the value 2118 // of the stack pointer is at this point. Any variable size objects 2119 // will be allocated after this, so we can still use the base pointer 2120 // to reference locals. 2121 if (TRI->hasBasePointer(MF)) { 2122 // Update the base pointer with the current stack pointer. 2123 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 2124 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 2125 .addReg(SPOrEstablisher) 2126 .setMIFlag(MachineInstr::FrameSetup); 2127 if (X86FI->getRestoreBasePointer()) { 2128 // Stash value of base pointer. Saving RSP instead of EBP shortens 2129 // dependence chain. Used by SjLj EH. 2130 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2131 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 2132 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 2133 .addReg(SPOrEstablisher) 2134 .setMIFlag(MachineInstr::FrameSetup); 2135 } 2136 2137 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 2138 // Stash the value of the frame pointer relative to the base pointer for 2139 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 2140 // it recovers the frame pointer from the base pointer rather than the 2141 // other way around. 2142 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 2143 Register UsedReg; 2144 int Offset = 2145 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 2146 .getFixed(); 2147 assert(UsedReg == BasePtr); 2148 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 2149 .addReg(FramePtr) 2150 .setMIFlag(MachineInstr::FrameSetup); 2151 } 2152 } 2153 if (ArgBaseReg.isValid()) { 2154 // Save argument base pointer. 2155 auto *MI = X86FI->getStackPtrSaveMI(); 2156 int FI = MI->getOperand(1).getIndex(); 2157 unsigned MOVmr = Is64Bit ? X86::MOV64mr : X86::MOV32mr; 2158 // movl %basereg, offset(%ebp) 2159 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), FI) 2160 .addReg(ArgBaseReg) 2161 .setMIFlag(MachineInstr::FrameSetup); 2162 } 2163 2164 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 2165 // Mark end of stack pointer adjustment. 2166 if (!HasFP && NumBytes) { 2167 // Define the current CFA rule to use the provided offset. 2168 assert(StackSize); 2169 BuildCFI( 2170 MBB, MBBI, DL, 2171 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth), 2172 MachineInstr::FrameSetup); 2173 } 2174 2175 // Emit DWARF info specifying the offsets of the callee-saved registers. 2176 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 2177 } 2178 2179 // X86 Interrupt handling function cannot assume anything about the direction 2180 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 2181 // in each prologue of interrupt handler function. 2182 // 2183 // FIXME: Create "cld" instruction only in these cases: 2184 // 1. The interrupt handling function uses any of the "rep" instructions. 2185 // 2. Interrupt handling function calls another function. 2186 // 2187 if (Fn.getCallingConv() == CallingConv::X86_INTR) 2188 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 2189 .setMIFlag(MachineInstr::FrameSetup); 2190 2191 // At this point we know if the function has WinCFI or not. 2192 MF.setHasWinCFI(HasWinCFI); 2193 } 2194 2195 bool X86FrameLowering::canUseLEAForSPInEpilogue( 2196 const MachineFunction &MF) const { 2197 // We can't use LEA instructions for adjusting the stack pointer if we don't 2198 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 2199 // to deallocate the stack. 2200 // This means that we can use LEA for SP in two situations: 2201 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 2202 // 2. We *have* a frame pointer which means we are permitted to use LEA. 2203 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 2204 } 2205 2206 static bool isFuncletReturnInstr(MachineInstr &MI) { 2207 switch (MI.getOpcode()) { 2208 case X86::CATCHRET: 2209 case X86::CLEANUPRET: 2210 return true; 2211 default: 2212 return false; 2213 } 2214 llvm_unreachable("impossible"); 2215 } 2216 2217 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2218 // stack. It holds a pointer to the bottom of the root function frame. The 2219 // establisher frame pointer passed to a nested funclet may point to the 2220 // (mostly empty) frame of its parent funclet, but it will need to find 2221 // the frame of the root function to access locals. To facilitate this, 2222 // every funclet copies the pointer to the bottom of the root function 2223 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2224 // same offset for the PSPSym in the root function frame that's used in the 2225 // funclets' frames allows each funclet to dynamically accept any ancestor 2226 // frame as its establisher argument (the runtime doesn't guarantee the 2227 // immediate parent for some reason lost to history), and also allows the GC, 2228 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2229 // frame with only a single offset reported for the entire method. 2230 unsigned 2231 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2232 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2233 Register SPReg; 2234 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2235 /*IgnoreSPUpdates*/ true) 2236 .getFixed(); 2237 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2238 return static_cast<unsigned>(Offset); 2239 } 2240 2241 unsigned 2242 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2243 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2244 // This is the size of the pushed CSRs. 2245 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2246 // This is the size of callee saved XMMs. 2247 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2248 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2249 TRI->getSpillSize(X86::VR128RegClass); 2250 // This is the amount of stack a funclet needs to allocate. 2251 unsigned UsedSize; 2252 EHPersonality Personality = 2253 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2254 if (Personality == EHPersonality::CoreCLR) { 2255 // CLR funclets need to hold enough space to include the PSPSym, at the 2256 // same offset from the stack pointer (immediately after the prolog) as it 2257 // resides at in the main function. 2258 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2259 } else { 2260 // Other funclets just need enough stack for outgoing call arguments. 2261 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2262 } 2263 // RBP is not included in the callee saved register block. After pushing RBP, 2264 // everything is 16 byte aligned. Everything we allocate before an outgoing 2265 // call must also be 16 byte aligned. 2266 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2267 // Subtract out the size of the callee saved registers. This is how much stack 2268 // each funclet will allocate. 2269 return FrameSizeMinusRBP + XMMSize - CSSize; 2270 } 2271 2272 static bool isTailCallOpcode(unsigned Opc) { 2273 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2274 Opc == X86::TCRETURNmi || 2275 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2276 Opc == X86::TCRETURNmi64; 2277 } 2278 2279 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2280 MachineBasicBlock &MBB) const { 2281 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2282 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2283 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2284 MachineBasicBlock::iterator MBBI = Terminator; 2285 DebugLoc DL; 2286 if (MBBI != MBB.end()) 2287 DL = MBBI->getDebugLoc(); 2288 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2289 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2290 Register FramePtr = TRI->getFrameRegister(MF); 2291 Register MachineFramePtr = 2292 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2293 2294 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2295 bool NeedsWin64CFI = 2296 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2297 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2298 2299 // Get the number of bytes to allocate from the FrameInfo. 2300 uint64_t StackSize = MFI.getStackSize(); 2301 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2302 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2303 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2304 bool HasFP = hasFP(MF); 2305 uint64_t NumBytes = 0; 2306 2307 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2308 !MF.getTarget().getTargetTriple().isOSWindows()) && 2309 MF.needsFrameMoves(); 2310 2311 Register ArgBaseReg; 2312 if (auto *MI = X86FI->getStackPtrSaveMI()) { 2313 unsigned Opc = X86::LEA32r; 2314 Register StackReg = X86::ESP; 2315 ArgBaseReg = MI->getOperand(0).getReg(); 2316 if (STI.is64Bit()) { 2317 Opc = X86::LEA64r; 2318 StackReg = X86::RSP; 2319 } 2320 // leal -4(%basereg), %esp 2321 // .cfi_def_cfa %esp, 4 2322 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackReg) 2323 .addUse(ArgBaseReg) 2324 .addImm(1) 2325 .addUse(X86::NoRegister) 2326 .addImm(-(int64_t)SlotSize) 2327 .addUse(X86::NoRegister) 2328 .setMIFlag(MachineInstr::FrameDestroy); 2329 if (NeedsDwarfCFI) { 2330 unsigned DwarfStackPtr = TRI->getDwarfRegNum(StackReg, true); 2331 BuildCFI(MBB, MBBI, DL, 2332 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2333 MachineInstr::FrameDestroy); 2334 --MBBI; 2335 } 2336 --MBBI; 2337 } 2338 2339 if (IsFunclet) { 2340 assert(HasFP && "EH funclets without FP not yet implemented"); 2341 NumBytes = getWinEHFuncletFrameSize(MF); 2342 } else if (HasFP) { 2343 // Calculate required stack adjustment. 2344 uint64_t FrameSize = StackSize - SlotSize; 2345 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2346 2347 // Callee-saved registers were pushed on stack before the stack was 2348 // realigned. 2349 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2350 NumBytes = alignTo(FrameSize, MaxAlign); 2351 } else { 2352 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2353 } 2354 uint64_t SEHStackAllocAmt = NumBytes; 2355 2356 // AfterPop is the position to insert .cfi_restore. 2357 MachineBasicBlock::iterator AfterPop = MBBI; 2358 if (HasFP) { 2359 if (X86FI->hasSwiftAsyncContext()) { 2360 // Discard the context. 2361 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2362 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2363 } 2364 // Pop EBP. 2365 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2366 MachineFramePtr) 2367 .setMIFlag(MachineInstr::FrameDestroy); 2368 2369 // We need to reset FP to its untagged state on return. Bit 60 is currently 2370 // used to show the presence of an extended frame. 2371 if (X86FI->hasSwiftAsyncContext()) { 2372 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2373 MachineFramePtr) 2374 .addUse(MachineFramePtr) 2375 .addImm(60) 2376 .setMIFlag(MachineInstr::FrameDestroy); 2377 } 2378 2379 if (NeedsDwarfCFI) { 2380 if (!ArgBaseReg.isValid()) { 2381 unsigned DwarfStackPtr = 2382 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2383 BuildCFI(MBB, MBBI, DL, 2384 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize), 2385 MachineInstr::FrameDestroy); 2386 } 2387 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2388 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2389 BuildCFI(MBB, AfterPop, DL, 2390 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr), 2391 MachineInstr::FrameDestroy); 2392 --MBBI; 2393 --AfterPop; 2394 } 2395 --MBBI; 2396 } 2397 } 2398 2399 MachineBasicBlock::iterator FirstCSPop = MBBI; 2400 // Skip the callee-saved pop instructions. 2401 while (MBBI != MBB.begin()) { 2402 MachineBasicBlock::iterator PI = std::prev(MBBI); 2403 unsigned Opc = PI->getOpcode(); 2404 2405 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2406 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2407 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2408 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2409 (Opc != X86::ADD64ri32 || !PI->getFlag(MachineInstr::FrameDestroy))) 2410 break; 2411 FirstCSPop = PI; 2412 } 2413 2414 --MBBI; 2415 } 2416 if (ArgBaseReg.isValid()) { 2417 // Restore argument base pointer. 2418 auto *MI = X86FI->getStackPtrSaveMI(); 2419 int FI = MI->getOperand(1).getIndex(); 2420 unsigned MOVrm = Is64Bit ? X86::MOV64rm : X86::MOV32rm; 2421 // movl offset(%ebp), %basereg 2422 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVrm), ArgBaseReg), FI) 2423 .setMIFlag(MachineInstr::FrameDestroy); 2424 } 2425 MBBI = FirstCSPop; 2426 2427 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2428 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2429 2430 if (MBBI != MBB.end()) 2431 DL = MBBI->getDebugLoc(); 2432 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2433 // instruction, merge the two instructions. 2434 if (NumBytes || MFI.hasVarSizedObjects()) 2435 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2436 2437 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2438 // slot before popping them off! Same applies for the case, when stack was 2439 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2440 // will not do realignment or dynamic stack allocation. 2441 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2442 !IsFunclet) { 2443 if (TRI->hasStackRealignment(MF)) 2444 MBBI = FirstCSPop; 2445 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2446 uint64_t LEAAmount = 2447 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2448 2449 if (X86FI->hasSwiftAsyncContext()) 2450 LEAAmount -= 16; 2451 2452 // There are only two legal forms of epilogue: 2453 // - add SEHAllocationSize, %rsp 2454 // - lea SEHAllocationSize(%FramePtr), %rsp 2455 // 2456 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2457 // However, we may use this sequence if we have a frame pointer because the 2458 // effects of the prologue can safely be undone. 2459 if (LEAAmount != 0) { 2460 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2461 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2462 FramePtr, false, LEAAmount); 2463 --MBBI; 2464 } else { 2465 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2466 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2467 .addReg(FramePtr); 2468 --MBBI; 2469 } 2470 } else if (NumBytes) { 2471 // Adjust stack pointer back: ESP += numbytes. 2472 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2473 if (!HasFP && NeedsDwarfCFI) { 2474 // Define the current CFA rule to use the provided offset. 2475 BuildCFI(MBB, MBBI, DL, 2476 MCCFIInstruction::cfiDefCfaOffset( 2477 nullptr, CSSize + TailCallArgReserveSize + SlotSize), 2478 MachineInstr::FrameDestroy); 2479 } 2480 --MBBI; 2481 } 2482 2483 // Windows unwinder will not invoke function's exception handler if IP is 2484 // either in prologue or in epilogue. This behavior causes a problem when a 2485 // call immediately precedes an epilogue, because the return address points 2486 // into the epilogue. To cope with that, we insert an epilogue marker here, 2487 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2488 // final emitted code. 2489 if (NeedsWin64CFI && MF.hasWinCFI()) 2490 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2491 2492 if (!HasFP && NeedsDwarfCFI) { 2493 MBBI = FirstCSPop; 2494 int64_t Offset = -CSSize - SlotSize; 2495 // Mark callee-saved pop instruction. 2496 // Define the current CFA rule to use the provided offset. 2497 while (MBBI != MBB.end()) { 2498 MachineBasicBlock::iterator PI = MBBI; 2499 unsigned Opc = PI->getOpcode(); 2500 ++MBBI; 2501 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2502 Offset += SlotSize; 2503 BuildCFI(MBB, MBBI, DL, 2504 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset), 2505 MachineInstr::FrameDestroy); 2506 } 2507 } 2508 } 2509 2510 // Emit DWARF info specifying the restores of the callee-saved registers. 2511 // For epilogue with return inside or being other block without successor, 2512 // no need to generate .cfi_restore for callee-saved registers. 2513 if (NeedsDwarfCFI && !MBB.succ_empty()) 2514 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2515 2516 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2517 // Add the return addr area delta back since we are not tail calling. 2518 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2519 assert(Offset >= 0 && "TCDelta should never be positive"); 2520 if (Offset) { 2521 // Check for possible merge with preceding ADD instruction. 2522 Offset += mergeSPUpdates(MBB, Terminator, true); 2523 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2524 } 2525 } 2526 2527 // Emit tilerelease for AMX kernel. 2528 if (X86FI->hasVirtualTileReg()) 2529 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2530 } 2531 2532 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2533 int FI, 2534 Register &FrameReg) const { 2535 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2536 2537 bool IsFixed = MFI.isFixedObjectIndex(FI); 2538 // We can't calculate offset from frame pointer if the stack is realigned, 2539 // so enforce usage of stack/base pointer. The base pointer is used when we 2540 // have dynamic allocas in addition to dynamic realignment. 2541 if (TRI->hasBasePointer(MF)) 2542 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2543 else if (TRI->hasStackRealignment(MF)) 2544 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2545 else 2546 FrameReg = TRI->getFrameRegister(MF); 2547 2548 // Offset will hold the offset from the stack pointer at function entry to the 2549 // object. 2550 // We need to factor in additional offsets applied during the prologue to the 2551 // frame, base, and stack pointer depending on which is used. 2552 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2553 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2554 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2555 uint64_t StackSize = MFI.getStackSize(); 2556 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2557 int64_t FPDelta = 0; 2558 2559 // In an x86 interrupt, remove the offset we added to account for the return 2560 // address from any stack object allocated in the caller's frame. Interrupts 2561 // do not have a standard return address. Fixed objects in the current frame, 2562 // such as SSE register spills, should not get this treatment. 2563 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2564 Offset >= 0) { 2565 Offset += getOffsetOfLocalArea(); 2566 } 2567 2568 if (IsWin64Prologue) { 2569 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2570 2571 // Calculate required stack adjustment. 2572 uint64_t FrameSize = StackSize - SlotSize; 2573 // If required, include space for extra hidden slot for stashing base pointer. 2574 if (X86FI->getRestoreBasePointer()) 2575 FrameSize += SlotSize; 2576 uint64_t NumBytes = FrameSize - CSSize; 2577 2578 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2579 if (FI && FI == X86FI->getFAIndex()) 2580 return StackOffset::getFixed(-SEHFrameOffset); 2581 2582 // FPDelta is the offset from the "traditional" FP location of the old base 2583 // pointer followed by return address and the location required by the 2584 // restricted Win64 prologue. 2585 // Add FPDelta to all offsets below that go through the frame pointer. 2586 FPDelta = FrameSize - SEHFrameOffset; 2587 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2588 "FPDelta isn't aligned per the Win64 ABI!"); 2589 } 2590 2591 if (FrameReg == TRI->getFramePtr()) { 2592 // Skip saved EBP/RBP 2593 Offset += SlotSize; 2594 2595 // Account for restricted Windows prologue. 2596 Offset += FPDelta; 2597 2598 // Skip the RETADDR move area 2599 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2600 if (TailCallReturnAddrDelta < 0) 2601 Offset -= TailCallReturnAddrDelta; 2602 2603 return StackOffset::getFixed(Offset); 2604 } 2605 2606 // FrameReg is either the stack pointer or a base pointer. But the base is 2607 // located at the end of the statically known StackSize so the distinction 2608 // doesn't really matter. 2609 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2610 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2611 return StackOffset::getFixed(Offset + StackSize); 2612 } 2613 2614 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2615 Register &FrameReg) const { 2616 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2617 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2618 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2619 const auto it = WinEHXMMSlotInfo.find(FI); 2620 2621 if (it == WinEHXMMSlotInfo.end()) 2622 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2623 2624 FrameReg = TRI->getStackRegister(); 2625 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2626 it->second; 2627 } 2628 2629 StackOffset 2630 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2631 Register &FrameReg, 2632 int Adjustment) const { 2633 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2634 FrameReg = TRI->getStackRegister(); 2635 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2636 getOffsetOfLocalArea() + Adjustment); 2637 } 2638 2639 StackOffset 2640 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2641 int FI, Register &FrameReg, 2642 bool IgnoreSPUpdates) const { 2643 2644 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2645 // Does not include any dynamic realign. 2646 const uint64_t StackSize = MFI.getStackSize(); 2647 // LLVM arranges the stack as follows: 2648 // ... 2649 // ARG2 2650 // ARG1 2651 // RETADDR 2652 // PUSH RBP <-- RBP points here 2653 // PUSH CSRs 2654 // ~~~~~~~ <-- possible stack realignment (non-win64) 2655 // ... 2656 // STACK OBJECTS 2657 // ... <-- RSP after prologue points here 2658 // ~~~~~~~ <-- possible stack realignment (win64) 2659 // 2660 // if (hasVarSizedObjects()): 2661 // ... <-- "base pointer" (ESI/RBX) points here 2662 // DYNAMIC ALLOCAS 2663 // ... <-- RSP points here 2664 // 2665 // Case 1: In the simple case of no stack realignment and no dynamic 2666 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2667 // with fixed offsets from RSP. 2668 // 2669 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2670 // stack objects are addressed with RBP and regular stack objects with RSP. 2671 // 2672 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2673 // to address stack arguments for outgoing calls and nothing else. The "base 2674 // pointer" points to local variables, and RBP points to fixed objects. 2675 // 2676 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2677 // answer we give is relative to the SP after the prologue, and not the 2678 // SP in the middle of the function. 2679 2680 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2681 !STI.isTargetWin64()) 2682 return getFrameIndexReference(MF, FI, FrameReg); 2683 2684 // If !hasReservedCallFrame the function might have SP adjustement in the 2685 // body. So, even though the offset is statically known, it depends on where 2686 // we are in the function. 2687 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2688 return getFrameIndexReference(MF, FI, FrameReg); 2689 2690 // We don't handle tail calls, and shouldn't be seeing them either. 2691 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2692 "we don't handle this case!"); 2693 2694 // This is how the math works out: 2695 // 2696 // %rsp grows (i.e. gets lower) left to right. Each box below is 2697 // one word (eight bytes). Obj0 is the stack slot we're trying to 2698 // get to. 2699 // 2700 // ---------------------------------- 2701 // | BP | Obj0 | Obj1 | ... | ObjN | 2702 // ---------------------------------- 2703 // ^ ^ ^ ^ 2704 // A B C E 2705 // 2706 // A is the incoming stack pointer. 2707 // (B - A) is the local area offset (-8 for x86-64) [1] 2708 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2709 // 2710 // |(E - B)| is the StackSize (absolute value, positive). For a 2711 // stack that grown down, this works out to be (B - E). [3] 2712 // 2713 // E is also the value of %rsp after stack has been set up, and we 2714 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2715 // (C - E) == (C - A) - (B - A) + (B - E) 2716 // { Using [1], [2] and [3] above } 2717 // == getObjectOffset - LocalAreaOffset + StackSize 2718 2719 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2720 } 2721 2722 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2723 MachineFunction &MF, const TargetRegisterInfo *TRI, 2724 std::vector<CalleeSavedInfo> &CSI) const { 2725 MachineFrameInfo &MFI = MF.getFrameInfo(); 2726 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2727 2728 unsigned CalleeSavedFrameSize = 0; 2729 unsigned XMMCalleeSavedFrameSize = 0; 2730 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2731 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2732 2733 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2734 2735 if (TailCallReturnAddrDelta < 0) { 2736 // create RETURNADDR area 2737 // arg 2738 // arg 2739 // RETADDR 2740 // { ... 2741 // RETADDR area 2742 // ... 2743 // } 2744 // [EBP] 2745 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2746 TailCallReturnAddrDelta - SlotSize, true); 2747 } 2748 2749 // Spill the BasePtr if it's used. 2750 if (this->TRI->hasBasePointer(MF)) { 2751 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2752 if (MF.hasEHFunclets()) { 2753 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2754 X86FI->setHasSEHFramePtrSave(true); 2755 X86FI->setSEHFramePtrSaveIndex(FI); 2756 } 2757 } 2758 2759 if (hasFP(MF)) { 2760 // emitPrologue always spills frame register the first thing. 2761 SpillSlotOffset -= SlotSize; 2762 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2763 2764 // The async context lives directly before the frame pointer, and we 2765 // allocate a second slot to preserve stack alignment. 2766 if (X86FI->hasSwiftAsyncContext()) { 2767 SpillSlotOffset -= SlotSize; 2768 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2769 SpillSlotOffset -= SlotSize; 2770 } 2771 2772 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2773 // the frame register, we can delete it from CSI list and not have to worry 2774 // about avoiding it later. 2775 Register FPReg = TRI->getFrameRegister(MF); 2776 for (unsigned i = 0; i < CSI.size(); ++i) { 2777 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2778 CSI.erase(CSI.begin() + i); 2779 break; 2780 } 2781 } 2782 } 2783 2784 // Assign slots for GPRs. It increases frame size. 2785 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2786 Register Reg = I.getReg(); 2787 2788 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2789 continue; 2790 2791 SpillSlotOffset -= SlotSize; 2792 CalleeSavedFrameSize += SlotSize; 2793 2794 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2795 I.setFrameIdx(SlotIndex); 2796 } 2797 2798 // Adjust the offset of spill slot as we know the accurate callee saved frame 2799 // size. 2800 if (X86FI->getRestoreBasePointer()) { 2801 SpillSlotOffset -= SlotSize; 2802 CalleeSavedFrameSize += SlotSize; 2803 2804 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2805 // TODO: saving the slot index is better? 2806 X86FI->setRestoreBasePointer(CalleeSavedFrameSize); 2807 } 2808 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2809 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2810 2811 // Assign slots for XMMs. 2812 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2813 Register Reg = I.getReg(); 2814 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2815 continue; 2816 2817 // If this is k-register make sure we lookup via the largest legal type. 2818 MVT VT = MVT::Other; 2819 if (X86::VK16RegClass.contains(Reg)) 2820 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2821 2822 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2823 unsigned Size = TRI->getSpillSize(*RC); 2824 Align Alignment = TRI->getSpillAlign(*RC); 2825 // ensure alignment 2826 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2827 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2828 2829 // spill into slot 2830 SpillSlotOffset -= Size; 2831 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2832 I.setFrameIdx(SlotIndex); 2833 MFI.ensureMaxAlignment(Alignment); 2834 2835 // Save the start offset and size of XMM in stack frame for funclets. 2836 if (X86::VR128RegClass.contains(Reg)) { 2837 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2838 XMMCalleeSavedFrameSize += Size; 2839 } 2840 } 2841 2842 return true; 2843 } 2844 2845 bool X86FrameLowering::spillCalleeSavedRegisters( 2846 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2847 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2848 DebugLoc DL = MBB.findDebugLoc(MI); 2849 2850 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2851 // for us, and there are no XMM CSRs on Win32. 2852 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2853 return true; 2854 2855 // Push GPRs. It increases frame size. 2856 const MachineFunction &MF = *MBB.getParent(); 2857 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2858 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2859 Register Reg = I.getReg(); 2860 2861 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2862 continue; 2863 2864 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2865 bool isLiveIn = MRI.isLiveIn(Reg); 2866 if (!isLiveIn) 2867 MBB.addLiveIn(Reg); 2868 2869 // Decide whether we can add a kill flag to the use. 2870 bool CanKill = !isLiveIn; 2871 // Check if any subregister is live-in 2872 if (CanKill) { 2873 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2874 if (MRI.isLiveIn(*AReg)) { 2875 CanKill = false; 2876 break; 2877 } 2878 } 2879 } 2880 2881 // Do not set a kill flag on values that are also marked as live-in. This 2882 // happens with the @llvm-returnaddress intrinsic and with arguments 2883 // passed in callee saved registers. 2884 // Omitting the kill flags is conservatively correct even if the live-in 2885 // is not used after all. 2886 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2887 .setMIFlag(MachineInstr::FrameSetup); 2888 } 2889 2890 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2891 if (X86FI->getRestoreBasePointer()) { 2892 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2893 Register BaseReg = this->TRI->getBaseRegister(); 2894 BuildMI(MBB, MI, DL, TII.get(Opc)) 2895 .addReg(BaseReg, getKillRegState(true)) 2896 .setMIFlag(MachineInstr::FrameSetup); 2897 } 2898 2899 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2900 // It can be done by spilling XMMs to stack frame. 2901 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2902 Register Reg = I.getReg(); 2903 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2904 continue; 2905 2906 // If this is k-register make sure we lookup via the largest legal type. 2907 MVT VT = MVT::Other; 2908 if (X86::VK16RegClass.contains(Reg)) 2909 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2910 2911 // Add the callee-saved register as live-in. It's killed at the spill. 2912 MBB.addLiveIn(Reg); 2913 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2914 2915 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI, 2916 Register()); 2917 --MI; 2918 MI->setFlag(MachineInstr::FrameSetup); 2919 ++MI; 2920 } 2921 2922 return true; 2923 } 2924 2925 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2926 MachineBasicBlock::iterator MBBI, 2927 MachineInstr *CatchRet) const { 2928 // SEH shouldn't use catchret. 2929 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2930 MBB.getParent()->getFunction().getPersonalityFn())) && 2931 "SEH should not use CATCHRET"); 2932 const DebugLoc &DL = CatchRet->getDebugLoc(); 2933 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2934 2935 // Fill EAX/RAX with the address of the target block. 2936 if (STI.is64Bit()) { 2937 // LEA64r CatchRetTarget(%rip), %rax 2938 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2939 .addReg(X86::RIP) 2940 .addImm(0) 2941 .addReg(0) 2942 .addMBB(CatchRetTarget) 2943 .addReg(0); 2944 } else { 2945 // MOV32ri $CatchRetTarget, %eax 2946 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2947 .addMBB(CatchRetTarget); 2948 } 2949 2950 // Record that we've taken the address of CatchRetTarget and no longer just 2951 // reference it in a terminator. 2952 CatchRetTarget->setMachineBlockAddressTaken(); 2953 } 2954 2955 bool X86FrameLowering::restoreCalleeSavedRegisters( 2956 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2957 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2958 if (CSI.empty()) 2959 return false; 2960 2961 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2962 // Don't restore CSRs in 32-bit EH funclets. Matches 2963 // spillCalleeSavedRegisters. 2964 if (STI.is32Bit()) 2965 return true; 2966 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2967 // funclets. emitEpilogue transforms these to normal jumps. 2968 if (MI->getOpcode() == X86::CATCHRET) { 2969 const Function &F = MBB.getParent()->getFunction(); 2970 bool IsSEH = isAsynchronousEHPersonality( 2971 classifyEHPersonality(F.getPersonalityFn())); 2972 if (IsSEH) 2973 return true; 2974 } 2975 } 2976 2977 DebugLoc DL = MBB.findDebugLoc(MI); 2978 2979 // Reload XMMs from stack frame. 2980 for (const CalleeSavedInfo &I : CSI) { 2981 Register Reg = I.getReg(); 2982 if (X86::GR64RegClass.contains(Reg) || 2983 X86::GR32RegClass.contains(Reg)) 2984 continue; 2985 2986 // If this is k-register make sure we lookup via the largest legal type. 2987 MVT VT = MVT::Other; 2988 if (X86::VK16RegClass.contains(Reg)) 2989 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2990 2991 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2992 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI, 2993 Register()); 2994 } 2995 2996 // Clear the stack slot for spill base pointer register. 2997 MachineFunction &MF = *MBB.getParent(); 2998 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2999 if (X86FI->getRestoreBasePointer()) { 3000 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 3001 Register BaseReg = this->TRI->getBaseRegister(); 3002 BuildMI(MBB, MI, DL, TII.get(Opc), BaseReg) 3003 .setMIFlag(MachineInstr::FrameDestroy); 3004 } 3005 3006 // POP GPRs. 3007 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 3008 for (const CalleeSavedInfo &I : CSI) { 3009 Register Reg = I.getReg(); 3010 if (!X86::GR64RegClass.contains(Reg) && 3011 !X86::GR32RegClass.contains(Reg)) 3012 continue; 3013 3014 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 3015 .setMIFlag(MachineInstr::FrameDestroy); 3016 } 3017 return true; 3018 } 3019 3020 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 3021 BitVector &SavedRegs, 3022 RegScavenger *RS) const { 3023 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 3024 3025 // Spill the BasePtr if it's used. 3026 if (TRI->hasBasePointer(MF)){ 3027 Register BasePtr = TRI->getBaseRegister(); 3028 if (STI.isTarget64BitILP32()) 3029 BasePtr = getX86SubSuperRegister(BasePtr, 64); 3030 SavedRegs.set(BasePtr); 3031 } 3032 } 3033 3034 static bool 3035 HasNestArgument(const MachineFunction *MF) { 3036 const Function &F = MF->getFunction(); 3037 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 3038 I != E; I++) { 3039 if (I->hasNestAttr() && !I->use_empty()) 3040 return true; 3041 } 3042 return false; 3043 } 3044 3045 /// GetScratchRegister - Get a temp register for performing work in the 3046 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 3047 /// and the properties of the function either one or two registers will be 3048 /// needed. Set primary to true for the first register, false for the second. 3049 static unsigned 3050 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 3051 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 3052 3053 // Erlang stuff. 3054 if (CallingConvention == CallingConv::HiPE) { 3055 if (Is64Bit) 3056 return Primary ? X86::R14 : X86::R13; 3057 else 3058 return Primary ? X86::EBX : X86::EDI; 3059 } 3060 3061 if (Is64Bit) { 3062 if (IsLP64) 3063 return Primary ? X86::R11 : X86::R12; 3064 else 3065 return Primary ? X86::R11D : X86::R12D; 3066 } 3067 3068 bool IsNested = HasNestArgument(&MF); 3069 3070 if (CallingConvention == CallingConv::X86_FastCall || 3071 CallingConvention == CallingConv::Fast || 3072 CallingConvention == CallingConv::Tail) { 3073 if (IsNested) 3074 report_fatal_error("Segmented stacks does not support fastcall with " 3075 "nested function."); 3076 return Primary ? X86::EAX : X86::ECX; 3077 } 3078 if (IsNested) 3079 return Primary ? X86::EDX : X86::EAX; 3080 return Primary ? X86::ECX : X86::EAX; 3081 } 3082 3083 // The stack limit in the TCB is set to this many bytes above the actual stack 3084 // limit. 3085 static const uint64_t kSplitStackAvailable = 256; 3086 3087 void X86FrameLowering::adjustForSegmentedStacks( 3088 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3089 MachineFrameInfo &MFI = MF.getFrameInfo(); 3090 uint64_t StackSize; 3091 unsigned TlsReg, TlsOffset; 3092 DebugLoc DL; 3093 3094 // To support shrink-wrapping we would need to insert the new blocks 3095 // at the right place and update the branches to PrologueMBB. 3096 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3097 3098 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3099 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3100 "Scratch register is live-in"); 3101 3102 if (MF.getFunction().isVarArg()) 3103 report_fatal_error("Segmented stacks do not support vararg functions."); 3104 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 3105 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 3106 !STI.isTargetDragonFly()) 3107 report_fatal_error("Segmented stacks not supported on this platform."); 3108 3109 // Eventually StackSize will be calculated by a link-time pass; which will 3110 // also decide whether checking code needs to be injected into this particular 3111 // prologue. 3112 StackSize = MFI.getStackSize(); 3113 3114 if (!MFI.needsSplitStackProlog()) 3115 return; 3116 3117 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 3118 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 3119 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3120 bool IsNested = false; 3121 3122 // We need to know if the function has a nest argument only in 64 bit mode. 3123 if (Is64Bit) 3124 IsNested = HasNestArgument(&MF); 3125 3126 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 3127 // allocMBB needs to be last (terminating) instruction. 3128 3129 for (const auto &LI : PrologueMBB.liveins()) { 3130 allocMBB->addLiveIn(LI); 3131 checkMBB->addLiveIn(LI); 3132 } 3133 3134 if (IsNested) 3135 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 3136 3137 MF.push_front(allocMBB); 3138 MF.push_front(checkMBB); 3139 3140 // When the frame size is less than 256 we just compare the stack 3141 // boundary directly to the value of the stack pointer, per gcc. 3142 bool CompareStackPointer = StackSize < kSplitStackAvailable; 3143 3144 // Read the limit off the current stacklet off the stack_guard location. 3145 if (Is64Bit) { 3146 if (STI.isTargetLinux()) { 3147 TlsReg = X86::FS; 3148 TlsOffset = IsLP64 ? 0x70 : 0x40; 3149 } else if (STI.isTargetDarwin()) { 3150 TlsReg = X86::GS; 3151 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 3152 } else if (STI.isTargetWin64()) { 3153 TlsReg = X86::GS; 3154 TlsOffset = 0x28; // pvArbitrary, reserved for application use 3155 } else if (STI.isTargetFreeBSD()) { 3156 TlsReg = X86::FS; 3157 TlsOffset = 0x18; 3158 } else if (STI.isTargetDragonFly()) { 3159 TlsReg = X86::FS; 3160 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 3161 } else { 3162 report_fatal_error("Segmented stacks not supported on this platform."); 3163 } 3164 3165 if (CompareStackPointer) 3166 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 3167 else 3168 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 3169 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3170 3171 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 3172 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3173 } else { 3174 if (STI.isTargetLinux()) { 3175 TlsReg = X86::GS; 3176 TlsOffset = 0x30; 3177 } else if (STI.isTargetDarwin()) { 3178 TlsReg = X86::GS; 3179 TlsOffset = 0x48 + 90*4; 3180 } else if (STI.isTargetWin32()) { 3181 TlsReg = X86::FS; 3182 TlsOffset = 0x14; // pvArbitrary, reserved for application use 3183 } else if (STI.isTargetDragonFly()) { 3184 TlsReg = X86::FS; 3185 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 3186 } else if (STI.isTargetFreeBSD()) { 3187 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 3188 } else { 3189 report_fatal_error("Segmented stacks not supported on this platform."); 3190 } 3191 3192 if (CompareStackPointer) 3193 ScratchReg = X86::ESP; 3194 else 3195 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 3196 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 3197 3198 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 3199 STI.isTargetDragonFly()) { 3200 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 3201 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 3202 } else if (STI.isTargetDarwin()) { 3203 3204 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 3205 unsigned ScratchReg2; 3206 bool SaveScratch2; 3207 if (CompareStackPointer) { 3208 // The primary scratch register is available for holding the TLS offset. 3209 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3210 SaveScratch2 = false; 3211 } else { 3212 // Need to use a second register to hold the TLS offset 3213 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 3214 3215 // Unfortunately, with fastcc the second scratch register may hold an 3216 // argument. 3217 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 3218 } 3219 3220 // If Scratch2 is live-in then it needs to be saved. 3221 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 3222 "Scratch register is live-in and not saved"); 3223 3224 if (SaveScratch2) 3225 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 3226 .addReg(ScratchReg2, RegState::Kill); 3227 3228 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 3229 .addImm(TlsOffset); 3230 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 3231 .addReg(ScratchReg) 3232 .addReg(ScratchReg2).addImm(1).addReg(0) 3233 .addImm(0) 3234 .addReg(TlsReg); 3235 3236 if (SaveScratch2) 3237 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 3238 } 3239 } 3240 3241 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 3242 // It jumps to normal execution of the function body. 3243 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 3244 3245 // On 32 bit we first push the arguments size and then the frame size. On 64 3246 // bit, we pass the stack frame size in r10 and the argument size in r11. 3247 if (Is64Bit) { 3248 // Functions with nested arguments use R10, so it needs to be saved across 3249 // the call to _morestack 3250 3251 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 3252 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 3253 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 3254 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 3255 3256 if (IsNested) 3257 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 3258 3259 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 3260 .addImm(StackSize); 3261 BuildMI(allocMBB, DL, 3262 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 3263 Reg11) 3264 .addImm(X86FI->getArgumentStackSize()); 3265 } else { 3266 BuildMI(allocMBB, DL, TII.get(X86::PUSH32i)) 3267 .addImm(X86FI->getArgumentStackSize()); 3268 BuildMI(allocMBB, DL, TII.get(X86::PUSH32i)) 3269 .addImm(StackSize); 3270 } 3271 3272 // __morestack is in libgcc 3273 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3274 // Under the large code model, we cannot assume that __morestack lives 3275 // within 2^31 bytes of the call site, so we cannot use pc-relative 3276 // addressing. We cannot perform the call via a temporary register, 3277 // as the rax register may be used to store the static chain, and all 3278 // other suitable registers may be either callee-save or used for 3279 // parameter passing. We cannot use the stack at this point either 3280 // because __morestack manipulates the stack directly. 3281 // 3282 // To avoid these issues, perform an indirect call via a read-only memory 3283 // location containing the address. 3284 // 3285 // This solution is not perfect, as it assumes that the .rodata section 3286 // is laid out within 2^31 bytes of each function body, but this seems 3287 // to be sufficient for JIT. 3288 // FIXME: Add retpoline support and remove the error here.. 3289 if (STI.useIndirectThunkCalls()) 3290 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3291 "code model and thunks not yet implemented."); 3292 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3293 .addReg(X86::RIP) 3294 .addImm(0) 3295 .addReg(0) 3296 .addExternalSymbol("__morestack_addr") 3297 .addReg(0); 3298 } else { 3299 if (Is64Bit) 3300 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3301 .addExternalSymbol("__morestack"); 3302 else 3303 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3304 .addExternalSymbol("__morestack"); 3305 } 3306 3307 if (IsNested) 3308 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3309 else 3310 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3311 3312 allocMBB->addSuccessor(&PrologueMBB); 3313 3314 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3315 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3316 3317 #ifdef EXPENSIVE_CHECKS 3318 MF.verify(); 3319 #endif 3320 } 3321 3322 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3323 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3324 /// to fields it needs, through a named metadata node "hipe.literals" containing 3325 /// name-value pairs. 3326 static unsigned getHiPELiteral( 3327 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3328 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3329 MDNode *Node = HiPELiteralsMD->getOperand(i); 3330 if (Node->getNumOperands() != 2) continue; 3331 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3332 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3333 if (!NodeName || !NodeVal) continue; 3334 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3335 if (ValConst && NodeName->getString() == LiteralName) { 3336 return ValConst->getZExtValue(); 3337 } 3338 } 3339 3340 report_fatal_error("HiPE literal " + LiteralName 3341 + " required but not provided"); 3342 } 3343 3344 // Return true if there are no non-ehpad successors to MBB and there are no 3345 // non-meta instructions between MBBI and MBB.end(). 3346 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3347 MachineBasicBlock::const_iterator MBBI) { 3348 return llvm::all_of( 3349 MBB.successors(), 3350 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3351 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3352 return MI.isMetaInstruction(); 3353 }); 3354 } 3355 3356 /// Erlang programs may need a special prologue to handle the stack size they 3357 /// might need at runtime. That is because Erlang/OTP does not implement a C 3358 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3359 /// (for more information see Eric Stenman's Ph.D. thesis: 3360 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3361 /// 3362 /// CheckStack: 3363 /// temp0 = sp - MaxStack 3364 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3365 /// OldStart: 3366 /// ... 3367 /// IncStack: 3368 /// call inc_stack # doubles the stack space 3369 /// temp0 = sp - MaxStack 3370 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3371 void X86FrameLowering::adjustForHiPEPrologue( 3372 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3373 MachineFrameInfo &MFI = MF.getFrameInfo(); 3374 DebugLoc DL; 3375 3376 // To support shrink-wrapping we would need to insert the new blocks 3377 // at the right place and update the branches to PrologueMBB. 3378 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3379 3380 // HiPE-specific values 3381 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3382 ->getNamedMetadata("hipe.literals"); 3383 if (!HiPELiteralsMD) 3384 report_fatal_error( 3385 "Can't generate HiPE prologue without runtime parameters"); 3386 const unsigned HipeLeafWords 3387 = getHiPELiteral(HiPELiteralsMD, 3388 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3389 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3390 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3391 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3392 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3393 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3394 3395 assert(STI.isTargetLinux() && 3396 "HiPE prologue is only supported on Linux operating systems."); 3397 3398 // Compute the largest caller's frame that is needed to fit the callees' 3399 // frames. This 'MaxStack' is computed from: 3400 // 3401 // a) the fixed frame size, which is the space needed for all spilled temps, 3402 // b) outgoing on-stack parameter areas, and 3403 // c) the minimum stack space this function needs to make available for the 3404 // functions it calls (a tunable ABI property). 3405 if (MFI.hasCalls()) { 3406 unsigned MoreStackForCalls = 0; 3407 3408 for (auto &MBB : MF) { 3409 for (auto &MI : MBB) { 3410 if (!MI.isCall()) 3411 continue; 3412 3413 // Get callee operand. 3414 const MachineOperand &MO = MI.getOperand(0); 3415 3416 // Only take account of global function calls (no closures etc.). 3417 if (!MO.isGlobal()) 3418 continue; 3419 3420 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3421 if (!F) 3422 continue; 3423 3424 // Do not update 'MaxStack' for primitive and built-in functions 3425 // (encoded with names either starting with "erlang."/"bif_" or not 3426 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3427 // "_", such as the BIF "suspend_0") as they are executed on another 3428 // stack. 3429 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3430 F->getName().find_first_of("._") == StringRef::npos) 3431 continue; 3432 3433 unsigned CalleeStkArity = 3434 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3435 if (HipeLeafWords - 1 > CalleeStkArity) 3436 MoreStackForCalls = std::max(MoreStackForCalls, 3437 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3438 } 3439 } 3440 MaxStack += MoreStackForCalls; 3441 } 3442 3443 // If the stack frame needed is larger than the guaranteed then runtime checks 3444 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3445 if (MaxStack > Guaranteed) { 3446 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3447 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3448 3449 for (const auto &LI : PrologueMBB.liveins()) { 3450 stackCheckMBB->addLiveIn(LI); 3451 incStackMBB->addLiveIn(LI); 3452 } 3453 3454 MF.push_front(incStackMBB); 3455 MF.push_front(stackCheckMBB); 3456 3457 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3458 unsigned LEAop, CMPop, CALLop; 3459 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3460 if (Is64Bit) { 3461 SPReg = X86::RSP; 3462 PReg = X86::RBP; 3463 LEAop = X86::LEA64r; 3464 CMPop = X86::CMP64rm; 3465 CALLop = X86::CALL64pcrel32; 3466 } else { 3467 SPReg = X86::ESP; 3468 PReg = X86::EBP; 3469 LEAop = X86::LEA32r; 3470 CMPop = X86::CMP32rm; 3471 CALLop = X86::CALLpcrel32; 3472 } 3473 3474 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3475 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3476 "HiPE prologue scratch register is live-in"); 3477 3478 // Create new MBB for StackCheck: 3479 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3480 SPReg, false, -MaxStack); 3481 // SPLimitOffset is in a fixed heap location (pointed by BP). 3482 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3483 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3484 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3485 3486 // Create new MBB for IncStack: 3487 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3488 addExternalSymbol("inc_stack_0"); 3489 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3490 SPReg, false, -MaxStack); 3491 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3492 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3493 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3494 3495 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3496 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3497 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3498 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3499 } 3500 #ifdef EXPENSIVE_CHECKS 3501 MF.verify(); 3502 #endif 3503 } 3504 3505 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3506 MachineBasicBlock::iterator MBBI, 3507 const DebugLoc &DL, 3508 int Offset) const { 3509 if (Offset <= 0) 3510 return false; 3511 3512 if (Offset % SlotSize) 3513 return false; 3514 3515 int NumPops = Offset / SlotSize; 3516 // This is only worth it if we have at most 2 pops. 3517 if (NumPops != 1 && NumPops != 2) 3518 return false; 3519 3520 // Handle only the trivial case where the adjustment directly follows 3521 // a call. This is the most common one, anyway. 3522 if (MBBI == MBB.begin()) 3523 return false; 3524 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3525 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3526 return false; 3527 3528 unsigned Regs[2]; 3529 unsigned FoundRegs = 0; 3530 3531 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3532 const MachineOperand &RegMask = Prev->getOperand(1); 3533 3534 auto &RegClass = 3535 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3536 // Try to find up to NumPops free registers. 3537 for (auto Candidate : RegClass) { 3538 // Poor man's liveness: 3539 // Since we're immediately after a call, any register that is clobbered 3540 // by the call and not defined by it can be considered dead. 3541 if (!RegMask.clobbersPhysReg(Candidate)) 3542 continue; 3543 3544 // Don't clobber reserved registers 3545 if (MRI.isReserved(Candidate)) 3546 continue; 3547 3548 bool IsDef = false; 3549 for (const MachineOperand &MO : Prev->implicit_operands()) { 3550 if (MO.isReg() && MO.isDef() && 3551 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3552 IsDef = true; 3553 break; 3554 } 3555 } 3556 3557 if (IsDef) 3558 continue; 3559 3560 Regs[FoundRegs++] = Candidate; 3561 if (FoundRegs == (unsigned)NumPops) 3562 break; 3563 } 3564 3565 if (FoundRegs == 0) 3566 return false; 3567 3568 // If we found only one free register, but need two, reuse the same one twice. 3569 while (FoundRegs < (unsigned)NumPops) 3570 Regs[FoundRegs++] = Regs[0]; 3571 3572 for (int i = 0; i < NumPops; ++i) 3573 BuildMI(MBB, MBBI, DL, 3574 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3575 3576 return true; 3577 } 3578 3579 MachineBasicBlock::iterator X86FrameLowering:: 3580 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3581 MachineBasicBlock::iterator I) const { 3582 bool reserveCallFrame = hasReservedCallFrame(MF); 3583 unsigned Opcode = I->getOpcode(); 3584 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3585 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3586 uint64_t Amount = TII.getFrameSize(*I); 3587 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3588 I = MBB.erase(I); 3589 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3590 3591 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3592 // typically because the function is marked noreturn (abort, throw, 3593 // assert_fail, etc). 3594 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3595 return I; 3596 3597 if (!reserveCallFrame) { 3598 // If the stack pointer can be changed after prologue, turn the 3599 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3600 // adjcallstackdown instruction into 'add ESP, <amt>' 3601 3602 // We need to keep the stack aligned properly. To do this, we round the 3603 // amount of space needed for the outgoing arguments up to the next 3604 // alignment boundary. 3605 Amount = alignTo(Amount, getStackAlign()); 3606 3607 const Function &F = MF.getFunction(); 3608 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3609 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3610 3611 // If we have any exception handlers in this function, and we adjust 3612 // the SP before calls, we may need to indicate this to the unwinder 3613 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3614 // Amount == 0, because the preceding function may have set a non-0 3615 // GNU_ARGS_SIZE. 3616 // TODO: We don't need to reset this between subsequent functions, 3617 // if it didn't change. 3618 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3619 3620 if (HasDwarfEHHandlers && !isDestroy && 3621 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3622 BuildCFI(MBB, InsertPos, DL, 3623 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3624 3625 if (Amount == 0) 3626 return I; 3627 3628 // Factor out the amount that gets handled inside the sequence 3629 // (Pushes of argument for frame setup, callee pops for frame destroy) 3630 Amount -= InternalAmt; 3631 3632 // TODO: This is needed only if we require precise CFA. 3633 // If this is a callee-pop calling convention, emit a CFA adjust for 3634 // the amount the callee popped. 3635 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3636 BuildCFI(MBB, InsertPos, DL, 3637 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3638 3639 // Add Amount to SP to destroy a frame, or subtract to setup. 3640 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3641 3642 if (StackAdjustment) { 3643 // Merge with any previous or following adjustment instruction. Note: the 3644 // instructions merged with here do not have CFI, so their stack 3645 // adjustments do not feed into CfaAdjustment. 3646 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3647 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3648 3649 if (StackAdjustment) { 3650 if (!(F.hasMinSize() && 3651 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3652 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3653 /*InEpilogue=*/false); 3654 } 3655 } 3656 3657 if (DwarfCFI && !hasFP(MF)) { 3658 // If we don't have FP, but need to generate unwind information, 3659 // we need to set the correct CFA offset after the stack adjustment. 3660 // How much we adjust the CFA offset depends on whether we're emitting 3661 // CFI only for EH purposes or for debugging. EH only requires the CFA 3662 // offset to be correct at each call site, while for debugging we want 3663 // it to be more precise. 3664 3665 int64_t CfaAdjustment = -StackAdjustment; 3666 // TODO: When not using precise CFA, we also need to adjust for the 3667 // InternalAmt here. 3668 if (CfaAdjustment) { 3669 BuildCFI(MBB, InsertPos, DL, 3670 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3671 CfaAdjustment)); 3672 } 3673 } 3674 3675 return I; 3676 } 3677 3678 if (InternalAmt) { 3679 MachineBasicBlock::iterator CI = I; 3680 MachineBasicBlock::iterator B = MBB.begin(); 3681 while (CI != B && !std::prev(CI)->isCall()) 3682 --CI; 3683 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3684 } 3685 3686 return I; 3687 } 3688 3689 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3690 assert(MBB.getParent() && "Block is not attached to a function!"); 3691 const MachineFunction &MF = *MBB.getParent(); 3692 if (!MBB.isLiveIn(X86::EFLAGS)) 3693 return true; 3694 3695 // If stack probes have to loop inline or call, that will clobber EFLAGS. 3696 // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock. 3697 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 3698 const X86TargetLowering &TLI = *STI.getTargetLowering(); 3699 if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF)) 3700 return false; 3701 3702 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3703 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3704 } 3705 3706 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3707 assert(MBB.getParent() && "Block is not attached to a function!"); 3708 3709 // Win64 has strict requirements in terms of epilogue and we are 3710 // not taking a chance at messing with them. 3711 // I.e., unless this block is already an exit block, we can't use 3712 // it as an epilogue. 3713 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3714 return false; 3715 3716 // Swift async context epilogue has a BTR instruction that clobbers parts of 3717 // EFLAGS. 3718 const MachineFunction &MF = *MBB.getParent(); 3719 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3720 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3721 3722 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3723 return true; 3724 3725 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3726 // clobbers the EFLAGS. Check that we do not need to preserve it, 3727 // otherwise, conservatively assume this is not 3728 // safe to insert the epilogue here. 3729 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3730 } 3731 3732 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3733 // If we may need to emit frameless compact unwind information, give 3734 // up as this is currently broken: PR25614. 3735 bool CompactUnwind = 3736 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3737 nullptr; 3738 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3739 !CompactUnwind) && 3740 // The lowering of segmented stack and HiPE only support entry 3741 // blocks as prologue blocks: PR26107. This limitation may be 3742 // lifted if we fix: 3743 // - adjustForSegmentedStacks 3744 // - adjustForHiPEPrologue 3745 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3746 !MF.shouldSplitStack(); 3747 } 3748 3749 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3750 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3751 const DebugLoc &DL, bool RestoreSP) const { 3752 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3753 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3754 assert(STI.is32Bit() && !Uses64BitFramePtr && 3755 "restoring EBP/ESI on non-32-bit target"); 3756 3757 MachineFunction &MF = *MBB.getParent(); 3758 Register FramePtr = TRI->getFrameRegister(MF); 3759 Register BasePtr = TRI->getBaseRegister(); 3760 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3761 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3762 MachineFrameInfo &MFI = MF.getFrameInfo(); 3763 3764 // FIXME: Don't set FrameSetup flag in catchret case. 3765 3766 int FI = FuncInfo.EHRegNodeFrameIndex; 3767 int EHRegSize = MFI.getObjectSize(FI); 3768 3769 if (RestoreSP) { 3770 // MOV32rm -EHRegSize(%ebp), %esp 3771 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3772 X86::EBP, true, -EHRegSize) 3773 .setMIFlag(MachineInstr::FrameSetup); 3774 } 3775 3776 Register UsedReg; 3777 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3778 int EndOffset = -EHRegOffset - EHRegSize; 3779 FuncInfo.EHRegNodeEndOffset = EndOffset; 3780 3781 if (UsedReg == FramePtr) { 3782 // ADD $offset, %ebp 3783 unsigned ADDri = getADDriOpcode(false); 3784 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3785 .addReg(FramePtr) 3786 .addImm(EndOffset) 3787 .setMIFlag(MachineInstr::FrameSetup) 3788 ->getOperand(3) 3789 .setIsDead(); 3790 assert(EndOffset >= 0 && 3791 "end of registration object above normal EBP position!"); 3792 } else if (UsedReg == BasePtr) { 3793 // LEA offset(%ebp), %esi 3794 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3795 FramePtr, false, EndOffset) 3796 .setMIFlag(MachineInstr::FrameSetup); 3797 // MOV32rm SavedEBPOffset(%esi), %ebp 3798 assert(X86FI->getHasSEHFramePtrSave()); 3799 int Offset = 3800 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3801 .getFixed(); 3802 assert(UsedReg == BasePtr); 3803 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3804 UsedReg, true, Offset) 3805 .setMIFlag(MachineInstr::FrameSetup); 3806 } else { 3807 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3808 } 3809 return MBBI; 3810 } 3811 3812 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3813 return TRI->getSlotSize(); 3814 } 3815 3816 Register 3817 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3818 return StackPtr; 3819 } 3820 3821 TargetFrameLowering::DwarfFrameBase 3822 X86FrameLowering::getDwarfFrameBase(const MachineFunction &MF) const { 3823 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 3824 Register FrameRegister = RI->getFrameRegister(MF); 3825 if (getInitialCFARegister(MF) == FrameRegister && 3826 MF.getInfo<X86MachineFunctionInfo>()->hasCFIAdjustCfa()) { 3827 DwarfFrameBase FrameBase; 3828 FrameBase.Kind = DwarfFrameBase::CFA; 3829 FrameBase.Location.Offset = 3830 -MF.getFrameInfo().getStackSize() - getInitialCFAOffset(MF); 3831 return FrameBase; 3832 } 3833 3834 return DwarfFrameBase{DwarfFrameBase::Register, {FrameRegister}}; 3835 } 3836 3837 namespace { 3838 // Struct used by orderFrameObjects to help sort the stack objects. 3839 struct X86FrameSortingObject { 3840 bool IsValid = false; // true if we care about this Object. 3841 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3842 unsigned ObjectSize = 0; // Size of Object in bytes. 3843 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3844 unsigned ObjectNumUses = 0; // Object static number of uses. 3845 }; 3846 3847 // The comparison function we use for std::sort to order our local 3848 // stack symbols. The current algorithm is to use an estimated 3849 // "density". This takes into consideration the size and number of 3850 // uses each object has in order to roughly minimize code size. 3851 // So, for example, an object of size 16B that is referenced 5 times 3852 // will get higher priority than 4 4B objects referenced 1 time each. 3853 // It's not perfect and we may be able to squeeze a few more bytes out of 3854 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3855 // fringe end can have special consideration, given their size is less 3856 // important, etc.), but the algorithmic complexity grows too much to be 3857 // worth the extra gains we get. This gets us pretty close. 3858 // The final order leaves us with objects with highest priority going 3859 // at the end of our list. 3860 struct X86FrameSortingComparator { 3861 inline bool operator()(const X86FrameSortingObject &A, 3862 const X86FrameSortingObject &B) const { 3863 uint64_t DensityAScaled, DensityBScaled; 3864 3865 // For consistency in our comparison, all invalid objects are placed 3866 // at the end. This also allows us to stop walking when we hit the 3867 // first invalid item after it's all sorted. 3868 if (!A.IsValid) 3869 return false; 3870 if (!B.IsValid) 3871 return true; 3872 3873 // The density is calculated by doing : 3874 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3875 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3876 // Since this approach may cause inconsistencies in 3877 // the floating point <, >, == comparisons, depending on the floating 3878 // point model with which the compiler was built, we're going 3879 // to scale both sides by multiplying with 3880 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3881 // the division and, with it, the need for any floating point 3882 // arithmetic. 3883 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3884 static_cast<uint64_t>(B.ObjectSize); 3885 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3886 static_cast<uint64_t>(A.ObjectSize); 3887 3888 // If the two densities are equal, prioritize highest alignment 3889 // objects. This allows for similar alignment objects 3890 // to be packed together (given the same density). 3891 // There's room for improvement here, also, since we can pack 3892 // similar alignment (different density) objects next to each 3893 // other to save padding. This will also require further 3894 // complexity/iterations, and the overall gain isn't worth it, 3895 // in general. Something to keep in mind, though. 3896 if (DensityAScaled == DensityBScaled) 3897 return A.ObjectAlignment < B.ObjectAlignment; 3898 3899 return DensityAScaled < DensityBScaled; 3900 } 3901 }; 3902 } // namespace 3903 3904 // Order the symbols in the local stack. 3905 // We want to place the local stack objects in some sort of sensible order. 3906 // The heuristic we use is to try and pack them according to static number 3907 // of uses and size of object in order to minimize code size. 3908 void X86FrameLowering::orderFrameObjects( 3909 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3910 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3911 3912 // Don't waste time if there's nothing to do. 3913 if (ObjectsToAllocate.empty()) 3914 return; 3915 3916 // Create an array of all MFI objects. We won't need all of these 3917 // objects, but we're going to create a full array of them to make 3918 // it easier to index into when we're counting "uses" down below. 3919 // We want to be able to easily/cheaply access an object by simply 3920 // indexing into it, instead of having to search for it every time. 3921 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3922 3923 // Walk the objects we care about and mark them as such in our working 3924 // struct. 3925 for (auto &Obj : ObjectsToAllocate) { 3926 SortingObjects[Obj].IsValid = true; 3927 SortingObjects[Obj].ObjectIndex = Obj; 3928 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3929 // Set the size. 3930 int ObjectSize = MFI.getObjectSize(Obj); 3931 if (ObjectSize == 0) 3932 // Variable size. Just use 4. 3933 SortingObjects[Obj].ObjectSize = 4; 3934 else 3935 SortingObjects[Obj].ObjectSize = ObjectSize; 3936 } 3937 3938 // Count the number of uses for each object. 3939 for (auto &MBB : MF) { 3940 for (auto &MI : MBB) { 3941 if (MI.isDebugInstr()) 3942 continue; 3943 for (const MachineOperand &MO : MI.operands()) { 3944 // Check to see if it's a local stack symbol. 3945 if (!MO.isFI()) 3946 continue; 3947 int Index = MO.getIndex(); 3948 // Check to see if it falls within our range, and is tagged 3949 // to require ordering. 3950 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3951 SortingObjects[Index].IsValid) 3952 SortingObjects[Index].ObjectNumUses++; 3953 } 3954 } 3955 } 3956 3957 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3958 // info). 3959 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3960 3961 // Now modify the original list to represent the final order that 3962 // we want. The order will depend on whether we're going to access them 3963 // from the stack pointer or the frame pointer. For SP, the list should 3964 // end up with the END containing objects that we want with smaller offsets. 3965 // For FP, it should be flipped. 3966 int i = 0; 3967 for (auto &Obj : SortingObjects) { 3968 // All invalid items are sorted at the end, so it's safe to stop. 3969 if (!Obj.IsValid) 3970 break; 3971 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3972 } 3973 3974 // Flip it if we're accessing off of the FP. 3975 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3976 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3977 } 3978 3979 3980 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3981 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3982 unsigned Offset = 16; 3983 // RBP is immediately pushed. 3984 Offset += SlotSize; 3985 // All callee-saved registers are then pushed. 3986 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3987 // Every funclet allocates enough stack space for the largest outgoing call. 3988 Offset += getWinEHFuncletFrameSize(MF); 3989 return Offset; 3990 } 3991 3992 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3993 MachineFunction &MF, RegScavenger *RS) const { 3994 // Mark the function as not having WinCFI. We will set it back to true in 3995 // emitPrologue if it gets called and emits CFI. 3996 MF.setHasWinCFI(false); 3997 3998 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3999 // aligned. The format doesn't support misaligned stack adjustments. 4000 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 4001 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 4002 4003 // If this function isn't doing Win64-style C++ EH, we don't need to do 4004 // anything. 4005 if (STI.is64Bit() && MF.hasEHFunclets() && 4006 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 4007 EHPersonality::MSVC_CXX) { 4008 adjustFrameForMsvcCxxEh(MF); 4009 } 4010 } 4011 4012 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 4013 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 4014 // relative to RSP after the prologue. Find the offset of the last fixed 4015 // object, so that we can allocate a slot immediately following it. If there 4016 // were no fixed objects, use offset -SlotSize, which is immediately after the 4017 // return address. Fixed objects have negative frame indices. 4018 MachineFrameInfo &MFI = MF.getFrameInfo(); 4019 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 4020 int64_t MinFixedObjOffset = -SlotSize; 4021 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 4022 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 4023 4024 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 4025 for (WinEHHandlerType &H : TBME.HandlerArray) { 4026 int FrameIndex = H.CatchObj.FrameIndex; 4027 if (FrameIndex != INT_MAX) { 4028 // Ensure alignment. 4029 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 4030 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 4031 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 4032 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 4033 } 4034 } 4035 } 4036 4037 // Ensure alignment. 4038 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 4039 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 4040 int UnwindHelpFI = 4041 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 4042 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 4043 4044 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 4045 // other frame setup instructions. 4046 MachineBasicBlock &MBB = MF.front(); 4047 auto MBBI = MBB.begin(); 4048 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 4049 ++MBBI; 4050 4051 DebugLoc DL = MBB.findDebugLoc(MBBI); 4052 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 4053 UnwindHelpFI) 4054 .addImm(-2); 4055 } 4056 4057 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 4058 MachineFunction &MF, RegScavenger *RS) const { 4059 auto *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 4060 4061 if (STI.is32Bit() && MF.hasEHFunclets()) 4062 restoreWinEHStackPointersInParent(MF); 4063 // We have emitted prolog and epilog. Don't need stack pointer saving 4064 // instruction any more. 4065 if (MachineInstr *MI = X86FI->getStackPtrSaveMI()) { 4066 MI->eraseFromParent(); 4067 X86FI->setStackPtrSaveMI(nullptr); 4068 } 4069 } 4070 4071 void X86FrameLowering::restoreWinEHStackPointersInParent( 4072 MachineFunction &MF) const { 4073 // 32-bit functions have to restore stack pointers when control is transferred 4074 // back to the parent function. These blocks are identified as eh pads that 4075 // are not funclet entries. 4076 bool IsSEH = isAsynchronousEHPersonality( 4077 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 4078 for (MachineBasicBlock &MBB : MF) { 4079 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 4080 if (NeedsRestore) 4081 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 4082 /*RestoreSP=*/IsSEH); 4083 } 4084 } 4085