xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FrameLowering.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86FrameLowering.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/EHPersonalities.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCObjectFileInfo.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/LEB128.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include <cstdlib>
39 
40 #define DEBUG_TYPE "x86-fl"
41 
42 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
43 STATISTIC(NumFrameExtraProbe,
44           "Number of extra stack probes generated in prologue");
45 
46 using namespace llvm;
47 
48 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
49                                    MaybeAlign StackAlignOverride)
50     : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
51                           STI.is64Bit() ? -8 : -4),
52       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
53   // Cache a bunch of frame-related predicates for this subtarget.
54   SlotSize = TRI->getSlotSize();
55   Is64Bit = STI.is64Bit();
56   IsLP64 = STI.isTarget64BitLP64();
57   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
58   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
59   StackPtr = TRI->getStackRegister();
60 }
61 
62 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
63   return !MF.getFrameInfo().hasVarSizedObjects() &&
64          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
65          !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
66 }
67 
68 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
69 /// call frame pseudos can be simplified.  Having a FP, as in the default
70 /// implementation, is not sufficient here since we can't always use it.
71 /// Use a more nuanced condition.
72 bool
73 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
74   return hasReservedCallFrame(MF) ||
75          MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
76          (hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
77          TRI->hasBasePointer(MF);
78 }
79 
80 // needsFrameIndexResolution - Do we need to perform FI resolution for
81 // this function. Normally, this is required only when the function
82 // has any stack objects. However, FI resolution actually has another job,
83 // not apparent from the title - it resolves callframesetup/destroy
84 // that were not simplified earlier.
85 // So, this is required for x86 functions that have push sequences even
86 // when there are no stack objects.
87 bool
88 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
89   return MF.getFrameInfo().hasStackObjects() ||
90          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
91 }
92 
93 /// hasFP - Return true if the specified function should have a dedicated frame
94 /// pointer register.  This is true if the function has variable sized allocas
95 /// or if frame pointer elimination is disabled.
96 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
97   const MachineFrameInfo &MFI = MF.getFrameInfo();
98   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
99           TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
100           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
101           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
102           MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
103           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
104           MFI.hasStackMap() || MFI.hasPatchPoint() ||
105           (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment()));
106 }
107 
108 static unsigned getSUBriOpcode(bool IsLP64) {
109   return IsLP64 ? X86::SUB64ri32 : X86::SUB32ri;
110 }
111 
112 static unsigned getADDriOpcode(bool IsLP64) {
113   return IsLP64 ? X86::ADD64ri32 : X86::ADD32ri;
114 }
115 
116 static unsigned getSUBrrOpcode(bool IsLP64) {
117   return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
118 }
119 
120 static unsigned getADDrrOpcode(bool IsLP64) {
121   return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
122 }
123 
124 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
125   return IsLP64 ? X86::AND64ri32 : X86::AND32ri;
126 }
127 
128 static unsigned getLEArOpcode(bool IsLP64) {
129   return IsLP64 ? X86::LEA64r : X86::LEA32r;
130 }
131 
132 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) {
133   if (Use64BitReg) {
134     if (isUInt<32>(Imm))
135       return X86::MOV32ri64;
136     if (isInt<32>(Imm))
137       return X86::MOV64ri32;
138     return X86::MOV64ri;
139   }
140   return X86::MOV32ri;
141 }
142 
143 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
144   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
145     unsigned Reg = RegMask.PhysReg;
146 
147     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
148         Reg == X86::AH || Reg == X86::AL)
149       return true;
150   }
151 
152   return false;
153 }
154 
155 /// Check if the flags need to be preserved before the terminators.
156 /// This would be the case, if the eflags is live-in of the region
157 /// composed by the terminators or live-out of that region, without
158 /// being defined by a terminator.
159 static bool
160 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
161   for (const MachineInstr &MI : MBB.terminators()) {
162     bool BreakNext = false;
163     for (const MachineOperand &MO : MI.operands()) {
164       if (!MO.isReg())
165         continue;
166       Register Reg = MO.getReg();
167       if (Reg != X86::EFLAGS)
168         continue;
169 
170       // This terminator needs an eflags that is not defined
171       // by a previous another terminator:
172       // EFLAGS is live-in of the region composed by the terminators.
173       if (!MO.isDef())
174         return true;
175       // This terminator defines the eflags, i.e., we don't need to preserve it.
176       // However, we still need to check this specific terminator does not
177       // read a live-in value.
178       BreakNext = true;
179     }
180     // We found a definition of the eflags, no need to preserve them.
181     if (BreakNext)
182       return false;
183   }
184 
185   // None of the terminators use or define the eflags.
186   // Check if they are live-out, that would imply we need to preserve them.
187   for (const MachineBasicBlock *Succ : MBB.successors())
188     if (Succ->isLiveIn(X86::EFLAGS))
189       return true;
190 
191   return false;
192 }
193 
194 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
195 /// stack pointer by a constant value.
196 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
197                                     MachineBasicBlock::iterator &MBBI,
198                                     const DebugLoc &DL,
199                                     int64_t NumBytes, bool InEpilogue) const {
200   bool isSub = NumBytes < 0;
201   uint64_t Offset = isSub ? -NumBytes : NumBytes;
202   MachineInstr::MIFlag Flag =
203       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
204 
205   uint64_t Chunk = (1LL << 31) - 1;
206 
207   MachineFunction &MF = *MBB.getParent();
208   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
209   const X86TargetLowering &TLI = *STI.getTargetLowering();
210   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
211 
212   // It's ok to not take into account large chunks when probing, as the
213   // allocation is split in smaller chunks anyway.
214   if (EmitInlineStackProbe && !InEpilogue) {
215 
216     // This pseudo-instruction is going to be expanded, potentially using a
217     // loop, by inlineStackProbe().
218     BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
219     return;
220   } else if (Offset > Chunk) {
221     // Rather than emit a long series of instructions for large offsets,
222     // load the offset into a register and do one sub/add
223     unsigned Reg = 0;
224     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
225 
226     if (isSub && !isEAXLiveIn(MBB))
227       Reg = Rax;
228     else
229       Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
230 
231     unsigned AddSubRROpc =
232         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
233     if (Reg) {
234       BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg)
235           .addImm(Offset)
236           .setMIFlag(Flag);
237       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
238                              .addReg(StackPtr)
239                              .addReg(Reg);
240       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
241       return;
242     } else if (Offset > 8 * Chunk) {
243       // If we would need more than 8 add or sub instructions (a >16GB stack
244       // frame), it's worth spilling RAX to materialize this immediate.
245       //   pushq %rax
246       //   movabsq +-$Offset+-SlotSize, %rax
247       //   addq %rsp, %rax
248       //   xchg %rax, (%rsp)
249       //   movq (%rsp), %rsp
250       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
251       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
252           .addReg(Rax, RegState::Kill)
253           .setMIFlag(Flag);
254       // Subtract is not commutative, so negate the offset and always use add.
255       // Subtract 8 less and add 8 more to account for the PUSH we just did.
256       if (isSub)
257         Offset = -(Offset - SlotSize);
258       else
259         Offset = Offset + SlotSize;
260       BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax)
261           .addImm(Offset)
262           .setMIFlag(Flag);
263       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
264                              .addReg(Rax)
265                              .addReg(StackPtr);
266       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
267       // Exchange the new SP in RAX with the top of the stack.
268       addRegOffset(
269           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
270           StackPtr, false, 0);
271       // Load new SP from the top of the stack into RSP.
272       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
273                    StackPtr, false, 0);
274       return;
275     }
276   }
277 
278   while (Offset) {
279     uint64_t ThisVal = std::min(Offset, Chunk);
280     if (ThisVal == SlotSize) {
281       // Use push / pop for slot sized adjustments as a size optimization. We
282       // need to find a dead register when using pop.
283       unsigned Reg = isSub
284         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
285         : TRI->findDeadCallerSavedReg(MBB, MBBI);
286       if (Reg) {
287         unsigned Opc = isSub
288           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
289           : (Is64Bit ? X86::POP64r  : X86::POP32r);
290         BuildMI(MBB, MBBI, DL, TII.get(Opc))
291             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
292             .setMIFlag(Flag);
293         Offset -= ThisVal;
294         continue;
295       }
296     }
297 
298     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
299         .setMIFlag(Flag);
300 
301     Offset -= ThisVal;
302   }
303 }
304 
305 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
306     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
307     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
308   assert(Offset != 0 && "zero offset stack adjustment requested");
309 
310   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
311   // is tricky.
312   bool UseLEA;
313   if (!InEpilogue) {
314     // Check if inserting the prologue at the beginning
315     // of MBB would require to use LEA operations.
316     // We need to use LEA operations if EFLAGS is live in, because
317     // it means an instruction will read it before it gets defined.
318     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
319   } else {
320     // If we can use LEA for SP but we shouldn't, check that none
321     // of the terminators uses the eflags. Otherwise we will insert
322     // a ADD that will redefine the eflags and break the condition.
323     // Alternatively, we could move the ADD, but this may not be possible
324     // and is an optimization anyway.
325     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
326     if (UseLEA && !STI.useLeaForSP())
327       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
328     // If that assert breaks, that means we do not do the right thing
329     // in canUseAsEpilogue.
330     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
331            "We shouldn't have allowed this insertion point");
332   }
333 
334   MachineInstrBuilder MI;
335   if (UseLEA) {
336     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
337                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
338                               StackPtr),
339                       StackPtr, false, Offset);
340   } else {
341     bool IsSub = Offset < 0;
342     uint64_t AbsOffset = IsSub ? -Offset : Offset;
343     const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr)
344                                : getADDriOpcode(Uses64BitFramePtr);
345     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
346              .addReg(StackPtr)
347              .addImm(AbsOffset);
348     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
349   }
350   return MI;
351 }
352 
353 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
354                                      MachineBasicBlock::iterator &MBBI,
355                                      bool doMergeWithPrevious) const {
356   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
357       (!doMergeWithPrevious && MBBI == MBB.end()))
358     return 0;
359 
360   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
361 
362   PI = skipDebugInstructionsBackward(PI, MBB.begin());
363   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
364   // instruction, and that there are no DBG_VALUE or other instructions between
365   // ADD/SUB/LEA and its corresponding CFI instruction.
366   /* TODO: Add support for the case where there are multiple CFI instructions
367     below the ADD/SUB/LEA, e.g.:
368     ...
369     add
370     cfi_def_cfa_offset
371     cfi_offset
372     ...
373   */
374   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
375     PI = std::prev(PI);
376 
377   unsigned Opc = PI->getOpcode();
378   int Offset = 0;
379 
380   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD32ri) &&
381       PI->getOperand(0).getReg() == StackPtr) {
382     assert(PI->getOperand(1).getReg() == StackPtr);
383     Offset = PI->getOperand(2).getImm();
384   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
385              PI->getOperand(0).getReg() == StackPtr &&
386              PI->getOperand(1).getReg() == StackPtr &&
387              PI->getOperand(2).getImm() == 1 &&
388              PI->getOperand(3).getReg() == X86::NoRegister &&
389              PI->getOperand(5).getReg() == X86::NoRegister) {
390     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
391     Offset = PI->getOperand(4).getImm();
392   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB32ri) &&
393              PI->getOperand(0).getReg() == StackPtr) {
394     assert(PI->getOperand(1).getReg() == StackPtr);
395     Offset = -PI->getOperand(2).getImm();
396   } else
397     return 0;
398 
399   PI = MBB.erase(PI);
400   if (PI != MBB.end() && PI->isCFIInstruction()) {
401     auto CIs = MBB.getParent()->getFrameInstructions();
402     MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()];
403     if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
404         CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
405       PI = MBB.erase(PI);
406   }
407   if (!doMergeWithPrevious)
408     MBBI = skipDebugInstructionsForward(PI, MBB.end());
409 
410   return Offset;
411 }
412 
413 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
414                                 MachineBasicBlock::iterator MBBI,
415                                 const DebugLoc &DL,
416                                 const MCCFIInstruction &CFIInst,
417                                 MachineInstr::MIFlag Flag) const {
418   MachineFunction &MF = *MBB.getParent();
419   unsigned CFIIndex = MF.addFrameInst(CFIInst);
420 
421   if (CFIInst.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
422     MF.getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true);
423 
424   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
425       .addCFIIndex(CFIIndex)
426       .setMIFlag(Flag);
427 }
428 
429 /// Emits Dwarf Info specifying offsets of callee saved registers and
430 /// frame pointer. This is called only when basic block sections are enabled.
431 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA(
432     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
433   MachineFunction &MF = *MBB.getParent();
434   if (!hasFP(MF)) {
435     emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
436     return;
437   }
438   const MachineModuleInfo &MMI = MF.getMMI();
439   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
440   const Register FramePtr = TRI->getFrameRegister(MF);
441   const Register MachineFramePtr =
442       STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
443                                : FramePtr;
444   unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
445   // Offset = space for return address + size of the frame pointer itself.
446   unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
447   BuildCFI(MBB, MBBI, DebugLoc{},
448            MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
449   emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
450 }
451 
452 void X86FrameLowering::emitCalleeSavedFrameMoves(
453     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
454     const DebugLoc &DL, bool IsPrologue) const {
455   MachineFunction &MF = *MBB.getParent();
456   MachineFrameInfo &MFI = MF.getFrameInfo();
457   MachineModuleInfo &MMI = MF.getMMI();
458   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
459   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
460 
461   // Add callee saved registers to move list.
462   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
463 
464   // Calculate offsets.
465   for (const CalleeSavedInfo &I : CSI) {
466     int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
467     Register Reg = I.getReg();
468     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
469 
470     if (IsPrologue) {
471       if (X86FI->getStackPtrSaveMI()) {
472         // +2*SlotSize because there is return address and ebp at the bottom
473         // of the stack.
474         // | retaddr |
475         // | ebp     |
476         // |         |<--ebp
477         Offset += 2 * SlotSize;
478         SmallString<64> CfaExpr;
479         CfaExpr.push_back(dwarf::DW_CFA_expression);
480         uint8_t buffer[16];
481         CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer));
482         CfaExpr.push_back(2);
483         Register FramePtr = TRI->getFrameRegister(MF);
484         const Register MachineFramePtr =
485             STI.isTarget64BitILP32()
486                 ? Register(getX86SubSuperRegister(FramePtr, 64))
487                 : FramePtr;
488         unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true);
489         CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr));
490         CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer));
491         BuildCFI(MBB, MBBI, DL,
492                  MCCFIInstruction::createEscape(nullptr, CfaExpr.str()),
493                  MachineInstr::FrameSetup);
494       } else {
495         BuildCFI(MBB, MBBI, DL,
496                  MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
497       }
498     } else {
499       BuildCFI(MBB, MBBI, DL,
500                MCCFIInstruction::createRestore(nullptr, DwarfReg));
501     }
502   }
503   if (auto *MI = X86FI->getStackPtrSaveMI()) {
504     int FI = MI->getOperand(1).getIndex();
505     int64_t Offset = MFI.getObjectOffset(FI) + 2 * SlotSize;
506     SmallString<64> CfaExpr;
507     Register FramePtr = TRI->getFrameRegister(MF);
508     const Register MachineFramePtr =
509         STI.isTarget64BitILP32()
510             ? Register(getX86SubSuperRegister(FramePtr, 64))
511             : FramePtr;
512     unsigned DwarfFramePtr = MRI->getDwarfRegNum(MachineFramePtr, true);
513     CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr));
514     uint8_t buffer[16];
515     CfaExpr.append(buffer, buffer + encodeSLEB128(Offset, buffer));
516     CfaExpr.push_back(dwarf::DW_OP_deref);
517 
518     SmallString<64> DefCfaExpr;
519     DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
520     DefCfaExpr.append(buffer, buffer + encodeSLEB128(CfaExpr.size(), buffer));
521     DefCfaExpr.append(CfaExpr.str());
522     // DW_CFA_def_cfa_expression: DW_OP_breg5 offset, DW_OP_deref
523     BuildCFI(MBB, MBBI, DL,
524              MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str()),
525              MachineInstr::FrameSetup);
526   }
527 }
528 
529 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
530                                             MachineBasicBlock &MBB) const {
531   const MachineFunction &MF = *MBB.getParent();
532 
533   // Insertion point.
534   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
535 
536   // Fake a debug loc.
537   DebugLoc DL;
538   if (MBBI != MBB.end())
539     DL = MBBI->getDebugLoc();
540 
541   // Zero out FP stack if referenced. Do this outside of the loop below so that
542   // it's done only once.
543   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
544   for (MCRegister Reg : RegsToZero.set_bits()) {
545     if (!X86::RFP80RegClass.contains(Reg))
546       continue;
547 
548     unsigned NumFPRegs = ST.is64Bit() ? 8 : 7;
549     for (unsigned i = 0; i != NumFPRegs; ++i)
550       BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0));
551 
552     for (unsigned i = 0; i != NumFPRegs; ++i)
553       BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0);
554     break;
555   }
556 
557   // For GPRs, we only care to clear out the 32-bit register.
558   BitVector GPRsToZero(TRI->getNumRegs());
559   for (MCRegister Reg : RegsToZero.set_bits())
560     if (TRI->isGeneralPurposeRegister(MF, Reg)) {
561       GPRsToZero.set(getX86SubSuperRegister(Reg, 32));
562       RegsToZero.reset(Reg);
563     }
564 
565   for (MCRegister Reg : GPRsToZero.set_bits())
566     BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg)
567         .addReg(Reg, RegState::Undef)
568         .addReg(Reg, RegState::Undef);
569 
570   // Zero out registers.
571   for (MCRegister Reg : RegsToZero.set_bits()) {
572     if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
573       // FIXME: Ignore MMX registers?
574       continue;
575 
576     unsigned XorOp;
577     if (X86::VR128RegClass.contains(Reg)) {
578       // XMM#
579       if (!ST.hasSSE1())
580         continue;
581       XorOp = X86::PXORrr;
582     } else if (X86::VR256RegClass.contains(Reg)) {
583       // YMM#
584       if (!ST.hasAVX())
585         continue;
586       XorOp = X86::VPXORrr;
587     } else if (X86::VR512RegClass.contains(Reg)) {
588       // ZMM#
589       if (!ST.hasAVX512())
590         continue;
591       XorOp = X86::VPXORYrr;
592     } else if (X86::VK1RegClass.contains(Reg) ||
593                X86::VK2RegClass.contains(Reg) ||
594                X86::VK4RegClass.contains(Reg) ||
595                X86::VK8RegClass.contains(Reg) ||
596                X86::VK16RegClass.contains(Reg)) {
597       if (!ST.hasVLX())
598         continue;
599       XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr;
600     } else {
601       continue;
602     }
603 
604     BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg)
605       .addReg(Reg, RegState::Undef)
606       .addReg(Reg, RegState::Undef);
607   }
608 }
609 
610 void X86FrameLowering::emitStackProbe(
611     MachineFunction &MF, MachineBasicBlock &MBB,
612     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
613     std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
614   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
615   if (STI.isTargetWindowsCoreCLR()) {
616     if (InProlog) {
617       BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
618           .addImm(0 /* no explicit stack size */);
619     } else {
620       emitStackProbeInline(MF, MBB, MBBI, DL, false);
621     }
622   } else {
623     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum);
624   }
625 }
626 
627 bool X86FrameLowering::stackProbeFunctionModifiesSP() const {
628   return STI.isOSWindows() && !STI.isTargetWin64();
629 }
630 
631 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
632                                         MachineBasicBlock &PrologMBB) const {
633   auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
634     return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
635   });
636   if (Where != PrologMBB.end()) {
637     DebugLoc DL = PrologMBB.findDebugLoc(Where);
638     emitStackProbeInline(MF, PrologMBB, Where, DL, true);
639     Where->eraseFromParent();
640   }
641 }
642 
643 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
644                                             MachineBasicBlock &MBB,
645                                             MachineBasicBlock::iterator MBBI,
646                                             const DebugLoc &DL,
647                                             bool InProlog) const {
648   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
649   if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
650     emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
651   else
652     emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
653 }
654 
655 void X86FrameLowering::emitStackProbeInlineGeneric(
656     MachineFunction &MF, MachineBasicBlock &MBB,
657     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
658   MachineInstr &AllocWithProbe = *MBBI;
659   uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
660 
661   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
662   const X86TargetLowering &TLI = *STI.getTargetLowering();
663   assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
664          "different expansion expected for CoreCLR 64 bit");
665 
666   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
667   uint64_t ProbeChunk = StackProbeSize * 8;
668 
669   uint64_t MaxAlign =
670       TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
671 
672   // Synthesize a loop or unroll it, depending on the number of iterations.
673   // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
674   // between the unaligned rsp and current rsp.
675   if (Offset > ProbeChunk) {
676     emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
677                                     MaxAlign % StackProbeSize);
678   } else {
679     emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
680                                      MaxAlign % StackProbeSize);
681   }
682 }
683 
684 void X86FrameLowering::emitStackProbeInlineGenericBlock(
685     MachineFunction &MF, MachineBasicBlock &MBB,
686     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
687     uint64_t AlignOffset) const {
688 
689   const bool NeedsDwarfCFI = needsDwarfCFI(MF);
690   const bool HasFP = hasFP(MF);
691   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
692   const X86TargetLowering &TLI = *STI.getTargetLowering();
693   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
694   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
695 
696   uint64_t CurrentOffset = 0;
697 
698   assert(AlignOffset < StackProbeSize);
699 
700   // If the offset is so small it fits within a page, there's nothing to do.
701   if (StackProbeSize < Offset + AlignOffset) {
702 
703     uint64_t StackAdjustment = StackProbeSize - AlignOffset;
704     BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false)
705         .setMIFlag(MachineInstr::FrameSetup);
706     if (!HasFP && NeedsDwarfCFI) {
707       BuildCFI(
708           MBB, MBBI, DL,
709           MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
710     }
711 
712     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
713                      .setMIFlag(MachineInstr::FrameSetup),
714                  StackPtr, false, 0)
715         .addImm(0)
716         .setMIFlag(MachineInstr::FrameSetup);
717     NumFrameExtraProbe++;
718     CurrentOffset = StackProbeSize - AlignOffset;
719   }
720 
721   // For the next N - 1 pages, just probe. I tried to take advantage of
722   // natural probes but it implies much more logic and there was very few
723   // interesting natural probes to interleave.
724   while (CurrentOffset + StackProbeSize < Offset) {
725     BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false)
726         .setMIFlag(MachineInstr::FrameSetup);
727 
728     if (!HasFP && NeedsDwarfCFI) {
729       BuildCFI(
730           MBB, MBBI, DL,
731           MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize));
732     }
733     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
734                      .setMIFlag(MachineInstr::FrameSetup),
735                  StackPtr, false, 0)
736         .addImm(0)
737         .setMIFlag(MachineInstr::FrameSetup);
738     NumFrameExtraProbe++;
739     CurrentOffset += StackProbeSize;
740   }
741 
742   // No need to probe the tail, it is smaller than a Page.
743   uint64_t ChunkSize = Offset - CurrentOffset;
744   if (ChunkSize == SlotSize) {
745     // Use push for slot sized adjustments as a size optimization,
746     // like emitSPUpdate does when not probing.
747     unsigned Reg = Is64Bit ? X86::RAX : X86::EAX;
748     unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
749     BuildMI(MBB, MBBI, DL, TII.get(Opc))
750         .addReg(Reg, RegState::Undef)
751         .setMIFlag(MachineInstr::FrameSetup);
752   } else {
753     BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false)
754         .setMIFlag(MachineInstr::FrameSetup);
755   }
756   // No need to adjust Dwarf CFA offset here, the last position of the stack has
757   // been defined
758 }
759 
760 void X86FrameLowering::emitStackProbeInlineGenericLoop(
761     MachineFunction &MF, MachineBasicBlock &MBB,
762     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
763     uint64_t AlignOffset) const {
764   assert(Offset && "null offset");
765 
766   assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
767              MachineBasicBlock::LQR_Live &&
768          "Inline stack probe loop will clobber live EFLAGS.");
769 
770   const bool NeedsDwarfCFI = needsDwarfCFI(MF);
771   const bool HasFP = hasFP(MF);
772   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
773   const X86TargetLowering &TLI = *STI.getTargetLowering();
774   const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
775   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
776 
777   if (AlignOffset) {
778     if (AlignOffset < StackProbeSize) {
779       // Perform a first smaller allocation followed by a probe.
780       BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false)
781           .setMIFlag(MachineInstr::FrameSetup);
782 
783       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
784                        .setMIFlag(MachineInstr::FrameSetup),
785                    StackPtr, false, 0)
786           .addImm(0)
787           .setMIFlag(MachineInstr::FrameSetup);
788       NumFrameExtraProbe++;
789       Offset -= AlignOffset;
790     }
791   }
792 
793   // Synthesize a loop
794   NumFrameLoopProbe++;
795   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
796 
797   MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
798   MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
799 
800   MachineFunction::iterator MBBIter = ++MBB.getIterator();
801   MF.insert(MBBIter, testMBB);
802   MF.insert(MBBIter, tailMBB);
803 
804   Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
805                               : Is64Bit         ? X86::R11D
806                                                 : X86::EAX;
807 
808   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
809       .addReg(StackPtr)
810       .setMIFlag(MachineInstr::FrameSetup);
811 
812   // save loop bound
813   {
814     const unsigned BoundOffset = alignDown(Offset, StackProbeSize);
815     const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr);
816     BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
817         .addReg(FinalStackProbed)
818         .addImm(BoundOffset)
819         .setMIFlag(MachineInstr::FrameSetup);
820 
821     // while in the loop, use loop-invariant reg for CFI,
822     // instead of the stack pointer, which changes during the loop
823     if (!HasFP && NeedsDwarfCFI) {
824       // x32 uses the same DWARF register numbers as x86-64,
825       // so there isn't a register number for r11d, we must use r11 instead
826       const Register DwarfFinalStackProbed =
827           STI.isTarget64BitILP32()
828               ? Register(getX86SubSuperRegister(FinalStackProbed, 64))
829               : FinalStackProbed;
830 
831       BuildCFI(MBB, MBBI, DL,
832                MCCFIInstruction::createDefCfaRegister(
833                    nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true)));
834       BuildCFI(MBB, MBBI, DL,
835                MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset));
836     }
837   }
838 
839   // allocate a page
840   BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize,
841                        /*InEpilogue=*/false)
842       .setMIFlag(MachineInstr::FrameSetup);
843 
844   // touch the page
845   addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
846                    .setMIFlag(MachineInstr::FrameSetup),
847                StackPtr, false, 0)
848       .addImm(0)
849       .setMIFlag(MachineInstr::FrameSetup);
850 
851   // cmp with stack pointer bound
852   BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
853       .addReg(StackPtr)
854       .addReg(FinalStackProbed)
855       .setMIFlag(MachineInstr::FrameSetup);
856 
857   // jump
858   BuildMI(testMBB, DL, TII.get(X86::JCC_1))
859       .addMBB(testMBB)
860       .addImm(X86::COND_NE)
861       .setMIFlag(MachineInstr::FrameSetup);
862   testMBB->addSuccessor(testMBB);
863   testMBB->addSuccessor(tailMBB);
864 
865   // BB management
866   tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
867   tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
868   MBB.addSuccessor(testMBB);
869 
870   // handle tail
871   const uint64_t TailOffset = Offset % StackProbeSize;
872   MachineBasicBlock::iterator TailMBBIter = tailMBB->begin();
873   if (TailOffset) {
874     BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset,
875                          /*InEpilogue=*/false)
876         .setMIFlag(MachineInstr::FrameSetup);
877   }
878 
879   // after the loop, switch back to stack pointer for CFI
880   if (!HasFP && NeedsDwarfCFI) {
881     // x32 uses the same DWARF register numbers as x86-64,
882     // so there isn't a register number for esp, we must use rsp instead
883     const Register DwarfStackPtr =
884         STI.isTarget64BitILP32()
885             ? Register(getX86SubSuperRegister(StackPtr, 64))
886             : Register(StackPtr);
887 
888     BuildCFI(*tailMBB, TailMBBIter, DL,
889              MCCFIInstruction::createDefCfaRegister(
890                  nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true)));
891   }
892 
893   // Update Live In information
894   recomputeLiveIns(*testMBB);
895   recomputeLiveIns(*tailMBB);
896 }
897 
898 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
899     MachineFunction &MF, MachineBasicBlock &MBB,
900     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
901   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
902   assert(STI.is64Bit() && "different expansion needed for 32 bit");
903   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
904   const TargetInstrInfo &TII = *STI.getInstrInfo();
905   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
906 
907   assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
908              MachineBasicBlock::LQR_Live &&
909          "Inline stack probe loop will clobber live EFLAGS.");
910 
911   // RAX contains the number of bytes of desired stack adjustment.
912   // The handling here assumes this value has already been updated so as to
913   // maintain stack alignment.
914   //
915   // We need to exit with RSP modified by this amount and execute suitable
916   // page touches to notify the OS that we're growing the stack responsibly.
917   // All stack probing must be done without modifying RSP.
918   //
919   // MBB:
920   //    SizeReg = RAX;
921   //    ZeroReg = 0
922   //    CopyReg = RSP
923   //    Flags, TestReg = CopyReg - SizeReg
924   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
925   //    LimitReg = gs magic thread env access
926   //    if FinalReg >= LimitReg goto ContinueMBB
927   // RoundBB:
928   //    RoundReg = page address of FinalReg
929   // LoopMBB:
930   //    LoopReg = PHI(LimitReg,ProbeReg)
931   //    ProbeReg = LoopReg - PageSize
932   //    [ProbeReg] = 0
933   //    if (ProbeReg > RoundReg) goto LoopMBB
934   // ContinueMBB:
935   //    RSP = RSP - RAX
936   //    [rest of original MBB]
937 
938   // Set up the new basic blocks
939   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
940   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
941   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
942 
943   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
944   MF.insert(MBBIter, RoundMBB);
945   MF.insert(MBBIter, LoopMBB);
946   MF.insert(MBBIter, ContinueMBB);
947 
948   // Split MBB and move the tail portion down to ContinueMBB.
949   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
950   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
951   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
952 
953   // Some useful constants
954   const int64_t ThreadEnvironmentStackLimit = 0x10;
955   const int64_t PageSize = 0x1000;
956   const int64_t PageMask = ~(PageSize - 1);
957 
958   // Registers we need. For the normal case we use virtual
959   // registers. For the prolog expansion we use RAX, RCX and RDX.
960   MachineRegisterInfo &MRI = MF.getRegInfo();
961   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
962   const Register SizeReg = InProlog ? X86::RAX
963                                     : MRI.createVirtualRegister(RegClass),
964                  ZeroReg = InProlog ? X86::RCX
965                                     : MRI.createVirtualRegister(RegClass),
966                  CopyReg = InProlog ? X86::RDX
967                                     : MRI.createVirtualRegister(RegClass),
968                  TestReg = InProlog ? X86::RDX
969                                     : MRI.createVirtualRegister(RegClass),
970                  FinalReg = InProlog ? X86::RDX
971                                      : MRI.createVirtualRegister(RegClass),
972                  RoundedReg = InProlog ? X86::RDX
973                                        : MRI.createVirtualRegister(RegClass),
974                  LimitReg = InProlog ? X86::RCX
975                                      : MRI.createVirtualRegister(RegClass),
976                  JoinReg = InProlog ? X86::RCX
977                                     : MRI.createVirtualRegister(RegClass),
978                  ProbeReg = InProlog ? X86::RCX
979                                      : MRI.createVirtualRegister(RegClass);
980 
981   // SP-relative offsets where we can save RCX and RDX.
982   int64_t RCXShadowSlot = 0;
983   int64_t RDXShadowSlot = 0;
984 
985   // If inlining in the prolog, save RCX and RDX.
986   if (InProlog) {
987     // Compute the offsets. We need to account for things already
988     // pushed onto the stack at this point: return address, frame
989     // pointer (if used), and callee saves.
990     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
991     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
992     const bool HasFP = hasFP(MF);
993 
994     // Check if we need to spill RCX and/or RDX.
995     // Here we assume that no earlier prologue instruction changes RCX and/or
996     // RDX, so checking the block live-ins is enough.
997     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
998     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
999     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
1000     // Assign the initial slot to both registers, then change RDX's slot if both
1001     // need to be spilled.
1002     if (IsRCXLiveIn)
1003       RCXShadowSlot = InitSlot;
1004     if (IsRDXLiveIn)
1005       RDXShadowSlot = InitSlot;
1006     if (IsRDXLiveIn && IsRCXLiveIn)
1007       RDXShadowSlot += 8;
1008     // Emit the saves if needed.
1009     if (IsRCXLiveIn)
1010       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
1011                    RCXShadowSlot)
1012           .addReg(X86::RCX);
1013     if (IsRDXLiveIn)
1014       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
1015                    RDXShadowSlot)
1016           .addReg(X86::RDX);
1017   } else {
1018     // Not in the prolog. Copy RAX to a virtual reg.
1019     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
1020   }
1021 
1022   // Add code to MBB to check for overflow and set the new target stack pointer
1023   // to zero if so.
1024   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
1025       .addReg(ZeroReg, RegState::Undef)
1026       .addReg(ZeroReg, RegState::Undef);
1027   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
1028   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
1029       .addReg(CopyReg)
1030       .addReg(SizeReg);
1031   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
1032       .addReg(TestReg)
1033       .addReg(ZeroReg)
1034       .addImm(X86::COND_B);
1035 
1036   // FinalReg now holds final stack pointer value, or zero if
1037   // allocation would overflow. Compare against the current stack
1038   // limit from the thread environment block. Note this limit is the
1039   // lowest touched page on the stack, not the point at which the OS
1040   // will cause an overflow exception, so this is just an optimization
1041   // to avoid unnecessarily touching pages that are below the current
1042   // SP but already committed to the stack by the OS.
1043   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
1044       .addReg(0)
1045       .addImm(1)
1046       .addReg(0)
1047       .addImm(ThreadEnvironmentStackLimit)
1048       .addReg(X86::GS);
1049   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
1050   // Jump if the desired stack pointer is at or above the stack limit.
1051   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
1052 
1053   // Add code to roundMBB to round the final stack pointer to a page boundary.
1054   RoundMBB->addLiveIn(FinalReg);
1055   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
1056       .addReg(FinalReg)
1057       .addImm(PageMask);
1058   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
1059 
1060   // LimitReg now holds the current stack limit, RoundedReg page-rounded
1061   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
1062   // and probe until we reach RoundedReg.
1063   if (!InProlog) {
1064     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
1065         .addReg(LimitReg)
1066         .addMBB(RoundMBB)
1067         .addReg(ProbeReg)
1068         .addMBB(LoopMBB);
1069   }
1070 
1071   LoopMBB->addLiveIn(JoinReg);
1072   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
1073                false, -PageSize);
1074 
1075   // Probe by storing a byte onto the stack.
1076   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
1077       .addReg(ProbeReg)
1078       .addImm(1)
1079       .addReg(0)
1080       .addImm(0)
1081       .addReg(0)
1082       .addImm(0);
1083 
1084   LoopMBB->addLiveIn(RoundedReg);
1085   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
1086       .addReg(RoundedReg)
1087       .addReg(ProbeReg);
1088   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
1089 
1090   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
1091 
1092   // If in prolog, restore RDX and RCX.
1093   if (InProlog) {
1094     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
1095       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1096                            TII.get(X86::MOV64rm), X86::RCX),
1097                    X86::RSP, false, RCXShadowSlot);
1098     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
1099       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1100                            TII.get(X86::MOV64rm), X86::RDX),
1101                    X86::RSP, false, RDXShadowSlot);
1102   }
1103 
1104   // Now that the probing is done, add code to continueMBB to update
1105   // the stack pointer for real.
1106   ContinueMBB->addLiveIn(SizeReg);
1107   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
1108       .addReg(X86::RSP)
1109       .addReg(SizeReg);
1110 
1111   // Add the control flow edges we need.
1112   MBB.addSuccessor(ContinueMBB);
1113   MBB.addSuccessor(RoundMBB);
1114   RoundMBB->addSuccessor(LoopMBB);
1115   LoopMBB->addSuccessor(ContinueMBB);
1116   LoopMBB->addSuccessor(LoopMBB);
1117 
1118   // Mark all the instructions added to the prolog as frame setup.
1119   if (InProlog) {
1120     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
1121       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
1122     }
1123     for (MachineInstr &MI : *RoundMBB) {
1124       MI.setFlag(MachineInstr::FrameSetup);
1125     }
1126     for (MachineInstr &MI : *LoopMBB) {
1127       MI.setFlag(MachineInstr::FrameSetup);
1128     }
1129     for (MachineInstr &MI :
1130          llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) {
1131       MI.setFlag(MachineInstr::FrameSetup);
1132     }
1133   }
1134 }
1135 
1136 void X86FrameLowering::emitStackProbeCall(
1137     MachineFunction &MF, MachineBasicBlock &MBB,
1138     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
1139     std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
1140   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
1141 
1142   // FIXME: Add indirect thunk support and remove this.
1143   if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
1144     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
1145                        "code model and indirect thunks not yet implemented.");
1146 
1147   assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
1148              MachineBasicBlock::LQR_Live &&
1149          "Stack probe calls will clobber live EFLAGS.");
1150 
1151   unsigned CallOp;
1152   if (Is64Bit)
1153     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
1154   else
1155     CallOp = X86::CALLpcrel32;
1156 
1157   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
1158 
1159   MachineInstrBuilder CI;
1160   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
1161 
1162   // All current stack probes take AX and SP as input, clobber flags, and
1163   // preserve all registers. x86_64 probes leave RSP unmodified.
1164   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1165     // For the large code model, we have to call through a register. Use R11,
1166     // as it is scratch in all supported calling conventions.
1167     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1168         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1169     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1170   } else {
1171     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1172         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1173   }
1174 
1175   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1176   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1177   CI.addReg(AX, RegState::Implicit)
1178       .addReg(SP, RegState::Implicit)
1179       .addReg(AX, RegState::Define | RegState::Implicit)
1180       .addReg(SP, RegState::Define | RegState::Implicit)
1181       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1182 
1183   MachineInstr *ModInst = CI;
1184   if (STI.isTargetWin64() || !STI.isOSWindows()) {
1185     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1186     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1187     // themselves. They also does not clobber %rax so we can reuse it when
1188     // adjusting %rsp.
1189     // All other platforms do not specify a particular ABI for the stack probe
1190     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1191     ModInst =
1192         BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1193             .addReg(SP)
1194             .addReg(AX);
1195   }
1196 
1197   // DebugInfo variable locations -- if there's an instruction number for the
1198   // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that
1199   // modifies SP.
1200   if (InstrNum) {
1201     if (STI.isTargetWin64() || !STI.isOSWindows()) {
1202       // Label destination operand of the subtract.
1203       MF.makeDebugValueSubstitution(*InstrNum,
1204                                     {ModInst->getDebugInstrNum(), 0});
1205     } else {
1206       // Label the call. The operand number is the penultimate operand, zero
1207       // based.
1208       unsigned SPDefOperand = ModInst->getNumOperands() - 2;
1209       MF.makeDebugValueSubstitution(
1210           *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand});
1211     }
1212   }
1213 
1214   if (InProlog) {
1215     // Apply the frame setup flag to all inserted instrs.
1216     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1217       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1218   }
1219 }
1220 
1221 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1222   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1223   // and might require smaller successive adjustments.
1224   const uint64_t Win64MaxSEHOffset = 128;
1225   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1226   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1227   return SEHFrameOffset & -16;
1228 }
1229 
1230 // If we're forcing a stack realignment we can't rely on just the frame
1231 // info, we need to know the ABI stack alignment as well in case we
1232 // have a call out.  Otherwise just make sure we have some alignment - we'll
1233 // go with the minimum SlotSize.
1234 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1235   const MachineFrameInfo &MFI = MF.getFrameInfo();
1236   Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1237   Align StackAlign = getStackAlign();
1238   bool HasRealign = MF.getFunction().hasFnAttribute("stackrealign");
1239   if (HasRealign) {
1240     if (MFI.hasCalls())
1241       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1242     else if (MaxAlign < SlotSize)
1243       MaxAlign = Align(SlotSize);
1244   }
1245 
1246   if (!Is64Bit && MF.getFunction().getCallingConv() == CallingConv::X86_INTR) {
1247     if (HasRealign)
1248       MaxAlign = (MaxAlign > 16) ? MaxAlign : Align(16);
1249     else
1250       MaxAlign = Align(16);
1251   }
1252   return MaxAlign.value();
1253 }
1254 
1255 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1256                                           MachineBasicBlock::iterator MBBI,
1257                                           const DebugLoc &DL, unsigned Reg,
1258                                           uint64_t MaxAlign) const {
1259   uint64_t Val = -MaxAlign;
1260   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1261 
1262   MachineFunction &MF = *MBB.getParent();
1263   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1264   const X86TargetLowering &TLI = *STI.getTargetLowering();
1265   const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1266   const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1267 
1268   // We want to make sure that (in worst case) less than StackProbeSize bytes
1269   // are not probed after the AND. This assumption is used in
1270   // emitStackProbeInlineGeneric.
1271   if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1272     {
1273       NumFrameLoopProbe++;
1274       MachineBasicBlock *entryMBB =
1275           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1276       MachineBasicBlock *headMBB =
1277           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1278       MachineBasicBlock *bodyMBB =
1279           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1280       MachineBasicBlock *footMBB =
1281           MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1282 
1283       MachineFunction::iterator MBBIter = MBB.getIterator();
1284       MF.insert(MBBIter, entryMBB);
1285       MF.insert(MBBIter, headMBB);
1286       MF.insert(MBBIter, bodyMBB);
1287       MF.insert(MBBIter, footMBB);
1288       const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1289       Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
1290                                   : Is64Bit         ? X86::R11D
1291                                                     : X86::EAX;
1292 
1293       // Setup entry block
1294       {
1295 
1296         entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1297         BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1298             .addReg(StackPtr)
1299             .setMIFlag(MachineInstr::FrameSetup);
1300         MachineInstr *MI =
1301             BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1302                 .addReg(FinalStackProbed)
1303                 .addImm(Val)
1304                 .setMIFlag(MachineInstr::FrameSetup);
1305 
1306         // The EFLAGS implicit def is dead.
1307         MI->getOperand(3).setIsDead();
1308 
1309         BuildMI(entryMBB, DL,
1310                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1311             .addReg(FinalStackProbed)
1312             .addReg(StackPtr)
1313             .setMIFlag(MachineInstr::FrameSetup);
1314         BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1315             .addMBB(&MBB)
1316             .addImm(X86::COND_E)
1317             .setMIFlag(MachineInstr::FrameSetup);
1318         entryMBB->addSuccessor(headMBB);
1319         entryMBB->addSuccessor(&MBB);
1320       }
1321 
1322       // Loop entry block
1323 
1324       {
1325         const unsigned SUBOpc =
1326             getSUBriOpcode(Uses64BitFramePtr);
1327         BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1328             .addReg(StackPtr)
1329             .addImm(StackProbeSize)
1330             .setMIFlag(MachineInstr::FrameSetup);
1331 
1332         BuildMI(headMBB, DL,
1333                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1334             .addReg(StackPtr)
1335             .addReg(FinalStackProbed)
1336             .setMIFlag(MachineInstr::FrameSetup);
1337 
1338         // jump to the footer if StackPtr < FinalStackProbed
1339         BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1340             .addMBB(footMBB)
1341             .addImm(X86::COND_B)
1342             .setMIFlag(MachineInstr::FrameSetup);
1343 
1344         headMBB->addSuccessor(bodyMBB);
1345         headMBB->addSuccessor(footMBB);
1346       }
1347 
1348       // setup loop body
1349       {
1350         addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1351                          .setMIFlag(MachineInstr::FrameSetup),
1352                      StackPtr, false, 0)
1353             .addImm(0)
1354             .setMIFlag(MachineInstr::FrameSetup);
1355 
1356         const unsigned SUBOpc =
1357             getSUBriOpcode(Uses64BitFramePtr);
1358         BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1359             .addReg(StackPtr)
1360             .addImm(StackProbeSize)
1361             .setMIFlag(MachineInstr::FrameSetup);
1362 
1363         // cmp with stack pointer bound
1364         BuildMI(bodyMBB, DL,
1365                 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1366             .addReg(FinalStackProbed)
1367             .addReg(StackPtr)
1368             .setMIFlag(MachineInstr::FrameSetup);
1369 
1370         // jump back while FinalStackProbed < StackPtr
1371         BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1372             .addMBB(bodyMBB)
1373             .addImm(X86::COND_B)
1374             .setMIFlag(MachineInstr::FrameSetup);
1375         bodyMBB->addSuccessor(bodyMBB);
1376         bodyMBB->addSuccessor(footMBB);
1377       }
1378 
1379       // setup loop footer
1380       {
1381         BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1382             .addReg(FinalStackProbed)
1383             .setMIFlag(MachineInstr::FrameSetup);
1384         addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1385                          .setMIFlag(MachineInstr::FrameSetup),
1386                      StackPtr, false, 0)
1387             .addImm(0)
1388             .setMIFlag(MachineInstr::FrameSetup);
1389         footMBB->addSuccessor(&MBB);
1390       }
1391 
1392       recomputeLiveIns(*headMBB);
1393       recomputeLiveIns(*bodyMBB);
1394       recomputeLiveIns(*footMBB);
1395       recomputeLiveIns(MBB);
1396     }
1397   } else {
1398     MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1399                            .addReg(Reg)
1400                            .addImm(Val)
1401                            .setMIFlag(MachineInstr::FrameSetup);
1402 
1403     // The EFLAGS implicit def is dead.
1404     MI->getOperand(3).setIsDead();
1405   }
1406 }
1407 
1408 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1409   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1410   // clobbered by any interrupt handler.
1411   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1412          "MF used frame lowering for wrong subtarget");
1413   const Function &Fn = MF.getFunction();
1414   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1415   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1416 }
1417 
1418 /// Return true if we need to use the restricted Windows x64 prologue and
1419 /// epilogue code patterns that can be described with WinCFI (.seh_*
1420 /// directives).
1421 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
1422   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1423 }
1424 
1425 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
1426   return !isWin64Prologue(MF) && MF.needsFrameMoves();
1427 }
1428 
1429 /// emitPrologue - Push callee-saved registers onto the stack, which
1430 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1431 /// space for local variables. Also emit labels used by the exception handler to
1432 /// generate the exception handling frames.
1433 
1434 /*
1435   Here's a gist of what gets emitted:
1436 
1437   ; Establish frame pointer, if needed
1438   [if needs FP]
1439       push  %rbp
1440       .cfi_def_cfa_offset 16
1441       .cfi_offset %rbp, -16
1442       .seh_pushreg %rpb
1443       mov  %rsp, %rbp
1444       .cfi_def_cfa_register %rbp
1445 
1446   ; Spill general-purpose registers
1447   [for all callee-saved GPRs]
1448       pushq %<reg>
1449       [if not needs FP]
1450          .cfi_def_cfa_offset (offset from RETADDR)
1451       .seh_pushreg %<reg>
1452 
1453   ; If the required stack alignment > default stack alignment
1454   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
1455   ; of unknown size in the stack frame.
1456   [if stack needs re-alignment]
1457       and  $MASK, %rsp
1458 
1459   ; Allocate space for locals
1460   [if target is Windows and allocated space > 4096 bytes]
1461       ; Windows needs special care for allocations larger
1462       ; than one page.
1463       mov $NNN, %rax
1464       call ___chkstk_ms/___chkstk
1465       sub  %rax, %rsp
1466   [else]
1467       sub  $NNN, %rsp
1468 
1469   [if needs FP]
1470       .seh_stackalloc (size of XMM spill slots)
1471       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1472   [else]
1473       .seh_stackalloc NNN
1474 
1475   ; Spill XMMs
1476   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1477   ; they may get spilled on any platform, if the current function
1478   ; calls @llvm.eh.unwind.init
1479   [if needs FP]
1480       [for all callee-saved XMM registers]
1481           movaps  %<xmm reg>, -MMM(%rbp)
1482       [for all callee-saved XMM registers]
1483           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1484               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1485   [else]
1486       [for all callee-saved XMM registers]
1487           movaps  %<xmm reg>, KKK(%rsp)
1488       [for all callee-saved XMM registers]
1489           .seh_savexmm %<xmm reg>, KKK
1490 
1491   .seh_endprologue
1492 
1493   [if needs base pointer]
1494       mov  %rsp, %rbx
1495       [if needs to restore base pointer]
1496           mov %rsp, -MMM(%rbp)
1497 
1498   ; Emit CFI info
1499   [if needs FP]
1500       [for all callee-saved registers]
1501           .cfi_offset %<reg>, (offset from %rbp)
1502   [else]
1503        .cfi_def_cfa_offset (offset from RETADDR)
1504       [for all callee-saved registers]
1505           .cfi_offset %<reg>, (offset from %rsp)
1506 
1507   Notes:
1508   - .seh directives are emitted only for Windows 64 ABI
1509   - .cv_fpo directives are emitted on win32 when emitting CodeView
1510   - .cfi directives are emitted for all other ABIs
1511   - for 32-bit code, substitute %e?? registers for %r??
1512 */
1513 
1514 void X86FrameLowering::emitPrologue(MachineFunction &MF,
1515                                     MachineBasicBlock &MBB) const {
1516   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1517          "MF used frame lowering for wrong subtarget");
1518   MachineBasicBlock::iterator MBBI = MBB.begin();
1519   MachineFrameInfo &MFI = MF.getFrameInfo();
1520   const Function &Fn = MF.getFunction();
1521   MachineModuleInfo &MMI = MF.getMMI();
1522   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1523   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1524   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
1525   bool IsFunclet = MBB.isEHFuncletEntry();
1526   EHPersonality Personality = EHPersonality::Unknown;
1527   if (Fn.hasPersonalityFn())
1528     Personality = classifyEHPersonality(Fn.getPersonalityFn());
1529   bool FnHasClrFunclet =
1530       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1531   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1532   bool HasFP = hasFP(MF);
1533   bool IsWin64Prologue = isWin64Prologue(MF);
1534   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1535   // FIXME: Emit FPO data for EH funclets.
1536   bool NeedsWinFPO =
1537       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1538   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1539   bool NeedsDwarfCFI = needsDwarfCFI(MF);
1540   Register FramePtr = TRI->getFrameRegister(MF);
1541   const Register MachineFramePtr =
1542       STI.isTarget64BitILP32()
1543           ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1544   Register BasePtr = TRI->getBaseRegister();
1545   bool HasWinCFI = false;
1546 
1547   // Debug location must be unknown since the first debug location is used
1548   // to determine the end of the prologue.
1549   DebugLoc DL;
1550   Register ArgBaseReg;
1551 
1552   // Emit extra prolog for argument stack slot reference.
1553   if (auto *MI = X86FI->getStackPtrSaveMI()) {
1554     // MI is lea instruction that created in X86ArgumentStackSlotPass.
1555     // Creat extra prolog for stack realignment.
1556     ArgBaseReg = MI->getOperand(0).getReg();
1557     // leal    4(%esp), %basereg
1558     // .cfi_def_cfa %basereg, 0
1559     // andl    $-128, %esp
1560     // pushl   -4(%basereg)
1561     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r),
1562             ArgBaseReg)
1563         .addUse(StackPtr)
1564         .addImm(1)
1565         .addUse(X86::NoRegister)
1566         .addImm(SlotSize)
1567         .addUse(X86::NoRegister)
1568         .setMIFlag(MachineInstr::FrameSetup);
1569     if (NeedsDwarfCFI) {
1570       // .cfi_def_cfa %basereg, 0
1571       unsigned DwarfStackPtr = TRI->getDwarfRegNum(ArgBaseReg, true);
1572       BuildCFI(MBB, MBBI, DL,
1573                MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, 0),
1574                MachineInstr::FrameSetup);
1575     }
1576     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1577     int64_t Offset = -(int64_t)SlotSize;
1578     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64rmm: X86::PUSH32rmm))
1579         .addReg(ArgBaseReg)
1580         .addImm(1)
1581         .addReg(X86::NoRegister)
1582         .addImm(Offset)
1583         .addReg(X86::NoRegister)
1584         .setMIFlag(MachineInstr::FrameSetup);
1585   }
1586 
1587   // Space reserved for stack-based arguments when making a (ABI-guaranteed)
1588   // tail call.
1589   unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
1590   if (TailCallArgReserveSize  && IsWin64Prologue)
1591     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1592 
1593   const bool EmitStackProbeCall =
1594       STI.getTargetLowering()->hasStackProbeSymbol(MF);
1595   unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1596 
1597   if (HasFP && X86FI->hasSwiftAsyncContext()) {
1598     switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1599     case SwiftAsyncFramePointerMode::DeploymentBased:
1600       if (STI.swiftAsyncContextIsDynamicallySet()) {
1601         // The special symbol below is absolute and has a *value* suitable to be
1602         // combined with the frame pointer directly.
1603         BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr)
1604             .addUse(MachineFramePtr)
1605             .addUse(X86::RIP)
1606             .addImm(1)
1607             .addUse(X86::NoRegister)
1608             .addExternalSymbol("swift_async_extendedFramePointerFlags",
1609                                X86II::MO_GOTPCREL)
1610             .addUse(X86::NoRegister);
1611         break;
1612       }
1613       [[fallthrough]];
1614 
1615     case SwiftAsyncFramePointerMode::Always:
1616       BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr)
1617           .addUse(MachineFramePtr)
1618           .addImm(60)
1619           .setMIFlag(MachineInstr::FrameSetup);
1620       break;
1621 
1622     case SwiftAsyncFramePointerMode::Never:
1623       break;
1624     }
1625   }
1626 
1627   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1628   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1629   // stack alignment.
1630   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1631       Fn.arg_size() == 2) {
1632     StackSize += 8;
1633     MFI.setStackSize(StackSize);
1634 
1635     // Update the stack pointer by pushing a register. This is the instruction
1636     // emitted that would be end up being emitted by a call to `emitSPUpdate`.
1637     // Hard-coding the update to a push avoids emitting a second
1638     // `STACKALLOC_W_PROBING` instruction in the save block: We know that stack
1639     // probing isn't needed anyways for an 8-byte update.
1640     // Pushing a register leaves us in a similar situation to a regular
1641     // function call where we know that the address at (rsp-8) is writeable.
1642     // That way we avoid any off-by-ones with stack probing for additional
1643     // stack pointer updates later on.
1644     BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1645         .addReg(X86::RAX, RegState::Undef)
1646         .setMIFlag(MachineInstr::FrameSetup);
1647   }
1648 
1649   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1650   // function, and use up to 128 bytes of stack space, don't have a frame
1651   // pointer, calls, or dynamic alloca then we do not need to adjust the
1652   // stack pointer (we fit in the Red Zone). We also check that we don't
1653   // push and pop from the stack.
1654   if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
1655       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1656       !MFI.adjustsStack() &&                   // No calls.
1657       !EmitStackProbeCall &&                   // No stack probes.
1658       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1659       !MF.shouldSplitStack()) {                // Regular stack
1660     uint64_t MinSize =
1661         X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta();
1662     if (HasFP) MinSize += SlotSize;
1663     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1664     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1665     MFI.setStackSize(StackSize);
1666   }
1667 
1668   // Insert stack pointer adjustment for later moving of return addr.  Only
1669   // applies to tail call optimized functions where the callee argument stack
1670   // size is bigger than the callers.
1671   if (TailCallArgReserveSize != 0) {
1672     BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize,
1673                          /*InEpilogue=*/false)
1674         .setMIFlag(MachineInstr::FrameSetup);
1675   }
1676 
1677   // Mapping for machine moves:
1678   //
1679   //   DST: VirtualFP AND
1680   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1681   //        ELSE                        => DW_CFA_def_cfa
1682   //
1683   //   SRC: VirtualFP AND
1684   //        DST: Register               => DW_CFA_def_cfa_register
1685   //
1686   //   ELSE
1687   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1688   //        REG < 64                    => DW_CFA_offset + Reg
1689   //        ELSE                        => DW_CFA_offset_extended
1690 
1691   uint64_t NumBytes = 0;
1692   int stackGrowth = -SlotSize;
1693 
1694   // Find the funclet establisher parameter
1695   Register Establisher = X86::NoRegister;
1696   if (IsClrFunclet)
1697     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1698   else if (IsFunclet)
1699     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1700 
1701   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1702     // Immediately spill establisher into the home slot.
1703     // The runtime cares about this.
1704     // MOV64mr %rdx, 16(%rsp)
1705     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1706     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1707         .addReg(Establisher)
1708         .setMIFlag(MachineInstr::FrameSetup);
1709     MBB.addLiveIn(Establisher);
1710   }
1711 
1712   if (HasFP) {
1713     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1714 
1715     // Calculate required stack adjustment.
1716     uint64_t FrameSize = StackSize - SlotSize;
1717     NumBytes = FrameSize -
1718                (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1719 
1720     // Callee-saved registers are pushed on stack before the stack is realigned.
1721     if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
1722       NumBytes = alignTo(NumBytes, MaxAlign);
1723 
1724     // Save EBP/RBP into the appropriate stack slot.
1725     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1726       .addReg(MachineFramePtr, RegState::Kill)
1727       .setMIFlag(MachineInstr::FrameSetup);
1728 
1729     if (NeedsDwarfCFI && !ArgBaseReg.isValid()) {
1730       // Mark the place where EBP/RBP was saved.
1731       // Define the current CFA rule to use the provided offset.
1732       assert(StackSize);
1733       BuildCFI(MBB, MBBI, DL,
1734                MCCFIInstruction::cfiDefCfaOffset(
1735                    nullptr, -2 * stackGrowth + (int)TailCallArgReserveSize),
1736                MachineInstr::FrameSetup);
1737 
1738       // Change the rule for the FramePtr to be an "offset" rule.
1739       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1740       BuildCFI(MBB, MBBI, DL,
1741                MCCFIInstruction::createOffset(nullptr, DwarfFramePtr,
1742                                               2 * stackGrowth -
1743                                                   (int)TailCallArgReserveSize),
1744                MachineInstr::FrameSetup);
1745     }
1746 
1747     if (NeedsWinCFI) {
1748       HasWinCFI = true;
1749       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1750           .addImm(FramePtr)
1751           .setMIFlag(MachineInstr::FrameSetup);
1752     }
1753 
1754     if (!IsFunclet) {
1755       if (X86FI->hasSwiftAsyncContext()) {
1756         const auto &Attrs = MF.getFunction().getAttributes();
1757 
1758         // Before we update the live frame pointer we have to ensure there's a
1759         // valid (or null) asynchronous context in its slot just before FP in
1760         // the frame record, so store it now.
1761         if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
1762           // We have an initial context in r14, store it just before the frame
1763           // pointer.
1764           MBB.addLiveIn(X86::R14);
1765           BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1766               .addReg(X86::R14)
1767               .setMIFlag(MachineInstr::FrameSetup);
1768         } else {
1769           // No initial context, store null so that there's no pointer that
1770           // could be misused.
1771           BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i32))
1772               .addImm(0)
1773               .setMIFlag(MachineInstr::FrameSetup);
1774         }
1775 
1776         if (NeedsWinCFI) {
1777           HasWinCFI = true;
1778           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1779               .addImm(X86::R14)
1780               .setMIFlag(MachineInstr::FrameSetup);
1781         }
1782 
1783         BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
1784             .addUse(X86::RSP)
1785             .addImm(1)
1786             .addUse(X86::NoRegister)
1787             .addImm(8)
1788             .addUse(X86::NoRegister)
1789             .setMIFlag(MachineInstr::FrameSetup);
1790         BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri32), X86::RSP)
1791             .addUse(X86::RSP)
1792             .addImm(8)
1793             .setMIFlag(MachineInstr::FrameSetup);
1794       }
1795 
1796       if (!IsWin64Prologue && !IsFunclet) {
1797         // Update EBP with the new base value.
1798         if (!X86FI->hasSwiftAsyncContext())
1799           BuildMI(MBB, MBBI, DL,
1800                   TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1801                   FramePtr)
1802               .addReg(StackPtr)
1803               .setMIFlag(MachineInstr::FrameSetup);
1804 
1805         if (NeedsDwarfCFI) {
1806           if (ArgBaseReg.isValid()) {
1807             SmallString<64> CfaExpr;
1808             CfaExpr.push_back(dwarf::DW_CFA_expression);
1809             uint8_t buffer[16];
1810             unsigned DwarfReg = TRI->getDwarfRegNum(MachineFramePtr, true);
1811             CfaExpr.append(buffer, buffer + encodeULEB128(DwarfReg, buffer));
1812             CfaExpr.push_back(2);
1813             CfaExpr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
1814             CfaExpr.push_back(0);
1815             // DW_CFA_expression: reg5 DW_OP_breg5 +0
1816             BuildCFI(MBB, MBBI, DL,
1817                      MCCFIInstruction::createEscape(nullptr, CfaExpr.str()),
1818                      MachineInstr::FrameSetup);
1819           } else {
1820             // Mark effective beginning of when frame pointer becomes valid.
1821             // Define the current CFA to use the EBP/RBP register.
1822             unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1823             BuildCFI(
1824                 MBB, MBBI, DL,
1825                 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr),
1826                 MachineInstr::FrameSetup);
1827           }
1828         }
1829 
1830         if (NeedsWinFPO) {
1831           // .cv_fpo_setframe $FramePtr
1832           HasWinCFI = true;
1833           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1834               .addImm(FramePtr)
1835               .addImm(0)
1836               .setMIFlag(MachineInstr::FrameSetup);
1837         }
1838       }
1839     }
1840   } else {
1841     assert(!IsFunclet && "funclets without FPs not yet implemented");
1842     NumBytes = StackSize -
1843                (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1844   }
1845 
1846   // Update the offset adjustment, which is mainly used by codeview to translate
1847   // from ESP to VFRAME relative local variable offsets.
1848   if (!IsFunclet) {
1849     if (HasFP && TRI->hasStackRealignment(MF))
1850       MFI.setOffsetAdjustment(-NumBytes);
1851     else
1852       MFI.setOffsetAdjustment(-StackSize);
1853   }
1854 
1855   // For EH funclets, only allocate enough space for outgoing calls. Save the
1856   // NumBytes value that we would've used for the parent frame.
1857   unsigned ParentFrameNumBytes = NumBytes;
1858   if (IsFunclet)
1859     NumBytes = getWinEHFuncletFrameSize(MF);
1860 
1861   // Skip the callee-saved push instructions.
1862   bool PushedRegs = false;
1863   int StackOffset = 2 * stackGrowth;
1864 
1865   while (MBBI != MBB.end() &&
1866          MBBI->getFlag(MachineInstr::FrameSetup) &&
1867          (MBBI->getOpcode() == X86::PUSH32r ||
1868           MBBI->getOpcode() == X86::PUSH64r)) {
1869     PushedRegs = true;
1870     Register Reg = MBBI->getOperand(0).getReg();
1871     ++MBBI;
1872 
1873     if (!HasFP && NeedsDwarfCFI) {
1874       // Mark callee-saved push instruction.
1875       // Define the current CFA rule to use the provided offset.
1876       assert(StackSize);
1877       BuildCFI(MBB, MBBI, DL,
1878                MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset),
1879                MachineInstr::FrameSetup);
1880       StackOffset += stackGrowth;
1881     }
1882 
1883     if (NeedsWinCFI) {
1884       HasWinCFI = true;
1885       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1886           .addImm(Reg)
1887           .setMIFlag(MachineInstr::FrameSetup);
1888     }
1889   }
1890 
1891   // Realign stack after we pushed callee-saved registers (so that we'll be
1892   // able to calculate their offsets from the frame pointer).
1893   // Don't do this for Win64, it needs to realign the stack after the prologue.
1894   if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF) &&
1895       !ArgBaseReg.isValid()) {
1896     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1897     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1898 
1899     if (NeedsWinCFI) {
1900       HasWinCFI = true;
1901       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1902           .addImm(MaxAlign)
1903           .setMIFlag(MachineInstr::FrameSetup);
1904     }
1905   }
1906 
1907   // If there is an SUB32ri of ESP immediately before this instruction, merge
1908   // the two. This can be the case when tail call elimination is enabled and
1909   // the callee has more arguments then the caller.
1910   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1911 
1912   // Adjust stack pointer: ESP -= numbytes.
1913 
1914   // Windows and cygwin/mingw require a prologue helper routine when allocating
1915   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1916   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1917   // stack and adjust the stack pointer in one go.  The 64-bit version of
1918   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1919   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1920   // increments is necessary to ensure that the guard pages used by the OS
1921   // virtual memory manager are allocated in correct sequence.
1922   uint64_t AlignedNumBytes = NumBytes;
1923   if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
1924     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1925   if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1926     assert(!X86FI->getUsesRedZone() &&
1927            "The Red Zone is not accounted for in stack probes");
1928 
1929     // Check whether EAX is livein for this block.
1930     bool isEAXAlive = isEAXLiveIn(MBB);
1931 
1932     if (isEAXAlive) {
1933       if (Is64Bit) {
1934         // Save RAX
1935         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1936           .addReg(X86::RAX, RegState::Kill)
1937           .setMIFlag(MachineInstr::FrameSetup);
1938       } else {
1939         // Save EAX
1940         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1941           .addReg(X86::EAX, RegState::Kill)
1942           .setMIFlag(MachineInstr::FrameSetup);
1943       }
1944     }
1945 
1946     if (Is64Bit) {
1947       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1948       // Function prologue is responsible for adjusting the stack pointer.
1949       int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1950       BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX)
1951           .addImm(Alloc)
1952           .setMIFlag(MachineInstr::FrameSetup);
1953     } else {
1954       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1955       // We'll also use 4 already allocated bytes for EAX.
1956       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1957           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1958           .setMIFlag(MachineInstr::FrameSetup);
1959     }
1960 
1961     // Call __chkstk, __chkstk_ms, or __alloca.
1962     emitStackProbe(MF, MBB, MBBI, DL, true);
1963 
1964     if (isEAXAlive) {
1965       // Restore RAX/EAX
1966       MachineInstr *MI;
1967       if (Is64Bit)
1968         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1969                           StackPtr, false, NumBytes - 8);
1970       else
1971         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1972                           StackPtr, false, NumBytes - 4);
1973       MI->setFlag(MachineInstr::FrameSetup);
1974       MBB.insert(MBBI, MI);
1975     }
1976   } else if (NumBytes) {
1977     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1978   }
1979 
1980   if (NeedsWinCFI && NumBytes) {
1981     HasWinCFI = true;
1982     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1983         .addImm(NumBytes)
1984         .setMIFlag(MachineInstr::FrameSetup);
1985   }
1986 
1987   int SEHFrameOffset = 0;
1988   unsigned SPOrEstablisher;
1989   if (IsFunclet) {
1990     if (IsClrFunclet) {
1991       // The establisher parameter passed to a CLR funclet is actually a pointer
1992       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1993       // to find the root function establisher frame by loading the PSPSym from
1994       // the intermediate frame.
1995       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1996       MachinePointerInfo NoInfo;
1997       MBB.addLiveIn(Establisher);
1998       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1999                    Establisher, false, PSPSlotOffset)
2000           .addMemOperand(MF.getMachineMemOperand(
2001               NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
2002       ;
2003       // Save the root establisher back into the current funclet's (mostly
2004       // empty) frame, in case a sub-funclet or the GC needs it.
2005       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
2006                    false, PSPSlotOffset)
2007           .addReg(Establisher)
2008           .addMemOperand(MF.getMachineMemOperand(
2009               NoInfo,
2010               MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
2011               SlotSize, Align(SlotSize)));
2012     }
2013     SPOrEstablisher = Establisher;
2014   } else {
2015     SPOrEstablisher = StackPtr;
2016   }
2017 
2018   if (IsWin64Prologue && HasFP) {
2019     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
2020     // this calculation on the incoming establisher, which holds the value of
2021     // RSP from the parent frame at the end of the prologue.
2022     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
2023     if (SEHFrameOffset)
2024       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
2025                    SPOrEstablisher, false, SEHFrameOffset);
2026     else
2027       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
2028           .addReg(SPOrEstablisher);
2029 
2030     // If this is not a funclet, emit the CFI describing our frame pointer.
2031     if (NeedsWinCFI && !IsFunclet) {
2032       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
2033       HasWinCFI = true;
2034       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
2035           .addImm(FramePtr)
2036           .addImm(SEHFrameOffset)
2037           .setMIFlag(MachineInstr::FrameSetup);
2038       if (isAsynchronousEHPersonality(Personality))
2039         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
2040     }
2041   } else if (IsFunclet && STI.is32Bit()) {
2042     // Reset EBP / ESI to something good for funclets.
2043     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
2044     // If we're a catch funclet, we can be returned to via catchret. Save ESP
2045     // into the registration node so that the runtime will restore it for us.
2046     if (!MBB.isCleanupFuncletEntry()) {
2047       assert(Personality == EHPersonality::MSVC_CXX);
2048       Register FrameReg;
2049       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
2050       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
2051       // ESP is the first field, so no extra displacement is needed.
2052       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
2053                    false, EHRegOffset)
2054           .addReg(X86::ESP);
2055     }
2056   }
2057 
2058   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
2059     const MachineInstr &FrameInstr = *MBBI;
2060     ++MBBI;
2061 
2062     if (NeedsWinCFI) {
2063       int FI;
2064       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
2065         if (X86::FR64RegClass.contains(Reg)) {
2066           int Offset;
2067           Register IgnoredFrameReg;
2068           if (IsWin64Prologue && IsFunclet)
2069             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
2070           else
2071             Offset =
2072                 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
2073                 SEHFrameOffset;
2074 
2075           HasWinCFI = true;
2076           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
2077           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
2078               .addImm(Reg)
2079               .addImm(Offset)
2080               .setMIFlag(MachineInstr::FrameSetup);
2081         }
2082       }
2083     }
2084   }
2085 
2086   if (NeedsWinCFI && HasWinCFI)
2087     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
2088         .setMIFlag(MachineInstr::FrameSetup);
2089 
2090   if (FnHasClrFunclet && !IsFunclet) {
2091     // Save the so-called Initial-SP (i.e. the value of the stack pointer
2092     // immediately after the prolog)  into the PSPSlot so that funclets
2093     // and the GC can recover it.
2094     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
2095     auto PSPInfo = MachinePointerInfo::getFixedStack(
2096         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
2097     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
2098                  PSPSlotOffset)
2099         .addReg(StackPtr)
2100         .addMemOperand(MF.getMachineMemOperand(
2101             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
2102             SlotSize, Align(SlotSize)));
2103   }
2104 
2105   // Realign stack after we spilled callee-saved registers (so that we'll be
2106   // able to calculate their offsets from the frame pointer).
2107   // Win64 requires aligning the stack after the prologue.
2108   if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
2109     assert(HasFP && "There should be a frame pointer if stack is realigned.");
2110     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
2111   }
2112 
2113   // We already dealt with stack realignment and funclets above.
2114   if (IsFunclet && STI.is32Bit())
2115     return;
2116 
2117   // If we need a base pointer, set it up here. It's whatever the value
2118   // of the stack pointer is at this point. Any variable size objects
2119   // will be allocated after this, so we can still use the base pointer
2120   // to reference locals.
2121   if (TRI->hasBasePointer(MF)) {
2122     // Update the base pointer with the current stack pointer.
2123     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
2124     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
2125       .addReg(SPOrEstablisher)
2126       .setMIFlag(MachineInstr::FrameSetup);
2127     if (X86FI->getRestoreBasePointer()) {
2128       // Stash value of base pointer.  Saving RSP instead of EBP shortens
2129       // dependence chain. Used by SjLj EH.
2130       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2131       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
2132                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
2133         .addReg(SPOrEstablisher)
2134         .setMIFlag(MachineInstr::FrameSetup);
2135     }
2136 
2137     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
2138       // Stash the value of the frame pointer relative to the base pointer for
2139       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
2140       // it recovers the frame pointer from the base pointer rather than the
2141       // other way around.
2142       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2143       Register UsedReg;
2144       int Offset =
2145           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
2146               .getFixed();
2147       assert(UsedReg == BasePtr);
2148       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
2149           .addReg(FramePtr)
2150           .setMIFlag(MachineInstr::FrameSetup);
2151     }
2152   }
2153   if (ArgBaseReg.isValid()) {
2154     // Save argument base pointer.
2155     auto *MI = X86FI->getStackPtrSaveMI();
2156     int FI = MI->getOperand(1).getIndex();
2157     unsigned MOVmr = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
2158     // movl    %basereg, offset(%ebp)
2159     addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), FI)
2160         .addReg(ArgBaseReg)
2161         .setMIFlag(MachineInstr::FrameSetup);
2162   }
2163 
2164   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
2165     // Mark end of stack pointer adjustment.
2166     if (!HasFP && NumBytes) {
2167       // Define the current CFA rule to use the provided offset.
2168       assert(StackSize);
2169       BuildCFI(
2170           MBB, MBBI, DL,
2171           MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth),
2172           MachineInstr::FrameSetup);
2173     }
2174 
2175     // Emit DWARF info specifying the offsets of the callee-saved registers.
2176     emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
2177   }
2178 
2179   // X86 Interrupt handling function cannot assume anything about the direction
2180   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
2181   // in each prologue of interrupt handler function.
2182   //
2183   // FIXME: Create "cld" instruction only in these cases:
2184   // 1. The interrupt handling function uses any of the "rep" instructions.
2185   // 2. Interrupt handling function calls another function.
2186   //
2187   if (Fn.getCallingConv() == CallingConv::X86_INTR)
2188     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
2189         .setMIFlag(MachineInstr::FrameSetup);
2190 
2191   // At this point we know if the function has WinCFI or not.
2192   MF.setHasWinCFI(HasWinCFI);
2193 }
2194 
2195 bool X86FrameLowering::canUseLEAForSPInEpilogue(
2196     const MachineFunction &MF) const {
2197   // We can't use LEA instructions for adjusting the stack pointer if we don't
2198   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
2199   // to deallocate the stack.
2200   // This means that we can use LEA for SP in two situations:
2201   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
2202   // 2. We *have* a frame pointer which means we are permitted to use LEA.
2203   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
2204 }
2205 
2206 static bool isFuncletReturnInstr(MachineInstr &MI) {
2207   switch (MI.getOpcode()) {
2208   case X86::CATCHRET:
2209   case X86::CLEANUPRET:
2210     return true;
2211   default:
2212     return false;
2213   }
2214   llvm_unreachable("impossible");
2215 }
2216 
2217 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
2218 // stack. It holds a pointer to the bottom of the root function frame.  The
2219 // establisher frame pointer passed to a nested funclet may point to the
2220 // (mostly empty) frame of its parent funclet, but it will need to find
2221 // the frame of the root function to access locals.  To facilitate this,
2222 // every funclet copies the pointer to the bottom of the root function
2223 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
2224 // same offset for the PSPSym in the root function frame that's used in the
2225 // funclets' frames allows each funclet to dynamically accept any ancestor
2226 // frame as its establisher argument (the runtime doesn't guarantee the
2227 // immediate parent for some reason lost to history), and also allows the GC,
2228 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
2229 // frame with only a single offset reported for the entire method.
2230 unsigned
2231 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
2232   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
2233   Register SPReg;
2234   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
2235                                               /*IgnoreSPUpdates*/ true)
2236                    .getFixed();
2237   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
2238   return static_cast<unsigned>(Offset);
2239 }
2240 
2241 unsigned
2242 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
2243   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2244   // This is the size of the pushed CSRs.
2245   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2246   // This is the size of callee saved XMMs.
2247   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2248   unsigned XMMSize = WinEHXMMSlotInfo.size() *
2249                      TRI->getSpillSize(X86::VR128RegClass);
2250   // This is the amount of stack a funclet needs to allocate.
2251   unsigned UsedSize;
2252   EHPersonality Personality =
2253       classifyEHPersonality(MF.getFunction().getPersonalityFn());
2254   if (Personality == EHPersonality::CoreCLR) {
2255     // CLR funclets need to hold enough space to include the PSPSym, at the
2256     // same offset from the stack pointer (immediately after the prolog) as it
2257     // resides at in the main function.
2258     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
2259   } else {
2260     // Other funclets just need enough stack for outgoing call arguments.
2261     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
2262   }
2263   // RBP is not included in the callee saved register block. After pushing RBP,
2264   // everything is 16 byte aligned. Everything we allocate before an outgoing
2265   // call must also be 16 byte aligned.
2266   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
2267   // Subtract out the size of the callee saved registers. This is how much stack
2268   // each funclet will allocate.
2269   return FrameSizeMinusRBP + XMMSize - CSSize;
2270 }
2271 
2272 static bool isTailCallOpcode(unsigned Opc) {
2273     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
2274         Opc == X86::TCRETURNmi ||
2275         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
2276         Opc == X86::TCRETURNmi64;
2277 }
2278 
2279 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
2280                                     MachineBasicBlock &MBB) const {
2281   const MachineFrameInfo &MFI = MF.getFrameInfo();
2282   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2283   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
2284   MachineBasicBlock::iterator MBBI = Terminator;
2285   DebugLoc DL;
2286   if (MBBI != MBB.end())
2287     DL = MBBI->getDebugLoc();
2288   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
2289   const bool Is64BitILP32 = STI.isTarget64BitILP32();
2290   Register FramePtr = TRI->getFrameRegister(MF);
2291   Register MachineFramePtr =
2292       Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
2293 
2294   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2295   bool NeedsWin64CFI =
2296       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
2297   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
2298 
2299   // Get the number of bytes to allocate from the FrameInfo.
2300   uint64_t StackSize = MFI.getStackSize();
2301   uint64_t MaxAlign = calculateMaxStackAlign(MF);
2302   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2303   unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
2304   bool HasFP = hasFP(MF);
2305   uint64_t NumBytes = 0;
2306 
2307   bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
2308                         !MF.getTarget().getTargetTriple().isOSWindows()) &&
2309                        MF.needsFrameMoves();
2310 
2311   Register ArgBaseReg;
2312   if (auto *MI = X86FI->getStackPtrSaveMI()) {
2313     unsigned Opc = X86::LEA32r;
2314     Register StackReg = X86::ESP;
2315     ArgBaseReg = MI->getOperand(0).getReg();
2316     if (STI.is64Bit()) {
2317       Opc = X86::LEA64r;
2318       StackReg = X86::RSP;
2319     }
2320     // leal    -4(%basereg), %esp
2321     // .cfi_def_cfa %esp, 4
2322     BuildMI(MBB, MBBI, DL, TII.get(Opc), StackReg)
2323         .addUse(ArgBaseReg)
2324         .addImm(1)
2325         .addUse(X86::NoRegister)
2326         .addImm(-(int64_t)SlotSize)
2327         .addUse(X86::NoRegister)
2328         .setMIFlag(MachineInstr::FrameDestroy);
2329     if (NeedsDwarfCFI) {
2330       unsigned DwarfStackPtr = TRI->getDwarfRegNum(StackReg, true);
2331       BuildCFI(MBB, MBBI, DL,
2332                MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize),
2333                MachineInstr::FrameDestroy);
2334       --MBBI;
2335     }
2336     --MBBI;
2337   }
2338 
2339   if (IsFunclet) {
2340     assert(HasFP && "EH funclets without FP not yet implemented");
2341     NumBytes = getWinEHFuncletFrameSize(MF);
2342   } else if (HasFP) {
2343     // Calculate required stack adjustment.
2344     uint64_t FrameSize = StackSize - SlotSize;
2345     NumBytes = FrameSize - CSSize - TailCallArgReserveSize;
2346 
2347     // Callee-saved registers were pushed on stack before the stack was
2348     // realigned.
2349     if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
2350       NumBytes = alignTo(FrameSize, MaxAlign);
2351   } else {
2352     NumBytes = StackSize - CSSize - TailCallArgReserveSize;
2353   }
2354   uint64_t SEHStackAllocAmt = NumBytes;
2355 
2356   // AfterPop is the position to insert .cfi_restore.
2357   MachineBasicBlock::iterator AfterPop = MBBI;
2358   if (HasFP) {
2359     if (X86FI->hasSwiftAsyncContext()) {
2360       // Discard the context.
2361       int Offset = 16 + mergeSPUpdates(MBB, MBBI, true);
2362       emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true);
2363     }
2364     // Pop EBP.
2365     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
2366             MachineFramePtr)
2367         .setMIFlag(MachineInstr::FrameDestroy);
2368 
2369     // We need to reset FP to its untagged state on return. Bit 60 is currently
2370     // used to show the presence of an extended frame.
2371     if (X86FI->hasSwiftAsyncContext()) {
2372       BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8),
2373               MachineFramePtr)
2374           .addUse(MachineFramePtr)
2375           .addImm(60)
2376           .setMIFlag(MachineInstr::FrameDestroy);
2377     }
2378 
2379     if (NeedsDwarfCFI) {
2380       if (!ArgBaseReg.isValid()) {
2381         unsigned DwarfStackPtr =
2382             TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2383         BuildCFI(MBB, MBBI, DL,
2384                  MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize),
2385                  MachineInstr::FrameDestroy);
2386       }
2387       if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2388         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2389         BuildCFI(MBB, AfterPop, DL,
2390                  MCCFIInstruction::createRestore(nullptr, DwarfFramePtr),
2391                  MachineInstr::FrameDestroy);
2392         --MBBI;
2393         --AfterPop;
2394       }
2395       --MBBI;
2396     }
2397   }
2398 
2399   MachineBasicBlock::iterator FirstCSPop = MBBI;
2400   // Skip the callee-saved pop instructions.
2401   while (MBBI != MBB.begin()) {
2402     MachineBasicBlock::iterator PI = std::prev(MBBI);
2403     unsigned Opc = PI->getOpcode();
2404 
2405     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2406       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2407           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2408           (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2409           (Opc != X86::ADD64ri32 || !PI->getFlag(MachineInstr::FrameDestroy)))
2410         break;
2411       FirstCSPop = PI;
2412     }
2413 
2414     --MBBI;
2415   }
2416   if (ArgBaseReg.isValid()) {
2417     // Restore argument base pointer.
2418     auto *MI = X86FI->getStackPtrSaveMI();
2419     int FI = MI->getOperand(1).getIndex();
2420     unsigned MOVrm = Is64Bit ? X86::MOV64rm : X86::MOV32rm;
2421     // movl   offset(%ebp), %basereg
2422     addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(MOVrm), ArgBaseReg), FI)
2423         .setMIFlag(MachineInstr::FrameDestroy);
2424   }
2425   MBBI = FirstCSPop;
2426 
2427   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2428     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2429 
2430   if (MBBI != MBB.end())
2431     DL = MBBI->getDebugLoc();
2432   // If there is an ADD32ri or SUB32ri of ESP immediately before this
2433   // instruction, merge the two instructions.
2434   if (NumBytes || MFI.hasVarSizedObjects())
2435     NumBytes += mergeSPUpdates(MBB, MBBI, true);
2436 
2437   // If dynamic alloca is used, then reset esp to point to the last callee-saved
2438   // slot before popping them off! Same applies for the case, when stack was
2439   // realigned. Don't do this if this was a funclet epilogue, since the funclets
2440   // will not do realignment or dynamic stack allocation.
2441   if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
2442       !IsFunclet) {
2443     if (TRI->hasStackRealignment(MF))
2444       MBBI = FirstCSPop;
2445     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2446     uint64_t LEAAmount =
2447         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2448 
2449     if (X86FI->hasSwiftAsyncContext())
2450       LEAAmount -= 16;
2451 
2452     // There are only two legal forms of epilogue:
2453     // - add SEHAllocationSize, %rsp
2454     // - lea SEHAllocationSize(%FramePtr), %rsp
2455     //
2456     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2457     // However, we may use this sequence if we have a frame pointer because the
2458     // effects of the prologue can safely be undone.
2459     if (LEAAmount != 0) {
2460       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2461       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
2462                    FramePtr, false, LEAAmount);
2463       --MBBI;
2464     } else {
2465       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2466       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
2467         .addReg(FramePtr);
2468       --MBBI;
2469     }
2470   } else if (NumBytes) {
2471     // Adjust stack pointer back: ESP += numbytes.
2472     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2473     if (!HasFP && NeedsDwarfCFI) {
2474       // Define the current CFA rule to use the provided offset.
2475       BuildCFI(MBB, MBBI, DL,
2476                MCCFIInstruction::cfiDefCfaOffset(
2477                    nullptr, CSSize + TailCallArgReserveSize + SlotSize),
2478                MachineInstr::FrameDestroy);
2479     }
2480     --MBBI;
2481   }
2482 
2483   // Windows unwinder will not invoke function's exception handler if IP is
2484   // either in prologue or in epilogue.  This behavior causes a problem when a
2485   // call immediately precedes an epilogue, because the return address points
2486   // into the epilogue.  To cope with that, we insert an epilogue marker here,
2487   // then replace it with a 'nop' if it ends up immediately after a CALL in the
2488   // final emitted code.
2489   if (NeedsWin64CFI && MF.hasWinCFI())
2490     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2491 
2492   if (!HasFP && NeedsDwarfCFI) {
2493     MBBI = FirstCSPop;
2494     int64_t Offset = -CSSize - SlotSize;
2495     // Mark callee-saved pop instruction.
2496     // Define the current CFA rule to use the provided offset.
2497     while (MBBI != MBB.end()) {
2498       MachineBasicBlock::iterator PI = MBBI;
2499       unsigned Opc = PI->getOpcode();
2500       ++MBBI;
2501       if (Opc == X86::POP32r || Opc == X86::POP64r) {
2502         Offset += SlotSize;
2503         BuildCFI(MBB, MBBI, DL,
2504                  MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset),
2505                  MachineInstr::FrameDestroy);
2506       }
2507     }
2508   }
2509 
2510   // Emit DWARF info specifying the restores of the callee-saved registers.
2511   // For epilogue with return inside or being other block without successor,
2512   // no need to generate .cfi_restore for callee-saved registers.
2513   if (NeedsDwarfCFI && !MBB.succ_empty())
2514     emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2515 
2516   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2517     // Add the return addr area delta back since we are not tail calling.
2518     int Offset = -1 * X86FI->getTCReturnAddrDelta();
2519     assert(Offset >= 0 && "TCDelta should never be positive");
2520     if (Offset) {
2521       // Check for possible merge with preceding ADD instruction.
2522       Offset += mergeSPUpdates(MBB, Terminator, true);
2523       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2524     }
2525   }
2526 
2527   // Emit tilerelease for AMX kernel.
2528   if (X86FI->hasVirtualTileReg())
2529     BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2530 }
2531 
2532 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2533                                                      int FI,
2534                                                      Register &FrameReg) const {
2535   const MachineFrameInfo &MFI = MF.getFrameInfo();
2536 
2537   bool IsFixed = MFI.isFixedObjectIndex(FI);
2538   // We can't calculate offset from frame pointer if the stack is realigned,
2539   // so enforce usage of stack/base pointer.  The base pointer is used when we
2540   // have dynamic allocas in addition to dynamic realignment.
2541   if (TRI->hasBasePointer(MF))
2542     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2543   else if (TRI->hasStackRealignment(MF))
2544     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2545   else
2546     FrameReg = TRI->getFrameRegister(MF);
2547 
2548   // Offset will hold the offset from the stack pointer at function entry to the
2549   // object.
2550   // We need to factor in additional offsets applied during the prologue to the
2551   // frame, base, and stack pointer depending on which is used.
2552   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2553   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2554   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2555   uint64_t StackSize = MFI.getStackSize();
2556   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2557   int64_t FPDelta = 0;
2558 
2559   // In an x86 interrupt, remove the offset we added to account for the return
2560   // address from any stack object allocated in the caller's frame. Interrupts
2561   // do not have a standard return address. Fixed objects in the current frame,
2562   // such as SSE register spills, should not get this treatment.
2563   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2564       Offset >= 0) {
2565     Offset += getOffsetOfLocalArea();
2566   }
2567 
2568   if (IsWin64Prologue) {
2569     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2570 
2571     // Calculate required stack adjustment.
2572     uint64_t FrameSize = StackSize - SlotSize;
2573     // If required, include space for extra hidden slot for stashing base pointer.
2574     if (X86FI->getRestoreBasePointer())
2575       FrameSize += SlotSize;
2576     uint64_t NumBytes = FrameSize - CSSize;
2577 
2578     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2579     if (FI && FI == X86FI->getFAIndex())
2580       return StackOffset::getFixed(-SEHFrameOffset);
2581 
2582     // FPDelta is the offset from the "traditional" FP location of the old base
2583     // pointer followed by return address and the location required by the
2584     // restricted Win64 prologue.
2585     // Add FPDelta to all offsets below that go through the frame pointer.
2586     FPDelta = FrameSize - SEHFrameOffset;
2587     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2588            "FPDelta isn't aligned per the Win64 ABI!");
2589   }
2590 
2591   if (FrameReg == TRI->getFramePtr()) {
2592     // Skip saved EBP/RBP
2593     Offset += SlotSize;
2594 
2595     // Account for restricted Windows prologue.
2596     Offset += FPDelta;
2597 
2598     // Skip the RETADDR move area
2599     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2600     if (TailCallReturnAddrDelta < 0)
2601       Offset -= TailCallReturnAddrDelta;
2602 
2603     return StackOffset::getFixed(Offset);
2604   }
2605 
2606   // FrameReg is either the stack pointer or a base pointer. But the base is
2607   // located at the end of the statically known StackSize so the distinction
2608   // doesn't really matter.
2609   if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF))
2610     assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2611   return StackOffset::getFixed(Offset + StackSize);
2612 }
2613 
2614 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2615                                               Register &FrameReg) const {
2616   const MachineFrameInfo &MFI = MF.getFrameInfo();
2617   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2618   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2619   const auto it = WinEHXMMSlotInfo.find(FI);
2620 
2621   if (it == WinEHXMMSlotInfo.end())
2622     return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2623 
2624   FrameReg = TRI->getStackRegister();
2625   return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2626          it->second;
2627 }
2628 
2629 StackOffset
2630 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2631                                            Register &FrameReg,
2632                                            int Adjustment) const {
2633   const MachineFrameInfo &MFI = MF.getFrameInfo();
2634   FrameReg = TRI->getStackRegister();
2635   return StackOffset::getFixed(MFI.getObjectOffset(FI) -
2636                                getOffsetOfLocalArea() + Adjustment);
2637 }
2638 
2639 StackOffset
2640 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2641                                                  int FI, Register &FrameReg,
2642                                                  bool IgnoreSPUpdates) const {
2643 
2644   const MachineFrameInfo &MFI = MF.getFrameInfo();
2645   // Does not include any dynamic realign.
2646   const uint64_t StackSize = MFI.getStackSize();
2647   // LLVM arranges the stack as follows:
2648   //   ...
2649   //   ARG2
2650   //   ARG1
2651   //   RETADDR
2652   //   PUSH RBP   <-- RBP points here
2653   //   PUSH CSRs
2654   //   ~~~~~~~    <-- possible stack realignment (non-win64)
2655   //   ...
2656   //   STACK OBJECTS
2657   //   ...        <-- RSP after prologue points here
2658   //   ~~~~~~~    <-- possible stack realignment (win64)
2659   //
2660   // if (hasVarSizedObjects()):
2661   //   ...        <-- "base pointer" (ESI/RBX) points here
2662   //   DYNAMIC ALLOCAS
2663   //   ...        <-- RSP points here
2664   //
2665   // Case 1: In the simple case of no stack realignment and no dynamic
2666   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2667   // with fixed offsets from RSP.
2668   //
2669   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2670   // stack objects are addressed with RBP and regular stack objects with RSP.
2671   //
2672   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2673   // to address stack arguments for outgoing calls and nothing else. The "base
2674   // pointer" points to local variables, and RBP points to fixed objects.
2675   //
2676   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2677   // answer we give is relative to the SP after the prologue, and not the
2678   // SP in the middle of the function.
2679 
2680   if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) &&
2681       !STI.isTargetWin64())
2682     return getFrameIndexReference(MF, FI, FrameReg);
2683 
2684   // If !hasReservedCallFrame the function might have SP adjustement in the
2685   // body.  So, even though the offset is statically known, it depends on where
2686   // we are in the function.
2687   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2688     return getFrameIndexReference(MF, FI, FrameReg);
2689 
2690   // We don't handle tail calls, and shouldn't be seeing them either.
2691   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2692          "we don't handle this case!");
2693 
2694   // This is how the math works out:
2695   //
2696   //  %rsp grows (i.e. gets lower) left to right. Each box below is
2697   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
2698   //  get to.
2699   //
2700   //    ----------------------------------
2701   //    | BP | Obj0 | Obj1 | ... | ObjN |
2702   //    ----------------------------------
2703   //    ^    ^      ^                   ^
2704   //    A    B      C                   E
2705   //
2706   // A is the incoming stack pointer.
2707   // (B - A) is the local area offset (-8 for x86-64) [1]
2708   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2709   //
2710   // |(E - B)| is the StackSize (absolute value, positive).  For a
2711   // stack that grown down, this works out to be (B - E). [3]
2712   //
2713   // E is also the value of %rsp after stack has been set up, and we
2714   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
2715   // (C - E) == (C - A) - (B - A) + (B - E)
2716   //            { Using [1], [2] and [3] above }
2717   //         == getObjectOffset - LocalAreaOffset + StackSize
2718 
2719   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2720 }
2721 
2722 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2723     MachineFunction &MF, const TargetRegisterInfo *TRI,
2724     std::vector<CalleeSavedInfo> &CSI) const {
2725   MachineFrameInfo &MFI = MF.getFrameInfo();
2726   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2727 
2728   unsigned CalleeSavedFrameSize = 0;
2729   unsigned XMMCalleeSavedFrameSize = 0;
2730   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2731   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2732 
2733   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2734 
2735   if (TailCallReturnAddrDelta < 0) {
2736     // create RETURNADDR area
2737     //   arg
2738     //   arg
2739     //   RETADDR
2740     //   { ...
2741     //     RETADDR area
2742     //     ...
2743     //   }
2744     //   [EBP]
2745     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2746                            TailCallReturnAddrDelta - SlotSize, true);
2747   }
2748 
2749   // Spill the BasePtr if it's used.
2750   if (this->TRI->hasBasePointer(MF)) {
2751     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2752     if (MF.hasEHFunclets()) {
2753       int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2754       X86FI->setHasSEHFramePtrSave(true);
2755       X86FI->setSEHFramePtrSaveIndex(FI);
2756     }
2757   }
2758 
2759   if (hasFP(MF)) {
2760     // emitPrologue always spills frame register the first thing.
2761     SpillSlotOffset -= SlotSize;
2762     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2763 
2764     // The async context lives directly before the frame pointer, and we
2765     // allocate a second slot to preserve stack alignment.
2766     if (X86FI->hasSwiftAsyncContext()) {
2767       SpillSlotOffset -= SlotSize;
2768       MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2769       SpillSlotOffset -= SlotSize;
2770     }
2771 
2772     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2773     // the frame register, we can delete it from CSI list and not have to worry
2774     // about avoiding it later.
2775     Register FPReg = TRI->getFrameRegister(MF);
2776     for (unsigned i = 0; i < CSI.size(); ++i) {
2777       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2778         CSI.erase(CSI.begin() + i);
2779         break;
2780       }
2781     }
2782   }
2783 
2784   // Assign slots for GPRs. It increases frame size.
2785   for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
2786     Register Reg = I.getReg();
2787 
2788     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2789       continue;
2790 
2791     SpillSlotOffset -= SlotSize;
2792     CalleeSavedFrameSize += SlotSize;
2793 
2794     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2795     I.setFrameIdx(SlotIndex);
2796   }
2797 
2798   // Adjust the offset of spill slot as we know the accurate callee saved frame
2799   // size.
2800   if (X86FI->getRestoreBasePointer()) {
2801     SpillSlotOffset -= SlotSize;
2802     CalleeSavedFrameSize += SlotSize;
2803 
2804     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2805     // TODO: saving the slot index is better?
2806     X86FI->setRestoreBasePointer(CalleeSavedFrameSize);
2807   }
2808   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2809   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2810 
2811   // Assign slots for XMMs.
2812   for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
2813     Register Reg = I.getReg();
2814     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2815       continue;
2816 
2817     // If this is k-register make sure we lookup via the largest legal type.
2818     MVT VT = MVT::Other;
2819     if (X86::VK16RegClass.contains(Reg))
2820       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2821 
2822     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2823     unsigned Size = TRI->getSpillSize(*RC);
2824     Align Alignment = TRI->getSpillAlign(*RC);
2825     // ensure alignment
2826     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2827     SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2828 
2829     // spill into slot
2830     SpillSlotOffset -= Size;
2831     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2832     I.setFrameIdx(SlotIndex);
2833     MFI.ensureMaxAlignment(Alignment);
2834 
2835     // Save the start offset and size of XMM in stack frame for funclets.
2836     if (X86::VR128RegClass.contains(Reg)) {
2837       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2838       XMMCalleeSavedFrameSize += Size;
2839     }
2840   }
2841 
2842   return true;
2843 }
2844 
2845 bool X86FrameLowering::spillCalleeSavedRegisters(
2846     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2847     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2848   DebugLoc DL = MBB.findDebugLoc(MI);
2849 
2850   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2851   // for us, and there are no XMM CSRs on Win32.
2852   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2853     return true;
2854 
2855   // Push GPRs. It increases frame size.
2856   const MachineFunction &MF = *MBB.getParent();
2857   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2858   for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
2859     Register Reg = I.getReg();
2860 
2861     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2862       continue;
2863 
2864     const MachineRegisterInfo &MRI = MF.getRegInfo();
2865     bool isLiveIn = MRI.isLiveIn(Reg);
2866     if (!isLiveIn)
2867       MBB.addLiveIn(Reg);
2868 
2869     // Decide whether we can add a kill flag to the use.
2870     bool CanKill = !isLiveIn;
2871     // Check if any subregister is live-in
2872     if (CanKill) {
2873       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2874         if (MRI.isLiveIn(*AReg)) {
2875           CanKill = false;
2876           break;
2877         }
2878       }
2879     }
2880 
2881     // Do not set a kill flag on values that are also marked as live-in. This
2882     // happens with the @llvm-returnaddress intrinsic and with arguments
2883     // passed in callee saved registers.
2884     // Omitting the kill flags is conservatively correct even if the live-in
2885     // is not used after all.
2886     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2887       .setMIFlag(MachineInstr::FrameSetup);
2888   }
2889 
2890   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2891   if (X86FI->getRestoreBasePointer()) {
2892     unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2893     Register BaseReg = this->TRI->getBaseRegister();
2894     BuildMI(MBB, MI, DL, TII.get(Opc))
2895         .addReg(BaseReg, getKillRegState(true))
2896         .setMIFlag(MachineInstr::FrameSetup);
2897   }
2898 
2899   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2900   // It can be done by spilling XMMs to stack frame.
2901   for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
2902     Register Reg = I.getReg();
2903     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2904       continue;
2905 
2906     // If this is k-register make sure we lookup via the largest legal type.
2907     MVT VT = MVT::Other;
2908     if (X86::VK16RegClass.contains(Reg))
2909       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2910 
2911     // Add the callee-saved register as live-in. It's killed at the spill.
2912     MBB.addLiveIn(Reg);
2913     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2914 
2915     TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI,
2916                             Register());
2917     --MI;
2918     MI->setFlag(MachineInstr::FrameSetup);
2919     ++MI;
2920   }
2921 
2922   return true;
2923 }
2924 
2925 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2926                                                MachineBasicBlock::iterator MBBI,
2927                                                MachineInstr *CatchRet) const {
2928   // SEH shouldn't use catchret.
2929   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2930              MBB.getParent()->getFunction().getPersonalityFn())) &&
2931          "SEH should not use CATCHRET");
2932   const DebugLoc &DL = CatchRet->getDebugLoc();
2933   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2934 
2935   // Fill EAX/RAX with the address of the target block.
2936   if (STI.is64Bit()) {
2937     // LEA64r CatchRetTarget(%rip), %rax
2938     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2939         .addReg(X86::RIP)
2940         .addImm(0)
2941         .addReg(0)
2942         .addMBB(CatchRetTarget)
2943         .addReg(0);
2944   } else {
2945     // MOV32ri $CatchRetTarget, %eax
2946     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2947         .addMBB(CatchRetTarget);
2948   }
2949 
2950   // Record that we've taken the address of CatchRetTarget and no longer just
2951   // reference it in a terminator.
2952   CatchRetTarget->setMachineBlockAddressTaken();
2953 }
2954 
2955 bool X86FrameLowering::restoreCalleeSavedRegisters(
2956     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2957     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2958   if (CSI.empty())
2959     return false;
2960 
2961   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2962     // Don't restore CSRs in 32-bit EH funclets. Matches
2963     // spillCalleeSavedRegisters.
2964     if (STI.is32Bit())
2965       return true;
2966     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2967     // funclets. emitEpilogue transforms these to normal jumps.
2968     if (MI->getOpcode() == X86::CATCHRET) {
2969       const Function &F = MBB.getParent()->getFunction();
2970       bool IsSEH = isAsynchronousEHPersonality(
2971           classifyEHPersonality(F.getPersonalityFn()));
2972       if (IsSEH)
2973         return true;
2974     }
2975   }
2976 
2977   DebugLoc DL = MBB.findDebugLoc(MI);
2978 
2979   // Reload XMMs from stack frame.
2980   for (const CalleeSavedInfo &I : CSI) {
2981     Register Reg = I.getReg();
2982     if (X86::GR64RegClass.contains(Reg) ||
2983         X86::GR32RegClass.contains(Reg))
2984       continue;
2985 
2986     // If this is k-register make sure we lookup via the largest legal type.
2987     MVT VT = MVT::Other;
2988     if (X86::VK16RegClass.contains(Reg))
2989       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2990 
2991     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2992     TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI,
2993                              Register());
2994   }
2995 
2996   // Clear the stack slot for spill base pointer register.
2997   MachineFunction &MF = *MBB.getParent();
2998   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2999   if (X86FI->getRestoreBasePointer()) {
3000     unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
3001     Register BaseReg = this->TRI->getBaseRegister();
3002     BuildMI(MBB, MI, DL, TII.get(Opc), BaseReg)
3003         .setMIFlag(MachineInstr::FrameDestroy);
3004   }
3005 
3006   // POP GPRs.
3007   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
3008   for (const CalleeSavedInfo &I : CSI) {
3009     Register Reg = I.getReg();
3010     if (!X86::GR64RegClass.contains(Reg) &&
3011         !X86::GR32RegClass.contains(Reg))
3012       continue;
3013 
3014     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
3015         .setMIFlag(MachineInstr::FrameDestroy);
3016   }
3017   return true;
3018 }
3019 
3020 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
3021                                             BitVector &SavedRegs,
3022                                             RegScavenger *RS) const {
3023   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3024 
3025   // Spill the BasePtr if it's used.
3026   if (TRI->hasBasePointer(MF)){
3027     Register BasePtr = TRI->getBaseRegister();
3028     if (STI.isTarget64BitILP32())
3029       BasePtr = getX86SubSuperRegister(BasePtr, 64);
3030     SavedRegs.set(BasePtr);
3031   }
3032 }
3033 
3034 static bool
3035 HasNestArgument(const MachineFunction *MF) {
3036   const Function &F = MF->getFunction();
3037   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
3038        I != E; I++) {
3039     if (I->hasNestAttr() && !I->use_empty())
3040       return true;
3041   }
3042   return false;
3043 }
3044 
3045 /// GetScratchRegister - Get a temp register for performing work in the
3046 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
3047 /// and the properties of the function either one or two registers will be
3048 /// needed. Set primary to true for the first register, false for the second.
3049 static unsigned
3050 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
3051   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
3052 
3053   // Erlang stuff.
3054   if (CallingConvention == CallingConv::HiPE) {
3055     if (Is64Bit)
3056       return Primary ? X86::R14 : X86::R13;
3057     else
3058       return Primary ? X86::EBX : X86::EDI;
3059   }
3060 
3061   if (Is64Bit) {
3062     if (IsLP64)
3063       return Primary ? X86::R11 : X86::R12;
3064     else
3065       return Primary ? X86::R11D : X86::R12D;
3066   }
3067 
3068   bool IsNested = HasNestArgument(&MF);
3069 
3070   if (CallingConvention == CallingConv::X86_FastCall ||
3071       CallingConvention == CallingConv::Fast ||
3072       CallingConvention == CallingConv::Tail) {
3073     if (IsNested)
3074       report_fatal_error("Segmented stacks does not support fastcall with "
3075                          "nested function.");
3076     return Primary ? X86::EAX : X86::ECX;
3077   }
3078   if (IsNested)
3079     return Primary ? X86::EDX : X86::EAX;
3080   return Primary ? X86::ECX : X86::EAX;
3081 }
3082 
3083 // The stack limit in the TCB is set to this many bytes above the actual stack
3084 // limit.
3085 static const uint64_t kSplitStackAvailable = 256;
3086 
3087 void X86FrameLowering::adjustForSegmentedStacks(
3088     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3089   MachineFrameInfo &MFI = MF.getFrameInfo();
3090   uint64_t StackSize;
3091   unsigned TlsReg, TlsOffset;
3092   DebugLoc DL;
3093 
3094   // To support shrink-wrapping we would need to insert the new blocks
3095   // at the right place and update the branches to PrologueMBB.
3096   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3097 
3098   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3099   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3100          "Scratch register is live-in");
3101 
3102   if (MF.getFunction().isVarArg())
3103     report_fatal_error("Segmented stacks do not support vararg functions.");
3104   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
3105       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
3106       !STI.isTargetDragonFly())
3107     report_fatal_error("Segmented stacks not supported on this platform.");
3108 
3109   // Eventually StackSize will be calculated by a link-time pass; which will
3110   // also decide whether checking code needs to be injected into this particular
3111   // prologue.
3112   StackSize = MFI.getStackSize();
3113 
3114   if (!MFI.needsSplitStackProlog())
3115     return;
3116 
3117   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
3118   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
3119   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3120   bool IsNested = false;
3121 
3122   // We need to know if the function has a nest argument only in 64 bit mode.
3123   if (Is64Bit)
3124     IsNested = HasNestArgument(&MF);
3125 
3126   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
3127   // allocMBB needs to be last (terminating) instruction.
3128 
3129   for (const auto &LI : PrologueMBB.liveins()) {
3130     allocMBB->addLiveIn(LI);
3131     checkMBB->addLiveIn(LI);
3132   }
3133 
3134   if (IsNested)
3135     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
3136 
3137   MF.push_front(allocMBB);
3138   MF.push_front(checkMBB);
3139 
3140   // When the frame size is less than 256 we just compare the stack
3141   // boundary directly to the value of the stack pointer, per gcc.
3142   bool CompareStackPointer = StackSize < kSplitStackAvailable;
3143 
3144   // Read the limit off the current stacklet off the stack_guard location.
3145   if (Is64Bit) {
3146     if (STI.isTargetLinux()) {
3147       TlsReg = X86::FS;
3148       TlsOffset = IsLP64 ? 0x70 : 0x40;
3149     } else if (STI.isTargetDarwin()) {
3150       TlsReg = X86::GS;
3151       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
3152     } else if (STI.isTargetWin64()) {
3153       TlsReg = X86::GS;
3154       TlsOffset = 0x28; // pvArbitrary, reserved for application use
3155     } else if (STI.isTargetFreeBSD()) {
3156       TlsReg = X86::FS;
3157       TlsOffset = 0x18;
3158     } else if (STI.isTargetDragonFly()) {
3159       TlsReg = X86::FS;
3160       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
3161     } else {
3162       report_fatal_error("Segmented stacks not supported on this platform.");
3163     }
3164 
3165     if (CompareStackPointer)
3166       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
3167     else
3168       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
3169         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
3170 
3171     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
3172       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
3173   } else {
3174     if (STI.isTargetLinux()) {
3175       TlsReg = X86::GS;
3176       TlsOffset = 0x30;
3177     } else if (STI.isTargetDarwin()) {
3178       TlsReg = X86::GS;
3179       TlsOffset = 0x48 + 90*4;
3180     } else if (STI.isTargetWin32()) {
3181       TlsReg = X86::FS;
3182       TlsOffset = 0x14; // pvArbitrary, reserved for application use
3183     } else if (STI.isTargetDragonFly()) {
3184       TlsReg = X86::FS;
3185       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
3186     } else if (STI.isTargetFreeBSD()) {
3187       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
3188     } else {
3189       report_fatal_error("Segmented stacks not supported on this platform.");
3190     }
3191 
3192     if (CompareStackPointer)
3193       ScratchReg = X86::ESP;
3194     else
3195       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
3196         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
3197 
3198     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
3199         STI.isTargetDragonFly()) {
3200       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
3201         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
3202     } else if (STI.isTargetDarwin()) {
3203 
3204       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
3205       unsigned ScratchReg2;
3206       bool SaveScratch2;
3207       if (CompareStackPointer) {
3208         // The primary scratch register is available for holding the TLS offset.
3209         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3210         SaveScratch2 = false;
3211       } else {
3212         // Need to use a second register to hold the TLS offset
3213         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
3214 
3215         // Unfortunately, with fastcc the second scratch register may hold an
3216         // argument.
3217         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
3218       }
3219 
3220       // If Scratch2 is live-in then it needs to be saved.
3221       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
3222              "Scratch register is live-in and not saved");
3223 
3224       if (SaveScratch2)
3225         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
3226           .addReg(ScratchReg2, RegState::Kill);
3227 
3228       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
3229         .addImm(TlsOffset);
3230       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
3231         .addReg(ScratchReg)
3232         .addReg(ScratchReg2).addImm(1).addReg(0)
3233         .addImm(0)
3234         .addReg(TlsReg);
3235 
3236       if (SaveScratch2)
3237         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
3238     }
3239   }
3240 
3241   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
3242   // It jumps to normal execution of the function body.
3243   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
3244 
3245   // On 32 bit we first push the arguments size and then the frame size. On 64
3246   // bit, we pass the stack frame size in r10 and the argument size in r11.
3247   if (Is64Bit) {
3248     // Functions with nested arguments use R10, so it needs to be saved across
3249     // the call to _morestack
3250 
3251     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
3252     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
3253     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
3254     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
3255 
3256     if (IsNested)
3257       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
3258 
3259     BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10)
3260         .addImm(StackSize);
3261     BuildMI(allocMBB, DL,
3262             TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())),
3263             Reg11)
3264         .addImm(X86FI->getArgumentStackSize());
3265   } else {
3266     BuildMI(allocMBB, DL, TII.get(X86::PUSH32i))
3267       .addImm(X86FI->getArgumentStackSize());
3268     BuildMI(allocMBB, DL, TII.get(X86::PUSH32i))
3269       .addImm(StackSize);
3270   }
3271 
3272   // __morestack is in libgcc
3273   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
3274     // Under the large code model, we cannot assume that __morestack lives
3275     // within 2^31 bytes of the call site, so we cannot use pc-relative
3276     // addressing. We cannot perform the call via a temporary register,
3277     // as the rax register may be used to store the static chain, and all
3278     // other suitable registers may be either callee-save or used for
3279     // parameter passing. We cannot use the stack at this point either
3280     // because __morestack manipulates the stack directly.
3281     //
3282     // To avoid these issues, perform an indirect call via a read-only memory
3283     // location containing the address.
3284     //
3285     // This solution is not perfect, as it assumes that the .rodata section
3286     // is laid out within 2^31 bytes of each function body, but this seems
3287     // to be sufficient for JIT.
3288     // FIXME: Add retpoline support and remove the error here..
3289     if (STI.useIndirectThunkCalls())
3290       report_fatal_error("Emitting morestack calls on 64-bit with the large "
3291                          "code model and thunks not yet implemented.");
3292     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
3293         .addReg(X86::RIP)
3294         .addImm(0)
3295         .addReg(0)
3296         .addExternalSymbol("__morestack_addr")
3297         .addReg(0);
3298   } else {
3299     if (Is64Bit)
3300       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
3301         .addExternalSymbol("__morestack");
3302     else
3303       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
3304         .addExternalSymbol("__morestack");
3305   }
3306 
3307   if (IsNested)
3308     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
3309   else
3310     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
3311 
3312   allocMBB->addSuccessor(&PrologueMBB);
3313 
3314   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
3315   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
3316 
3317 #ifdef EXPENSIVE_CHECKS
3318   MF.verify();
3319 #endif
3320 }
3321 
3322 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
3323 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
3324 /// to fields it needs, through a named metadata node "hipe.literals" containing
3325 /// name-value pairs.
3326 static unsigned getHiPELiteral(
3327     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
3328   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
3329     MDNode *Node = HiPELiteralsMD->getOperand(i);
3330     if (Node->getNumOperands() != 2) continue;
3331     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
3332     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
3333     if (!NodeName || !NodeVal) continue;
3334     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
3335     if (ValConst && NodeName->getString() == LiteralName) {
3336       return ValConst->getZExtValue();
3337     }
3338   }
3339 
3340   report_fatal_error("HiPE literal " + LiteralName
3341                      + " required but not provided");
3342 }
3343 
3344 // Return true if there are no non-ehpad successors to MBB and there are no
3345 // non-meta instructions between MBBI and MBB.end().
3346 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
3347                                   MachineBasicBlock::const_iterator MBBI) {
3348   return llvm::all_of(
3349              MBB.successors(),
3350              [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
3351          std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
3352            return MI.isMetaInstruction();
3353          });
3354 }
3355 
3356 /// Erlang programs may need a special prologue to handle the stack size they
3357 /// might need at runtime. That is because Erlang/OTP does not implement a C
3358 /// stack but uses a custom implementation of hybrid stack/heap architecture.
3359 /// (for more information see Eric Stenman's Ph.D. thesis:
3360 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3361 ///
3362 /// CheckStack:
3363 ///       temp0 = sp - MaxStack
3364 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3365 /// OldStart:
3366 ///       ...
3367 /// IncStack:
3368 ///       call inc_stack   # doubles the stack space
3369 ///       temp0 = sp - MaxStack
3370 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3371 void X86FrameLowering::adjustForHiPEPrologue(
3372     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3373   MachineFrameInfo &MFI = MF.getFrameInfo();
3374   DebugLoc DL;
3375 
3376   // To support shrink-wrapping we would need to insert the new blocks
3377   // at the right place and update the branches to PrologueMBB.
3378   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3379 
3380   // HiPE-specific values
3381   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
3382     ->getNamedMetadata("hipe.literals");
3383   if (!HiPELiteralsMD)
3384     report_fatal_error(
3385         "Can't generate HiPE prologue without runtime parameters");
3386   const unsigned HipeLeafWords
3387     = getHiPELiteral(HiPELiteralsMD,
3388                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3389   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
3390   const unsigned Guaranteed = HipeLeafWords * SlotSize;
3391   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
3392                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
3393   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
3394 
3395   assert(STI.isTargetLinux() &&
3396          "HiPE prologue is only supported on Linux operating systems.");
3397 
3398   // Compute the largest caller's frame that is needed to fit the callees'
3399   // frames. This 'MaxStack' is computed from:
3400   //
3401   // a) the fixed frame size, which is the space needed for all spilled temps,
3402   // b) outgoing on-stack parameter areas, and
3403   // c) the minimum stack space this function needs to make available for the
3404   //    functions it calls (a tunable ABI property).
3405   if (MFI.hasCalls()) {
3406     unsigned MoreStackForCalls = 0;
3407 
3408     for (auto &MBB : MF) {
3409       for (auto &MI : MBB) {
3410         if (!MI.isCall())
3411           continue;
3412 
3413         // Get callee operand.
3414         const MachineOperand &MO = MI.getOperand(0);
3415 
3416         // Only take account of global function calls (no closures etc.).
3417         if (!MO.isGlobal())
3418           continue;
3419 
3420         const Function *F = dyn_cast<Function>(MO.getGlobal());
3421         if (!F)
3422           continue;
3423 
3424         // Do not update 'MaxStack' for primitive and built-in functions
3425         // (encoded with names either starting with "erlang."/"bif_" or not
3426         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3427         // "_", such as the BIF "suspend_0") as they are executed on another
3428         // stack.
3429         if (F->getName().contains("erlang.") || F->getName().contains("bif_") ||
3430             F->getName().find_first_of("._") == StringRef::npos)
3431           continue;
3432 
3433         unsigned CalleeStkArity =
3434           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
3435         if (HipeLeafWords - 1 > CalleeStkArity)
3436           MoreStackForCalls = std::max(MoreStackForCalls,
3437                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3438       }
3439     }
3440     MaxStack += MoreStackForCalls;
3441   }
3442 
3443   // If the stack frame needed is larger than the guaranteed then runtime checks
3444   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3445   if (MaxStack > Guaranteed) {
3446     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3447     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3448 
3449     for (const auto &LI : PrologueMBB.liveins()) {
3450       stackCheckMBB->addLiveIn(LI);
3451       incStackMBB->addLiveIn(LI);
3452     }
3453 
3454     MF.push_front(incStackMBB);
3455     MF.push_front(stackCheckMBB);
3456 
3457     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3458     unsigned LEAop, CMPop, CALLop;
3459     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3460     if (Is64Bit) {
3461       SPReg = X86::RSP;
3462       PReg  = X86::RBP;
3463       LEAop = X86::LEA64r;
3464       CMPop = X86::CMP64rm;
3465       CALLop = X86::CALL64pcrel32;
3466     } else {
3467       SPReg = X86::ESP;
3468       PReg  = X86::EBP;
3469       LEAop = X86::LEA32r;
3470       CMPop = X86::CMP32rm;
3471       CALLop = X86::CALLpcrel32;
3472     }
3473 
3474     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3475     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3476            "HiPE prologue scratch register is live-in");
3477 
3478     // Create new MBB for StackCheck:
3479     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
3480                  SPReg, false, -MaxStack);
3481     // SPLimitOffset is in a fixed heap location (pointed by BP).
3482     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
3483                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
3484     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
3485 
3486     // Create new MBB for IncStack:
3487     BuildMI(incStackMBB, DL, TII.get(CALLop)).
3488       addExternalSymbol("inc_stack_0");
3489     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
3490                  SPReg, false, -MaxStack);
3491     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
3492                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
3493     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
3494 
3495     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3496     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3497     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3498     incStackMBB->addSuccessor(incStackMBB, {1, 100});
3499   }
3500 #ifdef EXPENSIVE_CHECKS
3501   MF.verify();
3502 #endif
3503 }
3504 
3505 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3506                                            MachineBasicBlock::iterator MBBI,
3507                                            const DebugLoc &DL,
3508                                            int Offset) const {
3509   if (Offset <= 0)
3510     return false;
3511 
3512   if (Offset % SlotSize)
3513     return false;
3514 
3515   int NumPops = Offset / SlotSize;
3516   // This is only worth it if we have at most 2 pops.
3517   if (NumPops != 1 && NumPops != 2)
3518     return false;
3519 
3520   // Handle only the trivial case where the adjustment directly follows
3521   // a call. This is the most common one, anyway.
3522   if (MBBI == MBB.begin())
3523     return false;
3524   MachineBasicBlock::iterator Prev = std::prev(MBBI);
3525   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3526     return false;
3527 
3528   unsigned Regs[2];
3529   unsigned FoundRegs = 0;
3530 
3531   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3532   const MachineOperand &RegMask = Prev->getOperand(1);
3533 
3534   auto &RegClass =
3535       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3536   // Try to find up to NumPops free registers.
3537   for (auto Candidate : RegClass) {
3538     // Poor man's liveness:
3539     // Since we're immediately after a call, any register that is clobbered
3540     // by the call and not defined by it can be considered dead.
3541     if (!RegMask.clobbersPhysReg(Candidate))
3542       continue;
3543 
3544     // Don't clobber reserved registers
3545     if (MRI.isReserved(Candidate))
3546       continue;
3547 
3548     bool IsDef = false;
3549     for (const MachineOperand &MO : Prev->implicit_operands()) {
3550       if (MO.isReg() && MO.isDef() &&
3551           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3552         IsDef = true;
3553         break;
3554       }
3555     }
3556 
3557     if (IsDef)
3558       continue;
3559 
3560     Regs[FoundRegs++] = Candidate;
3561     if (FoundRegs == (unsigned)NumPops)
3562       break;
3563   }
3564 
3565   if (FoundRegs == 0)
3566     return false;
3567 
3568   // If we found only one free register, but need two, reuse the same one twice.
3569   while (FoundRegs < (unsigned)NumPops)
3570     Regs[FoundRegs++] = Regs[0];
3571 
3572   for (int i = 0; i < NumPops; ++i)
3573     BuildMI(MBB, MBBI, DL,
3574             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
3575 
3576   return true;
3577 }
3578 
3579 MachineBasicBlock::iterator X86FrameLowering::
3580 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
3581                               MachineBasicBlock::iterator I) const {
3582   bool reserveCallFrame = hasReservedCallFrame(MF);
3583   unsigned Opcode = I->getOpcode();
3584   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3585   DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
3586   uint64_t Amount = TII.getFrameSize(*I);
3587   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3588   I = MBB.erase(I);
3589   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3590 
3591   // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3592   // typically because the function is marked noreturn (abort, throw,
3593   // assert_fail, etc).
3594   if (isDestroy && blockEndIsUnreachable(MBB, I))
3595     return I;
3596 
3597   if (!reserveCallFrame) {
3598     // If the stack pointer can be changed after prologue, turn the
3599     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3600     // adjcallstackdown instruction into 'add ESP, <amt>'
3601 
3602     // We need to keep the stack aligned properly.  To do this, we round the
3603     // amount of space needed for the outgoing arguments up to the next
3604     // alignment boundary.
3605     Amount = alignTo(Amount, getStackAlign());
3606 
3607     const Function &F = MF.getFunction();
3608     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3609     bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3610 
3611     // If we have any exception handlers in this function, and we adjust
3612     // the SP before calls, we may need to indicate this to the unwinder
3613     // using GNU_ARGS_SIZE. Note that this may be necessary even when
3614     // Amount == 0, because the preceding function may have set a non-0
3615     // GNU_ARGS_SIZE.
3616     // TODO: We don't need to reset this between subsequent functions,
3617     // if it didn't change.
3618     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3619 
3620     if (HasDwarfEHHandlers && !isDestroy &&
3621         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3622       BuildCFI(MBB, InsertPos, DL,
3623                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3624 
3625     if (Amount == 0)
3626       return I;
3627 
3628     // Factor out the amount that gets handled inside the sequence
3629     // (Pushes of argument for frame setup, callee pops for frame destroy)
3630     Amount -= InternalAmt;
3631 
3632     // TODO: This is needed only if we require precise CFA.
3633     // If this is a callee-pop calling convention, emit a CFA adjust for
3634     // the amount the callee popped.
3635     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3636       BuildCFI(MBB, InsertPos, DL,
3637                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3638 
3639     // Add Amount to SP to destroy a frame, or subtract to setup.
3640     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3641 
3642     if (StackAdjustment) {
3643       // Merge with any previous or following adjustment instruction. Note: the
3644       // instructions merged with here do not have CFI, so their stack
3645       // adjustments do not feed into CfaAdjustment.
3646       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3647       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3648 
3649       if (StackAdjustment) {
3650         if (!(F.hasMinSize() &&
3651               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3652           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3653                                /*InEpilogue=*/false);
3654       }
3655     }
3656 
3657     if (DwarfCFI && !hasFP(MF)) {
3658       // If we don't have FP, but need to generate unwind information,
3659       // we need to set the correct CFA offset after the stack adjustment.
3660       // How much we adjust the CFA offset depends on whether we're emitting
3661       // CFI only for EH purposes or for debugging. EH only requires the CFA
3662       // offset to be correct at each call site, while for debugging we want
3663       // it to be more precise.
3664 
3665       int64_t CfaAdjustment = -StackAdjustment;
3666       // TODO: When not using precise CFA, we also need to adjust for the
3667       // InternalAmt here.
3668       if (CfaAdjustment) {
3669         BuildCFI(MBB, InsertPos, DL,
3670                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
3671                                                          CfaAdjustment));
3672       }
3673     }
3674 
3675     return I;
3676   }
3677 
3678   if (InternalAmt) {
3679     MachineBasicBlock::iterator CI = I;
3680     MachineBasicBlock::iterator B = MBB.begin();
3681     while (CI != B && !std::prev(CI)->isCall())
3682       --CI;
3683     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3684   }
3685 
3686   return I;
3687 }
3688 
3689 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3690   assert(MBB.getParent() && "Block is not attached to a function!");
3691   const MachineFunction &MF = *MBB.getParent();
3692   if (!MBB.isLiveIn(X86::EFLAGS))
3693     return true;
3694 
3695   // If stack probes have to loop inline or call, that will clobber EFLAGS.
3696   // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock.
3697   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
3698   const X86TargetLowering &TLI = *STI.getTargetLowering();
3699   if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF))
3700     return false;
3701 
3702   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3703   return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
3704 }
3705 
3706 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3707   assert(MBB.getParent() && "Block is not attached to a function!");
3708 
3709   // Win64 has strict requirements in terms of epilogue and we are
3710   // not taking a chance at messing with them.
3711   // I.e., unless this block is already an exit block, we can't use
3712   // it as an epilogue.
3713   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3714     return false;
3715 
3716   // Swift async context epilogue has a BTR instruction that clobbers parts of
3717   // EFLAGS.
3718   const MachineFunction &MF = *MBB.getParent();
3719   if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
3720     return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3721 
3722   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3723     return true;
3724 
3725   // If we cannot use LEA to adjust SP, we may need to use ADD, which
3726   // clobbers the EFLAGS. Check that we do not need to preserve it,
3727   // otherwise, conservatively assume this is not
3728   // safe to insert the epilogue here.
3729   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3730 }
3731 
3732 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3733   // If we may need to emit frameless compact unwind information, give
3734   // up as this is currently broken: PR25614.
3735   bool CompactUnwind =
3736       MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3737       nullptr;
3738   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3739           !CompactUnwind) &&
3740          // The lowering of segmented stack and HiPE only support entry
3741          // blocks as prologue blocks: PR26107. This limitation may be
3742          // lifted if we fix:
3743          // - adjustForSegmentedStacks
3744          // - adjustForHiPEPrologue
3745          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3746          !MF.shouldSplitStack();
3747 }
3748 
3749 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3750     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3751     const DebugLoc &DL, bool RestoreSP) const {
3752   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3753   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3754   assert(STI.is32Bit() && !Uses64BitFramePtr &&
3755          "restoring EBP/ESI on non-32-bit target");
3756 
3757   MachineFunction &MF = *MBB.getParent();
3758   Register FramePtr = TRI->getFrameRegister(MF);
3759   Register BasePtr = TRI->getBaseRegister();
3760   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3761   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3762   MachineFrameInfo &MFI = MF.getFrameInfo();
3763 
3764   // FIXME: Don't set FrameSetup flag in catchret case.
3765 
3766   int FI = FuncInfo.EHRegNodeFrameIndex;
3767   int EHRegSize = MFI.getObjectSize(FI);
3768 
3769   if (RestoreSP) {
3770     // MOV32rm -EHRegSize(%ebp), %esp
3771     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3772                  X86::EBP, true, -EHRegSize)
3773         .setMIFlag(MachineInstr::FrameSetup);
3774   }
3775 
3776   Register UsedReg;
3777   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
3778   int EndOffset = -EHRegOffset - EHRegSize;
3779   FuncInfo.EHRegNodeEndOffset = EndOffset;
3780 
3781   if (UsedReg == FramePtr) {
3782     // ADD $offset, %ebp
3783     unsigned ADDri = getADDriOpcode(false);
3784     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3785         .addReg(FramePtr)
3786         .addImm(EndOffset)
3787         .setMIFlag(MachineInstr::FrameSetup)
3788         ->getOperand(3)
3789         .setIsDead();
3790     assert(EndOffset >= 0 &&
3791            "end of registration object above normal EBP position!");
3792   } else if (UsedReg == BasePtr) {
3793     // LEA offset(%ebp), %esi
3794     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3795                  FramePtr, false, EndOffset)
3796         .setMIFlag(MachineInstr::FrameSetup);
3797     // MOV32rm SavedEBPOffset(%esi), %ebp
3798     assert(X86FI->getHasSEHFramePtrSave());
3799     int Offset =
3800         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
3801             .getFixed();
3802     assert(UsedReg == BasePtr);
3803     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3804                  UsedReg, true, Offset)
3805         .setMIFlag(MachineInstr::FrameSetup);
3806   } else {
3807     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3808   }
3809   return MBBI;
3810 }
3811 
3812 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3813   return TRI->getSlotSize();
3814 }
3815 
3816 Register
3817 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3818   return StackPtr;
3819 }
3820 
3821 TargetFrameLowering::DwarfFrameBase
3822 X86FrameLowering::getDwarfFrameBase(const MachineFunction &MF) const {
3823   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
3824   Register FrameRegister = RI->getFrameRegister(MF);
3825   if (getInitialCFARegister(MF) == FrameRegister &&
3826       MF.getInfo<X86MachineFunctionInfo>()->hasCFIAdjustCfa()) {
3827     DwarfFrameBase FrameBase;
3828     FrameBase.Kind = DwarfFrameBase::CFA;
3829     FrameBase.Location.Offset =
3830         -MF.getFrameInfo().getStackSize() - getInitialCFAOffset(MF);
3831     return FrameBase;
3832   }
3833 
3834   return DwarfFrameBase{DwarfFrameBase::Register, {FrameRegister}};
3835 }
3836 
3837 namespace {
3838 // Struct used by orderFrameObjects to help sort the stack objects.
3839 struct X86FrameSortingObject {
3840   bool IsValid = false;         // true if we care about this Object.
3841   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
3842   unsigned ObjectSize = 0;      // Size of Object in bytes.
3843   Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3844   unsigned ObjectNumUses = 0;   // Object static number of uses.
3845 };
3846 
3847 // The comparison function we use for std::sort to order our local
3848 // stack symbols. The current algorithm is to use an estimated
3849 // "density". This takes into consideration the size and number of
3850 // uses each object has in order to roughly minimize code size.
3851 // So, for example, an object of size 16B that is referenced 5 times
3852 // will get higher priority than 4 4B objects referenced 1 time each.
3853 // It's not perfect and we may be able to squeeze a few more bytes out of
3854 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3855 // fringe end can have special consideration, given their size is less
3856 // important, etc.), but the algorithmic complexity grows too much to be
3857 // worth the extra gains we get. This gets us pretty close.
3858 // The final order leaves us with objects with highest priority going
3859 // at the end of our list.
3860 struct X86FrameSortingComparator {
3861   inline bool operator()(const X86FrameSortingObject &A,
3862                          const X86FrameSortingObject &B) const {
3863     uint64_t DensityAScaled, DensityBScaled;
3864 
3865     // For consistency in our comparison, all invalid objects are placed
3866     // at the end. This also allows us to stop walking when we hit the
3867     // first invalid item after it's all sorted.
3868     if (!A.IsValid)
3869       return false;
3870     if (!B.IsValid)
3871       return true;
3872 
3873     // The density is calculated by doing :
3874     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
3875     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
3876     // Since this approach may cause inconsistencies in
3877     // the floating point <, >, == comparisons, depending on the floating
3878     // point model with which the compiler was built, we're going
3879     // to scale both sides by multiplying with
3880     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3881     // the division and, with it, the need for any floating point
3882     // arithmetic.
3883     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3884       static_cast<uint64_t>(B.ObjectSize);
3885     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3886       static_cast<uint64_t>(A.ObjectSize);
3887 
3888     // If the two densities are equal, prioritize highest alignment
3889     // objects. This allows for similar alignment objects
3890     // to be packed together (given the same density).
3891     // There's room for improvement here, also, since we can pack
3892     // similar alignment (different density) objects next to each
3893     // other to save padding. This will also require further
3894     // complexity/iterations, and the overall gain isn't worth it,
3895     // in general. Something to keep in mind, though.
3896     if (DensityAScaled == DensityBScaled)
3897       return A.ObjectAlignment < B.ObjectAlignment;
3898 
3899     return DensityAScaled < DensityBScaled;
3900   }
3901 };
3902 } // namespace
3903 
3904 // Order the symbols in the local stack.
3905 // We want to place the local stack objects in some sort of sensible order.
3906 // The heuristic we use is to try and pack them according to static number
3907 // of uses and size of object in order to minimize code size.
3908 void X86FrameLowering::orderFrameObjects(
3909     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3910   const MachineFrameInfo &MFI = MF.getFrameInfo();
3911 
3912   // Don't waste time if there's nothing to do.
3913   if (ObjectsToAllocate.empty())
3914     return;
3915 
3916   // Create an array of all MFI objects. We won't need all of these
3917   // objects, but we're going to create a full array of them to make
3918   // it easier to index into when we're counting "uses" down below.
3919   // We want to be able to easily/cheaply access an object by simply
3920   // indexing into it, instead of having to search for it every time.
3921   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3922 
3923   // Walk the objects we care about and mark them as such in our working
3924   // struct.
3925   for (auto &Obj : ObjectsToAllocate) {
3926     SortingObjects[Obj].IsValid = true;
3927     SortingObjects[Obj].ObjectIndex = Obj;
3928     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3929     // Set the size.
3930     int ObjectSize = MFI.getObjectSize(Obj);
3931     if (ObjectSize == 0)
3932       // Variable size. Just use 4.
3933       SortingObjects[Obj].ObjectSize = 4;
3934     else
3935       SortingObjects[Obj].ObjectSize = ObjectSize;
3936   }
3937 
3938   // Count the number of uses for each object.
3939   for (auto &MBB : MF) {
3940     for (auto &MI : MBB) {
3941       if (MI.isDebugInstr())
3942         continue;
3943       for (const MachineOperand &MO : MI.operands()) {
3944         // Check to see if it's a local stack symbol.
3945         if (!MO.isFI())
3946           continue;
3947         int Index = MO.getIndex();
3948         // Check to see if it falls within our range, and is tagged
3949         // to require ordering.
3950         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3951             SortingObjects[Index].IsValid)
3952           SortingObjects[Index].ObjectNumUses++;
3953       }
3954     }
3955   }
3956 
3957   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3958   // info).
3959   llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3960 
3961   // Now modify the original list to represent the final order that
3962   // we want. The order will depend on whether we're going to access them
3963   // from the stack pointer or the frame pointer. For SP, the list should
3964   // end up with the END containing objects that we want with smaller offsets.
3965   // For FP, it should be flipped.
3966   int i = 0;
3967   for (auto &Obj : SortingObjects) {
3968     // All invalid items are sorted at the end, so it's safe to stop.
3969     if (!Obj.IsValid)
3970       break;
3971     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3972   }
3973 
3974   // Flip it if we're accessing off of the FP.
3975   if (!TRI->hasStackRealignment(MF) && hasFP(MF))
3976     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3977 }
3978 
3979 
3980 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3981   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3982   unsigned Offset = 16;
3983   // RBP is immediately pushed.
3984   Offset += SlotSize;
3985   // All callee-saved registers are then pushed.
3986   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3987   // Every funclet allocates enough stack space for the largest outgoing call.
3988   Offset += getWinEHFuncletFrameSize(MF);
3989   return Offset;
3990 }
3991 
3992 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3993     MachineFunction &MF, RegScavenger *RS) const {
3994   // Mark the function as not having WinCFI. We will set it back to true in
3995   // emitPrologue if it gets called and emits CFI.
3996   MF.setHasWinCFI(false);
3997 
3998   // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
3999   // aligned. The format doesn't support misaligned stack adjustments.
4000   if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
4001     MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
4002 
4003   // If this function isn't doing Win64-style C++ EH, we don't need to do
4004   // anything.
4005   if (STI.is64Bit() && MF.hasEHFunclets() &&
4006       classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
4007           EHPersonality::MSVC_CXX) {
4008     adjustFrameForMsvcCxxEh(MF);
4009   }
4010 }
4011 
4012 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
4013   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
4014   // relative to RSP after the prologue.  Find the offset of the last fixed
4015   // object, so that we can allocate a slot immediately following it. If there
4016   // were no fixed objects, use offset -SlotSize, which is immediately after the
4017   // return address. Fixed objects have negative frame indices.
4018   MachineFrameInfo &MFI = MF.getFrameInfo();
4019   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
4020   int64_t MinFixedObjOffset = -SlotSize;
4021   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
4022     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
4023 
4024   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
4025     for (WinEHHandlerType &H : TBME.HandlerArray) {
4026       int FrameIndex = H.CatchObj.FrameIndex;
4027       if (FrameIndex != INT_MAX) {
4028         // Ensure alignment.
4029         unsigned Align = MFI.getObjectAlign(FrameIndex).value();
4030         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
4031         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
4032         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
4033       }
4034     }
4035   }
4036 
4037   // Ensure alignment.
4038   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
4039   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
4040   int UnwindHelpFI =
4041       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
4042   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
4043 
4044   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
4045   // other frame setup instructions.
4046   MachineBasicBlock &MBB = MF.front();
4047   auto MBBI = MBB.begin();
4048   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
4049     ++MBBI;
4050 
4051   DebugLoc DL = MBB.findDebugLoc(MBBI);
4052   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
4053                     UnwindHelpFI)
4054       .addImm(-2);
4055 }
4056 
4057 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
4058     MachineFunction &MF, RegScavenger *RS) const {
4059   auto *X86FI = MF.getInfo<X86MachineFunctionInfo>();
4060 
4061   if (STI.is32Bit() && MF.hasEHFunclets())
4062     restoreWinEHStackPointersInParent(MF);
4063   // We have emitted prolog and epilog. Don't need stack pointer saving
4064   // instruction any more.
4065   if (MachineInstr *MI = X86FI->getStackPtrSaveMI()) {
4066     MI->eraseFromParent();
4067     X86FI->setStackPtrSaveMI(nullptr);
4068   }
4069 }
4070 
4071 void X86FrameLowering::restoreWinEHStackPointersInParent(
4072     MachineFunction &MF) const {
4073   // 32-bit functions have to restore stack pointers when control is transferred
4074   // back to the parent function. These blocks are identified as eh pads that
4075   // are not funclet entries.
4076   bool IsSEH = isAsynchronousEHPersonality(
4077       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
4078   for (MachineBasicBlock &MBB : MF) {
4079     bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
4080     if (NeedsRestore)
4081       restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
4082                                   /*RestoreSP=*/IsSEH);
4083   }
4084 }
4085