1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include <cstdlib> 36 37 #define DEBUG_TYPE "x86-fl" 38 39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 40 STATISTIC(NumFrameExtraProbe, 41 "Number of extra stack probes generated in prologue"); 42 43 using namespace llvm; 44 45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 46 MaybeAlign StackAlignOverride) 47 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 48 STI.is64Bit() ? -8 : -4), 49 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 50 // Cache a bunch of frame-related predicates for this subtarget. 51 SlotSize = TRI->getSlotSize(); 52 Is64Bit = STI.is64Bit(); 53 IsLP64 = STI.isTarget64BitLP64(); 54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 55 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 56 StackPtr = TRI->getStackRegister(); 57 } 58 59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 60 return !MF.getFrameInfo().hasVarSizedObjects() && 61 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 62 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 63 } 64 65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 66 /// call frame pseudos can be simplified. Having a FP, as in the default 67 /// implementation, is not sufficient here since we can't always use it. 68 /// Use a more nuanced condition. 69 bool 70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 71 return hasReservedCallFrame(MF) || 72 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 73 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 74 TRI->hasBasePointer(MF); 75 } 76 77 // needsFrameIndexResolution - Do we need to perform FI resolution for 78 // this function. Normally, this is required only when the function 79 // has any stack objects. However, FI resolution actually has another job, 80 // not apparent from the title - it resolves callframesetup/destroy 81 // that were not simplified earlier. 82 // So, this is required for x86 functions that have push sequences even 83 // when there are no stack objects. 84 bool 85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 86 return MF.getFrameInfo().hasStackObjects() || 87 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 88 } 89 90 /// hasFP - Return true if the specified function should have a dedicated frame 91 /// pointer register. This is true if the function has variable sized allocas 92 /// or if frame pointer elimination is disabled. 93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 94 const MachineFrameInfo &MFI = MF.getFrameInfo(); 95 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 96 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 97 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 98 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 99 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 100 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 101 MFI.hasStackMap() || MFI.hasPatchPoint() || 102 MFI.hasCopyImplyingStackAdjustment()); 103 } 104 105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 106 if (IsLP64) { 107 if (isInt<8>(Imm)) 108 return X86::SUB64ri8; 109 return X86::SUB64ri32; 110 } else { 111 if (isInt<8>(Imm)) 112 return X86::SUB32ri8; 113 return X86::SUB32ri; 114 } 115 } 116 117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 118 if (IsLP64) { 119 if (isInt<8>(Imm)) 120 return X86::ADD64ri8; 121 return X86::ADD64ri32; 122 } else { 123 if (isInt<8>(Imm)) 124 return X86::ADD32ri8; 125 return X86::ADD32ri; 126 } 127 } 128 129 static unsigned getSUBrrOpcode(bool IsLP64) { 130 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 131 } 132 133 static unsigned getADDrrOpcode(bool IsLP64) { 134 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 135 } 136 137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 138 if (IsLP64) { 139 if (isInt<8>(Imm)) 140 return X86::AND64ri8; 141 return X86::AND64ri32; 142 } 143 if (isInt<8>(Imm)) 144 return X86::AND32ri8; 145 return X86::AND32ri; 146 } 147 148 static unsigned getLEArOpcode(bool IsLP64) { 149 return IsLP64 ? X86::LEA64r : X86::LEA32r; 150 } 151 152 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { 153 if (Use64BitReg) { 154 if (isUInt<32>(Imm)) 155 return X86::MOV32ri64; 156 if (isInt<32>(Imm)) 157 return X86::MOV64ri32; 158 return X86::MOV64ri; 159 } 160 return X86::MOV32ri; 161 } 162 163 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 164 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 165 unsigned Reg = RegMask.PhysReg; 166 167 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 168 Reg == X86::AH || Reg == X86::AL) 169 return true; 170 } 171 172 return false; 173 } 174 175 /// Check if the flags need to be preserved before the terminators. 176 /// This would be the case, if the eflags is live-in of the region 177 /// composed by the terminators or live-out of that region, without 178 /// being defined by a terminator. 179 static bool 180 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 181 for (const MachineInstr &MI : MBB.terminators()) { 182 bool BreakNext = false; 183 for (const MachineOperand &MO : MI.operands()) { 184 if (!MO.isReg()) 185 continue; 186 Register Reg = MO.getReg(); 187 if (Reg != X86::EFLAGS) 188 continue; 189 190 // This terminator needs an eflags that is not defined 191 // by a previous another terminator: 192 // EFLAGS is live-in of the region composed by the terminators. 193 if (!MO.isDef()) 194 return true; 195 // This terminator defines the eflags, i.e., we don't need to preserve it. 196 // However, we still need to check this specific terminator does not 197 // read a live-in value. 198 BreakNext = true; 199 } 200 // We found a definition of the eflags, no need to preserve them. 201 if (BreakNext) 202 return false; 203 } 204 205 // None of the terminators use or define the eflags. 206 // Check if they are live-out, that would imply we need to preserve them. 207 for (const MachineBasicBlock *Succ : MBB.successors()) 208 if (Succ->isLiveIn(X86::EFLAGS)) 209 return true; 210 211 return false; 212 } 213 214 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 215 /// stack pointer by a constant value. 216 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 217 MachineBasicBlock::iterator &MBBI, 218 const DebugLoc &DL, 219 int64_t NumBytes, bool InEpilogue) const { 220 bool isSub = NumBytes < 0; 221 uint64_t Offset = isSub ? -NumBytes : NumBytes; 222 MachineInstr::MIFlag Flag = 223 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 224 225 uint64_t Chunk = (1LL << 31) - 1; 226 227 MachineFunction &MF = *MBB.getParent(); 228 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 229 const X86TargetLowering &TLI = *STI.getTargetLowering(); 230 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 231 232 // It's ok to not take into account large chunks when probing, as the 233 // allocation is split in smaller chunks anyway. 234 if (EmitInlineStackProbe && !InEpilogue) { 235 236 // This pseudo-instruction is going to be expanded, potentially using a 237 // loop, by inlineStackProbe(). 238 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 239 return; 240 } else if (Offset > Chunk) { 241 // Rather than emit a long series of instructions for large offsets, 242 // load the offset into a register and do one sub/add 243 unsigned Reg = 0; 244 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 245 246 if (isSub && !isEAXLiveIn(MBB)) 247 Reg = Rax; 248 else 249 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 250 251 unsigned AddSubRROpc = 252 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 253 if (Reg) { 254 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg) 255 .addImm(Offset) 256 .setMIFlag(Flag); 257 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 258 .addReg(StackPtr) 259 .addReg(Reg); 260 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 261 return; 262 } else if (Offset > 8 * Chunk) { 263 // If we would need more than 8 add or sub instructions (a >16GB stack 264 // frame), it's worth spilling RAX to materialize this immediate. 265 // pushq %rax 266 // movabsq +-$Offset+-SlotSize, %rax 267 // addq %rsp, %rax 268 // xchg %rax, (%rsp) 269 // movq (%rsp), %rsp 270 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 271 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 272 .addReg(Rax, RegState::Kill) 273 .setMIFlag(Flag); 274 // Subtract is not commutative, so negate the offset and always use add. 275 // Subtract 8 less and add 8 more to account for the PUSH we just did. 276 if (isSub) 277 Offset = -(Offset - SlotSize); 278 else 279 Offset = Offset + SlotSize; 280 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax) 281 .addImm(Offset) 282 .setMIFlag(Flag); 283 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 284 .addReg(Rax) 285 .addReg(StackPtr); 286 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 287 // Exchange the new SP in RAX with the top of the stack. 288 addRegOffset( 289 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 290 StackPtr, false, 0); 291 // Load new SP from the top of the stack into RSP. 292 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 293 StackPtr, false, 0); 294 return; 295 } 296 } 297 298 while (Offset) { 299 uint64_t ThisVal = std::min(Offset, Chunk); 300 if (ThisVal == SlotSize) { 301 // Use push / pop for slot sized adjustments as a size optimization. We 302 // need to find a dead register when using pop. 303 unsigned Reg = isSub 304 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 305 : TRI->findDeadCallerSavedReg(MBB, MBBI); 306 if (Reg) { 307 unsigned Opc = isSub 308 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 309 : (Is64Bit ? X86::POP64r : X86::POP32r); 310 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 311 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 312 .setMIFlag(Flag); 313 Offset -= ThisVal; 314 continue; 315 } 316 } 317 318 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 319 .setMIFlag(Flag); 320 321 Offset -= ThisVal; 322 } 323 } 324 325 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 326 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 327 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 328 assert(Offset != 0 && "zero offset stack adjustment requested"); 329 330 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 331 // is tricky. 332 bool UseLEA; 333 if (!InEpilogue) { 334 // Check if inserting the prologue at the beginning 335 // of MBB would require to use LEA operations. 336 // We need to use LEA operations if EFLAGS is live in, because 337 // it means an instruction will read it before it gets defined. 338 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 339 } else { 340 // If we can use LEA for SP but we shouldn't, check that none 341 // of the terminators uses the eflags. Otherwise we will insert 342 // a ADD that will redefine the eflags and break the condition. 343 // Alternatively, we could move the ADD, but this may not be possible 344 // and is an optimization anyway. 345 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 346 if (UseLEA && !STI.useLeaForSP()) 347 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 348 // If that assert breaks, that means we do not do the right thing 349 // in canUseAsEpilogue. 350 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 351 "We shouldn't have allowed this insertion point"); 352 } 353 354 MachineInstrBuilder MI; 355 if (UseLEA) { 356 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 357 TII.get(getLEArOpcode(Uses64BitFramePtr)), 358 StackPtr), 359 StackPtr, false, Offset); 360 } else { 361 bool IsSub = Offset < 0; 362 uint64_t AbsOffset = IsSub ? -Offset : Offset; 363 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 364 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 365 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 366 .addReg(StackPtr) 367 .addImm(AbsOffset); 368 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 369 } 370 return MI; 371 } 372 373 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 374 MachineBasicBlock::iterator &MBBI, 375 bool doMergeWithPrevious) const { 376 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 377 (!doMergeWithPrevious && MBBI == MBB.end())) 378 return 0; 379 380 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 381 382 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 383 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 384 // instruction, and that there are no DBG_VALUE or other instructions between 385 // ADD/SUB/LEA and its corresponding CFI instruction. 386 /* TODO: Add support for the case where there are multiple CFI instructions 387 below the ADD/SUB/LEA, e.g.: 388 ... 389 add 390 cfi_def_cfa_offset 391 cfi_offset 392 ... 393 */ 394 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 395 PI = std::prev(PI); 396 397 unsigned Opc = PI->getOpcode(); 398 int Offset = 0; 399 400 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 401 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 402 PI->getOperand(0).getReg() == StackPtr){ 403 assert(PI->getOperand(1).getReg() == StackPtr); 404 Offset = PI->getOperand(2).getImm(); 405 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 406 PI->getOperand(0).getReg() == StackPtr && 407 PI->getOperand(1).getReg() == StackPtr && 408 PI->getOperand(2).getImm() == 1 && 409 PI->getOperand(3).getReg() == X86::NoRegister && 410 PI->getOperand(5).getReg() == X86::NoRegister) { 411 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 412 Offset = PI->getOperand(4).getImm(); 413 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 414 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 415 PI->getOperand(0).getReg() == StackPtr) { 416 assert(PI->getOperand(1).getReg() == StackPtr); 417 Offset = -PI->getOperand(2).getImm(); 418 } else 419 return 0; 420 421 PI = MBB.erase(PI); 422 if (PI != MBB.end() && PI->isCFIInstruction()) { 423 auto CIs = MBB.getParent()->getFrameInstructions(); 424 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 425 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 426 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 427 PI = MBB.erase(PI); 428 } 429 if (!doMergeWithPrevious) 430 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 431 432 return Offset; 433 } 434 435 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 436 MachineBasicBlock::iterator MBBI, 437 const DebugLoc &DL, 438 const MCCFIInstruction &CFIInst) const { 439 MachineFunction &MF = *MBB.getParent(); 440 unsigned CFIIndex = MF.addFrameInst(CFIInst); 441 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 442 .addCFIIndex(CFIIndex); 443 } 444 445 /// Emits Dwarf Info specifying offsets of callee saved registers and 446 /// frame pointer. This is called only when basic block sections are enabled. 447 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( 448 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 449 MachineFunction &MF = *MBB.getParent(); 450 if (!hasFP(MF)) { 451 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 452 return; 453 } 454 const MachineModuleInfo &MMI = MF.getMMI(); 455 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 456 const Register FramePtr = TRI->getFrameRegister(MF); 457 const Register MachineFramePtr = 458 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 459 : FramePtr; 460 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 461 // Offset = space for return address + size of the frame pointer itself. 462 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 463 BuildCFI(MBB, MBBI, DebugLoc{}, 464 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 465 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 466 } 467 468 void X86FrameLowering::emitCalleeSavedFrameMoves( 469 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 470 const DebugLoc &DL, bool IsPrologue) const { 471 MachineFunction &MF = *MBB.getParent(); 472 MachineFrameInfo &MFI = MF.getFrameInfo(); 473 MachineModuleInfo &MMI = MF.getMMI(); 474 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 475 476 // Add callee saved registers to move list. 477 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 478 479 // Calculate offsets. 480 for (const CalleeSavedInfo &I : CSI) { 481 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx()); 482 Register Reg = I.getReg(); 483 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 484 485 if (IsPrologue) { 486 BuildCFI(MBB, MBBI, DL, 487 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 488 } else { 489 BuildCFI(MBB, MBBI, DL, 490 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 491 } 492 } 493 } 494 495 void X86FrameLowering::emitStackProbe( 496 MachineFunction &MF, MachineBasicBlock &MBB, 497 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 498 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 499 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 500 if (STI.isTargetWindowsCoreCLR()) { 501 if (InProlog) { 502 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 503 .addImm(0 /* no explicit stack size */); 504 } else { 505 emitStackProbeInline(MF, MBB, MBBI, DL, false); 506 } 507 } else { 508 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); 509 } 510 } 511 512 bool X86FrameLowering::stackProbeFunctionModifiesSP() const { 513 return STI.isOSWindows() && !STI.isTargetWin64(); 514 } 515 516 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 517 MachineBasicBlock &PrologMBB) const { 518 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 519 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 520 }); 521 if (Where != PrologMBB.end()) { 522 DebugLoc DL = PrologMBB.findDebugLoc(Where); 523 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 524 Where->eraseFromParent(); 525 } 526 } 527 528 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 529 MachineBasicBlock &MBB, 530 MachineBasicBlock::iterator MBBI, 531 const DebugLoc &DL, 532 bool InProlog) const { 533 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 534 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 535 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 536 else 537 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 538 } 539 540 void X86FrameLowering::emitStackProbeInlineGeneric( 541 MachineFunction &MF, MachineBasicBlock &MBB, 542 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 543 MachineInstr &AllocWithProbe = *MBBI; 544 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 545 546 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 547 const X86TargetLowering &TLI = *STI.getTargetLowering(); 548 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 549 "different expansion expected for CoreCLR 64 bit"); 550 551 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 552 uint64_t ProbeChunk = StackProbeSize * 8; 553 554 uint64_t MaxAlign = 555 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 556 557 // Synthesize a loop or unroll it, depending on the number of iterations. 558 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 559 // between the unaligned rsp and current rsp. 560 if (Offset > ProbeChunk) { 561 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 562 MaxAlign % StackProbeSize); 563 } else { 564 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 565 MaxAlign % StackProbeSize); 566 } 567 } 568 569 void X86FrameLowering::emitStackProbeInlineGenericBlock( 570 MachineFunction &MF, MachineBasicBlock &MBB, 571 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 572 uint64_t AlignOffset) const { 573 574 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 575 const bool HasFP = hasFP(MF); 576 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 577 const X86TargetLowering &TLI = *STI.getTargetLowering(); 578 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 579 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 580 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 581 582 uint64_t CurrentOffset = 0; 583 584 assert(AlignOffset < StackProbeSize); 585 586 // If the offset is so small it fits within a page, there's nothing to do. 587 if (StackProbeSize < Offset + AlignOffset) { 588 589 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 590 .addReg(StackPtr) 591 .addImm(StackProbeSize - AlignOffset) 592 .setMIFlag(MachineInstr::FrameSetup); 593 if (!HasFP && NeedsDwarfCFI) { 594 BuildCFI(MBB, MBBI, DL, 595 MCCFIInstruction::createAdjustCfaOffset( 596 nullptr, StackProbeSize - AlignOffset)); 597 } 598 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 599 600 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 601 .setMIFlag(MachineInstr::FrameSetup), 602 StackPtr, false, 0) 603 .addImm(0) 604 .setMIFlag(MachineInstr::FrameSetup); 605 NumFrameExtraProbe++; 606 CurrentOffset = StackProbeSize - AlignOffset; 607 } 608 609 // For the next N - 1 pages, just probe. I tried to take advantage of 610 // natural probes but it implies much more logic and there was very few 611 // interesting natural probes to interleave. 612 while (CurrentOffset + StackProbeSize < Offset) { 613 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 614 .addReg(StackPtr) 615 .addImm(StackProbeSize) 616 .setMIFlag(MachineInstr::FrameSetup); 617 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 618 619 if (!HasFP && NeedsDwarfCFI) { 620 BuildCFI( 621 MBB, MBBI, DL, 622 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 623 } 624 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 625 .setMIFlag(MachineInstr::FrameSetup), 626 StackPtr, false, 0) 627 .addImm(0) 628 .setMIFlag(MachineInstr::FrameSetup); 629 NumFrameExtraProbe++; 630 CurrentOffset += StackProbeSize; 631 } 632 633 // No need to probe the tail, it is smaller than a Page. 634 uint64_t ChunkSize = Offset - CurrentOffset; 635 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 636 .addReg(StackPtr) 637 .addImm(ChunkSize) 638 .setMIFlag(MachineInstr::FrameSetup); 639 // No need to adjust Dwarf CFA offset here, the last position of the stack has 640 // been defined 641 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 642 } 643 644 void X86FrameLowering::emitStackProbeInlineGenericLoop( 645 MachineFunction &MF, MachineBasicBlock &MBB, 646 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 647 uint64_t AlignOffset) const { 648 assert(Offset && "null offset"); 649 650 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 651 const bool HasFP = hasFP(MF); 652 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 653 const X86TargetLowering &TLI = *STI.getTargetLowering(); 654 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 655 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 656 657 if (AlignOffset) { 658 if (AlignOffset < StackProbeSize) { 659 // Perform a first smaller allocation followed by a probe. 660 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 661 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 662 .addReg(StackPtr) 663 .addImm(AlignOffset) 664 .setMIFlag(MachineInstr::FrameSetup); 665 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 666 667 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 668 .setMIFlag(MachineInstr::FrameSetup), 669 StackPtr, false, 0) 670 .addImm(0) 671 .setMIFlag(MachineInstr::FrameSetup); 672 NumFrameExtraProbe++; 673 Offset -= AlignOffset; 674 } 675 } 676 677 // Synthesize a loop 678 NumFrameLoopProbe++; 679 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 680 681 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 682 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 683 684 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 685 MF.insert(MBBIter, testMBB); 686 MF.insert(MBBIter, tailMBB); 687 688 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 689 : Is64Bit ? X86::R11D 690 : X86::EAX; 691 692 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 693 .addReg(StackPtr) 694 .setMIFlag(MachineInstr::FrameSetup); 695 696 // save loop bound 697 { 698 const unsigned BoundOffset = alignDown(Offset, StackProbeSize); 699 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset); 700 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 701 .addReg(FinalStackProbed) 702 .addImm(BoundOffset) 703 .setMIFlag(MachineInstr::FrameSetup); 704 705 // while in the loop, use loop-invariant reg for CFI, 706 // instead of the stack pointer, which changes during the loop 707 if (!HasFP && NeedsDwarfCFI) { 708 // x32 uses the same DWARF register numbers as x86-64, 709 // so there isn't a register number for r11d, we must use r11 instead 710 const Register DwarfFinalStackProbed = 711 STI.isTarget64BitILP32() 712 ? Register(getX86SubSuperRegister(FinalStackProbed, 64)) 713 : FinalStackProbed; 714 715 BuildCFI(MBB, MBBI, DL, 716 MCCFIInstruction::createDefCfaRegister( 717 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true))); 718 BuildCFI(MBB, MBBI, DL, 719 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset)); 720 } 721 } 722 723 // allocate a page 724 { 725 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 726 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 727 .addReg(StackPtr) 728 .addImm(StackProbeSize) 729 .setMIFlag(MachineInstr::FrameSetup); 730 } 731 732 // touch the page 733 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 734 .setMIFlag(MachineInstr::FrameSetup), 735 StackPtr, false, 0) 736 .addImm(0) 737 .setMIFlag(MachineInstr::FrameSetup); 738 739 // cmp with stack pointer bound 740 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 741 .addReg(StackPtr) 742 .addReg(FinalStackProbed) 743 .setMIFlag(MachineInstr::FrameSetup); 744 745 // jump 746 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 747 .addMBB(testMBB) 748 .addImm(X86::COND_NE) 749 .setMIFlag(MachineInstr::FrameSetup); 750 testMBB->addSuccessor(testMBB); 751 testMBB->addSuccessor(tailMBB); 752 753 // BB management 754 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 755 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 756 MBB.addSuccessor(testMBB); 757 758 // handle tail 759 const unsigned TailOffset = Offset % StackProbeSize; 760 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); 761 if (TailOffset) { 762 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 763 BuildMI(*tailMBB, TailMBBIter, DL, TII.get(Opc), StackPtr) 764 .addReg(StackPtr) 765 .addImm(TailOffset) 766 .setMIFlag(MachineInstr::FrameSetup); 767 } 768 769 // after the loop, switch back to stack pointer for CFI 770 if (!HasFP && NeedsDwarfCFI) { 771 // x32 uses the same DWARF register numbers as x86-64, 772 // so there isn't a register number for esp, we must use rsp instead 773 const Register DwarfStackPtr = 774 STI.isTarget64BitILP32() 775 ? Register(getX86SubSuperRegister(StackPtr, 64)) 776 : Register(StackPtr); 777 778 BuildCFI(*tailMBB, TailMBBIter, DL, 779 MCCFIInstruction::createDefCfaRegister( 780 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true))); 781 } 782 783 // Update Live In information 784 recomputeLiveIns(*testMBB); 785 recomputeLiveIns(*tailMBB); 786 } 787 788 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 789 MachineFunction &MF, MachineBasicBlock &MBB, 790 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 791 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 792 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 793 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 794 const TargetInstrInfo &TII = *STI.getInstrInfo(); 795 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 796 797 // RAX contains the number of bytes of desired stack adjustment. 798 // The handling here assumes this value has already been updated so as to 799 // maintain stack alignment. 800 // 801 // We need to exit with RSP modified by this amount and execute suitable 802 // page touches to notify the OS that we're growing the stack responsibly. 803 // All stack probing must be done without modifying RSP. 804 // 805 // MBB: 806 // SizeReg = RAX; 807 // ZeroReg = 0 808 // CopyReg = RSP 809 // Flags, TestReg = CopyReg - SizeReg 810 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 811 // LimitReg = gs magic thread env access 812 // if FinalReg >= LimitReg goto ContinueMBB 813 // RoundBB: 814 // RoundReg = page address of FinalReg 815 // LoopMBB: 816 // LoopReg = PHI(LimitReg,ProbeReg) 817 // ProbeReg = LoopReg - PageSize 818 // [ProbeReg] = 0 819 // if (ProbeReg > RoundReg) goto LoopMBB 820 // ContinueMBB: 821 // RSP = RSP - RAX 822 // [rest of original MBB] 823 824 // Set up the new basic blocks 825 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 826 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 827 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 828 829 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 830 MF.insert(MBBIter, RoundMBB); 831 MF.insert(MBBIter, LoopMBB); 832 MF.insert(MBBIter, ContinueMBB); 833 834 // Split MBB and move the tail portion down to ContinueMBB. 835 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 836 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 837 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 838 839 // Some useful constants 840 const int64_t ThreadEnvironmentStackLimit = 0x10; 841 const int64_t PageSize = 0x1000; 842 const int64_t PageMask = ~(PageSize - 1); 843 844 // Registers we need. For the normal case we use virtual 845 // registers. For the prolog expansion we use RAX, RCX and RDX. 846 MachineRegisterInfo &MRI = MF.getRegInfo(); 847 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 848 const Register SizeReg = InProlog ? X86::RAX 849 : MRI.createVirtualRegister(RegClass), 850 ZeroReg = InProlog ? X86::RCX 851 : MRI.createVirtualRegister(RegClass), 852 CopyReg = InProlog ? X86::RDX 853 : MRI.createVirtualRegister(RegClass), 854 TestReg = InProlog ? X86::RDX 855 : MRI.createVirtualRegister(RegClass), 856 FinalReg = InProlog ? X86::RDX 857 : MRI.createVirtualRegister(RegClass), 858 RoundedReg = InProlog ? X86::RDX 859 : MRI.createVirtualRegister(RegClass), 860 LimitReg = InProlog ? X86::RCX 861 : MRI.createVirtualRegister(RegClass), 862 JoinReg = InProlog ? X86::RCX 863 : MRI.createVirtualRegister(RegClass), 864 ProbeReg = InProlog ? X86::RCX 865 : MRI.createVirtualRegister(RegClass); 866 867 // SP-relative offsets where we can save RCX and RDX. 868 int64_t RCXShadowSlot = 0; 869 int64_t RDXShadowSlot = 0; 870 871 // If inlining in the prolog, save RCX and RDX. 872 if (InProlog) { 873 // Compute the offsets. We need to account for things already 874 // pushed onto the stack at this point: return address, frame 875 // pointer (if used), and callee saves. 876 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 877 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 878 const bool HasFP = hasFP(MF); 879 880 // Check if we need to spill RCX and/or RDX. 881 // Here we assume that no earlier prologue instruction changes RCX and/or 882 // RDX, so checking the block live-ins is enough. 883 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 884 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 885 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 886 // Assign the initial slot to both registers, then change RDX's slot if both 887 // need to be spilled. 888 if (IsRCXLiveIn) 889 RCXShadowSlot = InitSlot; 890 if (IsRDXLiveIn) 891 RDXShadowSlot = InitSlot; 892 if (IsRDXLiveIn && IsRCXLiveIn) 893 RDXShadowSlot += 8; 894 // Emit the saves if needed. 895 if (IsRCXLiveIn) 896 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 897 RCXShadowSlot) 898 .addReg(X86::RCX); 899 if (IsRDXLiveIn) 900 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 901 RDXShadowSlot) 902 .addReg(X86::RDX); 903 } else { 904 // Not in the prolog. Copy RAX to a virtual reg. 905 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 906 } 907 908 // Add code to MBB to check for overflow and set the new target stack pointer 909 // to zero if so. 910 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 911 .addReg(ZeroReg, RegState::Undef) 912 .addReg(ZeroReg, RegState::Undef); 913 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 914 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 915 .addReg(CopyReg) 916 .addReg(SizeReg); 917 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 918 .addReg(TestReg) 919 .addReg(ZeroReg) 920 .addImm(X86::COND_B); 921 922 // FinalReg now holds final stack pointer value, or zero if 923 // allocation would overflow. Compare against the current stack 924 // limit from the thread environment block. Note this limit is the 925 // lowest touched page on the stack, not the point at which the OS 926 // will cause an overflow exception, so this is just an optimization 927 // to avoid unnecessarily touching pages that are below the current 928 // SP but already committed to the stack by the OS. 929 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 930 .addReg(0) 931 .addImm(1) 932 .addReg(0) 933 .addImm(ThreadEnvironmentStackLimit) 934 .addReg(X86::GS); 935 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 936 // Jump if the desired stack pointer is at or above the stack limit. 937 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 938 939 // Add code to roundMBB to round the final stack pointer to a page boundary. 940 RoundMBB->addLiveIn(FinalReg); 941 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 942 .addReg(FinalReg) 943 .addImm(PageMask); 944 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 945 946 // LimitReg now holds the current stack limit, RoundedReg page-rounded 947 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 948 // and probe until we reach RoundedReg. 949 if (!InProlog) { 950 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 951 .addReg(LimitReg) 952 .addMBB(RoundMBB) 953 .addReg(ProbeReg) 954 .addMBB(LoopMBB); 955 } 956 957 LoopMBB->addLiveIn(JoinReg); 958 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 959 false, -PageSize); 960 961 // Probe by storing a byte onto the stack. 962 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 963 .addReg(ProbeReg) 964 .addImm(1) 965 .addReg(0) 966 .addImm(0) 967 .addReg(0) 968 .addImm(0); 969 970 LoopMBB->addLiveIn(RoundedReg); 971 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 972 .addReg(RoundedReg) 973 .addReg(ProbeReg); 974 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 975 976 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 977 978 // If in prolog, restore RDX and RCX. 979 if (InProlog) { 980 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 981 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 982 TII.get(X86::MOV64rm), X86::RCX), 983 X86::RSP, false, RCXShadowSlot); 984 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 985 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 986 TII.get(X86::MOV64rm), X86::RDX), 987 X86::RSP, false, RDXShadowSlot); 988 } 989 990 // Now that the probing is done, add code to continueMBB to update 991 // the stack pointer for real. 992 ContinueMBB->addLiveIn(SizeReg); 993 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 994 .addReg(X86::RSP) 995 .addReg(SizeReg); 996 997 // Add the control flow edges we need. 998 MBB.addSuccessor(ContinueMBB); 999 MBB.addSuccessor(RoundMBB); 1000 RoundMBB->addSuccessor(LoopMBB); 1001 LoopMBB->addSuccessor(ContinueMBB); 1002 LoopMBB->addSuccessor(LoopMBB); 1003 1004 // Mark all the instructions added to the prolog as frame setup. 1005 if (InProlog) { 1006 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 1007 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 1008 } 1009 for (MachineInstr &MI : *RoundMBB) { 1010 MI.setFlag(MachineInstr::FrameSetup); 1011 } 1012 for (MachineInstr &MI : *LoopMBB) { 1013 MI.setFlag(MachineInstr::FrameSetup); 1014 } 1015 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 1016 CMBBI != ContinueMBBI; ++CMBBI) { 1017 CMBBI->setFlag(MachineInstr::FrameSetup); 1018 } 1019 } 1020 } 1021 1022 void X86FrameLowering::emitStackProbeCall( 1023 MachineFunction &MF, MachineBasicBlock &MBB, 1024 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, 1025 Optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { 1026 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 1027 1028 // FIXME: Add indirect thunk support and remove this. 1029 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 1030 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 1031 "code model and indirect thunks not yet implemented."); 1032 1033 unsigned CallOp; 1034 if (Is64Bit) 1035 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 1036 else 1037 CallOp = X86::CALLpcrel32; 1038 1039 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 1040 1041 MachineInstrBuilder CI; 1042 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 1043 1044 // All current stack probes take AX and SP as input, clobber flags, and 1045 // preserve all registers. x86_64 probes leave RSP unmodified. 1046 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1047 // For the large code model, we have to call through a register. Use R11, 1048 // as it is scratch in all supported calling conventions. 1049 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1050 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1051 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1052 } else { 1053 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1054 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1055 } 1056 1057 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1058 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1059 CI.addReg(AX, RegState::Implicit) 1060 .addReg(SP, RegState::Implicit) 1061 .addReg(AX, RegState::Define | RegState::Implicit) 1062 .addReg(SP, RegState::Define | RegState::Implicit) 1063 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1064 1065 MachineInstr *ModInst = CI; 1066 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1067 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1068 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1069 // themselves. They also does not clobber %rax so we can reuse it when 1070 // adjusting %rsp. 1071 // All other platforms do not specify a particular ABI for the stack probe 1072 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1073 ModInst = 1074 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1075 .addReg(SP) 1076 .addReg(AX); 1077 } 1078 1079 // DebugInfo variable locations -- if there's an instruction number for the 1080 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that 1081 // modifies SP. 1082 if (InstrNum) { 1083 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1084 // Label destination operand of the subtract. 1085 MF.makeDebugValueSubstitution(*InstrNum, 1086 {ModInst->getDebugInstrNum(), 0}); 1087 } else { 1088 // Label the call. The operand number is the penultimate operand, zero 1089 // based. 1090 unsigned SPDefOperand = ModInst->getNumOperands() - 2; 1091 MF.makeDebugValueSubstitution( 1092 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); 1093 } 1094 } 1095 1096 if (InProlog) { 1097 // Apply the frame setup flag to all inserted instrs. 1098 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1099 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1100 } 1101 } 1102 1103 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1104 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1105 // and might require smaller successive adjustments. 1106 const uint64_t Win64MaxSEHOffset = 128; 1107 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1108 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1109 return SEHFrameOffset & -16; 1110 } 1111 1112 // If we're forcing a stack realignment we can't rely on just the frame 1113 // info, we need to know the ABI stack alignment as well in case we 1114 // have a call out. Otherwise just make sure we have some alignment - we'll 1115 // go with the minimum SlotSize. 1116 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1117 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1118 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1119 Align StackAlign = getStackAlign(); 1120 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1121 if (MFI.hasCalls()) 1122 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1123 else if (MaxAlign < SlotSize) 1124 MaxAlign = Align(SlotSize); 1125 } 1126 return MaxAlign.value(); 1127 } 1128 1129 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1130 MachineBasicBlock::iterator MBBI, 1131 const DebugLoc &DL, unsigned Reg, 1132 uint64_t MaxAlign) const { 1133 uint64_t Val = -MaxAlign; 1134 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1135 1136 MachineFunction &MF = *MBB.getParent(); 1137 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1138 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1139 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1140 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1141 1142 // We want to make sure that (in worst case) less than StackProbeSize bytes 1143 // are not probed after the AND. This assumption is used in 1144 // emitStackProbeInlineGeneric. 1145 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1146 { 1147 NumFrameLoopProbe++; 1148 MachineBasicBlock *entryMBB = 1149 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1150 MachineBasicBlock *headMBB = 1151 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1152 MachineBasicBlock *bodyMBB = 1153 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1154 MachineBasicBlock *footMBB = 1155 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1156 1157 MachineFunction::iterator MBBIter = MBB.getIterator(); 1158 MF.insert(MBBIter, entryMBB); 1159 MF.insert(MBBIter, headMBB); 1160 MF.insert(MBBIter, bodyMBB); 1161 MF.insert(MBBIter, footMBB); 1162 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1163 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1164 : Is64Bit ? X86::R11D 1165 : X86::EAX; 1166 1167 // Setup entry block 1168 { 1169 1170 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1171 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1172 .addReg(StackPtr) 1173 .setMIFlag(MachineInstr::FrameSetup); 1174 MachineInstr *MI = 1175 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1176 .addReg(FinalStackProbed) 1177 .addImm(Val) 1178 .setMIFlag(MachineInstr::FrameSetup); 1179 1180 // The EFLAGS implicit def is dead. 1181 MI->getOperand(3).setIsDead(); 1182 1183 BuildMI(entryMBB, DL, 1184 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1185 .addReg(FinalStackProbed) 1186 .addReg(StackPtr) 1187 .setMIFlag(MachineInstr::FrameSetup); 1188 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1189 .addMBB(&MBB) 1190 .addImm(X86::COND_E) 1191 .setMIFlag(MachineInstr::FrameSetup); 1192 entryMBB->addSuccessor(headMBB); 1193 entryMBB->addSuccessor(&MBB); 1194 } 1195 1196 // Loop entry block 1197 1198 { 1199 const unsigned SUBOpc = 1200 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1201 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1202 .addReg(StackPtr) 1203 .addImm(StackProbeSize) 1204 .setMIFlag(MachineInstr::FrameSetup); 1205 1206 BuildMI(headMBB, DL, 1207 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1208 .addReg(FinalStackProbed) 1209 .addReg(StackPtr) 1210 .setMIFlag(MachineInstr::FrameSetup); 1211 1212 // jump 1213 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1214 .addMBB(footMBB) 1215 .addImm(X86::COND_B) 1216 .setMIFlag(MachineInstr::FrameSetup); 1217 1218 headMBB->addSuccessor(bodyMBB); 1219 headMBB->addSuccessor(footMBB); 1220 } 1221 1222 // setup loop body 1223 { 1224 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1225 .setMIFlag(MachineInstr::FrameSetup), 1226 StackPtr, false, 0) 1227 .addImm(0) 1228 .setMIFlag(MachineInstr::FrameSetup); 1229 1230 const unsigned SUBOpc = 1231 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1232 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1233 .addReg(StackPtr) 1234 .addImm(StackProbeSize) 1235 .setMIFlag(MachineInstr::FrameSetup); 1236 1237 // cmp with stack pointer bound 1238 BuildMI(bodyMBB, DL, 1239 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1240 .addReg(FinalStackProbed) 1241 .addReg(StackPtr) 1242 .setMIFlag(MachineInstr::FrameSetup); 1243 1244 // jump 1245 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1246 .addMBB(bodyMBB) 1247 .addImm(X86::COND_B) 1248 .setMIFlag(MachineInstr::FrameSetup); 1249 bodyMBB->addSuccessor(bodyMBB); 1250 bodyMBB->addSuccessor(footMBB); 1251 } 1252 1253 // setup loop footer 1254 { 1255 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1256 .addReg(FinalStackProbed) 1257 .setMIFlag(MachineInstr::FrameSetup); 1258 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1259 .setMIFlag(MachineInstr::FrameSetup), 1260 StackPtr, false, 0) 1261 .addImm(0) 1262 .setMIFlag(MachineInstr::FrameSetup); 1263 footMBB->addSuccessor(&MBB); 1264 } 1265 1266 recomputeLiveIns(*headMBB); 1267 recomputeLiveIns(*bodyMBB); 1268 recomputeLiveIns(*footMBB); 1269 recomputeLiveIns(MBB); 1270 } 1271 } else { 1272 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1273 .addReg(Reg) 1274 .addImm(Val) 1275 .setMIFlag(MachineInstr::FrameSetup); 1276 1277 // The EFLAGS implicit def is dead. 1278 MI->getOperand(3).setIsDead(); 1279 } 1280 } 1281 1282 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1283 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1284 // clobbered by any interrupt handler. 1285 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1286 "MF used frame lowering for wrong subtarget"); 1287 const Function &Fn = MF.getFunction(); 1288 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1289 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1290 } 1291 1292 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1293 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1294 } 1295 1296 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1297 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1298 } 1299 1300 /// emitPrologue - Push callee-saved registers onto the stack, which 1301 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1302 /// space for local variables. Also emit labels used by the exception handler to 1303 /// generate the exception handling frames. 1304 1305 /* 1306 Here's a gist of what gets emitted: 1307 1308 ; Establish frame pointer, if needed 1309 [if needs FP] 1310 push %rbp 1311 .cfi_def_cfa_offset 16 1312 .cfi_offset %rbp, -16 1313 .seh_pushreg %rpb 1314 mov %rsp, %rbp 1315 .cfi_def_cfa_register %rbp 1316 1317 ; Spill general-purpose registers 1318 [for all callee-saved GPRs] 1319 pushq %<reg> 1320 [if not needs FP] 1321 .cfi_def_cfa_offset (offset from RETADDR) 1322 .seh_pushreg %<reg> 1323 1324 ; If the required stack alignment > default stack alignment 1325 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1326 ; of unknown size in the stack frame. 1327 [if stack needs re-alignment] 1328 and $MASK, %rsp 1329 1330 ; Allocate space for locals 1331 [if target is Windows and allocated space > 4096 bytes] 1332 ; Windows needs special care for allocations larger 1333 ; than one page. 1334 mov $NNN, %rax 1335 call ___chkstk_ms/___chkstk 1336 sub %rax, %rsp 1337 [else] 1338 sub $NNN, %rsp 1339 1340 [if needs FP] 1341 .seh_stackalloc (size of XMM spill slots) 1342 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1343 [else] 1344 .seh_stackalloc NNN 1345 1346 ; Spill XMMs 1347 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1348 ; they may get spilled on any platform, if the current function 1349 ; calls @llvm.eh.unwind.init 1350 [if needs FP] 1351 [for all callee-saved XMM registers] 1352 movaps %<xmm reg>, -MMM(%rbp) 1353 [for all callee-saved XMM registers] 1354 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1355 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1356 [else] 1357 [for all callee-saved XMM registers] 1358 movaps %<xmm reg>, KKK(%rsp) 1359 [for all callee-saved XMM registers] 1360 .seh_savexmm %<xmm reg>, KKK 1361 1362 .seh_endprologue 1363 1364 [if needs base pointer] 1365 mov %rsp, %rbx 1366 [if needs to restore base pointer] 1367 mov %rsp, -MMM(%rbp) 1368 1369 ; Emit CFI info 1370 [if needs FP] 1371 [for all callee-saved registers] 1372 .cfi_offset %<reg>, (offset from %rbp) 1373 [else] 1374 .cfi_def_cfa_offset (offset from RETADDR) 1375 [for all callee-saved registers] 1376 .cfi_offset %<reg>, (offset from %rsp) 1377 1378 Notes: 1379 - .seh directives are emitted only for Windows 64 ABI 1380 - .cv_fpo directives are emitted on win32 when emitting CodeView 1381 - .cfi directives are emitted for all other ABIs 1382 - for 32-bit code, substitute %e?? registers for %r?? 1383 */ 1384 1385 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1386 MachineBasicBlock &MBB) const { 1387 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1388 "MF used frame lowering for wrong subtarget"); 1389 MachineBasicBlock::iterator MBBI = MBB.begin(); 1390 MachineFrameInfo &MFI = MF.getFrameInfo(); 1391 const Function &Fn = MF.getFunction(); 1392 MachineModuleInfo &MMI = MF.getMMI(); 1393 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1394 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1395 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1396 bool IsFunclet = MBB.isEHFuncletEntry(); 1397 EHPersonality Personality = EHPersonality::Unknown; 1398 if (Fn.hasPersonalityFn()) 1399 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1400 bool FnHasClrFunclet = 1401 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1402 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1403 bool HasFP = hasFP(MF); 1404 bool IsWin64Prologue = isWin64Prologue(MF); 1405 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1406 // FIXME: Emit FPO data for EH funclets. 1407 bool NeedsWinFPO = 1408 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1409 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1410 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1411 Register FramePtr = TRI->getFrameRegister(MF); 1412 const Register MachineFramePtr = 1413 STI.isTarget64BitILP32() 1414 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1415 Register BasePtr = TRI->getBaseRegister(); 1416 bool HasWinCFI = false; 1417 1418 // Debug location must be unknown since the first debug location is used 1419 // to determine the end of the prologue. 1420 DebugLoc DL; 1421 1422 // Space reserved for stack-based arguments when making a (ABI-guaranteed) 1423 // tail call. 1424 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 1425 if (TailCallArgReserveSize && IsWin64Prologue) 1426 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1427 1428 const bool EmitStackProbeCall = 1429 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1430 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1431 1432 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1433 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1434 case SwiftAsyncFramePointerMode::DeploymentBased: 1435 if (STI.swiftAsyncContextIsDynamicallySet()) { 1436 // The special symbol below is absolute and has a *value* suitable to be 1437 // combined with the frame pointer directly. 1438 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr) 1439 .addUse(MachineFramePtr) 1440 .addUse(X86::RIP) 1441 .addImm(1) 1442 .addUse(X86::NoRegister) 1443 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1444 X86II::MO_GOTPCREL) 1445 .addUse(X86::NoRegister); 1446 break; 1447 } 1448 LLVM_FALLTHROUGH; 1449 1450 case SwiftAsyncFramePointerMode::Always: 1451 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr) 1452 .addUse(MachineFramePtr) 1453 .addImm(60) 1454 .setMIFlag(MachineInstr::FrameSetup); 1455 break; 1456 1457 case SwiftAsyncFramePointerMode::Never: 1458 break; 1459 } 1460 } 1461 1462 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1463 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1464 // stack alignment. 1465 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1466 Fn.arg_size() == 2) { 1467 StackSize += 8; 1468 MFI.setStackSize(StackSize); 1469 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1470 } 1471 1472 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1473 // function, and use up to 128 bytes of stack space, don't have a frame 1474 // pointer, calls, or dynamic alloca then we do not need to adjust the 1475 // stack pointer (we fit in the Red Zone). We also check that we don't 1476 // push and pop from the stack. 1477 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1478 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1479 !MFI.adjustsStack() && // No calls. 1480 !EmitStackProbeCall && // No stack probes. 1481 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1482 !MF.shouldSplitStack()) { // Regular stack 1483 uint64_t MinSize = 1484 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); 1485 if (HasFP) MinSize += SlotSize; 1486 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1487 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1488 MFI.setStackSize(StackSize); 1489 } 1490 1491 // Insert stack pointer adjustment for later moving of return addr. Only 1492 // applies to tail call optimized functions where the callee argument stack 1493 // size is bigger than the callers. 1494 if (TailCallArgReserveSize != 0) { 1495 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize, 1496 /*InEpilogue=*/false) 1497 .setMIFlag(MachineInstr::FrameSetup); 1498 } 1499 1500 // Mapping for machine moves: 1501 // 1502 // DST: VirtualFP AND 1503 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1504 // ELSE => DW_CFA_def_cfa 1505 // 1506 // SRC: VirtualFP AND 1507 // DST: Register => DW_CFA_def_cfa_register 1508 // 1509 // ELSE 1510 // OFFSET < 0 => DW_CFA_offset_extended_sf 1511 // REG < 64 => DW_CFA_offset + Reg 1512 // ELSE => DW_CFA_offset_extended 1513 1514 uint64_t NumBytes = 0; 1515 int stackGrowth = -SlotSize; 1516 1517 // Find the funclet establisher parameter 1518 Register Establisher = X86::NoRegister; 1519 if (IsClrFunclet) 1520 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1521 else if (IsFunclet) 1522 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1523 1524 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1525 // Immediately spill establisher into the home slot. 1526 // The runtime cares about this. 1527 // MOV64mr %rdx, 16(%rsp) 1528 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1529 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1530 .addReg(Establisher) 1531 .setMIFlag(MachineInstr::FrameSetup); 1532 MBB.addLiveIn(Establisher); 1533 } 1534 1535 if (HasFP) { 1536 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1537 1538 // Calculate required stack adjustment. 1539 uint64_t FrameSize = StackSize - SlotSize; 1540 // If required, include space for extra hidden slot for stashing base pointer. 1541 if (X86FI->getRestoreBasePointer()) 1542 FrameSize += SlotSize; 1543 1544 NumBytes = FrameSize - 1545 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1546 1547 // Callee-saved registers are pushed on stack before the stack is realigned. 1548 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1549 NumBytes = alignTo(NumBytes, MaxAlign); 1550 1551 // Save EBP/RBP into the appropriate stack slot. 1552 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1553 .addReg(MachineFramePtr, RegState::Kill) 1554 .setMIFlag(MachineInstr::FrameSetup); 1555 1556 if (NeedsDwarfCFI) { 1557 // Mark the place where EBP/RBP was saved. 1558 // Define the current CFA rule to use the provided offset. 1559 assert(StackSize); 1560 BuildCFI(MBB, MBBI, DL, 1561 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1562 1563 // Change the rule for the FramePtr to be an "offset" rule. 1564 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1565 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1566 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1567 } 1568 1569 if (NeedsWinCFI) { 1570 HasWinCFI = true; 1571 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1572 .addImm(FramePtr) 1573 .setMIFlag(MachineInstr::FrameSetup); 1574 } 1575 1576 if (!IsFunclet) { 1577 if (X86FI->hasSwiftAsyncContext()) { 1578 const auto &Attrs = MF.getFunction().getAttributes(); 1579 1580 // Before we update the live frame pointer we have to ensure there's a 1581 // valid (or null) asynchronous context in its slot just before FP in 1582 // the frame record, so store it now. 1583 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1584 // We have an initial context in r14, store it just before the frame 1585 // pointer. 1586 MBB.addLiveIn(X86::R14); 1587 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1588 .addReg(X86::R14) 1589 .setMIFlag(MachineInstr::FrameSetup); 1590 } else { 1591 // No initial context, store null so that there's no pointer that 1592 // could be misused. 1593 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1594 .addImm(0) 1595 .setMIFlag(MachineInstr::FrameSetup); 1596 } 1597 1598 if (NeedsWinCFI) { 1599 HasWinCFI = true; 1600 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1601 .addImm(X86::R14) 1602 .setMIFlag(MachineInstr::FrameSetup); 1603 } 1604 1605 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1606 .addUse(X86::RSP) 1607 .addImm(1) 1608 .addUse(X86::NoRegister) 1609 .addImm(8) 1610 .addUse(X86::NoRegister) 1611 .setMIFlag(MachineInstr::FrameSetup); 1612 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1613 .addUse(X86::RSP) 1614 .addImm(8) 1615 .setMIFlag(MachineInstr::FrameSetup); 1616 } 1617 1618 if (!IsWin64Prologue && !IsFunclet) { 1619 // Update EBP with the new base value. 1620 if (!X86FI->hasSwiftAsyncContext()) 1621 BuildMI(MBB, MBBI, DL, 1622 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1623 FramePtr) 1624 .addReg(StackPtr) 1625 .setMIFlag(MachineInstr::FrameSetup); 1626 1627 if (NeedsDwarfCFI) { 1628 // Mark effective beginning of when frame pointer becomes valid. 1629 // Define the current CFA to use the EBP/RBP register. 1630 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1631 BuildCFI( 1632 MBB, MBBI, DL, 1633 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); 1634 } 1635 1636 if (NeedsWinFPO) { 1637 // .cv_fpo_setframe $FramePtr 1638 HasWinCFI = true; 1639 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1640 .addImm(FramePtr) 1641 .addImm(0) 1642 .setMIFlag(MachineInstr::FrameSetup); 1643 } 1644 } 1645 } 1646 } else { 1647 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1648 NumBytes = StackSize - 1649 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); 1650 } 1651 1652 // Update the offset adjustment, which is mainly used by codeview to translate 1653 // from ESP to VFRAME relative local variable offsets. 1654 if (!IsFunclet) { 1655 if (HasFP && TRI->hasStackRealignment(MF)) 1656 MFI.setOffsetAdjustment(-NumBytes); 1657 else 1658 MFI.setOffsetAdjustment(-StackSize); 1659 } 1660 1661 // For EH funclets, only allocate enough space for outgoing calls. Save the 1662 // NumBytes value that we would've used for the parent frame. 1663 unsigned ParentFrameNumBytes = NumBytes; 1664 if (IsFunclet) 1665 NumBytes = getWinEHFuncletFrameSize(MF); 1666 1667 // Skip the callee-saved push instructions. 1668 bool PushedRegs = false; 1669 int StackOffset = 2 * stackGrowth; 1670 1671 while (MBBI != MBB.end() && 1672 MBBI->getFlag(MachineInstr::FrameSetup) && 1673 (MBBI->getOpcode() == X86::PUSH32r || 1674 MBBI->getOpcode() == X86::PUSH64r)) { 1675 PushedRegs = true; 1676 Register Reg = MBBI->getOperand(0).getReg(); 1677 ++MBBI; 1678 1679 if (!HasFP && NeedsDwarfCFI) { 1680 // Mark callee-saved push instruction. 1681 // Define the current CFA rule to use the provided offset. 1682 assert(StackSize); 1683 BuildCFI(MBB, MBBI, DL, 1684 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1685 StackOffset += stackGrowth; 1686 } 1687 1688 if (NeedsWinCFI) { 1689 HasWinCFI = true; 1690 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1691 .addImm(Reg) 1692 .setMIFlag(MachineInstr::FrameSetup); 1693 } 1694 } 1695 1696 // Realign stack after we pushed callee-saved registers (so that we'll be 1697 // able to calculate their offsets from the frame pointer). 1698 // Don't do this for Win64, it needs to realign the stack after the prologue. 1699 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1700 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1701 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1702 1703 if (NeedsWinCFI) { 1704 HasWinCFI = true; 1705 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1706 .addImm(MaxAlign) 1707 .setMIFlag(MachineInstr::FrameSetup); 1708 } 1709 } 1710 1711 // If there is an SUB32ri of ESP immediately before this instruction, merge 1712 // the two. This can be the case when tail call elimination is enabled and 1713 // the callee has more arguments then the caller. 1714 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1715 1716 // Adjust stack pointer: ESP -= numbytes. 1717 1718 // Windows and cygwin/mingw require a prologue helper routine when allocating 1719 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1720 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1721 // stack and adjust the stack pointer in one go. The 64-bit version of 1722 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1723 // responsible for adjusting the stack pointer. Touching the stack at 4K 1724 // increments is necessary to ensure that the guard pages used by the OS 1725 // virtual memory manager are allocated in correct sequence. 1726 uint64_t AlignedNumBytes = NumBytes; 1727 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1728 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1729 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1730 assert(!X86FI->getUsesRedZone() && 1731 "The Red Zone is not accounted for in stack probes"); 1732 1733 // Check whether EAX is livein for this block. 1734 bool isEAXAlive = isEAXLiveIn(MBB); 1735 1736 if (isEAXAlive) { 1737 if (Is64Bit) { 1738 // Save RAX 1739 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1740 .addReg(X86::RAX, RegState::Kill) 1741 .setMIFlag(MachineInstr::FrameSetup); 1742 } else { 1743 // Save EAX 1744 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1745 .addReg(X86::EAX, RegState::Kill) 1746 .setMIFlag(MachineInstr::FrameSetup); 1747 } 1748 } 1749 1750 if (Is64Bit) { 1751 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1752 // Function prologue is responsible for adjusting the stack pointer. 1753 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1754 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX) 1755 .addImm(Alloc) 1756 .setMIFlag(MachineInstr::FrameSetup); 1757 } else { 1758 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1759 // We'll also use 4 already allocated bytes for EAX. 1760 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1761 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1762 .setMIFlag(MachineInstr::FrameSetup); 1763 } 1764 1765 // Call __chkstk, __chkstk_ms, or __alloca. 1766 emitStackProbe(MF, MBB, MBBI, DL, true); 1767 1768 if (isEAXAlive) { 1769 // Restore RAX/EAX 1770 MachineInstr *MI; 1771 if (Is64Bit) 1772 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1773 StackPtr, false, NumBytes - 8); 1774 else 1775 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1776 StackPtr, false, NumBytes - 4); 1777 MI->setFlag(MachineInstr::FrameSetup); 1778 MBB.insert(MBBI, MI); 1779 } 1780 } else if (NumBytes) { 1781 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1782 } 1783 1784 if (NeedsWinCFI && NumBytes) { 1785 HasWinCFI = true; 1786 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1787 .addImm(NumBytes) 1788 .setMIFlag(MachineInstr::FrameSetup); 1789 } 1790 1791 int SEHFrameOffset = 0; 1792 unsigned SPOrEstablisher; 1793 if (IsFunclet) { 1794 if (IsClrFunclet) { 1795 // The establisher parameter passed to a CLR funclet is actually a pointer 1796 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1797 // to find the root function establisher frame by loading the PSPSym from 1798 // the intermediate frame. 1799 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1800 MachinePointerInfo NoInfo; 1801 MBB.addLiveIn(Establisher); 1802 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1803 Establisher, false, PSPSlotOffset) 1804 .addMemOperand(MF.getMachineMemOperand( 1805 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1806 ; 1807 // Save the root establisher back into the current funclet's (mostly 1808 // empty) frame, in case a sub-funclet or the GC needs it. 1809 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1810 false, PSPSlotOffset) 1811 .addReg(Establisher) 1812 .addMemOperand(MF.getMachineMemOperand( 1813 NoInfo, 1814 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1815 SlotSize, Align(SlotSize))); 1816 } 1817 SPOrEstablisher = Establisher; 1818 } else { 1819 SPOrEstablisher = StackPtr; 1820 } 1821 1822 if (IsWin64Prologue && HasFP) { 1823 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1824 // this calculation on the incoming establisher, which holds the value of 1825 // RSP from the parent frame at the end of the prologue. 1826 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1827 if (SEHFrameOffset) 1828 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1829 SPOrEstablisher, false, SEHFrameOffset); 1830 else 1831 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1832 .addReg(SPOrEstablisher); 1833 1834 // If this is not a funclet, emit the CFI describing our frame pointer. 1835 if (NeedsWinCFI && !IsFunclet) { 1836 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1837 HasWinCFI = true; 1838 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1839 .addImm(FramePtr) 1840 .addImm(SEHFrameOffset) 1841 .setMIFlag(MachineInstr::FrameSetup); 1842 if (isAsynchronousEHPersonality(Personality)) 1843 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1844 } 1845 } else if (IsFunclet && STI.is32Bit()) { 1846 // Reset EBP / ESI to something good for funclets. 1847 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1848 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1849 // into the registration node so that the runtime will restore it for us. 1850 if (!MBB.isCleanupFuncletEntry()) { 1851 assert(Personality == EHPersonality::MSVC_CXX); 1852 Register FrameReg; 1853 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1854 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1855 // ESP is the first field, so no extra displacement is needed. 1856 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1857 false, EHRegOffset) 1858 .addReg(X86::ESP); 1859 } 1860 } 1861 1862 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1863 const MachineInstr &FrameInstr = *MBBI; 1864 ++MBBI; 1865 1866 if (NeedsWinCFI) { 1867 int FI; 1868 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1869 if (X86::FR64RegClass.contains(Reg)) { 1870 int Offset; 1871 Register IgnoredFrameReg; 1872 if (IsWin64Prologue && IsFunclet) 1873 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1874 else 1875 Offset = 1876 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1877 SEHFrameOffset; 1878 1879 HasWinCFI = true; 1880 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1881 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1882 .addImm(Reg) 1883 .addImm(Offset) 1884 .setMIFlag(MachineInstr::FrameSetup); 1885 } 1886 } 1887 } 1888 } 1889 1890 if (NeedsWinCFI && HasWinCFI) 1891 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1892 .setMIFlag(MachineInstr::FrameSetup); 1893 1894 if (FnHasClrFunclet && !IsFunclet) { 1895 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1896 // immediately after the prolog) into the PSPSlot so that funclets 1897 // and the GC can recover it. 1898 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1899 auto PSPInfo = MachinePointerInfo::getFixedStack( 1900 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1901 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1902 PSPSlotOffset) 1903 .addReg(StackPtr) 1904 .addMemOperand(MF.getMachineMemOperand( 1905 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1906 SlotSize, Align(SlotSize))); 1907 } 1908 1909 // Realign stack after we spilled callee-saved registers (so that we'll be 1910 // able to calculate their offsets from the frame pointer). 1911 // Win64 requires aligning the stack after the prologue. 1912 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 1913 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1914 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1915 } 1916 1917 // We already dealt with stack realignment and funclets above. 1918 if (IsFunclet && STI.is32Bit()) 1919 return; 1920 1921 // If we need a base pointer, set it up here. It's whatever the value 1922 // of the stack pointer is at this point. Any variable size objects 1923 // will be allocated after this, so we can still use the base pointer 1924 // to reference locals. 1925 if (TRI->hasBasePointer(MF)) { 1926 // Update the base pointer with the current stack pointer. 1927 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1928 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1929 .addReg(SPOrEstablisher) 1930 .setMIFlag(MachineInstr::FrameSetup); 1931 if (X86FI->getRestoreBasePointer()) { 1932 // Stash value of base pointer. Saving RSP instead of EBP shortens 1933 // dependence chain. Used by SjLj EH. 1934 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1935 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1936 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1937 .addReg(SPOrEstablisher) 1938 .setMIFlag(MachineInstr::FrameSetup); 1939 } 1940 1941 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1942 // Stash the value of the frame pointer relative to the base pointer for 1943 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1944 // it recovers the frame pointer from the base pointer rather than the 1945 // other way around. 1946 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1947 Register UsedReg; 1948 int Offset = 1949 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 1950 .getFixed(); 1951 assert(UsedReg == BasePtr); 1952 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1953 .addReg(FramePtr) 1954 .setMIFlag(MachineInstr::FrameSetup); 1955 } 1956 } 1957 1958 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1959 // Mark end of stack pointer adjustment. 1960 if (!HasFP && NumBytes) { 1961 // Define the current CFA rule to use the provided offset. 1962 assert(StackSize); 1963 BuildCFI( 1964 MBB, MBBI, DL, 1965 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1966 } 1967 1968 // Emit DWARF info specifying the offsets of the callee-saved registers. 1969 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1970 } 1971 1972 // X86 Interrupt handling function cannot assume anything about the direction 1973 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1974 // in each prologue of interrupt handler function. 1975 // 1976 // FIXME: Create "cld" instruction only in these cases: 1977 // 1. The interrupt handling function uses any of the "rep" instructions. 1978 // 2. Interrupt handling function calls another function. 1979 // 1980 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1981 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1982 .setMIFlag(MachineInstr::FrameSetup); 1983 1984 // At this point we know if the function has WinCFI or not. 1985 MF.setHasWinCFI(HasWinCFI); 1986 } 1987 1988 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1989 const MachineFunction &MF) const { 1990 // We can't use LEA instructions for adjusting the stack pointer if we don't 1991 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1992 // to deallocate the stack. 1993 // This means that we can use LEA for SP in two situations: 1994 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1995 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1996 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1997 } 1998 1999 static bool isFuncletReturnInstr(MachineInstr &MI) { 2000 switch (MI.getOpcode()) { 2001 case X86::CATCHRET: 2002 case X86::CLEANUPRET: 2003 return true; 2004 default: 2005 return false; 2006 } 2007 llvm_unreachable("impossible"); 2008 } 2009 2010 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 2011 // stack. It holds a pointer to the bottom of the root function frame. The 2012 // establisher frame pointer passed to a nested funclet may point to the 2013 // (mostly empty) frame of its parent funclet, but it will need to find 2014 // the frame of the root function to access locals. To facilitate this, 2015 // every funclet copies the pointer to the bottom of the root function 2016 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 2017 // same offset for the PSPSym in the root function frame that's used in the 2018 // funclets' frames allows each funclet to dynamically accept any ancestor 2019 // frame as its establisher argument (the runtime doesn't guarantee the 2020 // immediate parent for some reason lost to history), and also allows the GC, 2021 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 2022 // frame with only a single offset reported for the entire method. 2023 unsigned 2024 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 2025 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 2026 Register SPReg; 2027 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 2028 /*IgnoreSPUpdates*/ true) 2029 .getFixed(); 2030 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 2031 return static_cast<unsigned>(Offset); 2032 } 2033 2034 unsigned 2035 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 2036 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2037 // This is the size of the pushed CSRs. 2038 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2039 // This is the size of callee saved XMMs. 2040 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2041 unsigned XMMSize = WinEHXMMSlotInfo.size() * 2042 TRI->getSpillSize(X86::VR128RegClass); 2043 // This is the amount of stack a funclet needs to allocate. 2044 unsigned UsedSize; 2045 EHPersonality Personality = 2046 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 2047 if (Personality == EHPersonality::CoreCLR) { 2048 // CLR funclets need to hold enough space to include the PSPSym, at the 2049 // same offset from the stack pointer (immediately after the prolog) as it 2050 // resides at in the main function. 2051 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 2052 } else { 2053 // Other funclets just need enough stack for outgoing call arguments. 2054 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 2055 } 2056 // RBP is not included in the callee saved register block. After pushing RBP, 2057 // everything is 16 byte aligned. Everything we allocate before an outgoing 2058 // call must also be 16 byte aligned. 2059 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 2060 // Subtract out the size of the callee saved registers. This is how much stack 2061 // each funclet will allocate. 2062 return FrameSizeMinusRBP + XMMSize - CSSize; 2063 } 2064 2065 static bool isTailCallOpcode(unsigned Opc) { 2066 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 2067 Opc == X86::TCRETURNmi || 2068 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 2069 Opc == X86::TCRETURNmi64; 2070 } 2071 2072 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 2073 MachineBasicBlock &MBB) const { 2074 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2075 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2076 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 2077 MachineBasicBlock::iterator MBBI = Terminator; 2078 DebugLoc DL; 2079 if (MBBI != MBB.end()) 2080 DL = MBBI->getDebugLoc(); 2081 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2082 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2083 Register FramePtr = TRI->getFrameRegister(MF); 2084 Register MachineFramePtr = 2085 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2086 2087 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2088 bool NeedsWin64CFI = 2089 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2090 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2091 2092 // Get the number of bytes to allocate from the FrameInfo. 2093 uint64_t StackSize = MFI.getStackSize(); 2094 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2095 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2096 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); 2097 bool HasFP = hasFP(MF); 2098 uint64_t NumBytes = 0; 2099 2100 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2101 !MF.getTarget().getTargetTriple().isOSWindows()) && 2102 MF.needsFrameMoves(); 2103 2104 if (IsFunclet) { 2105 assert(HasFP && "EH funclets without FP not yet implemented"); 2106 NumBytes = getWinEHFuncletFrameSize(MF); 2107 } else if (HasFP) { 2108 // Calculate required stack adjustment. 2109 uint64_t FrameSize = StackSize - SlotSize; 2110 NumBytes = FrameSize - CSSize - TailCallArgReserveSize; 2111 2112 // Callee-saved registers were pushed on stack before the stack was 2113 // realigned. 2114 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2115 NumBytes = alignTo(FrameSize, MaxAlign); 2116 } else { 2117 NumBytes = StackSize - CSSize - TailCallArgReserveSize; 2118 } 2119 uint64_t SEHStackAllocAmt = NumBytes; 2120 2121 // AfterPop is the position to insert .cfi_restore. 2122 MachineBasicBlock::iterator AfterPop = MBBI; 2123 if (HasFP) { 2124 if (X86FI->hasSwiftAsyncContext()) { 2125 // Discard the context. 2126 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2127 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2128 } 2129 // Pop EBP. 2130 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2131 MachineFramePtr) 2132 .setMIFlag(MachineInstr::FrameDestroy); 2133 2134 // We need to reset FP to its untagged state on return. Bit 60 is currently 2135 // used to show the presence of an extended frame. 2136 if (X86FI->hasSwiftAsyncContext()) { 2137 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2138 MachineFramePtr) 2139 .addUse(MachineFramePtr) 2140 .addImm(60) 2141 .setMIFlag(MachineInstr::FrameDestroy); 2142 } 2143 2144 if (NeedsDwarfCFI) { 2145 unsigned DwarfStackPtr = 2146 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2147 BuildCFI(MBB, MBBI, DL, 2148 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2149 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2150 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2151 BuildCFI(MBB, AfterPop, DL, 2152 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2153 --MBBI; 2154 --AfterPop; 2155 } 2156 --MBBI; 2157 } 2158 } 2159 2160 MachineBasicBlock::iterator FirstCSPop = MBBI; 2161 // Skip the callee-saved pop instructions. 2162 while (MBBI != MBB.begin()) { 2163 MachineBasicBlock::iterator PI = std::prev(MBBI); 2164 unsigned Opc = PI->getOpcode(); 2165 2166 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2167 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2168 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2169 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2170 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2171 break; 2172 FirstCSPop = PI; 2173 } 2174 2175 --MBBI; 2176 } 2177 MBBI = FirstCSPop; 2178 2179 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2180 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2181 2182 if (MBBI != MBB.end()) 2183 DL = MBBI->getDebugLoc(); 2184 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2185 // instruction, merge the two instructions. 2186 if (NumBytes || MFI.hasVarSizedObjects()) 2187 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2188 2189 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2190 // slot before popping them off! Same applies for the case, when stack was 2191 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2192 // will not do realignment or dynamic stack allocation. 2193 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2194 !IsFunclet) { 2195 if (TRI->hasStackRealignment(MF)) 2196 MBBI = FirstCSPop; 2197 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2198 uint64_t LEAAmount = 2199 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2200 2201 if (X86FI->hasSwiftAsyncContext()) 2202 LEAAmount -= 16; 2203 2204 // There are only two legal forms of epilogue: 2205 // - add SEHAllocationSize, %rsp 2206 // - lea SEHAllocationSize(%FramePtr), %rsp 2207 // 2208 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2209 // However, we may use this sequence if we have a frame pointer because the 2210 // effects of the prologue can safely be undone. 2211 if (LEAAmount != 0) { 2212 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2213 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2214 FramePtr, false, LEAAmount); 2215 --MBBI; 2216 } else { 2217 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2218 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2219 .addReg(FramePtr); 2220 --MBBI; 2221 } 2222 } else if (NumBytes) { 2223 // Adjust stack pointer back: ESP += numbytes. 2224 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2225 if (!HasFP && NeedsDwarfCFI) { 2226 // Define the current CFA rule to use the provided offset. 2227 BuildCFI(MBB, MBBI, DL, 2228 MCCFIInstruction::cfiDefCfaOffset( 2229 nullptr, CSSize + TailCallArgReserveSize + SlotSize)); 2230 } 2231 --MBBI; 2232 } 2233 2234 // Windows unwinder will not invoke function's exception handler if IP is 2235 // either in prologue or in epilogue. This behavior causes a problem when a 2236 // call immediately precedes an epilogue, because the return address points 2237 // into the epilogue. To cope with that, we insert an epilogue marker here, 2238 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2239 // final emitted code. 2240 if (NeedsWin64CFI && MF.hasWinCFI()) 2241 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2242 2243 if (!HasFP && NeedsDwarfCFI) { 2244 MBBI = FirstCSPop; 2245 int64_t Offset = -CSSize - SlotSize; 2246 // Mark callee-saved pop instruction. 2247 // Define the current CFA rule to use the provided offset. 2248 while (MBBI != MBB.end()) { 2249 MachineBasicBlock::iterator PI = MBBI; 2250 unsigned Opc = PI->getOpcode(); 2251 ++MBBI; 2252 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2253 Offset += SlotSize; 2254 BuildCFI(MBB, MBBI, DL, 2255 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2256 } 2257 } 2258 } 2259 2260 // Emit DWARF info specifying the restores of the callee-saved registers. 2261 // For epilogue with return inside or being other block without successor, 2262 // no need to generate .cfi_restore for callee-saved registers. 2263 if (NeedsDwarfCFI && !MBB.succ_empty()) 2264 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2265 2266 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2267 // Add the return addr area delta back since we are not tail calling. 2268 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2269 assert(Offset >= 0 && "TCDelta should never be positive"); 2270 if (Offset) { 2271 // Check for possible merge with preceding ADD instruction. 2272 Offset += mergeSPUpdates(MBB, Terminator, true); 2273 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2274 } 2275 } 2276 2277 // Emit tilerelease for AMX kernel. 2278 if (X86FI->hasVirtualTileReg()) 2279 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2280 } 2281 2282 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2283 int FI, 2284 Register &FrameReg) const { 2285 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2286 2287 bool IsFixed = MFI.isFixedObjectIndex(FI); 2288 // We can't calculate offset from frame pointer if the stack is realigned, 2289 // so enforce usage of stack/base pointer. The base pointer is used when we 2290 // have dynamic allocas in addition to dynamic realignment. 2291 if (TRI->hasBasePointer(MF)) 2292 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2293 else if (TRI->hasStackRealignment(MF)) 2294 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2295 else 2296 FrameReg = TRI->getFrameRegister(MF); 2297 2298 // Offset will hold the offset from the stack pointer at function entry to the 2299 // object. 2300 // We need to factor in additional offsets applied during the prologue to the 2301 // frame, base, and stack pointer depending on which is used. 2302 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2303 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2304 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2305 uint64_t StackSize = MFI.getStackSize(); 2306 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2307 int64_t FPDelta = 0; 2308 2309 // In an x86 interrupt, remove the offset we added to account for the return 2310 // address from any stack object allocated in the caller's frame. Interrupts 2311 // do not have a standard return address. Fixed objects in the current frame, 2312 // such as SSE register spills, should not get this treatment. 2313 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2314 Offset >= 0) { 2315 Offset += getOffsetOfLocalArea(); 2316 } 2317 2318 if (IsWin64Prologue) { 2319 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2320 2321 // Calculate required stack adjustment. 2322 uint64_t FrameSize = StackSize - SlotSize; 2323 // If required, include space for extra hidden slot for stashing base pointer. 2324 if (X86FI->getRestoreBasePointer()) 2325 FrameSize += SlotSize; 2326 uint64_t NumBytes = FrameSize - CSSize; 2327 2328 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2329 if (FI && FI == X86FI->getFAIndex()) 2330 return StackOffset::getFixed(-SEHFrameOffset); 2331 2332 // FPDelta is the offset from the "traditional" FP location of the old base 2333 // pointer followed by return address and the location required by the 2334 // restricted Win64 prologue. 2335 // Add FPDelta to all offsets below that go through the frame pointer. 2336 FPDelta = FrameSize - SEHFrameOffset; 2337 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2338 "FPDelta isn't aligned per the Win64 ABI!"); 2339 } 2340 2341 if (FrameReg == TRI->getFramePtr()) { 2342 // Skip saved EBP/RBP 2343 Offset += SlotSize; 2344 2345 // Account for restricted Windows prologue. 2346 Offset += FPDelta; 2347 2348 // Skip the RETADDR move area 2349 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2350 if (TailCallReturnAddrDelta < 0) 2351 Offset -= TailCallReturnAddrDelta; 2352 2353 return StackOffset::getFixed(Offset); 2354 } 2355 2356 // FrameReg is either the stack pointer or a base pointer. But the base is 2357 // located at the end of the statically known StackSize so the distinction 2358 // doesn't really matter. 2359 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) 2360 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2361 return StackOffset::getFixed(Offset + StackSize); 2362 } 2363 2364 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2365 Register &FrameReg) const { 2366 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2367 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2368 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2369 const auto it = WinEHXMMSlotInfo.find(FI); 2370 2371 if (it == WinEHXMMSlotInfo.end()) 2372 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2373 2374 FrameReg = TRI->getStackRegister(); 2375 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2376 it->second; 2377 } 2378 2379 StackOffset 2380 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2381 Register &FrameReg, 2382 int Adjustment) const { 2383 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2384 FrameReg = TRI->getStackRegister(); 2385 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2386 getOffsetOfLocalArea() + Adjustment); 2387 } 2388 2389 StackOffset 2390 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2391 int FI, Register &FrameReg, 2392 bool IgnoreSPUpdates) const { 2393 2394 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2395 // Does not include any dynamic realign. 2396 const uint64_t StackSize = MFI.getStackSize(); 2397 // LLVM arranges the stack as follows: 2398 // ... 2399 // ARG2 2400 // ARG1 2401 // RETADDR 2402 // PUSH RBP <-- RBP points here 2403 // PUSH CSRs 2404 // ~~~~~~~ <-- possible stack realignment (non-win64) 2405 // ... 2406 // STACK OBJECTS 2407 // ... <-- RSP after prologue points here 2408 // ~~~~~~~ <-- possible stack realignment (win64) 2409 // 2410 // if (hasVarSizedObjects()): 2411 // ... <-- "base pointer" (ESI/RBX) points here 2412 // DYNAMIC ALLOCAS 2413 // ... <-- RSP points here 2414 // 2415 // Case 1: In the simple case of no stack realignment and no dynamic 2416 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2417 // with fixed offsets from RSP. 2418 // 2419 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2420 // stack objects are addressed with RBP and regular stack objects with RSP. 2421 // 2422 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2423 // to address stack arguments for outgoing calls and nothing else. The "base 2424 // pointer" points to local variables, and RBP points to fixed objects. 2425 // 2426 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2427 // answer we give is relative to the SP after the prologue, and not the 2428 // SP in the middle of the function. 2429 2430 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2431 !STI.isTargetWin64()) 2432 return getFrameIndexReference(MF, FI, FrameReg); 2433 2434 // If !hasReservedCallFrame the function might have SP adjustement in the 2435 // body. So, even though the offset is statically known, it depends on where 2436 // we are in the function. 2437 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2438 return getFrameIndexReference(MF, FI, FrameReg); 2439 2440 // We don't handle tail calls, and shouldn't be seeing them either. 2441 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2442 "we don't handle this case!"); 2443 2444 // This is how the math works out: 2445 // 2446 // %rsp grows (i.e. gets lower) left to right. Each box below is 2447 // one word (eight bytes). Obj0 is the stack slot we're trying to 2448 // get to. 2449 // 2450 // ---------------------------------- 2451 // | BP | Obj0 | Obj1 | ... | ObjN | 2452 // ---------------------------------- 2453 // ^ ^ ^ ^ 2454 // A B C E 2455 // 2456 // A is the incoming stack pointer. 2457 // (B - A) is the local area offset (-8 for x86-64) [1] 2458 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2459 // 2460 // |(E - B)| is the StackSize (absolute value, positive). For a 2461 // stack that grown down, this works out to be (B - E). [3] 2462 // 2463 // E is also the value of %rsp after stack has been set up, and we 2464 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2465 // (C - E) == (C - A) - (B - A) + (B - E) 2466 // { Using [1], [2] and [3] above } 2467 // == getObjectOffset - LocalAreaOffset + StackSize 2468 2469 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2470 } 2471 2472 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2473 MachineFunction &MF, const TargetRegisterInfo *TRI, 2474 std::vector<CalleeSavedInfo> &CSI) const { 2475 MachineFrameInfo &MFI = MF.getFrameInfo(); 2476 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2477 2478 unsigned CalleeSavedFrameSize = 0; 2479 unsigned XMMCalleeSavedFrameSize = 0; 2480 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2481 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2482 2483 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2484 2485 if (TailCallReturnAddrDelta < 0) { 2486 // create RETURNADDR area 2487 // arg 2488 // arg 2489 // RETADDR 2490 // { ... 2491 // RETADDR area 2492 // ... 2493 // } 2494 // [EBP] 2495 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2496 TailCallReturnAddrDelta - SlotSize, true); 2497 } 2498 2499 // Spill the BasePtr if it's used. 2500 if (this->TRI->hasBasePointer(MF)) { 2501 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2502 if (MF.hasEHFunclets()) { 2503 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2504 X86FI->setHasSEHFramePtrSave(true); 2505 X86FI->setSEHFramePtrSaveIndex(FI); 2506 } 2507 } 2508 2509 if (hasFP(MF)) { 2510 // emitPrologue always spills frame register the first thing. 2511 SpillSlotOffset -= SlotSize; 2512 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2513 2514 // The async context lives directly before the frame pointer, and we 2515 // allocate a second slot to preserve stack alignment. 2516 if (X86FI->hasSwiftAsyncContext()) { 2517 SpillSlotOffset -= SlotSize; 2518 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2519 SpillSlotOffset -= SlotSize; 2520 } 2521 2522 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2523 // the frame register, we can delete it from CSI list and not have to worry 2524 // about avoiding it later. 2525 Register FPReg = TRI->getFrameRegister(MF); 2526 for (unsigned i = 0; i < CSI.size(); ++i) { 2527 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2528 CSI.erase(CSI.begin() + i); 2529 break; 2530 } 2531 } 2532 } 2533 2534 // Assign slots for GPRs. It increases frame size. 2535 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2536 Register Reg = I.getReg(); 2537 2538 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2539 continue; 2540 2541 SpillSlotOffset -= SlotSize; 2542 CalleeSavedFrameSize += SlotSize; 2543 2544 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2545 I.setFrameIdx(SlotIndex); 2546 } 2547 2548 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2549 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2550 2551 // Assign slots for XMMs. 2552 for (CalleeSavedInfo &I : llvm::reverse(CSI)) { 2553 Register Reg = I.getReg(); 2554 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2555 continue; 2556 2557 // If this is k-register make sure we lookup via the largest legal type. 2558 MVT VT = MVT::Other; 2559 if (X86::VK16RegClass.contains(Reg)) 2560 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2561 2562 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2563 unsigned Size = TRI->getSpillSize(*RC); 2564 Align Alignment = TRI->getSpillAlign(*RC); 2565 // ensure alignment 2566 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2567 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2568 2569 // spill into slot 2570 SpillSlotOffset -= Size; 2571 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2572 I.setFrameIdx(SlotIndex); 2573 MFI.ensureMaxAlignment(Alignment); 2574 2575 // Save the start offset and size of XMM in stack frame for funclets. 2576 if (X86::VR128RegClass.contains(Reg)) { 2577 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2578 XMMCalleeSavedFrameSize += Size; 2579 } 2580 } 2581 2582 return true; 2583 } 2584 2585 bool X86FrameLowering::spillCalleeSavedRegisters( 2586 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2587 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2588 DebugLoc DL = MBB.findDebugLoc(MI); 2589 2590 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2591 // for us, and there are no XMM CSRs on Win32. 2592 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2593 return true; 2594 2595 // Push GPRs. It increases frame size. 2596 const MachineFunction &MF = *MBB.getParent(); 2597 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2598 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2599 Register Reg = I.getReg(); 2600 2601 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2602 continue; 2603 2604 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2605 bool isLiveIn = MRI.isLiveIn(Reg); 2606 if (!isLiveIn) 2607 MBB.addLiveIn(Reg); 2608 2609 // Decide whether we can add a kill flag to the use. 2610 bool CanKill = !isLiveIn; 2611 // Check if any subregister is live-in 2612 if (CanKill) { 2613 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2614 if (MRI.isLiveIn(*AReg)) { 2615 CanKill = false; 2616 break; 2617 } 2618 } 2619 } 2620 2621 // Do not set a kill flag on values that are also marked as live-in. This 2622 // happens with the @llvm-returnaddress intrinsic and with arguments 2623 // passed in callee saved registers. 2624 // Omitting the kill flags is conservatively correct even if the live-in 2625 // is not used after all. 2626 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2627 .setMIFlag(MachineInstr::FrameSetup); 2628 } 2629 2630 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2631 // It can be done by spilling XMMs to stack frame. 2632 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) { 2633 Register Reg = I.getReg(); 2634 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2635 continue; 2636 2637 // If this is k-register make sure we lookup via the largest legal type. 2638 MVT VT = MVT::Other; 2639 if (X86::VK16RegClass.contains(Reg)) 2640 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2641 2642 // Add the callee-saved register as live-in. It's killed at the spill. 2643 MBB.addLiveIn(Reg); 2644 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2645 2646 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI); 2647 --MI; 2648 MI->setFlag(MachineInstr::FrameSetup); 2649 ++MI; 2650 } 2651 2652 return true; 2653 } 2654 2655 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2656 MachineBasicBlock::iterator MBBI, 2657 MachineInstr *CatchRet) const { 2658 // SEH shouldn't use catchret. 2659 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2660 MBB.getParent()->getFunction().getPersonalityFn())) && 2661 "SEH should not use CATCHRET"); 2662 const DebugLoc &DL = CatchRet->getDebugLoc(); 2663 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2664 2665 // Fill EAX/RAX with the address of the target block. 2666 if (STI.is64Bit()) { 2667 // LEA64r CatchRetTarget(%rip), %rax 2668 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2669 .addReg(X86::RIP) 2670 .addImm(0) 2671 .addReg(0) 2672 .addMBB(CatchRetTarget) 2673 .addReg(0); 2674 } else { 2675 // MOV32ri $CatchRetTarget, %eax 2676 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2677 .addMBB(CatchRetTarget); 2678 } 2679 2680 // Record that we've taken the address of CatchRetTarget and no longer just 2681 // reference it in a terminator. 2682 CatchRetTarget->setHasAddressTaken(); 2683 } 2684 2685 bool X86FrameLowering::restoreCalleeSavedRegisters( 2686 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2687 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2688 if (CSI.empty()) 2689 return false; 2690 2691 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2692 // Don't restore CSRs in 32-bit EH funclets. Matches 2693 // spillCalleeSavedRegisters. 2694 if (STI.is32Bit()) 2695 return true; 2696 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2697 // funclets. emitEpilogue transforms these to normal jumps. 2698 if (MI->getOpcode() == X86::CATCHRET) { 2699 const Function &F = MBB.getParent()->getFunction(); 2700 bool IsSEH = isAsynchronousEHPersonality( 2701 classifyEHPersonality(F.getPersonalityFn())); 2702 if (IsSEH) 2703 return true; 2704 } 2705 } 2706 2707 DebugLoc DL = MBB.findDebugLoc(MI); 2708 2709 // Reload XMMs from stack frame. 2710 for (const CalleeSavedInfo &I : CSI) { 2711 Register Reg = I.getReg(); 2712 if (X86::GR64RegClass.contains(Reg) || 2713 X86::GR32RegClass.contains(Reg)) 2714 continue; 2715 2716 // If this is k-register make sure we lookup via the largest legal type. 2717 MVT VT = MVT::Other; 2718 if (X86::VK16RegClass.contains(Reg)) 2719 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2720 2721 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2722 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI); 2723 } 2724 2725 // POP GPRs. 2726 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2727 for (const CalleeSavedInfo &I : CSI) { 2728 Register Reg = I.getReg(); 2729 if (!X86::GR64RegClass.contains(Reg) && 2730 !X86::GR32RegClass.contains(Reg)) 2731 continue; 2732 2733 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2734 .setMIFlag(MachineInstr::FrameDestroy); 2735 } 2736 return true; 2737 } 2738 2739 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2740 BitVector &SavedRegs, 2741 RegScavenger *RS) const { 2742 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2743 2744 // Spill the BasePtr if it's used. 2745 if (TRI->hasBasePointer(MF)){ 2746 Register BasePtr = TRI->getBaseRegister(); 2747 if (STI.isTarget64BitILP32()) 2748 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2749 SavedRegs.set(BasePtr); 2750 } 2751 } 2752 2753 static bool 2754 HasNestArgument(const MachineFunction *MF) { 2755 const Function &F = MF->getFunction(); 2756 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2757 I != E; I++) { 2758 if (I->hasNestAttr() && !I->use_empty()) 2759 return true; 2760 } 2761 return false; 2762 } 2763 2764 /// GetScratchRegister - Get a temp register for performing work in the 2765 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2766 /// and the properties of the function either one or two registers will be 2767 /// needed. Set primary to true for the first register, false for the second. 2768 static unsigned 2769 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2770 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2771 2772 // Erlang stuff. 2773 if (CallingConvention == CallingConv::HiPE) { 2774 if (Is64Bit) 2775 return Primary ? X86::R14 : X86::R13; 2776 else 2777 return Primary ? X86::EBX : X86::EDI; 2778 } 2779 2780 if (Is64Bit) { 2781 if (IsLP64) 2782 return Primary ? X86::R11 : X86::R12; 2783 else 2784 return Primary ? X86::R11D : X86::R12D; 2785 } 2786 2787 bool IsNested = HasNestArgument(&MF); 2788 2789 if (CallingConvention == CallingConv::X86_FastCall || 2790 CallingConvention == CallingConv::Fast || 2791 CallingConvention == CallingConv::Tail) { 2792 if (IsNested) 2793 report_fatal_error("Segmented stacks does not support fastcall with " 2794 "nested function."); 2795 return Primary ? X86::EAX : X86::ECX; 2796 } 2797 if (IsNested) 2798 return Primary ? X86::EDX : X86::EAX; 2799 return Primary ? X86::ECX : X86::EAX; 2800 } 2801 2802 // The stack limit in the TCB is set to this many bytes above the actual stack 2803 // limit. 2804 static const uint64_t kSplitStackAvailable = 256; 2805 2806 void X86FrameLowering::adjustForSegmentedStacks( 2807 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2808 MachineFrameInfo &MFI = MF.getFrameInfo(); 2809 uint64_t StackSize; 2810 unsigned TlsReg, TlsOffset; 2811 DebugLoc DL; 2812 2813 // To support shrink-wrapping we would need to insert the new blocks 2814 // at the right place and update the branches to PrologueMBB. 2815 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2816 2817 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2818 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2819 "Scratch register is live-in"); 2820 2821 if (MF.getFunction().isVarArg()) 2822 report_fatal_error("Segmented stacks do not support vararg functions."); 2823 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2824 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2825 !STI.isTargetDragonFly()) 2826 report_fatal_error("Segmented stacks not supported on this platform."); 2827 2828 // Eventually StackSize will be calculated by a link-time pass; which will 2829 // also decide whether checking code needs to be injected into this particular 2830 // prologue. 2831 StackSize = MFI.getStackSize(); 2832 2833 // Do not generate a prologue for leaf functions with a stack of size zero. 2834 // For non-leaf functions we have to allow for the possibility that the 2835 // callis to a non-split function, as in PR37807. This function could also 2836 // take the address of a non-split function. When the linker tries to adjust 2837 // its non-existent prologue, it would fail with an error. Mark the object 2838 // file so that such failures are not errors. See this Go language bug-report 2839 // https://go-review.googlesource.com/c/go/+/148819/ 2840 if (StackSize == 0 && !MFI.hasTailCall()) { 2841 MF.getMMI().setHasNosplitStack(true); 2842 return; 2843 } 2844 2845 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2846 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2847 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2848 bool IsNested = false; 2849 2850 // We need to know if the function has a nest argument only in 64 bit mode. 2851 if (Is64Bit) 2852 IsNested = HasNestArgument(&MF); 2853 2854 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2855 // allocMBB needs to be last (terminating) instruction. 2856 2857 for (const auto &LI : PrologueMBB.liveins()) { 2858 allocMBB->addLiveIn(LI); 2859 checkMBB->addLiveIn(LI); 2860 } 2861 2862 if (IsNested) 2863 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2864 2865 MF.push_front(allocMBB); 2866 MF.push_front(checkMBB); 2867 2868 // When the frame size is less than 256 we just compare the stack 2869 // boundary directly to the value of the stack pointer, per gcc. 2870 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2871 2872 // Read the limit off the current stacklet off the stack_guard location. 2873 if (Is64Bit) { 2874 if (STI.isTargetLinux()) { 2875 TlsReg = X86::FS; 2876 TlsOffset = IsLP64 ? 0x70 : 0x40; 2877 } else if (STI.isTargetDarwin()) { 2878 TlsReg = X86::GS; 2879 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2880 } else if (STI.isTargetWin64()) { 2881 TlsReg = X86::GS; 2882 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2883 } else if (STI.isTargetFreeBSD()) { 2884 TlsReg = X86::FS; 2885 TlsOffset = 0x18; 2886 } else if (STI.isTargetDragonFly()) { 2887 TlsReg = X86::FS; 2888 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2889 } else { 2890 report_fatal_error("Segmented stacks not supported on this platform."); 2891 } 2892 2893 if (CompareStackPointer) 2894 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2895 else 2896 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2897 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2898 2899 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2900 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2901 } else { 2902 if (STI.isTargetLinux()) { 2903 TlsReg = X86::GS; 2904 TlsOffset = 0x30; 2905 } else if (STI.isTargetDarwin()) { 2906 TlsReg = X86::GS; 2907 TlsOffset = 0x48 + 90*4; 2908 } else if (STI.isTargetWin32()) { 2909 TlsReg = X86::FS; 2910 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2911 } else if (STI.isTargetDragonFly()) { 2912 TlsReg = X86::FS; 2913 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2914 } else if (STI.isTargetFreeBSD()) { 2915 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2916 } else { 2917 report_fatal_error("Segmented stacks not supported on this platform."); 2918 } 2919 2920 if (CompareStackPointer) 2921 ScratchReg = X86::ESP; 2922 else 2923 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2924 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2925 2926 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2927 STI.isTargetDragonFly()) { 2928 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2929 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2930 } else if (STI.isTargetDarwin()) { 2931 2932 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2933 unsigned ScratchReg2; 2934 bool SaveScratch2; 2935 if (CompareStackPointer) { 2936 // The primary scratch register is available for holding the TLS offset. 2937 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2938 SaveScratch2 = false; 2939 } else { 2940 // Need to use a second register to hold the TLS offset 2941 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2942 2943 // Unfortunately, with fastcc the second scratch register may hold an 2944 // argument. 2945 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2946 } 2947 2948 // If Scratch2 is live-in then it needs to be saved. 2949 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2950 "Scratch register is live-in and not saved"); 2951 2952 if (SaveScratch2) 2953 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2954 .addReg(ScratchReg2, RegState::Kill); 2955 2956 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2957 .addImm(TlsOffset); 2958 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2959 .addReg(ScratchReg) 2960 .addReg(ScratchReg2).addImm(1).addReg(0) 2961 .addImm(0) 2962 .addReg(TlsReg); 2963 2964 if (SaveScratch2) 2965 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2966 } 2967 } 2968 2969 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2970 // It jumps to normal execution of the function body. 2971 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2972 2973 // On 32 bit we first push the arguments size and then the frame size. On 64 2974 // bit, we pass the stack frame size in r10 and the argument size in r11. 2975 if (Is64Bit) { 2976 // Functions with nested arguments use R10, so it needs to be saved across 2977 // the call to _morestack 2978 2979 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2980 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2981 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2982 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2983 2984 if (IsNested) 2985 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2986 2987 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10) 2988 .addImm(StackSize); 2989 BuildMI(allocMBB, DL, 2990 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())), 2991 Reg11) 2992 .addImm(X86FI->getArgumentStackSize()); 2993 } else { 2994 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2995 .addImm(X86FI->getArgumentStackSize()); 2996 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2997 .addImm(StackSize); 2998 } 2999 3000 // __morestack is in libgcc 3001 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 3002 // Under the large code model, we cannot assume that __morestack lives 3003 // within 2^31 bytes of the call site, so we cannot use pc-relative 3004 // addressing. We cannot perform the call via a temporary register, 3005 // as the rax register may be used to store the static chain, and all 3006 // other suitable registers may be either callee-save or used for 3007 // parameter passing. We cannot use the stack at this point either 3008 // because __morestack manipulates the stack directly. 3009 // 3010 // To avoid these issues, perform an indirect call via a read-only memory 3011 // location containing the address. 3012 // 3013 // This solution is not perfect, as it assumes that the .rodata section 3014 // is laid out within 2^31 bytes of each function body, but this seems 3015 // to be sufficient for JIT. 3016 // FIXME: Add retpoline support and remove the error here.. 3017 if (STI.useIndirectThunkCalls()) 3018 report_fatal_error("Emitting morestack calls on 64-bit with the large " 3019 "code model and thunks not yet implemented."); 3020 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 3021 .addReg(X86::RIP) 3022 .addImm(0) 3023 .addReg(0) 3024 .addExternalSymbol("__morestack_addr") 3025 .addReg(0); 3026 MF.getMMI().setUsesMorestackAddr(true); 3027 } else { 3028 if (Is64Bit) 3029 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 3030 .addExternalSymbol("__morestack"); 3031 else 3032 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 3033 .addExternalSymbol("__morestack"); 3034 } 3035 3036 if (IsNested) 3037 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 3038 else 3039 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 3040 3041 allocMBB->addSuccessor(&PrologueMBB); 3042 3043 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 3044 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 3045 3046 #ifdef EXPENSIVE_CHECKS 3047 MF.verify(); 3048 #endif 3049 } 3050 3051 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 3052 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 3053 /// to fields it needs, through a named metadata node "hipe.literals" containing 3054 /// name-value pairs. 3055 static unsigned getHiPELiteral( 3056 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 3057 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 3058 MDNode *Node = HiPELiteralsMD->getOperand(i); 3059 if (Node->getNumOperands() != 2) continue; 3060 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3061 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3062 if (!NodeName || !NodeVal) continue; 3063 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3064 if (ValConst && NodeName->getString() == LiteralName) { 3065 return ValConst->getZExtValue(); 3066 } 3067 } 3068 3069 report_fatal_error("HiPE literal " + LiteralName 3070 + " required but not provided"); 3071 } 3072 3073 // Return true if there are no non-ehpad successors to MBB and there are no 3074 // non-meta instructions between MBBI and MBB.end(). 3075 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3076 MachineBasicBlock::const_iterator MBBI) { 3077 return llvm::all_of( 3078 MBB.successors(), 3079 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3080 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3081 return MI.isMetaInstruction(); 3082 }); 3083 } 3084 3085 /// Erlang programs may need a special prologue to handle the stack size they 3086 /// might need at runtime. That is because Erlang/OTP does not implement a C 3087 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3088 /// (for more information see Eric Stenman's Ph.D. thesis: 3089 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3090 /// 3091 /// CheckStack: 3092 /// temp0 = sp - MaxStack 3093 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3094 /// OldStart: 3095 /// ... 3096 /// IncStack: 3097 /// call inc_stack # doubles the stack space 3098 /// temp0 = sp - MaxStack 3099 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3100 void X86FrameLowering::adjustForHiPEPrologue( 3101 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3102 MachineFrameInfo &MFI = MF.getFrameInfo(); 3103 DebugLoc DL; 3104 3105 // To support shrink-wrapping we would need to insert the new blocks 3106 // at the right place and update the branches to PrologueMBB. 3107 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3108 3109 // HiPE-specific values 3110 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3111 ->getNamedMetadata("hipe.literals"); 3112 if (!HiPELiteralsMD) 3113 report_fatal_error( 3114 "Can't generate HiPE prologue without runtime parameters"); 3115 const unsigned HipeLeafWords 3116 = getHiPELiteral(HiPELiteralsMD, 3117 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3118 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3119 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3120 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3121 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3122 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3123 3124 assert(STI.isTargetLinux() && 3125 "HiPE prologue is only supported on Linux operating systems."); 3126 3127 // Compute the largest caller's frame that is needed to fit the callees' 3128 // frames. This 'MaxStack' is computed from: 3129 // 3130 // a) the fixed frame size, which is the space needed for all spilled temps, 3131 // b) outgoing on-stack parameter areas, and 3132 // c) the minimum stack space this function needs to make available for the 3133 // functions it calls (a tunable ABI property). 3134 if (MFI.hasCalls()) { 3135 unsigned MoreStackForCalls = 0; 3136 3137 for (auto &MBB : MF) { 3138 for (auto &MI : MBB) { 3139 if (!MI.isCall()) 3140 continue; 3141 3142 // Get callee operand. 3143 const MachineOperand &MO = MI.getOperand(0); 3144 3145 // Only take account of global function calls (no closures etc.). 3146 if (!MO.isGlobal()) 3147 continue; 3148 3149 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3150 if (!F) 3151 continue; 3152 3153 // Do not update 'MaxStack' for primitive and built-in functions 3154 // (encoded with names either starting with "erlang."/"bif_" or not 3155 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3156 // "_", such as the BIF "suspend_0") as they are executed on another 3157 // stack. 3158 if (F->getName().contains("erlang.") || F->getName().contains("bif_") || 3159 F->getName().find_first_of("._") == StringRef::npos) 3160 continue; 3161 3162 unsigned CalleeStkArity = 3163 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3164 if (HipeLeafWords - 1 > CalleeStkArity) 3165 MoreStackForCalls = std::max(MoreStackForCalls, 3166 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3167 } 3168 } 3169 MaxStack += MoreStackForCalls; 3170 } 3171 3172 // If the stack frame needed is larger than the guaranteed then runtime checks 3173 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3174 if (MaxStack > Guaranteed) { 3175 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3176 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3177 3178 for (const auto &LI : PrologueMBB.liveins()) { 3179 stackCheckMBB->addLiveIn(LI); 3180 incStackMBB->addLiveIn(LI); 3181 } 3182 3183 MF.push_front(incStackMBB); 3184 MF.push_front(stackCheckMBB); 3185 3186 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3187 unsigned LEAop, CMPop, CALLop; 3188 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3189 if (Is64Bit) { 3190 SPReg = X86::RSP; 3191 PReg = X86::RBP; 3192 LEAop = X86::LEA64r; 3193 CMPop = X86::CMP64rm; 3194 CALLop = X86::CALL64pcrel32; 3195 } else { 3196 SPReg = X86::ESP; 3197 PReg = X86::EBP; 3198 LEAop = X86::LEA32r; 3199 CMPop = X86::CMP32rm; 3200 CALLop = X86::CALLpcrel32; 3201 } 3202 3203 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3204 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3205 "HiPE prologue scratch register is live-in"); 3206 3207 // Create new MBB for StackCheck: 3208 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3209 SPReg, false, -MaxStack); 3210 // SPLimitOffset is in a fixed heap location (pointed by BP). 3211 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3212 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3213 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3214 3215 // Create new MBB for IncStack: 3216 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3217 addExternalSymbol("inc_stack_0"); 3218 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3219 SPReg, false, -MaxStack); 3220 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3221 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3222 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3223 3224 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3225 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3226 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3227 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3228 } 3229 #ifdef EXPENSIVE_CHECKS 3230 MF.verify(); 3231 #endif 3232 } 3233 3234 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3235 MachineBasicBlock::iterator MBBI, 3236 const DebugLoc &DL, 3237 int Offset) const { 3238 if (Offset <= 0) 3239 return false; 3240 3241 if (Offset % SlotSize) 3242 return false; 3243 3244 int NumPops = Offset / SlotSize; 3245 // This is only worth it if we have at most 2 pops. 3246 if (NumPops != 1 && NumPops != 2) 3247 return false; 3248 3249 // Handle only the trivial case where the adjustment directly follows 3250 // a call. This is the most common one, anyway. 3251 if (MBBI == MBB.begin()) 3252 return false; 3253 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3254 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3255 return false; 3256 3257 unsigned Regs[2]; 3258 unsigned FoundRegs = 0; 3259 3260 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3261 const MachineOperand &RegMask = Prev->getOperand(1); 3262 3263 auto &RegClass = 3264 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3265 // Try to find up to NumPops free registers. 3266 for (auto Candidate : RegClass) { 3267 // Poor man's liveness: 3268 // Since we're immediately after a call, any register that is clobbered 3269 // by the call and not defined by it can be considered dead. 3270 if (!RegMask.clobbersPhysReg(Candidate)) 3271 continue; 3272 3273 // Don't clobber reserved registers 3274 if (MRI.isReserved(Candidate)) 3275 continue; 3276 3277 bool IsDef = false; 3278 for (const MachineOperand &MO : Prev->implicit_operands()) { 3279 if (MO.isReg() && MO.isDef() && 3280 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3281 IsDef = true; 3282 break; 3283 } 3284 } 3285 3286 if (IsDef) 3287 continue; 3288 3289 Regs[FoundRegs++] = Candidate; 3290 if (FoundRegs == (unsigned)NumPops) 3291 break; 3292 } 3293 3294 if (FoundRegs == 0) 3295 return false; 3296 3297 // If we found only one free register, but need two, reuse the same one twice. 3298 while (FoundRegs < (unsigned)NumPops) 3299 Regs[FoundRegs++] = Regs[0]; 3300 3301 for (int i = 0; i < NumPops; ++i) 3302 BuildMI(MBB, MBBI, DL, 3303 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3304 3305 return true; 3306 } 3307 3308 MachineBasicBlock::iterator X86FrameLowering:: 3309 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3310 MachineBasicBlock::iterator I) const { 3311 bool reserveCallFrame = hasReservedCallFrame(MF); 3312 unsigned Opcode = I->getOpcode(); 3313 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3314 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3315 uint64_t Amount = TII.getFrameSize(*I); 3316 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3317 I = MBB.erase(I); 3318 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3319 3320 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3321 // typically because the function is marked noreturn (abort, throw, 3322 // assert_fail, etc). 3323 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3324 return I; 3325 3326 if (!reserveCallFrame) { 3327 // If the stack pointer can be changed after prologue, turn the 3328 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3329 // adjcallstackdown instruction into 'add ESP, <amt>' 3330 3331 // We need to keep the stack aligned properly. To do this, we round the 3332 // amount of space needed for the outgoing arguments up to the next 3333 // alignment boundary. 3334 Amount = alignTo(Amount, getStackAlign()); 3335 3336 const Function &F = MF.getFunction(); 3337 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3338 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3339 3340 // If we have any exception handlers in this function, and we adjust 3341 // the SP before calls, we may need to indicate this to the unwinder 3342 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3343 // Amount == 0, because the preceding function may have set a non-0 3344 // GNU_ARGS_SIZE. 3345 // TODO: We don't need to reset this between subsequent functions, 3346 // if it didn't change. 3347 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3348 3349 if (HasDwarfEHHandlers && !isDestroy && 3350 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3351 BuildCFI(MBB, InsertPos, DL, 3352 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3353 3354 if (Amount == 0) 3355 return I; 3356 3357 // Factor out the amount that gets handled inside the sequence 3358 // (Pushes of argument for frame setup, callee pops for frame destroy) 3359 Amount -= InternalAmt; 3360 3361 // TODO: This is needed only if we require precise CFA. 3362 // If this is a callee-pop calling convention, emit a CFA adjust for 3363 // the amount the callee popped. 3364 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3365 BuildCFI(MBB, InsertPos, DL, 3366 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3367 3368 // Add Amount to SP to destroy a frame, or subtract to setup. 3369 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3370 3371 if (StackAdjustment) { 3372 // Merge with any previous or following adjustment instruction. Note: the 3373 // instructions merged with here do not have CFI, so their stack 3374 // adjustments do not feed into CfaAdjustment. 3375 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3376 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3377 3378 if (StackAdjustment) { 3379 if (!(F.hasMinSize() && 3380 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3381 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3382 /*InEpilogue=*/false); 3383 } 3384 } 3385 3386 if (DwarfCFI && !hasFP(MF)) { 3387 // If we don't have FP, but need to generate unwind information, 3388 // we need to set the correct CFA offset after the stack adjustment. 3389 // How much we adjust the CFA offset depends on whether we're emitting 3390 // CFI only for EH purposes or for debugging. EH only requires the CFA 3391 // offset to be correct at each call site, while for debugging we want 3392 // it to be more precise. 3393 3394 int64_t CfaAdjustment = -StackAdjustment; 3395 // TODO: When not using precise CFA, we also need to adjust for the 3396 // InternalAmt here. 3397 if (CfaAdjustment) { 3398 BuildCFI(MBB, InsertPos, DL, 3399 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3400 CfaAdjustment)); 3401 } 3402 } 3403 3404 return I; 3405 } 3406 3407 if (InternalAmt) { 3408 MachineBasicBlock::iterator CI = I; 3409 MachineBasicBlock::iterator B = MBB.begin(); 3410 while (CI != B && !std::prev(CI)->isCall()) 3411 --CI; 3412 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3413 } 3414 3415 return I; 3416 } 3417 3418 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3419 assert(MBB.getParent() && "Block is not attached to a function!"); 3420 const MachineFunction &MF = *MBB.getParent(); 3421 if (!MBB.isLiveIn(X86::EFLAGS)) 3422 return true; 3423 3424 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3425 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3426 } 3427 3428 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3429 assert(MBB.getParent() && "Block is not attached to a function!"); 3430 3431 // Win64 has strict requirements in terms of epilogue and we are 3432 // not taking a chance at messing with them. 3433 // I.e., unless this block is already an exit block, we can't use 3434 // it as an epilogue. 3435 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3436 return false; 3437 3438 // Swift async context epilogue has a BTR instruction that clobbers parts of 3439 // EFLAGS. 3440 const MachineFunction &MF = *MBB.getParent(); 3441 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3442 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3443 3444 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3445 return true; 3446 3447 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3448 // clobbers the EFLAGS. Check that we do not need to preserve it, 3449 // otherwise, conservatively assume this is not 3450 // safe to insert the epilogue here. 3451 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3452 } 3453 3454 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3455 // If we may need to emit frameless compact unwind information, give 3456 // up as this is currently broken: PR25614. 3457 bool CompactUnwind = 3458 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3459 nullptr; 3460 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3461 !CompactUnwind) && 3462 // The lowering of segmented stack and HiPE only support entry 3463 // blocks as prologue blocks: PR26107. This limitation may be 3464 // lifted if we fix: 3465 // - adjustForSegmentedStacks 3466 // - adjustForHiPEPrologue 3467 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3468 !MF.shouldSplitStack(); 3469 } 3470 3471 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3472 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3473 const DebugLoc &DL, bool RestoreSP) const { 3474 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3475 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3476 assert(STI.is32Bit() && !Uses64BitFramePtr && 3477 "restoring EBP/ESI on non-32-bit target"); 3478 3479 MachineFunction &MF = *MBB.getParent(); 3480 Register FramePtr = TRI->getFrameRegister(MF); 3481 Register BasePtr = TRI->getBaseRegister(); 3482 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3483 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3484 MachineFrameInfo &MFI = MF.getFrameInfo(); 3485 3486 // FIXME: Don't set FrameSetup flag in catchret case. 3487 3488 int FI = FuncInfo.EHRegNodeFrameIndex; 3489 int EHRegSize = MFI.getObjectSize(FI); 3490 3491 if (RestoreSP) { 3492 // MOV32rm -EHRegSize(%ebp), %esp 3493 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3494 X86::EBP, true, -EHRegSize) 3495 .setMIFlag(MachineInstr::FrameSetup); 3496 } 3497 3498 Register UsedReg; 3499 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3500 int EndOffset = -EHRegOffset - EHRegSize; 3501 FuncInfo.EHRegNodeEndOffset = EndOffset; 3502 3503 if (UsedReg == FramePtr) { 3504 // ADD $offset, %ebp 3505 unsigned ADDri = getADDriOpcode(false, EndOffset); 3506 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3507 .addReg(FramePtr) 3508 .addImm(EndOffset) 3509 .setMIFlag(MachineInstr::FrameSetup) 3510 ->getOperand(3) 3511 .setIsDead(); 3512 assert(EndOffset >= 0 && 3513 "end of registration object above normal EBP position!"); 3514 } else if (UsedReg == BasePtr) { 3515 // LEA offset(%ebp), %esi 3516 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3517 FramePtr, false, EndOffset) 3518 .setMIFlag(MachineInstr::FrameSetup); 3519 // MOV32rm SavedEBPOffset(%esi), %ebp 3520 assert(X86FI->getHasSEHFramePtrSave()); 3521 int Offset = 3522 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3523 .getFixed(); 3524 assert(UsedReg == BasePtr); 3525 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3526 UsedReg, true, Offset) 3527 .setMIFlag(MachineInstr::FrameSetup); 3528 } else { 3529 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3530 } 3531 return MBBI; 3532 } 3533 3534 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3535 return TRI->getSlotSize(); 3536 } 3537 3538 Register 3539 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3540 return TRI->getDwarfRegNum(StackPtr, true); 3541 } 3542 3543 namespace { 3544 // Struct used by orderFrameObjects to help sort the stack objects. 3545 struct X86FrameSortingObject { 3546 bool IsValid = false; // true if we care about this Object. 3547 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3548 unsigned ObjectSize = 0; // Size of Object in bytes. 3549 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3550 unsigned ObjectNumUses = 0; // Object static number of uses. 3551 }; 3552 3553 // The comparison function we use for std::sort to order our local 3554 // stack symbols. The current algorithm is to use an estimated 3555 // "density". This takes into consideration the size and number of 3556 // uses each object has in order to roughly minimize code size. 3557 // So, for example, an object of size 16B that is referenced 5 times 3558 // will get higher priority than 4 4B objects referenced 1 time each. 3559 // It's not perfect and we may be able to squeeze a few more bytes out of 3560 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3561 // fringe end can have special consideration, given their size is less 3562 // important, etc.), but the algorithmic complexity grows too much to be 3563 // worth the extra gains we get. This gets us pretty close. 3564 // The final order leaves us with objects with highest priority going 3565 // at the end of our list. 3566 struct X86FrameSortingComparator { 3567 inline bool operator()(const X86FrameSortingObject &A, 3568 const X86FrameSortingObject &B) const { 3569 uint64_t DensityAScaled, DensityBScaled; 3570 3571 // For consistency in our comparison, all invalid objects are placed 3572 // at the end. This also allows us to stop walking when we hit the 3573 // first invalid item after it's all sorted. 3574 if (!A.IsValid) 3575 return false; 3576 if (!B.IsValid) 3577 return true; 3578 3579 // The density is calculated by doing : 3580 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3581 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3582 // Since this approach may cause inconsistencies in 3583 // the floating point <, >, == comparisons, depending on the floating 3584 // point model with which the compiler was built, we're going 3585 // to scale both sides by multiplying with 3586 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3587 // the division and, with it, the need for any floating point 3588 // arithmetic. 3589 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3590 static_cast<uint64_t>(B.ObjectSize); 3591 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3592 static_cast<uint64_t>(A.ObjectSize); 3593 3594 // If the two densities are equal, prioritize highest alignment 3595 // objects. This allows for similar alignment objects 3596 // to be packed together (given the same density). 3597 // There's room for improvement here, also, since we can pack 3598 // similar alignment (different density) objects next to each 3599 // other to save padding. This will also require further 3600 // complexity/iterations, and the overall gain isn't worth it, 3601 // in general. Something to keep in mind, though. 3602 if (DensityAScaled == DensityBScaled) 3603 return A.ObjectAlignment < B.ObjectAlignment; 3604 3605 return DensityAScaled < DensityBScaled; 3606 } 3607 }; 3608 } // namespace 3609 3610 // Order the symbols in the local stack. 3611 // We want to place the local stack objects in some sort of sensible order. 3612 // The heuristic we use is to try and pack them according to static number 3613 // of uses and size of object in order to minimize code size. 3614 void X86FrameLowering::orderFrameObjects( 3615 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3616 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3617 3618 // Don't waste time if there's nothing to do. 3619 if (ObjectsToAllocate.empty()) 3620 return; 3621 3622 // Create an array of all MFI objects. We won't need all of these 3623 // objects, but we're going to create a full array of them to make 3624 // it easier to index into when we're counting "uses" down below. 3625 // We want to be able to easily/cheaply access an object by simply 3626 // indexing into it, instead of having to search for it every time. 3627 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3628 3629 // Walk the objects we care about and mark them as such in our working 3630 // struct. 3631 for (auto &Obj : ObjectsToAllocate) { 3632 SortingObjects[Obj].IsValid = true; 3633 SortingObjects[Obj].ObjectIndex = Obj; 3634 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3635 // Set the size. 3636 int ObjectSize = MFI.getObjectSize(Obj); 3637 if (ObjectSize == 0) 3638 // Variable size. Just use 4. 3639 SortingObjects[Obj].ObjectSize = 4; 3640 else 3641 SortingObjects[Obj].ObjectSize = ObjectSize; 3642 } 3643 3644 // Count the number of uses for each object. 3645 for (auto &MBB : MF) { 3646 for (auto &MI : MBB) { 3647 if (MI.isDebugInstr()) 3648 continue; 3649 for (const MachineOperand &MO : MI.operands()) { 3650 // Check to see if it's a local stack symbol. 3651 if (!MO.isFI()) 3652 continue; 3653 int Index = MO.getIndex(); 3654 // Check to see if it falls within our range, and is tagged 3655 // to require ordering. 3656 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3657 SortingObjects[Index].IsValid) 3658 SortingObjects[Index].ObjectNumUses++; 3659 } 3660 } 3661 } 3662 3663 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3664 // info). 3665 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3666 3667 // Now modify the original list to represent the final order that 3668 // we want. The order will depend on whether we're going to access them 3669 // from the stack pointer or the frame pointer. For SP, the list should 3670 // end up with the END containing objects that we want with smaller offsets. 3671 // For FP, it should be flipped. 3672 int i = 0; 3673 for (auto &Obj : SortingObjects) { 3674 // All invalid items are sorted at the end, so it's safe to stop. 3675 if (!Obj.IsValid) 3676 break; 3677 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3678 } 3679 3680 // Flip it if we're accessing off of the FP. 3681 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3682 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3683 } 3684 3685 3686 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3687 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3688 unsigned Offset = 16; 3689 // RBP is immediately pushed. 3690 Offset += SlotSize; 3691 // All callee-saved registers are then pushed. 3692 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3693 // Every funclet allocates enough stack space for the largest outgoing call. 3694 Offset += getWinEHFuncletFrameSize(MF); 3695 return Offset; 3696 } 3697 3698 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3699 MachineFunction &MF, RegScavenger *RS) const { 3700 // Mark the function as not having WinCFI. We will set it back to true in 3701 // emitPrologue if it gets called and emits CFI. 3702 MF.setHasWinCFI(false); 3703 3704 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3705 // aligned. The format doesn't support misaligned stack adjustments. 3706 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3707 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3708 3709 // If this function isn't doing Win64-style C++ EH, we don't need to do 3710 // anything. 3711 if (STI.is64Bit() && MF.hasEHFunclets() && 3712 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3713 EHPersonality::MSVC_CXX) { 3714 adjustFrameForMsvcCxxEh(MF); 3715 } 3716 } 3717 3718 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3719 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3720 // relative to RSP after the prologue. Find the offset of the last fixed 3721 // object, so that we can allocate a slot immediately following it. If there 3722 // were no fixed objects, use offset -SlotSize, which is immediately after the 3723 // return address. Fixed objects have negative frame indices. 3724 MachineFrameInfo &MFI = MF.getFrameInfo(); 3725 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3726 int64_t MinFixedObjOffset = -SlotSize; 3727 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3728 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3729 3730 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3731 for (WinEHHandlerType &H : TBME.HandlerArray) { 3732 int FrameIndex = H.CatchObj.FrameIndex; 3733 if (FrameIndex != INT_MAX) { 3734 // Ensure alignment. 3735 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3736 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3737 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3738 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3739 } 3740 } 3741 } 3742 3743 // Ensure alignment. 3744 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3745 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3746 int UnwindHelpFI = 3747 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3748 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3749 3750 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3751 // other frame setup instructions. 3752 MachineBasicBlock &MBB = MF.front(); 3753 auto MBBI = MBB.begin(); 3754 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3755 ++MBBI; 3756 3757 DebugLoc DL = MBB.findDebugLoc(MBBI); 3758 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3759 UnwindHelpFI) 3760 .addImm(-2); 3761 } 3762 3763 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3764 MachineFunction &MF, RegScavenger *RS) const { 3765 if (STI.is32Bit() && MF.hasEHFunclets()) 3766 restoreWinEHStackPointersInParent(MF); 3767 } 3768 3769 void X86FrameLowering::restoreWinEHStackPointersInParent( 3770 MachineFunction &MF) const { 3771 // 32-bit functions have to restore stack pointers when control is transferred 3772 // back to the parent function. These blocks are identified as eh pads that 3773 // are not funclet entries. 3774 bool IsSEH = isAsynchronousEHPersonality( 3775 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3776 for (MachineBasicBlock &MBB : MF) { 3777 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3778 if (NeedsRestore) 3779 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3780 /*RestoreSP=*/IsSEH); 3781 } 3782 } 3783