1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86FrameLowering.h" 14 #include "X86InstrBuilder.h" 15 #include "X86InstrInfo.h" 16 #include "X86MachineFunctionInfo.h" 17 #include "X86Subtarget.h" 18 #include "X86TargetMachine.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/WinEHFuncInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/MC/MCAsmInfo.h" 31 #include "llvm/MC/MCObjectFileInfo.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetOptions.h" 35 #include <cstdlib> 36 37 #define DEBUG_TYPE "x86-fl" 38 39 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue"); 40 STATISTIC(NumFrameExtraProbe, 41 "Number of extra stack probes generated in prologue"); 42 43 using namespace llvm; 44 45 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, 46 MaybeAlign StackAlignOverride) 47 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), 48 STI.is64Bit() ? -8 : -4), 49 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { 50 // Cache a bunch of frame-related predicates for this subtarget. 51 SlotSize = TRI->getSlotSize(); 52 Is64Bit = STI.is64Bit(); 53 IsLP64 = STI.isTarget64BitLP64(); 54 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 55 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); 56 StackPtr = TRI->getStackRegister(); 57 } 58 59 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 60 return !MF.getFrameInfo().hasVarSizedObjects() && 61 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && 62 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); 63 } 64 65 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 66 /// call frame pseudos can be simplified. Having a FP, as in the default 67 /// implementation, is not sufficient here since we can't always use it. 68 /// Use a more nuanced condition. 69 bool 70 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 71 return hasReservedCallFrame(MF) || 72 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 73 (hasFP(MF) && !TRI->hasStackRealignment(MF)) || 74 TRI->hasBasePointer(MF); 75 } 76 77 // needsFrameIndexResolution - Do we need to perform FI resolution for 78 // this function. Normally, this is required only when the function 79 // has any stack objects. However, FI resolution actually has another job, 80 // not apparent from the title - it resolves callframesetup/destroy 81 // that were not simplified earlier. 82 // So, this is required for x86 functions that have push sequences even 83 // when there are no stack objects. 84 bool 85 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const { 86 return MF.getFrameInfo().hasStackObjects() || 87 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); 88 } 89 90 /// hasFP - Return true if the specified function should have a dedicated frame 91 /// pointer register. This is true if the function has variable sized allocas 92 /// or if frame pointer elimination is disabled. 93 bool X86FrameLowering::hasFP(const MachineFunction &MF) const { 94 const MachineFrameInfo &MFI = MF.getFrameInfo(); 95 return (MF.getTarget().Options.DisableFramePointerElim(MF) || 96 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 97 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || 98 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 99 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || 100 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || 101 MFI.hasStackMap() || MFI.hasPatchPoint() || 102 MFI.hasCopyImplyingStackAdjustment()); 103 } 104 105 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) { 106 if (IsLP64) { 107 if (isInt<8>(Imm)) 108 return X86::SUB64ri8; 109 return X86::SUB64ri32; 110 } else { 111 if (isInt<8>(Imm)) 112 return X86::SUB32ri8; 113 return X86::SUB32ri; 114 } 115 } 116 117 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) { 118 if (IsLP64) { 119 if (isInt<8>(Imm)) 120 return X86::ADD64ri8; 121 return X86::ADD64ri32; 122 } else { 123 if (isInt<8>(Imm)) 124 return X86::ADD32ri8; 125 return X86::ADD32ri; 126 } 127 } 128 129 static unsigned getSUBrrOpcode(bool IsLP64) { 130 return IsLP64 ? X86::SUB64rr : X86::SUB32rr; 131 } 132 133 static unsigned getADDrrOpcode(bool IsLP64) { 134 return IsLP64 ? X86::ADD64rr : X86::ADD32rr; 135 } 136 137 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { 138 if (IsLP64) { 139 if (isInt<8>(Imm)) 140 return X86::AND64ri8; 141 return X86::AND64ri32; 142 } 143 if (isInt<8>(Imm)) 144 return X86::AND32ri8; 145 return X86::AND32ri; 146 } 147 148 static unsigned getLEArOpcode(bool IsLP64) { 149 return IsLP64 ? X86::LEA64r : X86::LEA32r; 150 } 151 152 static bool isEAXLiveIn(MachineBasicBlock &MBB) { 153 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { 154 unsigned Reg = RegMask.PhysReg; 155 156 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || 157 Reg == X86::AH || Reg == X86::AL) 158 return true; 159 } 160 161 return false; 162 } 163 164 /// Check if the flags need to be preserved before the terminators. 165 /// This would be the case, if the eflags is live-in of the region 166 /// composed by the terminators or live-out of that region, without 167 /// being defined by a terminator. 168 static bool 169 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { 170 for (const MachineInstr &MI : MBB.terminators()) { 171 bool BreakNext = false; 172 for (const MachineOperand &MO : MI.operands()) { 173 if (!MO.isReg()) 174 continue; 175 Register Reg = MO.getReg(); 176 if (Reg != X86::EFLAGS) 177 continue; 178 179 // This terminator needs an eflags that is not defined 180 // by a previous another terminator: 181 // EFLAGS is live-in of the region composed by the terminators. 182 if (!MO.isDef()) 183 return true; 184 // This terminator defines the eflags, i.e., we don't need to preserve it. 185 // However, we still need to check this specific terminator does not 186 // read a live-in value. 187 BreakNext = true; 188 } 189 // We found a definition of the eflags, no need to preserve them. 190 if (BreakNext) 191 return false; 192 } 193 194 // None of the terminators use or define the eflags. 195 // Check if they are live-out, that would imply we need to preserve them. 196 for (const MachineBasicBlock *Succ : MBB.successors()) 197 if (Succ->isLiveIn(X86::EFLAGS)) 198 return true; 199 200 return false; 201 } 202 203 /// emitSPUpdate - Emit a series of instructions to increment / decrement the 204 /// stack pointer by a constant value. 205 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, 206 MachineBasicBlock::iterator &MBBI, 207 const DebugLoc &DL, 208 int64_t NumBytes, bool InEpilogue) const { 209 bool isSub = NumBytes < 0; 210 uint64_t Offset = isSub ? -NumBytes : NumBytes; 211 MachineInstr::MIFlag Flag = 212 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; 213 214 uint64_t Chunk = (1LL << 31) - 1; 215 216 MachineFunction &MF = *MBB.getParent(); 217 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 218 const X86TargetLowering &TLI = *STI.getTargetLowering(); 219 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 220 221 // It's ok to not take into account large chunks when probing, as the 222 // allocation is split in smaller chunks anyway. 223 if (EmitInlineStackProbe && !InEpilogue) { 224 225 // This pseudo-instruction is going to be expanded, potentially using a 226 // loop, by inlineStackProbe(). 227 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset); 228 return; 229 } else if (Offset > Chunk) { 230 // Rather than emit a long series of instructions for large offsets, 231 // load the offset into a register and do one sub/add 232 unsigned Reg = 0; 233 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX); 234 235 if (isSub && !isEAXLiveIn(MBB)) 236 Reg = Rax; 237 else 238 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI); 239 240 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri; 241 unsigned AddSubRROpc = 242 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit); 243 if (Reg) { 244 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg) 245 .addImm(Offset) 246 .setMIFlag(Flag); 247 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr) 248 .addReg(StackPtr) 249 .addReg(Reg); 250 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 251 return; 252 } else if (Offset > 8 * Chunk) { 253 // If we would need more than 8 add or sub instructions (a >16GB stack 254 // frame), it's worth spilling RAX to materialize this immediate. 255 // pushq %rax 256 // movabsq +-$Offset+-SlotSize, %rax 257 // addq %rsp, %rax 258 // xchg %rax, (%rsp) 259 // movq (%rsp), %rsp 260 assert(Is64Bit && "can't have 32-bit 16GB stack frame"); 261 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 262 .addReg(Rax, RegState::Kill) 263 .setMIFlag(Flag); 264 // Subtract is not commutative, so negate the offset and always use add. 265 // Subtract 8 less and add 8 more to account for the PUSH we just did. 266 if (isSub) 267 Offset = -(Offset - SlotSize); 268 else 269 Offset = Offset + SlotSize; 270 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax) 271 .addImm(Offset) 272 .setMIFlag(Flag); 273 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax) 274 .addReg(Rax) 275 .addReg(StackPtr); 276 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 277 // Exchange the new SP in RAX with the top of the stack. 278 addRegOffset( 279 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax), 280 StackPtr, false, 0); 281 // Load new SP from the top of the stack into RSP. 282 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr), 283 StackPtr, false, 0); 284 return; 285 } 286 } 287 288 while (Offset) { 289 uint64_t ThisVal = std::min(Offset, Chunk); 290 if (ThisVal == SlotSize) { 291 // Use push / pop for slot sized adjustments as a size optimization. We 292 // need to find a dead register when using pop. 293 unsigned Reg = isSub 294 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) 295 : TRI->findDeadCallerSavedReg(MBB, MBBI); 296 if (Reg) { 297 unsigned Opc = isSub 298 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) 299 : (Is64Bit ? X86::POP64r : X86::POP32r); 300 BuildMI(MBB, MBBI, DL, TII.get(Opc)) 301 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub)) 302 .setMIFlag(Flag); 303 Offset -= ThisVal; 304 continue; 305 } 306 } 307 308 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue) 309 .setMIFlag(Flag); 310 311 Offset -= ThisVal; 312 } 313 } 314 315 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( 316 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 317 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { 318 assert(Offset != 0 && "zero offset stack adjustment requested"); 319 320 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue 321 // is tricky. 322 bool UseLEA; 323 if (!InEpilogue) { 324 // Check if inserting the prologue at the beginning 325 // of MBB would require to use LEA operations. 326 // We need to use LEA operations if EFLAGS is live in, because 327 // it means an instruction will read it before it gets defined. 328 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS); 329 } else { 330 // If we can use LEA for SP but we shouldn't, check that none 331 // of the terminators uses the eflags. Otherwise we will insert 332 // a ADD that will redefine the eflags and break the condition. 333 // Alternatively, we could move the ADD, but this may not be possible 334 // and is an optimization anyway. 335 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent()); 336 if (UseLEA && !STI.useLeaForSP()) 337 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); 338 // If that assert breaks, that means we do not do the right thing 339 // in canUseAsEpilogue. 340 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && 341 "We shouldn't have allowed this insertion point"); 342 } 343 344 MachineInstrBuilder MI; 345 if (UseLEA) { 346 MI = addRegOffset(BuildMI(MBB, MBBI, DL, 347 TII.get(getLEArOpcode(Uses64BitFramePtr)), 348 StackPtr), 349 StackPtr, false, Offset); 350 } else { 351 bool IsSub = Offset < 0; 352 uint64_t AbsOffset = IsSub ? -Offset : Offset; 353 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset) 354 : getADDriOpcode(Uses64BitFramePtr, AbsOffset); 355 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 356 .addReg(StackPtr) 357 .addImm(AbsOffset); 358 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 359 } 360 return MI; 361 } 362 363 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, 364 MachineBasicBlock::iterator &MBBI, 365 bool doMergeWithPrevious) const { 366 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 367 (!doMergeWithPrevious && MBBI == MBB.end())) 368 return 0; 369 370 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI; 371 372 PI = skipDebugInstructionsBackward(PI, MBB.begin()); 373 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI 374 // instruction, and that there are no DBG_VALUE or other instructions between 375 // ADD/SUB/LEA and its corresponding CFI instruction. 376 /* TODO: Add support for the case where there are multiple CFI instructions 377 below the ADD/SUB/LEA, e.g.: 378 ... 379 add 380 cfi_def_cfa_offset 381 cfi_offset 382 ... 383 */ 384 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) 385 PI = std::prev(PI); 386 387 unsigned Opc = PI->getOpcode(); 388 int Offset = 0; 389 390 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 391 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 392 PI->getOperand(0).getReg() == StackPtr){ 393 assert(PI->getOperand(1).getReg() == StackPtr); 394 Offset = PI->getOperand(2).getImm(); 395 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && 396 PI->getOperand(0).getReg() == StackPtr && 397 PI->getOperand(1).getReg() == StackPtr && 398 PI->getOperand(2).getImm() == 1 && 399 PI->getOperand(3).getReg() == X86::NoRegister && 400 PI->getOperand(5).getReg() == X86::NoRegister) { 401 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. 402 Offset = PI->getOperand(4).getImm(); 403 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 404 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 405 PI->getOperand(0).getReg() == StackPtr) { 406 assert(PI->getOperand(1).getReg() == StackPtr); 407 Offset = -PI->getOperand(2).getImm(); 408 } else 409 return 0; 410 411 PI = MBB.erase(PI); 412 if (PI != MBB.end() && PI->isCFIInstruction()) { 413 auto CIs = MBB.getParent()->getFrameInstructions(); 414 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()]; 415 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || 416 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) 417 PI = MBB.erase(PI); 418 } 419 if (!doMergeWithPrevious) 420 MBBI = skipDebugInstructionsForward(PI, MBB.end()); 421 422 return Offset; 423 } 424 425 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, 426 MachineBasicBlock::iterator MBBI, 427 const DebugLoc &DL, 428 const MCCFIInstruction &CFIInst) const { 429 MachineFunction &MF = *MBB.getParent(); 430 unsigned CFIIndex = MF.addFrameInst(CFIInst); 431 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 432 .addCFIIndex(CFIIndex); 433 } 434 435 /// Emits Dwarf Info specifying offsets of callee saved registers and 436 /// frame pointer. This is called only when basic block sections are enabled. 437 void X86FrameLowering::emitCalleeSavedFrameMoves( 438 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 439 MachineFunction &MF = *MBB.getParent(); 440 if (!hasFP(MF)) { 441 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 442 return; 443 } 444 const MachineModuleInfo &MMI = MF.getMMI(); 445 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 446 const Register FramePtr = TRI->getFrameRegister(MF); 447 const Register MachineFramePtr = 448 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64)) 449 : FramePtr; 450 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true); 451 // Offset = space for return address + size of the frame pointer itself. 452 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); 453 BuildCFI(MBB, MBBI, DebugLoc{}, 454 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset)); 455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true); 456 } 457 458 void X86FrameLowering::emitCalleeSavedFrameMoves( 459 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 460 const DebugLoc &DL, bool IsPrologue) const { 461 MachineFunction &MF = *MBB.getParent(); 462 MachineFrameInfo &MFI = MF.getFrameInfo(); 463 MachineModuleInfo &MMI = MF.getMMI(); 464 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo(); 465 466 // Add callee saved registers to move list. 467 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 468 if (CSI.empty()) return; 469 470 // Calculate offsets. 471 for (std::vector<CalleeSavedInfo>::const_iterator 472 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 473 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx()); 474 unsigned Reg = I->getReg(); 475 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 476 477 if (IsPrologue) { 478 BuildCFI(MBB, MBBI, DL, 479 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 480 } else { 481 BuildCFI(MBB, MBBI, DL, 482 MCCFIInstruction::createRestore(nullptr, DwarfReg)); 483 } 484 } 485 } 486 487 void X86FrameLowering::emitStackProbe(MachineFunction &MF, 488 MachineBasicBlock &MBB, 489 MachineBasicBlock::iterator MBBI, 490 const DebugLoc &DL, bool InProlog) const { 491 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 492 if (STI.isTargetWindowsCoreCLR()) { 493 if (InProlog) { 494 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)) 495 .addImm(0 /* no explicit stack size */); 496 } else { 497 emitStackProbeInline(MF, MBB, MBBI, DL, false); 498 } 499 } else { 500 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog); 501 } 502 } 503 504 void X86FrameLowering::inlineStackProbe(MachineFunction &MF, 505 MachineBasicBlock &PrologMBB) const { 506 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) { 507 return MI.getOpcode() == X86::STACKALLOC_W_PROBING; 508 }); 509 if (Where != PrologMBB.end()) { 510 DebugLoc DL = PrologMBB.findDebugLoc(Where); 511 emitStackProbeInline(MF, PrologMBB, Where, DL, true); 512 Where->eraseFromParent(); 513 } 514 } 515 516 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, 517 MachineBasicBlock &MBB, 518 MachineBasicBlock::iterator MBBI, 519 const DebugLoc &DL, 520 bool InProlog) const { 521 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 522 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) 523 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); 524 else 525 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); 526 } 527 528 void X86FrameLowering::emitStackProbeInlineGeneric( 529 MachineFunction &MF, MachineBasicBlock &MBB, 530 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 531 MachineInstr &AllocWithProbe = *MBBI; 532 uint64_t Offset = AllocWithProbe.getOperand(0).getImm(); 533 534 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 535 const X86TargetLowering &TLI = *STI.getTargetLowering(); 536 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && 537 "different expansion expected for CoreCLR 64 bit"); 538 539 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 540 uint64_t ProbeChunk = StackProbeSize * 8; 541 542 uint64_t MaxAlign = 543 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; 544 545 // Synthesize a loop or unroll it, depending on the number of iterations. 546 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left 547 // between the unaligned rsp and current rsp. 548 if (Offset > ProbeChunk) { 549 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, 550 MaxAlign % StackProbeSize); 551 } else { 552 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, 553 MaxAlign % StackProbeSize); 554 } 555 } 556 557 void X86FrameLowering::emitStackProbeInlineGenericBlock( 558 MachineFunction &MF, MachineBasicBlock &MBB, 559 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 560 uint64_t AlignOffset) const { 561 562 const bool NeedsDwarfCFI = needsDwarfCFI(MF); 563 const bool HasFP = hasFP(MF); 564 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 565 const X86TargetLowering &TLI = *STI.getTargetLowering(); 566 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, Offset); 567 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 568 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 569 570 uint64_t CurrentOffset = 0; 571 572 assert(AlignOffset < StackProbeSize); 573 574 // If the offset is so small it fits within a page, there's nothing to do. 575 if (StackProbeSize < Offset + AlignOffset) { 576 577 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 578 .addReg(StackPtr) 579 .addImm(StackProbeSize - AlignOffset) 580 .setMIFlag(MachineInstr::FrameSetup); 581 if (!HasFP && NeedsDwarfCFI) { 582 BuildCFI(MBB, MBBI, DL, 583 MCCFIInstruction::createAdjustCfaOffset( 584 nullptr, StackProbeSize - AlignOffset)); 585 } 586 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 587 588 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 589 .setMIFlag(MachineInstr::FrameSetup), 590 StackPtr, false, 0) 591 .addImm(0) 592 .setMIFlag(MachineInstr::FrameSetup); 593 NumFrameExtraProbe++; 594 CurrentOffset = StackProbeSize - AlignOffset; 595 } 596 597 // For the next N - 1 pages, just probe. I tried to take advantage of 598 // natural probes but it implies much more logic and there was very few 599 // interesting natural probes to interleave. 600 while (CurrentOffset + StackProbeSize < Offset) { 601 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 602 .addReg(StackPtr) 603 .addImm(StackProbeSize) 604 .setMIFlag(MachineInstr::FrameSetup); 605 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 606 607 if (!HasFP && NeedsDwarfCFI) { 608 BuildCFI( 609 MBB, MBBI, DL, 610 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize)); 611 } 612 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 613 .setMIFlag(MachineInstr::FrameSetup), 614 StackPtr, false, 0) 615 .addImm(0) 616 .setMIFlag(MachineInstr::FrameSetup); 617 NumFrameExtraProbe++; 618 CurrentOffset += StackProbeSize; 619 } 620 621 // No need to probe the tail, it is smaller than a Page. 622 uint64_t ChunkSize = Offset - CurrentOffset; 623 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 624 .addReg(StackPtr) 625 .addImm(ChunkSize) 626 .setMIFlag(MachineInstr::FrameSetup); 627 // No need to adjust Dwarf CFA offset here, the last position of the stack has 628 // been defined 629 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 630 } 631 632 void X86FrameLowering::emitStackProbeInlineGenericLoop( 633 MachineFunction &MF, MachineBasicBlock &MBB, 634 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, 635 uint64_t AlignOffset) const { 636 assert(Offset && "null offset"); 637 638 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 639 const X86TargetLowering &TLI = *STI.getTargetLowering(); 640 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 641 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 642 643 if (AlignOffset) { 644 if (AlignOffset < StackProbeSize) { 645 // Perform a first smaller allocation followed by a probe. 646 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, AlignOffset); 647 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), StackPtr) 648 .addReg(StackPtr) 649 .addImm(AlignOffset) 650 .setMIFlag(MachineInstr::FrameSetup); 651 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 652 653 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc)) 654 .setMIFlag(MachineInstr::FrameSetup), 655 StackPtr, false, 0) 656 .addImm(0) 657 .setMIFlag(MachineInstr::FrameSetup); 658 NumFrameExtraProbe++; 659 Offset -= AlignOffset; 660 } 661 } 662 663 // Synthesize a loop 664 NumFrameLoopProbe++; 665 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 666 667 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB); 668 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB); 669 670 MachineFunction::iterator MBBIter = ++MBB.getIterator(); 671 MF.insert(MBBIter, testMBB); 672 MF.insert(MBBIter, tailMBB); 673 674 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 675 : Is64Bit ? X86::R11D 676 : X86::EAX; 677 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 678 .addReg(StackPtr) 679 .setMIFlag(MachineInstr::FrameSetup); 680 681 // save loop bound 682 { 683 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, Offset); 684 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed) 685 .addReg(FinalStackProbed) 686 .addImm(Offset / StackProbeSize * StackProbeSize) 687 .setMIFlag(MachineInstr::FrameSetup); 688 } 689 690 // allocate a page 691 { 692 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 693 BuildMI(testMBB, DL, TII.get(SUBOpc), StackPtr) 694 .addReg(StackPtr) 695 .addImm(StackProbeSize) 696 .setMIFlag(MachineInstr::FrameSetup); 697 } 698 699 // touch the page 700 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc)) 701 .setMIFlag(MachineInstr::FrameSetup), 702 StackPtr, false, 0) 703 .addImm(0) 704 .setMIFlag(MachineInstr::FrameSetup); 705 706 // cmp with stack pointer bound 707 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 708 .addReg(StackPtr) 709 .addReg(FinalStackProbed) 710 .setMIFlag(MachineInstr::FrameSetup); 711 712 // jump 713 BuildMI(testMBB, DL, TII.get(X86::JCC_1)) 714 .addMBB(testMBB) 715 .addImm(X86::COND_NE) 716 .setMIFlag(MachineInstr::FrameSetup); 717 testMBB->addSuccessor(testMBB); 718 testMBB->addSuccessor(tailMBB); 719 720 // BB management 721 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end()); 722 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB); 723 MBB.addSuccessor(testMBB); 724 725 // handle tail 726 unsigned TailOffset = Offset % StackProbeSize; 727 if (TailOffset) { 728 const unsigned Opc = getSUBriOpcode(Uses64BitFramePtr, TailOffset); 729 BuildMI(*tailMBB, tailMBB->begin(), DL, TII.get(Opc), StackPtr) 730 .addReg(StackPtr) 731 .addImm(TailOffset) 732 .setMIFlag(MachineInstr::FrameSetup); 733 } 734 735 // Update Live In information 736 recomputeLiveIns(*testMBB); 737 recomputeLiveIns(*tailMBB); 738 } 739 740 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( 741 MachineFunction &MF, MachineBasicBlock &MBB, 742 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { 743 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 744 assert(STI.is64Bit() && "different expansion needed for 32 bit"); 745 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR"); 746 const TargetInstrInfo &TII = *STI.getInstrInfo(); 747 const BasicBlock *LLVM_BB = MBB.getBasicBlock(); 748 749 // RAX contains the number of bytes of desired stack adjustment. 750 // The handling here assumes this value has already been updated so as to 751 // maintain stack alignment. 752 // 753 // We need to exit with RSP modified by this amount and execute suitable 754 // page touches to notify the OS that we're growing the stack responsibly. 755 // All stack probing must be done without modifying RSP. 756 // 757 // MBB: 758 // SizeReg = RAX; 759 // ZeroReg = 0 760 // CopyReg = RSP 761 // Flags, TestReg = CopyReg - SizeReg 762 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg 763 // LimitReg = gs magic thread env access 764 // if FinalReg >= LimitReg goto ContinueMBB 765 // RoundBB: 766 // RoundReg = page address of FinalReg 767 // LoopMBB: 768 // LoopReg = PHI(LimitReg,ProbeReg) 769 // ProbeReg = LoopReg - PageSize 770 // [ProbeReg] = 0 771 // if (ProbeReg > RoundReg) goto LoopMBB 772 // ContinueMBB: 773 // RSP = RSP - RAX 774 // [rest of original MBB] 775 776 // Set up the new basic blocks 777 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB); 778 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 779 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB); 780 781 MachineFunction::iterator MBBIter = std::next(MBB.getIterator()); 782 MF.insert(MBBIter, RoundMBB); 783 MF.insert(MBBIter, LoopMBB); 784 MF.insert(MBBIter, ContinueMBB); 785 786 // Split MBB and move the tail portion down to ContinueMBB. 787 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI); 788 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end()); 789 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB); 790 791 // Some useful constants 792 const int64_t ThreadEnvironmentStackLimit = 0x10; 793 const int64_t PageSize = 0x1000; 794 const int64_t PageMask = ~(PageSize - 1); 795 796 // Registers we need. For the normal case we use virtual 797 // registers. For the prolog expansion we use RAX, RCX and RDX. 798 MachineRegisterInfo &MRI = MF.getRegInfo(); 799 const TargetRegisterClass *RegClass = &X86::GR64RegClass; 800 const Register SizeReg = InProlog ? X86::RAX 801 : MRI.createVirtualRegister(RegClass), 802 ZeroReg = InProlog ? X86::RCX 803 : MRI.createVirtualRegister(RegClass), 804 CopyReg = InProlog ? X86::RDX 805 : MRI.createVirtualRegister(RegClass), 806 TestReg = InProlog ? X86::RDX 807 : MRI.createVirtualRegister(RegClass), 808 FinalReg = InProlog ? X86::RDX 809 : MRI.createVirtualRegister(RegClass), 810 RoundedReg = InProlog ? X86::RDX 811 : MRI.createVirtualRegister(RegClass), 812 LimitReg = InProlog ? X86::RCX 813 : MRI.createVirtualRegister(RegClass), 814 JoinReg = InProlog ? X86::RCX 815 : MRI.createVirtualRegister(RegClass), 816 ProbeReg = InProlog ? X86::RCX 817 : MRI.createVirtualRegister(RegClass); 818 819 // SP-relative offsets where we can save RCX and RDX. 820 int64_t RCXShadowSlot = 0; 821 int64_t RDXShadowSlot = 0; 822 823 // If inlining in the prolog, save RCX and RDX. 824 if (InProlog) { 825 // Compute the offsets. We need to account for things already 826 // pushed onto the stack at this point: return address, frame 827 // pointer (if used), and callee saves. 828 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 829 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); 830 const bool HasFP = hasFP(MF); 831 832 // Check if we need to spill RCX and/or RDX. 833 // Here we assume that no earlier prologue instruction changes RCX and/or 834 // RDX, so checking the block live-ins is enough. 835 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX); 836 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX); 837 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); 838 // Assign the initial slot to both registers, then change RDX's slot if both 839 // need to be spilled. 840 if (IsRCXLiveIn) 841 RCXShadowSlot = InitSlot; 842 if (IsRDXLiveIn) 843 RDXShadowSlot = InitSlot; 844 if (IsRDXLiveIn && IsRCXLiveIn) 845 RDXShadowSlot += 8; 846 // Emit the saves if needed. 847 if (IsRCXLiveIn) 848 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 849 RCXShadowSlot) 850 .addReg(X86::RCX); 851 if (IsRDXLiveIn) 852 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false, 853 RDXShadowSlot) 854 .addReg(X86::RDX); 855 } else { 856 // Not in the prolog. Copy RAX to a virtual reg. 857 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX); 858 } 859 860 // Add code to MBB to check for overflow and set the new target stack pointer 861 // to zero if so. 862 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg) 863 .addReg(ZeroReg, RegState::Undef) 864 .addReg(ZeroReg, RegState::Undef); 865 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP); 866 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg) 867 .addReg(CopyReg) 868 .addReg(SizeReg); 869 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg) 870 .addReg(TestReg) 871 .addReg(ZeroReg) 872 .addImm(X86::COND_B); 873 874 // FinalReg now holds final stack pointer value, or zero if 875 // allocation would overflow. Compare against the current stack 876 // limit from the thread environment block. Note this limit is the 877 // lowest touched page on the stack, not the point at which the OS 878 // will cause an overflow exception, so this is just an optimization 879 // to avoid unnecessarily touching pages that are below the current 880 // SP but already committed to the stack by the OS. 881 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg) 882 .addReg(0) 883 .addImm(1) 884 .addReg(0) 885 .addImm(ThreadEnvironmentStackLimit) 886 .addReg(X86::GS); 887 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg); 888 // Jump if the desired stack pointer is at or above the stack limit. 889 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE); 890 891 // Add code to roundMBB to round the final stack pointer to a page boundary. 892 RoundMBB->addLiveIn(FinalReg); 893 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg) 894 .addReg(FinalReg) 895 .addImm(PageMask); 896 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB); 897 898 // LimitReg now holds the current stack limit, RoundedReg page-rounded 899 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page 900 // and probe until we reach RoundedReg. 901 if (!InProlog) { 902 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg) 903 .addReg(LimitReg) 904 .addMBB(RoundMBB) 905 .addReg(ProbeReg) 906 .addMBB(LoopMBB); 907 } 908 909 LoopMBB->addLiveIn(JoinReg); 910 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg, 911 false, -PageSize); 912 913 // Probe by storing a byte onto the stack. 914 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi)) 915 .addReg(ProbeReg) 916 .addImm(1) 917 .addReg(0) 918 .addImm(0) 919 .addReg(0) 920 .addImm(0); 921 922 LoopMBB->addLiveIn(RoundedReg); 923 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr)) 924 .addReg(RoundedReg) 925 .addReg(ProbeReg); 926 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE); 927 928 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); 929 930 // If in prolog, restore RDX and RCX. 931 if (InProlog) { 932 if (RCXShadowSlot) // It means we spilled RCX in the prologue. 933 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 934 TII.get(X86::MOV64rm), X86::RCX), 935 X86::RSP, false, RCXShadowSlot); 936 if (RDXShadowSlot) // It means we spilled RDX in the prologue. 937 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, 938 TII.get(X86::MOV64rm), X86::RDX), 939 X86::RSP, false, RDXShadowSlot); 940 } 941 942 // Now that the probing is done, add code to continueMBB to update 943 // the stack pointer for real. 944 ContinueMBB->addLiveIn(SizeReg); 945 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP) 946 .addReg(X86::RSP) 947 .addReg(SizeReg); 948 949 // Add the control flow edges we need. 950 MBB.addSuccessor(ContinueMBB); 951 MBB.addSuccessor(RoundMBB); 952 RoundMBB->addSuccessor(LoopMBB); 953 LoopMBB->addSuccessor(ContinueMBB); 954 LoopMBB->addSuccessor(LoopMBB); 955 956 // Mark all the instructions added to the prolog as frame setup. 957 if (InProlog) { 958 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { 959 BeforeMBBI->setFlag(MachineInstr::FrameSetup); 960 } 961 for (MachineInstr &MI : *RoundMBB) { 962 MI.setFlag(MachineInstr::FrameSetup); 963 } 964 for (MachineInstr &MI : *LoopMBB) { 965 MI.setFlag(MachineInstr::FrameSetup); 966 } 967 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin(); 968 CMBBI != ContinueMBBI; ++CMBBI) { 969 CMBBI->setFlag(MachineInstr::FrameSetup); 970 } 971 } 972 } 973 974 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF, 975 MachineBasicBlock &MBB, 976 MachineBasicBlock::iterator MBBI, 977 const DebugLoc &DL, 978 bool InProlog) const { 979 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; 980 981 // FIXME: Add indirect thunk support and remove this. 982 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) 983 report_fatal_error("Emitting stack probe calls on 64-bit with the large " 984 "code model and indirect thunks not yet implemented."); 985 986 unsigned CallOp; 987 if (Is64Bit) 988 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; 989 else 990 CallOp = X86::CALLpcrel32; 991 992 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); 993 994 MachineInstrBuilder CI; 995 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI); 996 997 // All current stack probes take AX and SP as input, clobber flags, and 998 // preserve all registers. x86_64 probes leave RSP unmodified. 999 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 1000 // For the large code model, we have to call through a register. Use R11, 1001 // as it is scratch in all supported calling conventions. 1002 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11) 1003 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1004 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11); 1005 } else { 1006 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)) 1007 .addExternalSymbol(MF.createExternalSymbolName(Symbol)); 1008 } 1009 1010 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; 1011 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; 1012 CI.addReg(AX, RegState::Implicit) 1013 .addReg(SP, RegState::Implicit) 1014 .addReg(AX, RegState::Define | RegState::Implicit) 1015 .addReg(SP, RegState::Define | RegState::Implicit) 1016 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 1017 1018 if (STI.isTargetWin64() || !STI.isOSWindows()) { 1019 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. 1020 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp 1021 // themselves. They also does not clobber %rax so we can reuse it when 1022 // adjusting %rsp. 1023 // All other platforms do not specify a particular ABI for the stack probe 1024 // function, so we arbitrarily define it to not adjust %esp/%rsp itself. 1025 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP) 1026 .addReg(SP) 1027 .addReg(AX); 1028 } 1029 1030 if (InProlog) { 1031 // Apply the frame setup flag to all inserted instrs. 1032 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) 1033 ExpansionMBBI->setFlag(MachineInstr::FrameSetup); 1034 } 1035 } 1036 1037 static unsigned calculateSetFPREG(uint64_t SPAdjust) { 1038 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well 1039 // and might require smaller successive adjustments. 1040 const uint64_t Win64MaxSEHOffset = 128; 1041 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset); 1042 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. 1043 return SEHFrameOffset & -16; 1044 } 1045 1046 // If we're forcing a stack realignment we can't rely on just the frame 1047 // info, we need to know the ABI stack alignment as well in case we 1048 // have a call out. Otherwise just make sure we have some alignment - we'll 1049 // go with the minimum SlotSize. 1050 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { 1051 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1052 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. 1053 Align StackAlign = getStackAlign(); 1054 if (MF.getFunction().hasFnAttribute("stackrealign")) { 1055 if (MFI.hasCalls()) 1056 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; 1057 else if (MaxAlign < SlotSize) 1058 MaxAlign = Align(SlotSize); 1059 } 1060 return MaxAlign.value(); 1061 } 1062 1063 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, 1064 MachineBasicBlock::iterator MBBI, 1065 const DebugLoc &DL, unsigned Reg, 1066 uint64_t MaxAlign) const { 1067 uint64_t Val = -MaxAlign; 1068 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val); 1069 1070 MachineFunction &MF = *MBB.getParent(); 1071 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 1072 const X86TargetLowering &TLI = *STI.getTargetLowering(); 1073 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); 1074 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); 1075 1076 // We want to make sure that (in worst case) less than StackProbeSize bytes 1077 // are not probed after the AND. This assumption is used in 1078 // emitStackProbeInlineGeneric. 1079 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { 1080 { 1081 NumFrameLoopProbe++; 1082 MachineBasicBlock *entryMBB = 1083 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1084 MachineBasicBlock *headMBB = 1085 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1086 MachineBasicBlock *bodyMBB = 1087 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1088 MachineBasicBlock *footMBB = 1089 MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 1090 1091 MachineFunction::iterator MBBIter = MBB.getIterator(); 1092 MF.insert(MBBIter, entryMBB); 1093 MF.insert(MBBIter, headMBB); 1094 MF.insert(MBBIter, bodyMBB); 1095 MF.insert(MBBIter, footMBB); 1096 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; 1097 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 1098 : Is64Bit ? X86::R11D 1099 : X86::EAX; 1100 1101 // Setup entry block 1102 { 1103 1104 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI); 1105 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed) 1106 .addReg(StackPtr) 1107 .setMIFlag(MachineInstr::FrameSetup); 1108 MachineInstr *MI = 1109 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed) 1110 .addReg(FinalStackProbed) 1111 .addImm(Val) 1112 .setMIFlag(MachineInstr::FrameSetup); 1113 1114 // The EFLAGS implicit def is dead. 1115 MI->getOperand(3).setIsDead(); 1116 1117 BuildMI(entryMBB, DL, 1118 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1119 .addReg(FinalStackProbed) 1120 .addReg(StackPtr) 1121 .setMIFlag(MachineInstr::FrameSetup); 1122 BuildMI(entryMBB, DL, TII.get(X86::JCC_1)) 1123 .addMBB(&MBB) 1124 .addImm(X86::COND_E) 1125 .setMIFlag(MachineInstr::FrameSetup); 1126 entryMBB->addSuccessor(headMBB); 1127 entryMBB->addSuccessor(&MBB); 1128 } 1129 1130 // Loop entry block 1131 1132 { 1133 const unsigned SUBOpc = 1134 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1135 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr) 1136 .addReg(StackPtr) 1137 .addImm(StackProbeSize) 1138 .setMIFlag(MachineInstr::FrameSetup); 1139 1140 BuildMI(headMBB, DL, 1141 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1142 .addReg(FinalStackProbed) 1143 .addReg(StackPtr) 1144 .setMIFlag(MachineInstr::FrameSetup); 1145 1146 // jump 1147 BuildMI(headMBB, DL, TII.get(X86::JCC_1)) 1148 .addMBB(footMBB) 1149 .addImm(X86::COND_B) 1150 .setMIFlag(MachineInstr::FrameSetup); 1151 1152 headMBB->addSuccessor(bodyMBB); 1153 headMBB->addSuccessor(footMBB); 1154 } 1155 1156 // setup loop body 1157 { 1158 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc)) 1159 .setMIFlag(MachineInstr::FrameSetup), 1160 StackPtr, false, 0) 1161 .addImm(0) 1162 .setMIFlag(MachineInstr::FrameSetup); 1163 1164 const unsigned SUBOpc = 1165 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize); 1166 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr) 1167 .addReg(StackPtr) 1168 .addImm(StackProbeSize) 1169 .setMIFlag(MachineInstr::FrameSetup); 1170 1171 // cmp with stack pointer bound 1172 BuildMI(bodyMBB, DL, 1173 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) 1174 .addReg(FinalStackProbed) 1175 .addReg(StackPtr) 1176 .setMIFlag(MachineInstr::FrameSetup); 1177 1178 // jump 1179 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1)) 1180 .addMBB(bodyMBB) 1181 .addImm(X86::COND_B) 1182 .setMIFlag(MachineInstr::FrameSetup); 1183 bodyMBB->addSuccessor(bodyMBB); 1184 bodyMBB->addSuccessor(footMBB); 1185 } 1186 1187 // setup loop footer 1188 { 1189 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr) 1190 .addReg(FinalStackProbed) 1191 .setMIFlag(MachineInstr::FrameSetup); 1192 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc)) 1193 .setMIFlag(MachineInstr::FrameSetup), 1194 StackPtr, false, 0) 1195 .addImm(0) 1196 .setMIFlag(MachineInstr::FrameSetup); 1197 footMBB->addSuccessor(&MBB); 1198 } 1199 1200 recomputeLiveIns(*headMBB); 1201 recomputeLiveIns(*bodyMBB); 1202 recomputeLiveIns(*footMBB); 1203 recomputeLiveIns(MBB); 1204 } 1205 } else { 1206 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg) 1207 .addReg(Reg) 1208 .addImm(Val) 1209 .setMIFlag(MachineInstr::FrameSetup); 1210 1211 // The EFLAGS implicit def is dead. 1212 MI->getOperand(3).setIsDead(); 1213 } 1214 } 1215 1216 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const { 1217 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be 1218 // clobbered by any interrupt handler. 1219 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1220 "MF used frame lowering for wrong subtarget"); 1221 const Function &Fn = MF.getFunction(); 1222 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv()); 1223 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone); 1224 } 1225 1226 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { 1227 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 1228 } 1229 1230 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { 1231 return !isWin64Prologue(MF) && MF.needsFrameMoves(); 1232 } 1233 1234 /// emitPrologue - Push callee-saved registers onto the stack, which 1235 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate 1236 /// space for local variables. Also emit labels used by the exception handler to 1237 /// generate the exception handling frames. 1238 1239 /* 1240 Here's a gist of what gets emitted: 1241 1242 ; Establish frame pointer, if needed 1243 [if needs FP] 1244 push %rbp 1245 .cfi_def_cfa_offset 16 1246 .cfi_offset %rbp, -16 1247 .seh_pushreg %rpb 1248 mov %rsp, %rbp 1249 .cfi_def_cfa_register %rbp 1250 1251 ; Spill general-purpose registers 1252 [for all callee-saved GPRs] 1253 pushq %<reg> 1254 [if not needs FP] 1255 .cfi_def_cfa_offset (offset from RETADDR) 1256 .seh_pushreg %<reg> 1257 1258 ; If the required stack alignment > default stack alignment 1259 ; rsp needs to be re-aligned. This creates a "re-alignment gap" 1260 ; of unknown size in the stack frame. 1261 [if stack needs re-alignment] 1262 and $MASK, %rsp 1263 1264 ; Allocate space for locals 1265 [if target is Windows and allocated space > 4096 bytes] 1266 ; Windows needs special care for allocations larger 1267 ; than one page. 1268 mov $NNN, %rax 1269 call ___chkstk_ms/___chkstk 1270 sub %rax, %rsp 1271 [else] 1272 sub $NNN, %rsp 1273 1274 [if needs FP] 1275 .seh_stackalloc (size of XMM spill slots) 1276 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots 1277 [else] 1278 .seh_stackalloc NNN 1279 1280 ; Spill XMMs 1281 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, 1282 ; they may get spilled on any platform, if the current function 1283 ; calls @llvm.eh.unwind.init 1284 [if needs FP] 1285 [for all callee-saved XMM registers] 1286 movaps %<xmm reg>, -MMM(%rbp) 1287 [for all callee-saved XMM registers] 1288 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) 1289 ; i.e. the offset relative to (%rbp - SEHFrameOffset) 1290 [else] 1291 [for all callee-saved XMM registers] 1292 movaps %<xmm reg>, KKK(%rsp) 1293 [for all callee-saved XMM registers] 1294 .seh_savexmm %<xmm reg>, KKK 1295 1296 .seh_endprologue 1297 1298 [if needs base pointer] 1299 mov %rsp, %rbx 1300 [if needs to restore base pointer] 1301 mov %rsp, -MMM(%rbp) 1302 1303 ; Emit CFI info 1304 [if needs FP] 1305 [for all callee-saved registers] 1306 .cfi_offset %<reg>, (offset from %rbp) 1307 [else] 1308 .cfi_def_cfa_offset (offset from RETADDR) 1309 [for all callee-saved registers] 1310 .cfi_offset %<reg>, (offset from %rsp) 1311 1312 Notes: 1313 - .seh directives are emitted only for Windows 64 ABI 1314 - .cv_fpo directives are emitted on win32 when emitting CodeView 1315 - .cfi directives are emitted for all other ABIs 1316 - for 32-bit code, substitute %e?? registers for %r?? 1317 */ 1318 1319 void X86FrameLowering::emitPrologue(MachineFunction &MF, 1320 MachineBasicBlock &MBB) const { 1321 assert(&STI == &MF.getSubtarget<X86Subtarget>() && 1322 "MF used frame lowering for wrong subtarget"); 1323 MachineBasicBlock::iterator MBBI = MBB.begin(); 1324 MachineFrameInfo &MFI = MF.getFrameInfo(); 1325 const Function &Fn = MF.getFunction(); 1326 MachineModuleInfo &MMI = MF.getMMI(); 1327 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1328 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. 1329 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. 1330 bool IsFunclet = MBB.isEHFuncletEntry(); 1331 EHPersonality Personality = EHPersonality::Unknown; 1332 if (Fn.hasPersonalityFn()) 1333 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 1334 bool FnHasClrFunclet = 1335 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; 1336 bool IsClrFunclet = IsFunclet && FnHasClrFunclet; 1337 bool HasFP = hasFP(MF); 1338 bool IsWin64Prologue = isWin64Prologue(MF); 1339 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); 1340 // FIXME: Emit FPO data for EH funclets. 1341 bool NeedsWinFPO = 1342 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag(); 1343 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; 1344 bool NeedsDwarfCFI = needsDwarfCFI(MF); 1345 Register FramePtr = TRI->getFrameRegister(MF); 1346 const Register MachineFramePtr = 1347 STI.isTarget64BitILP32() 1348 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 1349 Register BasePtr = TRI->getBaseRegister(); 1350 bool HasWinCFI = false; 1351 1352 // Debug location must be unknown since the first debug location is used 1353 // to determine the end of the prologue. 1354 DebugLoc DL; 1355 1356 // Add RETADDR move area to callee saved frame size. 1357 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1358 if (TailCallReturnAddrDelta && IsWin64Prologue) 1359 report_fatal_error("Can't handle guaranteed tail call under win64 yet"); 1360 1361 if (TailCallReturnAddrDelta < 0) 1362 X86FI->setCalleeSavedFrameSize( 1363 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 1364 1365 const bool EmitStackProbeCall = 1366 STI.getTargetLowering()->hasStackProbeSymbol(MF); 1367 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); 1368 1369 if (HasFP && X86FI->hasSwiftAsyncContext()) { 1370 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), 1371 MachineFramePtr) 1372 .addUse(MachineFramePtr) 1373 .addImm(60) 1374 .setMIFlag(MachineInstr::FrameSetup); 1375 } 1376 1377 // Re-align the stack on 64-bit if the x86-interrupt calling convention is 1378 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte 1379 // stack alignment. 1380 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && 1381 Fn.arg_size() == 2) { 1382 StackSize += 8; 1383 MFI.setStackSize(StackSize); 1384 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false); 1385 } 1386 1387 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 1388 // function, and use up to 128 bytes of stack space, don't have a frame 1389 // pointer, calls, or dynamic alloca then we do not need to adjust the 1390 // stack pointer (we fit in the Red Zone). We also check that we don't 1391 // push and pop from the stack. 1392 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && 1393 !MFI.hasVarSizedObjects() && // No dynamic alloca. 1394 !MFI.adjustsStack() && // No calls. 1395 !EmitStackProbeCall && // No stack probes. 1396 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. 1397 !MF.shouldSplitStack()) { // Regular stack 1398 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 1399 if (HasFP) MinSize += SlotSize; 1400 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); 1401 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 1402 MFI.setStackSize(StackSize); 1403 } 1404 1405 // Insert stack pointer adjustment for later moving of return addr. Only 1406 // applies to tail call optimized functions where the callee argument stack 1407 // size is bigger than the callers. 1408 if (TailCallReturnAddrDelta < 0) { 1409 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta, 1410 /*InEpilogue=*/false) 1411 .setMIFlag(MachineInstr::FrameSetup); 1412 } 1413 1414 // Mapping for machine moves: 1415 // 1416 // DST: VirtualFP AND 1417 // SRC: VirtualFP => DW_CFA_def_cfa_offset 1418 // ELSE => DW_CFA_def_cfa 1419 // 1420 // SRC: VirtualFP AND 1421 // DST: Register => DW_CFA_def_cfa_register 1422 // 1423 // ELSE 1424 // OFFSET < 0 => DW_CFA_offset_extended_sf 1425 // REG < 64 => DW_CFA_offset + Reg 1426 // ELSE => DW_CFA_offset_extended 1427 1428 uint64_t NumBytes = 0; 1429 int stackGrowth = -SlotSize; 1430 1431 // Find the funclet establisher parameter 1432 Register Establisher = X86::NoRegister; 1433 if (IsClrFunclet) 1434 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; 1435 else if (IsFunclet) 1436 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; 1437 1438 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { 1439 // Immediately spill establisher into the home slot. 1440 // The runtime cares about this. 1441 // MOV64mr %rdx, 16(%rsp) 1442 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1443 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16) 1444 .addReg(Establisher) 1445 .setMIFlag(MachineInstr::FrameSetup); 1446 MBB.addLiveIn(Establisher); 1447 } 1448 1449 if (HasFP) { 1450 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved"); 1451 1452 // Calculate required stack adjustment. 1453 uint64_t FrameSize = StackSize - SlotSize; 1454 // If required, include space for extra hidden slot for stashing base pointer. 1455 if (X86FI->getRestoreBasePointer()) 1456 FrameSize += SlotSize; 1457 1458 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 1459 1460 // Callee-saved registers are pushed on stack before the stack is realigned. 1461 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 1462 NumBytes = alignTo(NumBytes, MaxAlign); 1463 1464 // Save EBP/RBP into the appropriate stack slot. 1465 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1466 .addReg(MachineFramePtr, RegState::Kill) 1467 .setMIFlag(MachineInstr::FrameSetup); 1468 1469 if (NeedsDwarfCFI) { 1470 // Mark the place where EBP/RBP was saved. 1471 // Define the current CFA rule to use the provided offset. 1472 assert(StackSize); 1473 BuildCFI(MBB, MBBI, DL, 1474 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth)); 1475 1476 // Change the rule for the FramePtr to be an "offset" rule. 1477 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1478 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset( 1479 nullptr, DwarfFramePtr, 2 * stackGrowth)); 1480 } 1481 1482 if (NeedsWinCFI) { 1483 HasWinCFI = true; 1484 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1485 .addImm(FramePtr) 1486 .setMIFlag(MachineInstr::FrameSetup); 1487 } 1488 1489 if (!IsFunclet) { 1490 if (X86FI->hasSwiftAsyncContext()) { 1491 const auto &Attrs = MF.getFunction().getAttributes(); 1492 1493 // Before we update the live frame pointer we have to ensure there's a 1494 // valid (or null) asynchronous context in its slot just before FP in 1495 // the frame record, so store it now. 1496 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) { 1497 // We have an initial context in r14, store it just before the frame 1498 // pointer. 1499 MBB.addLiveIn(X86::R14); 1500 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1501 .addReg(X86::R14) 1502 .setMIFlag(MachineInstr::FrameSetup); 1503 } else { 1504 // No initial context, store null so that there's no pointer that 1505 // could be misused. 1506 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8)) 1507 .addImm(0) 1508 .setMIFlag(MachineInstr::FrameSetup); 1509 } 1510 1511 if (NeedsWinCFI) { 1512 HasWinCFI = true; 1513 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1514 .addImm(X86::R14) 1515 .setMIFlag(MachineInstr::FrameSetup); 1516 } 1517 1518 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr) 1519 .addUse(X86::RSP) 1520 .addImm(1) 1521 .addUse(X86::NoRegister) 1522 .addImm(8) 1523 .addUse(X86::NoRegister) 1524 .setMIFlag(MachineInstr::FrameSetup); 1525 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP) 1526 .addUse(X86::RSP) 1527 .addImm(8) 1528 .setMIFlag(MachineInstr::FrameSetup); 1529 } 1530 1531 if (!IsWin64Prologue && !IsFunclet) { 1532 // Update EBP with the new base value. 1533 if (!X86FI->hasSwiftAsyncContext()) 1534 BuildMI(MBB, MBBI, DL, 1535 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), 1536 FramePtr) 1537 .addReg(StackPtr) 1538 .setMIFlag(MachineInstr::FrameSetup); 1539 1540 if (NeedsDwarfCFI) { 1541 // Mark effective beginning of when frame pointer becomes valid. 1542 // Define the current CFA to use the EBP/RBP register. 1543 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 1544 BuildCFI( 1545 MBB, MBBI, DL, 1546 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr)); 1547 } 1548 1549 if (NeedsWinFPO) { 1550 // .cv_fpo_setframe $FramePtr 1551 HasWinCFI = true; 1552 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1553 .addImm(FramePtr) 1554 .addImm(0) 1555 .setMIFlag(MachineInstr::FrameSetup); 1556 } 1557 } 1558 } 1559 } else { 1560 assert(!IsFunclet && "funclets without FPs not yet implemented"); 1561 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1562 } 1563 1564 // Update the offset adjustment, which is mainly used by codeview to translate 1565 // from ESP to VFRAME relative local variable offsets. 1566 if (!IsFunclet) { 1567 if (HasFP && TRI->hasStackRealignment(MF)) 1568 MFI.setOffsetAdjustment(-NumBytes); 1569 else 1570 MFI.setOffsetAdjustment(-StackSize); 1571 } 1572 1573 // For EH funclets, only allocate enough space for outgoing calls. Save the 1574 // NumBytes value that we would've used for the parent frame. 1575 unsigned ParentFrameNumBytes = NumBytes; 1576 if (IsFunclet) 1577 NumBytes = getWinEHFuncletFrameSize(MF); 1578 1579 // Skip the callee-saved push instructions. 1580 bool PushedRegs = false; 1581 int StackOffset = 2 * stackGrowth; 1582 1583 while (MBBI != MBB.end() && 1584 MBBI->getFlag(MachineInstr::FrameSetup) && 1585 (MBBI->getOpcode() == X86::PUSH32r || 1586 MBBI->getOpcode() == X86::PUSH64r)) { 1587 PushedRegs = true; 1588 Register Reg = MBBI->getOperand(0).getReg(); 1589 ++MBBI; 1590 1591 if (!HasFP && NeedsDwarfCFI) { 1592 // Mark callee-saved push instruction. 1593 // Define the current CFA rule to use the provided offset. 1594 assert(StackSize); 1595 BuildCFI(MBB, MBBI, DL, 1596 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset)); 1597 StackOffset += stackGrowth; 1598 } 1599 1600 if (NeedsWinCFI) { 1601 HasWinCFI = true; 1602 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)) 1603 .addImm(Reg) 1604 .setMIFlag(MachineInstr::FrameSetup); 1605 } 1606 } 1607 1608 // Realign stack after we pushed callee-saved registers (so that we'll be 1609 // able to calculate their offsets from the frame pointer). 1610 // Don't do this for Win64, it needs to realign the stack after the prologue. 1611 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) { 1612 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1613 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign); 1614 1615 if (NeedsWinCFI) { 1616 HasWinCFI = true; 1617 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign)) 1618 .addImm(MaxAlign) 1619 .setMIFlag(MachineInstr::FrameSetup); 1620 } 1621 } 1622 1623 // If there is an SUB32ri of ESP immediately before this instruction, merge 1624 // the two. This can be the case when tail call elimination is enabled and 1625 // the callee has more arguments then the caller. 1626 NumBytes -= mergeSPUpdates(MBB, MBBI, true); 1627 1628 // Adjust stack pointer: ESP -= numbytes. 1629 1630 // Windows and cygwin/mingw require a prologue helper routine when allocating 1631 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw 1632 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the 1633 // stack and adjust the stack pointer in one go. The 64-bit version of 1634 // __chkstk is only responsible for probing the stack. The 64-bit prologue is 1635 // responsible for adjusting the stack pointer. Touching the stack at 4K 1636 // increments is necessary to ensure that the guard pages used by the OS 1637 // virtual memory manager are allocated in correct sequence. 1638 uint64_t AlignedNumBytes = NumBytes; 1639 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) 1640 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign); 1641 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { 1642 assert(!X86FI->getUsesRedZone() && 1643 "The Red Zone is not accounted for in stack probes"); 1644 1645 // Check whether EAX is livein for this block. 1646 bool isEAXAlive = isEAXLiveIn(MBB); 1647 1648 if (isEAXAlive) { 1649 if (Is64Bit) { 1650 // Save RAX 1651 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r)) 1652 .addReg(X86::RAX, RegState::Kill) 1653 .setMIFlag(MachineInstr::FrameSetup); 1654 } else { 1655 // Save EAX 1656 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1657 .addReg(X86::EAX, RegState::Kill) 1658 .setMIFlag(MachineInstr::FrameSetup); 1659 } 1660 } 1661 1662 if (Is64Bit) { 1663 // Handle the 64-bit Windows ABI case where we need to call __chkstk. 1664 // Function prologue is responsible for adjusting the stack pointer. 1665 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; 1666 if (isUInt<32>(Alloc)) { 1667 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1668 .addImm(Alloc) 1669 .setMIFlag(MachineInstr::FrameSetup); 1670 } else if (isInt<32>(Alloc)) { 1671 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX) 1672 .addImm(Alloc) 1673 .setMIFlag(MachineInstr::FrameSetup); 1674 } else { 1675 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX) 1676 .addImm(Alloc) 1677 .setMIFlag(MachineInstr::FrameSetup); 1678 } 1679 } else { 1680 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. 1681 // We'll also use 4 already allocated bytes for EAX. 1682 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1683 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes) 1684 .setMIFlag(MachineInstr::FrameSetup); 1685 } 1686 1687 // Call __chkstk, __chkstk_ms, or __alloca. 1688 emitStackProbe(MF, MBB, MBBI, DL, true); 1689 1690 if (isEAXAlive) { 1691 // Restore RAX/EAX 1692 MachineInstr *MI; 1693 if (Is64Bit) 1694 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX), 1695 StackPtr, false, NumBytes - 8); 1696 else 1697 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), 1698 StackPtr, false, NumBytes - 4); 1699 MI->setFlag(MachineInstr::FrameSetup); 1700 MBB.insert(MBBI, MI); 1701 } 1702 } else if (NumBytes) { 1703 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false); 1704 } 1705 1706 if (NeedsWinCFI && NumBytes) { 1707 HasWinCFI = true; 1708 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc)) 1709 .addImm(NumBytes) 1710 .setMIFlag(MachineInstr::FrameSetup); 1711 } 1712 1713 int SEHFrameOffset = 0; 1714 unsigned SPOrEstablisher; 1715 if (IsFunclet) { 1716 if (IsClrFunclet) { 1717 // The establisher parameter passed to a CLR funclet is actually a pointer 1718 // to the (mostly empty) frame of its nearest enclosing funclet; we have 1719 // to find the root function establisher frame by loading the PSPSym from 1720 // the intermediate frame. 1721 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1722 MachinePointerInfo NoInfo; 1723 MBB.addLiveIn(Establisher); 1724 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher), 1725 Establisher, false, PSPSlotOffset) 1726 .addMemOperand(MF.getMachineMemOperand( 1727 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize))); 1728 ; 1729 // Save the root establisher back into the current funclet's (mostly 1730 // empty) frame, in case a sub-funclet or the GC needs it. 1731 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, 1732 false, PSPSlotOffset) 1733 .addReg(Establisher) 1734 .addMemOperand(MF.getMachineMemOperand( 1735 NoInfo, 1736 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1737 SlotSize, Align(SlotSize))); 1738 } 1739 SPOrEstablisher = Establisher; 1740 } else { 1741 SPOrEstablisher = StackPtr; 1742 } 1743 1744 if (IsWin64Prologue && HasFP) { 1745 // Set RBP to a small fixed offset from RSP. In the funclet case, we base 1746 // this calculation on the incoming establisher, which holds the value of 1747 // RSP from the parent frame at the end of the prologue. 1748 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes); 1749 if (SEHFrameOffset) 1750 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr), 1751 SPOrEstablisher, false, SEHFrameOffset); 1752 else 1753 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr) 1754 .addReg(SPOrEstablisher); 1755 1756 // If this is not a funclet, emit the CFI describing our frame pointer. 1757 if (NeedsWinCFI && !IsFunclet) { 1758 assert(!NeedsWinFPO && "this setframe incompatible with FPO data"); 1759 HasWinCFI = true; 1760 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame)) 1761 .addImm(FramePtr) 1762 .addImm(SEHFrameOffset) 1763 .setMIFlag(MachineInstr::FrameSetup); 1764 if (isAsynchronousEHPersonality(Personality)) 1765 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; 1766 } 1767 } else if (IsFunclet && STI.is32Bit()) { 1768 // Reset EBP / ESI to something good for funclets. 1769 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); 1770 // If we're a catch funclet, we can be returned to via catchret. Save ESP 1771 // into the registration node so that the runtime will restore it for us. 1772 if (!MBB.isCleanupFuncletEntry()) { 1773 assert(Personality == EHPersonality::MSVC_CXX); 1774 Register FrameReg; 1775 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; 1776 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); 1777 // ESP is the first field, so no extra displacement is needed. 1778 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg, 1779 false, EHRegOffset) 1780 .addReg(X86::ESP); 1781 } 1782 } 1783 1784 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) { 1785 const MachineInstr &FrameInstr = *MBBI; 1786 ++MBBI; 1787 1788 if (NeedsWinCFI) { 1789 int FI; 1790 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) { 1791 if (X86::FR64RegClass.contains(Reg)) { 1792 int Offset; 1793 Register IgnoredFrameReg; 1794 if (IsWin64Prologue && IsFunclet) 1795 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg); 1796 else 1797 Offset = 1798 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() + 1799 SEHFrameOffset; 1800 1801 HasWinCFI = true; 1802 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data"); 1803 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM)) 1804 .addImm(Reg) 1805 .addImm(Offset) 1806 .setMIFlag(MachineInstr::FrameSetup); 1807 } 1808 } 1809 } 1810 } 1811 1812 if (NeedsWinCFI && HasWinCFI) 1813 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue)) 1814 .setMIFlag(MachineInstr::FrameSetup); 1815 1816 if (FnHasClrFunclet && !IsFunclet) { 1817 // Save the so-called Initial-SP (i.e. the value of the stack pointer 1818 // immediately after the prolog) into the PSPSlot so that funclets 1819 // and the GC can recover it. 1820 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); 1821 auto PSPInfo = MachinePointerInfo::getFixedStack( 1822 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx); 1823 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false, 1824 PSPSlotOffset) 1825 .addReg(StackPtr) 1826 .addMemOperand(MF.getMachineMemOperand( 1827 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 1828 SlotSize, Align(SlotSize))); 1829 } 1830 1831 // Realign stack after we spilled callee-saved registers (so that we'll be 1832 // able to calculate their offsets from the frame pointer). 1833 // Win64 requires aligning the stack after the prologue. 1834 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { 1835 assert(HasFP && "There should be a frame pointer if stack is realigned."); 1836 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign); 1837 } 1838 1839 // We already dealt with stack realignment and funclets above. 1840 if (IsFunclet && STI.is32Bit()) 1841 return; 1842 1843 // If we need a base pointer, set it up here. It's whatever the value 1844 // of the stack pointer is at this point. Any variable size objects 1845 // will be allocated after this, so we can still use the base pointer 1846 // to reference locals. 1847 if (TRI->hasBasePointer(MF)) { 1848 // Update the base pointer with the current stack pointer. 1849 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; 1850 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr) 1851 .addReg(SPOrEstablisher) 1852 .setMIFlag(MachineInstr::FrameSetup); 1853 if (X86FI->getRestoreBasePointer()) { 1854 // Stash value of base pointer. Saving RSP instead of EBP shortens 1855 // dependence chain. Used by SjLj EH. 1856 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1857 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), 1858 FramePtr, true, X86FI->getRestoreBasePointerOffset()) 1859 .addReg(SPOrEstablisher) 1860 .setMIFlag(MachineInstr::FrameSetup); 1861 } 1862 1863 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { 1864 // Stash the value of the frame pointer relative to the base pointer for 1865 // Win32 EH. This supports Win32 EH, which does the inverse of the above: 1866 // it recovers the frame pointer from the base pointer rather than the 1867 // other way around. 1868 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; 1869 Register UsedReg; 1870 int Offset = 1871 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 1872 .getFixed(); 1873 assert(UsedReg == BasePtr); 1874 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset) 1875 .addReg(FramePtr) 1876 .setMIFlag(MachineInstr::FrameSetup); 1877 } 1878 } 1879 1880 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { 1881 // Mark end of stack pointer adjustment. 1882 if (!HasFP && NumBytes) { 1883 // Define the current CFA rule to use the provided offset. 1884 assert(StackSize); 1885 BuildCFI( 1886 MBB, MBBI, DL, 1887 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth)); 1888 } 1889 1890 // Emit DWARF info specifying the offsets of the callee-saved registers. 1891 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true); 1892 } 1893 1894 // X86 Interrupt handling function cannot assume anything about the direction 1895 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction 1896 // in each prologue of interrupt handler function. 1897 // 1898 // FIXME: Create "cld" instruction only in these cases: 1899 // 1. The interrupt handling function uses any of the "rep" instructions. 1900 // 2. Interrupt handling function calls another function. 1901 // 1902 if (Fn.getCallingConv() == CallingConv::X86_INTR) 1903 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD)) 1904 .setMIFlag(MachineInstr::FrameSetup); 1905 1906 // At this point we know if the function has WinCFI or not. 1907 MF.setHasWinCFI(HasWinCFI); 1908 } 1909 1910 bool X86FrameLowering::canUseLEAForSPInEpilogue( 1911 const MachineFunction &MF) const { 1912 // We can't use LEA instructions for adjusting the stack pointer if we don't 1913 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used 1914 // to deallocate the stack. 1915 // This means that we can use LEA for SP in two situations: 1916 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. 1917 // 2. We *have* a frame pointer which means we are permitted to use LEA. 1918 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); 1919 } 1920 1921 static bool isFuncletReturnInstr(MachineInstr &MI) { 1922 switch (MI.getOpcode()) { 1923 case X86::CATCHRET: 1924 case X86::CLEANUPRET: 1925 return true; 1926 default: 1927 return false; 1928 } 1929 llvm_unreachable("impossible"); 1930 } 1931 1932 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the 1933 // stack. It holds a pointer to the bottom of the root function frame. The 1934 // establisher frame pointer passed to a nested funclet may point to the 1935 // (mostly empty) frame of its parent funclet, but it will need to find 1936 // the frame of the root function to access locals. To facilitate this, 1937 // every funclet copies the pointer to the bottom of the root function 1938 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the 1939 // same offset for the PSPSym in the root function frame that's used in the 1940 // funclets' frames allows each funclet to dynamically accept any ancestor 1941 // frame as its establisher argument (the runtime doesn't guarantee the 1942 // immediate parent for some reason lost to history), and also allows the GC, 1943 // which uses the PSPSym for some bookkeeping, to find it in any funclet's 1944 // frame with only a single offset reported for the entire method. 1945 unsigned 1946 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { 1947 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); 1948 Register SPReg; 1949 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg, 1950 /*IgnoreSPUpdates*/ true) 1951 .getFixed(); 1952 assert(Offset >= 0 && SPReg == TRI->getStackRegister()); 1953 return static_cast<unsigned>(Offset); 1954 } 1955 1956 unsigned 1957 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { 1958 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1959 // This is the size of the pushed CSRs. 1960 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1961 // This is the size of callee saved XMMs. 1962 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 1963 unsigned XMMSize = WinEHXMMSlotInfo.size() * 1964 TRI->getSpillSize(X86::VR128RegClass); 1965 // This is the amount of stack a funclet needs to allocate. 1966 unsigned UsedSize; 1967 EHPersonality Personality = 1968 classifyEHPersonality(MF.getFunction().getPersonalityFn()); 1969 if (Personality == EHPersonality::CoreCLR) { 1970 // CLR funclets need to hold enough space to include the PSPSym, at the 1971 // same offset from the stack pointer (immediately after the prolog) as it 1972 // resides at in the main function. 1973 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; 1974 } else { 1975 // Other funclets just need enough stack for outgoing call arguments. 1976 UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); 1977 } 1978 // RBP is not included in the callee saved register block. After pushing RBP, 1979 // everything is 16 byte aligned. Everything we allocate before an outgoing 1980 // call must also be 16 byte aligned. 1981 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign()); 1982 // Subtract out the size of the callee saved registers. This is how much stack 1983 // each funclet will allocate. 1984 return FrameSizeMinusRBP + XMMSize - CSSize; 1985 } 1986 1987 static bool isTailCallOpcode(unsigned Opc) { 1988 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || 1989 Opc == X86::TCRETURNmi || 1990 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 || 1991 Opc == X86::TCRETURNmi64; 1992 } 1993 1994 void X86FrameLowering::emitEpilogue(MachineFunction &MF, 1995 MachineBasicBlock &MBB) const { 1996 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1997 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1998 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); 1999 MachineBasicBlock::iterator MBBI = Terminator; 2000 DebugLoc DL; 2001 if (MBBI != MBB.end()) 2002 DL = MBBI->getDebugLoc(); 2003 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. 2004 const bool Is64BitILP32 = STI.isTarget64BitILP32(); 2005 Register FramePtr = TRI->getFrameRegister(MF); 2006 Register MachineFramePtr = 2007 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr; 2008 2009 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2010 bool NeedsWin64CFI = 2011 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); 2012 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI); 2013 2014 // Get the number of bytes to allocate from the FrameInfo. 2015 uint64_t StackSize = MFI.getStackSize(); 2016 uint64_t MaxAlign = calculateMaxStackAlign(MF); 2017 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2018 bool HasFP = hasFP(MF); 2019 uint64_t NumBytes = 0; 2020 2021 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && 2022 !MF.getTarget().getTargetTriple().isOSWindows()) && 2023 MF.needsFrameMoves(); 2024 2025 if (IsFunclet) { 2026 assert(HasFP && "EH funclets without FP not yet implemented"); 2027 NumBytes = getWinEHFuncletFrameSize(MF); 2028 } else if (HasFP) { 2029 // Calculate required stack adjustment. 2030 uint64_t FrameSize = StackSize - SlotSize; 2031 NumBytes = FrameSize - CSSize; 2032 2033 // Callee-saved registers were pushed on stack before the stack was 2034 // realigned. 2035 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) 2036 NumBytes = alignTo(FrameSize, MaxAlign); 2037 } else { 2038 NumBytes = StackSize - CSSize; 2039 } 2040 uint64_t SEHStackAllocAmt = NumBytes; 2041 2042 // AfterPop is the position to insert .cfi_restore. 2043 MachineBasicBlock::iterator AfterPop = MBBI; 2044 if (HasFP) { 2045 if (X86FI->hasSwiftAsyncContext()) { 2046 // Discard the context. 2047 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true); 2048 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true); 2049 } 2050 // Pop EBP. 2051 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), 2052 MachineFramePtr) 2053 .setMIFlag(MachineInstr::FrameDestroy); 2054 2055 // We need to reset FP to its untagged state on return. Bit 60 is currently 2056 // used to show the presence of an extended frame. 2057 if (X86FI->hasSwiftAsyncContext()) { 2058 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8), 2059 MachineFramePtr) 2060 .addUse(MachineFramePtr) 2061 .addImm(60) 2062 .setMIFlag(MachineInstr::FrameDestroy); 2063 } 2064 2065 if (NeedsDwarfCFI) { 2066 unsigned DwarfStackPtr = 2067 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true); 2068 BuildCFI(MBB, MBBI, DL, 2069 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize)); 2070 if (!MBB.succ_empty() && !MBB.isReturnBlock()) { 2071 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true); 2072 BuildCFI(MBB, AfterPop, DL, 2073 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr)); 2074 --MBBI; 2075 --AfterPop; 2076 } 2077 --MBBI; 2078 } 2079 } 2080 2081 MachineBasicBlock::iterator FirstCSPop = MBBI; 2082 // Skip the callee-saved pop instructions. 2083 while (MBBI != MBB.begin()) { 2084 MachineBasicBlock::iterator PI = std::prev(MBBI); 2085 unsigned Opc = PI->getOpcode(); 2086 2087 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { 2088 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2089 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) && 2090 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) && 2091 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy))) 2092 break; 2093 FirstCSPop = PI; 2094 } 2095 2096 --MBBI; 2097 } 2098 MBBI = FirstCSPop; 2099 2100 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) 2101 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator); 2102 2103 if (MBBI != MBB.end()) 2104 DL = MBBI->getDebugLoc(); 2105 2106 // If there is an ADD32ri or SUB32ri of ESP immediately before this 2107 // instruction, merge the two instructions. 2108 if (NumBytes || MFI.hasVarSizedObjects()) 2109 NumBytes += mergeSPUpdates(MBB, MBBI, true); 2110 2111 // If dynamic alloca is used, then reset esp to point to the last callee-saved 2112 // slot before popping them off! Same applies for the case, when stack was 2113 // realigned. Don't do this if this was a funclet epilogue, since the funclets 2114 // will not do realignment or dynamic stack allocation. 2115 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && 2116 !IsFunclet) { 2117 if (TRI->hasStackRealignment(MF)) 2118 MBBI = FirstCSPop; 2119 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt); 2120 uint64_t LEAAmount = 2121 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; 2122 2123 if (X86FI->hasSwiftAsyncContext()) 2124 LEAAmount -= 16; 2125 2126 // There are only two legal forms of epilogue: 2127 // - add SEHAllocationSize, %rsp 2128 // - lea SEHAllocationSize(%FramePtr), %rsp 2129 // 2130 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. 2131 // However, we may use this sequence if we have a frame pointer because the 2132 // effects of the prologue can safely be undone. 2133 if (LEAAmount != 0) { 2134 unsigned Opc = getLEArOpcode(Uses64BitFramePtr); 2135 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr), 2136 FramePtr, false, LEAAmount); 2137 --MBBI; 2138 } else { 2139 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); 2140 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 2141 .addReg(FramePtr); 2142 --MBBI; 2143 } 2144 } else if (NumBytes) { 2145 // Adjust stack pointer back: ESP += numbytes. 2146 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); 2147 if (!hasFP(MF) && NeedsDwarfCFI) { 2148 // Define the current CFA rule to use the provided offset. 2149 BuildCFI(MBB, MBBI, DL, 2150 MCCFIInstruction::cfiDefCfaOffset(nullptr, CSSize + SlotSize)); 2151 } 2152 --MBBI; 2153 } 2154 2155 // Windows unwinder will not invoke function's exception handler if IP is 2156 // either in prologue or in epilogue. This behavior causes a problem when a 2157 // call immediately precedes an epilogue, because the return address points 2158 // into the epilogue. To cope with that, we insert an epilogue marker here, 2159 // then replace it with a 'nop' if it ends up immediately after a CALL in the 2160 // final emitted code. 2161 if (NeedsWin64CFI && MF.hasWinCFI()) 2162 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue)); 2163 2164 if (!hasFP(MF) && NeedsDwarfCFI) { 2165 MBBI = FirstCSPop; 2166 int64_t Offset = -CSSize - SlotSize; 2167 // Mark callee-saved pop instruction. 2168 // Define the current CFA rule to use the provided offset. 2169 while (MBBI != MBB.end()) { 2170 MachineBasicBlock::iterator PI = MBBI; 2171 unsigned Opc = PI->getOpcode(); 2172 ++MBBI; 2173 if (Opc == X86::POP32r || Opc == X86::POP64r) { 2174 Offset += SlotSize; 2175 BuildCFI(MBB, MBBI, DL, 2176 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset)); 2177 } 2178 } 2179 } 2180 2181 // Emit DWARF info specifying the restores of the callee-saved registers. 2182 // For epilogue with return inside or being other block without successor, 2183 // no need to generate .cfi_restore for callee-saved registers. 2184 if (NeedsDwarfCFI && !MBB.succ_empty() && !MBB.isReturnBlock()) { 2185 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false); 2186 } 2187 2188 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) { 2189 // Add the return addr area delta back since we are not tail calling. 2190 int Offset = -1 * X86FI->getTCReturnAddrDelta(); 2191 assert(Offset >= 0 && "TCDelta should never be positive"); 2192 if (Offset) { 2193 // Check for possible merge with preceding ADD instruction. 2194 Offset += mergeSPUpdates(MBB, Terminator, true); 2195 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true); 2196 } 2197 } 2198 2199 // Emit tilerelease for AMX kernel. 2200 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2201 const TargetRegisterClass *RC = TRI->getRegClass(X86::TILERegClassID); 2202 for (unsigned I = 0; I < RC->getNumRegs(); I++) 2203 if (!MRI.reg_nodbg_empty(X86::TMM0 + I)) { 2204 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE)); 2205 break; 2206 } 2207 } 2208 2209 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, 2210 int FI, 2211 Register &FrameReg) const { 2212 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2213 2214 bool IsFixed = MFI.isFixedObjectIndex(FI); 2215 // We can't calculate offset from frame pointer if the stack is realigned, 2216 // so enforce usage of stack/base pointer. The base pointer is used when we 2217 // have dynamic allocas in addition to dynamic realignment. 2218 if (TRI->hasBasePointer(MF)) 2219 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); 2220 else if (TRI->hasStackRealignment(MF)) 2221 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); 2222 else 2223 FrameReg = TRI->getFrameRegister(MF); 2224 2225 // Offset will hold the offset from the stack pointer at function entry to the 2226 // object. 2227 // We need to factor in additional offsets applied during the prologue to the 2228 // frame, base, and stack pointer depending on which is used. 2229 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea(); 2230 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2231 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 2232 uint64_t StackSize = MFI.getStackSize(); 2233 bool HasFP = hasFP(MF); 2234 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 2235 int64_t FPDelta = 0; 2236 2237 // In an x86 interrupt, remove the offset we added to account for the return 2238 // address from any stack object allocated in the caller's frame. Interrupts 2239 // do not have a standard return address. Fixed objects in the current frame, 2240 // such as SSE register spills, should not get this treatment. 2241 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && 2242 Offset >= 0) { 2243 Offset += getOffsetOfLocalArea(); 2244 } 2245 2246 if (IsWin64Prologue) { 2247 assert(!MFI.hasCalls() || (StackSize % 16) == 8); 2248 2249 // Calculate required stack adjustment. 2250 uint64_t FrameSize = StackSize - SlotSize; 2251 // If required, include space for extra hidden slot for stashing base pointer. 2252 if (X86FI->getRestoreBasePointer()) 2253 FrameSize += SlotSize; 2254 uint64_t NumBytes = FrameSize - CSSize; 2255 2256 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes); 2257 if (FI && FI == X86FI->getFAIndex()) 2258 return StackOffset::getFixed(-SEHFrameOffset); 2259 2260 // FPDelta is the offset from the "traditional" FP location of the old base 2261 // pointer followed by return address and the location required by the 2262 // restricted Win64 prologue. 2263 // Add FPDelta to all offsets below that go through the frame pointer. 2264 FPDelta = FrameSize - SEHFrameOffset; 2265 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && 2266 "FPDelta isn't aligned per the Win64 ABI!"); 2267 } 2268 2269 2270 if (TRI->hasBasePointer(MF)) { 2271 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!"); 2272 if (FI < 0) { 2273 // Skip the saved EBP. 2274 return StackOffset::getFixed(Offset + SlotSize + FPDelta); 2275 } else { 2276 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2277 return StackOffset::getFixed(Offset + StackSize); 2278 } 2279 } else if (TRI->hasStackRealignment(MF)) { 2280 if (FI < 0) { 2281 // Skip the saved EBP. 2282 return StackOffset::getFixed(Offset + SlotSize + FPDelta); 2283 } else { 2284 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); 2285 return StackOffset::getFixed(Offset + StackSize); 2286 } 2287 // FIXME: Support tail calls 2288 } else { 2289 if (!HasFP) 2290 return StackOffset::getFixed(Offset + StackSize); 2291 2292 // Skip the saved EBP. 2293 Offset += SlotSize; 2294 2295 // Skip the RETADDR move area 2296 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2297 if (TailCallReturnAddrDelta < 0) 2298 Offset -= TailCallReturnAddrDelta; 2299 } 2300 2301 return StackOffset::getFixed(Offset + FPDelta); 2302 } 2303 2304 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, 2305 Register &FrameReg) const { 2306 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2307 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2308 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2309 const auto it = WinEHXMMSlotInfo.find(FI); 2310 2311 if (it == WinEHXMMSlotInfo.end()) 2312 return getFrameIndexReference(MF, FI, FrameReg).getFixed(); 2313 2314 FrameReg = TRI->getStackRegister(); 2315 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) + 2316 it->second; 2317 } 2318 2319 StackOffset 2320 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, 2321 Register &FrameReg, 2322 int Adjustment) const { 2323 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2324 FrameReg = TRI->getStackRegister(); 2325 return StackOffset::getFixed(MFI.getObjectOffset(FI) - 2326 getOffsetOfLocalArea() + Adjustment); 2327 } 2328 2329 StackOffset 2330 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, 2331 int FI, Register &FrameReg, 2332 bool IgnoreSPUpdates) const { 2333 2334 const MachineFrameInfo &MFI = MF.getFrameInfo(); 2335 // Does not include any dynamic realign. 2336 const uint64_t StackSize = MFI.getStackSize(); 2337 // LLVM arranges the stack as follows: 2338 // ... 2339 // ARG2 2340 // ARG1 2341 // RETADDR 2342 // PUSH RBP <-- RBP points here 2343 // PUSH CSRs 2344 // ~~~~~~~ <-- possible stack realignment (non-win64) 2345 // ... 2346 // STACK OBJECTS 2347 // ... <-- RSP after prologue points here 2348 // ~~~~~~~ <-- possible stack realignment (win64) 2349 // 2350 // if (hasVarSizedObjects()): 2351 // ... <-- "base pointer" (ESI/RBX) points here 2352 // DYNAMIC ALLOCAS 2353 // ... <-- RSP points here 2354 // 2355 // Case 1: In the simple case of no stack realignment and no dynamic 2356 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable 2357 // with fixed offsets from RSP. 2358 // 2359 // Case 2: In the case of stack realignment with no dynamic allocas, fixed 2360 // stack objects are addressed with RBP and regular stack objects with RSP. 2361 // 2362 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used 2363 // to address stack arguments for outgoing calls and nothing else. The "base 2364 // pointer" points to local variables, and RBP points to fixed objects. 2365 // 2366 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the 2367 // answer we give is relative to the SP after the prologue, and not the 2368 // SP in the middle of the function. 2369 2370 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) && 2371 !STI.isTargetWin64()) 2372 return getFrameIndexReference(MF, FI, FrameReg); 2373 2374 // If !hasReservedCallFrame the function might have SP adjustement in the 2375 // body. So, even though the offset is statically known, it depends on where 2376 // we are in the function. 2377 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) 2378 return getFrameIndexReference(MF, FI, FrameReg); 2379 2380 // We don't handle tail calls, and shouldn't be seeing them either. 2381 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && 2382 "we don't handle this case!"); 2383 2384 // This is how the math works out: 2385 // 2386 // %rsp grows (i.e. gets lower) left to right. Each box below is 2387 // one word (eight bytes). Obj0 is the stack slot we're trying to 2388 // get to. 2389 // 2390 // ---------------------------------- 2391 // | BP | Obj0 | Obj1 | ... | ObjN | 2392 // ---------------------------------- 2393 // ^ ^ ^ ^ 2394 // A B C E 2395 // 2396 // A is the incoming stack pointer. 2397 // (B - A) is the local area offset (-8 for x86-64) [1] 2398 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] 2399 // 2400 // |(E - B)| is the StackSize (absolute value, positive). For a 2401 // stack that grown down, this works out to be (B - E). [3] 2402 // 2403 // E is also the value of %rsp after stack has been set up, and we 2404 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now 2405 // (C - E) == (C - A) - (B - A) + (B - E) 2406 // { Using [1], [2] and [3] above } 2407 // == getObjectOffset - LocalAreaOffset + StackSize 2408 2409 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize); 2410 } 2411 2412 bool X86FrameLowering::assignCalleeSavedSpillSlots( 2413 MachineFunction &MF, const TargetRegisterInfo *TRI, 2414 std::vector<CalleeSavedInfo> &CSI) const { 2415 MachineFrameInfo &MFI = MF.getFrameInfo(); 2416 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2417 2418 unsigned CalleeSavedFrameSize = 0; 2419 unsigned XMMCalleeSavedFrameSize = 0; 2420 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); 2421 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); 2422 2423 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 2424 2425 if (TailCallReturnAddrDelta < 0) { 2426 // create RETURNADDR area 2427 // arg 2428 // arg 2429 // RETADDR 2430 // { ... 2431 // RETADDR area 2432 // ... 2433 // } 2434 // [EBP] 2435 MFI.CreateFixedObject(-TailCallReturnAddrDelta, 2436 TailCallReturnAddrDelta - SlotSize, true); 2437 } 2438 2439 // Spill the BasePtr if it's used. 2440 if (this->TRI->hasBasePointer(MF)) { 2441 // Allocate a spill slot for EBP if we have a base pointer and EH funclets. 2442 if (MF.hasEHFunclets()) { 2443 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize)); 2444 X86FI->setHasSEHFramePtrSave(true); 2445 X86FI->setSEHFramePtrSaveIndex(FI); 2446 } 2447 } 2448 2449 if (hasFP(MF)) { 2450 // emitPrologue always spills frame register the first thing. 2451 SpillSlotOffset -= SlotSize; 2452 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2453 2454 // The async context lives directly before the frame pointer, and we 2455 // allocate a second slot to preserve stack alignment. 2456 if (X86FI->hasSwiftAsyncContext()) { 2457 SpillSlotOffset -= SlotSize; 2458 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2459 SpillSlotOffset -= SlotSize; 2460 } 2461 2462 // Since emitPrologue and emitEpilogue will handle spilling and restoring of 2463 // the frame register, we can delete it from CSI list and not have to worry 2464 // about avoiding it later. 2465 Register FPReg = TRI->getFrameRegister(MF); 2466 for (unsigned i = 0; i < CSI.size(); ++i) { 2467 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) { 2468 CSI.erase(CSI.begin() + i); 2469 break; 2470 } 2471 } 2472 } 2473 2474 // Assign slots for GPRs. It increases frame size. 2475 for (unsigned i = CSI.size(); i != 0; --i) { 2476 unsigned Reg = CSI[i - 1].getReg(); 2477 2478 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2479 continue; 2480 2481 SpillSlotOffset -= SlotSize; 2482 CalleeSavedFrameSize += SlotSize; 2483 2484 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset); 2485 CSI[i - 1].setFrameIdx(SlotIndex); 2486 } 2487 2488 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); 2489 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); 2490 2491 // Assign slots for XMMs. 2492 for (unsigned i = CSI.size(); i != 0; --i) { 2493 unsigned Reg = CSI[i - 1].getReg(); 2494 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2495 continue; 2496 2497 // If this is k-register make sure we lookup via the largest legal type. 2498 MVT VT = MVT::Other; 2499 if (X86::VK16RegClass.contains(Reg)) 2500 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2501 2502 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2503 unsigned Size = TRI->getSpillSize(*RC); 2504 Align Alignment = TRI->getSpillAlign(*RC); 2505 // ensure alignment 2506 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86"); 2507 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment); 2508 2509 // spill into slot 2510 SpillSlotOffset -= Size; 2511 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset); 2512 CSI[i - 1].setFrameIdx(SlotIndex); 2513 MFI.ensureMaxAlignment(Alignment); 2514 2515 // Save the start offset and size of XMM in stack frame for funclets. 2516 if (X86::VR128RegClass.contains(Reg)) { 2517 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; 2518 XMMCalleeSavedFrameSize += Size; 2519 } 2520 } 2521 2522 return true; 2523 } 2524 2525 bool X86FrameLowering::spillCalleeSavedRegisters( 2526 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2527 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2528 DebugLoc DL = MBB.findDebugLoc(MI); 2529 2530 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI 2531 // for us, and there are no XMM CSRs on Win32. 2532 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) 2533 return true; 2534 2535 // Push GPRs. It increases frame size. 2536 const MachineFunction &MF = *MBB.getParent(); 2537 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; 2538 for (unsigned i = CSI.size(); i != 0; --i) { 2539 unsigned Reg = CSI[i - 1].getReg(); 2540 2541 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) 2542 continue; 2543 2544 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2545 bool isLiveIn = MRI.isLiveIn(Reg); 2546 if (!isLiveIn) 2547 MBB.addLiveIn(Reg); 2548 2549 // Decide whether we can add a kill flag to the use. 2550 bool CanKill = !isLiveIn; 2551 // Check if any subregister is live-in 2552 if (CanKill) { 2553 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) { 2554 if (MRI.isLiveIn(*AReg)) { 2555 CanKill = false; 2556 break; 2557 } 2558 } 2559 } 2560 2561 // Do not set a kill flag on values that are also marked as live-in. This 2562 // happens with the @llvm-returnaddress intrinsic and with arguments 2563 // passed in callee saved registers. 2564 // Omitting the kill flags is conservatively correct even if the live-in 2565 // is not used after all. 2566 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill)) 2567 .setMIFlag(MachineInstr::FrameSetup); 2568 } 2569 2570 // Make XMM regs spilled. X86 does not have ability of push/pop XMM. 2571 // It can be done by spilling XMMs to stack frame. 2572 for (unsigned i = CSI.size(); i != 0; --i) { 2573 unsigned Reg = CSI[i-1].getReg(); 2574 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) 2575 continue; 2576 2577 // If this is k-register make sure we lookup via the largest legal type. 2578 MVT VT = MVT::Other; 2579 if (X86::VK16RegClass.contains(Reg)) 2580 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2581 2582 // Add the callee-saved register as live-in. It's killed at the spill. 2583 MBB.addLiveIn(Reg); 2584 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2585 2586 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC, 2587 TRI); 2588 --MI; 2589 MI->setFlag(MachineInstr::FrameSetup); 2590 ++MI; 2591 } 2592 2593 return true; 2594 } 2595 2596 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, 2597 MachineBasicBlock::iterator MBBI, 2598 MachineInstr *CatchRet) const { 2599 // SEH shouldn't use catchret. 2600 assert(!isAsynchronousEHPersonality(classifyEHPersonality( 2601 MBB.getParent()->getFunction().getPersonalityFn())) && 2602 "SEH should not use CATCHRET"); 2603 const DebugLoc &DL = CatchRet->getDebugLoc(); 2604 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB(); 2605 2606 // Fill EAX/RAX with the address of the target block. 2607 if (STI.is64Bit()) { 2608 // LEA64r CatchRetTarget(%rip), %rax 2609 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX) 2610 .addReg(X86::RIP) 2611 .addImm(0) 2612 .addReg(0) 2613 .addMBB(CatchRetTarget) 2614 .addReg(0); 2615 } else { 2616 // MOV32ri $CatchRetTarget, %eax 2617 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 2618 .addMBB(CatchRetTarget); 2619 } 2620 2621 // Record that we've taken the address of CatchRetTarget and no longer just 2622 // reference it in a terminator. 2623 CatchRetTarget->setHasAddressTaken(); 2624 } 2625 2626 bool X86FrameLowering::restoreCalleeSavedRegisters( 2627 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2628 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2629 if (CSI.empty()) 2630 return false; 2631 2632 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) { 2633 // Don't restore CSRs in 32-bit EH funclets. Matches 2634 // spillCalleeSavedRegisters. 2635 if (STI.is32Bit()) 2636 return true; 2637 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form 2638 // funclets. emitEpilogue transforms these to normal jumps. 2639 if (MI->getOpcode() == X86::CATCHRET) { 2640 const Function &F = MBB.getParent()->getFunction(); 2641 bool IsSEH = isAsynchronousEHPersonality( 2642 classifyEHPersonality(F.getPersonalityFn())); 2643 if (IsSEH) 2644 return true; 2645 } 2646 } 2647 2648 DebugLoc DL = MBB.findDebugLoc(MI); 2649 2650 // Reload XMMs from stack frame. 2651 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2652 unsigned Reg = CSI[i].getReg(); 2653 if (X86::GR64RegClass.contains(Reg) || 2654 X86::GR32RegClass.contains(Reg)) 2655 continue; 2656 2657 // If this is k-register make sure we lookup via the largest legal type. 2658 MVT VT = MVT::Other; 2659 if (X86::VK16RegClass.contains(Reg)) 2660 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; 2661 2662 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); 2663 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI); 2664 } 2665 2666 // POP GPRs. 2667 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; 2668 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 2669 unsigned Reg = CSI[i].getReg(); 2670 if (!X86::GR64RegClass.contains(Reg) && 2671 !X86::GR32RegClass.contains(Reg)) 2672 continue; 2673 2674 BuildMI(MBB, MI, DL, TII.get(Opc), Reg) 2675 .setMIFlag(MachineInstr::FrameDestroy); 2676 } 2677 return true; 2678 } 2679 2680 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, 2681 BitVector &SavedRegs, 2682 RegScavenger *RS) const { 2683 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2684 2685 // Spill the BasePtr if it's used. 2686 if (TRI->hasBasePointer(MF)){ 2687 Register BasePtr = TRI->getBaseRegister(); 2688 if (STI.isTarget64BitILP32()) 2689 BasePtr = getX86SubSuperRegister(BasePtr, 64); 2690 SavedRegs.set(BasePtr); 2691 } 2692 } 2693 2694 static bool 2695 HasNestArgument(const MachineFunction *MF) { 2696 const Function &F = MF->getFunction(); 2697 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 2698 I != E; I++) { 2699 if (I->hasNestAttr() && !I->use_empty()) 2700 return true; 2701 } 2702 return false; 2703 } 2704 2705 /// GetScratchRegister - Get a temp register for performing work in the 2706 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform 2707 /// and the properties of the function either one or two registers will be 2708 /// needed. Set primary to true for the first register, false for the second. 2709 static unsigned 2710 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) { 2711 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); 2712 2713 // Erlang stuff. 2714 if (CallingConvention == CallingConv::HiPE) { 2715 if (Is64Bit) 2716 return Primary ? X86::R14 : X86::R13; 2717 else 2718 return Primary ? X86::EBX : X86::EDI; 2719 } 2720 2721 if (Is64Bit) { 2722 if (IsLP64) 2723 return Primary ? X86::R11 : X86::R12; 2724 else 2725 return Primary ? X86::R11D : X86::R12D; 2726 } 2727 2728 bool IsNested = HasNestArgument(&MF); 2729 2730 if (CallingConvention == CallingConv::X86_FastCall || 2731 CallingConvention == CallingConv::Fast || 2732 CallingConvention == CallingConv::Tail) { 2733 if (IsNested) 2734 report_fatal_error("Segmented stacks does not support fastcall with " 2735 "nested function."); 2736 return Primary ? X86::EAX : X86::ECX; 2737 } 2738 if (IsNested) 2739 return Primary ? X86::EDX : X86::EAX; 2740 return Primary ? X86::ECX : X86::EAX; 2741 } 2742 2743 // The stack limit in the TCB is set to this many bytes above the actual stack 2744 // limit. 2745 static const uint64_t kSplitStackAvailable = 256; 2746 2747 void X86FrameLowering::adjustForSegmentedStacks( 2748 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2749 MachineFrameInfo &MFI = MF.getFrameInfo(); 2750 uint64_t StackSize; 2751 unsigned TlsReg, TlsOffset; 2752 DebugLoc DL; 2753 2754 // To support shrink-wrapping we would need to insert the new blocks 2755 // at the right place and update the branches to PrologueMBB. 2756 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 2757 2758 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2759 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 2760 "Scratch register is live-in"); 2761 2762 if (MF.getFunction().isVarArg()) 2763 report_fatal_error("Segmented stacks do not support vararg functions."); 2764 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && 2765 !STI.isTargetWin64() && !STI.isTargetFreeBSD() && 2766 !STI.isTargetDragonFly()) 2767 report_fatal_error("Segmented stacks not supported on this platform."); 2768 2769 // Eventually StackSize will be calculated by a link-time pass; which will 2770 // also decide whether checking code needs to be injected into this particular 2771 // prologue. 2772 StackSize = MFI.getStackSize(); 2773 2774 // Do not generate a prologue for leaf functions with a stack of size zero. 2775 // For non-leaf functions we have to allow for the possibility that the 2776 // callis to a non-split function, as in PR37807. This function could also 2777 // take the address of a non-split function. When the linker tries to adjust 2778 // its non-existent prologue, it would fail with an error. Mark the object 2779 // file so that such failures are not errors. See this Go language bug-report 2780 // https://go-review.googlesource.com/c/go/+/148819/ 2781 if (StackSize == 0 && !MFI.hasTailCall()) { 2782 MF.getMMI().setHasNosplitStack(true); 2783 return; 2784 } 2785 2786 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); 2787 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); 2788 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 2789 bool IsNested = false; 2790 2791 // We need to know if the function has a nest argument only in 64 bit mode. 2792 if (Is64Bit) 2793 IsNested = HasNestArgument(&MF); 2794 2795 // The MOV R10, RAX needs to be in a different block, since the RET we emit in 2796 // allocMBB needs to be last (terminating) instruction. 2797 2798 for (const auto &LI : PrologueMBB.liveins()) { 2799 allocMBB->addLiveIn(LI); 2800 checkMBB->addLiveIn(LI); 2801 } 2802 2803 if (IsNested) 2804 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D); 2805 2806 MF.push_front(allocMBB); 2807 MF.push_front(checkMBB); 2808 2809 // When the frame size is less than 256 we just compare the stack 2810 // boundary directly to the value of the stack pointer, per gcc. 2811 bool CompareStackPointer = StackSize < kSplitStackAvailable; 2812 2813 // Read the limit off the current stacklet off the stack_guard location. 2814 if (Is64Bit) { 2815 if (STI.isTargetLinux()) { 2816 TlsReg = X86::FS; 2817 TlsOffset = IsLP64 ? 0x70 : 0x40; 2818 } else if (STI.isTargetDarwin()) { 2819 TlsReg = X86::GS; 2820 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90. 2821 } else if (STI.isTargetWin64()) { 2822 TlsReg = X86::GS; 2823 TlsOffset = 0x28; // pvArbitrary, reserved for application use 2824 } else if (STI.isTargetFreeBSD()) { 2825 TlsReg = X86::FS; 2826 TlsOffset = 0x18; 2827 } else if (STI.isTargetDragonFly()) { 2828 TlsReg = X86::FS; 2829 TlsOffset = 0x20; // use tls_tcb.tcb_segstack 2830 } else { 2831 report_fatal_error("Segmented stacks not supported on this platform."); 2832 } 2833 2834 if (CompareStackPointer) 2835 ScratchReg = IsLP64 ? X86::RSP : X86::ESP; 2836 else 2837 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP) 2838 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2839 2840 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg) 2841 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2842 } else { 2843 if (STI.isTargetLinux()) { 2844 TlsReg = X86::GS; 2845 TlsOffset = 0x30; 2846 } else if (STI.isTargetDarwin()) { 2847 TlsReg = X86::GS; 2848 TlsOffset = 0x48 + 90*4; 2849 } else if (STI.isTargetWin32()) { 2850 TlsReg = X86::FS; 2851 TlsOffset = 0x14; // pvArbitrary, reserved for application use 2852 } else if (STI.isTargetDragonFly()) { 2853 TlsReg = X86::FS; 2854 TlsOffset = 0x10; // use tls_tcb.tcb_segstack 2855 } else if (STI.isTargetFreeBSD()) { 2856 report_fatal_error("Segmented stacks not supported on FreeBSD i386."); 2857 } else { 2858 report_fatal_error("Segmented stacks not supported on this platform."); 2859 } 2860 2861 if (CompareStackPointer) 2862 ScratchReg = X86::ESP; 2863 else 2864 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP) 2865 .addImm(1).addReg(0).addImm(-StackSize).addReg(0); 2866 2867 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || 2868 STI.isTargetDragonFly()) { 2869 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg) 2870 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg); 2871 } else if (STI.isTargetDarwin()) { 2872 2873 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. 2874 unsigned ScratchReg2; 2875 bool SaveScratch2; 2876 if (CompareStackPointer) { 2877 // The primary scratch register is available for holding the TLS offset. 2878 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true); 2879 SaveScratch2 = false; 2880 } else { 2881 // Need to use a second register to hold the TLS offset 2882 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false); 2883 2884 // Unfortunately, with fastcc the second scratch register may hold an 2885 // argument. 2886 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2); 2887 } 2888 2889 // If Scratch2 is live-in then it needs to be saved. 2890 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && 2891 "Scratch register is live-in and not saved"); 2892 2893 if (SaveScratch2) 2894 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r)) 2895 .addReg(ScratchReg2, RegState::Kill); 2896 2897 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2) 2898 .addImm(TlsOffset); 2899 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)) 2900 .addReg(ScratchReg) 2901 .addReg(ScratchReg2).addImm(1).addReg(0) 2902 .addImm(0) 2903 .addReg(TlsReg); 2904 2905 if (SaveScratch2) 2906 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2); 2907 } 2908 } 2909 2910 // This jump is taken if SP >= (Stacklet Limit + Stack Space required). 2911 // It jumps to normal execution of the function body. 2912 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A); 2913 2914 // On 32 bit we first push the arguments size and then the frame size. On 64 2915 // bit, we pass the stack frame size in r10 and the argument size in r11. 2916 if (Is64Bit) { 2917 // Functions with nested arguments use R10, so it needs to be saved across 2918 // the call to _morestack 2919 2920 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; 2921 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; 2922 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; 2923 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; 2924 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri; 2925 2926 if (IsNested) 2927 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10); 2928 2929 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10) 2930 .addImm(StackSize); 2931 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11) 2932 .addImm(X86FI->getArgumentStackSize()); 2933 } else { 2934 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2935 .addImm(X86FI->getArgumentStackSize()); 2936 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32)) 2937 .addImm(StackSize); 2938 } 2939 2940 // __morestack is in libgcc 2941 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { 2942 // Under the large code model, we cannot assume that __morestack lives 2943 // within 2^31 bytes of the call site, so we cannot use pc-relative 2944 // addressing. We cannot perform the call via a temporary register, 2945 // as the rax register may be used to store the static chain, and all 2946 // other suitable registers may be either callee-save or used for 2947 // parameter passing. We cannot use the stack at this point either 2948 // because __morestack manipulates the stack directly. 2949 // 2950 // To avoid these issues, perform an indirect call via a read-only memory 2951 // location containing the address. 2952 // 2953 // This solution is not perfect, as it assumes that the .rodata section 2954 // is laid out within 2^31 bytes of each function body, but this seems 2955 // to be sufficient for JIT. 2956 // FIXME: Add retpoline support and remove the error here.. 2957 if (STI.useIndirectThunkCalls()) 2958 report_fatal_error("Emitting morestack calls on 64-bit with the large " 2959 "code model and thunks not yet implemented."); 2960 BuildMI(allocMBB, DL, TII.get(X86::CALL64m)) 2961 .addReg(X86::RIP) 2962 .addImm(0) 2963 .addReg(0) 2964 .addExternalSymbol("__morestack_addr") 2965 .addReg(0); 2966 MF.getMMI().setUsesMorestackAddr(true); 2967 } else { 2968 if (Is64Bit) 2969 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32)) 2970 .addExternalSymbol("__morestack"); 2971 else 2972 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32)) 2973 .addExternalSymbol("__morestack"); 2974 } 2975 2976 if (IsNested) 2977 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10)); 2978 else 2979 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET)); 2980 2981 allocMBB->addSuccessor(&PrologueMBB); 2982 2983 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero()); 2984 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne()); 2985 2986 #ifdef EXPENSIVE_CHECKS 2987 MF.verify(); 2988 #endif 2989 } 2990 2991 /// Lookup an ERTS parameter in the !hipe.literals named metadata node. 2992 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets 2993 /// to fields it needs, through a named metadata node "hipe.literals" containing 2994 /// name-value pairs. 2995 static unsigned getHiPELiteral( 2996 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) { 2997 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { 2998 MDNode *Node = HiPELiteralsMD->getOperand(i); 2999 if (Node->getNumOperands() != 2) continue; 3000 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0)); 3001 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1)); 3002 if (!NodeName || !NodeVal) continue; 3003 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue()); 3004 if (ValConst && NodeName->getString() == LiteralName) { 3005 return ValConst->getZExtValue(); 3006 } 3007 } 3008 3009 report_fatal_error("HiPE literal " + LiteralName 3010 + " required but not provided"); 3011 } 3012 3013 // Return true if there are no non-ehpad successors to MBB and there are no 3014 // non-meta instructions between MBBI and MBB.end(). 3015 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, 3016 MachineBasicBlock::const_iterator MBBI) { 3017 return llvm::all_of( 3018 MBB.successors(), 3019 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && 3020 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) { 3021 return MI.isMetaInstruction(); 3022 }); 3023 } 3024 3025 /// Erlang programs may need a special prologue to handle the stack size they 3026 /// might need at runtime. That is because Erlang/OTP does not implement a C 3027 /// stack but uses a custom implementation of hybrid stack/heap architecture. 3028 /// (for more information see Eric Stenman's Ph.D. thesis: 3029 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) 3030 /// 3031 /// CheckStack: 3032 /// temp0 = sp - MaxStack 3033 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3034 /// OldStart: 3035 /// ... 3036 /// IncStack: 3037 /// call inc_stack # doubles the stack space 3038 /// temp0 = sp - MaxStack 3039 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart 3040 void X86FrameLowering::adjustForHiPEPrologue( 3041 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 3042 MachineFrameInfo &MFI = MF.getFrameInfo(); 3043 DebugLoc DL; 3044 3045 // To support shrink-wrapping we would need to insert the new blocks 3046 // at the right place and update the branches to PrologueMBB. 3047 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet"); 3048 3049 // HiPE-specific values 3050 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule() 3051 ->getNamedMetadata("hipe.literals"); 3052 if (!HiPELiteralsMD) 3053 report_fatal_error( 3054 "Can't generate HiPE prologue without runtime parameters"); 3055 const unsigned HipeLeafWords 3056 = getHiPELiteral(HiPELiteralsMD, 3057 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS"); 3058 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; 3059 const unsigned Guaranteed = HipeLeafWords * SlotSize; 3060 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ? 3061 MF.getFunction().arg_size() - CCRegisteredArgs : 0; 3062 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize; 3063 3064 assert(STI.isTargetLinux() && 3065 "HiPE prologue is only supported on Linux operating systems."); 3066 3067 // Compute the largest caller's frame that is needed to fit the callees' 3068 // frames. This 'MaxStack' is computed from: 3069 // 3070 // a) the fixed frame size, which is the space needed for all spilled temps, 3071 // b) outgoing on-stack parameter areas, and 3072 // c) the minimum stack space this function needs to make available for the 3073 // functions it calls (a tunable ABI property). 3074 if (MFI.hasCalls()) { 3075 unsigned MoreStackForCalls = 0; 3076 3077 for (auto &MBB : MF) { 3078 for (auto &MI : MBB) { 3079 if (!MI.isCall()) 3080 continue; 3081 3082 // Get callee operand. 3083 const MachineOperand &MO = MI.getOperand(0); 3084 3085 // Only take account of global function calls (no closures etc.). 3086 if (!MO.isGlobal()) 3087 continue; 3088 3089 const Function *F = dyn_cast<Function>(MO.getGlobal()); 3090 if (!F) 3091 continue; 3092 3093 // Do not update 'MaxStack' for primitive and built-in functions 3094 // (encoded with names either starting with "erlang."/"bif_" or not 3095 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an 3096 // "_", such as the BIF "suspend_0") as they are executed on another 3097 // stack. 3098 if (F->getName().find("erlang.") != StringRef::npos || 3099 F->getName().find("bif_") != StringRef::npos || 3100 F->getName().find_first_of("._") == StringRef::npos) 3101 continue; 3102 3103 unsigned CalleeStkArity = 3104 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0; 3105 if (HipeLeafWords - 1 > CalleeStkArity) 3106 MoreStackForCalls = std::max(MoreStackForCalls, 3107 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); 3108 } 3109 } 3110 MaxStack += MoreStackForCalls; 3111 } 3112 3113 // If the stack frame needed is larger than the guaranteed then runtime checks 3114 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. 3115 if (MaxStack > Guaranteed) { 3116 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); 3117 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); 3118 3119 for (const auto &LI : PrologueMBB.liveins()) { 3120 stackCheckMBB->addLiveIn(LI); 3121 incStackMBB->addLiveIn(LI); 3122 } 3123 3124 MF.push_front(incStackMBB); 3125 MF.push_front(stackCheckMBB); 3126 3127 unsigned ScratchReg, SPReg, PReg, SPLimitOffset; 3128 unsigned LEAop, CMPop, CALLop; 3129 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT"); 3130 if (Is64Bit) { 3131 SPReg = X86::RSP; 3132 PReg = X86::RBP; 3133 LEAop = X86::LEA64r; 3134 CMPop = X86::CMP64rm; 3135 CALLop = X86::CALL64pcrel32; 3136 } else { 3137 SPReg = X86::ESP; 3138 PReg = X86::EBP; 3139 LEAop = X86::LEA32r; 3140 CMPop = X86::CMP32rm; 3141 CALLop = X86::CALLpcrel32; 3142 } 3143 3144 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true); 3145 assert(!MF.getRegInfo().isLiveIn(ScratchReg) && 3146 "HiPE prologue scratch register is live-in"); 3147 3148 // Create new MBB for StackCheck: 3149 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg), 3150 SPReg, false, -MaxStack); 3151 // SPLimitOffset is in a fixed heap location (pointed by BP). 3152 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop)) 3153 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3154 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE); 3155 3156 // Create new MBB for IncStack: 3157 BuildMI(incStackMBB, DL, TII.get(CALLop)). 3158 addExternalSymbol("inc_stack_0"); 3159 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg), 3160 SPReg, false, -MaxStack); 3161 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop)) 3162 .addReg(ScratchReg), PReg, false, SPLimitOffset); 3163 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE); 3164 3165 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100}); 3166 stackCheckMBB->addSuccessor(incStackMBB, {1, 100}); 3167 incStackMBB->addSuccessor(&PrologueMBB, {99, 100}); 3168 incStackMBB->addSuccessor(incStackMBB, {1, 100}); 3169 } 3170 #ifdef EXPENSIVE_CHECKS 3171 MF.verify(); 3172 #endif 3173 } 3174 3175 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, 3176 MachineBasicBlock::iterator MBBI, 3177 const DebugLoc &DL, 3178 int Offset) const { 3179 if (Offset <= 0) 3180 return false; 3181 3182 if (Offset % SlotSize) 3183 return false; 3184 3185 int NumPops = Offset / SlotSize; 3186 // This is only worth it if we have at most 2 pops. 3187 if (NumPops != 1 && NumPops != 2) 3188 return false; 3189 3190 // Handle only the trivial case where the adjustment directly follows 3191 // a call. This is the most common one, anyway. 3192 if (MBBI == MBB.begin()) 3193 return false; 3194 MachineBasicBlock::iterator Prev = std::prev(MBBI); 3195 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask()) 3196 return false; 3197 3198 unsigned Regs[2]; 3199 unsigned FoundRegs = 0; 3200 3201 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3202 const MachineOperand &RegMask = Prev->getOperand(1); 3203 3204 auto &RegClass = 3205 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; 3206 // Try to find up to NumPops free registers. 3207 for (auto Candidate : RegClass) { 3208 // Poor man's liveness: 3209 // Since we're immediately after a call, any register that is clobbered 3210 // by the call and not defined by it can be considered dead. 3211 if (!RegMask.clobbersPhysReg(Candidate)) 3212 continue; 3213 3214 // Don't clobber reserved registers 3215 if (MRI.isReserved(Candidate)) 3216 continue; 3217 3218 bool IsDef = false; 3219 for (const MachineOperand &MO : Prev->implicit_operands()) { 3220 if (MO.isReg() && MO.isDef() && 3221 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) { 3222 IsDef = true; 3223 break; 3224 } 3225 } 3226 3227 if (IsDef) 3228 continue; 3229 3230 Regs[FoundRegs++] = Candidate; 3231 if (FoundRegs == (unsigned)NumPops) 3232 break; 3233 } 3234 3235 if (FoundRegs == 0) 3236 return false; 3237 3238 // If we found only one free register, but need two, reuse the same one twice. 3239 while (FoundRegs < (unsigned)NumPops) 3240 Regs[FoundRegs++] = Regs[0]; 3241 3242 for (int i = 0; i < NumPops; ++i) 3243 BuildMI(MBB, MBBI, DL, 3244 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]); 3245 3246 return true; 3247 } 3248 3249 MachineBasicBlock::iterator X86FrameLowering:: 3250 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 3251 MachineBasicBlock::iterator I) const { 3252 bool reserveCallFrame = hasReservedCallFrame(MF); 3253 unsigned Opcode = I->getOpcode(); 3254 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); 3255 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. 3256 uint64_t Amount = TII.getFrameSize(*I); 3257 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0; 3258 I = MBB.erase(I); 3259 auto InsertPos = skipDebugInstructionsForward(I, MBB.end()); 3260 3261 // Try to avoid emitting dead SP adjustments if the block end is unreachable, 3262 // typically because the function is marked noreturn (abort, throw, 3263 // assert_fail, etc). 3264 if (isDestroy && blockEndIsUnreachable(MBB, I)) 3265 return I; 3266 3267 if (!reserveCallFrame) { 3268 // If the stack pointer can be changed after prologue, turn the 3269 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 3270 // adjcallstackdown instruction into 'add ESP, <amt>' 3271 3272 // We need to keep the stack aligned properly. To do this, we round the 3273 // amount of space needed for the outgoing arguments up to the next 3274 // alignment boundary. 3275 Amount = alignTo(Amount, getStackAlign()); 3276 3277 const Function &F = MF.getFunction(); 3278 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 3279 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); 3280 3281 // If we have any exception handlers in this function, and we adjust 3282 // the SP before calls, we may need to indicate this to the unwinder 3283 // using GNU_ARGS_SIZE. Note that this may be necessary even when 3284 // Amount == 0, because the preceding function may have set a non-0 3285 // GNU_ARGS_SIZE. 3286 // TODO: We don't need to reset this between subsequent functions, 3287 // if it didn't change. 3288 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); 3289 3290 if (HasDwarfEHHandlers && !isDestroy && 3291 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) 3292 BuildCFI(MBB, InsertPos, DL, 3293 MCCFIInstruction::createGnuArgsSize(nullptr, Amount)); 3294 3295 if (Amount == 0) 3296 return I; 3297 3298 // Factor out the amount that gets handled inside the sequence 3299 // (Pushes of argument for frame setup, callee pops for frame destroy) 3300 Amount -= InternalAmt; 3301 3302 // TODO: This is needed only if we require precise CFA. 3303 // If this is a callee-pop calling convention, emit a CFA adjust for 3304 // the amount the callee popped. 3305 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) 3306 BuildCFI(MBB, InsertPos, DL, 3307 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt)); 3308 3309 // Add Amount to SP to destroy a frame, or subtract to setup. 3310 int64_t StackAdjustment = isDestroy ? Amount : -Amount; 3311 3312 if (StackAdjustment) { 3313 // Merge with any previous or following adjustment instruction. Note: the 3314 // instructions merged with here do not have CFI, so their stack 3315 // adjustments do not feed into CfaAdjustment. 3316 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true); 3317 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false); 3318 3319 if (StackAdjustment) { 3320 if (!(F.hasMinSize() && 3321 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment))) 3322 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment, 3323 /*InEpilogue=*/false); 3324 } 3325 } 3326 3327 if (DwarfCFI && !hasFP(MF)) { 3328 // If we don't have FP, but need to generate unwind information, 3329 // we need to set the correct CFA offset after the stack adjustment. 3330 // How much we adjust the CFA offset depends on whether we're emitting 3331 // CFI only for EH purposes or for debugging. EH only requires the CFA 3332 // offset to be correct at each call site, while for debugging we want 3333 // it to be more precise. 3334 3335 int64_t CfaAdjustment = -StackAdjustment; 3336 // TODO: When not using precise CFA, we also need to adjust for the 3337 // InternalAmt here. 3338 if (CfaAdjustment) { 3339 BuildCFI(MBB, InsertPos, DL, 3340 MCCFIInstruction::createAdjustCfaOffset(nullptr, 3341 CfaAdjustment)); 3342 } 3343 } 3344 3345 return I; 3346 } 3347 3348 if (InternalAmt) { 3349 MachineBasicBlock::iterator CI = I; 3350 MachineBasicBlock::iterator B = MBB.begin(); 3351 while (CI != B && !std::prev(CI)->isCall()) 3352 --CI; 3353 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false); 3354 } 3355 3356 return I; 3357 } 3358 3359 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { 3360 assert(MBB.getParent() && "Block is not attached to a function!"); 3361 const MachineFunction &MF = *MBB.getParent(); 3362 if (!MBB.isLiveIn(X86::EFLAGS)) 3363 return true; 3364 3365 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3366 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); 3367 } 3368 3369 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { 3370 assert(MBB.getParent() && "Block is not attached to a function!"); 3371 3372 // Win64 has strict requirements in terms of epilogue and we are 3373 // not taking a chance at messing with them. 3374 // I.e., unless this block is already an exit block, we can't use 3375 // it as an epilogue. 3376 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) 3377 return false; 3378 3379 // Swift async context epilogue has a BTR instruction that clobbers parts of 3380 // EFLAGS. 3381 const MachineFunction &MF = *MBB.getParent(); 3382 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) 3383 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3384 3385 if (canUseLEAForSPInEpilogue(*MBB.getParent())) 3386 return true; 3387 3388 // If we cannot use LEA to adjust SP, we may need to use ADD, which 3389 // clobbers the EFLAGS. Check that we do not need to preserve it, 3390 // otherwise, conservatively assume this is not 3391 // safe to insert the epilogue here. 3392 return !flagsNeedToBePreservedBeforeTheTerminators(MBB); 3393 } 3394 3395 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 3396 // If we may need to emit frameless compact unwind information, give 3397 // up as this is currently broken: PR25614. 3398 bool CompactUnwind = 3399 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() != 3400 nullptr; 3401 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) || 3402 !CompactUnwind) && 3403 // The lowering of segmented stack and HiPE only support entry 3404 // blocks as prologue blocks: PR26107. This limitation may be 3405 // lifted if we fix: 3406 // - adjustForSegmentedStacks 3407 // - adjustForHiPEPrologue 3408 MF.getFunction().getCallingConv() != CallingConv::HiPE && 3409 !MF.shouldSplitStack(); 3410 } 3411 3412 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( 3413 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3414 const DebugLoc &DL, bool RestoreSP) const { 3415 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env"); 3416 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32"); 3417 assert(STI.is32Bit() && !Uses64BitFramePtr && 3418 "restoring EBP/ESI on non-32-bit target"); 3419 3420 MachineFunction &MF = *MBB.getParent(); 3421 Register FramePtr = TRI->getFrameRegister(MF); 3422 Register BasePtr = TRI->getBaseRegister(); 3423 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); 3424 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 3425 MachineFrameInfo &MFI = MF.getFrameInfo(); 3426 3427 // FIXME: Don't set FrameSetup flag in catchret case. 3428 3429 int FI = FuncInfo.EHRegNodeFrameIndex; 3430 int EHRegSize = MFI.getObjectSize(FI); 3431 3432 if (RestoreSP) { 3433 // MOV32rm -EHRegSize(%ebp), %esp 3434 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP), 3435 X86::EBP, true, -EHRegSize) 3436 .setMIFlag(MachineInstr::FrameSetup); 3437 } 3438 3439 Register UsedReg; 3440 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed(); 3441 int EndOffset = -EHRegOffset - EHRegSize; 3442 FuncInfo.EHRegNodeEndOffset = EndOffset; 3443 3444 if (UsedReg == FramePtr) { 3445 // ADD $offset, %ebp 3446 unsigned ADDri = getADDriOpcode(false, EndOffset); 3447 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr) 3448 .addReg(FramePtr) 3449 .addImm(EndOffset) 3450 .setMIFlag(MachineInstr::FrameSetup) 3451 ->getOperand(3) 3452 .setIsDead(); 3453 assert(EndOffset >= 0 && 3454 "end of registration object above normal EBP position!"); 3455 } else if (UsedReg == BasePtr) { 3456 // LEA offset(%ebp), %esi 3457 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr), 3458 FramePtr, false, EndOffset) 3459 .setMIFlag(MachineInstr::FrameSetup); 3460 // MOV32rm SavedEBPOffset(%esi), %ebp 3461 assert(X86FI->getHasSEHFramePtrSave()); 3462 int Offset = 3463 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg) 3464 .getFixed(); 3465 assert(UsedReg == BasePtr); 3466 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr), 3467 UsedReg, true, Offset) 3468 .setMIFlag(MachineInstr::FrameSetup); 3469 } else { 3470 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr"); 3471 } 3472 return MBBI; 3473 } 3474 3475 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { 3476 return TRI->getSlotSize(); 3477 } 3478 3479 Register 3480 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { 3481 return TRI->getDwarfRegNum(StackPtr, true); 3482 } 3483 3484 namespace { 3485 // Struct used by orderFrameObjects to help sort the stack objects. 3486 struct X86FrameSortingObject { 3487 bool IsValid = false; // true if we care about this Object. 3488 unsigned ObjectIndex = 0; // Index of Object into MFI list. 3489 unsigned ObjectSize = 0; // Size of Object in bytes. 3490 Align ObjectAlignment = Align(1); // Alignment of Object in bytes. 3491 unsigned ObjectNumUses = 0; // Object static number of uses. 3492 }; 3493 3494 // The comparison function we use for std::sort to order our local 3495 // stack symbols. The current algorithm is to use an estimated 3496 // "density". This takes into consideration the size and number of 3497 // uses each object has in order to roughly minimize code size. 3498 // So, for example, an object of size 16B that is referenced 5 times 3499 // will get higher priority than 4 4B objects referenced 1 time each. 3500 // It's not perfect and we may be able to squeeze a few more bytes out of 3501 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the 3502 // fringe end can have special consideration, given their size is less 3503 // important, etc.), but the algorithmic complexity grows too much to be 3504 // worth the extra gains we get. This gets us pretty close. 3505 // The final order leaves us with objects with highest priority going 3506 // at the end of our list. 3507 struct X86FrameSortingComparator { 3508 inline bool operator()(const X86FrameSortingObject &A, 3509 const X86FrameSortingObject &B) const { 3510 uint64_t DensityAScaled, DensityBScaled; 3511 3512 // For consistency in our comparison, all invalid objects are placed 3513 // at the end. This also allows us to stop walking when we hit the 3514 // first invalid item after it's all sorted. 3515 if (!A.IsValid) 3516 return false; 3517 if (!B.IsValid) 3518 return true; 3519 3520 // The density is calculated by doing : 3521 // (double)DensityA = A.ObjectNumUses / A.ObjectSize 3522 // (double)DensityB = B.ObjectNumUses / B.ObjectSize 3523 // Since this approach may cause inconsistencies in 3524 // the floating point <, >, == comparisons, depending on the floating 3525 // point model with which the compiler was built, we're going 3526 // to scale both sides by multiplying with 3527 // A.ObjectSize * B.ObjectSize. This ends up factoring away 3528 // the division and, with it, the need for any floating point 3529 // arithmetic. 3530 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * 3531 static_cast<uint64_t>(B.ObjectSize); 3532 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * 3533 static_cast<uint64_t>(A.ObjectSize); 3534 3535 // If the two densities are equal, prioritize highest alignment 3536 // objects. This allows for similar alignment objects 3537 // to be packed together (given the same density). 3538 // There's room for improvement here, also, since we can pack 3539 // similar alignment (different density) objects next to each 3540 // other to save padding. This will also require further 3541 // complexity/iterations, and the overall gain isn't worth it, 3542 // in general. Something to keep in mind, though. 3543 if (DensityAScaled == DensityBScaled) 3544 return A.ObjectAlignment < B.ObjectAlignment; 3545 3546 return DensityAScaled < DensityBScaled; 3547 } 3548 }; 3549 } // namespace 3550 3551 // Order the symbols in the local stack. 3552 // We want to place the local stack objects in some sort of sensible order. 3553 // The heuristic we use is to try and pack them according to static number 3554 // of uses and size of object in order to minimize code size. 3555 void X86FrameLowering::orderFrameObjects( 3556 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 3557 const MachineFrameInfo &MFI = MF.getFrameInfo(); 3558 3559 // Don't waste time if there's nothing to do. 3560 if (ObjectsToAllocate.empty()) 3561 return; 3562 3563 // Create an array of all MFI objects. We won't need all of these 3564 // objects, but we're going to create a full array of them to make 3565 // it easier to index into when we're counting "uses" down below. 3566 // We want to be able to easily/cheaply access an object by simply 3567 // indexing into it, instead of having to search for it every time. 3568 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); 3569 3570 // Walk the objects we care about and mark them as such in our working 3571 // struct. 3572 for (auto &Obj : ObjectsToAllocate) { 3573 SortingObjects[Obj].IsValid = true; 3574 SortingObjects[Obj].ObjectIndex = Obj; 3575 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj); 3576 // Set the size. 3577 int ObjectSize = MFI.getObjectSize(Obj); 3578 if (ObjectSize == 0) 3579 // Variable size. Just use 4. 3580 SortingObjects[Obj].ObjectSize = 4; 3581 else 3582 SortingObjects[Obj].ObjectSize = ObjectSize; 3583 } 3584 3585 // Count the number of uses for each object. 3586 for (auto &MBB : MF) { 3587 for (auto &MI : MBB) { 3588 if (MI.isDebugInstr()) 3589 continue; 3590 for (const MachineOperand &MO : MI.operands()) { 3591 // Check to see if it's a local stack symbol. 3592 if (!MO.isFI()) 3593 continue; 3594 int Index = MO.getIndex(); 3595 // Check to see if it falls within our range, and is tagged 3596 // to require ordering. 3597 if (Index >= 0 && Index < MFI.getObjectIndexEnd() && 3598 SortingObjects[Index].IsValid) 3599 SortingObjects[Index].ObjectNumUses++; 3600 } 3601 } 3602 } 3603 3604 // Sort the objects using X86FrameSortingAlgorithm (see its comment for 3605 // info). 3606 llvm::stable_sort(SortingObjects, X86FrameSortingComparator()); 3607 3608 // Now modify the original list to represent the final order that 3609 // we want. The order will depend on whether we're going to access them 3610 // from the stack pointer or the frame pointer. For SP, the list should 3611 // end up with the END containing objects that we want with smaller offsets. 3612 // For FP, it should be flipped. 3613 int i = 0; 3614 for (auto &Obj : SortingObjects) { 3615 // All invalid items are sorted at the end, so it's safe to stop. 3616 if (!Obj.IsValid) 3617 break; 3618 ObjectsToAllocate[i++] = Obj.ObjectIndex; 3619 } 3620 3621 // Flip it if we're accessing off of the FP. 3622 if (!TRI->hasStackRealignment(MF) && hasFP(MF)) 3623 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end()); 3624 } 3625 3626 3627 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { 3628 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. 3629 unsigned Offset = 16; 3630 // RBP is immediately pushed. 3631 Offset += SlotSize; 3632 // All callee-saved registers are then pushed. 3633 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); 3634 // Every funclet allocates enough stack space for the largest outgoing call. 3635 Offset += getWinEHFuncletFrameSize(MF); 3636 return Offset; 3637 } 3638 3639 void X86FrameLowering::processFunctionBeforeFrameFinalized( 3640 MachineFunction &MF, RegScavenger *RS) const { 3641 // Mark the function as not having WinCFI. We will set it back to true in 3642 // emitPrologue if it gets called and emits CFI. 3643 MF.setHasWinCFI(false); 3644 3645 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte 3646 // aligned. The format doesn't support misaligned stack adjustments. 3647 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) 3648 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize)); 3649 3650 // If this function isn't doing Win64-style C++ EH, we don't need to do 3651 // anything. 3652 if (STI.is64Bit() && MF.hasEHFunclets() && 3653 classifyEHPersonality(MF.getFunction().getPersonalityFn()) == 3654 EHPersonality::MSVC_CXX) { 3655 adjustFrameForMsvcCxxEh(MF); 3656 } 3657 } 3658 3659 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { 3660 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset 3661 // relative to RSP after the prologue. Find the offset of the last fixed 3662 // object, so that we can allocate a slot immediately following it. If there 3663 // were no fixed objects, use offset -SlotSize, which is immediately after the 3664 // return address. Fixed objects have negative frame indices. 3665 MachineFrameInfo &MFI = MF.getFrameInfo(); 3666 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 3667 int64_t MinFixedObjOffset = -SlotSize; 3668 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) 3669 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I)); 3670 3671 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { 3672 for (WinEHHandlerType &H : TBME.HandlerArray) { 3673 int FrameIndex = H.CatchObj.FrameIndex; 3674 if (FrameIndex != INT_MAX) { 3675 // Ensure alignment. 3676 unsigned Align = MFI.getObjectAlign(FrameIndex).value(); 3677 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align; 3678 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex); 3679 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset); 3680 } 3681 } 3682 } 3683 3684 // Ensure alignment. 3685 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8; 3686 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; 3687 int UnwindHelpFI = 3688 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false); 3689 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 3690 3691 // Store -2 into UnwindHelp on function entry. We have to scan forwards past 3692 // other frame setup instructions. 3693 MachineBasicBlock &MBB = MF.front(); 3694 auto MBBI = MBB.begin(); 3695 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 3696 ++MBBI; 3697 3698 DebugLoc DL = MBB.findDebugLoc(MBBI); 3699 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)), 3700 UnwindHelpFI) 3701 .addImm(-2); 3702 } 3703 3704 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( 3705 MachineFunction &MF, RegScavenger *RS) const { 3706 if (STI.is32Bit() && MF.hasEHFunclets()) 3707 restoreWinEHStackPointersInParent(MF); 3708 } 3709 3710 void X86FrameLowering::restoreWinEHStackPointersInParent( 3711 MachineFunction &MF) const { 3712 // 32-bit functions have to restore stack pointers when control is transferred 3713 // back to the parent function. These blocks are identified as eh pads that 3714 // are not funclet entries. 3715 bool IsSEH = isAsynchronousEHPersonality( 3716 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 3717 for (MachineBasicBlock &MBB : MF) { 3718 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); 3719 if (NeedsRestore) 3720 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(), 3721 /*RestoreSP=*/IsSEH); 3722 } 3723 } 3724