xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FloatingPoint.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions.  This pass uses live
11 // variable information to indicate where the FPn registers are used and their
12 // lifetimes.
13 //
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
19 //
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "X86.h"
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LivePhysRegs.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <algorithm>
49 #include <bitset>
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-codegen"
53 
54 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
55 STATISTIC(NumFP  , "Number of floating point instructions");
56 
57 namespace {
58   const unsigned ScratchFPReg = 7;
59 
60   struct FPS : public MachineFunctionPass {
61     static char ID;
62     FPS() : MachineFunctionPass(ID) {
63       // This is really only to keep valgrind quiet.
64       // The logic in isLive() is too much for it.
65       memset(Stack, 0, sizeof(Stack));
66       memset(RegMap, 0, sizeof(RegMap));
67     }
68 
69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.setPreservesCFG();
71       AU.addRequired<EdgeBundles>();
72       AU.addPreservedID(MachineLoopInfoID);
73       AU.addPreservedID(MachineDominatorsID);
74       MachineFunctionPass::getAnalysisUsage(AU);
75     }
76 
77     bool runOnMachineFunction(MachineFunction &MF) override;
78 
79     MachineFunctionProperties getRequiredProperties() const override {
80       return MachineFunctionProperties().set(
81           MachineFunctionProperties::Property::NoVRegs);
82     }
83 
84     StringRef getPassName() const override { return "X86 FP Stackifier"; }
85 
86   private:
87     const TargetInstrInfo *TII = nullptr; // Machine instruction info.
88 
89     // Two CFG edges are related if they leave the same block, or enter the same
90     // block. The transitive closure of an edge under this relation is a
91     // LiveBundle. It represents a set of CFG edges where the live FP stack
92     // registers must be allocated identically in the x87 stack.
93     //
94     // A LiveBundle is usually all the edges leaving a block, or all the edges
95     // entering a block, but it can contain more edges if critical edges are
96     // present.
97     //
98     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
99     // but the exact mapping of FP registers to stack slots is fixed later.
100     struct LiveBundle {
101       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
102       unsigned Mask = 0;
103 
104       // Number of pre-assigned live registers in FixStack. This is 0 when the
105       // stack order has not yet been fixed.
106       unsigned FixCount = 0;
107 
108       // Assigned stack order for live-in registers.
109       // FixStack[i] == getStackEntry(i) for all i < FixCount.
110       unsigned char FixStack[8];
111 
112       LiveBundle() = default;
113 
114       // Have the live registers been assigned a stack order yet?
115       bool isFixed() const { return !Mask || FixCount; }
116     };
117 
118     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
119     // with no live FP registers.
120     SmallVector<LiveBundle, 8> LiveBundles;
121 
122     // The edge bundle analysis provides indices into the LiveBundles vector.
123     EdgeBundles *Bundles = nullptr;
124 
125     // Return a bitmask of FP registers in block's live-in list.
126     static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
127       unsigned Mask = 0;
128       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
129            I != MBB->livein_end(); ) {
130         MCPhysReg Reg = I->PhysReg;
131         static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
132         if (Reg >= X86::FP0 && Reg <= X86::FP6) {
133           Mask |= 1 << (Reg - X86::FP0);
134           if (RemoveFPs) {
135             I = MBB->removeLiveIn(I);
136             continue;
137           }
138         }
139         ++I;
140       }
141       return Mask;
142     }
143 
144     // Partition all the CFG edges into LiveBundles.
145     void bundleCFGRecomputeKillFlags(MachineFunction &MF);
146 
147     MachineBasicBlock *MBB = nullptr;     // Current basic block
148 
149     // The hardware keeps track of how many FP registers are live, so we have
150     // to model that exactly. Usually, each live register corresponds to an
151     // FP<n> register, but when dealing with calls, returns, and inline
152     // assembly, it is sometimes necessary to have live scratch registers.
153     unsigned Stack[8];          // FP<n> Registers in each stack slot...
154     unsigned StackTop = 0;      // The current top of the FP stack.
155 
156     enum {
157       NumFPRegs = 8             // Including scratch pseudo-registers.
158     };
159 
160     // For each live FP<n> register, point to its Stack[] entry.
161     // The first entries correspond to FP0-FP6, the rest are scratch registers
162     // used when we need slightly different live registers than what the
163     // register allocator thinks.
164     unsigned RegMap[NumFPRegs];
165 
166     // Set up our stack model to match the incoming registers to MBB.
167     void setupBlockStack();
168 
169     // Shuffle live registers to match the expectations of successor blocks.
170     void finishBlockStack();
171 
172 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
173     void dumpStack() const {
174       dbgs() << "Stack contents:";
175       for (unsigned i = 0; i != StackTop; ++i) {
176         dbgs() << " FP" << Stack[i];
177         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
178       }
179     }
180 #endif
181 
182     /// getSlot - Return the stack slot number a particular register number is
183     /// in.
184     unsigned getSlot(unsigned RegNo) const {
185       assert(RegNo < NumFPRegs && "Regno out of range!");
186       return RegMap[RegNo];
187     }
188 
189     /// isLive - Is RegNo currently live in the stack?
190     bool isLive(unsigned RegNo) const {
191       unsigned Slot = getSlot(RegNo);
192       return Slot < StackTop && Stack[Slot] == RegNo;
193     }
194 
195     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
196     unsigned getStackEntry(unsigned STi) const {
197       if (STi >= StackTop)
198         report_fatal_error("Access past stack top!");
199       return Stack[StackTop-1-STi];
200     }
201 
202     /// getSTReg - Return the X86::ST(i) register which contains the specified
203     /// FP<RegNo> register.
204     unsigned getSTReg(unsigned RegNo) const {
205       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
206     }
207 
208     // pushReg - Push the specified FP<n> register onto the stack.
209     void pushReg(unsigned Reg) {
210       assert(Reg < NumFPRegs && "Register number out of range!");
211       if (StackTop >= 8)
212         report_fatal_error("Stack overflow!");
213       Stack[StackTop] = Reg;
214       RegMap[Reg] = StackTop++;
215     }
216 
217     // popReg - Pop a register from the stack.
218     void popReg() {
219       if (StackTop == 0)
220         report_fatal_error("Cannot pop empty stack!");
221       RegMap[Stack[--StackTop]] = ~0;     // Update state
222     }
223 
224     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
225     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
226       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
227       if (isAtTop(RegNo)) return;
228 
229       unsigned STReg = getSTReg(RegNo);
230       unsigned RegOnTop = getStackEntry(0);
231 
232       // Swap the slots the regs are in.
233       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
234 
235       // Swap stack slot contents.
236       if (RegMap[RegOnTop] >= StackTop)
237         report_fatal_error("Access past stack top!");
238       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
239 
240       // Emit an fxch to update the runtime processors version of the state.
241       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
242       ++NumFXCH;
243     }
244 
245     void duplicateToTop(unsigned RegNo, unsigned AsReg,
246                         MachineBasicBlock::iterator I) {
247       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
248       unsigned STReg = getSTReg(RegNo);
249       pushReg(AsReg);   // New register on top of stack
250 
251       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
252     }
253 
254     /// popStackAfter - Pop the current value off of the top of the FP stack
255     /// after the specified instruction.
256     void popStackAfter(MachineBasicBlock::iterator &I);
257 
258     /// freeStackSlotAfter - Free the specified register from the register
259     /// stack, so that it is no longer in a register.  If the register is
260     /// currently at the top of the stack, we just pop the current instruction,
261     /// otherwise we store the current top-of-stack into the specified slot,
262     /// then pop the top of stack.
263     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
264 
265     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
266     /// instruction.
267     MachineBasicBlock::iterator
268     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
269 
270     /// Adjust the live registers to be the set in Mask.
271     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
272 
273     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
274     /// st(0), FP reg FixStack[1] is st(1) etc.
275     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
276                          MachineBasicBlock::iterator I);
277 
278     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
279 
280     void handleCall(MachineBasicBlock::iterator &I);
281     void handleReturn(MachineBasicBlock::iterator &I);
282     void handleZeroArgFP(MachineBasicBlock::iterator &I);
283     void handleOneArgFP(MachineBasicBlock::iterator &I);
284     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
285     void handleTwoArgFP(MachineBasicBlock::iterator &I);
286     void handleCompareFP(MachineBasicBlock::iterator &I);
287     void handleCondMovFP(MachineBasicBlock::iterator &I);
288     void handleSpecialFP(MachineBasicBlock::iterator &I);
289 
290     // Check if a COPY instruction is using FP registers.
291     static bool isFPCopy(MachineInstr &MI) {
292       Register DstReg = MI.getOperand(0).getReg();
293       Register SrcReg = MI.getOperand(1).getReg();
294 
295       return X86::RFP80RegClass.contains(DstReg) ||
296         X86::RFP80RegClass.contains(SrcReg);
297     }
298 
299     void setKillFlags(MachineBasicBlock &MBB) const;
300   };
301 }
302 
303 char FPS::ID = 0;
304 
305 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier",
306                       false, false)
307 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
308 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier",
309                     false, false)
310 
311 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
312 
313 /// getFPReg - Return the X86::FPx register number for the specified operand.
314 /// For example, this returns 3 for X86::FP3.
315 static unsigned getFPReg(const MachineOperand &MO) {
316   assert(MO.isReg() && "Expected an FP register!");
317   Register Reg = MO.getReg();
318   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
319   return Reg - X86::FP0;
320 }
321 
322 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
323 /// register references into FP stack references.
324 ///
325 bool FPS::runOnMachineFunction(MachineFunction &MF) {
326   // We only need to run this pass if there are any FP registers used in this
327   // function.  If it is all integer, there is nothing for us to do!
328   bool FPIsUsed = false;
329 
330   static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
331   const MachineRegisterInfo &MRI = MF.getRegInfo();
332   for (unsigned i = 0; i <= 6; ++i)
333     if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
334       FPIsUsed = true;
335       break;
336     }
337 
338   // Early exit.
339   if (!FPIsUsed) return false;
340 
341   Bundles = &getAnalysis<EdgeBundles>();
342   TII = MF.getSubtarget().getInstrInfo();
343 
344   // Prepare cross-MBB liveness.
345   bundleCFGRecomputeKillFlags(MF);
346 
347   StackTop = 0;
348 
349   // Process the function in depth first order so that we process at least one
350   // of the predecessors for every reachable block in the function.
351   df_iterator_default_set<MachineBasicBlock*> Processed;
352   MachineBasicBlock *Entry = &MF.front();
353 
354   LiveBundle &Bundle =
355     LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
356 
357   // In regcall convention, some FP registers may not be passed through
358   // the stack, so they will need to be assigned to the stack first
359   if ((Entry->getParent()->getFunction().getCallingConv() ==
360     CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
361     // In the register calling convention, up to one FP argument could be
362     // saved in the first FP register.
363     // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
364     // that the FP registers contain arguments.
365     // The actual value is passed in FP0.
366     // Here we fix the stack and mark FP0 as pre-assigned register.
367     assert((Bundle.Mask & 0xFE) == 0 &&
368       "Only FP0 could be passed as an argument");
369     Bundle.FixCount = 1;
370     Bundle.FixStack[0] = 0;
371   }
372 
373   bool Changed = false;
374   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
375     Changed |= processBasicBlock(MF, *BB);
376 
377   // Process any unreachable blocks in arbitrary order now.
378   if (MF.size() != Processed.size())
379     for (MachineBasicBlock &BB : MF)
380       if (Processed.insert(&BB).second)
381         Changed |= processBasicBlock(MF, BB);
382 
383   LiveBundles.clear();
384 
385   return Changed;
386 }
387 
388 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
389 /// live-out sets for the FP registers. Consistent means that the set of
390 /// registers live-out from a block is identical to the live-in set of all
391 /// successors. This is not enforced by the normal live-in lists since
392 /// registers may be implicitly defined, or not used by all successors.
393 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
394   assert(LiveBundles.empty() && "Stale data in LiveBundles");
395   LiveBundles.resize(Bundles->getNumBundles());
396 
397   // Gather the actual live-in masks for all MBBs.
398   for (MachineBasicBlock &MBB : MF) {
399     setKillFlags(MBB);
400 
401     const unsigned Mask = calcLiveInMask(&MBB, false);
402     if (!Mask)
403       continue;
404     // Update MBB ingoing bundle mask.
405     LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
406   }
407 }
408 
409 /// processBasicBlock - Loop over all of the instructions in the basic block,
410 /// transforming FP instructions into their stack form.
411 ///
412 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
413   bool Changed = false;
414   MBB = &BB;
415 
416   setupBlockStack();
417 
418   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
419     MachineInstr &MI = *I;
420     uint64_t Flags = MI.getDesc().TSFlags;
421 
422     unsigned FPInstClass = Flags & X86II::FPTypeMask;
423     if (MI.isInlineAsm())
424       FPInstClass = X86II::SpecialFP;
425 
426     if (MI.isCopy() && isFPCopy(MI))
427       FPInstClass = X86II::SpecialFP;
428 
429     if (MI.isImplicitDef() &&
430         X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
431       FPInstClass = X86II::SpecialFP;
432 
433     if (MI.isCall())
434       FPInstClass = X86II::SpecialFP;
435 
436     if (FPInstClass == X86II::NotFP)
437       continue;  // Efficiently ignore non-fp insts!
438 
439     MachineInstr *PrevMI = nullptr;
440     if (I != BB.begin())
441       PrevMI = &*std::prev(I);
442 
443     ++NumFP;  // Keep track of # of pseudo instrs
444     LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
445 
446     // Get dead variables list now because the MI pointer may be deleted as part
447     // of processing!
448     SmallVector<unsigned, 8> DeadRegs;
449     for (const MachineOperand &MO : MI.operands())
450       if (MO.isReg() && MO.isDead())
451         DeadRegs.push_back(MO.getReg());
452 
453     switch (FPInstClass) {
454     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
455     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
456     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
457     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
458     case X86II::CompareFP:  handleCompareFP(I); break;
459     case X86II::CondMovFP:  handleCondMovFP(I); break;
460     case X86II::SpecialFP:  handleSpecialFP(I); break;
461     default: llvm_unreachable("Unknown FP Type!");
462     }
463 
464     // Check to see if any of the values defined by this instruction are dead
465     // after definition.  If so, pop them.
466     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
467       unsigned Reg = DeadRegs[i];
468       // Check if Reg is live on the stack. An inline-asm register operand that
469       // is in the clobber list and marked dead might not be live on the stack.
470       static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
471       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
472         LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
473         freeStackSlotAfter(I, Reg-X86::FP0);
474       }
475     }
476 
477     // Print out all of the instructions expanded to if -debug
478     LLVM_DEBUG({
479       MachineBasicBlock::iterator PrevI = PrevMI;
480       if (I == PrevI) {
481         dbgs() << "Just deleted pseudo instruction\n";
482       } else {
483         MachineBasicBlock::iterator Start = I;
484         // Rewind to first instruction newly inserted.
485         while (Start != BB.begin() && std::prev(Start) != PrevI)
486           --Start;
487         dbgs() << "Inserted instructions:\n\t";
488         Start->print(dbgs());
489         while (++Start != std::next(I)) {
490         }
491       }
492       dumpStack();
493     });
494     (void)PrevMI;
495 
496     Changed = true;
497   }
498 
499   finishBlockStack();
500 
501   return Changed;
502 }
503 
504 /// setupBlockStack - Use the live bundles to set up our model of the stack
505 /// to match predecessors' live out stack.
506 void FPS::setupBlockStack() {
507   LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
508                     << " derived from " << MBB->getName() << ".\n");
509   StackTop = 0;
510   // Get the live-in bundle for MBB.
511   const LiveBundle &Bundle =
512     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
513 
514   if (!Bundle.Mask) {
515     LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
516     return;
517   }
518 
519   // Depth-first iteration should ensure that we always have an assigned stack.
520   assert(Bundle.isFixed() && "Reached block before any predecessors");
521 
522   // Push the fixed live-in registers.
523   for (unsigned i = Bundle.FixCount; i > 0; --i) {
524     LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
525                       << unsigned(Bundle.FixStack[i - 1]) << '\n');
526     pushReg(Bundle.FixStack[i-1]);
527   }
528 
529   // Kill off unwanted live-ins. This can happen with a critical edge.
530   // FIXME: We could keep these live registers around as zombies. They may need
531   // to be revived at the end of a short block. It might save a few instrs.
532   unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
533   adjustLiveRegs(Mask, MBB->begin());
534   LLVM_DEBUG(MBB->dump());
535 }
536 
537 /// finishBlockStack - Revive live-outs that are implicitly defined out of
538 /// MBB. Shuffle live registers to match the expected fixed stack of any
539 /// predecessors, and ensure that all predecessors are expecting the same
540 /// stack.
541 void FPS::finishBlockStack() {
542   // The RET handling below takes care of return blocks for us.
543   if (MBB->succ_empty())
544     return;
545 
546   LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
547                     << " derived from " << MBB->getName() << ".\n");
548 
549   // Get MBB's live-out bundle.
550   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
551   LiveBundle &Bundle = LiveBundles[BundleIdx];
552 
553   // We may need to kill and define some registers to match successors.
554   // FIXME: This can probably be combined with the shuffle below.
555   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
556   adjustLiveRegs(Bundle.Mask, Term);
557 
558   if (!Bundle.Mask) {
559     LLVM_DEBUG(dbgs() << "No live-outs.\n");
560     return;
561   }
562 
563   // Has the stack order been fixed yet?
564   LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
565   if (Bundle.isFixed()) {
566     LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
567     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
568   } else {
569     // Not fixed yet, we get to choose.
570     LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
571     Bundle.FixCount = StackTop;
572     for (unsigned i = 0; i < StackTop; ++i)
573       Bundle.FixStack[i] = getStackEntry(i);
574   }
575 }
576 
577 
578 //===----------------------------------------------------------------------===//
579 // Efficient Lookup Table Support
580 //===----------------------------------------------------------------------===//
581 
582 namespace {
583   struct TableEntry {
584     uint16_t from;
585     uint16_t to;
586     bool operator<(const TableEntry &TE) const { return from < TE.from; }
587     friend bool operator<(const TableEntry &TE, unsigned V) {
588       return TE.from < V;
589     }
590     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
591                                                 const TableEntry &TE) {
592       return V < TE.from;
593     }
594   };
595 }
596 
597 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
598   const TableEntry *I = llvm::lower_bound(Table, Opcode);
599   if (I != Table.end() && I->from == Opcode)
600     return I->to;
601   return -1;
602 }
603 
604 #ifdef NDEBUG
605 #define ASSERT_SORTED(TABLE)
606 #else
607 #define ASSERT_SORTED(TABLE)                                                   \
608   {                                                                            \
609     static std::atomic<bool> TABLE##Checked(false);                            \
610     if (!TABLE##Checked.load(std::memory_order_relaxed)) {                     \
611       assert(is_sorted(TABLE) &&                                               \
612              "All lookup tables must be sorted for efficient access!");        \
613       TABLE##Checked.store(true, std::memory_order_relaxed);                   \
614     }                                                                          \
615   }
616 #endif
617 
618 //===----------------------------------------------------------------------===//
619 // Register File -> Register Stack Mapping Methods
620 //===----------------------------------------------------------------------===//
621 
622 // OpcodeTable - Sorted map of register instructions to their stack version.
623 // The first element is an register file pseudo instruction, the second is the
624 // concrete X86 instruction which uses the register stack.
625 //
626 static const TableEntry OpcodeTable[] = {
627   { X86::ABS_Fp32     , X86::ABS_F     },
628   { X86::ABS_Fp64     , X86::ABS_F     },
629   { X86::ABS_Fp80     , X86::ABS_F     },
630   { X86::ADD_Fp32m    , X86::ADD_F32m  },
631   { X86::ADD_Fp64m    , X86::ADD_F64m  },
632   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
633   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
634   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
635   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
636   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
637   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
638   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
639   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
640   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
641   { X86::CHS_Fp32     , X86::CHS_F     },
642   { X86::CHS_Fp64     , X86::CHS_F     },
643   { X86::CHS_Fp80     , X86::CHS_F     },
644   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
645   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
646   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
647   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
648   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
649   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
650   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
651   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
652   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
653   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
654   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
655   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
656   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
657   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
658   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
659   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
660   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
661   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
662   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
663   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
664   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
665   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
666   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
667   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
668   { X86::COM_FpIr32   , X86::COM_FIr   },
669   { X86::COM_FpIr64   , X86::COM_FIr   },
670   { X86::COM_FpIr80   , X86::COM_FIr   },
671   { X86::COM_Fpr32    , X86::COM_FST0r },
672   { X86::COM_Fpr64    , X86::COM_FST0r },
673   { X86::COM_Fpr80    , X86::COM_FST0r },
674   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
675   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
676   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
677   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
678   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
679   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
680   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
681   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
682   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
683   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
684   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
685   { X86::DIV_Fp32m    , X86::DIV_F32m  },
686   { X86::DIV_Fp64m    , X86::DIV_F64m  },
687   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
688   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
689   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
690   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
691   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
692   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
693   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
694   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
695   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
696   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
697   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
698   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
699   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
700   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
701   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
702   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
703   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
704   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
705   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
706   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
707   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
708   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
709   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
710   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
711   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
712   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
713   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
714   { X86::IST_Fp16m32  , X86::IST_F16m  },
715   { X86::IST_Fp16m64  , X86::IST_F16m  },
716   { X86::IST_Fp16m80  , X86::IST_F16m  },
717   { X86::IST_Fp32m32  , X86::IST_F32m  },
718   { X86::IST_Fp32m64  , X86::IST_F32m  },
719   { X86::IST_Fp32m80  , X86::IST_F32m  },
720   { X86::IST_Fp64m32  , X86::IST_FP64m },
721   { X86::IST_Fp64m64  , X86::IST_FP64m },
722   { X86::IST_Fp64m80  , X86::IST_FP64m },
723   { X86::LD_Fp032     , X86::LD_F0     },
724   { X86::LD_Fp064     , X86::LD_F0     },
725   { X86::LD_Fp080     , X86::LD_F0     },
726   { X86::LD_Fp132     , X86::LD_F1     },
727   { X86::LD_Fp164     , X86::LD_F1     },
728   { X86::LD_Fp180     , X86::LD_F1     },
729   { X86::LD_Fp32m     , X86::LD_F32m   },
730   { X86::LD_Fp32m64   , X86::LD_F32m   },
731   { X86::LD_Fp32m80   , X86::LD_F32m   },
732   { X86::LD_Fp64m     , X86::LD_F64m   },
733   { X86::LD_Fp64m80   , X86::LD_F64m   },
734   { X86::LD_Fp80m     , X86::LD_F80m   },
735   { X86::MUL_Fp32m    , X86::MUL_F32m  },
736   { X86::MUL_Fp64m    , X86::MUL_F64m  },
737   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
738   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
739   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
740   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
741   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
742   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
743   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
744   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
745   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
746   { X86::SQRT_Fp32    , X86::SQRT_F    },
747   { X86::SQRT_Fp64    , X86::SQRT_F    },
748   { X86::SQRT_Fp80    , X86::SQRT_F    },
749   { X86::ST_Fp32m     , X86::ST_F32m   },
750   { X86::ST_Fp64m     , X86::ST_F64m   },
751   { X86::ST_Fp64m32   , X86::ST_F32m   },
752   { X86::ST_Fp80m32   , X86::ST_F32m   },
753   { X86::ST_Fp80m64   , X86::ST_F64m   },
754   { X86::ST_FpP80m    , X86::ST_FP80m  },
755   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
756   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
757   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
758   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
759   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
760   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
761   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
762   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
763   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
764   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
765   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
766   { X86::SUB_Fp32m    , X86::SUB_F32m  },
767   { X86::SUB_Fp64m    , X86::SUB_F64m  },
768   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
769   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
770   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
771   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
772   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
773   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
774   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
775   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
776   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
777   { X86::TST_Fp32     , X86::TST_F     },
778   { X86::TST_Fp64     , X86::TST_F     },
779   { X86::TST_Fp80     , X86::TST_F     },
780   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
781   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
782   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
783   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
784   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
785   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
786   { X86::XAM_Fp32     , X86::XAM_F     },
787   { X86::XAM_Fp64     , X86::XAM_F     },
788   { X86::XAM_Fp80     , X86::XAM_F     },
789 };
790 
791 static unsigned getConcreteOpcode(unsigned Opcode) {
792   ASSERT_SORTED(OpcodeTable);
793   int Opc = Lookup(OpcodeTable, Opcode);
794   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
795   return Opc;
796 }
797 
798 //===----------------------------------------------------------------------===//
799 // Helper Methods
800 //===----------------------------------------------------------------------===//
801 
802 // PopTable - Sorted map of instructions to their popping version.  The first
803 // element is an instruction, the second is the version which pops.
804 //
805 static const TableEntry PopTable[] = {
806   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
807 
808   { X86::COMP_FST0r, X86::FCOMPP      },
809   { X86::COM_FIr   , X86::COM_FIPr    },
810   { X86::COM_FST0r , X86::COMP_FST0r  },
811 
812   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
813   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
814 
815   { X86::IST_F16m  , X86::IST_FP16m   },
816   { X86::IST_F32m  , X86::IST_FP32m   },
817 
818   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
819 
820   { X86::ST_F32m   , X86::ST_FP32m    },
821   { X86::ST_F64m   , X86::ST_FP64m    },
822   { X86::ST_Frr    , X86::ST_FPrr     },
823 
824   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
825   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
826 
827   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
828 
829   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
830   { X86::UCOM_Fr   , X86::UCOM_FPr    },
831 };
832 
833 static bool doesInstructionSetFPSW(MachineInstr &MI) {
834   if (const MachineOperand *MO = MI.findRegisterDefOperand(X86::FPSW))
835     if (!MO->isDead())
836       return true;
837   return false;
838 }
839 
840 static MachineBasicBlock::iterator
841 getNextFPInstruction(MachineBasicBlock::iterator I) {
842   MachineBasicBlock &MBB = *I->getParent();
843   while (++I != MBB.end()) {
844     MachineInstr &MI = *I;
845     if (X86::isX87Instruction(MI))
846       return I;
847   }
848   return MBB.end();
849 }
850 
851 /// popStackAfter - Pop the current value off of the top of the FP stack after
852 /// the specified instruction.  This attempts to be sneaky and combine the pop
853 /// into the instruction itself if possible.  The iterator is left pointing to
854 /// the last instruction, be it a new pop instruction inserted, or the old
855 /// instruction if it was modified in place.
856 ///
857 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
858   MachineInstr &MI = *I;
859   const DebugLoc &dl = MI.getDebugLoc();
860   ASSERT_SORTED(PopTable);
861 
862   popReg();
863 
864   // Check to see if there is a popping version of this instruction...
865   int Opcode = Lookup(PopTable, I->getOpcode());
866   if (Opcode != -1) {
867     I->setDesc(TII->get(Opcode));
868     if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr)
869       I->removeOperand(0);
870     MI.dropDebugNumber();
871   } else {    // Insert an explicit pop
872     // If this instruction sets FPSW, which is read in following instruction,
873     // insert pop after that reader.
874     if (doesInstructionSetFPSW(MI)) {
875       MachineBasicBlock &MBB = *MI.getParent();
876       MachineBasicBlock::iterator Next = getNextFPInstruction(I);
877       if (Next != MBB.end() && Next->readsRegister(X86::FPSW))
878         I = Next;
879     }
880     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
881   }
882 }
883 
884 /// freeStackSlotAfter - Free the specified register from the register stack, so
885 /// that it is no longer in a register.  If the register is currently at the top
886 /// of the stack, we just pop the current instruction, otherwise we store the
887 /// current top-of-stack into the specified slot, then pop the top of stack.
888 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
889   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
890     popStackAfter(I);
891     return;
892   }
893 
894   // Otherwise, store the top of stack into the dead slot, killing the operand
895   // without having to add in an explicit xchg then pop.
896   //
897   I = freeStackSlotBefore(++I, FPRegNo);
898 }
899 
900 /// freeStackSlotBefore - Free the specified register without trying any
901 /// folding.
902 MachineBasicBlock::iterator
903 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
904   unsigned STReg    = getSTReg(FPRegNo);
905   unsigned OldSlot  = getSlot(FPRegNo);
906   unsigned TopReg   = Stack[StackTop-1];
907   Stack[OldSlot]    = TopReg;
908   RegMap[TopReg]    = OldSlot;
909   RegMap[FPRegNo]   = ~0;
910   Stack[--StackTop] = ~0;
911   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
912       .addReg(STReg)
913       .getInstr();
914 }
915 
916 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
917 /// registers with a bit in Mask are live.
918 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
919   unsigned Defs = Mask;
920   unsigned Kills = 0;
921   for (unsigned i = 0; i < StackTop; ++i) {
922     unsigned RegNo = Stack[i];
923     if (!(Defs & (1 << RegNo)))
924       // This register is live, but we don't want it.
925       Kills |= (1 << RegNo);
926     else
927       // We don't need to imp-def this live register.
928       Defs &= ~(1 << RegNo);
929   }
930   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
931 
932   // Produce implicit-defs for free by using killed registers.
933   while (Kills && Defs) {
934     unsigned KReg = countTrailingZeros(Kills);
935     unsigned DReg = countTrailingZeros(Defs);
936     LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
937                       << "\n");
938     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
939     std::swap(RegMap[KReg], RegMap[DReg]);
940     Kills &= ~(1 << KReg);
941     Defs &= ~(1 << DReg);
942   }
943 
944   // Kill registers by popping.
945   if (Kills && I != MBB->begin()) {
946     MachineBasicBlock::iterator I2 = std::prev(I);
947     while (StackTop) {
948       unsigned KReg = getStackEntry(0);
949       if (!(Kills & (1 << KReg)))
950         break;
951       LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
952       popStackAfter(I2);
953       Kills &= ~(1 << KReg);
954     }
955   }
956 
957   // Manually kill the rest.
958   while (Kills) {
959     unsigned KReg = countTrailingZeros(Kills);
960     LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
961     freeStackSlotBefore(I, KReg);
962     Kills &= ~(1 << KReg);
963   }
964 
965   // Load zeros for all the imp-defs.
966   while(Defs) {
967     unsigned DReg = countTrailingZeros(Defs);
968     LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
969     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
970     pushReg(DReg);
971     Defs &= ~(1 << DReg);
972   }
973 
974   // Now we should have the correct registers live.
975   LLVM_DEBUG(dumpStack());
976   assert(StackTop == countPopulation(Mask) && "Live count mismatch");
977 }
978 
979 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
980 /// FixCount entries into the order given by FixStack.
981 /// FIXME: Is there a better algorithm than insertion sort?
982 void FPS::shuffleStackTop(const unsigned char *FixStack,
983                           unsigned FixCount,
984                           MachineBasicBlock::iterator I) {
985   // Move items into place, starting from the desired stack bottom.
986   while (FixCount--) {
987     // Old register at position FixCount.
988     unsigned OldReg = getStackEntry(FixCount);
989     // Desired register at position FixCount.
990     unsigned Reg = FixStack[FixCount];
991     if (Reg == OldReg)
992       continue;
993     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
994     moveToTop(Reg, I);
995     if (FixCount > 0)
996       moveToTop(OldReg, I);
997   }
998   LLVM_DEBUG(dumpStack());
999 }
1000 
1001 
1002 //===----------------------------------------------------------------------===//
1003 // Instruction transformation implementation
1004 //===----------------------------------------------------------------------===//
1005 
1006 void FPS::handleCall(MachineBasicBlock::iterator &I) {
1007   MachineInstr &MI = *I;
1008   unsigned STReturns = 0;
1009 
1010   bool ClobbersFPStack = false;
1011   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1012     MachineOperand &Op = MI.getOperand(i);
1013     // Check if this call clobbers the FP stack.
1014     // is sufficient.
1015     if (Op.isRegMask()) {
1016       bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0);
1017 #ifndef NDEBUG
1018       static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
1019       for (unsigned i = 1; i != 8; ++i)
1020         assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 &&
1021                "Inconsistent FP register clobber");
1022 #endif
1023 
1024       if (ClobbersFP0)
1025         ClobbersFPStack = true;
1026     }
1027 
1028     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1029       continue;
1030 
1031     assert(Op.isImplicit() && "Expected implicit def/use");
1032 
1033     if (Op.isDef())
1034       STReturns |= 1 << getFPReg(Op);
1035 
1036     // Remove the operand so that later passes don't see it.
1037     MI.removeOperand(i);
1038     --i;
1039     --e;
1040   }
1041 
1042   // Most calls should have a regmask that clobbers the FP registers. If it
1043   // isn't present then the register allocator didn't spill the FP registers
1044   // so they are still on the stack.
1045   assert((ClobbersFPStack || STReturns == 0) &&
1046          "ST returns without FP stack clobber");
1047   if (!ClobbersFPStack)
1048     return;
1049 
1050   unsigned N = countTrailingOnes(STReturns);
1051 
1052   // FP registers used for function return must be consecutive starting at
1053   // FP0
1054   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
1055 
1056   // Reset the FP Stack - It is required because of possible leftovers from
1057   // passed arguments. The caller should assume that the FP stack is
1058   // returned empty (unless the callee returns values on FP stack).
1059   while (StackTop > 0)
1060     popReg();
1061 
1062   for (unsigned I = 0; I < N; ++I)
1063     pushReg(N - I - 1);
1064 
1065   // If this call has been modified, drop all variable values defined by it.
1066   // We can't track them once they've been stackified.
1067   if (STReturns)
1068     I->dropDebugNumber();
1069 }
1070 
1071 /// If RET has an FP register use operand, pass the first one in ST(0) and
1072 /// the second one in ST(1).
1073 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1074   MachineInstr &MI = *I;
1075 
1076   // Find the register operands.
1077   unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1078   unsigned LiveMask = 0;
1079 
1080   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1081     MachineOperand &Op = MI.getOperand(i);
1082     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1083       continue;
1084     // FP Register uses must be kills unless there are two uses of the same
1085     // register, in which case only one will be a kill.
1086     assert(Op.isUse() &&
1087            (Op.isKill() ||                    // Marked kill.
1088             getFPReg(Op) == FirstFPRegOp ||   // Second instance.
1089             MI.killsRegister(Op.getReg())) && // Later use is marked kill.
1090            "Ret only defs operands, and values aren't live beyond it");
1091 
1092     if (FirstFPRegOp == ~0U)
1093       FirstFPRegOp = getFPReg(Op);
1094     else {
1095       assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1096       SecondFPRegOp = getFPReg(Op);
1097     }
1098     LiveMask |= (1 << getFPReg(Op));
1099 
1100     // Remove the operand so that later passes don't see it.
1101     MI.removeOperand(i);
1102     --i;
1103     --e;
1104   }
1105 
1106   // We may have been carrying spurious live-ins, so make sure only the
1107   // returned registers are left live.
1108   adjustLiveRegs(LiveMask, MI);
1109   if (!LiveMask) return;  // Quick check to see if any are possible.
1110 
1111   // There are only four possibilities here:
1112   // 1) we are returning a single FP value.  In this case, it has to be in
1113   //    ST(0) already, so just declare success by removing the value from the
1114   //    FP Stack.
1115   if (SecondFPRegOp == ~0U) {
1116     // Assert that the top of stack contains the right FP register.
1117     assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1118            "Top of stack not the right register for RET!");
1119 
1120     // Ok, everything is good, mark the value as not being on the stack
1121     // anymore so that our assertion about the stack being empty at end of
1122     // block doesn't fire.
1123     StackTop = 0;
1124     return;
1125   }
1126 
1127   // Otherwise, we are returning two values:
1128   // 2) If returning the same value for both, we only have one thing in the FP
1129   //    stack.  Consider:  RET FP1, FP1
1130   if (StackTop == 1) {
1131     assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1132            "Stack misconfiguration for RET!");
1133 
1134     // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1135     // register to hold it.
1136     unsigned NewReg = ScratchFPReg;
1137     duplicateToTop(FirstFPRegOp, NewReg, MI);
1138     FirstFPRegOp = NewReg;
1139   }
1140 
1141   /// Okay we know we have two different FPx operands now:
1142   assert(StackTop == 2 && "Must have two values live!");
1143 
1144   /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1145   ///    in ST(1).  In this case, emit an fxch.
1146   if (getStackEntry(0) == SecondFPRegOp) {
1147     assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1148     moveToTop(FirstFPRegOp, MI);
1149   }
1150 
1151   /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1152   /// ST(1).  Just remove both from our understanding of the stack and return.
1153   assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1154   assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1155   StackTop = 0;
1156 }
1157 
1158 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
1159 ///
1160 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1161   MachineInstr &MI = *I;
1162   unsigned DestReg = getFPReg(MI.getOperand(0));
1163 
1164   // Change from the pseudo instruction to the concrete instruction.
1165   MI.removeOperand(0); // Remove the explicit ST(0) operand
1166   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1167   MI.addOperand(
1168       MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true));
1169 
1170   // Result gets pushed on the stack.
1171   pushReg(DestReg);
1172 
1173   MI.dropDebugNumber();
1174 }
1175 
1176 /// handleOneArgFP - fst <mem>, ST(0)
1177 ///
1178 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1179   MachineInstr &MI = *I;
1180   unsigned NumOps = MI.getDesc().getNumOperands();
1181   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1182          "Can only handle fst* & ftst instructions!");
1183 
1184   // Is this the last use of the source register?
1185   unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1186   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1187 
1188   // FISTP64m is strange because there isn't a non-popping versions.
1189   // If we have one _and_ we don't want to pop the operand, duplicate the value
1190   // on the stack instead of moving it.  This ensure that popping the value is
1191   // always ok.
1192   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1193   //
1194   if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1195                     MI.getOpcode() == X86::ISTT_Fp16m32 ||
1196                     MI.getOpcode() == X86::ISTT_Fp32m32 ||
1197                     MI.getOpcode() == X86::ISTT_Fp64m32 ||
1198                     MI.getOpcode() == X86::IST_Fp64m64 ||
1199                     MI.getOpcode() == X86::ISTT_Fp16m64 ||
1200                     MI.getOpcode() == X86::ISTT_Fp32m64 ||
1201                     MI.getOpcode() == X86::ISTT_Fp64m64 ||
1202                     MI.getOpcode() == X86::IST_Fp64m80 ||
1203                     MI.getOpcode() == X86::ISTT_Fp16m80 ||
1204                     MI.getOpcode() == X86::ISTT_Fp32m80 ||
1205                     MI.getOpcode() == X86::ISTT_Fp64m80 ||
1206                     MI.getOpcode() == X86::ST_FpP80m)) {
1207     duplicateToTop(Reg, ScratchFPReg, I);
1208   } else {
1209     moveToTop(Reg, I);            // Move to the top of the stack...
1210   }
1211 
1212   // Convert from the pseudo instruction to the concrete instruction.
1213   MI.removeOperand(NumOps - 1); // Remove explicit ST(0) operand
1214   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1215   MI.addOperand(
1216       MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true));
1217 
1218   if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1219       MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1220       MI.getOpcode() == X86::ST_FP80m) {
1221     if (StackTop == 0)
1222       report_fatal_error("Stack empty??");
1223     --StackTop;
1224   } else if (KillsSrc) { // Last use of operand?
1225     popStackAfter(I);
1226   }
1227 
1228   MI.dropDebugNumber();
1229 }
1230 
1231 
1232 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1233 /// replace the value with a newly computed value.  These instructions may have
1234 /// non-fp operands after their FP operands.
1235 ///
1236 ///  Examples:
1237 ///     R1 = fchs R2
1238 ///     R1 = fadd R2, [mem]
1239 ///
1240 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1241   MachineInstr &MI = *I;
1242 #ifndef NDEBUG
1243   unsigned NumOps = MI.getDesc().getNumOperands();
1244   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1245 #endif
1246 
1247   // Is this the last use of the source register?
1248   unsigned Reg = getFPReg(MI.getOperand(1));
1249   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1250 
1251   if (KillsSrc) {
1252     // If this is the last use of the source register, just make sure it's on
1253     // the top of the stack.
1254     moveToTop(Reg, I);
1255     if (StackTop == 0)
1256       report_fatal_error("Stack cannot be empty!");
1257     --StackTop;
1258     pushReg(getFPReg(MI.getOperand(0)));
1259   } else {
1260     // If this is not the last use of the source register, _copy_ it to the top
1261     // of the stack.
1262     duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1263   }
1264 
1265   // Change from the pseudo instruction to the concrete instruction.
1266   MI.removeOperand(1); // Drop the source operand.
1267   MI.removeOperand(0); // Drop the destination operand.
1268   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1269   MI.dropDebugNumber();
1270 }
1271 
1272 
1273 //===----------------------------------------------------------------------===//
1274 // Define tables of various ways to map pseudo instructions
1275 //
1276 
1277 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1278 static const TableEntry ForwardST0Table[] = {
1279   { X86::ADD_Fp32  , X86::ADD_FST0r },
1280   { X86::ADD_Fp64  , X86::ADD_FST0r },
1281   { X86::ADD_Fp80  , X86::ADD_FST0r },
1282   { X86::DIV_Fp32  , X86::DIV_FST0r },
1283   { X86::DIV_Fp64  , X86::DIV_FST0r },
1284   { X86::DIV_Fp80  , X86::DIV_FST0r },
1285   { X86::MUL_Fp32  , X86::MUL_FST0r },
1286   { X86::MUL_Fp64  , X86::MUL_FST0r },
1287   { X86::MUL_Fp80  , X86::MUL_FST0r },
1288   { X86::SUB_Fp32  , X86::SUB_FST0r },
1289   { X86::SUB_Fp64  , X86::SUB_FST0r },
1290   { X86::SUB_Fp80  , X86::SUB_FST0r },
1291 };
1292 
1293 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1294 static const TableEntry ReverseST0Table[] = {
1295   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1296   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1297   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1298   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1299   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1300   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1301   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1302   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1303   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1304   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1305   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1306   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1307 };
1308 
1309 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1310 static const TableEntry ForwardSTiTable[] = {
1311   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1312   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1313   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1314   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1315   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1316   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1317   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1318   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1319   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1320   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1321   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1322   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1323 };
1324 
1325 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1326 static const TableEntry ReverseSTiTable[] = {
1327   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1328   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1329   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1330   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1331   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1332   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1333   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1334   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1335   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1336   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1337   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1338   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1339 };
1340 
1341 
1342 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1343 /// instructions which need to be simplified and possibly transformed.
1344 ///
1345 /// Result: ST(0) = fsub  ST(0), ST(i)
1346 ///         ST(i) = fsub  ST(0), ST(i)
1347 ///         ST(0) = fsubr ST(0), ST(i)
1348 ///         ST(i) = fsubr ST(0), ST(i)
1349 ///
1350 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1351   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1352   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1353   MachineInstr &MI = *I;
1354 
1355   unsigned NumOperands = MI.getDesc().getNumOperands();
1356   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1357   unsigned Dest = getFPReg(MI.getOperand(0));
1358   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1359   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1360   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1361   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1362   const DebugLoc &dl = MI.getDebugLoc();
1363 
1364   unsigned TOS = getStackEntry(0);
1365 
1366   // One of our operands must be on the top of the stack.  If neither is yet, we
1367   // need to move one.
1368   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1369     // We can choose to move either operand to the top of the stack.  If one of
1370     // the operands is killed by this instruction, we want that one so that we
1371     // can update right on top of the old version.
1372     if (KillsOp0) {
1373       moveToTop(Op0, I);         // Move dead operand to TOS.
1374       TOS = Op0;
1375     } else if (KillsOp1) {
1376       moveToTop(Op1, I);
1377       TOS = Op1;
1378     } else {
1379       // All of the operands are live after this instruction executes, so we
1380       // cannot update on top of any operand.  Because of this, we must
1381       // duplicate one of the stack elements to the top.  It doesn't matter
1382       // which one we pick.
1383       //
1384       duplicateToTop(Op0, Dest, I);
1385       Op0 = TOS = Dest;
1386       KillsOp0 = true;
1387     }
1388   } else if (!KillsOp0 && !KillsOp1) {
1389     // If we DO have one of our operands at the top of the stack, but we don't
1390     // have a dead operand, we must duplicate one of the operands to a new slot
1391     // on the stack.
1392     duplicateToTop(Op0, Dest, I);
1393     Op0 = TOS = Dest;
1394     KillsOp0 = true;
1395   }
1396 
1397   // Now we know that one of our operands is on the top of the stack, and at
1398   // least one of our operands is killed by this instruction.
1399   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1400          "Stack conditions not set up right!");
1401 
1402   // We decide which form to use based on what is on the top of the stack, and
1403   // which operand is killed by this instruction.
1404   ArrayRef<TableEntry> InstTable;
1405   bool isForward = TOS == Op0;
1406   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1407   if (updateST0) {
1408     if (isForward)
1409       InstTable = ForwardST0Table;
1410     else
1411       InstTable = ReverseST0Table;
1412   } else {
1413     if (isForward)
1414       InstTable = ForwardSTiTable;
1415     else
1416       InstTable = ReverseSTiTable;
1417   }
1418 
1419   int Opcode = Lookup(InstTable, MI.getOpcode());
1420   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1421 
1422   // NotTOS - The register which is not on the top of stack...
1423   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1424 
1425   // Replace the old instruction with a new instruction
1426   MBB->remove(&*I++);
1427   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1428 
1429   if (!MI.mayRaiseFPException())
1430     I->setFlag(MachineInstr::MIFlag::NoFPExcept);
1431 
1432   // If both operands are killed, pop one off of the stack in addition to
1433   // overwriting the other one.
1434   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1435     assert(!updateST0 && "Should have updated other operand!");
1436     popStackAfter(I);   // Pop the top of stack
1437   }
1438 
1439   // Update stack information so that we know the destination register is now on
1440   // the stack.
1441   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1442   assert(UpdatedSlot < StackTop && Dest < 7);
1443   Stack[UpdatedSlot]   = Dest;
1444   RegMap[Dest]         = UpdatedSlot;
1445   MBB->getParent()->deleteMachineInstr(&MI); // Remove the old instruction
1446 }
1447 
1448 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1449 /// register arguments and no explicit destinations.
1450 ///
1451 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1452   MachineInstr &MI = *I;
1453 
1454   unsigned NumOperands = MI.getDesc().getNumOperands();
1455   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1456   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1457   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1458   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1459   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1460 
1461   // Make sure the first operand is on the top of stack, the other one can be
1462   // anywhere.
1463   moveToTop(Op0, I);
1464 
1465   // Change from the pseudo instruction to the concrete instruction.
1466   MI.getOperand(0).setReg(getSTReg(Op1));
1467   MI.removeOperand(1);
1468   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1469   MI.dropDebugNumber();
1470 
1471   // If any of the operands are killed by this instruction, free them.
1472   if (KillsOp0) freeStackSlotAfter(I, Op0);
1473   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1474 }
1475 
1476 /// handleCondMovFP - Handle two address conditional move instructions.  These
1477 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1478 /// instructions require that the first operand is at the top of the stack, but
1479 /// otherwise don't modify the stack at all.
1480 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1481   MachineInstr &MI = *I;
1482 
1483   unsigned Op0 = getFPReg(MI.getOperand(0));
1484   unsigned Op1 = getFPReg(MI.getOperand(2));
1485   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1486 
1487   // The first operand *must* be on the top of the stack.
1488   moveToTop(Op0, I);
1489 
1490   // Change the second operand to the stack register that the operand is in.
1491   // Change from the pseudo instruction to the concrete instruction.
1492   MI.removeOperand(0);
1493   MI.removeOperand(1);
1494   MI.getOperand(0).setReg(getSTReg(Op1));
1495   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1496   MI.dropDebugNumber();
1497 
1498   // If we kill the second operand, make sure to pop it from the stack.
1499   if (Op0 != Op1 && KillsOp1) {
1500     // Get this value off of the register stack.
1501     freeStackSlotAfter(I, Op1);
1502   }
1503 }
1504 
1505 
1506 /// handleSpecialFP - Handle special instructions which behave unlike other
1507 /// floating point instructions.  This is primarily intended for use by pseudo
1508 /// instructions.
1509 ///
1510 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1511   MachineInstr &MI = *Inst;
1512 
1513   if (MI.isCall()) {
1514     handleCall(Inst);
1515     return;
1516   }
1517 
1518   if (MI.isReturn()) {
1519     handleReturn(Inst);
1520     return;
1521   }
1522 
1523   switch (MI.getOpcode()) {
1524   default: llvm_unreachable("Unknown SpecialFP instruction!");
1525   case TargetOpcode::COPY: {
1526     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1527     const MachineOperand &MO1 = MI.getOperand(1);
1528     const MachineOperand &MO0 = MI.getOperand(0);
1529     bool KillsSrc = MI.killsRegister(MO1.getReg());
1530 
1531     // FP <- FP copy.
1532     unsigned DstFP = getFPReg(MO0);
1533     unsigned SrcFP = getFPReg(MO1);
1534     assert(isLive(SrcFP) && "Cannot copy dead register");
1535     if (KillsSrc) {
1536       // If the input operand is killed, we can just change the owner of the
1537       // incoming stack slot into the result.
1538       unsigned Slot = getSlot(SrcFP);
1539       Stack[Slot] = DstFP;
1540       RegMap[DstFP] = Slot;
1541     } else {
1542       // For COPY we just duplicate the specified value to a new stack slot.
1543       // This could be made better, but would require substantial changes.
1544       duplicateToTop(SrcFP, DstFP, Inst);
1545     }
1546     break;
1547   }
1548 
1549   case TargetOpcode::IMPLICIT_DEF: {
1550     // All FP registers must be explicitly defined, so load a 0 instead.
1551     unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1552     LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1553     BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1554     pushReg(Reg);
1555     break;
1556   }
1557 
1558   case TargetOpcode::INLINEASM:
1559   case TargetOpcode::INLINEASM_BR: {
1560     // The inline asm MachineInstr currently only *uses* FP registers for the
1561     // 'f' constraint.  These should be turned into the current ST(x) register
1562     // in the machine instr.
1563     //
1564     // There are special rules for x87 inline assembly. The compiler must know
1565     // exactly how many registers are popped and pushed implicitly by the asm.
1566     // Otherwise it is not possible to restore the stack state after the inline
1567     // asm.
1568     //
1569     // There are 3 kinds of input operands:
1570     //
1571     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1572     //    popped input operand must be in a fixed stack slot, and it is either
1573     //    tied to an output operand, or in the clobber list. The MI has ST use
1574     //    and def operands for these inputs.
1575     //
1576     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1577     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1578     //    following the popped inputs. A fixed input operand cannot be tied to
1579     //    an output or appear in the clobber list. The MI has ST use operands
1580     //    and no defs for these inputs.
1581     //
1582     // 3. Preserved inputs. These inputs use the "f" constraint which is
1583     //    represented as an FP register. The inline asm won't change these
1584     //    stack slots.
1585     //
1586     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1587     // registers do not count as output operands. The inline asm changes the
1588     // stack as if it popped all the popped inputs and then pushed all the
1589     // output operands.
1590 
1591     // Scan the assembly for ST registers used, defined and clobbered. We can
1592     // only tell clobbers from defs by looking at the asm descriptor.
1593     unsigned STUses = 0, STDefs = 0, STClobbers = 0;
1594     unsigned NumOps = 0;
1595     SmallSet<unsigned, 1> FRegIdx;
1596     unsigned RCID;
1597 
1598     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1599          i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1600       unsigned Flags = MI.getOperand(i).getImm();
1601 
1602       NumOps = InlineAsm::getNumOperandRegisters(Flags);
1603       if (NumOps != 1)
1604         continue;
1605       const MachineOperand &MO = MI.getOperand(i + 1);
1606       if (!MO.isReg())
1607         continue;
1608       unsigned STReg = MO.getReg() - X86::FP0;
1609       if (STReg >= 8)
1610         continue;
1611 
1612       // If the flag has a register class constraint, this must be an operand
1613       // with constraint "f". Record its index and continue.
1614       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1615         FRegIdx.insert(i + 1);
1616         continue;
1617       }
1618 
1619       switch (InlineAsm::getKind(Flags)) {
1620       case InlineAsm::Kind_RegUse:
1621         STUses |= (1u << STReg);
1622         break;
1623       case InlineAsm::Kind_RegDef:
1624       case InlineAsm::Kind_RegDefEarlyClobber:
1625         STDefs |= (1u << STReg);
1626         break;
1627       case InlineAsm::Kind_Clobber:
1628         STClobbers |= (1u << STReg);
1629         break;
1630       default:
1631         break;
1632       }
1633     }
1634 
1635     if (STUses && !isMask_32(STUses))
1636       MI.emitError("fixed input regs must be last on the x87 stack");
1637     unsigned NumSTUses = countTrailingOnes(STUses);
1638 
1639     // Defs must be contiguous from the stack top. ST0-STn.
1640     if (STDefs && !isMask_32(STDefs)) {
1641       MI.emitError("output regs must be last on the x87 stack");
1642       STDefs = NextPowerOf2(STDefs) - 1;
1643     }
1644     unsigned NumSTDefs = countTrailingOnes(STDefs);
1645 
1646     // So must the clobbered stack slots. ST0-STm, m >= n.
1647     if (STClobbers && !isMask_32(STDefs | STClobbers))
1648       MI.emitError("clobbers must be last on the x87 stack");
1649 
1650     // Popped inputs are the ones that are also clobbered or defined.
1651     unsigned STPopped = STUses & (STDefs | STClobbers);
1652     if (STPopped && !isMask_32(STPopped))
1653       MI.emitError("implicitly popped regs must be last on the x87 stack");
1654     unsigned NumSTPopped = countTrailingOnes(STPopped);
1655 
1656     LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1657                       << NumSTPopped << ", and defines " << NumSTDefs
1658                       << " regs.\n");
1659 
1660 #ifndef NDEBUG
1661     // If any input operand uses constraint "f", all output register
1662     // constraints must be early-clobber defs.
1663     for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1664       if (FRegIdx.count(I)) {
1665         assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1666                "Operands with constraint \"f\" cannot overlap with defs");
1667       }
1668 #endif
1669 
1670     // Collect all FP registers (register operands with constraints "t", "u",
1671     // and "f") to kill afer the instruction.
1672     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1673     for (const MachineOperand &Op : MI.operands()) {
1674       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1675         continue;
1676       unsigned FPReg = getFPReg(Op);
1677 
1678       // If we kill this operand, make sure to pop it from the stack after the
1679       // asm.  We just remember it for now, and pop them all off at the end in
1680       // a batch.
1681       if (Op.isUse() && Op.isKill())
1682         FPKills |= 1U << FPReg;
1683     }
1684 
1685     // Do not include registers that are implicitly popped by defs/clobbers.
1686     FPKills &= ~(STDefs | STClobbers);
1687 
1688     // Now we can rearrange the live registers to match what was requested.
1689     unsigned char STUsesArray[8];
1690 
1691     for (unsigned I = 0; I < NumSTUses; ++I)
1692       STUsesArray[I] = I;
1693 
1694     shuffleStackTop(STUsesArray, NumSTUses, Inst);
1695     LLVM_DEBUG({
1696       dbgs() << "Before asm: ";
1697       dumpStack();
1698     });
1699 
1700     // With the stack layout fixed, rewrite the FP registers.
1701     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1702       MachineOperand &Op = MI.getOperand(i);
1703       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1704         continue;
1705 
1706       unsigned FPReg = getFPReg(Op);
1707 
1708       if (FRegIdx.count(i))
1709         // Operand with constraint "f".
1710         Op.setReg(getSTReg(FPReg));
1711       else
1712         // Operand with a single register class constraint ("t" or "u").
1713         Op.setReg(X86::ST0 + FPReg);
1714     }
1715 
1716     // Simulate the inline asm popping its inputs and pushing its outputs.
1717     StackTop -= NumSTPopped;
1718 
1719     for (unsigned i = 0; i < NumSTDefs; ++i)
1720       pushReg(NumSTDefs - i - 1);
1721 
1722     // If this asm kills any FP registers (is the last use of them) we must
1723     // explicitly emit pop instructions for them.  Do this now after the asm has
1724     // executed so that the ST(x) numbers are not off (which would happen if we
1725     // did this inline with operand rewriting).
1726     //
1727     // Note: this might be a non-optimal pop sequence.  We might be able to do
1728     // better by trying to pop in stack order or something.
1729     while (FPKills) {
1730       unsigned FPReg = countTrailingZeros(FPKills);
1731       if (isLive(FPReg))
1732         freeStackSlotAfter(Inst, FPReg);
1733       FPKills &= ~(1U << FPReg);
1734     }
1735 
1736     // Don't delete the inline asm!
1737     return;
1738   }
1739   }
1740 
1741   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
1742 
1743   // We want to leave I pointing to the previous instruction, but what if we
1744   // just erased the first instruction?
1745   if (Inst == MBB->begin()) {
1746     LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1747     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1748   } else
1749     --Inst;
1750 }
1751 
1752 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1753   const TargetRegisterInfo &TRI =
1754       *MBB.getParent()->getSubtarget().getRegisterInfo();
1755   LivePhysRegs LPR(TRI);
1756 
1757   LPR.addLiveOuts(MBB);
1758 
1759   for (MachineInstr &MI : llvm::reverse(MBB)) {
1760     if (MI.isDebugInstr())
1761       continue;
1762 
1763     std::bitset<8> Defs;
1764     SmallVector<MachineOperand *, 2> Uses;
1765 
1766     for (auto &MO : MI.operands()) {
1767       if (!MO.isReg())
1768         continue;
1769 
1770       unsigned Reg = MO.getReg() - X86::FP0;
1771 
1772       if (Reg >= 8)
1773         continue;
1774 
1775       if (MO.isDef()) {
1776         Defs.set(Reg);
1777         if (!LPR.contains(MO.getReg()))
1778           MO.setIsDead();
1779       } else
1780         Uses.push_back(&MO);
1781     }
1782 
1783     for (auto *MO : Uses)
1784       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1785         MO->setIsKill();
1786 
1787     LPR.stepBackward(MI);
1788   }
1789 }
1790