1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the pass which converts floating point instructions from 10 // pseudo registers into register stack instructions. This pass uses live 11 // variable information to indicate where the FPn registers are used and their 12 // lifetimes. 13 // 14 // The x87 hardware tracks liveness of the stack registers, so it is necessary 15 // to implement exact liveness tracking between basic blocks. The CFG edges are 16 // partitioned into bundles where the same FP registers must be live in 17 // identical stack positions. Instructions are inserted at the end of each basic 18 // block to rearrange the live registers to match the outgoing bundle. 19 // 20 // This approach avoids splitting critical edges at the potential cost of more 21 // live register shuffling instructions when critical edges are present. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "X86.h" 26 #include "X86InstrInfo.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/EdgeBundles.h" 34 #include "llvm/CodeGen/LivePhysRegs.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include <algorithm> 48 #include <bitset> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86-codegen" 52 53 STATISTIC(NumFXCH, "Number of fxch instructions inserted"); 54 STATISTIC(NumFP , "Number of floating point instructions"); 55 56 namespace { 57 const unsigned ScratchFPReg = 7; 58 59 struct FPS : public MachineFunctionPass { 60 static char ID; 61 FPS() : MachineFunctionPass(ID) { 62 // This is really only to keep valgrind quiet. 63 // The logic in isLive() is too much for it. 64 memset(Stack, 0, sizeof(Stack)); 65 memset(RegMap, 0, sizeof(RegMap)); 66 } 67 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.setPreservesCFG(); 70 AU.addRequired<EdgeBundles>(); 71 AU.addPreservedID(MachineLoopInfoID); 72 AU.addPreservedID(MachineDominatorsID); 73 MachineFunctionPass::getAnalysisUsage(AU); 74 } 75 76 bool runOnMachineFunction(MachineFunction &MF) override; 77 78 MachineFunctionProperties getRequiredProperties() const override { 79 return MachineFunctionProperties().set( 80 MachineFunctionProperties::Property::NoVRegs); 81 } 82 83 StringRef getPassName() const override { return "X86 FP Stackifier"; } 84 85 private: 86 const TargetInstrInfo *TII; // Machine instruction info. 87 88 // Two CFG edges are related if they leave the same block, or enter the same 89 // block. The transitive closure of an edge under this relation is a 90 // LiveBundle. It represents a set of CFG edges where the live FP stack 91 // registers must be allocated identically in the x87 stack. 92 // 93 // A LiveBundle is usually all the edges leaving a block, or all the edges 94 // entering a block, but it can contain more edges if critical edges are 95 // present. 96 // 97 // The set of live FP registers in a LiveBundle is calculated by bundleCFG, 98 // but the exact mapping of FP registers to stack slots is fixed later. 99 struct LiveBundle { 100 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. 101 unsigned Mask; 102 103 // Number of pre-assigned live registers in FixStack. This is 0 when the 104 // stack order has not yet been fixed. 105 unsigned FixCount; 106 107 // Assigned stack order for live-in registers. 108 // FixStack[i] == getStackEntry(i) for all i < FixCount. 109 unsigned char FixStack[8]; 110 111 LiveBundle() : Mask(0), FixCount(0) {} 112 113 // Have the live registers been assigned a stack order yet? 114 bool isFixed() const { return !Mask || FixCount; } 115 }; 116 117 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges 118 // with no live FP registers. 119 SmallVector<LiveBundle, 8> LiveBundles; 120 121 // The edge bundle analysis provides indices into the LiveBundles vector. 122 EdgeBundles *Bundles; 123 124 // Return a bitmask of FP registers in block's live-in list. 125 static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) { 126 unsigned Mask = 0; 127 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(); 128 I != MBB->livein_end(); ) { 129 MCPhysReg Reg = I->PhysReg; 130 static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums"); 131 if (Reg >= X86::FP0 && Reg <= X86::FP6) { 132 Mask |= 1 << (Reg - X86::FP0); 133 if (RemoveFPs) { 134 I = MBB->removeLiveIn(I); 135 continue; 136 } 137 } 138 ++I; 139 } 140 return Mask; 141 } 142 143 // Partition all the CFG edges into LiveBundles. 144 void bundleCFGRecomputeKillFlags(MachineFunction &MF); 145 146 MachineBasicBlock *MBB; // Current basic block 147 148 // The hardware keeps track of how many FP registers are live, so we have 149 // to model that exactly. Usually, each live register corresponds to an 150 // FP<n> register, but when dealing with calls, returns, and inline 151 // assembly, it is sometimes necessary to have live scratch registers. 152 unsigned Stack[8]; // FP<n> Registers in each stack slot... 153 unsigned StackTop; // The current top of the FP stack. 154 155 enum { 156 NumFPRegs = 8 // Including scratch pseudo-registers. 157 }; 158 159 // For each live FP<n> register, point to its Stack[] entry. 160 // The first entries correspond to FP0-FP6, the rest are scratch registers 161 // used when we need slightly different live registers than what the 162 // register allocator thinks. 163 unsigned RegMap[NumFPRegs]; 164 165 // Set up our stack model to match the incoming registers to MBB. 166 void setupBlockStack(); 167 168 // Shuffle live registers to match the expectations of successor blocks. 169 void finishBlockStack(); 170 171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 172 void dumpStack() const { 173 dbgs() << "Stack contents:"; 174 for (unsigned i = 0; i != StackTop; ++i) { 175 dbgs() << " FP" << Stack[i]; 176 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); 177 } 178 } 179 #endif 180 181 /// getSlot - Return the stack slot number a particular register number is 182 /// in. 183 unsigned getSlot(unsigned RegNo) const { 184 assert(RegNo < NumFPRegs && "Regno out of range!"); 185 return RegMap[RegNo]; 186 } 187 188 /// isLive - Is RegNo currently live in the stack? 189 bool isLive(unsigned RegNo) const { 190 unsigned Slot = getSlot(RegNo); 191 return Slot < StackTop && Stack[Slot] == RegNo; 192 } 193 194 /// getStackEntry - Return the X86::FP<n> register in register ST(i). 195 unsigned getStackEntry(unsigned STi) const { 196 if (STi >= StackTop) 197 report_fatal_error("Access past stack top!"); 198 return Stack[StackTop-1-STi]; 199 } 200 201 /// getSTReg - Return the X86::ST(i) register which contains the specified 202 /// FP<RegNo> register. 203 unsigned getSTReg(unsigned RegNo) const { 204 return StackTop - 1 - getSlot(RegNo) + X86::ST0; 205 } 206 207 // pushReg - Push the specified FP<n> register onto the stack. 208 void pushReg(unsigned Reg) { 209 assert(Reg < NumFPRegs && "Register number out of range!"); 210 if (StackTop >= 8) 211 report_fatal_error("Stack overflow!"); 212 Stack[StackTop] = Reg; 213 RegMap[Reg] = StackTop++; 214 } 215 216 // popReg - Pop a register from the stack. 217 void popReg() { 218 if (StackTop == 0) 219 report_fatal_error("Cannot pop empty stack!"); 220 RegMap[Stack[--StackTop]] = ~0; // Update state 221 } 222 223 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } 224 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { 225 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 226 if (isAtTop(RegNo)) return; 227 228 unsigned STReg = getSTReg(RegNo); 229 unsigned RegOnTop = getStackEntry(0); 230 231 // Swap the slots the regs are in. 232 std::swap(RegMap[RegNo], RegMap[RegOnTop]); 233 234 // Swap stack slot contents. 235 if (RegMap[RegOnTop] >= StackTop) 236 report_fatal_error("Access past stack top!"); 237 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); 238 239 // Emit an fxch to update the runtime processors version of the state. 240 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); 241 ++NumFXCH; 242 } 243 244 void duplicateToTop(unsigned RegNo, unsigned AsReg, 245 MachineBasicBlock::iterator I) { 246 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 247 unsigned STReg = getSTReg(RegNo); 248 pushReg(AsReg); // New register on top of stack 249 250 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); 251 } 252 253 /// popStackAfter - Pop the current value off of the top of the FP stack 254 /// after the specified instruction. 255 void popStackAfter(MachineBasicBlock::iterator &I); 256 257 /// freeStackSlotAfter - Free the specified register from the register 258 /// stack, so that it is no longer in a register. If the register is 259 /// currently at the top of the stack, we just pop the current instruction, 260 /// otherwise we store the current top-of-stack into the specified slot, 261 /// then pop the top of stack. 262 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); 263 264 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted 265 /// instruction. 266 MachineBasicBlock::iterator 267 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); 268 269 /// Adjust the live registers to be the set in Mask. 270 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); 271 272 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is 273 /// st(0), FP reg FixStack[1] is st(1) etc. 274 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, 275 MachineBasicBlock::iterator I); 276 277 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 278 279 void handleCall(MachineBasicBlock::iterator &I); 280 void handleReturn(MachineBasicBlock::iterator &I); 281 void handleZeroArgFP(MachineBasicBlock::iterator &I); 282 void handleOneArgFP(MachineBasicBlock::iterator &I); 283 void handleOneArgFPRW(MachineBasicBlock::iterator &I); 284 void handleTwoArgFP(MachineBasicBlock::iterator &I); 285 void handleCompareFP(MachineBasicBlock::iterator &I); 286 void handleCondMovFP(MachineBasicBlock::iterator &I); 287 void handleSpecialFP(MachineBasicBlock::iterator &I); 288 289 // Check if a COPY instruction is using FP registers. 290 static bool isFPCopy(MachineInstr &MI) { 291 unsigned DstReg = MI.getOperand(0).getReg(); 292 unsigned SrcReg = MI.getOperand(1).getReg(); 293 294 return X86::RFP80RegClass.contains(DstReg) || 295 X86::RFP80RegClass.contains(SrcReg); 296 } 297 298 void setKillFlags(MachineBasicBlock &MBB) const; 299 }; 300 } 301 302 char FPS::ID = 0; 303 304 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier", 305 false, false) 306 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 307 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier", 308 false, false) 309 310 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } 311 312 /// getFPReg - Return the X86::FPx register number for the specified operand. 313 /// For example, this returns 3 for X86::FP3. 314 static unsigned getFPReg(const MachineOperand &MO) { 315 assert(MO.isReg() && "Expected an FP register!"); 316 unsigned Reg = MO.getReg(); 317 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); 318 return Reg - X86::FP0; 319 } 320 321 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP 322 /// register references into FP stack references. 323 /// 324 bool FPS::runOnMachineFunction(MachineFunction &MF) { 325 // We only need to run this pass if there are any FP registers used in this 326 // function. If it is all integer, there is nothing for us to do! 327 bool FPIsUsed = false; 328 329 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!"); 330 const MachineRegisterInfo &MRI = MF.getRegInfo(); 331 for (unsigned i = 0; i <= 6; ++i) 332 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) { 333 FPIsUsed = true; 334 break; 335 } 336 337 // Early exit. 338 if (!FPIsUsed) return false; 339 340 Bundles = &getAnalysis<EdgeBundles>(); 341 TII = MF.getSubtarget().getInstrInfo(); 342 343 // Prepare cross-MBB liveness. 344 bundleCFGRecomputeKillFlags(MF); 345 346 StackTop = 0; 347 348 // Process the function in depth first order so that we process at least one 349 // of the predecessors for every reachable block in the function. 350 df_iterator_default_set<MachineBasicBlock*> Processed; 351 MachineBasicBlock *Entry = &MF.front(); 352 353 LiveBundle &Bundle = 354 LiveBundles[Bundles->getBundle(Entry->getNumber(), false)]; 355 356 // In regcall convention, some FP registers may not be passed through 357 // the stack, so they will need to be assigned to the stack first 358 if ((Entry->getParent()->getFunction().getCallingConv() == 359 CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) { 360 // In the register calling convention, up to one FP argument could be 361 // saved in the first FP register. 362 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means 363 // that the FP registers contain arguments. 364 // The actual value is passed in FP0. 365 // Here we fix the stack and mark FP0 as pre-assigned register. 366 assert((Bundle.Mask & 0xFE) == 0 && 367 "Only FP0 could be passed as an argument"); 368 Bundle.FixCount = 1; 369 Bundle.FixStack[0] = 0; 370 } 371 372 bool Changed = false; 373 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed)) 374 Changed |= processBasicBlock(MF, *BB); 375 376 // Process any unreachable blocks in arbitrary order now. 377 if (MF.size() != Processed.size()) 378 for (MachineBasicBlock &BB : MF) 379 if (Processed.insert(&BB).second) 380 Changed |= processBasicBlock(MF, BB); 381 382 LiveBundles.clear(); 383 384 return Changed; 385 } 386 387 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and 388 /// live-out sets for the FP registers. Consistent means that the set of 389 /// registers live-out from a block is identical to the live-in set of all 390 /// successors. This is not enforced by the normal live-in lists since 391 /// registers may be implicitly defined, or not used by all successors. 392 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) { 393 assert(LiveBundles.empty() && "Stale data in LiveBundles"); 394 LiveBundles.resize(Bundles->getNumBundles()); 395 396 // Gather the actual live-in masks for all MBBs. 397 for (MachineBasicBlock &MBB : MF) { 398 setKillFlags(MBB); 399 400 const unsigned Mask = calcLiveInMask(&MBB, false); 401 if (!Mask) 402 continue; 403 // Update MBB ingoing bundle mask. 404 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask; 405 } 406 } 407 408 /// processBasicBlock - Loop over all of the instructions in the basic block, 409 /// transforming FP instructions into their stack form. 410 /// 411 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { 412 bool Changed = false; 413 MBB = &BB; 414 415 setupBlockStack(); 416 417 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { 418 MachineInstr &MI = *I; 419 uint64_t Flags = MI.getDesc().TSFlags; 420 421 unsigned FPInstClass = Flags & X86II::FPTypeMask; 422 if (MI.isInlineAsm()) 423 FPInstClass = X86II::SpecialFP; 424 425 if (MI.isCopy() && isFPCopy(MI)) 426 FPInstClass = X86II::SpecialFP; 427 428 if (MI.isImplicitDef() && 429 X86::RFP80RegClass.contains(MI.getOperand(0).getReg())) 430 FPInstClass = X86II::SpecialFP; 431 432 if (MI.isCall()) 433 FPInstClass = X86II::SpecialFP; 434 435 if (FPInstClass == X86II::NotFP) 436 continue; // Efficiently ignore non-fp insts! 437 438 MachineInstr *PrevMI = nullptr; 439 if (I != BB.begin()) 440 PrevMI = &*std::prev(I); 441 442 ++NumFP; // Keep track of # of pseudo instrs 443 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI); 444 445 // Get dead variables list now because the MI pointer may be deleted as part 446 // of processing! 447 SmallVector<unsigned, 8> DeadRegs; 448 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 449 const MachineOperand &MO = MI.getOperand(i); 450 if (MO.isReg() && MO.isDead()) 451 DeadRegs.push_back(MO.getReg()); 452 } 453 454 switch (FPInstClass) { 455 case X86II::ZeroArgFP: handleZeroArgFP(I); break; 456 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) 457 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) 458 case X86II::TwoArgFP: handleTwoArgFP(I); break; 459 case X86II::CompareFP: handleCompareFP(I); break; 460 case X86II::CondMovFP: handleCondMovFP(I); break; 461 case X86II::SpecialFP: handleSpecialFP(I); break; 462 default: llvm_unreachable("Unknown FP Type!"); 463 } 464 465 // Check to see if any of the values defined by this instruction are dead 466 // after definition. If so, pop them. 467 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { 468 unsigned Reg = DeadRegs[i]; 469 // Check if Reg is live on the stack. An inline-asm register operand that 470 // is in the clobber list and marked dead might not be live on the stack. 471 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers"); 472 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) { 473 LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n"); 474 freeStackSlotAfter(I, Reg-X86::FP0); 475 } 476 } 477 478 // Print out all of the instructions expanded to if -debug 479 LLVM_DEBUG({ 480 MachineBasicBlock::iterator PrevI = PrevMI; 481 if (I == PrevI) { 482 dbgs() << "Just deleted pseudo instruction\n"; 483 } else { 484 MachineBasicBlock::iterator Start = I; 485 // Rewind to first instruction newly inserted. 486 while (Start != BB.begin() && std::prev(Start) != PrevI) 487 --Start; 488 dbgs() << "Inserted instructions:\n\t"; 489 Start->print(dbgs()); 490 while (++Start != std::next(I)) { 491 } 492 } 493 dumpStack(); 494 }); 495 (void)PrevMI; 496 497 Changed = true; 498 } 499 500 finishBlockStack(); 501 502 return Changed; 503 } 504 505 /// setupBlockStack - Use the live bundles to set up our model of the stack 506 /// to match predecessors' live out stack. 507 void FPS::setupBlockStack() { 508 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB) 509 << " derived from " << MBB->getName() << ".\n"); 510 StackTop = 0; 511 // Get the live-in bundle for MBB. 512 const LiveBundle &Bundle = 513 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; 514 515 if (!Bundle.Mask) { 516 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n"); 517 return; 518 } 519 520 // Depth-first iteration should ensure that we always have an assigned stack. 521 assert(Bundle.isFixed() && "Reached block before any predecessors"); 522 523 // Push the fixed live-in registers. 524 for (unsigned i = Bundle.FixCount; i > 0; --i) { 525 LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp" 526 << unsigned(Bundle.FixStack[i - 1]) << '\n'); 527 pushReg(Bundle.FixStack[i-1]); 528 } 529 530 // Kill off unwanted live-ins. This can happen with a critical edge. 531 // FIXME: We could keep these live registers around as zombies. They may need 532 // to be revived at the end of a short block. It might save a few instrs. 533 unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true); 534 adjustLiveRegs(Mask, MBB->begin()); 535 LLVM_DEBUG(MBB->dump()); 536 } 537 538 /// finishBlockStack - Revive live-outs that are implicitly defined out of 539 /// MBB. Shuffle live registers to match the expected fixed stack of any 540 /// predecessors, and ensure that all predecessors are expecting the same 541 /// stack. 542 void FPS::finishBlockStack() { 543 // The RET handling below takes care of return blocks for us. 544 if (MBB->succ_empty()) 545 return; 546 547 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB) 548 << " derived from " << MBB->getName() << ".\n"); 549 550 // Get MBB's live-out bundle. 551 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); 552 LiveBundle &Bundle = LiveBundles[BundleIdx]; 553 554 // We may need to kill and define some registers to match successors. 555 // FIXME: This can probably be combined with the shuffle below. 556 MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); 557 adjustLiveRegs(Bundle.Mask, Term); 558 559 if (!Bundle.Mask) { 560 LLVM_DEBUG(dbgs() << "No live-outs.\n"); 561 return; 562 } 563 564 // Has the stack order been fixed yet? 565 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": "); 566 if (Bundle.isFixed()) { 567 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n"); 568 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); 569 } else { 570 // Not fixed yet, we get to choose. 571 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n"); 572 Bundle.FixCount = StackTop; 573 for (unsigned i = 0; i < StackTop; ++i) 574 Bundle.FixStack[i] = getStackEntry(i); 575 } 576 } 577 578 579 //===----------------------------------------------------------------------===// 580 // Efficient Lookup Table Support 581 //===----------------------------------------------------------------------===// 582 583 namespace { 584 struct TableEntry { 585 uint16_t from; 586 uint16_t to; 587 bool operator<(const TableEntry &TE) const { return from < TE.from; } 588 friend bool operator<(const TableEntry &TE, unsigned V) { 589 return TE.from < V; 590 } 591 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, 592 const TableEntry &TE) { 593 return V < TE.from; 594 } 595 }; 596 } 597 598 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) { 599 const TableEntry *I = llvm::lower_bound(Table, Opcode); 600 if (I != Table.end() && I->from == Opcode) 601 return I->to; 602 return -1; 603 } 604 605 #ifdef NDEBUG 606 #define ASSERT_SORTED(TABLE) 607 #else 608 #define ASSERT_SORTED(TABLE) \ 609 { \ 610 static std::atomic<bool> TABLE##Checked(false); \ 611 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \ 612 assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) && \ 613 "All lookup tables must be sorted for efficient access!"); \ 614 TABLE##Checked.store(true, std::memory_order_relaxed); \ 615 } \ 616 } 617 #endif 618 619 //===----------------------------------------------------------------------===// 620 // Register File -> Register Stack Mapping Methods 621 //===----------------------------------------------------------------------===// 622 623 // OpcodeTable - Sorted map of register instructions to their stack version. 624 // The first element is an register file pseudo instruction, the second is the 625 // concrete X86 instruction which uses the register stack. 626 // 627 static const TableEntry OpcodeTable[] = { 628 { X86::ABS_Fp32 , X86::ABS_F }, 629 { X86::ABS_Fp64 , X86::ABS_F }, 630 { X86::ABS_Fp80 , X86::ABS_F }, 631 { X86::ADD_Fp32m , X86::ADD_F32m }, 632 { X86::ADD_Fp64m , X86::ADD_F64m }, 633 { X86::ADD_Fp64m32 , X86::ADD_F32m }, 634 { X86::ADD_Fp80m32 , X86::ADD_F32m }, 635 { X86::ADD_Fp80m64 , X86::ADD_F64m }, 636 { X86::ADD_FpI16m32 , X86::ADD_FI16m }, 637 { X86::ADD_FpI16m64 , X86::ADD_FI16m }, 638 { X86::ADD_FpI16m80 , X86::ADD_FI16m }, 639 { X86::ADD_FpI32m32 , X86::ADD_FI32m }, 640 { X86::ADD_FpI32m64 , X86::ADD_FI32m }, 641 { X86::ADD_FpI32m80 , X86::ADD_FI32m }, 642 { X86::CHS_Fp32 , X86::CHS_F }, 643 { X86::CHS_Fp64 , X86::CHS_F }, 644 { X86::CHS_Fp80 , X86::CHS_F }, 645 { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, 646 { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, 647 { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, 648 { X86::CMOVB_Fp32 , X86::CMOVB_F }, 649 { X86::CMOVB_Fp64 , X86::CMOVB_F }, 650 { X86::CMOVB_Fp80 , X86::CMOVB_F }, 651 { X86::CMOVE_Fp32 , X86::CMOVE_F }, 652 { X86::CMOVE_Fp64 , X86::CMOVE_F }, 653 { X86::CMOVE_Fp80 , X86::CMOVE_F }, 654 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, 655 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, 656 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, 657 { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, 658 { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, 659 { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, 660 { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, 661 { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, 662 { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, 663 { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, 664 { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, 665 { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, 666 { X86::CMOVP_Fp32 , X86::CMOVP_F }, 667 { X86::CMOVP_Fp64 , X86::CMOVP_F }, 668 { X86::CMOVP_Fp80 , X86::CMOVP_F }, 669 { X86::COS_Fp32 , X86::COS_F }, 670 { X86::COS_Fp64 , X86::COS_F }, 671 { X86::COS_Fp80 , X86::COS_F }, 672 { X86::DIVR_Fp32m , X86::DIVR_F32m }, 673 { X86::DIVR_Fp64m , X86::DIVR_F64m }, 674 { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, 675 { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, 676 { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, 677 { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, 678 { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, 679 { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, 680 { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, 681 { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, 682 { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, 683 { X86::DIV_Fp32m , X86::DIV_F32m }, 684 { X86::DIV_Fp64m , X86::DIV_F64m }, 685 { X86::DIV_Fp64m32 , X86::DIV_F32m }, 686 { X86::DIV_Fp80m32 , X86::DIV_F32m }, 687 { X86::DIV_Fp80m64 , X86::DIV_F64m }, 688 { X86::DIV_FpI16m32 , X86::DIV_FI16m }, 689 { X86::DIV_FpI16m64 , X86::DIV_FI16m }, 690 { X86::DIV_FpI16m80 , X86::DIV_FI16m }, 691 { X86::DIV_FpI32m32 , X86::DIV_FI32m }, 692 { X86::DIV_FpI32m64 , X86::DIV_FI32m }, 693 { X86::DIV_FpI32m80 , X86::DIV_FI32m }, 694 { X86::ILD_Fp16m32 , X86::ILD_F16m }, 695 { X86::ILD_Fp16m64 , X86::ILD_F16m }, 696 { X86::ILD_Fp16m80 , X86::ILD_F16m }, 697 { X86::ILD_Fp32m32 , X86::ILD_F32m }, 698 { X86::ILD_Fp32m64 , X86::ILD_F32m }, 699 { X86::ILD_Fp32m80 , X86::ILD_F32m }, 700 { X86::ILD_Fp64m32 , X86::ILD_F64m }, 701 { X86::ILD_Fp64m64 , X86::ILD_F64m }, 702 { X86::ILD_Fp64m80 , X86::ILD_F64m }, 703 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, 704 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, 705 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, 706 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, 707 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, 708 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, 709 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, 710 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, 711 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, 712 { X86::IST_Fp16m32 , X86::IST_F16m }, 713 { X86::IST_Fp16m64 , X86::IST_F16m }, 714 { X86::IST_Fp16m80 , X86::IST_F16m }, 715 { X86::IST_Fp32m32 , X86::IST_F32m }, 716 { X86::IST_Fp32m64 , X86::IST_F32m }, 717 { X86::IST_Fp32m80 , X86::IST_F32m }, 718 { X86::IST_Fp64m32 , X86::IST_FP64m }, 719 { X86::IST_Fp64m64 , X86::IST_FP64m }, 720 { X86::IST_Fp64m80 , X86::IST_FP64m }, 721 { X86::LD_Fp032 , X86::LD_F0 }, 722 { X86::LD_Fp064 , X86::LD_F0 }, 723 { X86::LD_Fp080 , X86::LD_F0 }, 724 { X86::LD_Fp132 , X86::LD_F1 }, 725 { X86::LD_Fp164 , X86::LD_F1 }, 726 { X86::LD_Fp180 , X86::LD_F1 }, 727 { X86::LD_Fp32m , X86::LD_F32m }, 728 { X86::LD_Fp32m64 , X86::LD_F32m }, 729 { X86::LD_Fp32m80 , X86::LD_F32m }, 730 { X86::LD_Fp64m , X86::LD_F64m }, 731 { X86::LD_Fp64m80 , X86::LD_F64m }, 732 { X86::LD_Fp80m , X86::LD_F80m }, 733 { X86::MUL_Fp32m , X86::MUL_F32m }, 734 { X86::MUL_Fp64m , X86::MUL_F64m }, 735 { X86::MUL_Fp64m32 , X86::MUL_F32m }, 736 { X86::MUL_Fp80m32 , X86::MUL_F32m }, 737 { X86::MUL_Fp80m64 , X86::MUL_F64m }, 738 { X86::MUL_FpI16m32 , X86::MUL_FI16m }, 739 { X86::MUL_FpI16m64 , X86::MUL_FI16m }, 740 { X86::MUL_FpI16m80 , X86::MUL_FI16m }, 741 { X86::MUL_FpI32m32 , X86::MUL_FI32m }, 742 { X86::MUL_FpI32m64 , X86::MUL_FI32m }, 743 { X86::MUL_FpI32m80 , X86::MUL_FI32m }, 744 { X86::SIN_Fp32 , X86::SIN_F }, 745 { X86::SIN_Fp64 , X86::SIN_F }, 746 { X86::SIN_Fp80 , X86::SIN_F }, 747 { X86::SQRT_Fp32 , X86::SQRT_F }, 748 { X86::SQRT_Fp64 , X86::SQRT_F }, 749 { X86::SQRT_Fp80 , X86::SQRT_F }, 750 { X86::ST_Fp32m , X86::ST_F32m }, 751 { X86::ST_Fp64m , X86::ST_F64m }, 752 { X86::ST_Fp64m32 , X86::ST_F32m }, 753 { X86::ST_Fp80m32 , X86::ST_F32m }, 754 { X86::ST_Fp80m64 , X86::ST_F64m }, 755 { X86::ST_FpP80m , X86::ST_FP80m }, 756 { X86::SUBR_Fp32m , X86::SUBR_F32m }, 757 { X86::SUBR_Fp64m , X86::SUBR_F64m }, 758 { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, 759 { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, 760 { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, 761 { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, 762 { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, 763 { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, 764 { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, 765 { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, 766 { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, 767 { X86::SUB_Fp32m , X86::SUB_F32m }, 768 { X86::SUB_Fp64m , X86::SUB_F64m }, 769 { X86::SUB_Fp64m32 , X86::SUB_F32m }, 770 { X86::SUB_Fp80m32 , X86::SUB_F32m }, 771 { X86::SUB_Fp80m64 , X86::SUB_F64m }, 772 { X86::SUB_FpI16m32 , X86::SUB_FI16m }, 773 { X86::SUB_FpI16m64 , X86::SUB_FI16m }, 774 { X86::SUB_FpI16m80 , X86::SUB_FI16m }, 775 { X86::SUB_FpI32m32 , X86::SUB_FI32m }, 776 { X86::SUB_FpI32m64 , X86::SUB_FI32m }, 777 { X86::SUB_FpI32m80 , X86::SUB_FI32m }, 778 { X86::TST_Fp32 , X86::TST_F }, 779 { X86::TST_Fp64 , X86::TST_F }, 780 { X86::TST_Fp80 , X86::TST_F }, 781 { X86::UCOM_FpIr32 , X86::UCOM_FIr }, 782 { X86::UCOM_FpIr64 , X86::UCOM_FIr }, 783 { X86::UCOM_FpIr80 , X86::UCOM_FIr }, 784 { X86::UCOM_Fpr32 , X86::UCOM_Fr }, 785 { X86::UCOM_Fpr64 , X86::UCOM_Fr }, 786 { X86::UCOM_Fpr80 , X86::UCOM_Fr }, 787 }; 788 789 static unsigned getConcreteOpcode(unsigned Opcode) { 790 ASSERT_SORTED(OpcodeTable); 791 int Opc = Lookup(OpcodeTable, Opcode); 792 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); 793 return Opc; 794 } 795 796 //===----------------------------------------------------------------------===// 797 // Helper Methods 798 //===----------------------------------------------------------------------===// 799 800 // PopTable - Sorted map of instructions to their popping version. The first 801 // element is an instruction, the second is the version which pops. 802 // 803 static const TableEntry PopTable[] = { 804 { X86::ADD_FrST0 , X86::ADD_FPrST0 }, 805 806 { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, 807 { X86::DIV_FrST0 , X86::DIV_FPrST0 }, 808 809 { X86::IST_F16m , X86::IST_FP16m }, 810 { X86::IST_F32m , X86::IST_FP32m }, 811 812 { X86::MUL_FrST0 , X86::MUL_FPrST0 }, 813 814 { X86::ST_F32m , X86::ST_FP32m }, 815 { X86::ST_F64m , X86::ST_FP64m }, 816 { X86::ST_Frr , X86::ST_FPrr }, 817 818 { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, 819 { X86::SUB_FrST0 , X86::SUB_FPrST0 }, 820 821 { X86::UCOM_FIr , X86::UCOM_FIPr }, 822 823 { X86::UCOM_FPr , X86::UCOM_FPPr }, 824 { X86::UCOM_Fr , X86::UCOM_FPr }, 825 }; 826 827 /// popStackAfter - Pop the current value off of the top of the FP stack after 828 /// the specified instruction. This attempts to be sneaky and combine the pop 829 /// into the instruction itself if possible. The iterator is left pointing to 830 /// the last instruction, be it a new pop instruction inserted, or the old 831 /// instruction if it was modified in place. 832 /// 833 void FPS::popStackAfter(MachineBasicBlock::iterator &I) { 834 MachineInstr &MI = *I; 835 const DebugLoc &dl = MI.getDebugLoc(); 836 ASSERT_SORTED(PopTable); 837 838 popReg(); 839 840 // Check to see if there is a popping version of this instruction... 841 int Opcode = Lookup(PopTable, I->getOpcode()); 842 if (Opcode != -1) { 843 I->setDesc(TII->get(Opcode)); 844 if (Opcode == X86::UCOM_FPPr) 845 I->RemoveOperand(0); 846 } else { // Insert an explicit pop 847 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); 848 } 849 } 850 851 /// freeStackSlotAfter - Free the specified register from the register stack, so 852 /// that it is no longer in a register. If the register is currently at the top 853 /// of the stack, we just pop the current instruction, otherwise we store the 854 /// current top-of-stack into the specified slot, then pop the top of stack. 855 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { 856 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. 857 popStackAfter(I); 858 return; 859 } 860 861 // Otherwise, store the top of stack into the dead slot, killing the operand 862 // without having to add in an explicit xchg then pop. 863 // 864 I = freeStackSlotBefore(++I, FPRegNo); 865 } 866 867 /// freeStackSlotBefore - Free the specified register without trying any 868 /// folding. 869 MachineBasicBlock::iterator 870 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { 871 unsigned STReg = getSTReg(FPRegNo); 872 unsigned OldSlot = getSlot(FPRegNo); 873 unsigned TopReg = Stack[StackTop-1]; 874 Stack[OldSlot] = TopReg; 875 RegMap[TopReg] = OldSlot; 876 RegMap[FPRegNo] = ~0; 877 Stack[--StackTop] = ~0; 878 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)) 879 .addReg(STReg) 880 .getInstr(); 881 } 882 883 /// adjustLiveRegs - Kill and revive registers such that exactly the FP 884 /// registers with a bit in Mask are live. 885 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { 886 unsigned Defs = Mask; 887 unsigned Kills = 0; 888 for (unsigned i = 0; i < StackTop; ++i) { 889 unsigned RegNo = Stack[i]; 890 if (!(Defs & (1 << RegNo))) 891 // This register is live, but we don't want it. 892 Kills |= (1 << RegNo); 893 else 894 // We don't need to imp-def this live register. 895 Defs &= ~(1 << RegNo); 896 } 897 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); 898 899 // Produce implicit-defs for free by using killed registers. 900 while (Kills && Defs) { 901 unsigned KReg = countTrailingZeros(Kills); 902 unsigned DReg = countTrailingZeros(Defs); 903 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg 904 << "\n"); 905 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); 906 std::swap(RegMap[KReg], RegMap[DReg]); 907 Kills &= ~(1 << KReg); 908 Defs &= ~(1 << DReg); 909 } 910 911 // Kill registers by popping. 912 if (Kills && I != MBB->begin()) { 913 MachineBasicBlock::iterator I2 = std::prev(I); 914 while (StackTop) { 915 unsigned KReg = getStackEntry(0); 916 if (!(Kills & (1 << KReg))) 917 break; 918 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n"); 919 popStackAfter(I2); 920 Kills &= ~(1 << KReg); 921 } 922 } 923 924 // Manually kill the rest. 925 while (Kills) { 926 unsigned KReg = countTrailingZeros(Kills); 927 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n"); 928 freeStackSlotBefore(I, KReg); 929 Kills &= ~(1 << KReg); 930 } 931 932 // Load zeros for all the imp-defs. 933 while(Defs) { 934 unsigned DReg = countTrailingZeros(Defs); 935 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n"); 936 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); 937 pushReg(DReg); 938 Defs &= ~(1 << DReg); 939 } 940 941 // Now we should have the correct registers live. 942 LLVM_DEBUG(dumpStack()); 943 assert(StackTop == countPopulation(Mask) && "Live count mismatch"); 944 } 945 946 /// shuffleStackTop - emit fxch instructions before I to shuffle the top 947 /// FixCount entries into the order given by FixStack. 948 /// FIXME: Is there a better algorithm than insertion sort? 949 void FPS::shuffleStackTop(const unsigned char *FixStack, 950 unsigned FixCount, 951 MachineBasicBlock::iterator I) { 952 // Move items into place, starting from the desired stack bottom. 953 while (FixCount--) { 954 // Old register at position FixCount. 955 unsigned OldReg = getStackEntry(FixCount); 956 // Desired register at position FixCount. 957 unsigned Reg = FixStack[FixCount]; 958 if (Reg == OldReg) 959 continue; 960 // (Reg st0) (OldReg st0) = (Reg OldReg st0) 961 moveToTop(Reg, I); 962 if (FixCount > 0) 963 moveToTop(OldReg, I); 964 } 965 LLVM_DEBUG(dumpStack()); 966 } 967 968 969 //===----------------------------------------------------------------------===// 970 // Instruction transformation implementation 971 //===----------------------------------------------------------------------===// 972 973 void FPS::handleCall(MachineBasicBlock::iterator &I) { 974 unsigned STReturns = 0; 975 const MachineFunction* MF = I->getParent()->getParent(); 976 977 for (const auto &MO : I->operands()) { 978 if (!MO.isReg()) 979 continue; 980 981 unsigned R = MO.getReg() - X86::FP0; 982 983 if (R < 8) { 984 if (MF->getFunction().getCallingConv() != CallingConv::X86_RegCall) { 985 assert(MO.isDef() && MO.isImplicit()); 986 } 987 988 STReturns |= 1 << R; 989 } 990 } 991 992 unsigned N = countTrailingOnes(STReturns); 993 994 // FP registers used for function return must be consecutive starting at 995 // FP0 996 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2)); 997 998 // Reset the FP Stack - It is required because of possible leftovers from 999 // passed arguments. The caller should assume that the FP stack is 1000 // returned empty (unless the callee returns values on FP stack). 1001 while (StackTop > 0) 1002 popReg(); 1003 1004 for (unsigned I = 0; I < N; ++I) 1005 pushReg(N - I - 1); 1006 } 1007 1008 /// If RET has an FP register use operand, pass the first one in ST(0) and 1009 /// the second one in ST(1). 1010 void FPS::handleReturn(MachineBasicBlock::iterator &I) { 1011 MachineInstr &MI = *I; 1012 1013 // Find the register operands. 1014 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; 1015 unsigned LiveMask = 0; 1016 1017 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1018 MachineOperand &Op = MI.getOperand(i); 1019 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1020 continue; 1021 // FP Register uses must be kills unless there are two uses of the same 1022 // register, in which case only one will be a kill. 1023 assert(Op.isUse() && 1024 (Op.isKill() || // Marked kill. 1025 getFPReg(Op) == FirstFPRegOp || // Second instance. 1026 MI.killsRegister(Op.getReg())) && // Later use is marked kill. 1027 "Ret only defs operands, and values aren't live beyond it"); 1028 1029 if (FirstFPRegOp == ~0U) 1030 FirstFPRegOp = getFPReg(Op); 1031 else { 1032 assert(SecondFPRegOp == ~0U && "More than two fp operands!"); 1033 SecondFPRegOp = getFPReg(Op); 1034 } 1035 LiveMask |= (1 << getFPReg(Op)); 1036 1037 // Remove the operand so that later passes don't see it. 1038 MI.RemoveOperand(i); 1039 --i; 1040 --e; 1041 } 1042 1043 // We may have been carrying spurious live-ins, so make sure only the 1044 // returned registers are left live. 1045 adjustLiveRegs(LiveMask, MI); 1046 if (!LiveMask) return; // Quick check to see if any are possible. 1047 1048 // There are only four possibilities here: 1049 // 1) we are returning a single FP value. In this case, it has to be in 1050 // ST(0) already, so just declare success by removing the value from the 1051 // FP Stack. 1052 if (SecondFPRegOp == ~0U) { 1053 // Assert that the top of stack contains the right FP register. 1054 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && 1055 "Top of stack not the right register for RET!"); 1056 1057 // Ok, everything is good, mark the value as not being on the stack 1058 // anymore so that our assertion about the stack being empty at end of 1059 // block doesn't fire. 1060 StackTop = 0; 1061 return; 1062 } 1063 1064 // Otherwise, we are returning two values: 1065 // 2) If returning the same value for both, we only have one thing in the FP 1066 // stack. Consider: RET FP1, FP1 1067 if (StackTop == 1) { 1068 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& 1069 "Stack misconfiguration for RET!"); 1070 1071 // Duplicate the TOS so that we return it twice. Just pick some other FPx 1072 // register to hold it. 1073 unsigned NewReg = ScratchFPReg; 1074 duplicateToTop(FirstFPRegOp, NewReg, MI); 1075 FirstFPRegOp = NewReg; 1076 } 1077 1078 /// Okay we know we have two different FPx operands now: 1079 assert(StackTop == 2 && "Must have two values live!"); 1080 1081 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently 1082 /// in ST(1). In this case, emit an fxch. 1083 if (getStackEntry(0) == SecondFPRegOp) { 1084 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); 1085 moveToTop(FirstFPRegOp, MI); 1086 } 1087 1088 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in 1089 /// ST(1). Just remove both from our understanding of the stack and return. 1090 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); 1091 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); 1092 StackTop = 0; 1093 } 1094 1095 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> 1096 /// 1097 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { 1098 MachineInstr &MI = *I; 1099 unsigned DestReg = getFPReg(MI.getOperand(0)); 1100 1101 // Change from the pseudo instruction to the concrete instruction. 1102 MI.RemoveOperand(0); // Remove the explicit ST(0) operand 1103 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1104 MI.addOperand( 1105 MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true)); 1106 1107 // Result gets pushed on the stack. 1108 pushReg(DestReg); 1109 } 1110 1111 /// handleOneArgFP - fst <mem>, ST(0) 1112 /// 1113 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { 1114 MachineInstr &MI = *I; 1115 unsigned NumOps = MI.getDesc().getNumOperands(); 1116 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && 1117 "Can only handle fst* & ftst instructions!"); 1118 1119 // Is this the last use of the source register? 1120 unsigned Reg = getFPReg(MI.getOperand(NumOps - 1)); 1121 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); 1122 1123 // FISTP64m is strange because there isn't a non-popping versions. 1124 // If we have one _and_ we don't want to pop the operand, duplicate the value 1125 // on the stack instead of moving it. This ensure that popping the value is 1126 // always ok. 1127 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. 1128 // 1129 if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 || 1130 MI.getOpcode() == X86::ISTT_Fp16m32 || 1131 MI.getOpcode() == X86::ISTT_Fp32m32 || 1132 MI.getOpcode() == X86::ISTT_Fp64m32 || 1133 MI.getOpcode() == X86::IST_Fp64m64 || 1134 MI.getOpcode() == X86::ISTT_Fp16m64 || 1135 MI.getOpcode() == X86::ISTT_Fp32m64 || 1136 MI.getOpcode() == X86::ISTT_Fp64m64 || 1137 MI.getOpcode() == X86::IST_Fp64m80 || 1138 MI.getOpcode() == X86::ISTT_Fp16m80 || 1139 MI.getOpcode() == X86::ISTT_Fp32m80 || 1140 MI.getOpcode() == X86::ISTT_Fp64m80 || 1141 MI.getOpcode() == X86::ST_FpP80m)) { 1142 duplicateToTop(Reg, ScratchFPReg, I); 1143 } else { 1144 moveToTop(Reg, I); // Move to the top of the stack... 1145 } 1146 1147 // Convert from the pseudo instruction to the concrete instruction. 1148 MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand 1149 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1150 MI.addOperand( 1151 MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true)); 1152 1153 if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m || 1154 MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m || 1155 MI.getOpcode() == X86::ST_FP80m) { 1156 if (StackTop == 0) 1157 report_fatal_error("Stack empty??"); 1158 --StackTop; 1159 } else if (KillsSrc) { // Last use of operand? 1160 popStackAfter(I); 1161 } 1162 } 1163 1164 1165 /// handleOneArgFPRW: Handle instructions that read from the top of stack and 1166 /// replace the value with a newly computed value. These instructions may have 1167 /// non-fp operands after their FP operands. 1168 /// 1169 /// Examples: 1170 /// R1 = fchs R2 1171 /// R1 = fadd R2, [mem] 1172 /// 1173 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { 1174 MachineInstr &MI = *I; 1175 #ifndef NDEBUG 1176 unsigned NumOps = MI.getDesc().getNumOperands(); 1177 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); 1178 #endif 1179 1180 // Is this the last use of the source register? 1181 unsigned Reg = getFPReg(MI.getOperand(1)); 1182 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); 1183 1184 if (KillsSrc) { 1185 // If this is the last use of the source register, just make sure it's on 1186 // the top of the stack. 1187 moveToTop(Reg, I); 1188 if (StackTop == 0) 1189 report_fatal_error("Stack cannot be empty!"); 1190 --StackTop; 1191 pushReg(getFPReg(MI.getOperand(0))); 1192 } else { 1193 // If this is not the last use of the source register, _copy_ it to the top 1194 // of the stack. 1195 duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I); 1196 } 1197 1198 // Change from the pseudo instruction to the concrete instruction. 1199 MI.RemoveOperand(1); // Drop the source operand. 1200 MI.RemoveOperand(0); // Drop the destination operand. 1201 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1202 } 1203 1204 1205 //===----------------------------------------------------------------------===// 1206 // Define tables of various ways to map pseudo instructions 1207 // 1208 1209 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) 1210 static const TableEntry ForwardST0Table[] = { 1211 { X86::ADD_Fp32 , X86::ADD_FST0r }, 1212 { X86::ADD_Fp64 , X86::ADD_FST0r }, 1213 { X86::ADD_Fp80 , X86::ADD_FST0r }, 1214 { X86::DIV_Fp32 , X86::DIV_FST0r }, 1215 { X86::DIV_Fp64 , X86::DIV_FST0r }, 1216 { X86::DIV_Fp80 , X86::DIV_FST0r }, 1217 { X86::MUL_Fp32 , X86::MUL_FST0r }, 1218 { X86::MUL_Fp64 , X86::MUL_FST0r }, 1219 { X86::MUL_Fp80 , X86::MUL_FST0r }, 1220 { X86::SUB_Fp32 , X86::SUB_FST0r }, 1221 { X86::SUB_Fp64 , X86::SUB_FST0r }, 1222 { X86::SUB_Fp80 , X86::SUB_FST0r }, 1223 }; 1224 1225 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) 1226 static const TableEntry ReverseST0Table[] = { 1227 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative 1228 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative 1229 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative 1230 { X86::DIV_Fp32 , X86::DIVR_FST0r }, 1231 { X86::DIV_Fp64 , X86::DIVR_FST0r }, 1232 { X86::DIV_Fp80 , X86::DIVR_FST0r }, 1233 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative 1234 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative 1235 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative 1236 { X86::SUB_Fp32 , X86::SUBR_FST0r }, 1237 { X86::SUB_Fp64 , X86::SUBR_FST0r }, 1238 { X86::SUB_Fp80 , X86::SUBR_FST0r }, 1239 }; 1240 1241 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) 1242 static const TableEntry ForwardSTiTable[] = { 1243 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative 1244 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative 1245 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative 1246 { X86::DIV_Fp32 , X86::DIVR_FrST0 }, 1247 { X86::DIV_Fp64 , X86::DIVR_FrST0 }, 1248 { X86::DIV_Fp80 , X86::DIVR_FrST0 }, 1249 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative 1250 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative 1251 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative 1252 { X86::SUB_Fp32 , X86::SUBR_FrST0 }, 1253 { X86::SUB_Fp64 , X86::SUBR_FrST0 }, 1254 { X86::SUB_Fp80 , X86::SUBR_FrST0 }, 1255 }; 1256 1257 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) 1258 static const TableEntry ReverseSTiTable[] = { 1259 { X86::ADD_Fp32 , X86::ADD_FrST0 }, 1260 { X86::ADD_Fp64 , X86::ADD_FrST0 }, 1261 { X86::ADD_Fp80 , X86::ADD_FrST0 }, 1262 { X86::DIV_Fp32 , X86::DIV_FrST0 }, 1263 { X86::DIV_Fp64 , X86::DIV_FrST0 }, 1264 { X86::DIV_Fp80 , X86::DIV_FrST0 }, 1265 { X86::MUL_Fp32 , X86::MUL_FrST0 }, 1266 { X86::MUL_Fp64 , X86::MUL_FrST0 }, 1267 { X86::MUL_Fp80 , X86::MUL_FrST0 }, 1268 { X86::SUB_Fp32 , X86::SUB_FrST0 }, 1269 { X86::SUB_Fp64 , X86::SUB_FrST0 }, 1270 { X86::SUB_Fp80 , X86::SUB_FrST0 }, 1271 }; 1272 1273 1274 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual 1275 /// instructions which need to be simplified and possibly transformed. 1276 /// 1277 /// Result: ST(0) = fsub ST(0), ST(i) 1278 /// ST(i) = fsub ST(0), ST(i) 1279 /// ST(0) = fsubr ST(0), ST(i) 1280 /// ST(i) = fsubr ST(0), ST(i) 1281 /// 1282 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { 1283 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); 1284 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); 1285 MachineInstr &MI = *I; 1286 1287 unsigned NumOperands = MI.getDesc().getNumOperands(); 1288 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); 1289 unsigned Dest = getFPReg(MI.getOperand(0)); 1290 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); 1291 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); 1292 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); 1293 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1294 DebugLoc dl = MI.getDebugLoc(); 1295 1296 unsigned TOS = getStackEntry(0); 1297 1298 // One of our operands must be on the top of the stack. If neither is yet, we 1299 // need to move one. 1300 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? 1301 // We can choose to move either operand to the top of the stack. If one of 1302 // the operands is killed by this instruction, we want that one so that we 1303 // can update right on top of the old version. 1304 if (KillsOp0) { 1305 moveToTop(Op0, I); // Move dead operand to TOS. 1306 TOS = Op0; 1307 } else if (KillsOp1) { 1308 moveToTop(Op1, I); 1309 TOS = Op1; 1310 } else { 1311 // All of the operands are live after this instruction executes, so we 1312 // cannot update on top of any operand. Because of this, we must 1313 // duplicate one of the stack elements to the top. It doesn't matter 1314 // which one we pick. 1315 // 1316 duplicateToTop(Op0, Dest, I); 1317 Op0 = TOS = Dest; 1318 KillsOp0 = true; 1319 } 1320 } else if (!KillsOp0 && !KillsOp1) { 1321 // If we DO have one of our operands at the top of the stack, but we don't 1322 // have a dead operand, we must duplicate one of the operands to a new slot 1323 // on the stack. 1324 duplicateToTop(Op0, Dest, I); 1325 Op0 = TOS = Dest; 1326 KillsOp0 = true; 1327 } 1328 1329 // Now we know that one of our operands is on the top of the stack, and at 1330 // least one of our operands is killed by this instruction. 1331 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && 1332 "Stack conditions not set up right!"); 1333 1334 // We decide which form to use based on what is on the top of the stack, and 1335 // which operand is killed by this instruction. 1336 ArrayRef<TableEntry> InstTable; 1337 bool isForward = TOS == Op0; 1338 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); 1339 if (updateST0) { 1340 if (isForward) 1341 InstTable = ForwardST0Table; 1342 else 1343 InstTable = ReverseST0Table; 1344 } else { 1345 if (isForward) 1346 InstTable = ForwardSTiTable; 1347 else 1348 InstTable = ReverseSTiTable; 1349 } 1350 1351 int Opcode = Lookup(InstTable, MI.getOpcode()); 1352 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); 1353 1354 // NotTOS - The register which is not on the top of stack... 1355 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; 1356 1357 // Replace the old instruction with a new instruction 1358 MBB->remove(&*I++); 1359 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); 1360 1361 // If both operands are killed, pop one off of the stack in addition to 1362 // overwriting the other one. 1363 if (KillsOp0 && KillsOp1 && Op0 != Op1) { 1364 assert(!updateST0 && "Should have updated other operand!"); 1365 popStackAfter(I); // Pop the top of stack 1366 } 1367 1368 // Update stack information so that we know the destination register is now on 1369 // the stack. 1370 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); 1371 assert(UpdatedSlot < StackTop && Dest < 7); 1372 Stack[UpdatedSlot] = Dest; 1373 RegMap[Dest] = UpdatedSlot; 1374 MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction 1375 } 1376 1377 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP 1378 /// register arguments and no explicit destinations. 1379 /// 1380 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { 1381 MachineInstr &MI = *I; 1382 1383 unsigned NumOperands = MI.getDesc().getNumOperands(); 1384 assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); 1385 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); 1386 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); 1387 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); 1388 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1389 1390 // Make sure the first operand is on the top of stack, the other one can be 1391 // anywhere. 1392 moveToTop(Op0, I); 1393 1394 // Change from the pseudo instruction to the concrete instruction. 1395 MI.getOperand(0).setReg(getSTReg(Op1)); 1396 MI.RemoveOperand(1); 1397 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1398 1399 // If any of the operands are killed by this instruction, free them. 1400 if (KillsOp0) freeStackSlotAfter(I, Op0); 1401 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); 1402 } 1403 1404 /// handleCondMovFP - Handle two address conditional move instructions. These 1405 /// instructions move a st(i) register to st(0) iff a condition is true. These 1406 /// instructions require that the first operand is at the top of the stack, but 1407 /// otherwise don't modify the stack at all. 1408 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { 1409 MachineInstr &MI = *I; 1410 1411 unsigned Op0 = getFPReg(MI.getOperand(0)); 1412 unsigned Op1 = getFPReg(MI.getOperand(2)); 1413 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1414 1415 // The first operand *must* be on the top of the stack. 1416 moveToTop(Op0, I); 1417 1418 // Change the second operand to the stack register that the operand is in. 1419 // Change from the pseudo instruction to the concrete instruction. 1420 MI.RemoveOperand(0); 1421 MI.RemoveOperand(1); 1422 MI.getOperand(0).setReg(getSTReg(Op1)); 1423 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1424 1425 // If we kill the second operand, make sure to pop it from the stack. 1426 if (Op0 != Op1 && KillsOp1) { 1427 // Get this value off of the register stack. 1428 freeStackSlotAfter(I, Op1); 1429 } 1430 } 1431 1432 1433 /// handleSpecialFP - Handle special instructions which behave unlike other 1434 /// floating point instructions. This is primarily intended for use by pseudo 1435 /// instructions. 1436 /// 1437 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) { 1438 MachineInstr &MI = *Inst; 1439 1440 if (MI.isCall()) { 1441 handleCall(Inst); 1442 return; 1443 } 1444 1445 if (MI.isReturn()) { 1446 handleReturn(Inst); 1447 return; 1448 } 1449 1450 switch (MI.getOpcode()) { 1451 default: llvm_unreachable("Unknown SpecialFP instruction!"); 1452 case TargetOpcode::COPY: { 1453 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. 1454 const MachineOperand &MO1 = MI.getOperand(1); 1455 const MachineOperand &MO0 = MI.getOperand(0); 1456 bool KillsSrc = MI.killsRegister(MO1.getReg()); 1457 1458 // FP <- FP copy. 1459 unsigned DstFP = getFPReg(MO0); 1460 unsigned SrcFP = getFPReg(MO1); 1461 assert(isLive(SrcFP) && "Cannot copy dead register"); 1462 if (KillsSrc) { 1463 // If the input operand is killed, we can just change the owner of the 1464 // incoming stack slot into the result. 1465 unsigned Slot = getSlot(SrcFP); 1466 Stack[Slot] = DstFP; 1467 RegMap[DstFP] = Slot; 1468 } else { 1469 // For COPY we just duplicate the specified value to a new stack slot. 1470 // This could be made better, but would require substantial changes. 1471 duplicateToTop(SrcFP, DstFP, Inst); 1472 } 1473 break; 1474 } 1475 1476 case TargetOpcode::IMPLICIT_DEF: { 1477 // All FP registers must be explicitly defined, so load a 0 instead. 1478 unsigned Reg = MI.getOperand(0).getReg() - X86::FP0; 1479 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); 1480 BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0)); 1481 pushReg(Reg); 1482 break; 1483 } 1484 1485 case TargetOpcode::INLINEASM: 1486 case TargetOpcode::INLINEASM_BR: { 1487 // The inline asm MachineInstr currently only *uses* FP registers for the 1488 // 'f' constraint. These should be turned into the current ST(x) register 1489 // in the machine instr. 1490 // 1491 // There are special rules for x87 inline assembly. The compiler must know 1492 // exactly how many registers are popped and pushed implicitly by the asm. 1493 // Otherwise it is not possible to restore the stack state after the inline 1494 // asm. 1495 // 1496 // There are 3 kinds of input operands: 1497 // 1498 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A 1499 // popped input operand must be in a fixed stack slot, and it is either 1500 // tied to an output operand, or in the clobber list. The MI has ST use 1501 // and def operands for these inputs. 1502 // 1503 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are 1504 // preserved by the inline asm. The fixed stack slots must be STn-STm 1505 // following the popped inputs. A fixed input operand cannot be tied to 1506 // an output or appear in the clobber list. The MI has ST use operands 1507 // and no defs for these inputs. 1508 // 1509 // 3. Preserved inputs. These inputs use the "f" constraint which is 1510 // represented as an FP register. The inline asm won't change these 1511 // stack slots. 1512 // 1513 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered 1514 // registers do not count as output operands. The inline asm changes the 1515 // stack as if it popped all the popped inputs and then pushed all the 1516 // output operands. 1517 1518 // Scan the assembly for ST registers used, defined and clobbered. We can 1519 // only tell clobbers from defs by looking at the asm descriptor. 1520 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0; 1521 unsigned NumOps = 0; 1522 SmallSet<unsigned, 1> FRegIdx; 1523 unsigned RCID; 1524 1525 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands(); 1526 i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) { 1527 unsigned Flags = MI.getOperand(i).getImm(); 1528 1529 NumOps = InlineAsm::getNumOperandRegisters(Flags); 1530 if (NumOps != 1) 1531 continue; 1532 const MachineOperand &MO = MI.getOperand(i + 1); 1533 if (!MO.isReg()) 1534 continue; 1535 unsigned STReg = MO.getReg() - X86::FP0; 1536 if (STReg >= 8) 1537 continue; 1538 1539 // If the flag has a register class constraint, this must be an operand 1540 // with constraint "f". Record its index and continue. 1541 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) { 1542 FRegIdx.insert(i + 1); 1543 continue; 1544 } 1545 1546 switch (InlineAsm::getKind(Flags)) { 1547 case InlineAsm::Kind_RegUse: 1548 STUses |= (1u << STReg); 1549 break; 1550 case InlineAsm::Kind_RegDef: 1551 case InlineAsm::Kind_RegDefEarlyClobber: 1552 STDefs |= (1u << STReg); 1553 if (MO.isDead()) 1554 STDeadDefs |= (1u << STReg); 1555 break; 1556 case InlineAsm::Kind_Clobber: 1557 STClobbers |= (1u << STReg); 1558 break; 1559 default: 1560 break; 1561 } 1562 } 1563 1564 if (STUses && !isMask_32(STUses)) 1565 MI.emitError("fixed input regs must be last on the x87 stack"); 1566 unsigned NumSTUses = countTrailingOnes(STUses); 1567 1568 // Defs must be contiguous from the stack top. ST0-STn. 1569 if (STDefs && !isMask_32(STDefs)) { 1570 MI.emitError("output regs must be last on the x87 stack"); 1571 STDefs = NextPowerOf2(STDefs) - 1; 1572 } 1573 unsigned NumSTDefs = countTrailingOnes(STDefs); 1574 1575 // So must the clobbered stack slots. ST0-STm, m >= n. 1576 if (STClobbers && !isMask_32(STDefs | STClobbers)) 1577 MI.emitError("clobbers must be last on the x87 stack"); 1578 1579 // Popped inputs are the ones that are also clobbered or defined. 1580 unsigned STPopped = STUses & (STDefs | STClobbers); 1581 if (STPopped && !isMask_32(STPopped)) 1582 MI.emitError("implicitly popped regs must be last on the x87 stack"); 1583 unsigned NumSTPopped = countTrailingOnes(STPopped); 1584 1585 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " 1586 << NumSTPopped << ", and defines " << NumSTDefs 1587 << " regs.\n"); 1588 1589 #ifndef NDEBUG 1590 // If any input operand uses constraint "f", all output register 1591 // constraints must be early-clobber defs. 1592 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) 1593 if (FRegIdx.count(I)) { 1594 assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 && 1595 "Operands with constraint \"f\" cannot overlap with defs"); 1596 } 1597 #endif 1598 1599 // Collect all FP registers (register operands with constraints "t", "u", 1600 // and "f") to kill afer the instruction. 1601 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; 1602 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1603 MachineOperand &Op = MI.getOperand(i); 1604 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1605 continue; 1606 unsigned FPReg = getFPReg(Op); 1607 1608 // If we kill this operand, make sure to pop it from the stack after the 1609 // asm. We just remember it for now, and pop them all off at the end in 1610 // a batch. 1611 if (Op.isUse() && Op.isKill()) 1612 FPKills |= 1U << FPReg; 1613 } 1614 1615 // Do not include registers that are implicitly popped by defs/clobbers. 1616 FPKills &= ~(STDefs | STClobbers); 1617 1618 // Now we can rearrange the live registers to match what was requested. 1619 unsigned char STUsesArray[8]; 1620 1621 for (unsigned I = 0; I < NumSTUses; ++I) 1622 STUsesArray[I] = I; 1623 1624 shuffleStackTop(STUsesArray, NumSTUses, Inst); 1625 LLVM_DEBUG({ 1626 dbgs() << "Before asm: "; 1627 dumpStack(); 1628 }); 1629 1630 // With the stack layout fixed, rewrite the FP registers. 1631 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1632 MachineOperand &Op = MI.getOperand(i); 1633 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1634 continue; 1635 1636 unsigned FPReg = getFPReg(Op); 1637 1638 if (FRegIdx.count(i)) 1639 // Operand with constraint "f". 1640 Op.setReg(getSTReg(FPReg)); 1641 else 1642 // Operand with a single register class constraint ("t" or "u"). 1643 Op.setReg(X86::ST0 + FPReg); 1644 } 1645 1646 // Simulate the inline asm popping its inputs and pushing its outputs. 1647 StackTop -= NumSTPopped; 1648 1649 for (unsigned i = 0; i < NumSTDefs; ++i) 1650 pushReg(NumSTDefs - i - 1); 1651 1652 // If this asm kills any FP registers (is the last use of them) we must 1653 // explicitly emit pop instructions for them. Do this now after the asm has 1654 // executed so that the ST(x) numbers are not off (which would happen if we 1655 // did this inline with operand rewriting). 1656 // 1657 // Note: this might be a non-optimal pop sequence. We might be able to do 1658 // better by trying to pop in stack order or something. 1659 while (FPKills) { 1660 unsigned FPReg = countTrailingZeros(FPKills); 1661 if (isLive(FPReg)) 1662 freeStackSlotAfter(Inst, FPReg); 1663 FPKills &= ~(1U << FPReg); 1664 } 1665 1666 // Don't delete the inline asm! 1667 return; 1668 } 1669 } 1670 1671 Inst = MBB->erase(Inst); // Remove the pseudo instruction 1672 1673 // We want to leave I pointing to the previous instruction, but what if we 1674 // just erased the first instruction? 1675 if (Inst == MBB->begin()) { 1676 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n"); 1677 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL)); 1678 } else 1679 --Inst; 1680 } 1681 1682 void FPS::setKillFlags(MachineBasicBlock &MBB) const { 1683 const TargetRegisterInfo &TRI = 1684 *MBB.getParent()->getSubtarget().getRegisterInfo(); 1685 LivePhysRegs LPR(TRI); 1686 1687 LPR.addLiveOuts(MBB); 1688 1689 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend(); 1690 I != E; ++I) { 1691 if (I->isDebugInstr()) 1692 continue; 1693 1694 std::bitset<8> Defs; 1695 SmallVector<MachineOperand *, 2> Uses; 1696 MachineInstr &MI = *I; 1697 1698 for (auto &MO : I->operands()) { 1699 if (!MO.isReg()) 1700 continue; 1701 1702 unsigned Reg = MO.getReg() - X86::FP0; 1703 1704 if (Reg >= 8) 1705 continue; 1706 1707 if (MO.isDef()) { 1708 Defs.set(Reg); 1709 if (!LPR.contains(MO.getReg())) 1710 MO.setIsDead(); 1711 } else 1712 Uses.push_back(&MO); 1713 } 1714 1715 for (auto *MO : Uses) 1716 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg())) 1717 MO->setIsKill(); 1718 1719 LPR.stepBackward(MI); 1720 } 1721 } 1722