1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the pass which converts floating point instructions from 10 // pseudo registers into register stack instructions. This pass uses live 11 // variable information to indicate where the FPn registers are used and their 12 // lifetimes. 13 // 14 // The x87 hardware tracks liveness of the stack registers, so it is necessary 15 // to implement exact liveness tracking between basic blocks. The CFG edges are 16 // partitioned into bundles where the same FP registers must be live in 17 // identical stack positions. Instructions are inserted at the end of each basic 18 // block to rearrange the live registers to match the outgoing bundle. 19 // 20 // This approach avoids splitting critical edges at the potential cost of more 21 // live register shuffling instructions when critical edges are present. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "X86.h" 26 #include "X86InstrInfo.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/EdgeBundles.h" 34 #include "llvm/CodeGen/LivePhysRegs.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <algorithm> 49 #include <bitset> 50 using namespace llvm; 51 52 #define DEBUG_TYPE "x86-codegen" 53 54 STATISTIC(NumFXCH, "Number of fxch instructions inserted"); 55 STATISTIC(NumFP , "Number of floating point instructions"); 56 57 namespace { 58 const unsigned ScratchFPReg = 7; 59 60 struct FPS : public MachineFunctionPass { 61 static char ID; 62 FPS() : MachineFunctionPass(ID) { 63 // This is really only to keep valgrind quiet. 64 // The logic in isLive() is too much for it. 65 memset(Stack, 0, sizeof(Stack)); 66 memset(RegMap, 0, sizeof(RegMap)); 67 } 68 69 void getAnalysisUsage(AnalysisUsage &AU) const override { 70 AU.setPreservesCFG(); 71 AU.addRequired<EdgeBundles>(); 72 AU.addPreservedID(MachineLoopInfoID); 73 AU.addPreservedID(MachineDominatorsID); 74 MachineFunctionPass::getAnalysisUsage(AU); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 79 MachineFunctionProperties getRequiredProperties() const override { 80 return MachineFunctionProperties().set( 81 MachineFunctionProperties::Property::NoVRegs); 82 } 83 84 StringRef getPassName() const override { return "X86 FP Stackifier"; } 85 86 private: 87 const TargetInstrInfo *TII = nullptr; // Machine instruction info. 88 89 // Two CFG edges are related if they leave the same block, or enter the same 90 // block. The transitive closure of an edge under this relation is a 91 // LiveBundle. It represents a set of CFG edges where the live FP stack 92 // registers must be allocated identically in the x87 stack. 93 // 94 // A LiveBundle is usually all the edges leaving a block, or all the edges 95 // entering a block, but it can contain more edges if critical edges are 96 // present. 97 // 98 // The set of live FP registers in a LiveBundle is calculated by bundleCFG, 99 // but the exact mapping of FP registers to stack slots is fixed later. 100 struct LiveBundle { 101 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c. 102 unsigned Mask; 103 104 // Number of pre-assigned live registers in FixStack. This is 0 when the 105 // stack order has not yet been fixed. 106 unsigned FixCount; 107 108 // Assigned stack order for live-in registers. 109 // FixStack[i] == getStackEntry(i) for all i < FixCount. 110 unsigned char FixStack[8]; 111 112 LiveBundle() : Mask(0), FixCount(0) {} 113 114 // Have the live registers been assigned a stack order yet? 115 bool isFixed() const { return !Mask || FixCount; } 116 }; 117 118 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges 119 // with no live FP registers. 120 SmallVector<LiveBundle, 8> LiveBundles; 121 122 // The edge bundle analysis provides indices into the LiveBundles vector. 123 EdgeBundles *Bundles = nullptr; 124 125 // Return a bitmask of FP registers in block's live-in list. 126 static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) { 127 unsigned Mask = 0; 128 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(); 129 I != MBB->livein_end(); ) { 130 MCPhysReg Reg = I->PhysReg; 131 static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums"); 132 if (Reg >= X86::FP0 && Reg <= X86::FP6) { 133 Mask |= 1 << (Reg - X86::FP0); 134 if (RemoveFPs) { 135 I = MBB->removeLiveIn(I); 136 continue; 137 } 138 } 139 ++I; 140 } 141 return Mask; 142 } 143 144 // Partition all the CFG edges into LiveBundles. 145 void bundleCFGRecomputeKillFlags(MachineFunction &MF); 146 147 MachineBasicBlock *MBB = nullptr; // Current basic block 148 149 // The hardware keeps track of how many FP registers are live, so we have 150 // to model that exactly. Usually, each live register corresponds to an 151 // FP<n> register, but when dealing with calls, returns, and inline 152 // assembly, it is sometimes necessary to have live scratch registers. 153 unsigned Stack[8]; // FP<n> Registers in each stack slot... 154 unsigned StackTop = 0; // The current top of the FP stack. 155 156 enum { 157 NumFPRegs = 8 // Including scratch pseudo-registers. 158 }; 159 160 // For each live FP<n> register, point to its Stack[] entry. 161 // The first entries correspond to FP0-FP6, the rest are scratch registers 162 // used when we need slightly different live registers than what the 163 // register allocator thinks. 164 unsigned RegMap[NumFPRegs]; 165 166 // Set up our stack model to match the incoming registers to MBB. 167 void setupBlockStack(); 168 169 // Shuffle live registers to match the expectations of successor blocks. 170 void finishBlockStack(); 171 172 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 173 void dumpStack() const { 174 dbgs() << "Stack contents:"; 175 for (unsigned i = 0; i != StackTop; ++i) { 176 dbgs() << " FP" << Stack[i]; 177 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); 178 } 179 } 180 #endif 181 182 /// getSlot - Return the stack slot number a particular register number is 183 /// in. 184 unsigned getSlot(unsigned RegNo) const { 185 assert(RegNo < NumFPRegs && "Regno out of range!"); 186 return RegMap[RegNo]; 187 } 188 189 /// isLive - Is RegNo currently live in the stack? 190 bool isLive(unsigned RegNo) const { 191 unsigned Slot = getSlot(RegNo); 192 return Slot < StackTop && Stack[Slot] == RegNo; 193 } 194 195 /// getStackEntry - Return the X86::FP<n> register in register ST(i). 196 unsigned getStackEntry(unsigned STi) const { 197 if (STi >= StackTop) 198 report_fatal_error("Access past stack top!"); 199 return Stack[StackTop-1-STi]; 200 } 201 202 /// getSTReg - Return the X86::ST(i) register which contains the specified 203 /// FP<RegNo> register. 204 unsigned getSTReg(unsigned RegNo) const { 205 return StackTop - 1 - getSlot(RegNo) + X86::ST0; 206 } 207 208 // pushReg - Push the specified FP<n> register onto the stack. 209 void pushReg(unsigned Reg) { 210 assert(Reg < NumFPRegs && "Register number out of range!"); 211 if (StackTop >= 8) 212 report_fatal_error("Stack overflow!"); 213 Stack[StackTop] = Reg; 214 RegMap[Reg] = StackTop++; 215 } 216 217 // popReg - Pop a register from the stack. 218 void popReg() { 219 if (StackTop == 0) 220 report_fatal_error("Cannot pop empty stack!"); 221 RegMap[Stack[--StackTop]] = ~0; // Update state 222 } 223 224 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } 225 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { 226 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 227 if (isAtTop(RegNo)) return; 228 229 unsigned STReg = getSTReg(RegNo); 230 unsigned RegOnTop = getStackEntry(0); 231 232 // Swap the slots the regs are in. 233 std::swap(RegMap[RegNo], RegMap[RegOnTop]); 234 235 // Swap stack slot contents. 236 if (RegMap[RegOnTop] >= StackTop) 237 report_fatal_error("Access past stack top!"); 238 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); 239 240 // Emit an fxch to update the runtime processors version of the state. 241 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); 242 ++NumFXCH; 243 } 244 245 void duplicateToTop(unsigned RegNo, unsigned AsReg, 246 MachineBasicBlock::iterator I) { 247 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc(); 248 unsigned STReg = getSTReg(RegNo); 249 pushReg(AsReg); // New register on top of stack 250 251 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); 252 } 253 254 /// popStackAfter - Pop the current value off of the top of the FP stack 255 /// after the specified instruction. 256 void popStackAfter(MachineBasicBlock::iterator &I); 257 258 /// freeStackSlotAfter - Free the specified register from the register 259 /// stack, so that it is no longer in a register. If the register is 260 /// currently at the top of the stack, we just pop the current instruction, 261 /// otherwise we store the current top-of-stack into the specified slot, 262 /// then pop the top of stack. 263 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); 264 265 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted 266 /// instruction. 267 MachineBasicBlock::iterator 268 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo); 269 270 /// Adjust the live registers to be the set in Mask. 271 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I); 272 273 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is 274 /// st(0), FP reg FixStack[1] is st(1) etc. 275 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount, 276 MachineBasicBlock::iterator I); 277 278 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 279 280 void handleCall(MachineBasicBlock::iterator &I); 281 void handleReturn(MachineBasicBlock::iterator &I); 282 void handleZeroArgFP(MachineBasicBlock::iterator &I); 283 void handleOneArgFP(MachineBasicBlock::iterator &I); 284 void handleOneArgFPRW(MachineBasicBlock::iterator &I); 285 void handleTwoArgFP(MachineBasicBlock::iterator &I); 286 void handleCompareFP(MachineBasicBlock::iterator &I); 287 void handleCondMovFP(MachineBasicBlock::iterator &I); 288 void handleSpecialFP(MachineBasicBlock::iterator &I); 289 290 // Check if a COPY instruction is using FP registers. 291 static bool isFPCopy(MachineInstr &MI) { 292 Register DstReg = MI.getOperand(0).getReg(); 293 Register SrcReg = MI.getOperand(1).getReg(); 294 295 return X86::RFP80RegClass.contains(DstReg) || 296 X86::RFP80RegClass.contains(SrcReg); 297 } 298 299 void setKillFlags(MachineBasicBlock &MBB) const; 300 }; 301 } 302 303 char FPS::ID = 0; 304 305 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier", 306 false, false) 307 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 308 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier", 309 false, false) 310 311 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } 312 313 /// getFPReg - Return the X86::FPx register number for the specified operand. 314 /// For example, this returns 3 for X86::FP3. 315 static unsigned getFPReg(const MachineOperand &MO) { 316 assert(MO.isReg() && "Expected an FP register!"); 317 Register Reg = MO.getReg(); 318 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); 319 return Reg - X86::FP0; 320 } 321 322 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP 323 /// register references into FP stack references. 324 /// 325 bool FPS::runOnMachineFunction(MachineFunction &MF) { 326 // We only need to run this pass if there are any FP registers used in this 327 // function. If it is all integer, there is nothing for us to do! 328 bool FPIsUsed = false; 329 330 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!"); 331 const MachineRegisterInfo &MRI = MF.getRegInfo(); 332 for (unsigned i = 0; i <= 6; ++i) 333 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) { 334 FPIsUsed = true; 335 break; 336 } 337 338 // Early exit. 339 if (!FPIsUsed) return false; 340 341 Bundles = &getAnalysis<EdgeBundles>(); 342 TII = MF.getSubtarget().getInstrInfo(); 343 344 // Prepare cross-MBB liveness. 345 bundleCFGRecomputeKillFlags(MF); 346 347 StackTop = 0; 348 349 // Process the function in depth first order so that we process at least one 350 // of the predecessors for every reachable block in the function. 351 df_iterator_default_set<MachineBasicBlock*> Processed; 352 MachineBasicBlock *Entry = &MF.front(); 353 354 LiveBundle &Bundle = 355 LiveBundles[Bundles->getBundle(Entry->getNumber(), false)]; 356 357 // In regcall convention, some FP registers may not be passed through 358 // the stack, so they will need to be assigned to the stack first 359 if ((Entry->getParent()->getFunction().getCallingConv() == 360 CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) { 361 // In the register calling convention, up to one FP argument could be 362 // saved in the first FP register. 363 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means 364 // that the FP registers contain arguments. 365 // The actual value is passed in FP0. 366 // Here we fix the stack and mark FP0 as pre-assigned register. 367 assert((Bundle.Mask & 0xFE) == 0 && 368 "Only FP0 could be passed as an argument"); 369 Bundle.FixCount = 1; 370 Bundle.FixStack[0] = 0; 371 } 372 373 bool Changed = false; 374 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed)) 375 Changed |= processBasicBlock(MF, *BB); 376 377 // Process any unreachable blocks in arbitrary order now. 378 if (MF.size() != Processed.size()) 379 for (MachineBasicBlock &BB : MF) 380 if (Processed.insert(&BB).second) 381 Changed |= processBasicBlock(MF, BB); 382 383 LiveBundles.clear(); 384 385 return Changed; 386 } 387 388 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and 389 /// live-out sets for the FP registers. Consistent means that the set of 390 /// registers live-out from a block is identical to the live-in set of all 391 /// successors. This is not enforced by the normal live-in lists since 392 /// registers may be implicitly defined, or not used by all successors. 393 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) { 394 assert(LiveBundles.empty() && "Stale data in LiveBundles"); 395 LiveBundles.resize(Bundles->getNumBundles()); 396 397 // Gather the actual live-in masks for all MBBs. 398 for (MachineBasicBlock &MBB : MF) { 399 setKillFlags(MBB); 400 401 const unsigned Mask = calcLiveInMask(&MBB, false); 402 if (!Mask) 403 continue; 404 // Update MBB ingoing bundle mask. 405 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask; 406 } 407 } 408 409 /// processBasicBlock - Loop over all of the instructions in the basic block, 410 /// transforming FP instructions into their stack form. 411 /// 412 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { 413 bool Changed = false; 414 MBB = &BB; 415 416 setupBlockStack(); 417 418 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { 419 MachineInstr &MI = *I; 420 uint64_t Flags = MI.getDesc().TSFlags; 421 422 unsigned FPInstClass = Flags & X86II::FPTypeMask; 423 if (MI.isInlineAsm()) 424 FPInstClass = X86II::SpecialFP; 425 426 if (MI.isCopy() && isFPCopy(MI)) 427 FPInstClass = X86II::SpecialFP; 428 429 if (MI.isImplicitDef() && 430 X86::RFP80RegClass.contains(MI.getOperand(0).getReg())) 431 FPInstClass = X86II::SpecialFP; 432 433 if (MI.isCall()) 434 FPInstClass = X86II::SpecialFP; 435 436 if (FPInstClass == X86II::NotFP) 437 continue; // Efficiently ignore non-fp insts! 438 439 MachineInstr *PrevMI = nullptr; 440 if (I != BB.begin()) 441 PrevMI = &*std::prev(I); 442 443 ++NumFP; // Keep track of # of pseudo instrs 444 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI); 445 446 // Get dead variables list now because the MI pointer may be deleted as part 447 // of processing! 448 SmallVector<unsigned, 8> DeadRegs; 449 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 450 const MachineOperand &MO = MI.getOperand(i); 451 if (MO.isReg() && MO.isDead()) 452 DeadRegs.push_back(MO.getReg()); 453 } 454 455 switch (FPInstClass) { 456 case X86II::ZeroArgFP: handleZeroArgFP(I); break; 457 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) 458 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) 459 case X86II::TwoArgFP: handleTwoArgFP(I); break; 460 case X86II::CompareFP: handleCompareFP(I); break; 461 case X86II::CondMovFP: handleCondMovFP(I); break; 462 case X86II::SpecialFP: handleSpecialFP(I); break; 463 default: llvm_unreachable("Unknown FP Type!"); 464 } 465 466 // Check to see if any of the values defined by this instruction are dead 467 // after definition. If so, pop them. 468 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { 469 unsigned Reg = DeadRegs[i]; 470 // Check if Reg is live on the stack. An inline-asm register operand that 471 // is in the clobber list and marked dead might not be live on the stack. 472 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers"); 473 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) { 474 LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n"); 475 freeStackSlotAfter(I, Reg-X86::FP0); 476 } 477 } 478 479 // Print out all of the instructions expanded to if -debug 480 LLVM_DEBUG({ 481 MachineBasicBlock::iterator PrevI = PrevMI; 482 if (I == PrevI) { 483 dbgs() << "Just deleted pseudo instruction\n"; 484 } else { 485 MachineBasicBlock::iterator Start = I; 486 // Rewind to first instruction newly inserted. 487 while (Start != BB.begin() && std::prev(Start) != PrevI) 488 --Start; 489 dbgs() << "Inserted instructions:\n\t"; 490 Start->print(dbgs()); 491 while (++Start != std::next(I)) { 492 } 493 } 494 dumpStack(); 495 }); 496 (void)PrevMI; 497 498 Changed = true; 499 } 500 501 finishBlockStack(); 502 503 return Changed; 504 } 505 506 /// setupBlockStack - Use the live bundles to set up our model of the stack 507 /// to match predecessors' live out stack. 508 void FPS::setupBlockStack() { 509 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB) 510 << " derived from " << MBB->getName() << ".\n"); 511 StackTop = 0; 512 // Get the live-in bundle for MBB. 513 const LiveBundle &Bundle = 514 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)]; 515 516 if (!Bundle.Mask) { 517 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n"); 518 return; 519 } 520 521 // Depth-first iteration should ensure that we always have an assigned stack. 522 assert(Bundle.isFixed() && "Reached block before any predecessors"); 523 524 // Push the fixed live-in registers. 525 for (unsigned i = Bundle.FixCount; i > 0; --i) { 526 LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp" 527 << unsigned(Bundle.FixStack[i - 1]) << '\n'); 528 pushReg(Bundle.FixStack[i-1]); 529 } 530 531 // Kill off unwanted live-ins. This can happen with a critical edge. 532 // FIXME: We could keep these live registers around as zombies. They may need 533 // to be revived at the end of a short block. It might save a few instrs. 534 unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true); 535 adjustLiveRegs(Mask, MBB->begin()); 536 LLVM_DEBUG(MBB->dump()); 537 } 538 539 /// finishBlockStack - Revive live-outs that are implicitly defined out of 540 /// MBB. Shuffle live registers to match the expected fixed stack of any 541 /// predecessors, and ensure that all predecessors are expecting the same 542 /// stack. 543 void FPS::finishBlockStack() { 544 // The RET handling below takes care of return blocks for us. 545 if (MBB->succ_empty()) 546 return; 547 548 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB) 549 << " derived from " << MBB->getName() << ".\n"); 550 551 // Get MBB's live-out bundle. 552 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true); 553 LiveBundle &Bundle = LiveBundles[BundleIdx]; 554 555 // We may need to kill and define some registers to match successors. 556 // FIXME: This can probably be combined with the shuffle below. 557 MachineBasicBlock::iterator Term = MBB->getFirstTerminator(); 558 adjustLiveRegs(Bundle.Mask, Term); 559 560 if (!Bundle.Mask) { 561 LLVM_DEBUG(dbgs() << "No live-outs.\n"); 562 return; 563 } 564 565 // Has the stack order been fixed yet? 566 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": "); 567 if (Bundle.isFixed()) { 568 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n"); 569 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term); 570 } else { 571 // Not fixed yet, we get to choose. 572 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n"); 573 Bundle.FixCount = StackTop; 574 for (unsigned i = 0; i < StackTop; ++i) 575 Bundle.FixStack[i] = getStackEntry(i); 576 } 577 } 578 579 580 //===----------------------------------------------------------------------===// 581 // Efficient Lookup Table Support 582 //===----------------------------------------------------------------------===// 583 584 namespace { 585 struct TableEntry { 586 uint16_t from; 587 uint16_t to; 588 bool operator<(const TableEntry &TE) const { return from < TE.from; } 589 friend bool operator<(const TableEntry &TE, unsigned V) { 590 return TE.from < V; 591 } 592 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V, 593 const TableEntry &TE) { 594 return V < TE.from; 595 } 596 }; 597 } 598 599 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) { 600 const TableEntry *I = llvm::lower_bound(Table, Opcode); 601 if (I != Table.end() && I->from == Opcode) 602 return I->to; 603 return -1; 604 } 605 606 #ifdef NDEBUG 607 #define ASSERT_SORTED(TABLE) 608 #else 609 #define ASSERT_SORTED(TABLE) \ 610 { \ 611 static std::atomic<bool> TABLE##Checked(false); \ 612 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \ 613 assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) && \ 614 "All lookup tables must be sorted for efficient access!"); \ 615 TABLE##Checked.store(true, std::memory_order_relaxed); \ 616 } \ 617 } 618 #endif 619 620 //===----------------------------------------------------------------------===// 621 // Register File -> Register Stack Mapping Methods 622 //===----------------------------------------------------------------------===// 623 624 // OpcodeTable - Sorted map of register instructions to their stack version. 625 // The first element is an register file pseudo instruction, the second is the 626 // concrete X86 instruction which uses the register stack. 627 // 628 static const TableEntry OpcodeTable[] = { 629 { X86::ABS_Fp32 , X86::ABS_F }, 630 { X86::ABS_Fp64 , X86::ABS_F }, 631 { X86::ABS_Fp80 , X86::ABS_F }, 632 { X86::ADD_Fp32m , X86::ADD_F32m }, 633 { X86::ADD_Fp64m , X86::ADD_F64m }, 634 { X86::ADD_Fp64m32 , X86::ADD_F32m }, 635 { X86::ADD_Fp80m32 , X86::ADD_F32m }, 636 { X86::ADD_Fp80m64 , X86::ADD_F64m }, 637 { X86::ADD_FpI16m32 , X86::ADD_FI16m }, 638 { X86::ADD_FpI16m64 , X86::ADD_FI16m }, 639 { X86::ADD_FpI16m80 , X86::ADD_FI16m }, 640 { X86::ADD_FpI32m32 , X86::ADD_FI32m }, 641 { X86::ADD_FpI32m64 , X86::ADD_FI32m }, 642 { X86::ADD_FpI32m80 , X86::ADD_FI32m }, 643 { X86::CHS_Fp32 , X86::CHS_F }, 644 { X86::CHS_Fp64 , X86::CHS_F }, 645 { X86::CHS_Fp80 , X86::CHS_F }, 646 { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, 647 { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, 648 { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, 649 { X86::CMOVB_Fp32 , X86::CMOVB_F }, 650 { X86::CMOVB_Fp64 , X86::CMOVB_F }, 651 { X86::CMOVB_Fp80 , X86::CMOVB_F }, 652 { X86::CMOVE_Fp32 , X86::CMOVE_F }, 653 { X86::CMOVE_Fp64 , X86::CMOVE_F }, 654 { X86::CMOVE_Fp80 , X86::CMOVE_F }, 655 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, 656 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, 657 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, 658 { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, 659 { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, 660 { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, 661 { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, 662 { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, 663 { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, 664 { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, 665 { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, 666 { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, 667 { X86::CMOVP_Fp32 , X86::CMOVP_F }, 668 { X86::CMOVP_Fp64 , X86::CMOVP_F }, 669 { X86::CMOVP_Fp80 , X86::CMOVP_F }, 670 { X86::COM_FpIr32 , X86::COM_FIr }, 671 { X86::COM_FpIr64 , X86::COM_FIr }, 672 { X86::COM_FpIr80 , X86::COM_FIr }, 673 { X86::COM_Fpr32 , X86::COM_FST0r }, 674 { X86::COM_Fpr64 , X86::COM_FST0r }, 675 { X86::COM_Fpr80 , X86::COM_FST0r }, 676 { X86::DIVR_Fp32m , X86::DIVR_F32m }, 677 { X86::DIVR_Fp64m , X86::DIVR_F64m }, 678 { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, 679 { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, 680 { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, 681 { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, 682 { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, 683 { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, 684 { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, 685 { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, 686 { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, 687 { X86::DIV_Fp32m , X86::DIV_F32m }, 688 { X86::DIV_Fp64m , X86::DIV_F64m }, 689 { X86::DIV_Fp64m32 , X86::DIV_F32m }, 690 { X86::DIV_Fp80m32 , X86::DIV_F32m }, 691 { X86::DIV_Fp80m64 , X86::DIV_F64m }, 692 { X86::DIV_FpI16m32 , X86::DIV_FI16m }, 693 { X86::DIV_FpI16m64 , X86::DIV_FI16m }, 694 { X86::DIV_FpI16m80 , X86::DIV_FI16m }, 695 { X86::DIV_FpI32m32 , X86::DIV_FI32m }, 696 { X86::DIV_FpI32m64 , X86::DIV_FI32m }, 697 { X86::DIV_FpI32m80 , X86::DIV_FI32m }, 698 { X86::ILD_Fp16m32 , X86::ILD_F16m }, 699 { X86::ILD_Fp16m64 , X86::ILD_F16m }, 700 { X86::ILD_Fp16m80 , X86::ILD_F16m }, 701 { X86::ILD_Fp32m32 , X86::ILD_F32m }, 702 { X86::ILD_Fp32m64 , X86::ILD_F32m }, 703 { X86::ILD_Fp32m80 , X86::ILD_F32m }, 704 { X86::ILD_Fp64m32 , X86::ILD_F64m }, 705 { X86::ILD_Fp64m64 , X86::ILD_F64m }, 706 { X86::ILD_Fp64m80 , X86::ILD_F64m }, 707 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, 708 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, 709 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, 710 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, 711 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, 712 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, 713 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, 714 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, 715 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, 716 { X86::IST_Fp16m32 , X86::IST_F16m }, 717 { X86::IST_Fp16m64 , X86::IST_F16m }, 718 { X86::IST_Fp16m80 , X86::IST_F16m }, 719 { X86::IST_Fp32m32 , X86::IST_F32m }, 720 { X86::IST_Fp32m64 , X86::IST_F32m }, 721 { X86::IST_Fp32m80 , X86::IST_F32m }, 722 { X86::IST_Fp64m32 , X86::IST_FP64m }, 723 { X86::IST_Fp64m64 , X86::IST_FP64m }, 724 { X86::IST_Fp64m80 , X86::IST_FP64m }, 725 { X86::LD_Fp032 , X86::LD_F0 }, 726 { X86::LD_Fp064 , X86::LD_F0 }, 727 { X86::LD_Fp080 , X86::LD_F0 }, 728 { X86::LD_Fp132 , X86::LD_F1 }, 729 { X86::LD_Fp164 , X86::LD_F1 }, 730 { X86::LD_Fp180 , X86::LD_F1 }, 731 { X86::LD_Fp32m , X86::LD_F32m }, 732 { X86::LD_Fp32m64 , X86::LD_F32m }, 733 { X86::LD_Fp32m80 , X86::LD_F32m }, 734 { X86::LD_Fp64m , X86::LD_F64m }, 735 { X86::LD_Fp64m80 , X86::LD_F64m }, 736 { X86::LD_Fp80m , X86::LD_F80m }, 737 { X86::MUL_Fp32m , X86::MUL_F32m }, 738 { X86::MUL_Fp64m , X86::MUL_F64m }, 739 { X86::MUL_Fp64m32 , X86::MUL_F32m }, 740 { X86::MUL_Fp80m32 , X86::MUL_F32m }, 741 { X86::MUL_Fp80m64 , X86::MUL_F64m }, 742 { X86::MUL_FpI16m32 , X86::MUL_FI16m }, 743 { X86::MUL_FpI16m64 , X86::MUL_FI16m }, 744 { X86::MUL_FpI16m80 , X86::MUL_FI16m }, 745 { X86::MUL_FpI32m32 , X86::MUL_FI32m }, 746 { X86::MUL_FpI32m64 , X86::MUL_FI32m }, 747 { X86::MUL_FpI32m80 , X86::MUL_FI32m }, 748 { X86::SQRT_Fp32 , X86::SQRT_F }, 749 { X86::SQRT_Fp64 , X86::SQRT_F }, 750 { X86::SQRT_Fp80 , X86::SQRT_F }, 751 { X86::ST_Fp32m , X86::ST_F32m }, 752 { X86::ST_Fp64m , X86::ST_F64m }, 753 { X86::ST_Fp64m32 , X86::ST_F32m }, 754 { X86::ST_Fp80m32 , X86::ST_F32m }, 755 { X86::ST_Fp80m64 , X86::ST_F64m }, 756 { X86::ST_FpP80m , X86::ST_FP80m }, 757 { X86::SUBR_Fp32m , X86::SUBR_F32m }, 758 { X86::SUBR_Fp64m , X86::SUBR_F64m }, 759 { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, 760 { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, 761 { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, 762 { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, 763 { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, 764 { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, 765 { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, 766 { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, 767 { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, 768 { X86::SUB_Fp32m , X86::SUB_F32m }, 769 { X86::SUB_Fp64m , X86::SUB_F64m }, 770 { X86::SUB_Fp64m32 , X86::SUB_F32m }, 771 { X86::SUB_Fp80m32 , X86::SUB_F32m }, 772 { X86::SUB_Fp80m64 , X86::SUB_F64m }, 773 { X86::SUB_FpI16m32 , X86::SUB_FI16m }, 774 { X86::SUB_FpI16m64 , X86::SUB_FI16m }, 775 { X86::SUB_FpI16m80 , X86::SUB_FI16m }, 776 { X86::SUB_FpI32m32 , X86::SUB_FI32m }, 777 { X86::SUB_FpI32m64 , X86::SUB_FI32m }, 778 { X86::SUB_FpI32m80 , X86::SUB_FI32m }, 779 { X86::TST_Fp32 , X86::TST_F }, 780 { X86::TST_Fp64 , X86::TST_F }, 781 { X86::TST_Fp80 , X86::TST_F }, 782 { X86::UCOM_FpIr32 , X86::UCOM_FIr }, 783 { X86::UCOM_FpIr64 , X86::UCOM_FIr }, 784 { X86::UCOM_FpIr80 , X86::UCOM_FIr }, 785 { X86::UCOM_Fpr32 , X86::UCOM_Fr }, 786 { X86::UCOM_Fpr64 , X86::UCOM_Fr }, 787 { X86::UCOM_Fpr80 , X86::UCOM_Fr }, 788 }; 789 790 static unsigned getConcreteOpcode(unsigned Opcode) { 791 ASSERT_SORTED(OpcodeTable); 792 int Opc = Lookup(OpcodeTable, Opcode); 793 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); 794 return Opc; 795 } 796 797 //===----------------------------------------------------------------------===// 798 // Helper Methods 799 //===----------------------------------------------------------------------===// 800 801 // PopTable - Sorted map of instructions to their popping version. The first 802 // element is an instruction, the second is the version which pops. 803 // 804 static const TableEntry PopTable[] = { 805 { X86::ADD_FrST0 , X86::ADD_FPrST0 }, 806 807 { X86::COMP_FST0r, X86::FCOMPP }, 808 { X86::COM_FIr , X86::COM_FIPr }, 809 { X86::COM_FST0r , X86::COMP_FST0r }, 810 811 { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, 812 { X86::DIV_FrST0 , X86::DIV_FPrST0 }, 813 814 { X86::IST_F16m , X86::IST_FP16m }, 815 { X86::IST_F32m , X86::IST_FP32m }, 816 817 { X86::MUL_FrST0 , X86::MUL_FPrST0 }, 818 819 { X86::ST_F32m , X86::ST_FP32m }, 820 { X86::ST_F64m , X86::ST_FP64m }, 821 { X86::ST_Frr , X86::ST_FPrr }, 822 823 { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, 824 { X86::SUB_FrST0 , X86::SUB_FPrST0 }, 825 826 { X86::UCOM_FIr , X86::UCOM_FIPr }, 827 828 { X86::UCOM_FPr , X86::UCOM_FPPr }, 829 { X86::UCOM_Fr , X86::UCOM_FPr }, 830 }; 831 832 /// popStackAfter - Pop the current value off of the top of the FP stack after 833 /// the specified instruction. This attempts to be sneaky and combine the pop 834 /// into the instruction itself if possible. The iterator is left pointing to 835 /// the last instruction, be it a new pop instruction inserted, or the old 836 /// instruction if it was modified in place. 837 /// 838 void FPS::popStackAfter(MachineBasicBlock::iterator &I) { 839 MachineInstr &MI = *I; 840 const DebugLoc &dl = MI.getDebugLoc(); 841 ASSERT_SORTED(PopTable); 842 843 popReg(); 844 845 // Check to see if there is a popping version of this instruction... 846 int Opcode = Lookup(PopTable, I->getOpcode()); 847 if (Opcode != -1) { 848 I->setDesc(TII->get(Opcode)); 849 if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr) 850 I->RemoveOperand(0); 851 } else { // Insert an explicit pop 852 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); 853 } 854 } 855 856 /// freeStackSlotAfter - Free the specified register from the register stack, so 857 /// that it is no longer in a register. If the register is currently at the top 858 /// of the stack, we just pop the current instruction, otherwise we store the 859 /// current top-of-stack into the specified slot, then pop the top of stack. 860 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { 861 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. 862 popStackAfter(I); 863 return; 864 } 865 866 // Otherwise, store the top of stack into the dead slot, killing the operand 867 // without having to add in an explicit xchg then pop. 868 // 869 I = freeStackSlotBefore(++I, FPRegNo); 870 } 871 872 /// freeStackSlotBefore - Free the specified register without trying any 873 /// folding. 874 MachineBasicBlock::iterator 875 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) { 876 unsigned STReg = getSTReg(FPRegNo); 877 unsigned OldSlot = getSlot(FPRegNo); 878 unsigned TopReg = Stack[StackTop-1]; 879 Stack[OldSlot] = TopReg; 880 RegMap[TopReg] = OldSlot; 881 RegMap[FPRegNo] = ~0; 882 Stack[--StackTop] = ~0; 883 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)) 884 .addReg(STReg) 885 .getInstr(); 886 } 887 888 /// adjustLiveRegs - Kill and revive registers such that exactly the FP 889 /// registers with a bit in Mask are live. 890 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) { 891 unsigned Defs = Mask; 892 unsigned Kills = 0; 893 for (unsigned i = 0; i < StackTop; ++i) { 894 unsigned RegNo = Stack[i]; 895 if (!(Defs & (1 << RegNo))) 896 // This register is live, but we don't want it. 897 Kills |= (1 << RegNo); 898 else 899 // We don't need to imp-def this live register. 900 Defs &= ~(1 << RegNo); 901 } 902 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?"); 903 904 // Produce implicit-defs for free by using killed registers. 905 while (Kills && Defs) { 906 unsigned KReg = countTrailingZeros(Kills); 907 unsigned DReg = countTrailingZeros(Defs); 908 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg 909 << "\n"); 910 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]); 911 std::swap(RegMap[KReg], RegMap[DReg]); 912 Kills &= ~(1 << KReg); 913 Defs &= ~(1 << DReg); 914 } 915 916 // Kill registers by popping. 917 if (Kills && I != MBB->begin()) { 918 MachineBasicBlock::iterator I2 = std::prev(I); 919 while (StackTop) { 920 unsigned KReg = getStackEntry(0); 921 if (!(Kills & (1 << KReg))) 922 break; 923 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n"); 924 popStackAfter(I2); 925 Kills &= ~(1 << KReg); 926 } 927 } 928 929 // Manually kill the rest. 930 while (Kills) { 931 unsigned KReg = countTrailingZeros(Kills); 932 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n"); 933 freeStackSlotBefore(I, KReg); 934 Kills &= ~(1 << KReg); 935 } 936 937 // Load zeros for all the imp-defs. 938 while(Defs) { 939 unsigned DReg = countTrailingZeros(Defs); 940 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n"); 941 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0)); 942 pushReg(DReg); 943 Defs &= ~(1 << DReg); 944 } 945 946 // Now we should have the correct registers live. 947 LLVM_DEBUG(dumpStack()); 948 assert(StackTop == countPopulation(Mask) && "Live count mismatch"); 949 } 950 951 /// shuffleStackTop - emit fxch instructions before I to shuffle the top 952 /// FixCount entries into the order given by FixStack. 953 /// FIXME: Is there a better algorithm than insertion sort? 954 void FPS::shuffleStackTop(const unsigned char *FixStack, 955 unsigned FixCount, 956 MachineBasicBlock::iterator I) { 957 // Move items into place, starting from the desired stack bottom. 958 while (FixCount--) { 959 // Old register at position FixCount. 960 unsigned OldReg = getStackEntry(FixCount); 961 // Desired register at position FixCount. 962 unsigned Reg = FixStack[FixCount]; 963 if (Reg == OldReg) 964 continue; 965 // (Reg st0) (OldReg st0) = (Reg OldReg st0) 966 moveToTop(Reg, I); 967 if (FixCount > 0) 968 moveToTop(OldReg, I); 969 } 970 LLVM_DEBUG(dumpStack()); 971 } 972 973 974 //===----------------------------------------------------------------------===// 975 // Instruction transformation implementation 976 //===----------------------------------------------------------------------===// 977 978 void FPS::handleCall(MachineBasicBlock::iterator &I) { 979 MachineInstr &MI = *I; 980 unsigned STReturns = 0; 981 982 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 983 MachineOperand &Op = MI.getOperand(i); 984 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 985 continue; 986 987 assert(Op.isImplicit() && "Expected implicit def/use"); 988 989 if (Op.isDef()) 990 STReturns |= 1 << getFPReg(Op); 991 992 // Remove the operand so that later passes don't see it. 993 MI.RemoveOperand(i); 994 --i; 995 --e; 996 } 997 998 unsigned N = countTrailingOnes(STReturns); 999 1000 // FP registers used for function return must be consecutive starting at 1001 // FP0 1002 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2)); 1003 1004 // Reset the FP Stack - It is required because of possible leftovers from 1005 // passed arguments. The caller should assume that the FP stack is 1006 // returned empty (unless the callee returns values on FP stack). 1007 while (StackTop > 0) 1008 popReg(); 1009 1010 for (unsigned I = 0; I < N; ++I) 1011 pushReg(N - I - 1); 1012 } 1013 1014 /// If RET has an FP register use operand, pass the first one in ST(0) and 1015 /// the second one in ST(1). 1016 void FPS::handleReturn(MachineBasicBlock::iterator &I) { 1017 MachineInstr &MI = *I; 1018 1019 // Find the register operands. 1020 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; 1021 unsigned LiveMask = 0; 1022 1023 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1024 MachineOperand &Op = MI.getOperand(i); 1025 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1026 continue; 1027 // FP Register uses must be kills unless there are two uses of the same 1028 // register, in which case only one will be a kill. 1029 assert(Op.isUse() && 1030 (Op.isKill() || // Marked kill. 1031 getFPReg(Op) == FirstFPRegOp || // Second instance. 1032 MI.killsRegister(Op.getReg())) && // Later use is marked kill. 1033 "Ret only defs operands, and values aren't live beyond it"); 1034 1035 if (FirstFPRegOp == ~0U) 1036 FirstFPRegOp = getFPReg(Op); 1037 else { 1038 assert(SecondFPRegOp == ~0U && "More than two fp operands!"); 1039 SecondFPRegOp = getFPReg(Op); 1040 } 1041 LiveMask |= (1 << getFPReg(Op)); 1042 1043 // Remove the operand so that later passes don't see it. 1044 MI.RemoveOperand(i); 1045 --i; 1046 --e; 1047 } 1048 1049 // We may have been carrying spurious live-ins, so make sure only the 1050 // returned registers are left live. 1051 adjustLiveRegs(LiveMask, MI); 1052 if (!LiveMask) return; // Quick check to see if any are possible. 1053 1054 // There are only four possibilities here: 1055 // 1) we are returning a single FP value. In this case, it has to be in 1056 // ST(0) already, so just declare success by removing the value from the 1057 // FP Stack. 1058 if (SecondFPRegOp == ~0U) { 1059 // Assert that the top of stack contains the right FP register. 1060 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && 1061 "Top of stack not the right register for RET!"); 1062 1063 // Ok, everything is good, mark the value as not being on the stack 1064 // anymore so that our assertion about the stack being empty at end of 1065 // block doesn't fire. 1066 StackTop = 0; 1067 return; 1068 } 1069 1070 // Otherwise, we are returning two values: 1071 // 2) If returning the same value for both, we only have one thing in the FP 1072 // stack. Consider: RET FP1, FP1 1073 if (StackTop == 1) { 1074 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& 1075 "Stack misconfiguration for RET!"); 1076 1077 // Duplicate the TOS so that we return it twice. Just pick some other FPx 1078 // register to hold it. 1079 unsigned NewReg = ScratchFPReg; 1080 duplicateToTop(FirstFPRegOp, NewReg, MI); 1081 FirstFPRegOp = NewReg; 1082 } 1083 1084 /// Okay we know we have two different FPx operands now: 1085 assert(StackTop == 2 && "Must have two values live!"); 1086 1087 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently 1088 /// in ST(1). In this case, emit an fxch. 1089 if (getStackEntry(0) == SecondFPRegOp) { 1090 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); 1091 moveToTop(FirstFPRegOp, MI); 1092 } 1093 1094 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in 1095 /// ST(1). Just remove both from our understanding of the stack and return. 1096 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); 1097 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); 1098 StackTop = 0; 1099 } 1100 1101 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> 1102 /// 1103 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { 1104 MachineInstr &MI = *I; 1105 unsigned DestReg = getFPReg(MI.getOperand(0)); 1106 1107 // Change from the pseudo instruction to the concrete instruction. 1108 MI.RemoveOperand(0); // Remove the explicit ST(0) operand 1109 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1110 MI.addOperand( 1111 MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true)); 1112 1113 // Result gets pushed on the stack. 1114 pushReg(DestReg); 1115 } 1116 1117 /// handleOneArgFP - fst <mem>, ST(0) 1118 /// 1119 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { 1120 MachineInstr &MI = *I; 1121 unsigned NumOps = MI.getDesc().getNumOperands(); 1122 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) && 1123 "Can only handle fst* & ftst instructions!"); 1124 1125 // Is this the last use of the source register? 1126 unsigned Reg = getFPReg(MI.getOperand(NumOps - 1)); 1127 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); 1128 1129 // FISTP64m is strange because there isn't a non-popping versions. 1130 // If we have one _and_ we don't want to pop the operand, duplicate the value 1131 // on the stack instead of moving it. This ensure that popping the value is 1132 // always ok. 1133 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. 1134 // 1135 if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 || 1136 MI.getOpcode() == X86::ISTT_Fp16m32 || 1137 MI.getOpcode() == X86::ISTT_Fp32m32 || 1138 MI.getOpcode() == X86::ISTT_Fp64m32 || 1139 MI.getOpcode() == X86::IST_Fp64m64 || 1140 MI.getOpcode() == X86::ISTT_Fp16m64 || 1141 MI.getOpcode() == X86::ISTT_Fp32m64 || 1142 MI.getOpcode() == X86::ISTT_Fp64m64 || 1143 MI.getOpcode() == X86::IST_Fp64m80 || 1144 MI.getOpcode() == X86::ISTT_Fp16m80 || 1145 MI.getOpcode() == X86::ISTT_Fp32m80 || 1146 MI.getOpcode() == X86::ISTT_Fp64m80 || 1147 MI.getOpcode() == X86::ST_FpP80m)) { 1148 duplicateToTop(Reg, ScratchFPReg, I); 1149 } else { 1150 moveToTop(Reg, I); // Move to the top of the stack... 1151 } 1152 1153 // Convert from the pseudo instruction to the concrete instruction. 1154 MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand 1155 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1156 MI.addOperand( 1157 MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true)); 1158 1159 if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m || 1160 MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m || 1161 MI.getOpcode() == X86::ST_FP80m) { 1162 if (StackTop == 0) 1163 report_fatal_error("Stack empty??"); 1164 --StackTop; 1165 } else if (KillsSrc) { // Last use of operand? 1166 popStackAfter(I); 1167 } 1168 } 1169 1170 1171 /// handleOneArgFPRW: Handle instructions that read from the top of stack and 1172 /// replace the value with a newly computed value. These instructions may have 1173 /// non-fp operands after their FP operands. 1174 /// 1175 /// Examples: 1176 /// R1 = fchs R2 1177 /// R1 = fadd R2, [mem] 1178 /// 1179 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { 1180 MachineInstr &MI = *I; 1181 #ifndef NDEBUG 1182 unsigned NumOps = MI.getDesc().getNumOperands(); 1183 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); 1184 #endif 1185 1186 // Is this the last use of the source register? 1187 unsigned Reg = getFPReg(MI.getOperand(1)); 1188 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg); 1189 1190 if (KillsSrc) { 1191 // If this is the last use of the source register, just make sure it's on 1192 // the top of the stack. 1193 moveToTop(Reg, I); 1194 if (StackTop == 0) 1195 report_fatal_error("Stack cannot be empty!"); 1196 --StackTop; 1197 pushReg(getFPReg(MI.getOperand(0))); 1198 } else { 1199 // If this is not the last use of the source register, _copy_ it to the top 1200 // of the stack. 1201 duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I); 1202 } 1203 1204 // Change from the pseudo instruction to the concrete instruction. 1205 MI.RemoveOperand(1); // Drop the source operand. 1206 MI.RemoveOperand(0); // Drop the destination operand. 1207 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1208 } 1209 1210 1211 //===----------------------------------------------------------------------===// 1212 // Define tables of various ways to map pseudo instructions 1213 // 1214 1215 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) 1216 static const TableEntry ForwardST0Table[] = { 1217 { X86::ADD_Fp32 , X86::ADD_FST0r }, 1218 { X86::ADD_Fp64 , X86::ADD_FST0r }, 1219 { X86::ADD_Fp80 , X86::ADD_FST0r }, 1220 { X86::DIV_Fp32 , X86::DIV_FST0r }, 1221 { X86::DIV_Fp64 , X86::DIV_FST0r }, 1222 { X86::DIV_Fp80 , X86::DIV_FST0r }, 1223 { X86::MUL_Fp32 , X86::MUL_FST0r }, 1224 { X86::MUL_Fp64 , X86::MUL_FST0r }, 1225 { X86::MUL_Fp80 , X86::MUL_FST0r }, 1226 { X86::SUB_Fp32 , X86::SUB_FST0r }, 1227 { X86::SUB_Fp64 , X86::SUB_FST0r }, 1228 { X86::SUB_Fp80 , X86::SUB_FST0r }, 1229 }; 1230 1231 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) 1232 static const TableEntry ReverseST0Table[] = { 1233 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative 1234 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative 1235 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative 1236 { X86::DIV_Fp32 , X86::DIVR_FST0r }, 1237 { X86::DIV_Fp64 , X86::DIVR_FST0r }, 1238 { X86::DIV_Fp80 , X86::DIVR_FST0r }, 1239 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative 1240 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative 1241 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative 1242 { X86::SUB_Fp32 , X86::SUBR_FST0r }, 1243 { X86::SUB_Fp64 , X86::SUBR_FST0r }, 1244 { X86::SUB_Fp80 , X86::SUBR_FST0r }, 1245 }; 1246 1247 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) 1248 static const TableEntry ForwardSTiTable[] = { 1249 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative 1250 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative 1251 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative 1252 { X86::DIV_Fp32 , X86::DIVR_FrST0 }, 1253 { X86::DIV_Fp64 , X86::DIVR_FrST0 }, 1254 { X86::DIV_Fp80 , X86::DIVR_FrST0 }, 1255 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative 1256 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative 1257 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative 1258 { X86::SUB_Fp32 , X86::SUBR_FrST0 }, 1259 { X86::SUB_Fp64 , X86::SUBR_FrST0 }, 1260 { X86::SUB_Fp80 , X86::SUBR_FrST0 }, 1261 }; 1262 1263 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) 1264 static const TableEntry ReverseSTiTable[] = { 1265 { X86::ADD_Fp32 , X86::ADD_FrST0 }, 1266 { X86::ADD_Fp64 , X86::ADD_FrST0 }, 1267 { X86::ADD_Fp80 , X86::ADD_FrST0 }, 1268 { X86::DIV_Fp32 , X86::DIV_FrST0 }, 1269 { X86::DIV_Fp64 , X86::DIV_FrST0 }, 1270 { X86::DIV_Fp80 , X86::DIV_FrST0 }, 1271 { X86::MUL_Fp32 , X86::MUL_FrST0 }, 1272 { X86::MUL_Fp64 , X86::MUL_FrST0 }, 1273 { X86::MUL_Fp80 , X86::MUL_FrST0 }, 1274 { X86::SUB_Fp32 , X86::SUB_FrST0 }, 1275 { X86::SUB_Fp64 , X86::SUB_FrST0 }, 1276 { X86::SUB_Fp80 , X86::SUB_FrST0 }, 1277 }; 1278 1279 1280 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual 1281 /// instructions which need to be simplified and possibly transformed. 1282 /// 1283 /// Result: ST(0) = fsub ST(0), ST(i) 1284 /// ST(i) = fsub ST(0), ST(i) 1285 /// ST(0) = fsubr ST(0), ST(i) 1286 /// ST(i) = fsubr ST(0), ST(i) 1287 /// 1288 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { 1289 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); 1290 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); 1291 MachineInstr &MI = *I; 1292 1293 unsigned NumOperands = MI.getDesc().getNumOperands(); 1294 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); 1295 unsigned Dest = getFPReg(MI.getOperand(0)); 1296 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); 1297 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); 1298 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); 1299 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1300 DebugLoc dl = MI.getDebugLoc(); 1301 1302 unsigned TOS = getStackEntry(0); 1303 1304 // One of our operands must be on the top of the stack. If neither is yet, we 1305 // need to move one. 1306 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? 1307 // We can choose to move either operand to the top of the stack. If one of 1308 // the operands is killed by this instruction, we want that one so that we 1309 // can update right on top of the old version. 1310 if (KillsOp0) { 1311 moveToTop(Op0, I); // Move dead operand to TOS. 1312 TOS = Op0; 1313 } else if (KillsOp1) { 1314 moveToTop(Op1, I); 1315 TOS = Op1; 1316 } else { 1317 // All of the operands are live after this instruction executes, so we 1318 // cannot update on top of any operand. Because of this, we must 1319 // duplicate one of the stack elements to the top. It doesn't matter 1320 // which one we pick. 1321 // 1322 duplicateToTop(Op0, Dest, I); 1323 Op0 = TOS = Dest; 1324 KillsOp0 = true; 1325 } 1326 } else if (!KillsOp0 && !KillsOp1) { 1327 // If we DO have one of our operands at the top of the stack, but we don't 1328 // have a dead operand, we must duplicate one of the operands to a new slot 1329 // on the stack. 1330 duplicateToTop(Op0, Dest, I); 1331 Op0 = TOS = Dest; 1332 KillsOp0 = true; 1333 } 1334 1335 // Now we know that one of our operands is on the top of the stack, and at 1336 // least one of our operands is killed by this instruction. 1337 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && 1338 "Stack conditions not set up right!"); 1339 1340 // We decide which form to use based on what is on the top of the stack, and 1341 // which operand is killed by this instruction. 1342 ArrayRef<TableEntry> InstTable; 1343 bool isForward = TOS == Op0; 1344 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); 1345 if (updateST0) { 1346 if (isForward) 1347 InstTable = ForwardST0Table; 1348 else 1349 InstTable = ReverseST0Table; 1350 } else { 1351 if (isForward) 1352 InstTable = ForwardSTiTable; 1353 else 1354 InstTable = ReverseSTiTable; 1355 } 1356 1357 int Opcode = Lookup(InstTable, MI.getOpcode()); 1358 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); 1359 1360 // NotTOS - The register which is not on the top of stack... 1361 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; 1362 1363 // Replace the old instruction with a new instruction 1364 MBB->remove(&*I++); 1365 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); 1366 1367 if (!MI.mayRaiseFPException()) 1368 I->setFlag(MachineInstr::MIFlag::NoFPExcept); 1369 1370 // If both operands are killed, pop one off of the stack in addition to 1371 // overwriting the other one. 1372 if (KillsOp0 && KillsOp1 && Op0 != Op1) { 1373 assert(!updateST0 && "Should have updated other operand!"); 1374 popStackAfter(I); // Pop the top of stack 1375 } 1376 1377 // Update stack information so that we know the destination register is now on 1378 // the stack. 1379 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); 1380 assert(UpdatedSlot < StackTop && Dest < 7); 1381 Stack[UpdatedSlot] = Dest; 1382 RegMap[Dest] = UpdatedSlot; 1383 MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction 1384 } 1385 1386 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP 1387 /// register arguments and no explicit destinations. 1388 /// 1389 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { 1390 MachineInstr &MI = *I; 1391 1392 unsigned NumOperands = MI.getDesc().getNumOperands(); 1393 assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); 1394 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2)); 1395 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1)); 1396 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0); 1397 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1398 1399 // Make sure the first operand is on the top of stack, the other one can be 1400 // anywhere. 1401 moveToTop(Op0, I); 1402 1403 // Change from the pseudo instruction to the concrete instruction. 1404 MI.getOperand(0).setReg(getSTReg(Op1)); 1405 MI.RemoveOperand(1); 1406 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1407 1408 // If any of the operands are killed by this instruction, free them. 1409 if (KillsOp0) freeStackSlotAfter(I, Op0); 1410 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); 1411 } 1412 1413 /// handleCondMovFP - Handle two address conditional move instructions. These 1414 /// instructions move a st(i) register to st(0) iff a condition is true. These 1415 /// instructions require that the first operand is at the top of the stack, but 1416 /// otherwise don't modify the stack at all. 1417 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { 1418 MachineInstr &MI = *I; 1419 1420 unsigned Op0 = getFPReg(MI.getOperand(0)); 1421 unsigned Op1 = getFPReg(MI.getOperand(2)); 1422 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1); 1423 1424 // The first operand *must* be on the top of the stack. 1425 moveToTop(Op0, I); 1426 1427 // Change the second operand to the stack register that the operand is in. 1428 // Change from the pseudo instruction to the concrete instruction. 1429 MI.RemoveOperand(0); 1430 MI.RemoveOperand(1); 1431 MI.getOperand(0).setReg(getSTReg(Op1)); 1432 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode()))); 1433 1434 // If we kill the second operand, make sure to pop it from the stack. 1435 if (Op0 != Op1 && KillsOp1) { 1436 // Get this value off of the register stack. 1437 freeStackSlotAfter(I, Op1); 1438 } 1439 } 1440 1441 1442 /// handleSpecialFP - Handle special instructions which behave unlike other 1443 /// floating point instructions. This is primarily intended for use by pseudo 1444 /// instructions. 1445 /// 1446 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) { 1447 MachineInstr &MI = *Inst; 1448 1449 if (MI.isCall()) { 1450 handleCall(Inst); 1451 return; 1452 } 1453 1454 if (MI.isReturn()) { 1455 handleReturn(Inst); 1456 return; 1457 } 1458 1459 switch (MI.getOpcode()) { 1460 default: llvm_unreachable("Unknown SpecialFP instruction!"); 1461 case TargetOpcode::COPY: { 1462 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP. 1463 const MachineOperand &MO1 = MI.getOperand(1); 1464 const MachineOperand &MO0 = MI.getOperand(0); 1465 bool KillsSrc = MI.killsRegister(MO1.getReg()); 1466 1467 // FP <- FP copy. 1468 unsigned DstFP = getFPReg(MO0); 1469 unsigned SrcFP = getFPReg(MO1); 1470 assert(isLive(SrcFP) && "Cannot copy dead register"); 1471 if (KillsSrc) { 1472 // If the input operand is killed, we can just change the owner of the 1473 // incoming stack slot into the result. 1474 unsigned Slot = getSlot(SrcFP); 1475 Stack[Slot] = DstFP; 1476 RegMap[DstFP] = Slot; 1477 } else { 1478 // For COPY we just duplicate the specified value to a new stack slot. 1479 // This could be made better, but would require substantial changes. 1480 duplicateToTop(SrcFP, DstFP, Inst); 1481 } 1482 break; 1483 } 1484 1485 case TargetOpcode::IMPLICIT_DEF: { 1486 // All FP registers must be explicitly defined, so load a 0 instead. 1487 unsigned Reg = MI.getOperand(0).getReg() - X86::FP0; 1488 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n'); 1489 BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0)); 1490 pushReg(Reg); 1491 break; 1492 } 1493 1494 case TargetOpcode::INLINEASM: 1495 case TargetOpcode::INLINEASM_BR: { 1496 // The inline asm MachineInstr currently only *uses* FP registers for the 1497 // 'f' constraint. These should be turned into the current ST(x) register 1498 // in the machine instr. 1499 // 1500 // There are special rules for x87 inline assembly. The compiler must know 1501 // exactly how many registers are popped and pushed implicitly by the asm. 1502 // Otherwise it is not possible to restore the stack state after the inline 1503 // asm. 1504 // 1505 // There are 3 kinds of input operands: 1506 // 1507 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A 1508 // popped input operand must be in a fixed stack slot, and it is either 1509 // tied to an output operand, or in the clobber list. The MI has ST use 1510 // and def operands for these inputs. 1511 // 1512 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are 1513 // preserved by the inline asm. The fixed stack slots must be STn-STm 1514 // following the popped inputs. A fixed input operand cannot be tied to 1515 // an output or appear in the clobber list. The MI has ST use operands 1516 // and no defs for these inputs. 1517 // 1518 // 3. Preserved inputs. These inputs use the "f" constraint which is 1519 // represented as an FP register. The inline asm won't change these 1520 // stack slots. 1521 // 1522 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered 1523 // registers do not count as output operands. The inline asm changes the 1524 // stack as if it popped all the popped inputs and then pushed all the 1525 // output operands. 1526 1527 // Scan the assembly for ST registers used, defined and clobbered. We can 1528 // only tell clobbers from defs by looking at the asm descriptor. 1529 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0; 1530 unsigned NumOps = 0; 1531 SmallSet<unsigned, 1> FRegIdx; 1532 unsigned RCID; 1533 1534 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands(); 1535 i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) { 1536 unsigned Flags = MI.getOperand(i).getImm(); 1537 1538 NumOps = InlineAsm::getNumOperandRegisters(Flags); 1539 if (NumOps != 1) 1540 continue; 1541 const MachineOperand &MO = MI.getOperand(i + 1); 1542 if (!MO.isReg()) 1543 continue; 1544 unsigned STReg = MO.getReg() - X86::FP0; 1545 if (STReg >= 8) 1546 continue; 1547 1548 // If the flag has a register class constraint, this must be an operand 1549 // with constraint "f". Record its index and continue. 1550 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) { 1551 FRegIdx.insert(i + 1); 1552 continue; 1553 } 1554 1555 switch (InlineAsm::getKind(Flags)) { 1556 case InlineAsm::Kind_RegUse: 1557 STUses |= (1u << STReg); 1558 break; 1559 case InlineAsm::Kind_RegDef: 1560 case InlineAsm::Kind_RegDefEarlyClobber: 1561 STDefs |= (1u << STReg); 1562 if (MO.isDead()) 1563 STDeadDefs |= (1u << STReg); 1564 break; 1565 case InlineAsm::Kind_Clobber: 1566 STClobbers |= (1u << STReg); 1567 break; 1568 default: 1569 break; 1570 } 1571 } 1572 1573 if (STUses && !isMask_32(STUses)) 1574 MI.emitError("fixed input regs must be last on the x87 stack"); 1575 unsigned NumSTUses = countTrailingOnes(STUses); 1576 1577 // Defs must be contiguous from the stack top. ST0-STn. 1578 if (STDefs && !isMask_32(STDefs)) { 1579 MI.emitError("output regs must be last on the x87 stack"); 1580 STDefs = NextPowerOf2(STDefs) - 1; 1581 } 1582 unsigned NumSTDefs = countTrailingOnes(STDefs); 1583 1584 // So must the clobbered stack slots. ST0-STm, m >= n. 1585 if (STClobbers && !isMask_32(STDefs | STClobbers)) 1586 MI.emitError("clobbers must be last on the x87 stack"); 1587 1588 // Popped inputs are the ones that are also clobbered or defined. 1589 unsigned STPopped = STUses & (STDefs | STClobbers); 1590 if (STPopped && !isMask_32(STPopped)) 1591 MI.emitError("implicitly popped regs must be last on the x87 stack"); 1592 unsigned NumSTPopped = countTrailingOnes(STPopped); 1593 1594 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops " 1595 << NumSTPopped << ", and defines " << NumSTDefs 1596 << " regs.\n"); 1597 1598 #ifndef NDEBUG 1599 // If any input operand uses constraint "f", all output register 1600 // constraints must be early-clobber defs. 1601 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) 1602 if (FRegIdx.count(I)) { 1603 assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 && 1604 "Operands with constraint \"f\" cannot overlap with defs"); 1605 } 1606 #endif 1607 1608 // Collect all FP registers (register operands with constraints "t", "u", 1609 // and "f") to kill afer the instruction. 1610 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff; 1611 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1612 MachineOperand &Op = MI.getOperand(i); 1613 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1614 continue; 1615 unsigned FPReg = getFPReg(Op); 1616 1617 // If we kill this operand, make sure to pop it from the stack after the 1618 // asm. We just remember it for now, and pop them all off at the end in 1619 // a batch. 1620 if (Op.isUse() && Op.isKill()) 1621 FPKills |= 1U << FPReg; 1622 } 1623 1624 // Do not include registers that are implicitly popped by defs/clobbers. 1625 FPKills &= ~(STDefs | STClobbers); 1626 1627 // Now we can rearrange the live registers to match what was requested. 1628 unsigned char STUsesArray[8]; 1629 1630 for (unsigned I = 0; I < NumSTUses; ++I) 1631 STUsesArray[I] = I; 1632 1633 shuffleStackTop(STUsesArray, NumSTUses, Inst); 1634 LLVM_DEBUG({ 1635 dbgs() << "Before asm: "; 1636 dumpStack(); 1637 }); 1638 1639 // With the stack layout fixed, rewrite the FP registers. 1640 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1641 MachineOperand &Op = MI.getOperand(i); 1642 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) 1643 continue; 1644 1645 unsigned FPReg = getFPReg(Op); 1646 1647 if (FRegIdx.count(i)) 1648 // Operand with constraint "f". 1649 Op.setReg(getSTReg(FPReg)); 1650 else 1651 // Operand with a single register class constraint ("t" or "u"). 1652 Op.setReg(X86::ST0 + FPReg); 1653 } 1654 1655 // Simulate the inline asm popping its inputs and pushing its outputs. 1656 StackTop -= NumSTPopped; 1657 1658 for (unsigned i = 0; i < NumSTDefs; ++i) 1659 pushReg(NumSTDefs - i - 1); 1660 1661 // If this asm kills any FP registers (is the last use of them) we must 1662 // explicitly emit pop instructions for them. Do this now after the asm has 1663 // executed so that the ST(x) numbers are not off (which would happen if we 1664 // did this inline with operand rewriting). 1665 // 1666 // Note: this might be a non-optimal pop sequence. We might be able to do 1667 // better by trying to pop in stack order or something. 1668 while (FPKills) { 1669 unsigned FPReg = countTrailingZeros(FPKills); 1670 if (isLive(FPReg)) 1671 freeStackSlotAfter(Inst, FPReg); 1672 FPKills &= ~(1U << FPReg); 1673 } 1674 1675 // Don't delete the inline asm! 1676 return; 1677 } 1678 } 1679 1680 Inst = MBB->erase(Inst); // Remove the pseudo instruction 1681 1682 // We want to leave I pointing to the previous instruction, but what if we 1683 // just erased the first instruction? 1684 if (Inst == MBB->begin()) { 1685 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n"); 1686 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL)); 1687 } else 1688 --Inst; 1689 } 1690 1691 void FPS::setKillFlags(MachineBasicBlock &MBB) const { 1692 const TargetRegisterInfo &TRI = 1693 *MBB.getParent()->getSubtarget().getRegisterInfo(); 1694 LivePhysRegs LPR(TRI); 1695 1696 LPR.addLiveOuts(MBB); 1697 1698 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend(); 1699 I != E; ++I) { 1700 if (I->isDebugInstr()) 1701 continue; 1702 1703 std::bitset<8> Defs; 1704 SmallVector<MachineOperand *, 2> Uses; 1705 MachineInstr &MI = *I; 1706 1707 for (auto &MO : I->operands()) { 1708 if (!MO.isReg()) 1709 continue; 1710 1711 unsigned Reg = MO.getReg() - X86::FP0; 1712 1713 if (Reg >= 8) 1714 continue; 1715 1716 if (MO.isDef()) { 1717 Defs.set(Reg); 1718 if (!LPR.contains(MO.getReg())) 1719 MO.setIsDead(); 1720 } else 1721 Uses.push_back(&MO); 1722 } 1723 1724 for (auto *MO : Uses) 1725 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg())) 1726 MO->setIsKill(); 1727 1728 LPR.stepBackward(MI); 1729 } 1730 } 1731