xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp (revision f81cdf24ba5436367377f7c8e8f51f6df2a75ca7)
1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
11 /// flag bits.
12 ///
13 /// We have to do this by carefully analyzing and rewriting the usage of the
14 /// copied EFLAGS register because there is no general way to rematerialize the
15 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
16 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
17 /// and other non-status flags being overwritten. Using sequences involving
18 /// SAHF don't work on all x86 processors and are often quite slow compared to
19 /// directly testing a single status preserved in its own GPR.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "X86.h"
24 #include "X86InstrBuilder.h"
25 #include "X86InstrInfo.h"
26 #include "X86Subtarget.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/ScopeExit.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineConstantPool.h"
39 #include "llvm/CodeGen/MachineDominators.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/MachineSSAUpdater.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSchedule.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/MC/MCSchedule.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define PASS_KEY "x86-flags-copy-lowering"
66 #define DEBUG_TYPE PASS_KEY
67 
68 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
69 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
70 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
71 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
72 
73 namespace {
74 
75 // Convenient array type for storing registers associated with each condition.
76 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
77 
78 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
79 public:
80   X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
81 
82   StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
83   bool runOnMachineFunction(MachineFunction &MF) override;
84   void getAnalysisUsage(AnalysisUsage &AU) const override;
85 
86   /// Pass identification, replacement for typeid.
87   static char ID;
88 
89 private:
90   MachineRegisterInfo *MRI = nullptr;
91   const X86Subtarget *Subtarget = nullptr;
92   const X86InstrInfo *TII = nullptr;
93   const TargetRegisterInfo *TRI = nullptr;
94   const TargetRegisterClass *PromoteRC = nullptr;
95   MachineDominatorTree *MDT = nullptr;
96 
97   CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
98                                   MachineBasicBlock::iterator CopyDefI);
99 
100   Register promoteCondToReg(MachineBasicBlock &MBB,
101                             MachineBasicBlock::iterator TestPos,
102                             const DebugLoc &TestLoc, X86::CondCode Cond);
103   std::pair<unsigned, bool> getCondOrInverseInReg(
104       MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
105       const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs);
106   void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
107                   const DebugLoc &Loc, unsigned Reg);
108 
109   void rewriteArithmetic(MachineBasicBlock &TestMBB,
110                          MachineBasicBlock::iterator TestPos,
111                          const DebugLoc &TestLoc, MachineInstr &MI,
112                          MachineOperand &FlagUse, CondRegArray &CondRegs);
113   void rewriteCMov(MachineBasicBlock &TestMBB,
114                    MachineBasicBlock::iterator TestPos, const DebugLoc &TestLoc,
115                    MachineInstr &CMovI, MachineOperand &FlagUse,
116                    CondRegArray &CondRegs);
117   void rewriteFCMov(MachineBasicBlock &TestMBB,
118                     MachineBasicBlock::iterator TestPos,
119                     const DebugLoc &TestLoc, MachineInstr &CMovI,
120                     MachineOperand &FlagUse, CondRegArray &CondRegs);
121   void rewriteCondJmp(MachineBasicBlock &TestMBB,
122                       MachineBasicBlock::iterator TestPos,
123                       const DebugLoc &TestLoc, MachineInstr &JmpI,
124                       CondRegArray &CondRegs);
125   void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
126                    MachineInstr &CopyDefI);
127   void rewriteSetCC(MachineBasicBlock &TestMBB,
128                     MachineBasicBlock::iterator TestPos,
129                     const DebugLoc &TestLoc, MachineInstr &SetCCI,
130                     MachineOperand &FlagUse, CondRegArray &CondRegs);
131 };
132 
133 } // end anonymous namespace
134 
135 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
136                       "X86 EFLAGS copy lowering", false, false)
137 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
138                     "X86 EFLAGS copy lowering", false, false)
139 
140 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
141   return new X86FlagsCopyLoweringPass();
142 }
143 
144 char X86FlagsCopyLoweringPass::ID = 0;
145 
146 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
147   AU.addRequired<MachineDominatorTree>();
148   MachineFunctionPass::getAnalysisUsage(AU);
149 }
150 
151 namespace {
152 /// An enumeration of the arithmetic instruction mnemonics which have
153 /// interesting flag semantics.
154 ///
155 /// We can map instruction opcodes into these mnemonics to make it easy to
156 /// dispatch with specific functionality.
157 enum class FlagArithMnemonic {
158   ADC,
159   ADCX,
160   ADOX,
161   RCL,
162   RCR,
163   SBB,
164   SETB,
165 };
166 } // namespace
167 
168 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
169   switch (Opcode) {
170   default:
171     report_fatal_error("No support for lowering a copy into EFLAGS when used "
172                        "by this instruction!");
173 
174 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)                              \
175   case X86::MNEMONIC##8##SUFFIX:                                               \
176   case X86::MNEMONIC##16##SUFFIX:                                              \
177   case X86::MNEMONIC##32##SUFFIX:                                              \
178   case X86::MNEMONIC##64##SUFFIX:
179 
180 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)                                    \
181   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr)                                        \
182   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV)                                    \
183   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm)                                        \
184   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr)                                        \
185   case X86::MNEMONIC##8ri:                                                     \
186   case X86::MNEMONIC##16ri8:                                                   \
187   case X86::MNEMONIC##32ri8:                                                   \
188   case X86::MNEMONIC##64ri8:                                                   \
189   case X86::MNEMONIC##16ri:                                                    \
190   case X86::MNEMONIC##32ri:                                                    \
191   case X86::MNEMONIC##64ri32:                                                  \
192   case X86::MNEMONIC##8mi:                                                     \
193   case X86::MNEMONIC##16mi8:                                                   \
194   case X86::MNEMONIC##32mi8:                                                   \
195   case X86::MNEMONIC##64mi8:                                                   \
196   case X86::MNEMONIC##16mi:                                                    \
197   case X86::MNEMONIC##32mi:                                                    \
198   case X86::MNEMONIC##64mi32:                                                  \
199   case X86::MNEMONIC##8i8:                                                     \
200   case X86::MNEMONIC##16i16:                                                   \
201   case X86::MNEMONIC##32i32:                                                   \
202   case X86::MNEMONIC##64i32:
203 
204     LLVM_EXPAND_ADC_SBB_INSTR(ADC)
205     return FlagArithMnemonic::ADC;
206 
207     LLVM_EXPAND_ADC_SBB_INSTR(SBB)
208     return FlagArithMnemonic::SBB;
209 
210 #undef LLVM_EXPAND_ADC_SBB_INSTR
211 
212     LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
213     LLVM_EXPAND_INSTR_SIZES(RCL, r1)
214     LLVM_EXPAND_INSTR_SIZES(RCL, ri)
215     return FlagArithMnemonic::RCL;
216 
217     LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
218     LLVM_EXPAND_INSTR_SIZES(RCR, r1)
219     LLVM_EXPAND_INSTR_SIZES(RCR, ri)
220     return FlagArithMnemonic::RCR;
221 
222 #undef LLVM_EXPAND_INSTR_SIZES
223 
224   case X86::ADCX32rr:
225   case X86::ADCX64rr:
226   case X86::ADCX32rm:
227   case X86::ADCX64rm:
228     return FlagArithMnemonic::ADCX;
229 
230   case X86::ADOX32rr:
231   case X86::ADOX64rr:
232   case X86::ADOX32rm:
233   case X86::ADOX64rm:
234     return FlagArithMnemonic::ADOX;
235 
236   case X86::SETB_C32r:
237   case X86::SETB_C64r:
238     return FlagArithMnemonic::SETB;
239   }
240 }
241 
242 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
243                                      MachineInstr &SplitI,
244                                      const X86InstrInfo &TII) {
245   MachineFunction &MF = *MBB.getParent();
246 
247   assert(SplitI.getParent() == &MBB &&
248          "Split instruction must be in the split block!");
249   assert(SplitI.isBranch() &&
250          "Only designed to split a tail of branch instructions!");
251   assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
252          "Must split on an actual jCC instruction!");
253 
254   // Dig out the previous instruction to the split point.
255   MachineInstr &PrevI = *std::prev(SplitI.getIterator());
256   assert(PrevI.isBranch() && "Must split after a branch!");
257   assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
258          "Must split after an actual jCC instruction!");
259   assert(!std::prev(PrevI.getIterator())->isTerminator() &&
260          "Must only have this one terminator prior to the split!");
261 
262   // Grab the one successor edge that will stay in `MBB`.
263   MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
264 
265   // Analyze the original block to see if we are actually splitting an edge
266   // into two edges. This can happen when we have multiple conditional jumps to
267   // the same successor.
268   bool IsEdgeSplit =
269       std::any_of(SplitI.getIterator(), MBB.instr_end(),
270                   [&](MachineInstr &MI) {
271                     assert(MI.isTerminator() &&
272                            "Should only have spliced terminators!");
273                     return llvm::any_of(
274                         MI.operands(), [&](MachineOperand &MOp) {
275                           return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
276                         });
277                   }) ||
278       MBB.getFallThrough() == &UnsplitSucc;
279 
280   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
281 
282   // Insert the new block immediately after the current one. Any existing
283   // fallthrough will be sunk into this new block anyways.
284   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
285 
286   // Splice the tail of instructions into the new block.
287   NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
288 
289   // Copy the necessary succesors (and their probability info) into the new
290   // block.
291   for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
292     if (IsEdgeSplit || *SI != &UnsplitSucc)
293       NewMBB.copySuccessor(&MBB, SI);
294   // Normalize the probabilities if we didn't end up splitting the edge.
295   if (!IsEdgeSplit)
296     NewMBB.normalizeSuccProbs();
297 
298   // Now replace all of the moved successors in the original block with the new
299   // block. This will merge their probabilities.
300   for (MachineBasicBlock *Succ : NewMBB.successors())
301     if (Succ != &UnsplitSucc)
302       MBB.replaceSuccessor(Succ, &NewMBB);
303 
304   // We should always end up replacing at least one successor.
305   assert(MBB.isSuccessor(&NewMBB) &&
306          "Failed to make the new block a successor!");
307 
308   // Now update all the PHIs.
309   for (MachineBasicBlock *Succ : NewMBB.successors()) {
310     for (MachineInstr &MI : *Succ) {
311       if (!MI.isPHI())
312         break;
313 
314       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
315            OpIdx += 2) {
316         MachineOperand &OpV = MI.getOperand(OpIdx);
317         MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
318         assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
319         if (OpMBB.getMBB() != &MBB)
320           continue;
321 
322         // Replace the operand for unsplit successors
323         if (!IsEdgeSplit || Succ != &UnsplitSucc) {
324           OpMBB.setMBB(&NewMBB);
325 
326           // We have to continue scanning as there may be multiple entries in
327           // the PHI.
328           continue;
329         }
330 
331         // When we have split the edge append a new successor.
332         MI.addOperand(MF, OpV);
333         MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
334         break;
335       }
336     }
337   }
338 
339   return NewMBB;
340 }
341 
342 static X86::CondCode getCondFromFCMOV(unsigned Opcode) {
343   switch (Opcode) {
344   default: return X86::COND_INVALID;
345   case X86::CMOVBE_Fp32:  case X86::CMOVBE_Fp64:  case X86::CMOVBE_Fp80:
346     return X86::COND_BE;
347   case X86::CMOVB_Fp32:   case X86::CMOVB_Fp64:   case X86::CMOVB_Fp80:
348     return X86::COND_B;
349   case X86::CMOVE_Fp32:   case X86::CMOVE_Fp64:   case X86::CMOVE_Fp80:
350     return X86::COND_E;
351   case X86::CMOVNBE_Fp32: case X86::CMOVNBE_Fp64: case X86::CMOVNBE_Fp80:
352     return X86::COND_A;
353   case X86::CMOVNB_Fp32:  case X86::CMOVNB_Fp64:  case X86::CMOVNB_Fp80:
354     return X86::COND_AE;
355   case X86::CMOVNE_Fp32:  case X86::CMOVNE_Fp64:  case X86::CMOVNE_Fp80:
356     return X86::COND_NE;
357   case X86::CMOVNP_Fp32:  case X86::CMOVNP_Fp64:  case X86::CMOVNP_Fp80:
358     return X86::COND_NP;
359   case X86::CMOVP_Fp32:   case X86::CMOVP_Fp64:   case X86::CMOVP_Fp80:
360     return X86::COND_P;
361   }
362 }
363 
364 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
365   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
366                     << " **********\n");
367 
368   Subtarget = &MF.getSubtarget<X86Subtarget>();
369   MRI = &MF.getRegInfo();
370   TII = Subtarget->getInstrInfo();
371   TRI = Subtarget->getRegisterInfo();
372   MDT = &getAnalysis<MachineDominatorTree>();
373   PromoteRC = &X86::GR8RegClass;
374 
375   if (MF.begin() == MF.end())
376     // Nothing to do for a degenerate empty function...
377     return false;
378 
379   // Collect the copies in RPO so that when there are chains where a copy is in
380   // turn copied again we visit the first one first. This ensures we can find
381   // viable locations for testing the original EFLAGS that dominate all the
382   // uses across complex CFGs.
383   SmallVector<MachineInstr *, 4> Copies;
384   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
385   for (MachineBasicBlock *MBB : RPOT)
386     for (MachineInstr &MI : *MBB)
387       if (MI.getOpcode() == TargetOpcode::COPY &&
388           MI.getOperand(0).getReg() == X86::EFLAGS)
389         Copies.push_back(&MI);
390 
391   for (MachineInstr *CopyI : Copies) {
392     MachineBasicBlock &MBB = *CopyI->getParent();
393 
394     MachineOperand &VOp = CopyI->getOperand(1);
395     assert(VOp.isReg() &&
396            "The input to the copy for EFLAGS should always be a register!");
397     MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
398     if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
399       // FIXME: The big likely candidate here are PHI nodes. We could in theory
400       // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
401       // enough that it is probably better to change every other part of LLVM
402       // to avoid creating them. The issue is that once we have PHIs we won't
403       // know which original EFLAGS value we need to capture with our setCCs
404       // below. The end result will be computing a complete set of setCCs that
405       // we *might* want, computing them in every place where we copy *out* of
406       // EFLAGS and then doing SSA formation on all of them to insert necessary
407       // PHI nodes and consume those here. Then hoping that somehow we DCE the
408       // unnecessary ones. This DCE seems very unlikely to be successful and so
409       // we will almost certainly end up with a glut of dead setCC
410       // instructions. Until we have a motivating test case and fail to avoid
411       // it by changing other parts of LLVM's lowering, we refuse to handle
412       // this complex case here.
413       LLVM_DEBUG(
414           dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
415           CopyDefI.dump());
416       report_fatal_error(
417           "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
418     }
419 
420     auto Cleanup = make_scope_exit([&] {
421       // All uses of the EFLAGS copy are now rewritten, kill the copy into
422       // eflags and if dead the copy from.
423       CopyI->eraseFromParent();
424       if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
425         CopyDefI.eraseFromParent();
426       ++NumCopiesEliminated;
427     });
428 
429     MachineOperand &DOp = CopyI->getOperand(0);
430     assert(DOp.isDef() && "Expected register def!");
431     assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
432     if (DOp.isDead())
433       continue;
434 
435     MachineBasicBlock *TestMBB = CopyDefI.getParent();
436     auto TestPos = CopyDefI.getIterator();
437     DebugLoc TestLoc = CopyDefI.getDebugLoc();
438 
439     LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
440 
441     // Walk up across live-in EFLAGS to find where they were actually def'ed.
442     //
443     // This copy's def may just be part of a region of blocks covered by
444     // a single def of EFLAGS and we want to find the top of that region where
445     // possible.
446     //
447     // This is essentially a search for a *candidate* reaching definition
448     // location. We don't need to ever find the actual reaching definition here,
449     // but we want to walk up the dominator tree to find the highest point which
450     // would be viable for such a definition.
451     auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
452                                 MachineBasicBlock::iterator End) {
453       // Scan backwards as we expect these to be relatively short and often find
454       // a clobber near the end.
455       return llvm::any_of(
456           llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
457             // Flag any instruction (other than the copy we are
458             // currently rewriting) that defs EFLAGS.
459             return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
460           });
461     };
462     auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
463                                     MachineBasicBlock *EndMBB) {
464       assert(MDT->dominates(BeginMBB, EndMBB) &&
465              "Only support paths down the dominator tree!");
466       SmallPtrSet<MachineBasicBlock *, 4> Visited;
467       SmallVector<MachineBasicBlock *, 4> Worklist;
468       // We terminate at the beginning. No need to scan it.
469       Visited.insert(BeginMBB);
470       Worklist.push_back(EndMBB);
471       do {
472         auto *MBB = Worklist.pop_back_val();
473         for (auto *PredMBB : MBB->predecessors()) {
474           if (!Visited.insert(PredMBB).second)
475             continue;
476           if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
477             return true;
478           // Enqueue this block to walk its predecessors.
479           Worklist.push_back(PredMBB);
480         }
481       } while (!Worklist.empty());
482       // No clobber found along a path from the begin to end.
483       return false;
484     };
485     while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
486            !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
487       // Find the nearest common dominator of the predecessors, as
488       // that will be the best candidate to hoist into.
489       MachineBasicBlock *HoistMBB =
490           std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
491                           *TestMBB->pred_begin(),
492                           [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
493                             return MDT->findNearestCommonDominator(LHS, RHS);
494                           });
495 
496       // Now we need to scan all predecessors that may be reached along paths to
497       // the hoist block. A clobber anywhere in any of these blocks the hoist.
498       // Note that this even handles loops because we require *no* clobbers.
499       if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
500         break;
501 
502       // We also need the terminators to not sneakily clobber flags.
503       if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
504                            HoistMBB->instr_end()))
505         break;
506 
507       // We found a viable location, hoist our test position to it.
508       TestMBB = HoistMBB;
509       TestPos = TestMBB->getFirstTerminator()->getIterator();
510       // Clear the debug location as it would just be confusing after hoisting.
511       TestLoc = DebugLoc();
512     }
513     LLVM_DEBUG({
514       auto DefIt = llvm::find_if(
515           llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
516           [&](MachineInstr &MI) {
517             return MI.findRegisterDefOperand(X86::EFLAGS);
518           });
519       if (DefIt.base() != TestMBB->instr_begin()) {
520         dbgs() << "  Using EFLAGS defined by: ";
521         DefIt->dump();
522       } else {
523         dbgs() << "  Using live-in flags for BB:\n";
524         TestMBB->dump();
525       }
526     });
527 
528     // While rewriting uses, we buffer jumps and rewrite them in a second pass
529     // because doing so will perturb the CFG that we are walking to find the
530     // uses in the first place.
531     SmallVector<MachineInstr *, 4> JmpIs;
532 
533     // Gather the condition flags that have already been preserved in
534     // registers. We do this from scratch each time as we expect there to be
535     // very few of them and we expect to not revisit the same copy definition
536     // many times. If either of those change sufficiently we could build a map
537     // of these up front instead.
538     CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
539 
540     // Collect the basic blocks we need to scan. Typically this will just be
541     // a single basic block but we may have to scan multiple blocks if the
542     // EFLAGS copy lives into successors.
543     SmallVector<MachineBasicBlock *, 2> Blocks;
544     SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
545     Blocks.push_back(&MBB);
546 
547     do {
548       MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
549 
550       // Track when if/when we find a kill of the flags in this block.
551       bool FlagsKilled = false;
552 
553       // In most cases, we walk from the beginning to the end of the block. But
554       // when the block is the same block as the copy is from, we will visit it
555       // twice. The first time we start from the copy and go to the end. The
556       // second time we start from the beginning and go to the copy. This lets
557       // us handle copies inside of cycles.
558       // FIXME: This loop is *super* confusing. This is at least in part
559       // a symptom of all of this routine needing to be refactored into
560       // documentable components. Once done, there may be a better way to write
561       // this loop.
562       for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
563                           ? std::next(CopyI->getIterator())
564                           : UseMBB.instr_begin(),
565                 MIE = UseMBB.instr_end();
566            MII != MIE;) {
567         MachineInstr &MI = *MII++;
568         // If we are in the original copy block and encounter either the copy
569         // def or the copy itself, break so that we don't re-process any part of
570         // the block or process the instructions in the range that was copied
571         // over.
572         if (&MI == CopyI || &MI == &CopyDefI) {
573           assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
574                  "Should only encounter these on the second pass over the "
575                  "original block.");
576           break;
577         }
578 
579         MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
580         if (!FlagUse) {
581           if (MI.findRegisterDefOperand(X86::EFLAGS)) {
582             // If EFLAGS are defined, it's as-if they were killed. We can stop
583             // scanning here.
584             //
585             // NB!!! Many instructions only modify some flags. LLVM currently
586             // models this as clobbering all flags, but if that ever changes
587             // this will need to be carefully updated to handle that more
588             // complex logic.
589             FlagsKilled = true;
590             break;
591           }
592           continue;
593         }
594 
595         LLVM_DEBUG(dbgs() << "  Rewriting use: "; MI.dump());
596 
597         // Check the kill flag before we rewrite as that may change it.
598         if (FlagUse->isKill())
599           FlagsKilled = true;
600 
601         // Once we encounter a branch, the rest of the instructions must also be
602         // branches. We can't rewrite in place here, so we handle them below.
603         //
604         // Note that we don't have to handle tail calls here, even conditional
605         // tail calls, as those are not introduced into the X86 MI until post-RA
606         // branch folding or black placement. As a consequence, we get to deal
607         // with the simpler formulation of conditional branches followed by tail
608         // calls.
609         if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
610           auto JmpIt = MI.getIterator();
611           do {
612             JmpIs.push_back(&*JmpIt);
613             ++JmpIt;
614           } while (JmpIt != UseMBB.instr_end() &&
615                    X86::getCondFromBranch(*JmpIt) !=
616                        X86::COND_INVALID);
617           break;
618         }
619 
620         // Otherwise we can just rewrite in-place.
621         if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
622           rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
623         } else if (getCondFromFCMOV(MI.getOpcode()) != X86::COND_INVALID) {
624           rewriteFCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
625         } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
626           rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
627         } else if (MI.getOpcode() == TargetOpcode::COPY) {
628           rewriteCopy(MI, *FlagUse, CopyDefI);
629         } else {
630           // We assume all other instructions that use flags also def them.
631           assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
632                  "Expected a def of EFLAGS for this instruction!");
633 
634           // NB!!! Several arithmetic instructions only *partially* update
635           // flags. Theoretically, we could generate MI code sequences that
636           // would rely on this fact and observe different flags independently.
637           // But currently LLVM models all of these instructions as clobbering
638           // all the flags in an undef way. We rely on that to simplify the
639           // logic.
640           FlagsKilled = true;
641 
642           // Generically handle remaining uses as arithmetic instructions.
643           rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
644                             CondRegs);
645         }
646 
647         // If this was the last use of the flags, we're done.
648         if (FlagsKilled)
649           break;
650       }
651 
652       // If the flags were killed, we're done with this block.
653       if (FlagsKilled)
654         continue;
655 
656       // Otherwise we need to scan successors for ones where the flags live-in
657       // and queue those up for processing.
658       for (MachineBasicBlock *SuccMBB : UseMBB.successors())
659         if (SuccMBB->isLiveIn(X86::EFLAGS) &&
660             VisitedBlocks.insert(SuccMBB).second) {
661           // We currently don't do any PHI insertion and so we require that the
662           // test basic block dominates all of the use basic blocks. Further, we
663           // can't have a cycle from the test block back to itself as that would
664           // create a cycle requiring a PHI to break it.
665           //
666           // We could in theory do PHI insertion here if it becomes useful by
667           // just taking undef values in along every edge that we don't trace
668           // this EFLAGS copy along. This isn't as bad as fully general PHI
669           // insertion, but still seems like a great deal of complexity.
670           //
671           // Because it is theoretically possible that some earlier MI pass or
672           // other lowering transformation could induce this to happen, we do
673           // a hard check even in non-debug builds here.
674           if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
675             LLVM_DEBUG({
676               dbgs()
677                   << "ERROR: Encountered use that is not dominated by our test "
678                      "basic block! Rewriting this would require inserting PHI "
679                      "nodes to track the flag state across the CFG.\n\nTest "
680                      "block:\n";
681               TestMBB->dump();
682               dbgs() << "Use block:\n";
683               SuccMBB->dump();
684             });
685             report_fatal_error(
686                 "Cannot lower EFLAGS copy when original copy def "
687                 "does not dominate all uses.");
688           }
689 
690           Blocks.push_back(SuccMBB);
691 
692           // After this, EFLAGS will be recreated before each use.
693           SuccMBB->removeLiveIn(X86::EFLAGS);
694         }
695     } while (!Blocks.empty());
696 
697     // Now rewrite the jumps that use the flags. These we handle specially
698     // because if there are multiple jumps in a single basic block we'll have
699     // to do surgery on the CFG.
700     MachineBasicBlock *LastJmpMBB = nullptr;
701     for (MachineInstr *JmpI : JmpIs) {
702       // Past the first jump within a basic block we need to split the blocks
703       // apart.
704       if (JmpI->getParent() == LastJmpMBB)
705         splitBlock(*JmpI->getParent(), *JmpI, *TII);
706       else
707         LastJmpMBB = JmpI->getParent();
708 
709       rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
710     }
711 
712     // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
713     // the copy's def operand is itself a kill.
714   }
715 
716 #ifndef NDEBUG
717   for (MachineBasicBlock &MBB : MF)
718     for (MachineInstr &MI : MBB)
719       if (MI.getOpcode() == TargetOpcode::COPY &&
720           (MI.getOperand(0).getReg() == X86::EFLAGS ||
721            MI.getOperand(1).getReg() == X86::EFLAGS)) {
722         LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
723                    MI.dump());
724         llvm_unreachable("Unlowered EFLAGS copy!");
725       }
726 #endif
727 
728   return true;
729 }
730 
731 /// Collect any conditions that have already been set in registers so that we
732 /// can re-use them rather than adding duplicates.
733 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
734     MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
735   CondRegArray CondRegs = {};
736 
737   // Scan backwards across the range of instructions with live EFLAGS.
738   for (MachineInstr &MI :
739        llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
740     X86::CondCode Cond = X86::getCondFromSETCC(MI);
741     if (Cond != X86::COND_INVALID && !MI.mayStore() &&
742         MI.getOperand(0).isReg() && MI.getOperand(0).getReg().isVirtual()) {
743       assert(MI.getOperand(0).isDef() &&
744              "A non-storing SETcc should always define a register!");
745       CondRegs[Cond] = MI.getOperand(0).getReg();
746     }
747 
748     // Stop scanning when we see the first definition of the EFLAGS as prior to
749     // this we would potentially capture the wrong flag state.
750     if (MI.findRegisterDefOperand(X86::EFLAGS))
751       break;
752   }
753   return CondRegs;
754 }
755 
756 Register X86FlagsCopyLoweringPass::promoteCondToReg(
757     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
758     const DebugLoc &TestLoc, X86::CondCode Cond) {
759   Register Reg = MRI->createVirtualRegister(PromoteRC);
760   auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
761                       TII->get(X86::SETCCr), Reg).addImm(Cond);
762   (void)SetI;
763   LLVM_DEBUG(dbgs() << "    save cond: "; SetI->dump());
764   ++NumSetCCsInserted;
765   return Reg;
766 }
767 
768 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
769     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
770     const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
771   unsigned &CondReg = CondRegs[Cond];
772   unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
773   if (!CondReg && !InvCondReg)
774     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
775 
776   if (CondReg)
777     return {CondReg, false};
778   else
779     return {InvCondReg, true};
780 }
781 
782 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
783                                           MachineBasicBlock::iterator Pos,
784                                           const DebugLoc &Loc, unsigned Reg) {
785   auto TestI =
786       BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
787   (void)TestI;
788   LLVM_DEBUG(dbgs() << "    test cond: "; TestI->dump());
789   ++NumTestsInserted;
790 }
791 
792 void X86FlagsCopyLoweringPass::rewriteArithmetic(
793     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
794     const DebugLoc &TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
795     CondRegArray &CondRegs) {
796   // Arithmetic is either reading CF or OF. Figure out which condition we need
797   // to preserve in a register.
798   X86::CondCode Cond = X86::COND_INVALID;
799 
800   // The addend to use to reset CF or OF when added to the flag value.
801   int Addend = 0;
802 
803   switch (getMnemonicFromOpcode(MI.getOpcode())) {
804   case FlagArithMnemonic::ADC:
805   case FlagArithMnemonic::ADCX:
806   case FlagArithMnemonic::RCL:
807   case FlagArithMnemonic::RCR:
808   case FlagArithMnemonic::SBB:
809   case FlagArithMnemonic::SETB:
810     Cond = X86::COND_B; // CF == 1
811     // Set up an addend that when one is added will need a carry due to not
812     // having a higher bit available.
813     Addend = 255;
814     break;
815 
816   case FlagArithMnemonic::ADOX:
817     Cond = X86::COND_O; // OF == 1
818     // Set up an addend that when one is added will turn from positive to
819     // negative and thus overflow in the signed domain.
820     Addend = 127;
821     break;
822   }
823 
824   // Now get a register that contains the value of the flag input to the
825   // arithmetic. We require exactly this flag to simplify the arithmetic
826   // required to materialize it back into the flag.
827   unsigned &CondReg = CondRegs[Cond];
828   if (!CondReg)
829     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
830 
831   MachineBasicBlock &MBB = *MI.getParent();
832 
833   // Insert an instruction that will set the flag back to the desired value.
834   Register TmpReg = MRI->createVirtualRegister(PromoteRC);
835   auto AddI =
836       BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
837           .addDef(TmpReg, RegState::Dead)
838           .addReg(CondReg)
839           .addImm(Addend);
840   (void)AddI;
841   LLVM_DEBUG(dbgs() << "    add cond: "; AddI->dump());
842   ++NumAddsInserted;
843   FlagUse.setIsKill(true);
844 }
845 
846 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
847                                            MachineBasicBlock::iterator TestPos,
848                                            const DebugLoc &TestLoc,
849                                            MachineInstr &CMovI,
850                                            MachineOperand &FlagUse,
851                                            CondRegArray &CondRegs) {
852   // First get the register containing this specific condition.
853   X86::CondCode Cond = X86::getCondFromCMov(CMovI);
854   unsigned CondReg;
855   bool Inverted;
856   std::tie(CondReg, Inverted) =
857       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
858 
859   MachineBasicBlock &MBB = *CMovI.getParent();
860 
861   // Insert a direct test of the saved register.
862   insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
863 
864   // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
865   // of the flags afterward.
866   CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
867       .setImm(Inverted ? X86::COND_E : X86::COND_NE);
868   FlagUse.setIsKill(true);
869   LLVM_DEBUG(dbgs() << "    fixed cmov: "; CMovI.dump());
870 }
871 
872 void X86FlagsCopyLoweringPass::rewriteFCMov(MachineBasicBlock &TestMBB,
873                                             MachineBasicBlock::iterator TestPos,
874                                             const DebugLoc &TestLoc,
875                                             MachineInstr &CMovI,
876                                             MachineOperand &FlagUse,
877                                             CondRegArray &CondRegs) {
878   // First get the register containing this specific condition.
879   X86::CondCode Cond = getCondFromFCMOV(CMovI.getOpcode());
880   unsigned CondReg;
881   bool Inverted;
882   std::tie(CondReg, Inverted) =
883       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
884 
885   MachineBasicBlock &MBB = *CMovI.getParent();
886 
887   // Insert a direct test of the saved register.
888   insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
889 
890   auto getFCMOVOpcode = [](unsigned Opcode, bool Inverted) {
891     switch (Opcode) {
892     default: llvm_unreachable("Unexpected opcode!");
893     case X86::CMOVBE_Fp32: case X86::CMOVNBE_Fp32:
894     case X86::CMOVB_Fp32:  case X86::CMOVNB_Fp32:
895     case X86::CMOVE_Fp32:  case X86::CMOVNE_Fp32:
896     case X86::CMOVP_Fp32:  case X86::CMOVNP_Fp32:
897       return Inverted ? X86::CMOVE_Fp32 : X86::CMOVNE_Fp32;
898     case X86::CMOVBE_Fp64: case X86::CMOVNBE_Fp64:
899     case X86::CMOVB_Fp64:  case X86::CMOVNB_Fp64:
900     case X86::CMOVE_Fp64:  case X86::CMOVNE_Fp64:
901     case X86::CMOVP_Fp64:  case X86::CMOVNP_Fp64:
902       return Inverted ? X86::CMOVE_Fp64 : X86::CMOVNE_Fp64;
903     case X86::CMOVBE_Fp80: case X86::CMOVNBE_Fp80:
904     case X86::CMOVB_Fp80:  case X86::CMOVNB_Fp80:
905     case X86::CMOVE_Fp80:  case X86::CMOVNE_Fp80:
906     case X86::CMOVP_Fp80:  case X86::CMOVNP_Fp80:
907       return Inverted ? X86::CMOVE_Fp80 : X86::CMOVNE_Fp80;
908     }
909   };
910 
911   // Rewrite the CMov to use the !ZF flag from the test.
912   CMovI.setDesc(TII->get(getFCMOVOpcode(CMovI.getOpcode(), Inverted)));
913   FlagUse.setIsKill(true);
914   LLVM_DEBUG(dbgs() << "    fixed fcmov: "; CMovI.dump());
915 }
916 
917 void X86FlagsCopyLoweringPass::rewriteCondJmp(
918     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
919     const DebugLoc &TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
920   // First get the register containing this specific condition.
921   X86::CondCode Cond = X86::getCondFromBranch(JmpI);
922   unsigned CondReg;
923   bool Inverted;
924   std::tie(CondReg, Inverted) =
925       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
926 
927   MachineBasicBlock &JmpMBB = *JmpI.getParent();
928 
929   // Insert a direct test of the saved register.
930   insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
931 
932   // Rewrite the jump to use the !ZF flag from the test, and kill its use of
933   // flags afterward.
934   JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
935   JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
936   LLVM_DEBUG(dbgs() << "    fixed jCC: "; JmpI.dump());
937 }
938 
939 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
940                                            MachineOperand &FlagUse,
941                                            MachineInstr &CopyDefI) {
942   // Just replace this copy with the original copy def.
943   MRI->replaceRegWith(MI.getOperand(0).getReg(),
944                       CopyDefI.getOperand(0).getReg());
945   MI.eraseFromParent();
946 }
947 
948 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
949                                             MachineBasicBlock::iterator TestPos,
950                                             const DebugLoc &TestLoc,
951                                             MachineInstr &SetCCI,
952                                             MachineOperand &FlagUse,
953                                             CondRegArray &CondRegs) {
954   X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
955   // Note that we can't usefully rewrite this to the inverse without complex
956   // analysis of the users of the setCC. Largely we rely on duplicates which
957   // could have been avoided already being avoided here.
958   unsigned &CondReg = CondRegs[Cond];
959   if (!CondReg)
960     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
961 
962   // Rewriting a register def is trivial: we just replace the register and
963   // remove the setcc.
964   if (!SetCCI.mayStore()) {
965     assert(SetCCI.getOperand(0).isReg() &&
966            "Cannot have a non-register defined operand to SETcc!");
967     Register OldReg = SetCCI.getOperand(0).getReg();
968     // Drop Kill flags on the old register before replacing. CondReg may have
969     // a longer live range.
970     MRI->clearKillFlags(OldReg);
971     MRI->replaceRegWith(OldReg, CondReg);
972     SetCCI.eraseFromParent();
973     return;
974   }
975 
976   // Otherwise, we need to emit a store.
977   auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
978                      SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
979   // Copy the address operands.
980   for (int i = 0; i < X86::AddrNumOperands; ++i)
981     MIB.add(SetCCI.getOperand(i));
982 
983   MIB.addReg(CondReg);
984 
985   MIB.setMemRefs(SetCCI.memoperands());
986 
987   SetCCI.eraseFromParent();
988 }
989