xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
11 /// flag bits.
12 ///
13 /// We have to do this by carefully analyzing and rewriting the usage of the
14 /// copied EFLAGS register because there is no general way to rematerialize the
15 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
16 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
17 /// and other non-status flags being overwritten. Using sequences involving
18 /// SAHF don't work on all x86 processors and are often quite slow compared to
19 /// directly testing a single status preserved in its own GPR.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "X86.h"
24 #include "X86InstrBuilder.h"
25 #include "X86InstrInfo.h"
26 #include "X86Subtarget.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/MachineSSAUpdater.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/MC/MCSchedule.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <iterator>
58 #include <utility>
59 
60 using namespace llvm;
61 
62 #define PASS_KEY "x86-flags-copy-lowering"
63 #define DEBUG_TYPE PASS_KEY
64 
65 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
66 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
67 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
68 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
69 STATISTIC(NumNFsConvertedTo, "Number of NF instructions converted to");
70 
71 namespace {
72 
73 // Convenient array type for storing registers associated with each condition.
74 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
75 
76 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
77 public:
78   X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {}
79 
80   StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
81   bool runOnMachineFunction(MachineFunction &MF) override;
82   void getAnalysisUsage(AnalysisUsage &AU) const override;
83 
84   /// Pass identification, replacement for typeid.
85   static char ID;
86 
87 private:
88   MachineRegisterInfo *MRI = nullptr;
89   const X86Subtarget *Subtarget = nullptr;
90   const X86InstrInfo *TII = nullptr;
91   const TargetRegisterInfo *TRI = nullptr;
92   const TargetRegisterClass *PromoteRC = nullptr;
93   MachineDominatorTree *MDT = nullptr;
94 
95   CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
96                                   MachineBasicBlock::iterator CopyDefI);
97 
98   Register promoteCondToReg(MachineBasicBlock &MBB,
99                             MachineBasicBlock::iterator TestPos,
100                             const DebugLoc &TestLoc, X86::CondCode Cond);
101   std::pair<unsigned, bool> getCondOrInverseInReg(
102       MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
103       const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs);
104   void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
105                   const DebugLoc &Loc, unsigned Reg);
106 
107   void rewriteSetCC(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
108                     const DebugLoc &Loc, MachineInstr &MI,
109                     CondRegArray &CondRegs);
110   void rewriteArithmetic(MachineBasicBlock &MBB,
111                          MachineBasicBlock::iterator Pos, const DebugLoc &Loc,
112                          MachineInstr &MI, CondRegArray &CondRegs);
113   void rewriteMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
114                  const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs);
115 };
116 
117 } // end anonymous namespace
118 
119 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
120                       "X86 EFLAGS copy lowering", false, false)
121 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
122                     "X86 EFLAGS copy lowering", false, false)
123 
124 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
125   return new X86FlagsCopyLoweringPass();
126 }
127 
128 char X86FlagsCopyLoweringPass::ID = 0;
129 
130 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
131   AU.addUsedIfAvailable<MachineDominatorTreeWrapperPass>();
132   MachineFunctionPass::getAnalysisUsage(AU);
133 }
134 
135 static bool isArithmeticOp(unsigned Opc) {
136   return X86::isADC(Opc) || X86::isSBB(Opc) || X86::isRCL(Opc) ||
137          X86::isRCR(Opc) || (Opc == X86::SETB_C32r || Opc == X86::SETB_C64r);
138 }
139 
140 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
141                                      MachineInstr &SplitI,
142                                      const X86InstrInfo &TII) {
143   MachineFunction &MF = *MBB.getParent();
144 
145   assert(SplitI.getParent() == &MBB &&
146          "Split instruction must be in the split block!");
147   assert(SplitI.isBranch() &&
148          "Only designed to split a tail of branch instructions!");
149   assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
150          "Must split on an actual jCC instruction!");
151 
152   // Dig out the previous instruction to the split point.
153   MachineInstr &PrevI = *std::prev(SplitI.getIterator());
154   assert(PrevI.isBranch() && "Must split after a branch!");
155   assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
156          "Must split after an actual jCC instruction!");
157   assert(!std::prev(PrevI.getIterator())->isTerminator() &&
158          "Must only have this one terminator prior to the split!");
159 
160   // Grab the one successor edge that will stay in `MBB`.
161   MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
162 
163   // Analyze the original block to see if we are actually splitting an edge
164   // into two edges. This can happen when we have multiple conditional jumps to
165   // the same successor.
166   bool IsEdgeSplit =
167       std::any_of(SplitI.getIterator(), MBB.instr_end(),
168                   [&](MachineInstr &MI) {
169                     assert(MI.isTerminator() &&
170                            "Should only have spliced terminators!");
171                     return llvm::any_of(
172                         MI.operands(), [&](MachineOperand &MOp) {
173                           return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
174                         });
175                   }) ||
176       MBB.getFallThrough() == &UnsplitSucc;
177 
178   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
179 
180   // Insert the new block immediately after the current one. Any existing
181   // fallthrough will be sunk into this new block anyways.
182   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
183 
184   // Splice the tail of instructions into the new block.
185   NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
186 
187   // Copy the necessary succesors (and their probability info) into the new
188   // block.
189   for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
190     if (IsEdgeSplit || *SI != &UnsplitSucc)
191       NewMBB.copySuccessor(&MBB, SI);
192   // Normalize the probabilities if we didn't end up splitting the edge.
193   if (!IsEdgeSplit)
194     NewMBB.normalizeSuccProbs();
195 
196   // Now replace all of the moved successors in the original block with the new
197   // block. This will merge their probabilities.
198   for (MachineBasicBlock *Succ : NewMBB.successors())
199     if (Succ != &UnsplitSucc)
200       MBB.replaceSuccessor(Succ, &NewMBB);
201 
202   // We should always end up replacing at least one successor.
203   assert(MBB.isSuccessor(&NewMBB) &&
204          "Failed to make the new block a successor!");
205 
206   // Now update all the PHIs.
207   for (MachineBasicBlock *Succ : NewMBB.successors()) {
208     for (MachineInstr &MI : *Succ) {
209       if (!MI.isPHI())
210         break;
211 
212       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
213            OpIdx += 2) {
214         MachineOperand &OpV = MI.getOperand(OpIdx);
215         MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
216         assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
217         if (OpMBB.getMBB() != &MBB)
218           continue;
219 
220         // Replace the operand for unsplit successors
221         if (!IsEdgeSplit || Succ != &UnsplitSucc) {
222           OpMBB.setMBB(&NewMBB);
223 
224           // We have to continue scanning as there may be multiple entries in
225           // the PHI.
226           continue;
227         }
228 
229         // When we have split the edge append a new successor.
230         MI.addOperand(MF, OpV);
231         MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
232         break;
233       }
234     }
235   }
236 
237   return NewMBB;
238 }
239 
240 enum EFLAGSClobber { NoClobber, EvitableClobber, InevitableClobber };
241 
242 static EFLAGSClobber getClobberType(const MachineInstr &MI) {
243   const MachineOperand *FlagDef =
244       MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
245   if (!FlagDef)
246     return NoClobber;
247   if (FlagDef->isDead() && X86::getNFVariant(MI.getOpcode()))
248     return EvitableClobber;
249 
250   return InevitableClobber;
251 }
252 
253 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
254   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
255                     << " **********\n");
256 
257   Subtarget = &MF.getSubtarget<X86Subtarget>();
258   MRI = &MF.getRegInfo();
259   TII = Subtarget->getInstrInfo();
260   TRI = Subtarget->getRegisterInfo();
261   PromoteRC = &X86::GR8RegClass;
262 
263   if (MF.empty())
264     // Nothing to do for a degenerate empty function...
265     return false;
266 
267   if (none_of(MRI->def_instructions(X86::EFLAGS), [](const MachineInstr &MI) {
268         return MI.getOpcode() == TargetOpcode::COPY;
269       }))
270     return false;
271 
272   // We change the code, so we don't preserve the dominator tree anyway. If we
273   // got a valid MDT from the pass manager, use that, otherwise construct one
274   // now. This is an optimization that avoids unnecessary MDT construction for
275   // functions that have no flag copies.
276 
277   auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>();
278   std::unique_ptr<MachineDominatorTree> OwnedMDT;
279   if (MDTWrapper) {
280     MDT = &MDTWrapper->getDomTree();
281   } else {
282     OwnedMDT = std::make_unique<MachineDominatorTree>();
283     OwnedMDT->getBase().recalculate(MF);
284     MDT = OwnedMDT.get();
285   }
286 
287   // Collect the copies in RPO so that when there are chains where a copy is in
288   // turn copied again we visit the first one first. This ensures we can find
289   // viable locations for testing the original EFLAGS that dominate all the
290   // uses across complex CFGs.
291   SmallSetVector<MachineInstr *, 4> Copies;
292   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
293   for (MachineBasicBlock *MBB : RPOT)
294     for (MachineInstr &MI : *MBB)
295       if (MI.getOpcode() == TargetOpcode::COPY &&
296           MI.getOperand(0).getReg() == X86::EFLAGS)
297         Copies.insert(&MI);
298 
299   // Try to elminate the copys by transform the instructions between copy and
300   // copydef to the NF (no flags update) variants, e.g.
301   //
302   // %1:gr64 = COPY $eflags
303   // OP1 implicit-def dead $eflags
304   // $eflags = COPY %1
305   // OP2 cc, implicit $eflags
306   //
307   // ->
308   //
309   // OP1_NF
310   // OP2 implicit $eflags
311   if (Subtarget->hasNF()) {
312     SmallSetVector<MachineInstr *, 4> RemovedCopies;
313     // CopyIIt may be invalidated by removing copies.
314     auto CopyIIt = Copies.begin(), CopyIEnd = Copies.end();
315     while (CopyIIt != CopyIEnd) {
316       auto NCopyIIt = std::next(CopyIIt);
317       SmallSetVector<MachineInstr *, 4> EvitableClobbers;
318       MachineInstr *CopyI = *CopyIIt;
319       MachineOperand &VOp = CopyI->getOperand(1);
320       MachineInstr *CopyDefI = MRI->getVRegDef(VOp.getReg());
321       MachineBasicBlock *CopyIMBB = CopyI->getParent();
322       MachineBasicBlock *CopyDefIMBB = CopyDefI->getParent();
323       // Walk all basic blocks reachable in depth-first iteration on the inverse
324       // CFG from CopyIMBB to CopyDefIMBB. These blocks are all the blocks that
325       // may be executed between the execution of CopyDefIMBB and CopyIMBB. On
326       // all execution paths, instructions from CopyDefI to CopyI (exclusive)
327       // has to be NF-convertible if it clobbers flags.
328       for (auto BI = idf_begin(CopyIMBB), BE = idf_end(CopyDefIMBB); BI != BE;
329            ++BI) {
330         MachineBasicBlock *MBB = *BI;
331         for (auto I = (MBB != CopyDefIMBB)
332                           ? MBB->begin()
333                           : std::next(MachineBasicBlock::iterator(CopyDefI)),
334                   E = (MBB != CopyIMBB) ? MBB->end()
335                                         : MachineBasicBlock::iterator(CopyI);
336              I != E; ++I) {
337           MachineInstr &MI = *I;
338           EFLAGSClobber ClobberType = getClobberType(MI);
339           if (ClobberType == NoClobber)
340             continue;
341 
342           if (ClobberType == InevitableClobber)
343             goto ProcessNextCopyI;
344 
345           assert(ClobberType == EvitableClobber && "unexpected workflow");
346           EvitableClobbers.insert(&MI);
347         }
348       }
349       // Covert evitable clobbers into NF variants and remove the copyies.
350       RemovedCopies.insert(CopyI);
351       CopyI->eraseFromParent();
352       if (MRI->use_nodbg_empty(CopyDefI->getOperand(0).getReg())) {
353         RemovedCopies.insert(CopyDefI);
354         CopyDefI->eraseFromParent();
355       }
356       ++NumCopiesEliminated;
357       for (auto *Clobber : EvitableClobbers) {
358         unsigned NewOpc = X86::getNFVariant(Clobber->getOpcode());
359         assert(NewOpc && "evitable clobber must have a NF variant");
360         Clobber->setDesc(TII->get(NewOpc));
361         Clobber->removeOperand(
362             Clobber->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr)
363                 ->getOperandNo());
364         ++NumNFsConvertedTo;
365       }
366       // Update liveins for basic blocks in the path
367       for (auto BI = idf_begin(CopyIMBB), BE = idf_end(CopyDefIMBB); BI != BE;
368            ++BI)
369         if (*BI != CopyDefIMBB)
370           BI->addLiveIn(X86::EFLAGS);
371     ProcessNextCopyI:
372       CopyIIt = NCopyIIt;
373     }
374     Copies.set_subtract(RemovedCopies);
375   }
376 
377   // For the rest of copies that cannot be eliminated by NF transform, we use
378   // setcc to preserve the flags in GPR32 before OP1, and recheck its value
379   // before using the flags, e.g.
380   //
381   // %1:gr64 = COPY $eflags
382   // OP1 implicit-def dead $eflags
383   // $eflags = COPY %1
384   // OP2 cc, implicit $eflags
385   //
386   // ->
387   //
388   // %1:gr8 = SETCCr cc, implicit $eflags
389   // OP1 implicit-def dead $eflags
390   // TEST8rr %1, %1, implicit-def $eflags
391   // OP2 ne, implicit $eflags
392   for (MachineInstr *CopyI : Copies) {
393     MachineBasicBlock &MBB = *CopyI->getParent();
394 
395     MachineOperand &VOp = CopyI->getOperand(1);
396     assert(VOp.isReg() &&
397            "The input to the copy for EFLAGS should always be a register!");
398     MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
399     if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
400       // FIXME: The big likely candidate here are PHI nodes. We could in theory
401       // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
402       // enough that it is probably better to change every other part of LLVM
403       // to avoid creating them. The issue is that once we have PHIs we won't
404       // know which original EFLAGS value we need to capture with our setCCs
405       // below. The end result will be computing a complete set of setCCs that
406       // we *might* want, computing them in every place where we copy *out* of
407       // EFLAGS and then doing SSA formation on all of them to insert necessary
408       // PHI nodes and consume those here. Then hoping that somehow we DCE the
409       // unnecessary ones. This DCE seems very unlikely to be successful and so
410       // we will almost certainly end up with a glut of dead setCC
411       // instructions. Until we have a motivating test case and fail to avoid
412       // it by changing other parts of LLVM's lowering, we refuse to handle
413       // this complex case here.
414       LLVM_DEBUG(
415           dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
416           CopyDefI.dump());
417       report_fatal_error(
418           "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
419     }
420 
421     auto Cleanup = make_scope_exit([&] {
422       // All uses of the EFLAGS copy are now rewritten, kill the copy into
423       // eflags and if dead the copy from.
424       CopyI->eraseFromParent();
425       if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
426         CopyDefI.eraseFromParent();
427       ++NumCopiesEliminated;
428     });
429 
430     MachineOperand &DOp = CopyI->getOperand(0);
431     assert(DOp.isDef() && "Expected register def!");
432     assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
433     if (DOp.isDead())
434       continue;
435 
436     MachineBasicBlock *TestMBB = CopyDefI.getParent();
437     auto TestPos = CopyDefI.getIterator();
438     DebugLoc TestLoc = CopyDefI.getDebugLoc();
439 
440     LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
441 
442     // Walk up across live-in EFLAGS to find where they were actually def'ed.
443     //
444     // This copy's def may just be part of a region of blocks covered by
445     // a single def of EFLAGS and we want to find the top of that region where
446     // possible.
447     //
448     // This is essentially a search for a *candidate* reaching definition
449     // location. We don't need to ever find the actual reaching definition here,
450     // but we want to walk up the dominator tree to find the highest point which
451     // would be viable for such a definition.
452     auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
453                                 MachineBasicBlock::iterator End) {
454       // Scan backwards as we expect these to be relatively short and often find
455       // a clobber near the end.
456       return llvm::any_of(
457           llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
458             // Flag any instruction (other than the copy we are
459             // currently rewriting) that defs EFLAGS.
460             return &MI != CopyI &&
461                    MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
462           });
463     };
464     auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
465                                     MachineBasicBlock *EndMBB) {
466       assert(MDT->dominates(BeginMBB, EndMBB) &&
467              "Only support paths down the dominator tree!");
468       SmallPtrSet<MachineBasicBlock *, 4> Visited;
469       SmallVector<MachineBasicBlock *, 4> Worklist;
470       // We terminate at the beginning. No need to scan it.
471       Visited.insert(BeginMBB);
472       Worklist.push_back(EndMBB);
473       do {
474         auto *MBB = Worklist.pop_back_val();
475         for (auto *PredMBB : MBB->predecessors()) {
476           if (!Visited.insert(PredMBB).second)
477             continue;
478           if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
479             return true;
480           // Enqueue this block to walk its predecessors.
481           Worklist.push_back(PredMBB);
482         }
483       } while (!Worklist.empty());
484       // No clobber found along a path from the begin to end.
485       return false;
486     };
487     while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
488            !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
489       // Find the nearest common dominator of the predecessors, as
490       // that will be the best candidate to hoist into.
491       MachineBasicBlock *HoistMBB =
492           std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
493                           *TestMBB->pred_begin(),
494                           [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
495                             return MDT->findNearestCommonDominator(LHS, RHS);
496                           });
497 
498       // Now we need to scan all predecessors that may be reached along paths to
499       // the hoist block. A clobber anywhere in any of these blocks the hoist.
500       // Note that this even handles loops because we require *no* clobbers.
501       if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
502         break;
503 
504       // We also need the terminators to not sneakily clobber flags.
505       if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
506                            HoistMBB->instr_end()))
507         break;
508 
509       // We found a viable location, hoist our test position to it.
510       TestMBB = HoistMBB;
511       TestPos = TestMBB->getFirstTerminator()->getIterator();
512       // Clear the debug location as it would just be confusing after hoisting.
513       TestLoc = DebugLoc();
514     }
515     LLVM_DEBUG({
516       auto DefIt = llvm::find_if(
517           llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
518           [&](MachineInstr &MI) {
519             return MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr);
520           });
521       if (DefIt.base() != TestMBB->instr_begin()) {
522         dbgs() << "  Using EFLAGS defined by: ";
523         DefIt->dump();
524       } else {
525         dbgs() << "  Using live-in flags for BB:\n";
526         TestMBB->dump();
527       }
528     });
529 
530     // While rewriting uses, we buffer jumps and rewrite them in a second pass
531     // because doing so will perturb the CFG that we are walking to find the
532     // uses in the first place.
533     SmallVector<MachineInstr *, 4> JmpIs;
534 
535     // Gather the condition flags that have already been preserved in
536     // registers. We do this from scratch each time as we expect there to be
537     // very few of them and we expect to not revisit the same copy definition
538     // many times. If either of those change sufficiently we could build a map
539     // of these up front instead.
540     CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
541 
542     // Collect the basic blocks we need to scan. Typically this will just be
543     // a single basic block but we may have to scan multiple blocks if the
544     // EFLAGS copy lives into successors.
545     SmallVector<MachineBasicBlock *, 2> Blocks;
546     SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
547     Blocks.push_back(&MBB);
548 
549     do {
550       MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
551 
552       // Track when if/when we find a kill of the flags in this block.
553       bool FlagsKilled = false;
554 
555       // In most cases, we walk from the beginning to the end of the block. But
556       // when the block is the same block as the copy is from, we will visit it
557       // twice. The first time we start from the copy and go to the end. The
558       // second time we start from the beginning and go to the copy. This lets
559       // us handle copies inside of cycles.
560       // FIXME: This loop is *super* confusing. This is at least in part
561       // a symptom of all of this routine needing to be refactored into
562       // documentable components. Once done, there may be a better way to write
563       // this loop.
564       for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
565                           ? std::next(CopyI->getIterator())
566                           : UseMBB.instr_begin(),
567                 MIE = UseMBB.instr_end();
568            MII != MIE;) {
569         MachineInstr &MI = *MII++;
570         // If we are in the original copy block and encounter either the copy
571         // def or the copy itself, break so that we don't re-process any part of
572         // the block or process the instructions in the range that was copied
573         // over.
574         if (&MI == CopyI || &MI == &CopyDefI) {
575           assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
576                  "Should only encounter these on the second pass over the "
577                  "original block.");
578           break;
579         }
580 
581         MachineOperand *FlagUse =
582             MI.findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr);
583         FlagsKilled = MI.modifiesRegister(X86::EFLAGS, TRI);
584 
585         if (!FlagUse && FlagsKilled)
586           break;
587         else if (!FlagUse)
588           continue;
589 
590         LLVM_DEBUG(dbgs() << "  Rewriting use: "; MI.dump());
591 
592         // Check the kill flag before we rewrite as that may change it.
593         if (FlagUse->isKill())
594           FlagsKilled = true;
595 
596         // Once we encounter a branch, the rest of the instructions must also be
597         // branches. We can't rewrite in place here, so we handle them below.
598         //
599         // Note that we don't have to handle tail calls here, even conditional
600         // tail calls, as those are not introduced into the X86 MI until post-RA
601         // branch folding or black placement. As a consequence, we get to deal
602         // with the simpler formulation of conditional branches followed by tail
603         // calls.
604         if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
605           auto JmpIt = MI.getIterator();
606           do {
607             JmpIs.push_back(&*JmpIt);
608             ++JmpIt;
609           } while (JmpIt != UseMBB.instr_end() &&
610                    X86::getCondFromBranch(*JmpIt) != X86::COND_INVALID);
611           break;
612         }
613 
614         // Otherwise we can just rewrite in-place.
615         unsigned Opc = MI.getOpcode();
616         if (Opc == TargetOpcode::COPY) {
617           // Just replace this copy with the original copy def.
618           MRI->replaceRegWith(MI.getOperand(0).getReg(),
619                               CopyDefI.getOperand(0).getReg());
620           MI.eraseFromParent();
621         } else if (X86::isSETCC(Opc)) {
622           rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, CondRegs);
623         } else if (isArithmeticOp(Opc)) {
624           rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, CondRegs);
625         } else {
626           rewriteMI(*TestMBB, TestPos, TestLoc, MI, CondRegs);
627         }
628 
629         // If this was the last use of the flags, we're done.
630         if (FlagsKilled)
631           break;
632       }
633 
634       // If the flags were killed, we're done with this block.
635       if (FlagsKilled)
636         continue;
637 
638       // Otherwise we need to scan successors for ones where the flags live-in
639       // and queue those up for processing.
640       for (MachineBasicBlock *SuccMBB : UseMBB.successors())
641         if (SuccMBB->isLiveIn(X86::EFLAGS) &&
642             VisitedBlocks.insert(SuccMBB).second) {
643           // We currently don't do any PHI insertion and so we require that the
644           // test basic block dominates all of the use basic blocks. Further, we
645           // can't have a cycle from the test block back to itself as that would
646           // create a cycle requiring a PHI to break it.
647           //
648           // We could in theory do PHI insertion here if it becomes useful by
649           // just taking undef values in along every edge that we don't trace
650           // this EFLAGS copy along. This isn't as bad as fully general PHI
651           // insertion, but still seems like a great deal of complexity.
652           //
653           // Because it is theoretically possible that some earlier MI pass or
654           // other lowering transformation could induce this to happen, we do
655           // a hard check even in non-debug builds here.
656           if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
657             LLVM_DEBUG({
658               dbgs()
659                   << "ERROR: Encountered use that is not dominated by our test "
660                      "basic block! Rewriting this would require inserting PHI "
661                      "nodes to track the flag state across the CFG.\n\nTest "
662                      "block:\n";
663               TestMBB->dump();
664               dbgs() << "Use block:\n";
665               SuccMBB->dump();
666             });
667             report_fatal_error(
668                 "Cannot lower EFLAGS copy when original copy def "
669                 "does not dominate all uses.");
670           }
671 
672           Blocks.push_back(SuccMBB);
673 
674           // After this, EFLAGS will be recreated before each use.
675           SuccMBB->removeLiveIn(X86::EFLAGS);
676         }
677     } while (!Blocks.empty());
678 
679     // Now rewrite the jumps that use the flags. These we handle specially
680     // because if there are multiple jumps in a single basic block we'll have
681     // to do surgery on the CFG.
682     MachineBasicBlock *LastJmpMBB = nullptr;
683     for (MachineInstr *JmpI : JmpIs) {
684       // Past the first jump within a basic block we need to split the blocks
685       // apart.
686       if (JmpI->getParent() == LastJmpMBB)
687         splitBlock(*JmpI->getParent(), *JmpI, *TII);
688       else
689         LastJmpMBB = JmpI->getParent();
690 
691       rewriteMI(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
692     }
693 
694     // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
695     // the copy's def operand is itself a kill.
696   }
697 
698 #ifndef NDEBUG
699   for (MachineBasicBlock &MBB : MF)
700     for (MachineInstr &MI : MBB)
701       if (MI.getOpcode() == TargetOpcode::COPY &&
702           (MI.getOperand(0).getReg() == X86::EFLAGS ||
703            MI.getOperand(1).getReg() == X86::EFLAGS)) {
704         LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
705                    MI.dump());
706         llvm_unreachable("Unlowered EFLAGS copy!");
707       }
708 #endif
709 
710   return true;
711 }
712 
713 /// Collect any conditions that have already been set in registers so that we
714 /// can re-use them rather than adding duplicates.
715 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
716     MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
717   CondRegArray CondRegs = {};
718 
719   // Scan backwards across the range of instructions with live EFLAGS.
720   for (MachineInstr &MI :
721        llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
722     X86::CondCode Cond = X86::getCondFromSETCC(MI);
723     if (Cond != X86::COND_INVALID && !MI.mayStore() &&
724         MI.getOperand(0).isReg() && MI.getOperand(0).getReg().isVirtual()) {
725       assert(MI.getOperand(0).isDef() &&
726              "A non-storing SETcc should always define a register!");
727       CondRegs[Cond] = MI.getOperand(0).getReg();
728     }
729 
730     // Stop scanning when we see the first definition of the EFLAGS as prior to
731     // this we would potentially capture the wrong flag state.
732     if (MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr))
733       break;
734   }
735   return CondRegs;
736 }
737 
738 Register X86FlagsCopyLoweringPass::promoteCondToReg(
739     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
740     const DebugLoc &TestLoc, X86::CondCode Cond) {
741   Register Reg = MRI->createVirtualRegister(PromoteRC);
742   auto SetI = BuildMI(TestMBB, TestPos, TestLoc, TII->get(X86::SETCCr), Reg)
743                   .addImm(Cond);
744   (void)SetI;
745   LLVM_DEBUG(dbgs() << "    save cond: "; SetI->dump());
746   ++NumSetCCsInserted;
747   return Reg;
748 }
749 
750 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
751     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
752     const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
753   unsigned &CondReg = CondRegs[Cond];
754   unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
755   if (!CondReg && !InvCondReg)
756     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
757 
758   if (CondReg)
759     return {CondReg, false};
760   else
761     return {InvCondReg, true};
762 }
763 
764 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
765                                           MachineBasicBlock::iterator Pos,
766                                           const DebugLoc &Loc, unsigned Reg) {
767   auto TestI =
768       BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
769   (void)TestI;
770   LLVM_DEBUG(dbgs() << "    test cond: "; TestI->dump());
771   ++NumTestsInserted;
772 }
773 
774 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &MBB,
775                                             MachineBasicBlock::iterator Pos,
776                                             const DebugLoc &Loc,
777                                             MachineInstr &MI,
778                                             CondRegArray &CondRegs) {
779   X86::CondCode Cond = X86::getCondFromSETCC(MI);
780   // Note that we can't usefully rewrite this to the inverse without complex
781   // analysis of the users of the setCC. Largely we rely on duplicates which
782   // could have been avoided already being avoided here.
783   unsigned &CondReg = CondRegs[Cond];
784   if (!CondReg)
785     CondReg = promoteCondToReg(MBB, Pos, Loc, Cond);
786 
787   // Rewriting a register def is trivial: we just replace the register and
788   // remove the setcc.
789   if (!MI.mayStore()) {
790     assert(MI.getOperand(0).isReg() &&
791            "Cannot have a non-register defined operand to SETcc!");
792     Register OldReg = MI.getOperand(0).getReg();
793     // Drop Kill flags on the old register before replacing. CondReg may have
794     // a longer live range.
795     MRI->clearKillFlags(OldReg);
796     MRI->replaceRegWith(OldReg, CondReg);
797     MI.eraseFromParent();
798     return;
799   }
800 
801   // Otherwise, we need to emit a store.
802   auto MIB = BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
803                      TII->get(X86::MOV8mr));
804   // Copy the address operands.
805   for (int i = 0; i < X86::AddrNumOperands; ++i)
806     MIB.add(MI.getOperand(i));
807 
808   MIB.addReg(CondReg);
809   MIB.setMemRefs(MI.memoperands());
810   MI.eraseFromParent();
811 }
812 
813 void X86FlagsCopyLoweringPass::rewriteArithmetic(
814     MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
815     const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs) {
816   // Arithmetic is either reading CF or OF.
817   X86::CondCode Cond = X86::COND_B; // CF == 1
818   // The addend to use to reset CF or OF when added to the flag value.
819   // Set up an addend that when one is added will need a carry due to not
820   // having a higher bit available.
821   int Addend = 255;
822 
823   // Now get a register that contains the value of the flag input to the
824   // arithmetic. We require exactly this flag to simplify the arithmetic
825   // required to materialize it back into the flag.
826   unsigned &CondReg = CondRegs[Cond];
827   if (!CondReg)
828     CondReg = promoteCondToReg(MBB, Pos, Loc, Cond);
829 
830   // Insert an instruction that will set the flag back to the desired value.
831   Register TmpReg = MRI->createVirtualRegister(PromoteRC);
832   auto AddI =
833       BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
834               TII->get(Subtarget->hasNDD() ? X86::ADD8ri_ND : X86::ADD8ri))
835           .addDef(TmpReg, RegState::Dead)
836           .addReg(CondReg)
837           .addImm(Addend);
838   (void)AddI;
839   LLVM_DEBUG(dbgs() << "    add cond: "; AddI->dump());
840   ++NumAddsInserted;
841   MI.findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true);
842 }
843 
844 static X86::CondCode getImplicitCondFromMI(unsigned Opc) {
845 #define FROM_TO(A, B)                                                          \
846   case X86::CMOV##A##_Fp32:                                                    \
847   case X86::CMOV##A##_Fp64:                                                    \
848   case X86::CMOV##A##_Fp80:                                                    \
849     return X86::COND_##B;
850 
851   switch (Opc) {
852   default:
853     return X86::COND_INVALID;
854     FROM_TO(B, B)
855     FROM_TO(E, E)
856     FROM_TO(P, P)
857     FROM_TO(BE, BE)
858     FROM_TO(NB, AE)
859     FROM_TO(NE, NE)
860     FROM_TO(NP, NP)
861     FROM_TO(NBE, A)
862   }
863 #undef FROM_TO
864 }
865 
866 static unsigned getOpcodeWithCC(unsigned Opc, X86::CondCode CC) {
867   assert((CC == X86::COND_E || CC == X86::COND_NE) && "Unexpected CC");
868 #define CASE(A)                                                                \
869   case X86::CMOVB_##A:                                                         \
870   case X86::CMOVE_##A:                                                         \
871   case X86::CMOVP_##A:                                                         \
872   case X86::CMOVBE_##A:                                                        \
873   case X86::CMOVNB_##A:                                                        \
874   case X86::CMOVNE_##A:                                                        \
875   case X86::CMOVNP_##A:                                                        \
876   case X86::CMOVNBE_##A:                                                       \
877     return (CC == X86::COND_E) ? X86::CMOVE_##A : X86::CMOVNE_##A;
878   switch (Opc) {
879   default:
880     llvm_unreachable("Unexpected opcode");
881     CASE(Fp32)
882     CASE(Fp64)
883     CASE(Fp80)
884   }
885 #undef CASE
886 }
887 
888 void X86FlagsCopyLoweringPass::rewriteMI(MachineBasicBlock &MBB,
889                                          MachineBasicBlock::iterator Pos,
890                                          const DebugLoc &Loc, MachineInstr &MI,
891                                          CondRegArray &CondRegs) {
892   // First get the register containing this specific condition.
893   bool IsImplicitCC = false;
894   X86::CondCode CC = X86::getCondFromMI(MI);
895   if (CC == X86::COND_INVALID) {
896     CC = getImplicitCondFromMI(MI.getOpcode());
897     IsImplicitCC = true;
898   }
899   assert(CC != X86::COND_INVALID && "Unknown EFLAG user!");
900   unsigned CondReg;
901   bool Inverted;
902   std::tie(CondReg, Inverted) =
903       getCondOrInverseInReg(MBB, Pos, Loc, CC, CondRegs);
904 
905   // Insert a direct test of the saved register.
906   insertTest(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), CondReg);
907 
908   // Rewrite the instruction to use the !ZF flag from the test, and then kill
909   // its use of the flags afterward.
910   X86::CondCode NewCC = Inverted ? X86::COND_E : X86::COND_NE;
911   if (IsImplicitCC)
912     MI.setDesc(TII->get(getOpcodeWithCC(MI.getOpcode(), NewCC)));
913   else
914     MI.getOperand(MI.getDesc().getNumOperands() - 1).setImm(NewCC);
915 
916   MI.findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true);
917   LLVM_DEBUG(dbgs() << "    fixed instruction: "; MI.dump());
918 }
919