xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
11 /// flag bits.
12 ///
13 /// We have to do this by carefully analyzing and rewriting the usage of the
14 /// copied EFLAGS register because there is no general way to rematerialize the
15 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
16 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
17 /// and other non-status flags being overwritten. Using sequences involving
18 /// SAHF don't work on all x86 processors and are often quite slow compared to
19 /// directly testing a single status preserved in its own GPR.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "X86.h"
24 #include "X86InstrBuilder.h"
25 #include "X86InstrInfo.h"
26 #include "X86Subtarget.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/ScopeExit.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineConstantPool.h"
39 #include "llvm/CodeGen/MachineDominators.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/MachineSSAUpdater.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSchedule.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/MC/MCSchedule.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define PASS_KEY "x86-flags-copy-lowering"
66 #define DEBUG_TYPE PASS_KEY
67 
68 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
69 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
70 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
71 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
72 
73 namespace {
74 
75 // Convenient array type for storing registers associated with each condition.
76 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
77 
78 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
79 public:
80   X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
81 
82   StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
83   bool runOnMachineFunction(MachineFunction &MF) override;
84   void getAnalysisUsage(AnalysisUsage &AU) const override;
85 
86   /// Pass identification, replacement for typeid.
87   static char ID;
88 
89 private:
90   MachineRegisterInfo *MRI;
91   const X86Subtarget *Subtarget;
92   const X86InstrInfo *TII;
93   const TargetRegisterInfo *TRI;
94   const TargetRegisterClass *PromoteRC;
95   MachineDominatorTree *MDT;
96 
97   CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
98                                   MachineBasicBlock::iterator CopyDefI);
99 
100   unsigned promoteCondToReg(MachineBasicBlock &MBB,
101                             MachineBasicBlock::iterator TestPos,
102                             DebugLoc TestLoc, X86::CondCode Cond);
103   std::pair<unsigned, bool>
104   getCondOrInverseInReg(MachineBasicBlock &TestMBB,
105                         MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
106                         X86::CondCode Cond, CondRegArray &CondRegs);
107   void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
108                   DebugLoc Loc, unsigned Reg);
109 
110   void rewriteArithmetic(MachineBasicBlock &TestMBB,
111                          MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
112                          MachineInstr &MI, MachineOperand &FlagUse,
113                          CondRegArray &CondRegs);
114   void rewriteCMov(MachineBasicBlock &TestMBB,
115                    MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
116                    MachineInstr &CMovI, MachineOperand &FlagUse,
117                    CondRegArray &CondRegs);
118   void rewriteCondJmp(MachineBasicBlock &TestMBB,
119                       MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
120                       MachineInstr &JmpI, CondRegArray &CondRegs);
121   void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
122                    MachineInstr &CopyDefI);
123   void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
124                                MachineBasicBlock::iterator TestPos,
125                                DebugLoc TestLoc, MachineInstr &SetBI,
126                                MachineOperand &FlagUse, CondRegArray &CondRegs);
127   void rewriteSetCC(MachineBasicBlock &TestMBB,
128                     MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
129                     MachineInstr &SetCCI, MachineOperand &FlagUse,
130                     CondRegArray &CondRegs);
131 };
132 
133 } // end anonymous namespace
134 
135 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
136                       "X86 EFLAGS copy lowering", false, false)
137 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
138                     "X86 EFLAGS copy lowering", false, false)
139 
140 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
141   return new X86FlagsCopyLoweringPass();
142 }
143 
144 char X86FlagsCopyLoweringPass::ID = 0;
145 
146 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
147   AU.addRequired<MachineDominatorTree>();
148   MachineFunctionPass::getAnalysisUsage(AU);
149 }
150 
151 namespace {
152 /// An enumeration of the arithmetic instruction mnemonics which have
153 /// interesting flag semantics.
154 ///
155 /// We can map instruction opcodes into these mnemonics to make it easy to
156 /// dispatch with specific functionality.
157 enum class FlagArithMnemonic {
158   ADC,
159   ADCX,
160   ADOX,
161   RCL,
162   RCR,
163   SBB,
164 };
165 } // namespace
166 
167 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
168   switch (Opcode) {
169   default:
170     report_fatal_error("No support for lowering a copy into EFLAGS when used "
171                        "by this instruction!");
172 
173 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)                              \
174   case X86::MNEMONIC##8##SUFFIX:                                               \
175   case X86::MNEMONIC##16##SUFFIX:                                              \
176   case X86::MNEMONIC##32##SUFFIX:                                              \
177   case X86::MNEMONIC##64##SUFFIX:
178 
179 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)                                    \
180   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr)                                        \
181   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV)                                    \
182   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm)                                        \
183   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr)                                        \
184   case X86::MNEMONIC##8ri:                                                     \
185   case X86::MNEMONIC##16ri8:                                                   \
186   case X86::MNEMONIC##32ri8:                                                   \
187   case X86::MNEMONIC##64ri8:                                                   \
188   case X86::MNEMONIC##16ri:                                                    \
189   case X86::MNEMONIC##32ri:                                                    \
190   case X86::MNEMONIC##64ri32:                                                  \
191   case X86::MNEMONIC##8mi:                                                     \
192   case X86::MNEMONIC##16mi8:                                                   \
193   case X86::MNEMONIC##32mi8:                                                   \
194   case X86::MNEMONIC##64mi8:                                                   \
195   case X86::MNEMONIC##16mi:                                                    \
196   case X86::MNEMONIC##32mi:                                                    \
197   case X86::MNEMONIC##64mi32:                                                  \
198   case X86::MNEMONIC##8i8:                                                     \
199   case X86::MNEMONIC##16i16:                                                   \
200   case X86::MNEMONIC##32i32:                                                   \
201   case X86::MNEMONIC##64i32:
202 
203     LLVM_EXPAND_ADC_SBB_INSTR(ADC)
204     return FlagArithMnemonic::ADC;
205 
206     LLVM_EXPAND_ADC_SBB_INSTR(SBB)
207     return FlagArithMnemonic::SBB;
208 
209 #undef LLVM_EXPAND_ADC_SBB_INSTR
210 
211     LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
212     LLVM_EXPAND_INSTR_SIZES(RCL, r1)
213     LLVM_EXPAND_INSTR_SIZES(RCL, ri)
214     return FlagArithMnemonic::RCL;
215 
216     LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
217     LLVM_EXPAND_INSTR_SIZES(RCR, r1)
218     LLVM_EXPAND_INSTR_SIZES(RCR, ri)
219     return FlagArithMnemonic::RCR;
220 
221 #undef LLVM_EXPAND_INSTR_SIZES
222 
223   case X86::ADCX32rr:
224   case X86::ADCX64rr:
225   case X86::ADCX32rm:
226   case X86::ADCX64rm:
227     return FlagArithMnemonic::ADCX;
228 
229   case X86::ADOX32rr:
230   case X86::ADOX64rr:
231   case X86::ADOX32rm:
232   case X86::ADOX64rm:
233     return FlagArithMnemonic::ADOX;
234   }
235 }
236 
237 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
238                                      MachineInstr &SplitI,
239                                      const X86InstrInfo &TII) {
240   MachineFunction &MF = *MBB.getParent();
241 
242   assert(SplitI.getParent() == &MBB &&
243          "Split instruction must be in the split block!");
244   assert(SplitI.isBranch() &&
245          "Only designed to split a tail of branch instructions!");
246   assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
247          "Must split on an actual jCC instruction!");
248 
249   // Dig out the previous instruction to the split point.
250   MachineInstr &PrevI = *std::prev(SplitI.getIterator());
251   assert(PrevI.isBranch() && "Must split after a branch!");
252   assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
253          "Must split after an actual jCC instruction!");
254   assert(!std::prev(PrevI.getIterator())->isTerminator() &&
255          "Must only have this one terminator prior to the split!");
256 
257   // Grab the one successor edge that will stay in `MBB`.
258   MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
259 
260   // Analyze the original block to see if we are actually splitting an edge
261   // into two edges. This can happen when we have multiple conditional jumps to
262   // the same successor.
263   bool IsEdgeSplit =
264       std::any_of(SplitI.getIterator(), MBB.instr_end(),
265                   [&](MachineInstr &MI) {
266                     assert(MI.isTerminator() &&
267                            "Should only have spliced terminators!");
268                     return llvm::any_of(
269                         MI.operands(), [&](MachineOperand &MOp) {
270                           return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
271                         });
272                   }) ||
273       MBB.getFallThrough() == &UnsplitSucc;
274 
275   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
276 
277   // Insert the new block immediately after the current one. Any existing
278   // fallthrough will be sunk into this new block anyways.
279   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
280 
281   // Splice the tail of instructions into the new block.
282   NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
283 
284   // Copy the necessary succesors (and their probability info) into the new
285   // block.
286   for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
287     if (IsEdgeSplit || *SI != &UnsplitSucc)
288       NewMBB.copySuccessor(&MBB, SI);
289   // Normalize the probabilities if we didn't end up splitting the edge.
290   if (!IsEdgeSplit)
291     NewMBB.normalizeSuccProbs();
292 
293   // Now replace all of the moved successors in the original block with the new
294   // block. This will merge their probabilities.
295   for (MachineBasicBlock *Succ : NewMBB.successors())
296     if (Succ != &UnsplitSucc)
297       MBB.replaceSuccessor(Succ, &NewMBB);
298 
299   // We should always end up replacing at least one successor.
300   assert(MBB.isSuccessor(&NewMBB) &&
301          "Failed to make the new block a successor!");
302 
303   // Now update all the PHIs.
304   for (MachineBasicBlock *Succ : NewMBB.successors()) {
305     for (MachineInstr &MI : *Succ) {
306       if (!MI.isPHI())
307         break;
308 
309       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
310            OpIdx += 2) {
311         MachineOperand &OpV = MI.getOperand(OpIdx);
312         MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
313         assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
314         if (OpMBB.getMBB() != &MBB)
315           continue;
316 
317         // Replace the operand for unsplit successors
318         if (!IsEdgeSplit || Succ != &UnsplitSucc) {
319           OpMBB.setMBB(&NewMBB);
320 
321           // We have to continue scanning as there may be multiple entries in
322           // the PHI.
323           continue;
324         }
325 
326         // When we have split the edge append a new successor.
327         MI.addOperand(MF, OpV);
328         MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
329         break;
330       }
331     }
332   }
333 
334   return NewMBB;
335 }
336 
337 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
338   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
339                     << " **********\n");
340 
341   Subtarget = &MF.getSubtarget<X86Subtarget>();
342   MRI = &MF.getRegInfo();
343   TII = Subtarget->getInstrInfo();
344   TRI = Subtarget->getRegisterInfo();
345   MDT = &getAnalysis<MachineDominatorTree>();
346   PromoteRC = &X86::GR8RegClass;
347 
348   if (MF.begin() == MF.end())
349     // Nothing to do for a degenerate empty function...
350     return false;
351 
352   // Collect the copies in RPO so that when there are chains where a copy is in
353   // turn copied again we visit the first one first. This ensures we can find
354   // viable locations for testing the original EFLAGS that dominate all the
355   // uses across complex CFGs.
356   SmallVector<MachineInstr *, 4> Copies;
357   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
358   for (MachineBasicBlock *MBB : RPOT)
359     for (MachineInstr &MI : *MBB)
360       if (MI.getOpcode() == TargetOpcode::COPY &&
361           MI.getOperand(0).getReg() == X86::EFLAGS)
362         Copies.push_back(&MI);
363 
364   for (MachineInstr *CopyI : Copies) {
365     MachineBasicBlock &MBB = *CopyI->getParent();
366 
367     MachineOperand &VOp = CopyI->getOperand(1);
368     assert(VOp.isReg() &&
369            "The input to the copy for EFLAGS should always be a register!");
370     MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
371     if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
372       // FIXME: The big likely candidate here are PHI nodes. We could in theory
373       // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
374       // enough that it is probably better to change every other part of LLVM
375       // to avoid creating them. The issue is that once we have PHIs we won't
376       // know which original EFLAGS value we need to capture with our setCCs
377       // below. The end result will be computing a complete set of setCCs that
378       // we *might* want, computing them in every place where we copy *out* of
379       // EFLAGS and then doing SSA formation on all of them to insert necessary
380       // PHI nodes and consume those here. Then hoping that somehow we DCE the
381       // unnecessary ones. This DCE seems very unlikely to be successful and so
382       // we will almost certainly end up with a glut of dead setCC
383       // instructions. Until we have a motivating test case and fail to avoid
384       // it by changing other parts of LLVM's lowering, we refuse to handle
385       // this complex case here.
386       LLVM_DEBUG(
387           dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
388           CopyDefI.dump());
389       report_fatal_error(
390           "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
391     }
392 
393     auto Cleanup = make_scope_exit([&] {
394       // All uses of the EFLAGS copy are now rewritten, kill the copy into
395       // eflags and if dead the copy from.
396       CopyI->eraseFromParent();
397       if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
398         CopyDefI.eraseFromParent();
399       ++NumCopiesEliminated;
400     });
401 
402     MachineOperand &DOp = CopyI->getOperand(0);
403     assert(DOp.isDef() && "Expected register def!");
404     assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
405     if (DOp.isDead())
406       continue;
407 
408     MachineBasicBlock *TestMBB = CopyDefI.getParent();
409     auto TestPos = CopyDefI.getIterator();
410     DebugLoc TestLoc = CopyDefI.getDebugLoc();
411 
412     LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
413 
414     // Walk up across live-in EFLAGS to find where they were actually def'ed.
415     //
416     // This copy's def may just be part of a region of blocks covered by
417     // a single def of EFLAGS and we want to find the top of that region where
418     // possible.
419     //
420     // This is essentially a search for a *candidate* reaching definition
421     // location. We don't need to ever find the actual reaching definition here,
422     // but we want to walk up the dominator tree to find the highest point which
423     // would be viable for such a definition.
424     auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
425                                 MachineBasicBlock::iterator End) {
426       // Scan backwards as we expect these to be relatively short and often find
427       // a clobber near the end.
428       return llvm::any_of(
429           llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
430             // Flag any instruction (other than the copy we are
431             // currently rewriting) that defs EFLAGS.
432             return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
433           });
434     };
435     auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
436                                     MachineBasicBlock *EndMBB) {
437       assert(MDT->dominates(BeginMBB, EndMBB) &&
438              "Only support paths down the dominator tree!");
439       SmallPtrSet<MachineBasicBlock *, 4> Visited;
440       SmallVector<MachineBasicBlock *, 4> Worklist;
441       // We terminate at the beginning. No need to scan it.
442       Visited.insert(BeginMBB);
443       Worklist.push_back(EndMBB);
444       do {
445         auto *MBB = Worklist.pop_back_val();
446         for (auto *PredMBB : MBB->predecessors()) {
447           if (!Visited.insert(PredMBB).second)
448             continue;
449           if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
450             return true;
451           // Enqueue this block to walk its predecessors.
452           Worklist.push_back(PredMBB);
453         }
454       } while (!Worklist.empty());
455       // No clobber found along a path from the begin to end.
456       return false;
457     };
458     while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
459            !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
460       // Find the nearest common dominator of the predecessors, as
461       // that will be the best candidate to hoist into.
462       MachineBasicBlock *HoistMBB =
463           std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
464                           *TestMBB->pred_begin(),
465                           [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
466                             return MDT->findNearestCommonDominator(LHS, RHS);
467                           });
468 
469       // Now we need to scan all predecessors that may be reached along paths to
470       // the hoist block. A clobber anywhere in any of these blocks the hoist.
471       // Note that this even handles loops because we require *no* clobbers.
472       if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
473         break;
474 
475       // We also need the terminators to not sneakily clobber flags.
476       if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
477                            HoistMBB->instr_end()))
478         break;
479 
480       // We found a viable location, hoist our test position to it.
481       TestMBB = HoistMBB;
482       TestPos = TestMBB->getFirstTerminator()->getIterator();
483       // Clear the debug location as it would just be confusing after hoisting.
484       TestLoc = DebugLoc();
485     }
486     LLVM_DEBUG({
487       auto DefIt = llvm::find_if(
488           llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
489           [&](MachineInstr &MI) {
490             return MI.findRegisterDefOperand(X86::EFLAGS);
491           });
492       if (DefIt.base() != TestMBB->instr_begin()) {
493         dbgs() << "  Using EFLAGS defined by: ";
494         DefIt->dump();
495       } else {
496         dbgs() << "  Using live-in flags for BB:\n";
497         TestMBB->dump();
498       }
499     });
500 
501     // While rewriting uses, we buffer jumps and rewrite them in a second pass
502     // because doing so will perturb the CFG that we are walking to find the
503     // uses in the first place.
504     SmallVector<MachineInstr *, 4> JmpIs;
505 
506     // Gather the condition flags that have already been preserved in
507     // registers. We do this from scratch each time as we expect there to be
508     // very few of them and we expect to not revisit the same copy definition
509     // many times. If either of those change sufficiently we could build a map
510     // of these up front instead.
511     CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
512 
513     // Collect the basic blocks we need to scan. Typically this will just be
514     // a single basic block but we may have to scan multiple blocks if the
515     // EFLAGS copy lives into successors.
516     SmallVector<MachineBasicBlock *, 2> Blocks;
517     SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
518     Blocks.push_back(&MBB);
519 
520     do {
521       MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
522 
523       // Track when if/when we find a kill of the flags in this block.
524       bool FlagsKilled = false;
525 
526       // In most cases, we walk from the beginning to the end of the block. But
527       // when the block is the same block as the copy is from, we will visit it
528       // twice. The first time we start from the copy and go to the end. The
529       // second time we start from the beginning and go to the copy. This lets
530       // us handle copies inside of cycles.
531       // FIXME: This loop is *super* confusing. This is at least in part
532       // a symptom of all of this routine needing to be refactored into
533       // documentable components. Once done, there may be a better way to write
534       // this loop.
535       for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
536                           ? std::next(CopyI->getIterator())
537                           : UseMBB.instr_begin(),
538                 MIE = UseMBB.instr_end();
539            MII != MIE;) {
540         MachineInstr &MI = *MII++;
541         // If we are in the original copy block and encounter either the copy
542         // def or the copy itself, break so that we don't re-process any part of
543         // the block or process the instructions in the range that was copied
544         // over.
545         if (&MI == CopyI || &MI == &CopyDefI) {
546           assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
547                  "Should only encounter these on the second pass over the "
548                  "original block.");
549           break;
550         }
551 
552         MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
553         if (!FlagUse) {
554           if (MI.findRegisterDefOperand(X86::EFLAGS)) {
555             // If EFLAGS are defined, it's as-if they were killed. We can stop
556             // scanning here.
557             //
558             // NB!!! Many instructions only modify some flags. LLVM currently
559             // models this as clobbering all flags, but if that ever changes
560             // this will need to be carefully updated to handle that more
561             // complex logic.
562             FlagsKilled = true;
563             break;
564           }
565           continue;
566         }
567 
568         LLVM_DEBUG(dbgs() << "  Rewriting use: "; MI.dump());
569 
570         // Check the kill flag before we rewrite as that may change it.
571         if (FlagUse->isKill())
572           FlagsKilled = true;
573 
574         // Once we encounter a branch, the rest of the instructions must also be
575         // branches. We can't rewrite in place here, so we handle them below.
576         //
577         // Note that we don't have to handle tail calls here, even conditional
578         // tail calls, as those are not introduced into the X86 MI until post-RA
579         // branch folding or black placement. As a consequence, we get to deal
580         // with the simpler formulation of conditional branches followed by tail
581         // calls.
582         if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
583           auto JmpIt = MI.getIterator();
584           do {
585             JmpIs.push_back(&*JmpIt);
586             ++JmpIt;
587           } while (JmpIt != UseMBB.instr_end() &&
588                    X86::getCondFromBranch(*JmpIt) !=
589                        X86::COND_INVALID);
590           break;
591         }
592 
593         // Otherwise we can just rewrite in-place.
594         if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
595           rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
596         } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
597           rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
598         } else if (MI.getOpcode() == TargetOpcode::COPY) {
599           rewriteCopy(MI, *FlagUse, CopyDefI);
600         } else {
601           // We assume all other instructions that use flags also def them.
602           assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
603                  "Expected a def of EFLAGS for this instruction!");
604 
605           // NB!!! Several arithmetic instructions only *partially* update
606           // flags. Theoretically, we could generate MI code sequences that
607           // would rely on this fact and observe different flags independently.
608           // But currently LLVM models all of these instructions as clobbering
609           // all the flags in an undef way. We rely on that to simplify the
610           // logic.
611           FlagsKilled = true;
612 
613           switch (MI.getOpcode()) {
614           case X86::SETB_C8r:
615           case X86::SETB_C16r:
616           case X86::SETB_C32r:
617           case X86::SETB_C64r:
618             // Use custom lowering for arithmetic that is merely extending the
619             // carry flag. We model this as the SETB_C* pseudo instructions.
620             rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
621                                     CondRegs);
622             break;
623 
624           default:
625             // Generically handle remaining uses as arithmetic instructions.
626             rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
627                               CondRegs);
628             break;
629           }
630           break;
631         }
632 
633         // If this was the last use of the flags, we're done.
634         if (FlagsKilled)
635           break;
636       }
637 
638       // If the flags were killed, we're done with this block.
639       if (FlagsKilled)
640         continue;
641 
642       // Otherwise we need to scan successors for ones where the flags live-in
643       // and queue those up for processing.
644       for (MachineBasicBlock *SuccMBB : UseMBB.successors())
645         if (SuccMBB->isLiveIn(X86::EFLAGS) &&
646             VisitedBlocks.insert(SuccMBB).second) {
647           // We currently don't do any PHI insertion and so we require that the
648           // test basic block dominates all of the use basic blocks. Further, we
649           // can't have a cycle from the test block back to itself as that would
650           // create a cycle requiring a PHI to break it.
651           //
652           // We could in theory do PHI insertion here if it becomes useful by
653           // just taking undef values in along every edge that we don't trace
654           // this EFLAGS copy along. This isn't as bad as fully general PHI
655           // insertion, but still seems like a great deal of complexity.
656           //
657           // Because it is theoretically possible that some earlier MI pass or
658           // other lowering transformation could induce this to happen, we do
659           // a hard check even in non-debug builds here.
660           if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
661             LLVM_DEBUG({
662               dbgs()
663                   << "ERROR: Encountered use that is not dominated by our test "
664                      "basic block! Rewriting this would require inserting PHI "
665                      "nodes to track the flag state across the CFG.\n\nTest "
666                      "block:\n";
667               TestMBB->dump();
668               dbgs() << "Use block:\n";
669               SuccMBB->dump();
670             });
671             report_fatal_error(
672                 "Cannot lower EFLAGS copy when original copy def "
673                 "does not dominate all uses.");
674           }
675 
676           Blocks.push_back(SuccMBB);
677         }
678     } while (!Blocks.empty());
679 
680     // Now rewrite the jumps that use the flags. These we handle specially
681     // because if there are multiple jumps in a single basic block we'll have
682     // to do surgery on the CFG.
683     MachineBasicBlock *LastJmpMBB = nullptr;
684     for (MachineInstr *JmpI : JmpIs) {
685       // Past the first jump within a basic block we need to split the blocks
686       // apart.
687       if (JmpI->getParent() == LastJmpMBB)
688         splitBlock(*JmpI->getParent(), *JmpI, *TII);
689       else
690         LastJmpMBB = JmpI->getParent();
691 
692       rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
693     }
694 
695     // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
696     // the copy's def operand is itself a kill.
697   }
698 
699 #ifndef NDEBUG
700   for (MachineBasicBlock &MBB : MF)
701     for (MachineInstr &MI : MBB)
702       if (MI.getOpcode() == TargetOpcode::COPY &&
703           (MI.getOperand(0).getReg() == X86::EFLAGS ||
704            MI.getOperand(1).getReg() == X86::EFLAGS)) {
705         LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
706                    MI.dump());
707         llvm_unreachable("Unlowered EFLAGS copy!");
708       }
709 #endif
710 
711   return true;
712 }
713 
714 /// Collect any conditions that have already been set in registers so that we
715 /// can re-use them rather than adding duplicates.
716 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
717     MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
718   CondRegArray CondRegs = {};
719 
720   // Scan backwards across the range of instructions with live EFLAGS.
721   for (MachineInstr &MI :
722        llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
723     X86::CondCode Cond = X86::getCondFromSETCC(MI);
724     if (Cond != X86::COND_INVALID && !MI.mayStore() && MI.getOperand(0).isReg() &&
725         TRI->isVirtualRegister(MI.getOperand(0).getReg())) {
726       assert(MI.getOperand(0).isDef() &&
727              "A non-storing SETcc should always define a register!");
728       CondRegs[Cond] = MI.getOperand(0).getReg();
729     }
730 
731     // Stop scanning when we see the first definition of the EFLAGS as prior to
732     // this we would potentially capture the wrong flag state.
733     if (MI.findRegisterDefOperand(X86::EFLAGS))
734       break;
735   }
736   return CondRegs;
737 }
738 
739 unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
740     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
741     DebugLoc TestLoc, X86::CondCode Cond) {
742   unsigned Reg = MRI->createVirtualRegister(PromoteRC);
743   auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
744                       TII->get(X86::SETCCr), Reg).addImm(Cond);
745   (void)SetI;
746   LLVM_DEBUG(dbgs() << "    save cond: "; SetI->dump());
747   ++NumSetCCsInserted;
748   return Reg;
749 }
750 
751 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
752     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
753     DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
754   unsigned &CondReg = CondRegs[Cond];
755   unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
756   if (!CondReg && !InvCondReg)
757     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
758 
759   if (CondReg)
760     return {CondReg, false};
761   else
762     return {InvCondReg, true};
763 }
764 
765 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
766                                           MachineBasicBlock::iterator Pos,
767                                           DebugLoc Loc, unsigned Reg) {
768   auto TestI =
769       BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
770   (void)TestI;
771   LLVM_DEBUG(dbgs() << "    test cond: "; TestI->dump());
772   ++NumTestsInserted;
773 }
774 
775 void X86FlagsCopyLoweringPass::rewriteArithmetic(
776     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
777     DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
778     CondRegArray &CondRegs) {
779   // Arithmetic is either reading CF or OF. Figure out which condition we need
780   // to preserve in a register.
781   X86::CondCode Cond;
782 
783   // The addend to use to reset CF or OF when added to the flag value.
784   int Addend;
785 
786   switch (getMnemonicFromOpcode(MI.getOpcode())) {
787   case FlagArithMnemonic::ADC:
788   case FlagArithMnemonic::ADCX:
789   case FlagArithMnemonic::RCL:
790   case FlagArithMnemonic::RCR:
791   case FlagArithMnemonic::SBB:
792     Cond = X86::COND_B; // CF == 1
793     // Set up an addend that when one is added will need a carry due to not
794     // having a higher bit available.
795     Addend = 255;
796     break;
797 
798   case FlagArithMnemonic::ADOX:
799     Cond = X86::COND_O; // OF == 1
800     // Set up an addend that when one is added will turn from positive to
801     // negative and thus overflow in the signed domain.
802     Addend = 127;
803     break;
804   }
805 
806   // Now get a register that contains the value of the flag input to the
807   // arithmetic. We require exactly this flag to simplify the arithmetic
808   // required to materialize it back into the flag.
809   unsigned &CondReg = CondRegs[Cond];
810   if (!CondReg)
811     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
812 
813   MachineBasicBlock &MBB = *MI.getParent();
814 
815   // Insert an instruction that will set the flag back to the desired value.
816   unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
817   auto AddI =
818       BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
819           .addDef(TmpReg, RegState::Dead)
820           .addReg(CondReg)
821           .addImm(Addend);
822   (void)AddI;
823   LLVM_DEBUG(dbgs() << "    add cond: "; AddI->dump());
824   ++NumAddsInserted;
825   FlagUse.setIsKill(true);
826 }
827 
828 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
829                                            MachineBasicBlock::iterator TestPos,
830                                            DebugLoc TestLoc,
831                                            MachineInstr &CMovI,
832                                            MachineOperand &FlagUse,
833                                            CondRegArray &CondRegs) {
834   // First get the register containing this specific condition.
835   X86::CondCode Cond = X86::getCondFromCMov(CMovI);
836   unsigned CondReg;
837   bool Inverted;
838   std::tie(CondReg, Inverted) =
839       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
840 
841   MachineBasicBlock &MBB = *CMovI.getParent();
842 
843   // Insert a direct test of the saved register.
844   insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
845 
846   // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
847   // of the flags afterward.
848   CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
849       .setImm(Inverted ? X86::COND_E : X86::COND_NE);
850   FlagUse.setIsKill(true);
851   LLVM_DEBUG(dbgs() << "    fixed cmov: "; CMovI.dump());
852 }
853 
854 void X86FlagsCopyLoweringPass::rewriteCondJmp(
855     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
856     DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
857   // First get the register containing this specific condition.
858   X86::CondCode Cond = X86::getCondFromBranch(JmpI);
859   unsigned CondReg;
860   bool Inverted;
861   std::tie(CondReg, Inverted) =
862       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
863 
864   MachineBasicBlock &JmpMBB = *JmpI.getParent();
865 
866   // Insert a direct test of the saved register.
867   insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
868 
869   // Rewrite the jump to use the !ZF flag from the test, and kill its use of
870   // flags afterward.
871   JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
872   JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
873   LLVM_DEBUG(dbgs() << "    fixed jCC: "; JmpI.dump());
874 }
875 
876 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
877                                            MachineOperand &FlagUse,
878                                            MachineInstr &CopyDefI) {
879   // Just replace this copy with the original copy def.
880   MRI->replaceRegWith(MI.getOperand(0).getReg(),
881                       CopyDefI.getOperand(0).getReg());
882   MI.eraseFromParent();
883 }
884 
885 void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
886     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
887     DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
888     CondRegArray &CondRegs) {
889   // This routine is only used to handle pseudos for setting a register to zero
890   // or all ones based on CF. This is essentially the sign extended from 1-bit
891   // form of SETB and modeled with the SETB_C* pseudos. They require special
892   // handling as they aren't normal SETcc instructions and are lowered to an
893   // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
894   // they are only provided in reg-defining forms. A complicating factor is that
895   // they can define many different register widths.
896   assert(SetBI.getOperand(0).isReg() &&
897          "Cannot have a non-register defined operand to this variant of SETB!");
898 
899   // Little helper to do the common final step of replacing the register def'ed
900   // by this SETB instruction with a new register and removing the SETB
901   // instruction.
902   auto RewriteToReg = [&](unsigned Reg) {
903     MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
904     SetBI.eraseFromParent();
905   };
906 
907   // Grab the register class used for this particular instruction.
908   auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());
909 
910   MachineBasicBlock &MBB = *SetBI.getParent();
911   auto SetPos = SetBI.getIterator();
912   auto SetLoc = SetBI.getDebugLoc();
913 
914   auto AdjustReg = [&](unsigned Reg) {
915     auto &OrigRC = *MRI->getRegClass(Reg);
916     if (&OrigRC == &SetBRC)
917       return Reg;
918 
919     unsigned NewReg;
920 
921     int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
922     int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
923     assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
924     assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
925     int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
926                        X86::NoSubRegister, X86::sub_32bit};
927 
928     // If the original size is smaller than the target *and* is smaller than 4
929     // bytes, we need to explicitly zero extend it. We always extend to 4-bytes
930     // to maximize the chance of being able to CSE that operation and to avoid
931     // partial dependency stalls extending to 2-bytes.
932     if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
933       NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
934       BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
935           .addReg(Reg);
936       if (&SetBRC == &X86::GR32RegClass)
937         return NewReg;
938       Reg = NewReg;
939       OrigRegSize = 4;
940     }
941 
942     NewReg = MRI->createVirtualRegister(&SetBRC);
943     if (OrigRegSize < TargetRegSize) {
944       BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
945               NewReg)
946           .addImm(0)
947           .addReg(Reg)
948           .addImm(SubRegIdx[OrigRegSize]);
949     } else if (OrigRegSize > TargetRegSize) {
950       if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
951         // Need to constrain the register class.
952         MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
953       }
954 
955       BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
956               NewReg)
957           .addReg(Reg, 0, SubRegIdx[TargetRegSize]);
958     } else {
959       BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
960           .addReg(Reg);
961     }
962     return NewReg;
963   };
964 
965   unsigned &CondReg = CondRegs[X86::COND_B];
966   if (!CondReg)
967     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);
968 
969   // Adjust the condition to have the desired register width by zero-extending
970   // as needed.
971   // FIXME: We should use a better API to avoid the local reference and using a
972   // different variable here.
973   unsigned ExtCondReg = AdjustReg(CondReg);
974 
975   // Now we need to turn this into a bitmask. We do this by subtracting it from
976   // zero.
977   unsigned ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
978   BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
979   ZeroReg = AdjustReg(ZeroReg);
980 
981   unsigned Sub;
982   switch (SetBI.getOpcode()) {
983   case X86::SETB_C8r:
984     Sub = X86::SUB8rr;
985     break;
986 
987   case X86::SETB_C16r:
988     Sub = X86::SUB16rr;
989     break;
990 
991   case X86::SETB_C32r:
992     Sub = X86::SUB32rr;
993     break;
994 
995   case X86::SETB_C64r:
996     Sub = X86::SUB64rr;
997     break;
998 
999   default:
1000     llvm_unreachable("Invalid SETB_C* opcode!");
1001   }
1002   unsigned ResultReg = MRI->createVirtualRegister(&SetBRC);
1003   BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
1004       .addReg(ZeroReg)
1005       .addReg(ExtCondReg);
1006   return RewriteToReg(ResultReg);
1007 }
1008 
1009 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
1010                                             MachineBasicBlock::iterator TestPos,
1011                                             DebugLoc TestLoc,
1012                                             MachineInstr &SetCCI,
1013                                             MachineOperand &FlagUse,
1014                                             CondRegArray &CondRegs) {
1015   X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
1016   // Note that we can't usefully rewrite this to the inverse without complex
1017   // analysis of the users of the setCC. Largely we rely on duplicates which
1018   // could have been avoided already being avoided here.
1019   unsigned &CondReg = CondRegs[Cond];
1020   if (!CondReg)
1021     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
1022 
1023   // Rewriting a register def is trivial: we just replace the register and
1024   // remove the setcc.
1025   if (!SetCCI.mayStore()) {
1026     assert(SetCCI.getOperand(0).isReg() &&
1027            "Cannot have a non-register defined operand to SETcc!");
1028     MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
1029     SetCCI.eraseFromParent();
1030     return;
1031   }
1032 
1033   // Otherwise, we need to emit a store.
1034   auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
1035                      SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
1036   // Copy the address operands.
1037   for (int i = 0; i < X86::AddrNumOperands; ++i)
1038     MIB.add(SetCCI.getOperand(i));
1039 
1040   MIB.addReg(CondReg);
1041 
1042   MIB.setMemRefs(SetCCI.memoperands());
1043 
1044   SetCCI.eraseFromParent();
1045   return;
1046 }
1047