10b57cec5SDimitry Andric //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric /// \file 90b57cec5SDimitry Andric /// 100b57cec5SDimitry Andric /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual 110b57cec5SDimitry Andric /// flag bits. 120b57cec5SDimitry Andric /// 130b57cec5SDimitry Andric /// We have to do this by carefully analyzing and rewriting the usage of the 140b57cec5SDimitry Andric /// copied EFLAGS register because there is no general way to rematerialize the 150b57cec5SDimitry Andric /// entire EFLAGS register safely and efficiently. Using `popf` both forces 160b57cec5SDimitry Andric /// dynamic stack adjustment and can create correctness issues due to IF, TF, 170b57cec5SDimitry Andric /// and other non-status flags being overwritten. Using sequences involving 180b57cec5SDimitry Andric /// SAHF don't work on all x86 processors and are often quite slow compared to 190b57cec5SDimitry Andric /// directly testing a single status preserved in its own GPR. 200b57cec5SDimitry Andric /// 210b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 220b57cec5SDimitry Andric 230b57cec5SDimitry Andric #include "X86.h" 240b57cec5SDimitry Andric #include "X86InstrBuilder.h" 250b57cec5SDimitry Andric #include "X86InstrInfo.h" 260b57cec5SDimitry Andric #include "X86Subtarget.h" 270b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 280b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 290b57cec5SDimitry Andric #include "llvm/ADT/PostOrderIterator.h" 300b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 310b57cec5SDimitry Andric #include "llvm/ADT/ScopeExit.h" 320b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 330b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h" 340b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 350b57cec5SDimitry Andric #include "llvm/ADT/SparseBitVector.h" 360b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h" 370b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h" 380b57cec5SDimitry Andric #include "llvm/CodeGen/MachineConstantPool.h" 390b57cec5SDimitry Andric #include "llvm/CodeGen/MachineDominators.h" 400b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h" 410b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h" 420b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h" 430b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 440b57cec5SDimitry Andric #include "llvm/CodeGen/MachineModuleInfo.h" 450b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h" 460b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 470b57cec5SDimitry Andric #include "llvm/CodeGen/MachineSSAUpdater.h" 480b57cec5SDimitry Andric #include "llvm/CodeGen/TargetInstrInfo.h" 490b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h" 500b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSchedule.h" 510b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h" 520b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h" 530b57cec5SDimitry Andric #include "llvm/MC/MCSchedule.h" 540b57cec5SDimitry Andric #include "llvm/Pass.h" 550b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 560b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 570b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 580b57cec5SDimitry Andric #include <algorithm> 590b57cec5SDimitry Andric #include <cassert> 600b57cec5SDimitry Andric #include <iterator> 610b57cec5SDimitry Andric #include <utility> 620b57cec5SDimitry Andric 630b57cec5SDimitry Andric using namespace llvm; 640b57cec5SDimitry Andric 650b57cec5SDimitry Andric #define PASS_KEY "x86-flags-copy-lowering" 660b57cec5SDimitry Andric #define DEBUG_TYPE PASS_KEY 670b57cec5SDimitry Andric 680b57cec5SDimitry Andric STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated"); 690b57cec5SDimitry Andric STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted"); 700b57cec5SDimitry Andric STATISTIC(NumTestsInserted, "Number of test instructions inserted"); 710b57cec5SDimitry Andric STATISTIC(NumAddsInserted, "Number of adds instructions inserted"); 720b57cec5SDimitry Andric 730b57cec5SDimitry Andric namespace { 740b57cec5SDimitry Andric 750b57cec5SDimitry Andric // Convenient array type for storing registers associated with each condition. 760b57cec5SDimitry Andric using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>; 770b57cec5SDimitry Andric 780b57cec5SDimitry Andric class X86FlagsCopyLoweringPass : public MachineFunctionPass { 790b57cec5SDimitry Andric public: 800b57cec5SDimitry Andric X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { } 810b57cec5SDimitry Andric 820b57cec5SDimitry Andric StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; } 830b57cec5SDimitry Andric bool runOnMachineFunction(MachineFunction &MF) override; 840b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override; 850b57cec5SDimitry Andric 860b57cec5SDimitry Andric /// Pass identification, replacement for typeid. 870b57cec5SDimitry Andric static char ID; 880b57cec5SDimitry Andric 890b57cec5SDimitry Andric private: 90480093f4SDimitry Andric MachineRegisterInfo *MRI = nullptr; 91480093f4SDimitry Andric const X86Subtarget *Subtarget = nullptr; 92480093f4SDimitry Andric const X86InstrInfo *TII = nullptr; 93480093f4SDimitry Andric const TargetRegisterInfo *TRI = nullptr; 94480093f4SDimitry Andric const TargetRegisterClass *PromoteRC = nullptr; 95480093f4SDimitry Andric MachineDominatorTree *MDT = nullptr; 960b57cec5SDimitry Andric 970b57cec5SDimitry Andric CondRegArray collectCondsInRegs(MachineBasicBlock &MBB, 980b57cec5SDimitry Andric MachineBasicBlock::iterator CopyDefI); 990b57cec5SDimitry Andric 100*e8d8bef9SDimitry Andric Register promoteCondToReg(MachineBasicBlock &MBB, 1010b57cec5SDimitry Andric MachineBasicBlock::iterator TestPos, 1020b57cec5SDimitry Andric DebugLoc TestLoc, X86::CondCode Cond); 1030b57cec5SDimitry Andric std::pair<unsigned, bool> 1040b57cec5SDimitry Andric getCondOrInverseInReg(MachineBasicBlock &TestMBB, 1050b57cec5SDimitry Andric MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, 1060b57cec5SDimitry Andric X86::CondCode Cond, CondRegArray &CondRegs); 1070b57cec5SDimitry Andric void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, 1080b57cec5SDimitry Andric DebugLoc Loc, unsigned Reg); 1090b57cec5SDimitry Andric 1100b57cec5SDimitry Andric void rewriteArithmetic(MachineBasicBlock &TestMBB, 1110b57cec5SDimitry Andric MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, 1120b57cec5SDimitry Andric MachineInstr &MI, MachineOperand &FlagUse, 1130b57cec5SDimitry Andric CondRegArray &CondRegs); 1140b57cec5SDimitry Andric void rewriteCMov(MachineBasicBlock &TestMBB, 1150b57cec5SDimitry Andric MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, 1160b57cec5SDimitry Andric MachineInstr &CMovI, MachineOperand &FlagUse, 1170b57cec5SDimitry Andric CondRegArray &CondRegs); 1182a168f03SDimitry Andric void rewriteFCMov(MachineBasicBlock &TestMBB, 1192a168f03SDimitry Andric MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, 1202a168f03SDimitry Andric MachineInstr &CMovI, MachineOperand &FlagUse, 1212a168f03SDimitry Andric CondRegArray &CondRegs); 1220b57cec5SDimitry Andric void rewriteCondJmp(MachineBasicBlock &TestMBB, 1230b57cec5SDimitry Andric MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, 1240b57cec5SDimitry Andric MachineInstr &JmpI, CondRegArray &CondRegs); 1250b57cec5SDimitry Andric void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse, 1260b57cec5SDimitry Andric MachineInstr &CopyDefI); 1270b57cec5SDimitry Andric void rewriteSetCC(MachineBasicBlock &TestMBB, 1280b57cec5SDimitry Andric MachineBasicBlock::iterator TestPos, DebugLoc TestLoc, 1290b57cec5SDimitry Andric MachineInstr &SetCCI, MachineOperand &FlagUse, 1300b57cec5SDimitry Andric CondRegArray &CondRegs); 1310b57cec5SDimitry Andric }; 1320b57cec5SDimitry Andric 1330b57cec5SDimitry Andric } // end anonymous namespace 1340b57cec5SDimitry Andric 1350b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE, 1360b57cec5SDimitry Andric "X86 EFLAGS copy lowering", false, false) 1370b57cec5SDimitry Andric INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE, 1380b57cec5SDimitry Andric "X86 EFLAGS copy lowering", false, false) 1390b57cec5SDimitry Andric 1400b57cec5SDimitry Andric FunctionPass *llvm::createX86FlagsCopyLoweringPass() { 1410b57cec5SDimitry Andric return new X86FlagsCopyLoweringPass(); 1420b57cec5SDimitry Andric } 1430b57cec5SDimitry Andric 1440b57cec5SDimitry Andric char X86FlagsCopyLoweringPass::ID = 0; 1450b57cec5SDimitry Andric 1460b57cec5SDimitry Andric void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const { 1470b57cec5SDimitry Andric AU.addRequired<MachineDominatorTree>(); 1480b57cec5SDimitry Andric MachineFunctionPass::getAnalysisUsage(AU); 1490b57cec5SDimitry Andric } 1500b57cec5SDimitry Andric 1510b57cec5SDimitry Andric namespace { 1520b57cec5SDimitry Andric /// An enumeration of the arithmetic instruction mnemonics which have 1530b57cec5SDimitry Andric /// interesting flag semantics. 1540b57cec5SDimitry Andric /// 1550b57cec5SDimitry Andric /// We can map instruction opcodes into these mnemonics to make it easy to 1560b57cec5SDimitry Andric /// dispatch with specific functionality. 1570b57cec5SDimitry Andric enum class FlagArithMnemonic { 1580b57cec5SDimitry Andric ADC, 1590b57cec5SDimitry Andric ADCX, 1600b57cec5SDimitry Andric ADOX, 1610b57cec5SDimitry Andric RCL, 1620b57cec5SDimitry Andric RCR, 1630b57cec5SDimitry Andric SBB, 1645ffd83dbSDimitry Andric SETB, 1650b57cec5SDimitry Andric }; 1660b57cec5SDimitry Andric } // namespace 1670b57cec5SDimitry Andric 1680b57cec5SDimitry Andric static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) { 1690b57cec5SDimitry Andric switch (Opcode) { 1700b57cec5SDimitry Andric default: 1710b57cec5SDimitry Andric report_fatal_error("No support for lowering a copy into EFLAGS when used " 1720b57cec5SDimitry Andric "by this instruction!"); 1730b57cec5SDimitry Andric 1740b57cec5SDimitry Andric #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \ 1750b57cec5SDimitry Andric case X86::MNEMONIC##8##SUFFIX: \ 1760b57cec5SDimitry Andric case X86::MNEMONIC##16##SUFFIX: \ 1770b57cec5SDimitry Andric case X86::MNEMONIC##32##SUFFIX: \ 1780b57cec5SDimitry Andric case X86::MNEMONIC##64##SUFFIX: 1790b57cec5SDimitry Andric 1800b57cec5SDimitry Andric #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \ 1810b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \ 1820b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \ 1830b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \ 1840b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \ 1850b57cec5SDimitry Andric case X86::MNEMONIC##8ri: \ 1860b57cec5SDimitry Andric case X86::MNEMONIC##16ri8: \ 1870b57cec5SDimitry Andric case X86::MNEMONIC##32ri8: \ 1880b57cec5SDimitry Andric case X86::MNEMONIC##64ri8: \ 1890b57cec5SDimitry Andric case X86::MNEMONIC##16ri: \ 1900b57cec5SDimitry Andric case X86::MNEMONIC##32ri: \ 1910b57cec5SDimitry Andric case X86::MNEMONIC##64ri32: \ 1920b57cec5SDimitry Andric case X86::MNEMONIC##8mi: \ 1930b57cec5SDimitry Andric case X86::MNEMONIC##16mi8: \ 1940b57cec5SDimitry Andric case X86::MNEMONIC##32mi8: \ 1950b57cec5SDimitry Andric case X86::MNEMONIC##64mi8: \ 1960b57cec5SDimitry Andric case X86::MNEMONIC##16mi: \ 1970b57cec5SDimitry Andric case X86::MNEMONIC##32mi: \ 1980b57cec5SDimitry Andric case X86::MNEMONIC##64mi32: \ 1990b57cec5SDimitry Andric case X86::MNEMONIC##8i8: \ 2000b57cec5SDimitry Andric case X86::MNEMONIC##16i16: \ 2010b57cec5SDimitry Andric case X86::MNEMONIC##32i32: \ 2020b57cec5SDimitry Andric case X86::MNEMONIC##64i32: 2030b57cec5SDimitry Andric 2040b57cec5SDimitry Andric LLVM_EXPAND_ADC_SBB_INSTR(ADC) 2050b57cec5SDimitry Andric return FlagArithMnemonic::ADC; 2060b57cec5SDimitry Andric 2070b57cec5SDimitry Andric LLVM_EXPAND_ADC_SBB_INSTR(SBB) 2080b57cec5SDimitry Andric return FlagArithMnemonic::SBB; 2090b57cec5SDimitry Andric 2100b57cec5SDimitry Andric #undef LLVM_EXPAND_ADC_SBB_INSTR 2110b57cec5SDimitry Andric 2120b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(RCL, rCL) 2130b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(RCL, r1) 2140b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(RCL, ri) 2150b57cec5SDimitry Andric return FlagArithMnemonic::RCL; 2160b57cec5SDimitry Andric 2170b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(RCR, rCL) 2180b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(RCR, r1) 2190b57cec5SDimitry Andric LLVM_EXPAND_INSTR_SIZES(RCR, ri) 2200b57cec5SDimitry Andric return FlagArithMnemonic::RCR; 2210b57cec5SDimitry Andric 2220b57cec5SDimitry Andric #undef LLVM_EXPAND_INSTR_SIZES 2230b57cec5SDimitry Andric 2240b57cec5SDimitry Andric case X86::ADCX32rr: 2250b57cec5SDimitry Andric case X86::ADCX64rr: 2260b57cec5SDimitry Andric case X86::ADCX32rm: 2270b57cec5SDimitry Andric case X86::ADCX64rm: 2280b57cec5SDimitry Andric return FlagArithMnemonic::ADCX; 2290b57cec5SDimitry Andric 2300b57cec5SDimitry Andric case X86::ADOX32rr: 2310b57cec5SDimitry Andric case X86::ADOX64rr: 2320b57cec5SDimitry Andric case X86::ADOX32rm: 2330b57cec5SDimitry Andric case X86::ADOX64rm: 2340b57cec5SDimitry Andric return FlagArithMnemonic::ADOX; 2355ffd83dbSDimitry Andric 2365ffd83dbSDimitry Andric case X86::SETB_C32r: 2375ffd83dbSDimitry Andric case X86::SETB_C64r: 2385ffd83dbSDimitry Andric return FlagArithMnemonic::SETB; 2390b57cec5SDimitry Andric } 2400b57cec5SDimitry Andric } 2410b57cec5SDimitry Andric 2420b57cec5SDimitry Andric static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB, 2430b57cec5SDimitry Andric MachineInstr &SplitI, 2440b57cec5SDimitry Andric const X86InstrInfo &TII) { 2450b57cec5SDimitry Andric MachineFunction &MF = *MBB.getParent(); 2460b57cec5SDimitry Andric 2470b57cec5SDimitry Andric assert(SplitI.getParent() == &MBB && 2480b57cec5SDimitry Andric "Split instruction must be in the split block!"); 2490b57cec5SDimitry Andric assert(SplitI.isBranch() && 2500b57cec5SDimitry Andric "Only designed to split a tail of branch instructions!"); 2510b57cec5SDimitry Andric assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID && 2520b57cec5SDimitry Andric "Must split on an actual jCC instruction!"); 2530b57cec5SDimitry Andric 2540b57cec5SDimitry Andric // Dig out the previous instruction to the split point. 2550b57cec5SDimitry Andric MachineInstr &PrevI = *std::prev(SplitI.getIterator()); 2560b57cec5SDimitry Andric assert(PrevI.isBranch() && "Must split after a branch!"); 2570b57cec5SDimitry Andric assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID && 2580b57cec5SDimitry Andric "Must split after an actual jCC instruction!"); 2590b57cec5SDimitry Andric assert(!std::prev(PrevI.getIterator())->isTerminator() && 2600b57cec5SDimitry Andric "Must only have this one terminator prior to the split!"); 2610b57cec5SDimitry Andric 2620b57cec5SDimitry Andric // Grab the one successor edge that will stay in `MBB`. 2630b57cec5SDimitry Andric MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB(); 2640b57cec5SDimitry Andric 2650b57cec5SDimitry Andric // Analyze the original block to see if we are actually splitting an edge 2660b57cec5SDimitry Andric // into two edges. This can happen when we have multiple conditional jumps to 2670b57cec5SDimitry Andric // the same successor. 2680b57cec5SDimitry Andric bool IsEdgeSplit = 2690b57cec5SDimitry Andric std::any_of(SplitI.getIterator(), MBB.instr_end(), 2700b57cec5SDimitry Andric [&](MachineInstr &MI) { 2710b57cec5SDimitry Andric assert(MI.isTerminator() && 2720b57cec5SDimitry Andric "Should only have spliced terminators!"); 2730b57cec5SDimitry Andric return llvm::any_of( 2740b57cec5SDimitry Andric MI.operands(), [&](MachineOperand &MOp) { 2750b57cec5SDimitry Andric return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc; 2760b57cec5SDimitry Andric }); 2770b57cec5SDimitry Andric }) || 2780b57cec5SDimitry Andric MBB.getFallThrough() == &UnsplitSucc; 2790b57cec5SDimitry Andric 2800b57cec5SDimitry Andric MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); 2810b57cec5SDimitry Andric 2820b57cec5SDimitry Andric // Insert the new block immediately after the current one. Any existing 2830b57cec5SDimitry Andric // fallthrough will be sunk into this new block anyways. 2840b57cec5SDimitry Andric MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); 2850b57cec5SDimitry Andric 2860b57cec5SDimitry Andric // Splice the tail of instructions into the new block. 2870b57cec5SDimitry Andric NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end()); 2880b57cec5SDimitry Andric 2890b57cec5SDimitry Andric // Copy the necessary succesors (and their probability info) into the new 2900b57cec5SDimitry Andric // block. 2910b57cec5SDimitry Andric for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) 2920b57cec5SDimitry Andric if (IsEdgeSplit || *SI != &UnsplitSucc) 2930b57cec5SDimitry Andric NewMBB.copySuccessor(&MBB, SI); 2940b57cec5SDimitry Andric // Normalize the probabilities if we didn't end up splitting the edge. 2950b57cec5SDimitry Andric if (!IsEdgeSplit) 2960b57cec5SDimitry Andric NewMBB.normalizeSuccProbs(); 2970b57cec5SDimitry Andric 2980b57cec5SDimitry Andric // Now replace all of the moved successors in the original block with the new 2990b57cec5SDimitry Andric // block. This will merge their probabilities. 3000b57cec5SDimitry Andric for (MachineBasicBlock *Succ : NewMBB.successors()) 3010b57cec5SDimitry Andric if (Succ != &UnsplitSucc) 3020b57cec5SDimitry Andric MBB.replaceSuccessor(Succ, &NewMBB); 3030b57cec5SDimitry Andric 3040b57cec5SDimitry Andric // We should always end up replacing at least one successor. 3050b57cec5SDimitry Andric assert(MBB.isSuccessor(&NewMBB) && 3060b57cec5SDimitry Andric "Failed to make the new block a successor!"); 3070b57cec5SDimitry Andric 3080b57cec5SDimitry Andric // Now update all the PHIs. 3090b57cec5SDimitry Andric for (MachineBasicBlock *Succ : NewMBB.successors()) { 3100b57cec5SDimitry Andric for (MachineInstr &MI : *Succ) { 3110b57cec5SDimitry Andric if (!MI.isPHI()) 3120b57cec5SDimitry Andric break; 3130b57cec5SDimitry Andric 3140b57cec5SDimitry Andric for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; 3150b57cec5SDimitry Andric OpIdx += 2) { 3160b57cec5SDimitry Andric MachineOperand &OpV = MI.getOperand(OpIdx); 3170b57cec5SDimitry Andric MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); 3180b57cec5SDimitry Andric assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); 3190b57cec5SDimitry Andric if (OpMBB.getMBB() != &MBB) 3200b57cec5SDimitry Andric continue; 3210b57cec5SDimitry Andric 3220b57cec5SDimitry Andric // Replace the operand for unsplit successors 3230b57cec5SDimitry Andric if (!IsEdgeSplit || Succ != &UnsplitSucc) { 3240b57cec5SDimitry Andric OpMBB.setMBB(&NewMBB); 3250b57cec5SDimitry Andric 3260b57cec5SDimitry Andric // We have to continue scanning as there may be multiple entries in 3270b57cec5SDimitry Andric // the PHI. 3280b57cec5SDimitry Andric continue; 3290b57cec5SDimitry Andric } 3300b57cec5SDimitry Andric 3310b57cec5SDimitry Andric // When we have split the edge append a new successor. 3320b57cec5SDimitry Andric MI.addOperand(MF, OpV); 3330b57cec5SDimitry Andric MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); 3340b57cec5SDimitry Andric break; 3350b57cec5SDimitry Andric } 3360b57cec5SDimitry Andric } 3370b57cec5SDimitry Andric } 3380b57cec5SDimitry Andric 3390b57cec5SDimitry Andric return NewMBB; 3400b57cec5SDimitry Andric } 3410b57cec5SDimitry Andric 3422a168f03SDimitry Andric static X86::CondCode getCondFromFCMOV(unsigned Opcode) { 3432a168f03SDimitry Andric switch (Opcode) { 3442a168f03SDimitry Andric default: return X86::COND_INVALID; 3452a168f03SDimitry Andric case X86::CMOVBE_Fp32: case X86::CMOVBE_Fp64: case X86::CMOVBE_Fp80: 3462a168f03SDimitry Andric return X86::COND_BE; 3472a168f03SDimitry Andric case X86::CMOVB_Fp32: case X86::CMOVB_Fp64: case X86::CMOVB_Fp80: 3482a168f03SDimitry Andric return X86::COND_B; 3492a168f03SDimitry Andric case X86::CMOVE_Fp32: case X86::CMOVE_Fp64: case X86::CMOVE_Fp80: 3502a168f03SDimitry Andric return X86::COND_E; 3512a168f03SDimitry Andric case X86::CMOVNBE_Fp32: case X86::CMOVNBE_Fp64: case X86::CMOVNBE_Fp80: 3522a168f03SDimitry Andric return X86::COND_A; 3532a168f03SDimitry Andric case X86::CMOVNB_Fp32: case X86::CMOVNB_Fp64: case X86::CMOVNB_Fp80: 3542a168f03SDimitry Andric return X86::COND_AE; 3552a168f03SDimitry Andric case X86::CMOVNE_Fp32: case X86::CMOVNE_Fp64: case X86::CMOVNE_Fp80: 3562a168f03SDimitry Andric return X86::COND_NE; 3572a168f03SDimitry Andric case X86::CMOVNP_Fp32: case X86::CMOVNP_Fp64: case X86::CMOVNP_Fp80: 3582a168f03SDimitry Andric return X86::COND_NP; 3592a168f03SDimitry Andric case X86::CMOVP_Fp32: case X86::CMOVP_Fp64: case X86::CMOVP_Fp80: 3602a168f03SDimitry Andric return X86::COND_P; 3612a168f03SDimitry Andric } 3622a168f03SDimitry Andric } 3632a168f03SDimitry Andric 3640b57cec5SDimitry Andric bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) { 3650b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() 3660b57cec5SDimitry Andric << " **********\n"); 3670b57cec5SDimitry Andric 3680b57cec5SDimitry Andric Subtarget = &MF.getSubtarget<X86Subtarget>(); 3690b57cec5SDimitry Andric MRI = &MF.getRegInfo(); 3700b57cec5SDimitry Andric TII = Subtarget->getInstrInfo(); 3710b57cec5SDimitry Andric TRI = Subtarget->getRegisterInfo(); 3720b57cec5SDimitry Andric MDT = &getAnalysis<MachineDominatorTree>(); 3730b57cec5SDimitry Andric PromoteRC = &X86::GR8RegClass; 3740b57cec5SDimitry Andric 3750b57cec5SDimitry Andric if (MF.begin() == MF.end()) 3760b57cec5SDimitry Andric // Nothing to do for a degenerate empty function... 3770b57cec5SDimitry Andric return false; 3780b57cec5SDimitry Andric 3790b57cec5SDimitry Andric // Collect the copies in RPO so that when there are chains where a copy is in 3800b57cec5SDimitry Andric // turn copied again we visit the first one first. This ensures we can find 3810b57cec5SDimitry Andric // viable locations for testing the original EFLAGS that dominate all the 3820b57cec5SDimitry Andric // uses across complex CFGs. 3830b57cec5SDimitry Andric SmallVector<MachineInstr *, 4> Copies; 3840b57cec5SDimitry Andric ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 3850b57cec5SDimitry Andric for (MachineBasicBlock *MBB : RPOT) 3860b57cec5SDimitry Andric for (MachineInstr &MI : *MBB) 3870b57cec5SDimitry Andric if (MI.getOpcode() == TargetOpcode::COPY && 3880b57cec5SDimitry Andric MI.getOperand(0).getReg() == X86::EFLAGS) 3890b57cec5SDimitry Andric Copies.push_back(&MI); 3900b57cec5SDimitry Andric 3910b57cec5SDimitry Andric for (MachineInstr *CopyI : Copies) { 3920b57cec5SDimitry Andric MachineBasicBlock &MBB = *CopyI->getParent(); 3930b57cec5SDimitry Andric 3940b57cec5SDimitry Andric MachineOperand &VOp = CopyI->getOperand(1); 3950b57cec5SDimitry Andric assert(VOp.isReg() && 3960b57cec5SDimitry Andric "The input to the copy for EFLAGS should always be a register!"); 3970b57cec5SDimitry Andric MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg()); 3980b57cec5SDimitry Andric if (CopyDefI.getOpcode() != TargetOpcode::COPY) { 3990b57cec5SDimitry Andric // FIXME: The big likely candidate here are PHI nodes. We could in theory 4000b57cec5SDimitry Andric // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard 4010b57cec5SDimitry Andric // enough that it is probably better to change every other part of LLVM 4020b57cec5SDimitry Andric // to avoid creating them. The issue is that once we have PHIs we won't 4030b57cec5SDimitry Andric // know which original EFLAGS value we need to capture with our setCCs 4040b57cec5SDimitry Andric // below. The end result will be computing a complete set of setCCs that 4050b57cec5SDimitry Andric // we *might* want, computing them in every place where we copy *out* of 4060b57cec5SDimitry Andric // EFLAGS and then doing SSA formation on all of them to insert necessary 4070b57cec5SDimitry Andric // PHI nodes and consume those here. Then hoping that somehow we DCE the 4080b57cec5SDimitry Andric // unnecessary ones. This DCE seems very unlikely to be successful and so 4090b57cec5SDimitry Andric // we will almost certainly end up with a glut of dead setCC 4100b57cec5SDimitry Andric // instructions. Until we have a motivating test case and fail to avoid 4110b57cec5SDimitry Andric // it by changing other parts of LLVM's lowering, we refuse to handle 4120b57cec5SDimitry Andric // this complex case here. 4130b57cec5SDimitry Andric LLVM_DEBUG( 4140b57cec5SDimitry Andric dbgs() << "ERROR: Encountered unexpected def of an eflags copy: "; 4150b57cec5SDimitry Andric CopyDefI.dump()); 4160b57cec5SDimitry Andric report_fatal_error( 4170b57cec5SDimitry Andric "Cannot lower EFLAGS copy unless it is defined in turn by a copy!"); 4180b57cec5SDimitry Andric } 4190b57cec5SDimitry Andric 4200b57cec5SDimitry Andric auto Cleanup = make_scope_exit([&] { 4210b57cec5SDimitry Andric // All uses of the EFLAGS copy are now rewritten, kill the copy into 4220b57cec5SDimitry Andric // eflags and if dead the copy from. 4230b57cec5SDimitry Andric CopyI->eraseFromParent(); 4240b57cec5SDimitry Andric if (MRI->use_empty(CopyDefI.getOperand(0).getReg())) 4250b57cec5SDimitry Andric CopyDefI.eraseFromParent(); 4260b57cec5SDimitry Andric ++NumCopiesEliminated; 4270b57cec5SDimitry Andric }); 4280b57cec5SDimitry Andric 4290b57cec5SDimitry Andric MachineOperand &DOp = CopyI->getOperand(0); 4300b57cec5SDimitry Andric assert(DOp.isDef() && "Expected register def!"); 4310b57cec5SDimitry Andric assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!"); 4320b57cec5SDimitry Andric if (DOp.isDead()) 4330b57cec5SDimitry Andric continue; 4340b57cec5SDimitry Andric 4350b57cec5SDimitry Andric MachineBasicBlock *TestMBB = CopyDefI.getParent(); 4360b57cec5SDimitry Andric auto TestPos = CopyDefI.getIterator(); 4370b57cec5SDimitry Andric DebugLoc TestLoc = CopyDefI.getDebugLoc(); 4380b57cec5SDimitry Andric 4390b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump()); 4400b57cec5SDimitry Andric 4410b57cec5SDimitry Andric // Walk up across live-in EFLAGS to find where they were actually def'ed. 4420b57cec5SDimitry Andric // 4430b57cec5SDimitry Andric // This copy's def may just be part of a region of blocks covered by 4440b57cec5SDimitry Andric // a single def of EFLAGS and we want to find the top of that region where 4450b57cec5SDimitry Andric // possible. 4460b57cec5SDimitry Andric // 4470b57cec5SDimitry Andric // This is essentially a search for a *candidate* reaching definition 4480b57cec5SDimitry Andric // location. We don't need to ever find the actual reaching definition here, 4490b57cec5SDimitry Andric // but we want to walk up the dominator tree to find the highest point which 4500b57cec5SDimitry Andric // would be viable for such a definition. 4510b57cec5SDimitry Andric auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin, 4520b57cec5SDimitry Andric MachineBasicBlock::iterator End) { 4530b57cec5SDimitry Andric // Scan backwards as we expect these to be relatively short and often find 4540b57cec5SDimitry Andric // a clobber near the end. 4550b57cec5SDimitry Andric return llvm::any_of( 4560b57cec5SDimitry Andric llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) { 4570b57cec5SDimitry Andric // Flag any instruction (other than the copy we are 4580b57cec5SDimitry Andric // currently rewriting) that defs EFLAGS. 4590b57cec5SDimitry Andric return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS); 4600b57cec5SDimitry Andric }); 4610b57cec5SDimitry Andric }; 4620b57cec5SDimitry Andric auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB, 4630b57cec5SDimitry Andric MachineBasicBlock *EndMBB) { 4640b57cec5SDimitry Andric assert(MDT->dominates(BeginMBB, EndMBB) && 4650b57cec5SDimitry Andric "Only support paths down the dominator tree!"); 4660b57cec5SDimitry Andric SmallPtrSet<MachineBasicBlock *, 4> Visited; 4670b57cec5SDimitry Andric SmallVector<MachineBasicBlock *, 4> Worklist; 4680b57cec5SDimitry Andric // We terminate at the beginning. No need to scan it. 4690b57cec5SDimitry Andric Visited.insert(BeginMBB); 4700b57cec5SDimitry Andric Worklist.push_back(EndMBB); 4710b57cec5SDimitry Andric do { 4720b57cec5SDimitry Andric auto *MBB = Worklist.pop_back_val(); 4730b57cec5SDimitry Andric for (auto *PredMBB : MBB->predecessors()) { 4740b57cec5SDimitry Andric if (!Visited.insert(PredMBB).second) 4750b57cec5SDimitry Andric continue; 4760b57cec5SDimitry Andric if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end())) 4770b57cec5SDimitry Andric return true; 4780b57cec5SDimitry Andric // Enqueue this block to walk its predecessors. 4790b57cec5SDimitry Andric Worklist.push_back(PredMBB); 4800b57cec5SDimitry Andric } 4810b57cec5SDimitry Andric } while (!Worklist.empty()); 4820b57cec5SDimitry Andric // No clobber found along a path from the begin to end. 4830b57cec5SDimitry Andric return false; 4840b57cec5SDimitry Andric }; 4850b57cec5SDimitry Andric while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() && 4860b57cec5SDimitry Andric !HasEFLAGSClobber(TestMBB->begin(), TestPos)) { 4870b57cec5SDimitry Andric // Find the nearest common dominator of the predecessors, as 4880b57cec5SDimitry Andric // that will be the best candidate to hoist into. 4890b57cec5SDimitry Andric MachineBasicBlock *HoistMBB = 4900b57cec5SDimitry Andric std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(), 4910b57cec5SDimitry Andric *TestMBB->pred_begin(), 4920b57cec5SDimitry Andric [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) { 4930b57cec5SDimitry Andric return MDT->findNearestCommonDominator(LHS, RHS); 4940b57cec5SDimitry Andric }); 4950b57cec5SDimitry Andric 4960b57cec5SDimitry Andric // Now we need to scan all predecessors that may be reached along paths to 4970b57cec5SDimitry Andric // the hoist block. A clobber anywhere in any of these blocks the hoist. 4980b57cec5SDimitry Andric // Note that this even handles loops because we require *no* clobbers. 4990b57cec5SDimitry Andric if (HasEFLAGSClobberPath(HoistMBB, TestMBB)) 5000b57cec5SDimitry Andric break; 5010b57cec5SDimitry Andric 5020b57cec5SDimitry Andric // We also need the terminators to not sneakily clobber flags. 5030b57cec5SDimitry Andric if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(), 5040b57cec5SDimitry Andric HoistMBB->instr_end())) 5050b57cec5SDimitry Andric break; 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric // We found a viable location, hoist our test position to it. 5080b57cec5SDimitry Andric TestMBB = HoistMBB; 5090b57cec5SDimitry Andric TestPos = TestMBB->getFirstTerminator()->getIterator(); 5100b57cec5SDimitry Andric // Clear the debug location as it would just be confusing after hoisting. 5110b57cec5SDimitry Andric TestLoc = DebugLoc(); 5120b57cec5SDimitry Andric } 5130b57cec5SDimitry Andric LLVM_DEBUG({ 5140b57cec5SDimitry Andric auto DefIt = llvm::find_if( 5150b57cec5SDimitry Andric llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)), 5160b57cec5SDimitry Andric [&](MachineInstr &MI) { 5170b57cec5SDimitry Andric return MI.findRegisterDefOperand(X86::EFLAGS); 5180b57cec5SDimitry Andric }); 5190b57cec5SDimitry Andric if (DefIt.base() != TestMBB->instr_begin()) { 5200b57cec5SDimitry Andric dbgs() << " Using EFLAGS defined by: "; 5210b57cec5SDimitry Andric DefIt->dump(); 5220b57cec5SDimitry Andric } else { 5230b57cec5SDimitry Andric dbgs() << " Using live-in flags for BB:\n"; 5240b57cec5SDimitry Andric TestMBB->dump(); 5250b57cec5SDimitry Andric } 5260b57cec5SDimitry Andric }); 5270b57cec5SDimitry Andric 5280b57cec5SDimitry Andric // While rewriting uses, we buffer jumps and rewrite them in a second pass 5290b57cec5SDimitry Andric // because doing so will perturb the CFG that we are walking to find the 5300b57cec5SDimitry Andric // uses in the first place. 5310b57cec5SDimitry Andric SmallVector<MachineInstr *, 4> JmpIs; 5320b57cec5SDimitry Andric 5330b57cec5SDimitry Andric // Gather the condition flags that have already been preserved in 5340b57cec5SDimitry Andric // registers. We do this from scratch each time as we expect there to be 5350b57cec5SDimitry Andric // very few of them and we expect to not revisit the same copy definition 5360b57cec5SDimitry Andric // many times. If either of those change sufficiently we could build a map 5370b57cec5SDimitry Andric // of these up front instead. 5380b57cec5SDimitry Andric CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos); 5390b57cec5SDimitry Andric 5400b57cec5SDimitry Andric // Collect the basic blocks we need to scan. Typically this will just be 5410b57cec5SDimitry Andric // a single basic block but we may have to scan multiple blocks if the 5420b57cec5SDimitry Andric // EFLAGS copy lives into successors. 5430b57cec5SDimitry Andric SmallVector<MachineBasicBlock *, 2> Blocks; 5440b57cec5SDimitry Andric SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks; 5450b57cec5SDimitry Andric Blocks.push_back(&MBB); 5460b57cec5SDimitry Andric 5470b57cec5SDimitry Andric do { 5480b57cec5SDimitry Andric MachineBasicBlock &UseMBB = *Blocks.pop_back_val(); 5490b57cec5SDimitry Andric 5500b57cec5SDimitry Andric // Track when if/when we find a kill of the flags in this block. 5510b57cec5SDimitry Andric bool FlagsKilled = false; 5520b57cec5SDimitry Andric 5530b57cec5SDimitry Andric // In most cases, we walk from the beginning to the end of the block. But 5540b57cec5SDimitry Andric // when the block is the same block as the copy is from, we will visit it 5550b57cec5SDimitry Andric // twice. The first time we start from the copy and go to the end. The 5560b57cec5SDimitry Andric // second time we start from the beginning and go to the copy. This lets 5570b57cec5SDimitry Andric // us handle copies inside of cycles. 5580b57cec5SDimitry Andric // FIXME: This loop is *super* confusing. This is at least in part 5590b57cec5SDimitry Andric // a symptom of all of this routine needing to be refactored into 5600b57cec5SDimitry Andric // documentable components. Once done, there may be a better way to write 5610b57cec5SDimitry Andric // this loop. 5620b57cec5SDimitry Andric for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB)) 5630b57cec5SDimitry Andric ? std::next(CopyI->getIterator()) 5640b57cec5SDimitry Andric : UseMBB.instr_begin(), 5650b57cec5SDimitry Andric MIE = UseMBB.instr_end(); 5660b57cec5SDimitry Andric MII != MIE;) { 5670b57cec5SDimitry Andric MachineInstr &MI = *MII++; 5680b57cec5SDimitry Andric // If we are in the original copy block and encounter either the copy 5690b57cec5SDimitry Andric // def or the copy itself, break so that we don't re-process any part of 5700b57cec5SDimitry Andric // the block or process the instructions in the range that was copied 5710b57cec5SDimitry Andric // over. 5720b57cec5SDimitry Andric if (&MI == CopyI || &MI == &CopyDefI) { 5730b57cec5SDimitry Andric assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) && 5740b57cec5SDimitry Andric "Should only encounter these on the second pass over the " 5750b57cec5SDimitry Andric "original block."); 5760b57cec5SDimitry Andric break; 5770b57cec5SDimitry Andric } 5780b57cec5SDimitry Andric 5790b57cec5SDimitry Andric MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS); 5800b57cec5SDimitry Andric if (!FlagUse) { 5810b57cec5SDimitry Andric if (MI.findRegisterDefOperand(X86::EFLAGS)) { 5820b57cec5SDimitry Andric // If EFLAGS are defined, it's as-if they were killed. We can stop 5830b57cec5SDimitry Andric // scanning here. 5840b57cec5SDimitry Andric // 5850b57cec5SDimitry Andric // NB!!! Many instructions only modify some flags. LLVM currently 5860b57cec5SDimitry Andric // models this as clobbering all flags, but if that ever changes 5870b57cec5SDimitry Andric // this will need to be carefully updated to handle that more 5880b57cec5SDimitry Andric // complex logic. 5890b57cec5SDimitry Andric FlagsKilled = true; 5900b57cec5SDimitry Andric break; 5910b57cec5SDimitry Andric } 5920b57cec5SDimitry Andric continue; 5930b57cec5SDimitry Andric } 5940b57cec5SDimitry Andric 5950b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump()); 5960b57cec5SDimitry Andric 5970b57cec5SDimitry Andric // Check the kill flag before we rewrite as that may change it. 5980b57cec5SDimitry Andric if (FlagUse->isKill()) 5990b57cec5SDimitry Andric FlagsKilled = true; 6000b57cec5SDimitry Andric 6010b57cec5SDimitry Andric // Once we encounter a branch, the rest of the instructions must also be 6020b57cec5SDimitry Andric // branches. We can't rewrite in place here, so we handle them below. 6030b57cec5SDimitry Andric // 6040b57cec5SDimitry Andric // Note that we don't have to handle tail calls here, even conditional 6050b57cec5SDimitry Andric // tail calls, as those are not introduced into the X86 MI until post-RA 6060b57cec5SDimitry Andric // branch folding or black placement. As a consequence, we get to deal 6070b57cec5SDimitry Andric // with the simpler formulation of conditional branches followed by tail 6080b57cec5SDimitry Andric // calls. 6090b57cec5SDimitry Andric if (X86::getCondFromBranch(MI) != X86::COND_INVALID) { 6100b57cec5SDimitry Andric auto JmpIt = MI.getIterator(); 6110b57cec5SDimitry Andric do { 6120b57cec5SDimitry Andric JmpIs.push_back(&*JmpIt); 6130b57cec5SDimitry Andric ++JmpIt; 6140b57cec5SDimitry Andric } while (JmpIt != UseMBB.instr_end() && 6150b57cec5SDimitry Andric X86::getCondFromBranch(*JmpIt) != 6160b57cec5SDimitry Andric X86::COND_INVALID); 6170b57cec5SDimitry Andric break; 6180b57cec5SDimitry Andric } 6190b57cec5SDimitry Andric 6200b57cec5SDimitry Andric // Otherwise we can just rewrite in-place. 6210b57cec5SDimitry Andric if (X86::getCondFromCMov(MI) != X86::COND_INVALID) { 6220b57cec5SDimitry Andric rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs); 6232a168f03SDimitry Andric } else if (getCondFromFCMOV(MI.getOpcode()) != X86::COND_INVALID) { 6242a168f03SDimitry Andric rewriteFCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs); 6250b57cec5SDimitry Andric } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) { 6260b57cec5SDimitry Andric rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs); 6270b57cec5SDimitry Andric } else if (MI.getOpcode() == TargetOpcode::COPY) { 6280b57cec5SDimitry Andric rewriteCopy(MI, *FlagUse, CopyDefI); 6290b57cec5SDimitry Andric } else { 6300b57cec5SDimitry Andric // We assume all other instructions that use flags also def them. 6310b57cec5SDimitry Andric assert(MI.findRegisterDefOperand(X86::EFLAGS) && 6320b57cec5SDimitry Andric "Expected a def of EFLAGS for this instruction!"); 6330b57cec5SDimitry Andric 6340b57cec5SDimitry Andric // NB!!! Several arithmetic instructions only *partially* update 6350b57cec5SDimitry Andric // flags. Theoretically, we could generate MI code sequences that 6360b57cec5SDimitry Andric // would rely on this fact and observe different flags independently. 6370b57cec5SDimitry Andric // But currently LLVM models all of these instructions as clobbering 6380b57cec5SDimitry Andric // all the flags in an undef way. We rely on that to simplify the 6390b57cec5SDimitry Andric // logic. 6400b57cec5SDimitry Andric FlagsKilled = true; 6410b57cec5SDimitry Andric 6420b57cec5SDimitry Andric // Generically handle remaining uses as arithmetic instructions. 6430b57cec5SDimitry Andric rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse, 6440b57cec5SDimitry Andric CondRegs); 6450b57cec5SDimitry Andric } 6460b57cec5SDimitry Andric 6470b57cec5SDimitry Andric // If this was the last use of the flags, we're done. 6480b57cec5SDimitry Andric if (FlagsKilled) 6490b57cec5SDimitry Andric break; 6500b57cec5SDimitry Andric } 6510b57cec5SDimitry Andric 6520b57cec5SDimitry Andric // If the flags were killed, we're done with this block. 6530b57cec5SDimitry Andric if (FlagsKilled) 6540b57cec5SDimitry Andric continue; 6550b57cec5SDimitry Andric 6560b57cec5SDimitry Andric // Otherwise we need to scan successors for ones where the flags live-in 6570b57cec5SDimitry Andric // and queue those up for processing. 6580b57cec5SDimitry Andric for (MachineBasicBlock *SuccMBB : UseMBB.successors()) 6590b57cec5SDimitry Andric if (SuccMBB->isLiveIn(X86::EFLAGS) && 6600b57cec5SDimitry Andric VisitedBlocks.insert(SuccMBB).second) { 6610b57cec5SDimitry Andric // We currently don't do any PHI insertion and so we require that the 6620b57cec5SDimitry Andric // test basic block dominates all of the use basic blocks. Further, we 6630b57cec5SDimitry Andric // can't have a cycle from the test block back to itself as that would 6640b57cec5SDimitry Andric // create a cycle requiring a PHI to break it. 6650b57cec5SDimitry Andric // 6660b57cec5SDimitry Andric // We could in theory do PHI insertion here if it becomes useful by 6670b57cec5SDimitry Andric // just taking undef values in along every edge that we don't trace 6680b57cec5SDimitry Andric // this EFLAGS copy along. This isn't as bad as fully general PHI 6690b57cec5SDimitry Andric // insertion, but still seems like a great deal of complexity. 6700b57cec5SDimitry Andric // 6710b57cec5SDimitry Andric // Because it is theoretically possible that some earlier MI pass or 6720b57cec5SDimitry Andric // other lowering transformation could induce this to happen, we do 6730b57cec5SDimitry Andric // a hard check even in non-debug builds here. 6740b57cec5SDimitry Andric if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) { 6750b57cec5SDimitry Andric LLVM_DEBUG({ 6760b57cec5SDimitry Andric dbgs() 6770b57cec5SDimitry Andric << "ERROR: Encountered use that is not dominated by our test " 6780b57cec5SDimitry Andric "basic block! Rewriting this would require inserting PHI " 6790b57cec5SDimitry Andric "nodes to track the flag state across the CFG.\n\nTest " 6800b57cec5SDimitry Andric "block:\n"; 6810b57cec5SDimitry Andric TestMBB->dump(); 6820b57cec5SDimitry Andric dbgs() << "Use block:\n"; 6830b57cec5SDimitry Andric SuccMBB->dump(); 6840b57cec5SDimitry Andric }); 6850b57cec5SDimitry Andric report_fatal_error( 6860b57cec5SDimitry Andric "Cannot lower EFLAGS copy when original copy def " 6870b57cec5SDimitry Andric "does not dominate all uses."); 6880b57cec5SDimitry Andric } 6890b57cec5SDimitry Andric 6900b57cec5SDimitry Andric Blocks.push_back(SuccMBB); 691480093f4SDimitry Andric 692480093f4SDimitry Andric // After this, EFLAGS will be recreated before each use. 693480093f4SDimitry Andric SuccMBB->removeLiveIn(X86::EFLAGS); 6940b57cec5SDimitry Andric } 6950b57cec5SDimitry Andric } while (!Blocks.empty()); 6960b57cec5SDimitry Andric 6970b57cec5SDimitry Andric // Now rewrite the jumps that use the flags. These we handle specially 6980b57cec5SDimitry Andric // because if there are multiple jumps in a single basic block we'll have 6990b57cec5SDimitry Andric // to do surgery on the CFG. 7000b57cec5SDimitry Andric MachineBasicBlock *LastJmpMBB = nullptr; 7010b57cec5SDimitry Andric for (MachineInstr *JmpI : JmpIs) { 7020b57cec5SDimitry Andric // Past the first jump within a basic block we need to split the blocks 7030b57cec5SDimitry Andric // apart. 7040b57cec5SDimitry Andric if (JmpI->getParent() == LastJmpMBB) 7050b57cec5SDimitry Andric splitBlock(*JmpI->getParent(), *JmpI, *TII); 7060b57cec5SDimitry Andric else 7070b57cec5SDimitry Andric LastJmpMBB = JmpI->getParent(); 7080b57cec5SDimitry Andric 7090b57cec5SDimitry Andric rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs); 7100b57cec5SDimitry Andric } 7110b57cec5SDimitry Andric 7120b57cec5SDimitry Andric // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if 7130b57cec5SDimitry Andric // the copy's def operand is itself a kill. 7140b57cec5SDimitry Andric } 7150b57cec5SDimitry Andric 7160b57cec5SDimitry Andric #ifndef NDEBUG 7170b57cec5SDimitry Andric for (MachineBasicBlock &MBB : MF) 7180b57cec5SDimitry Andric for (MachineInstr &MI : MBB) 7190b57cec5SDimitry Andric if (MI.getOpcode() == TargetOpcode::COPY && 7200b57cec5SDimitry Andric (MI.getOperand(0).getReg() == X86::EFLAGS || 7210b57cec5SDimitry Andric MI.getOperand(1).getReg() == X86::EFLAGS)) { 7220b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: "; 7230b57cec5SDimitry Andric MI.dump()); 7240b57cec5SDimitry Andric llvm_unreachable("Unlowered EFLAGS copy!"); 7250b57cec5SDimitry Andric } 7260b57cec5SDimitry Andric #endif 7270b57cec5SDimitry Andric 7280b57cec5SDimitry Andric return true; 7290b57cec5SDimitry Andric } 7300b57cec5SDimitry Andric 7310b57cec5SDimitry Andric /// Collect any conditions that have already been set in registers so that we 7320b57cec5SDimitry Andric /// can re-use them rather than adding duplicates. 7330b57cec5SDimitry Andric CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs( 7340b57cec5SDimitry Andric MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) { 7350b57cec5SDimitry Andric CondRegArray CondRegs = {}; 7360b57cec5SDimitry Andric 7370b57cec5SDimitry Andric // Scan backwards across the range of instructions with live EFLAGS. 7380b57cec5SDimitry Andric for (MachineInstr &MI : 7390b57cec5SDimitry Andric llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) { 7400b57cec5SDimitry Andric X86::CondCode Cond = X86::getCondFromSETCC(MI); 7418bcb0991SDimitry Andric if (Cond != X86::COND_INVALID && !MI.mayStore() && 742*e8d8bef9SDimitry Andric MI.getOperand(0).isReg() && MI.getOperand(0).getReg().isVirtual()) { 7430b57cec5SDimitry Andric assert(MI.getOperand(0).isDef() && 7440b57cec5SDimitry Andric "A non-storing SETcc should always define a register!"); 7450b57cec5SDimitry Andric CondRegs[Cond] = MI.getOperand(0).getReg(); 7460b57cec5SDimitry Andric } 7470b57cec5SDimitry Andric 7480b57cec5SDimitry Andric // Stop scanning when we see the first definition of the EFLAGS as prior to 7490b57cec5SDimitry Andric // this we would potentially capture the wrong flag state. 7500b57cec5SDimitry Andric if (MI.findRegisterDefOperand(X86::EFLAGS)) 7510b57cec5SDimitry Andric break; 7520b57cec5SDimitry Andric } 7530b57cec5SDimitry Andric return CondRegs; 7540b57cec5SDimitry Andric } 7550b57cec5SDimitry Andric 756*e8d8bef9SDimitry Andric Register X86FlagsCopyLoweringPass::promoteCondToReg( 7570b57cec5SDimitry Andric MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, 7580b57cec5SDimitry Andric DebugLoc TestLoc, X86::CondCode Cond) { 7598bcb0991SDimitry Andric Register Reg = MRI->createVirtualRegister(PromoteRC); 7600b57cec5SDimitry Andric auto SetI = BuildMI(TestMBB, TestPos, TestLoc, 7610b57cec5SDimitry Andric TII->get(X86::SETCCr), Reg).addImm(Cond); 7620b57cec5SDimitry Andric (void)SetI; 7630b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump()); 7640b57cec5SDimitry Andric ++NumSetCCsInserted; 7650b57cec5SDimitry Andric return Reg; 7660b57cec5SDimitry Andric } 7670b57cec5SDimitry Andric 7680b57cec5SDimitry Andric std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg( 7690b57cec5SDimitry Andric MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, 7700b57cec5SDimitry Andric DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) { 7710b57cec5SDimitry Andric unsigned &CondReg = CondRegs[Cond]; 7720b57cec5SDimitry Andric unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)]; 7730b57cec5SDimitry Andric if (!CondReg && !InvCondReg) 7740b57cec5SDimitry Andric CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); 7750b57cec5SDimitry Andric 7760b57cec5SDimitry Andric if (CondReg) 7770b57cec5SDimitry Andric return {CondReg, false}; 7780b57cec5SDimitry Andric else 7790b57cec5SDimitry Andric return {InvCondReg, true}; 7800b57cec5SDimitry Andric } 7810b57cec5SDimitry Andric 7820b57cec5SDimitry Andric void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB, 7830b57cec5SDimitry Andric MachineBasicBlock::iterator Pos, 7840b57cec5SDimitry Andric DebugLoc Loc, unsigned Reg) { 7850b57cec5SDimitry Andric auto TestI = 7860b57cec5SDimitry Andric BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg); 7870b57cec5SDimitry Andric (void)TestI; 7880b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump()); 7890b57cec5SDimitry Andric ++NumTestsInserted; 7900b57cec5SDimitry Andric } 7910b57cec5SDimitry Andric 7920b57cec5SDimitry Andric void X86FlagsCopyLoweringPass::rewriteArithmetic( 7930b57cec5SDimitry Andric MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, 7940b57cec5SDimitry Andric DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse, 7950b57cec5SDimitry Andric CondRegArray &CondRegs) { 7960b57cec5SDimitry Andric // Arithmetic is either reading CF or OF. Figure out which condition we need 7970b57cec5SDimitry Andric // to preserve in a register. 798480093f4SDimitry Andric X86::CondCode Cond = X86::COND_INVALID; 7990b57cec5SDimitry Andric 8000b57cec5SDimitry Andric // The addend to use to reset CF or OF when added to the flag value. 801480093f4SDimitry Andric int Addend = 0; 8020b57cec5SDimitry Andric 8030b57cec5SDimitry Andric switch (getMnemonicFromOpcode(MI.getOpcode())) { 8040b57cec5SDimitry Andric case FlagArithMnemonic::ADC: 8050b57cec5SDimitry Andric case FlagArithMnemonic::ADCX: 8060b57cec5SDimitry Andric case FlagArithMnemonic::RCL: 8070b57cec5SDimitry Andric case FlagArithMnemonic::RCR: 8080b57cec5SDimitry Andric case FlagArithMnemonic::SBB: 8095ffd83dbSDimitry Andric case FlagArithMnemonic::SETB: 8100b57cec5SDimitry Andric Cond = X86::COND_B; // CF == 1 8110b57cec5SDimitry Andric // Set up an addend that when one is added will need a carry due to not 8120b57cec5SDimitry Andric // having a higher bit available. 8130b57cec5SDimitry Andric Addend = 255; 8140b57cec5SDimitry Andric break; 8150b57cec5SDimitry Andric 8160b57cec5SDimitry Andric case FlagArithMnemonic::ADOX: 8170b57cec5SDimitry Andric Cond = X86::COND_O; // OF == 1 8180b57cec5SDimitry Andric // Set up an addend that when one is added will turn from positive to 8190b57cec5SDimitry Andric // negative and thus overflow in the signed domain. 8200b57cec5SDimitry Andric Addend = 127; 8210b57cec5SDimitry Andric break; 8220b57cec5SDimitry Andric } 8230b57cec5SDimitry Andric 8240b57cec5SDimitry Andric // Now get a register that contains the value of the flag input to the 8250b57cec5SDimitry Andric // arithmetic. We require exactly this flag to simplify the arithmetic 8260b57cec5SDimitry Andric // required to materialize it back into the flag. 8270b57cec5SDimitry Andric unsigned &CondReg = CondRegs[Cond]; 8280b57cec5SDimitry Andric if (!CondReg) 8290b57cec5SDimitry Andric CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); 8300b57cec5SDimitry Andric 8310b57cec5SDimitry Andric MachineBasicBlock &MBB = *MI.getParent(); 8320b57cec5SDimitry Andric 8330b57cec5SDimitry Andric // Insert an instruction that will set the flag back to the desired value. 8348bcb0991SDimitry Andric Register TmpReg = MRI->createVirtualRegister(PromoteRC); 8350b57cec5SDimitry Andric auto AddI = 8360b57cec5SDimitry Andric BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri)) 8370b57cec5SDimitry Andric .addDef(TmpReg, RegState::Dead) 8380b57cec5SDimitry Andric .addReg(CondReg) 8390b57cec5SDimitry Andric .addImm(Addend); 8400b57cec5SDimitry Andric (void)AddI; 8410b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump()); 8420b57cec5SDimitry Andric ++NumAddsInserted; 8430b57cec5SDimitry Andric FlagUse.setIsKill(true); 8440b57cec5SDimitry Andric } 8450b57cec5SDimitry Andric 8460b57cec5SDimitry Andric void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB, 8470b57cec5SDimitry Andric MachineBasicBlock::iterator TestPos, 8480b57cec5SDimitry Andric DebugLoc TestLoc, 8490b57cec5SDimitry Andric MachineInstr &CMovI, 8500b57cec5SDimitry Andric MachineOperand &FlagUse, 8510b57cec5SDimitry Andric CondRegArray &CondRegs) { 8520b57cec5SDimitry Andric // First get the register containing this specific condition. 8530b57cec5SDimitry Andric X86::CondCode Cond = X86::getCondFromCMov(CMovI); 8540b57cec5SDimitry Andric unsigned CondReg; 8550b57cec5SDimitry Andric bool Inverted; 8560b57cec5SDimitry Andric std::tie(CondReg, Inverted) = 8570b57cec5SDimitry Andric getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs); 8580b57cec5SDimitry Andric 8590b57cec5SDimitry Andric MachineBasicBlock &MBB = *CMovI.getParent(); 8600b57cec5SDimitry Andric 8610b57cec5SDimitry Andric // Insert a direct test of the saved register. 8620b57cec5SDimitry Andric insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg); 8630b57cec5SDimitry Andric 8640b57cec5SDimitry Andric // Rewrite the CMov to use the !ZF flag from the test, and then kill its use 8650b57cec5SDimitry Andric // of the flags afterward. 8660b57cec5SDimitry Andric CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1) 8670b57cec5SDimitry Andric .setImm(Inverted ? X86::COND_E : X86::COND_NE); 8680b57cec5SDimitry Andric FlagUse.setIsKill(true); 8690b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump()); 8700b57cec5SDimitry Andric } 8710b57cec5SDimitry Andric 8722a168f03SDimitry Andric void X86FlagsCopyLoweringPass::rewriteFCMov(MachineBasicBlock &TestMBB, 8732a168f03SDimitry Andric MachineBasicBlock::iterator TestPos, 8742a168f03SDimitry Andric DebugLoc TestLoc, 8752a168f03SDimitry Andric MachineInstr &CMovI, 8762a168f03SDimitry Andric MachineOperand &FlagUse, 8772a168f03SDimitry Andric CondRegArray &CondRegs) { 8782a168f03SDimitry Andric // First get the register containing this specific condition. 8792a168f03SDimitry Andric X86::CondCode Cond = getCondFromFCMOV(CMovI.getOpcode()); 8802a168f03SDimitry Andric unsigned CondReg; 8812a168f03SDimitry Andric bool Inverted; 8822a168f03SDimitry Andric std::tie(CondReg, Inverted) = 8832a168f03SDimitry Andric getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs); 8842a168f03SDimitry Andric 8852a168f03SDimitry Andric MachineBasicBlock &MBB = *CMovI.getParent(); 8862a168f03SDimitry Andric 8872a168f03SDimitry Andric // Insert a direct test of the saved register. 8882a168f03SDimitry Andric insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg); 8892a168f03SDimitry Andric 8902a168f03SDimitry Andric auto getFCMOVOpcode = [](unsigned Opcode, bool Inverted) { 8912a168f03SDimitry Andric switch (Opcode) { 8922a168f03SDimitry Andric default: llvm_unreachable("Unexpected opcode!"); 8932a168f03SDimitry Andric case X86::CMOVBE_Fp32: case X86::CMOVNBE_Fp32: 8942a168f03SDimitry Andric case X86::CMOVB_Fp32: case X86::CMOVNB_Fp32: 8952a168f03SDimitry Andric case X86::CMOVE_Fp32: case X86::CMOVNE_Fp32: 8962a168f03SDimitry Andric case X86::CMOVP_Fp32: case X86::CMOVNP_Fp32: 8972a168f03SDimitry Andric return Inverted ? X86::CMOVE_Fp32 : X86::CMOVNE_Fp32; 8982a168f03SDimitry Andric case X86::CMOVBE_Fp64: case X86::CMOVNBE_Fp64: 8992a168f03SDimitry Andric case X86::CMOVB_Fp64: case X86::CMOVNB_Fp64: 9002a168f03SDimitry Andric case X86::CMOVE_Fp64: case X86::CMOVNE_Fp64: 9012a168f03SDimitry Andric case X86::CMOVP_Fp64: case X86::CMOVNP_Fp64: 9022a168f03SDimitry Andric return Inverted ? X86::CMOVE_Fp64 : X86::CMOVNE_Fp64; 9032a168f03SDimitry Andric case X86::CMOVBE_Fp80: case X86::CMOVNBE_Fp80: 9042a168f03SDimitry Andric case X86::CMOVB_Fp80: case X86::CMOVNB_Fp80: 9052a168f03SDimitry Andric case X86::CMOVE_Fp80: case X86::CMOVNE_Fp80: 9062a168f03SDimitry Andric case X86::CMOVP_Fp80: case X86::CMOVNP_Fp80: 9072a168f03SDimitry Andric return Inverted ? X86::CMOVE_Fp80 : X86::CMOVNE_Fp80; 9082a168f03SDimitry Andric } 9092a168f03SDimitry Andric }; 9102a168f03SDimitry Andric 9112a168f03SDimitry Andric // Rewrite the CMov to use the !ZF flag from the test. 9122a168f03SDimitry Andric CMovI.setDesc(TII->get(getFCMOVOpcode(CMovI.getOpcode(), Inverted))); 9132a168f03SDimitry Andric FlagUse.setIsKill(true); 9142a168f03SDimitry Andric LLVM_DEBUG(dbgs() << " fixed fcmov: "; CMovI.dump()); 9152a168f03SDimitry Andric } 9162a168f03SDimitry Andric 9170b57cec5SDimitry Andric void X86FlagsCopyLoweringPass::rewriteCondJmp( 9180b57cec5SDimitry Andric MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, 9190b57cec5SDimitry Andric DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) { 9200b57cec5SDimitry Andric // First get the register containing this specific condition. 9210b57cec5SDimitry Andric X86::CondCode Cond = X86::getCondFromBranch(JmpI); 9220b57cec5SDimitry Andric unsigned CondReg; 9230b57cec5SDimitry Andric bool Inverted; 9240b57cec5SDimitry Andric std::tie(CondReg, Inverted) = 9250b57cec5SDimitry Andric getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs); 9260b57cec5SDimitry Andric 9270b57cec5SDimitry Andric MachineBasicBlock &JmpMBB = *JmpI.getParent(); 9280b57cec5SDimitry Andric 9290b57cec5SDimitry Andric // Insert a direct test of the saved register. 9300b57cec5SDimitry Andric insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg); 9310b57cec5SDimitry Andric 9320b57cec5SDimitry Andric // Rewrite the jump to use the !ZF flag from the test, and kill its use of 9330b57cec5SDimitry Andric // flags afterward. 9340b57cec5SDimitry Andric JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE); 9350b57cec5SDimitry Andric JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); 9360b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump()); 9370b57cec5SDimitry Andric } 9380b57cec5SDimitry Andric 9390b57cec5SDimitry Andric void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI, 9400b57cec5SDimitry Andric MachineOperand &FlagUse, 9410b57cec5SDimitry Andric MachineInstr &CopyDefI) { 9420b57cec5SDimitry Andric // Just replace this copy with the original copy def. 9430b57cec5SDimitry Andric MRI->replaceRegWith(MI.getOperand(0).getReg(), 9440b57cec5SDimitry Andric CopyDefI.getOperand(0).getReg()); 9450b57cec5SDimitry Andric MI.eraseFromParent(); 9460b57cec5SDimitry Andric } 9470b57cec5SDimitry Andric 9480b57cec5SDimitry Andric void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB, 9490b57cec5SDimitry Andric MachineBasicBlock::iterator TestPos, 9500b57cec5SDimitry Andric DebugLoc TestLoc, 9510b57cec5SDimitry Andric MachineInstr &SetCCI, 9520b57cec5SDimitry Andric MachineOperand &FlagUse, 9530b57cec5SDimitry Andric CondRegArray &CondRegs) { 9540b57cec5SDimitry Andric X86::CondCode Cond = X86::getCondFromSETCC(SetCCI); 9550b57cec5SDimitry Andric // Note that we can't usefully rewrite this to the inverse without complex 9560b57cec5SDimitry Andric // analysis of the users of the setCC. Largely we rely on duplicates which 9570b57cec5SDimitry Andric // could have been avoided already being avoided here. 9580b57cec5SDimitry Andric unsigned &CondReg = CondRegs[Cond]; 9590b57cec5SDimitry Andric if (!CondReg) 9600b57cec5SDimitry Andric CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); 9610b57cec5SDimitry Andric 9620b57cec5SDimitry Andric // Rewriting a register def is trivial: we just replace the register and 9630b57cec5SDimitry Andric // remove the setcc. 9640b57cec5SDimitry Andric if (!SetCCI.mayStore()) { 9650b57cec5SDimitry Andric assert(SetCCI.getOperand(0).isReg() && 9660b57cec5SDimitry Andric "Cannot have a non-register defined operand to SETcc!"); 9670b57cec5SDimitry Andric MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg); 9680b57cec5SDimitry Andric SetCCI.eraseFromParent(); 9690b57cec5SDimitry Andric return; 9700b57cec5SDimitry Andric } 9710b57cec5SDimitry Andric 9720b57cec5SDimitry Andric // Otherwise, we need to emit a store. 9730b57cec5SDimitry Andric auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(), 9740b57cec5SDimitry Andric SetCCI.getDebugLoc(), TII->get(X86::MOV8mr)); 9750b57cec5SDimitry Andric // Copy the address operands. 9760b57cec5SDimitry Andric for (int i = 0; i < X86::AddrNumOperands; ++i) 9770b57cec5SDimitry Andric MIB.add(SetCCI.getOperand(i)); 9780b57cec5SDimitry Andric 9790b57cec5SDimitry Andric MIB.addReg(CondReg); 9800b57cec5SDimitry Andric 9810b57cec5SDimitry Andric MIB.setMemRefs(SetCCI.memoperands()); 9820b57cec5SDimitry Andric 9830b57cec5SDimitry Andric SetCCI.eraseFromParent(); 9840b57cec5SDimitry Andric } 985