xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FixupSetCC.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
10b57cec5SDimitry Andric //===---- X86FixupSetCC.cpp - optimize usage of LEA instructions ----------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file defines a pass that fixes zero-extension of setcc patterns.
100b57cec5SDimitry Andric // X86 setcc instructions are modeled to have no input arguments, and a single
110b57cec5SDimitry Andric // GR8 output argument. This is consistent with other similar instructions
120b57cec5SDimitry Andric // (e.g. movb), but means it is impossible to directly generate a setcc into
130b57cec5SDimitry Andric // the lower GR8 of a specified GR32.
140b57cec5SDimitry Andric // This means that ISel must select (zext (setcc)) into something like
150b57cec5SDimitry Andric // seta %al; movzbl %al, %eax.
160b57cec5SDimitry Andric // Unfortunately, this can cause a stall due to the partial register write
170b57cec5SDimitry Andric // performed by the setcc. Instead, we can use:
180b57cec5SDimitry Andric // xor %eax, %eax; seta %al
190b57cec5SDimitry Andric // This both avoids the stall, and encodes shorter.
200b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
210b57cec5SDimitry Andric 
220b57cec5SDimitry Andric #include "X86.h"
230b57cec5SDimitry Andric #include "X86InstrInfo.h"
240b57cec5SDimitry Andric #include "X86Subtarget.h"
250b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h"
260b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h"
270b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
280b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
290b57cec5SDimitry Andric 
300b57cec5SDimitry Andric using namespace llvm;
310b57cec5SDimitry Andric 
320b57cec5SDimitry Andric #define DEBUG_TYPE "x86-fixup-setcc"
330b57cec5SDimitry Andric 
340b57cec5SDimitry Andric STATISTIC(NumSubstZexts, "Number of setcc + zext pairs substituted");
350b57cec5SDimitry Andric 
360b57cec5SDimitry Andric namespace {
370b57cec5SDimitry Andric class X86FixupSetCCPass : public MachineFunctionPass {
380b57cec5SDimitry Andric public:
390b57cec5SDimitry Andric   X86FixupSetCCPass() : MachineFunctionPass(ID) {}
400b57cec5SDimitry Andric 
410b57cec5SDimitry Andric   StringRef getPassName() const override { return "X86 Fixup SetCC"; }
420b57cec5SDimitry Andric 
430b57cec5SDimitry Andric   bool runOnMachineFunction(MachineFunction &MF) override;
440b57cec5SDimitry Andric 
450b57cec5SDimitry Andric private:
460b57cec5SDimitry Andric   // Find the preceding instruction that imp-defs eflags.
470b57cec5SDimitry Andric   MachineInstr *findFlagsImpDef(MachineBasicBlock *MBB,
480b57cec5SDimitry Andric                                 MachineBasicBlock::reverse_iterator MI);
490b57cec5SDimitry Andric 
500b57cec5SDimitry Andric   // Return true if MI imp-uses eflags.
510b57cec5SDimitry Andric   bool impUsesFlags(MachineInstr *MI);
520b57cec5SDimitry Andric 
530b57cec5SDimitry Andric   // Return true if this is the opcode of a SetCC instruction with a register
540b57cec5SDimitry Andric   // output.
550b57cec5SDimitry Andric   bool isSetCCr(unsigned Opode);
560b57cec5SDimitry Andric 
570b57cec5SDimitry Andric   MachineRegisterInfo *MRI;
580b57cec5SDimitry Andric   const X86InstrInfo *TII;
590b57cec5SDimitry Andric 
600b57cec5SDimitry Andric   enum { SearchBound = 16 };
610b57cec5SDimitry Andric 
620b57cec5SDimitry Andric   static char ID;
630b57cec5SDimitry Andric };
640b57cec5SDimitry Andric 
650b57cec5SDimitry Andric char X86FixupSetCCPass::ID = 0;
660b57cec5SDimitry Andric }
670b57cec5SDimitry Andric 
680b57cec5SDimitry Andric FunctionPass *llvm::createX86FixupSetCC() { return new X86FixupSetCCPass(); }
690b57cec5SDimitry Andric 
700b57cec5SDimitry Andric // We expect the instruction *immediately* before the setcc to imp-def
710b57cec5SDimitry Andric // EFLAGS (because of scheduling glue). To make this less brittle w.r.t
720b57cec5SDimitry Andric // scheduling, look backwards until we hit the beginning of the
730b57cec5SDimitry Andric // basic-block, or a small bound (to avoid quadratic behavior).
740b57cec5SDimitry Andric MachineInstr *
750b57cec5SDimitry Andric X86FixupSetCCPass::findFlagsImpDef(MachineBasicBlock *MBB,
760b57cec5SDimitry Andric                                    MachineBasicBlock::reverse_iterator MI) {
770b57cec5SDimitry Andric   // FIXME: Should this be instr_rend(), and MI be reverse_instr_iterator?
780b57cec5SDimitry Andric   auto MBBStart = MBB->rend();
790b57cec5SDimitry Andric   for (int i = 0; (i < SearchBound) && (MI != MBBStart); ++i, ++MI)
800b57cec5SDimitry Andric     for (auto &Op : MI->implicit_operands())
810b57cec5SDimitry Andric       if (Op.isReg() && (Op.getReg() == X86::EFLAGS) && Op.isDef())
820b57cec5SDimitry Andric         return &*MI;
830b57cec5SDimitry Andric 
840b57cec5SDimitry Andric   return nullptr;
850b57cec5SDimitry Andric }
860b57cec5SDimitry Andric 
870b57cec5SDimitry Andric bool X86FixupSetCCPass::impUsesFlags(MachineInstr *MI) {
880b57cec5SDimitry Andric   for (auto &Op : MI->implicit_operands())
890b57cec5SDimitry Andric     if (Op.isReg() && (Op.getReg() == X86::EFLAGS) && Op.isUse())
900b57cec5SDimitry Andric       return true;
910b57cec5SDimitry Andric 
920b57cec5SDimitry Andric   return false;
930b57cec5SDimitry Andric }
940b57cec5SDimitry Andric 
950b57cec5SDimitry Andric bool X86FixupSetCCPass::runOnMachineFunction(MachineFunction &MF) {
960b57cec5SDimitry Andric   bool Changed = false;
970b57cec5SDimitry Andric   MRI = &MF.getRegInfo();
980b57cec5SDimitry Andric   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
990b57cec5SDimitry Andric 
1000b57cec5SDimitry Andric   SmallVector<MachineInstr*, 4> ToErase;
1010b57cec5SDimitry Andric 
1020b57cec5SDimitry Andric   for (auto &MBB : MF) {
1030b57cec5SDimitry Andric     for (auto &MI : MBB) {
1040b57cec5SDimitry Andric       // Find a setcc that is used by a zext.
1050b57cec5SDimitry Andric       // This doesn't have to be the only use, the transformation is safe
1060b57cec5SDimitry Andric       // regardless.
1070b57cec5SDimitry Andric       if (MI.getOpcode() != X86::SETCCr)
1080b57cec5SDimitry Andric         continue;
1090b57cec5SDimitry Andric 
1100b57cec5SDimitry Andric       MachineInstr *ZExt = nullptr;
1110b57cec5SDimitry Andric       for (auto &Use : MRI->use_instructions(MI.getOperand(0).getReg()))
1120b57cec5SDimitry Andric         if (Use.getOpcode() == X86::MOVZX32rr8)
1130b57cec5SDimitry Andric           ZExt = &Use;
1140b57cec5SDimitry Andric 
1150b57cec5SDimitry Andric       if (!ZExt)
1160b57cec5SDimitry Andric         continue;
1170b57cec5SDimitry Andric 
1180b57cec5SDimitry Andric       // Find the preceding instruction that imp-defs eflags.
1190b57cec5SDimitry Andric       MachineInstr *FlagsDefMI = findFlagsImpDef(
1200b57cec5SDimitry Andric           MI.getParent(), MachineBasicBlock::reverse_iterator(&MI));
1210b57cec5SDimitry Andric       if (!FlagsDefMI)
1220b57cec5SDimitry Andric         continue;
1230b57cec5SDimitry Andric 
1240b57cec5SDimitry Andric       // We'd like to put something that clobbers eflags directly before
1250b57cec5SDimitry Andric       // FlagsDefMI. This can't hurt anything after FlagsDefMI, because
1260b57cec5SDimitry Andric       // it, itself, by definition, clobbers eflags. But it may happen that
1270b57cec5SDimitry Andric       // FlagsDefMI also *uses* eflags, in which case the transformation is
1280b57cec5SDimitry Andric       // invalid.
1290b57cec5SDimitry Andric       if (impUsesFlags(FlagsDefMI))
1300b57cec5SDimitry Andric         continue;
1310b57cec5SDimitry Andric 
1320b57cec5SDimitry Andric       ++NumSubstZexts;
1330b57cec5SDimitry Andric       Changed = true;
1340b57cec5SDimitry Andric 
1350b57cec5SDimitry Andric       // On 32-bit, we need to be careful to force an ABCD register.
1360b57cec5SDimitry Andric       const TargetRegisterClass *RC = MF.getSubtarget<X86Subtarget>().is64Bit()
1370b57cec5SDimitry Andric                                           ? &X86::GR32RegClass
1380b57cec5SDimitry Andric                                           : &X86::GR32_ABCDRegClass;
139*8bcb0991SDimitry Andric       Register ZeroReg = MRI->createVirtualRegister(RC);
140*8bcb0991SDimitry Andric       Register InsertReg = MRI->createVirtualRegister(RC);
1410b57cec5SDimitry Andric 
1420b57cec5SDimitry Andric       // Initialize a register with 0. This must go before the eflags def
1430b57cec5SDimitry Andric       BuildMI(MBB, FlagsDefMI, MI.getDebugLoc(), TII->get(X86::MOV32r0),
1440b57cec5SDimitry Andric               ZeroReg);
1450b57cec5SDimitry Andric 
1460b57cec5SDimitry Andric       // X86 setcc only takes an output GR8, so fake a GR32 input by inserting
1470b57cec5SDimitry Andric       // the setcc result into the low byte of the zeroed register.
1480b57cec5SDimitry Andric       BuildMI(*ZExt->getParent(), ZExt, ZExt->getDebugLoc(),
1490b57cec5SDimitry Andric               TII->get(X86::INSERT_SUBREG), InsertReg)
1500b57cec5SDimitry Andric           .addReg(ZeroReg)
1510b57cec5SDimitry Andric           .addReg(MI.getOperand(0).getReg())
1520b57cec5SDimitry Andric           .addImm(X86::sub_8bit);
1530b57cec5SDimitry Andric       MRI->replaceRegWith(ZExt->getOperand(0).getReg(), InsertReg);
1540b57cec5SDimitry Andric       ToErase.push_back(ZExt);
1550b57cec5SDimitry Andric     }
1560b57cec5SDimitry Andric   }
1570b57cec5SDimitry Andric 
1580b57cec5SDimitry Andric   for (auto &I : ToErase)
1590b57cec5SDimitry Andric     I->eraseFromParent();
1600b57cec5SDimitry Andric 
1610b57cec5SDimitry Andric   return Changed;
1620b57cec5SDimitry Andric }
163