xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FixupLEAs.cpp (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that finds instructions that can be
10 // re-written as LEA instructions in order to reduce pipeline delays.
11 // It replaces LEAs with ADD/INC/DEC when that is better for size/speed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ProfileSummaryInfo.h"
20 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineSizeOpts.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29 
30 #define FIXUPLEA_DESC "X86 LEA Fixup"
31 #define FIXUPLEA_NAME "x86-fixup-LEAs"
32 
33 #define DEBUG_TYPE FIXUPLEA_NAME
34 
35 STATISTIC(NumLEAs, "Number of LEA instructions created");
36 
37 namespace {
38 class FixupLEAPass : public MachineFunctionPass {
39   enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
40 
41   /// Given a machine register, look for the instruction
42   /// which writes it in the current basic block. If found,
43   /// try to replace it with an equivalent LEA instruction.
44   /// If replacement succeeds, then also process the newly created
45   /// instruction.
46   void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
47                     MachineBasicBlock &MBB);
48 
49   /// Given a memory access or LEA instruction
50   /// whose address mode uses a base and/or index register, look for
51   /// an opportunity to replace the instruction which sets the base or index
52   /// register with an equivalent LEA instruction.
53   void processInstruction(MachineBasicBlock::iterator &I,
54                           MachineBasicBlock &MBB);
55 
56   /// Given a LEA instruction which is unprofitable
57   /// on SlowLEA targets try to replace it with an equivalent ADD instruction.
58   void processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
59                                     MachineBasicBlock &MBB);
60 
61   /// Given a LEA instruction which is unprofitable
62   /// on SNB+ try to replace it with other instructions.
63   /// According to Intel's Optimization Reference Manual:
64   /// " For LEA instructions with three source operands and some specific
65   ///   situations, instruction latency has increased to 3 cycles, and must
66   ///   dispatch via port 1:
67   /// - LEA that has all three source operands: base, index, and offset
68   /// - LEA that uses base and index registers where the base is EBP, RBP,
69   ///   or R13
70   /// - LEA that uses RIP relative addressing mode
71   /// - LEA that uses 16-bit addressing mode "
72   /// This function currently handles the first 2 cases only.
73   void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
74                                  MachineBasicBlock &MBB, bool OptIncDec);
75 
76   /// Look for LEAs that are really two address LEAs that we might be able to
77   /// turn into regular ADD instructions.
78   bool optTwoAddrLEA(MachineBasicBlock::iterator &I,
79                      MachineBasicBlock &MBB, bool OptIncDec,
80                      bool UseLEAForSP) const;
81 
82   /// Determine if an instruction references a machine register
83   /// and, if so, whether it reads or writes the register.
84   RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
85 
86   /// Step backwards through a basic block, looking
87   /// for an instruction which writes a register within
88   /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
89   MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
90                                               MachineBasicBlock::iterator &I,
91                                               MachineBasicBlock &MBB);
92 
93   /// if an instruction can be converted to an
94   /// equivalent LEA, insert the new instruction into the basic block
95   /// and return a pointer to it. Otherwise, return zero.
96   MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB,
97                                    MachineBasicBlock::iterator &MBBI) const;
98 
99 public:
100   static char ID;
101 
102   StringRef getPassName() const override { return FIXUPLEA_DESC; }
103 
104   FixupLEAPass() : MachineFunctionPass(ID) { }
105 
106   /// Loop over all of the basic blocks,
107   /// replacing instructions by equivalent LEA instructions
108   /// if needed and when possible.
109   bool runOnMachineFunction(MachineFunction &MF) override;
110 
111   // This pass runs after regalloc and doesn't support VReg operands.
112   MachineFunctionProperties getRequiredProperties() const override {
113     return MachineFunctionProperties().set(
114         MachineFunctionProperties::Property::NoVRegs);
115   }
116 
117   void getAnalysisUsage(AnalysisUsage &AU) const override {
118     AU.addRequired<ProfileSummaryInfoWrapperPass>();
119     AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
120     MachineFunctionPass::getAnalysisUsage(AU);
121   }
122 
123 private:
124   TargetSchedModel TSM;
125   const X86InstrInfo *TII = nullptr;
126   const X86RegisterInfo *TRI = nullptr;
127 };
128 }
129 
130 char FixupLEAPass::ID = 0;
131 
132 INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
133 
134 MachineInstr *
135 FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB,
136                                  MachineBasicBlock::iterator &MBBI) const {
137   MachineInstr &MI = *MBBI;
138   switch (MI.getOpcode()) {
139   case X86::MOV32rr:
140   case X86::MOV64rr: {
141     const MachineOperand &Src = MI.getOperand(1);
142     const MachineOperand &Dest = MI.getOperand(0);
143     MachineInstr *NewMI =
144         BuildMI(MBB, MBBI, MI.getDebugLoc(),
145                 TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
146                                                         : X86::LEA64r))
147             .add(Dest)
148             .add(Src)
149             .addImm(1)
150             .addReg(0)
151             .addImm(0)
152             .addReg(0);
153     return NewMI;
154   }
155   }
156 
157   if (!MI.isConvertibleTo3Addr())
158     return nullptr;
159 
160   switch (MI.getOpcode()) {
161   default:
162     // Only convert instructions that we've verified are safe.
163     return nullptr;
164   case X86::ADD64ri32:
165   case X86::ADD64ri8:
166   case X86::ADD64ri32_DB:
167   case X86::ADD64ri8_DB:
168   case X86::ADD32ri:
169   case X86::ADD32ri8:
170   case X86::ADD32ri_DB:
171   case X86::ADD32ri8_DB:
172     if (!MI.getOperand(2).isImm()) {
173       // convertToThreeAddress will call getImm()
174       // which requires isImm() to be true
175       return nullptr;
176     }
177     break;
178   case X86::SHL64ri:
179   case X86::SHL32ri:
180   case X86::INC64r:
181   case X86::INC32r:
182   case X86::DEC64r:
183   case X86::DEC32r:
184   case X86::ADD64rr:
185   case X86::ADD64rr_DB:
186   case X86::ADD32rr:
187   case X86::ADD32rr_DB:
188     // These instructions are all fine to convert.
189     break;
190   }
191   MachineFunction::iterator MFI = MBB.getIterator();
192   return TII->convertToThreeAddress(MFI, MI, nullptr);
193 }
194 
195 FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
196 
197 static bool isLEA(unsigned Opcode) {
198   return Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
199          Opcode == X86::LEA64_32r;
200 }
201 
202 bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) {
203   if (skipFunction(MF.getFunction()))
204     return false;
205 
206   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
207   bool IsSlowLEA = ST.slowLEA();
208   bool IsSlow3OpsLEA = ST.slow3OpsLEA();
209   bool LEAUsesAG = ST.LEAusesAG();
210 
211   bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize();
212   bool UseLEAForSP = ST.useLeaForSP();
213 
214   TSM.init(&ST);
215   TII = ST.getInstrInfo();
216   TRI = ST.getRegisterInfo();
217   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
218   auto *MBFI = (PSI && PSI->hasProfileSummary())
219                    ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()
220                    : nullptr;
221 
222   LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
223   for (MachineBasicBlock &MBB : MF) {
224     // First pass. Try to remove or optimize existing LEAs.
225     bool OptIncDecPerBB =
226         OptIncDec || llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
227     for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
228       if (!isLEA(I->getOpcode()))
229         continue;
230 
231       if (optTwoAddrLEA(I, MBB, OptIncDecPerBB, UseLEAForSP))
232         continue;
233 
234       if (IsSlowLEA)
235         processInstructionForSlowLEA(I, MBB);
236       else if (IsSlow3OpsLEA)
237         processInstrForSlow3OpLEA(I, MBB, OptIncDecPerBB);
238     }
239 
240     // Second pass for creating LEAs. This may reverse some of the
241     // transformations above.
242     if (LEAUsesAG) {
243       for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I)
244         processInstruction(I, MBB);
245     }
246   }
247 
248   LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
249 
250   return true;
251 }
252 
253 FixupLEAPass::RegUsageState
254 FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
255   RegUsageState RegUsage = RU_NotUsed;
256   MachineInstr &MI = *I;
257 
258   for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
259     MachineOperand &opnd = MI.getOperand(i);
260     if (opnd.isReg() && opnd.getReg() == p.getReg()) {
261       if (opnd.isDef())
262         return RU_Write;
263       RegUsage = RU_Read;
264     }
265   }
266   return RegUsage;
267 }
268 
269 /// getPreviousInstr - Given a reference to an instruction in a basic
270 /// block, return a reference to the previous instruction in the block,
271 /// wrapping around to the last instruction of the block if the block
272 /// branches to itself.
273 static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
274                                     MachineBasicBlock &MBB) {
275   if (I == MBB.begin()) {
276     if (MBB.isPredecessor(&MBB)) {
277       I = --MBB.end();
278       return true;
279     } else
280       return false;
281   }
282   --I;
283   return true;
284 }
285 
286 MachineBasicBlock::iterator
287 FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
288                               MachineBasicBlock &MBB) {
289   int InstrDistance = 1;
290   MachineBasicBlock::iterator CurInst;
291   static const int INSTR_DISTANCE_THRESHOLD = 5;
292 
293   CurInst = I;
294   bool Found;
295   Found = getPreviousInstr(CurInst, MBB);
296   while (Found && I != CurInst) {
297     if (CurInst->isCall() || CurInst->isInlineAsm())
298       break;
299     if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
300       break; // too far back to make a difference
301     if (usesRegister(p, CurInst) == RU_Write) {
302       return CurInst;
303     }
304     InstrDistance += TSM.computeInstrLatency(&*CurInst);
305     Found = getPreviousInstr(CurInst, MBB);
306   }
307   return MachineBasicBlock::iterator();
308 }
309 
310 static inline bool isInefficientLEAReg(unsigned Reg) {
311   return Reg == X86::EBP || Reg == X86::RBP ||
312          Reg == X86::R13D || Reg == X86::R13;
313 }
314 
315 /// Returns true if this LEA uses base an index registers, and the base register
316 /// is known to be inefficient for the subtarget.
317 // TODO: use a variant scheduling class to model the latency profile
318 // of LEA instructions, and implement this logic as a scheduling predicate.
319 static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
320                                             const MachineOperand &Index) {
321   return Base.isReg() && isInefficientLEAReg(Base.getReg()) && Index.isReg() &&
322          Index.getReg() != X86::NoRegister;
323 }
324 
325 static inline bool hasLEAOffset(const MachineOperand &Offset) {
326   return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
327 }
328 
329 static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) {
330   switch (LEAOpcode) {
331   default:
332     llvm_unreachable("Unexpected LEA instruction");
333   case X86::LEA32r:
334   case X86::LEA64_32r:
335     return X86::ADD32rr;
336   case X86::LEA64r:
337     return X86::ADD64rr;
338   }
339 }
340 
341 static inline unsigned getADDriFromLEA(unsigned LEAOpcode,
342                                        const MachineOperand &Offset) {
343   bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
344   switch (LEAOpcode) {
345   default:
346     llvm_unreachable("Unexpected LEA instruction");
347   case X86::LEA32r:
348   case X86::LEA64_32r:
349     return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
350   case X86::LEA64r:
351     return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
352   }
353 }
354 
355 static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) {
356   switch (LEAOpcode) {
357   default:
358     llvm_unreachable("Unexpected LEA instruction");
359   case X86::LEA32r:
360   case X86::LEA64_32r:
361     return IsINC ? X86::INC32r : X86::DEC32r;
362   case X86::LEA64r:
363     return IsINC ? X86::INC64r : X86::DEC64r;
364   }
365 }
366 
367 bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I,
368                                  MachineBasicBlock &MBB, bool OptIncDec,
369                                  bool UseLEAForSP) const {
370   MachineInstr &MI = *I;
371 
372   const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
373   const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
374   const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
375   const MachineOperand &Disp =    MI.getOperand(1 + X86::AddrDisp);
376   const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
377 
378   if (Segment.getReg() != 0 || !Disp.isImm() || Scale.getImm() > 1 ||
379       !TII->isSafeToClobberEFLAGS(MBB, I))
380     return false;
381 
382   Register DestReg = MI.getOperand(0).getReg();
383   Register BaseReg = Base.getReg();
384   Register IndexReg = Index.getReg();
385 
386   // Don't change stack adjustment LEAs.
387   if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP))
388     return false;
389 
390   // LEA64_32 has 64-bit operands but 32-bit result.
391   if (MI.getOpcode() == X86::LEA64_32r) {
392     if (BaseReg != 0)
393       BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
394     if (IndexReg != 0)
395       IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
396   }
397 
398   MachineInstr *NewMI = nullptr;
399 
400   // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1
401   // which can be turned into add %reg2, %reg1
402   if (BaseReg != 0 && IndexReg != 0 && Disp.getImm() == 0 &&
403       (DestReg == BaseReg || DestReg == IndexReg)) {
404     unsigned NewOpcode = getADDrrFromLEA(MI.getOpcode());
405     if (DestReg != BaseReg)
406       std::swap(BaseReg, IndexReg);
407 
408     if (MI.getOpcode() == X86::LEA64_32r) {
409       // TODO: Do we need the super register implicit use?
410       NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
411         .addReg(BaseReg).addReg(IndexReg)
412         .addReg(Base.getReg(), RegState::Implicit)
413         .addReg(Index.getReg(), RegState::Implicit);
414     } else {
415       NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
416         .addReg(BaseReg).addReg(IndexReg);
417     }
418   } else if (DestReg == BaseReg && IndexReg == 0) {
419     // This is an LEA with only a base register and a displacement,
420     // We can use ADDri or INC/DEC.
421 
422     // Does this LEA have one these forms:
423     // lea  %reg, 1(%reg)
424     // lea  %reg, -1(%reg)
425     if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) {
426       bool IsINC = Disp.getImm() == 1;
427       unsigned NewOpcode = getINCDECFromLEA(MI.getOpcode(), IsINC);
428 
429       if (MI.getOpcode() == X86::LEA64_32r) {
430         // TODO: Do we need the super register implicit use?
431         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
432           .addReg(BaseReg).addReg(Base.getReg(), RegState::Implicit);
433       } else {
434         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
435           .addReg(BaseReg);
436       }
437     } else {
438       unsigned NewOpcode = getADDriFromLEA(MI.getOpcode(), Disp);
439       if (MI.getOpcode() == X86::LEA64_32r) {
440         // TODO: Do we need the super register implicit use?
441         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
442           .addReg(BaseReg).addImm(Disp.getImm())
443           .addReg(Base.getReg(), RegState::Implicit);
444       } else {
445         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
446           .addReg(BaseReg).addImm(Disp.getImm());
447       }
448     }
449   } else
450     return false;
451 
452   MBB.erase(I);
453   I = NewMI;
454   return true;
455 }
456 
457 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
458                                       MachineBasicBlock &MBB) {
459   // Process a load, store, or LEA instruction.
460   MachineInstr &MI = *I;
461   const MCInstrDesc &Desc = MI.getDesc();
462   int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
463   if (AddrOffset >= 0) {
464     AddrOffset += X86II::getOperandBias(Desc);
465     MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
466     if (p.isReg() && p.getReg() != X86::ESP) {
467       seekLEAFixup(p, I, MBB);
468     }
469     MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
470     if (q.isReg() && q.getReg() != X86::ESP) {
471       seekLEAFixup(q, I, MBB);
472     }
473   }
474 }
475 
476 void FixupLEAPass::seekLEAFixup(MachineOperand &p,
477                                 MachineBasicBlock::iterator &I,
478                                 MachineBasicBlock &MBB) {
479   MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB);
480   if (MBI != MachineBasicBlock::iterator()) {
481     MachineInstr *NewMI = postRAConvertToLEA(MBB, MBI);
482     if (NewMI) {
483       ++NumLEAs;
484       LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
485       // now to replace with an equivalent LEA...
486       LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
487       MBB.erase(MBI);
488       MachineBasicBlock::iterator J =
489           static_cast<MachineBasicBlock::iterator>(NewMI);
490       processInstruction(J, MBB);
491     }
492   }
493 }
494 
495 void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
496                                                 MachineBasicBlock &MBB) {
497   MachineInstr &MI = *I;
498   const unsigned Opcode = MI.getOpcode();
499 
500   const MachineOperand &Dst =     MI.getOperand(0);
501   const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
502   const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
503   const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
504   const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp);
505   const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
506 
507   if (Segment.getReg() != 0 || !Offset.isImm() ||
508       !TII->isSafeToClobberEFLAGS(MBB, I))
509     return;
510   const Register DstR = Dst.getReg();
511   const Register SrcR1 = Base.getReg();
512   const Register SrcR2 = Index.getReg();
513   if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
514     return;
515   if (Scale.getImm() > 1)
516     return;
517   LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
518   LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
519   MachineInstr *NewMI = nullptr;
520   // Make ADD instruction for two registers writing to LEA's destination
521   if (SrcR1 != 0 && SrcR2 != 0) {
522     const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
523     const MachineOperand &Src = SrcR1 == DstR ? Index : Base;
524     NewMI =
525         BuildMI(MBB, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
526     LLVM_DEBUG(NewMI->dump(););
527   }
528   // Make ADD instruction for immediate
529   if (Offset.getImm() != 0) {
530     const MCInstrDesc &ADDri =
531         TII->get(getADDriFromLEA(Opcode, Offset));
532     const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index;
533     NewMI = BuildMI(MBB, I, MI.getDebugLoc(), ADDri, DstR)
534                 .add(SrcR)
535                 .addImm(Offset.getImm());
536     LLVM_DEBUG(NewMI->dump(););
537   }
538   if (NewMI) {
539     MBB.erase(I);
540     I = NewMI;
541   }
542 }
543 
544 void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
545                                              MachineBasicBlock &MBB,
546                                              bool OptIncDec) {
547   MachineInstr &MI = *I;
548   const unsigned LEAOpcode = MI.getOpcode();
549 
550   const MachineOperand &Dest =    MI.getOperand(0);
551   const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
552   const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
553   const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
554   const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp);
555   const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
556 
557   if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) ||
558       !TII->isSafeToClobberEFLAGS(MBB, MI) ||
559       Segment.getReg() != X86::NoRegister)
560     return;
561 
562   Register DestReg = Dest.getReg();
563   Register BaseReg = Base.getReg();
564   Register IndexReg = Index.getReg();
565 
566   if (MI.getOpcode() == X86::LEA64_32r) {
567     if (BaseReg != 0)
568       BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
569     if (IndexReg != 0)
570       IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
571   }
572 
573   bool IsScale1 = Scale.getImm() == 1;
574   bool IsInefficientBase = isInefficientLEAReg(BaseReg);
575   bool IsInefficientIndex = isInefficientLEAReg(IndexReg);
576 
577   // Skip these cases since it takes more than 2 instructions
578   // to replace the LEA instruction.
579   if (IsInefficientBase && DestReg == BaseReg && !IsScale1)
580     return;
581 
582   LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
583   LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
584 
585   MachineInstr *NewMI = nullptr;
586 
587   // First try to replace LEA with one or two (for the 3-op LEA case)
588   // add instructions:
589   // 1.lea (%base,%index,1), %base => add %index,%base
590   // 2.lea (%base,%index,1), %index => add %base,%index
591   if (IsScale1 && (DestReg == BaseReg || DestReg == IndexReg)) {
592     unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
593     if (DestReg != BaseReg)
594       std::swap(BaseReg, IndexReg);
595 
596     if (MI.getOpcode() == X86::LEA64_32r) {
597       // TODO: Do we need the super register implicit use?
598       NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
599                   .addReg(BaseReg)
600                   .addReg(IndexReg)
601                   .addReg(Base.getReg(), RegState::Implicit)
602                   .addReg(Index.getReg(), RegState::Implicit);
603     } else {
604       NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
605                   .addReg(BaseReg)
606                   .addReg(IndexReg);
607     }
608   } else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
609     // If the base is inefficient try switching the index and base operands,
610     // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
611     // lea offset(%base,%index,scale),%dst =>
612     // lea (%base,%index,scale); add offset,%dst
613     NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
614                 .add(Dest)
615                 .add(IsInefficientBase ? Index : Base)
616                 .add(Scale)
617                 .add(IsInefficientBase ? Base : Index)
618                 .addImm(0)
619                 .add(Segment);
620     LLVM_DEBUG(NewMI->dump(););
621   }
622 
623   // If either replacement succeeded above, add the offset if needed, then
624   // replace the instruction.
625   if (NewMI) {
626     // Create ADD instruction for the Offset in case of 3-Ops LEA.
627     if (hasLEAOffset(Offset)) {
628       if (OptIncDec && Offset.isImm() &&
629           (Offset.getImm() == 1 || Offset.getImm() == -1)) {
630         unsigned NewOpc =
631             getINCDECFromLEA(MI.getOpcode(), Offset.getImm() == 1);
632         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
633                     .addReg(DestReg);
634         LLVM_DEBUG(NewMI->dump(););
635       } else {
636         unsigned NewOpc = getADDriFromLEA(MI.getOpcode(), Offset);
637         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
638                     .addReg(DestReg)
639                     .add(Offset);
640         LLVM_DEBUG(NewMI->dump(););
641       }
642     }
643 
644     MBB.erase(I);
645     I = NewMI;
646     return;
647   }
648 
649   // Handle the rest of the cases with inefficient base register:
650   assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!");
651   assert(IsInefficientBase && "efficient base should be handled already!");
652 
653   // FIXME: Handle LEA64_32r.
654   if (LEAOpcode == X86::LEA64_32r)
655     return;
656 
657   // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
658   if (IsScale1 && !hasLEAOffset(Offset)) {
659     bool BIK = Base.isKill() && BaseReg != IndexReg;
660     TII->copyPhysReg(MBB, MI, MI.getDebugLoc(), DestReg, BaseReg, BIK);
661     LLVM_DEBUG(MI.getPrevNode()->dump(););
662 
663     unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
664     NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
665                 .addReg(DestReg)
666                 .add(Index);
667     LLVM_DEBUG(NewMI->dump(););
668 
669     MBB.erase(I);
670     I = NewMI;
671     return;
672   }
673 
674   // lea offset(%base,%index,scale), %dst =>
675   // lea offset( ,%index,scale), %dst; add %base,%dst
676   NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
677               .add(Dest)
678               .addReg(0)
679               .add(Scale)
680               .add(Index)
681               .add(Offset)
682               .add(Segment);
683   LLVM_DEBUG(NewMI->dump(););
684 
685   unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
686   NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
687               .addReg(DestReg)
688               .add(Base);
689   LLVM_DEBUG(NewMI->dump(););
690 
691   MBB.erase(I);
692   I = NewMI;
693 }
694