xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FixupLEAs.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that finds instructions that can be
10 // re-written as LEA instructions in order to reduce pipeline delays.
11 // It replaces LEAs with ADD/INC/DEC when that is better for size/speed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace llvm;
26 
27 #define FIXUPLEA_DESC "X86 LEA Fixup"
28 #define FIXUPLEA_NAME "x86-fixup-LEAs"
29 
30 #define DEBUG_TYPE FIXUPLEA_NAME
31 
32 STATISTIC(NumLEAs, "Number of LEA instructions created");
33 
34 namespace {
35 class FixupLEAPass : public MachineFunctionPass {
36   enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
37 
38   /// Given a machine register, look for the instruction
39   /// which writes it in the current basic block. If found,
40   /// try to replace it with an equivalent LEA instruction.
41   /// If replacement succeeds, then also process the newly created
42   /// instruction.
43   void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
44                     MachineBasicBlock &MBB);
45 
46   /// Given a memory access or LEA instruction
47   /// whose address mode uses a base and/or index register, look for
48   /// an opportunity to replace the instruction which sets the base or index
49   /// register with an equivalent LEA instruction.
50   void processInstruction(MachineBasicBlock::iterator &I,
51                           MachineBasicBlock &MBB);
52 
53   /// Given a LEA instruction which is unprofitable
54   /// on SlowLEA targets try to replace it with an equivalent ADD instruction.
55   void processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
56                                     MachineBasicBlock &MBB);
57 
58   /// Given a LEA instruction which is unprofitable
59   /// on SNB+ try to replace it with other instructions.
60   /// According to Intel's Optimization Reference Manual:
61   /// " For LEA instructions with three source operands and some specific
62   ///   situations, instruction latency has increased to 3 cycles, and must
63   ///   dispatch via port 1:
64   /// - LEA that has all three source operands: base, index, and offset
65   /// - LEA that uses base and index registers where the base is EBP, RBP,
66   ///   or R13
67   /// - LEA that uses RIP relative addressing mode
68   /// - LEA that uses 16-bit addressing mode "
69   /// This function currently handles the first 2 cases only.
70   void processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
71                                  MachineBasicBlock &MBB, bool OptIncDec);
72 
73   /// Look for LEAs that are really two address LEAs that we might be able to
74   /// turn into regular ADD instructions.
75   bool optTwoAddrLEA(MachineBasicBlock::iterator &I,
76                      MachineBasicBlock &MBB, bool OptIncDec,
77                      bool UseLEAForSP) const;
78 
79   /// Determine if an instruction references a machine register
80   /// and, if so, whether it reads or writes the register.
81   RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
82 
83   /// Step backwards through a basic block, looking
84   /// for an instruction which writes a register within
85   /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
86   MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
87                                               MachineBasicBlock::iterator &I,
88                                               MachineBasicBlock &MBB);
89 
90   /// if an instruction can be converted to an
91   /// equivalent LEA, insert the new instruction into the basic block
92   /// and return a pointer to it. Otherwise, return zero.
93   MachineInstr *postRAConvertToLEA(MachineBasicBlock &MBB,
94                                    MachineBasicBlock::iterator &MBBI) const;
95 
96 public:
97   static char ID;
98 
99   StringRef getPassName() const override { return FIXUPLEA_DESC; }
100 
101   FixupLEAPass() : MachineFunctionPass(ID) { }
102 
103   /// Loop over all of the basic blocks,
104   /// replacing instructions by equivalent LEA instructions
105   /// if needed and when possible.
106   bool runOnMachineFunction(MachineFunction &MF) override;
107 
108   // This pass runs after regalloc and doesn't support VReg operands.
109   MachineFunctionProperties getRequiredProperties() const override {
110     return MachineFunctionProperties().set(
111         MachineFunctionProperties::Property::NoVRegs);
112   }
113 
114 private:
115   TargetSchedModel TSM;
116   const X86InstrInfo *TII = nullptr;
117   const X86RegisterInfo *TRI = nullptr;
118 };
119 }
120 
121 char FixupLEAPass::ID = 0;
122 
123 INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
124 
125 MachineInstr *
126 FixupLEAPass::postRAConvertToLEA(MachineBasicBlock &MBB,
127                                  MachineBasicBlock::iterator &MBBI) const {
128   MachineInstr &MI = *MBBI;
129   switch (MI.getOpcode()) {
130   case X86::MOV32rr:
131   case X86::MOV64rr: {
132     const MachineOperand &Src = MI.getOperand(1);
133     const MachineOperand &Dest = MI.getOperand(0);
134     MachineInstr *NewMI =
135         BuildMI(MBB, MBBI, MI.getDebugLoc(),
136                 TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
137                                                         : X86::LEA64r))
138             .add(Dest)
139             .add(Src)
140             .addImm(1)
141             .addReg(0)
142             .addImm(0)
143             .addReg(0);
144     return NewMI;
145   }
146   }
147 
148   if (!MI.isConvertibleTo3Addr())
149     return nullptr;
150 
151   switch (MI.getOpcode()) {
152   default:
153     // Only convert instructions that we've verified are safe.
154     return nullptr;
155   case X86::ADD64ri32:
156   case X86::ADD64ri8:
157   case X86::ADD64ri32_DB:
158   case X86::ADD64ri8_DB:
159   case X86::ADD32ri:
160   case X86::ADD32ri8:
161   case X86::ADD32ri_DB:
162   case X86::ADD32ri8_DB:
163     if (!MI.getOperand(2).isImm()) {
164       // convertToThreeAddress will call getImm()
165       // which requires isImm() to be true
166       return nullptr;
167     }
168     break;
169   case X86::SHL64ri:
170   case X86::SHL32ri:
171   case X86::INC64r:
172   case X86::INC32r:
173   case X86::DEC64r:
174   case X86::DEC32r:
175   case X86::ADD64rr:
176   case X86::ADD64rr_DB:
177   case X86::ADD32rr:
178   case X86::ADD32rr_DB:
179     // These instructions are all fine to convert.
180     break;
181   }
182   MachineFunction::iterator MFI = MBB.getIterator();
183   return TII->convertToThreeAddress(MFI, MI, nullptr);
184 }
185 
186 FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
187 
188 static bool isLEA(unsigned Opcode) {
189   return Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
190          Opcode == X86::LEA64_32r;
191 }
192 
193 bool FixupLEAPass::runOnMachineFunction(MachineFunction &MF) {
194   if (skipFunction(MF.getFunction()))
195     return false;
196 
197   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
198   bool IsSlowLEA = ST.slowLEA();
199   bool IsSlow3OpsLEA = ST.slow3OpsLEA();
200   bool LEAUsesAG = ST.LEAusesAG();
201 
202   bool OptIncDec = !ST.slowIncDec() || MF.getFunction().hasOptSize();
203   bool UseLEAForSP = ST.useLeaForSP();
204 
205   TSM.init(&ST);
206   TII = ST.getInstrInfo();
207   TRI = ST.getRegisterInfo();
208 
209   LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
210   for (MachineBasicBlock &MBB : MF) {
211     // First pass. Try to remove or optimize existing LEAs.
212     for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
213       if (!isLEA(I->getOpcode()))
214         continue;
215 
216       if (optTwoAddrLEA(I, MBB, OptIncDec, UseLEAForSP))
217         continue;
218 
219       if (IsSlowLEA)
220         processInstructionForSlowLEA(I, MBB);
221       else if (IsSlow3OpsLEA)
222         processInstrForSlow3OpLEA(I, MBB, OptIncDec);
223     }
224 
225     // Second pass for creating LEAs. This may reverse some of the
226     // transformations above.
227     if (LEAUsesAG) {
228       for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I)
229         processInstruction(I, MBB);
230     }
231   }
232 
233   LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
234 
235   return true;
236 }
237 
238 FixupLEAPass::RegUsageState
239 FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
240   RegUsageState RegUsage = RU_NotUsed;
241   MachineInstr &MI = *I;
242 
243   for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
244     MachineOperand &opnd = MI.getOperand(i);
245     if (opnd.isReg() && opnd.getReg() == p.getReg()) {
246       if (opnd.isDef())
247         return RU_Write;
248       RegUsage = RU_Read;
249     }
250   }
251   return RegUsage;
252 }
253 
254 /// getPreviousInstr - Given a reference to an instruction in a basic
255 /// block, return a reference to the previous instruction in the block,
256 /// wrapping around to the last instruction of the block if the block
257 /// branches to itself.
258 static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
259                                     MachineBasicBlock &MBB) {
260   if (I == MBB.begin()) {
261     if (MBB.isPredecessor(&MBB)) {
262       I = --MBB.end();
263       return true;
264     } else
265       return false;
266   }
267   --I;
268   return true;
269 }
270 
271 MachineBasicBlock::iterator
272 FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
273                               MachineBasicBlock &MBB) {
274   int InstrDistance = 1;
275   MachineBasicBlock::iterator CurInst;
276   static const int INSTR_DISTANCE_THRESHOLD = 5;
277 
278   CurInst = I;
279   bool Found;
280   Found = getPreviousInstr(CurInst, MBB);
281   while (Found && I != CurInst) {
282     if (CurInst->isCall() || CurInst->isInlineAsm())
283       break;
284     if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
285       break; // too far back to make a difference
286     if (usesRegister(p, CurInst) == RU_Write) {
287       return CurInst;
288     }
289     InstrDistance += TSM.computeInstrLatency(&*CurInst);
290     Found = getPreviousInstr(CurInst, MBB);
291   }
292   return MachineBasicBlock::iterator();
293 }
294 
295 static inline bool isInefficientLEAReg(unsigned Reg) {
296   return Reg == X86::EBP || Reg == X86::RBP ||
297          Reg == X86::R13D || Reg == X86::R13;
298 }
299 
300 /// Returns true if this LEA uses base an index registers, and the base register
301 /// is known to be inefficient for the subtarget.
302 // TODO: use a variant scheduling class to model the latency profile
303 // of LEA instructions, and implement this logic as a scheduling predicate.
304 static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
305                                             const MachineOperand &Index) {
306   return Base.isReg() && isInefficientLEAReg(Base.getReg()) && Index.isReg() &&
307          Index.getReg() != X86::NoRegister;
308 }
309 
310 static inline bool hasLEAOffset(const MachineOperand &Offset) {
311   return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
312 }
313 
314 static inline unsigned getADDrrFromLEA(unsigned LEAOpcode) {
315   switch (LEAOpcode) {
316   default:
317     llvm_unreachable("Unexpected LEA instruction");
318   case X86::LEA32r:
319   case X86::LEA64_32r:
320     return X86::ADD32rr;
321   case X86::LEA64r:
322     return X86::ADD64rr;
323   }
324 }
325 
326 static inline unsigned getADDriFromLEA(unsigned LEAOpcode,
327                                        const MachineOperand &Offset) {
328   bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
329   switch (LEAOpcode) {
330   default:
331     llvm_unreachable("Unexpected LEA instruction");
332   case X86::LEA32r:
333   case X86::LEA64_32r:
334     return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
335   case X86::LEA64r:
336     return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
337   }
338 }
339 
340 static inline unsigned getINCDECFromLEA(unsigned LEAOpcode, bool IsINC) {
341   switch (LEAOpcode) {
342   default:
343     llvm_unreachable("Unexpected LEA instruction");
344   case X86::LEA32r:
345   case X86::LEA64_32r:
346     return IsINC ? X86::INC32r : X86::DEC32r;
347   case X86::LEA64r:
348     return IsINC ? X86::INC64r : X86::DEC64r;
349   }
350 }
351 
352 bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator &I,
353                                  MachineBasicBlock &MBB, bool OptIncDec,
354                                  bool UseLEAForSP) const {
355   MachineInstr &MI = *I;
356 
357   const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
358   const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
359   const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
360   const MachineOperand &Disp =    MI.getOperand(1 + X86::AddrDisp);
361   const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
362 
363   if (Segment.getReg() != 0 || !Disp.isImm() || Scale.getImm() > 1 ||
364       !TII->isSafeToClobberEFLAGS(MBB, I))
365     return false;
366 
367   Register DestReg = MI.getOperand(0).getReg();
368   Register BaseReg = Base.getReg();
369   Register IndexReg = Index.getReg();
370 
371   // Don't change stack adjustment LEAs.
372   if (UseLEAForSP && (DestReg == X86::ESP || DestReg == X86::RSP))
373     return false;
374 
375   // LEA64_32 has 64-bit operands but 32-bit result.
376   if (MI.getOpcode() == X86::LEA64_32r) {
377     if (BaseReg != 0)
378       BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
379     if (IndexReg != 0)
380       IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
381   }
382 
383   MachineInstr *NewMI = nullptr;
384 
385   // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1
386   // which can be turned into add %reg2, %reg1
387   if (BaseReg != 0 && IndexReg != 0 && Disp.getImm() == 0 &&
388       (DestReg == BaseReg || DestReg == IndexReg)) {
389     unsigned NewOpcode = getADDrrFromLEA(MI.getOpcode());
390     if (DestReg != BaseReg)
391       std::swap(BaseReg, IndexReg);
392 
393     if (MI.getOpcode() == X86::LEA64_32r) {
394       // TODO: Do we need the super register implicit use?
395       NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
396         .addReg(BaseReg).addReg(IndexReg)
397         .addReg(Base.getReg(), RegState::Implicit)
398         .addReg(Index.getReg(), RegState::Implicit);
399     } else {
400       NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
401         .addReg(BaseReg).addReg(IndexReg);
402     }
403   } else if (DestReg == BaseReg && IndexReg == 0) {
404     // This is an LEA with only a base register and a displacement,
405     // We can use ADDri or INC/DEC.
406 
407     // Does this LEA have one these forms:
408     // lea  %reg, 1(%reg)
409     // lea  %reg, -1(%reg)
410     if (OptIncDec && (Disp.getImm() == 1 || Disp.getImm() == -1)) {
411       bool IsINC = Disp.getImm() == 1;
412       unsigned NewOpcode = getINCDECFromLEA(MI.getOpcode(), IsINC);
413 
414       if (MI.getOpcode() == X86::LEA64_32r) {
415         // TODO: Do we need the super register implicit use?
416         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
417           .addReg(BaseReg).addReg(Base.getReg(), RegState::Implicit);
418       } else {
419         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
420           .addReg(BaseReg);
421       }
422     } else {
423       unsigned NewOpcode = getADDriFromLEA(MI.getOpcode(), Disp);
424       if (MI.getOpcode() == X86::LEA64_32r) {
425         // TODO: Do we need the super register implicit use?
426         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
427           .addReg(BaseReg).addImm(Disp.getImm())
428           .addReg(Base.getReg(), RegState::Implicit);
429       } else {
430         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpcode), DestReg)
431           .addReg(BaseReg).addImm(Disp.getImm());
432       }
433     }
434   } else
435     return false;
436 
437   MBB.erase(I);
438   I = NewMI;
439   return true;
440 }
441 
442 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
443                                       MachineBasicBlock &MBB) {
444   // Process a load, store, or LEA instruction.
445   MachineInstr &MI = *I;
446   const MCInstrDesc &Desc = MI.getDesc();
447   int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
448   if (AddrOffset >= 0) {
449     AddrOffset += X86II::getOperandBias(Desc);
450     MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
451     if (p.isReg() && p.getReg() != X86::ESP) {
452       seekLEAFixup(p, I, MBB);
453     }
454     MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
455     if (q.isReg() && q.getReg() != X86::ESP) {
456       seekLEAFixup(q, I, MBB);
457     }
458   }
459 }
460 
461 void FixupLEAPass::seekLEAFixup(MachineOperand &p,
462                                 MachineBasicBlock::iterator &I,
463                                 MachineBasicBlock &MBB) {
464   MachineBasicBlock::iterator MBI = searchBackwards(p, I, MBB);
465   if (MBI != MachineBasicBlock::iterator()) {
466     MachineInstr *NewMI = postRAConvertToLEA(MBB, MBI);
467     if (NewMI) {
468       ++NumLEAs;
469       LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
470       // now to replace with an equivalent LEA...
471       LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
472       MBB.erase(MBI);
473       MachineBasicBlock::iterator J =
474           static_cast<MachineBasicBlock::iterator>(NewMI);
475       processInstruction(J, MBB);
476     }
477   }
478 }
479 
480 void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator &I,
481                                                 MachineBasicBlock &MBB) {
482   MachineInstr &MI = *I;
483   const unsigned Opcode = MI.getOpcode();
484 
485   const MachineOperand &Dst =     MI.getOperand(0);
486   const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
487   const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
488   const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
489   const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp);
490   const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
491 
492   if (Segment.getReg() != 0 || !Offset.isImm() ||
493       !TII->isSafeToClobberEFLAGS(MBB, I))
494     return;
495   const Register DstR = Dst.getReg();
496   const Register SrcR1 = Base.getReg();
497   const Register SrcR2 = Index.getReg();
498   if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
499     return;
500   if (Scale.getImm() > 1)
501     return;
502   LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
503   LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
504   MachineInstr *NewMI = nullptr;
505   // Make ADD instruction for two registers writing to LEA's destination
506   if (SrcR1 != 0 && SrcR2 != 0) {
507     const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
508     const MachineOperand &Src = SrcR1 == DstR ? Index : Base;
509     NewMI =
510         BuildMI(MBB, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
511     LLVM_DEBUG(NewMI->dump(););
512   }
513   // Make ADD instruction for immediate
514   if (Offset.getImm() != 0) {
515     const MCInstrDesc &ADDri =
516         TII->get(getADDriFromLEA(Opcode, Offset));
517     const MachineOperand &SrcR = SrcR1 == DstR ? Base : Index;
518     NewMI = BuildMI(MBB, I, MI.getDebugLoc(), ADDri, DstR)
519                 .add(SrcR)
520                 .addImm(Offset.getImm());
521     LLVM_DEBUG(NewMI->dump(););
522   }
523   if (NewMI) {
524     MBB.erase(I);
525     I = NewMI;
526   }
527 }
528 
529 void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator &I,
530                                              MachineBasicBlock &MBB,
531                                              bool OptIncDec) {
532   MachineInstr &MI = *I;
533   const unsigned LEAOpcode = MI.getOpcode();
534 
535   const MachineOperand &Dest =    MI.getOperand(0);
536   const MachineOperand &Base =    MI.getOperand(1 + X86::AddrBaseReg);
537   const MachineOperand &Scale =   MI.getOperand(1 + X86::AddrScaleAmt);
538   const MachineOperand &Index =   MI.getOperand(1 + X86::AddrIndexReg);
539   const MachineOperand &Offset =  MI.getOperand(1 + X86::AddrDisp);
540   const MachineOperand &Segment = MI.getOperand(1 + X86::AddrSegmentReg);
541 
542   if (!(TII->isThreeOperandsLEA(MI) || hasInefficientLEABaseReg(Base, Index)) ||
543       !TII->isSafeToClobberEFLAGS(MBB, MI) ||
544       Segment.getReg() != X86::NoRegister)
545     return;
546 
547   Register DestReg = Dest.getReg();
548   Register BaseReg = Base.getReg();
549   Register IndexReg = Index.getReg();
550 
551   if (MI.getOpcode() == X86::LEA64_32r) {
552     if (BaseReg != 0)
553       BaseReg = TRI->getSubReg(BaseReg, X86::sub_32bit);
554     if (IndexReg != 0)
555       IndexReg = TRI->getSubReg(IndexReg, X86::sub_32bit);
556   }
557 
558   bool IsScale1 = Scale.getImm() == 1;
559   bool IsInefficientBase = isInefficientLEAReg(BaseReg);
560   bool IsInefficientIndex = isInefficientLEAReg(IndexReg);
561 
562   // Skip these cases since it takes more than 2 instructions
563   // to replace the LEA instruction.
564   if (IsInefficientBase && DestReg == BaseReg && !IsScale1)
565     return;
566 
567   LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
568   LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
569 
570   MachineInstr *NewMI = nullptr;
571 
572   // First try to replace LEA with one or two (for the 3-op LEA case)
573   // add instructions:
574   // 1.lea (%base,%index,1), %base => add %index,%base
575   // 2.lea (%base,%index,1), %index => add %base,%index
576   if (IsScale1 && (DestReg == BaseReg || DestReg == IndexReg)) {
577     unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
578     if (DestReg != BaseReg)
579       std::swap(BaseReg, IndexReg);
580 
581     if (MI.getOpcode() == X86::LEA64_32r) {
582       // TODO: Do we need the super register implicit use?
583       NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
584                   .addReg(BaseReg)
585                   .addReg(IndexReg)
586                   .addReg(Base.getReg(), RegState::Implicit)
587                   .addReg(Index.getReg(), RegState::Implicit);
588     } else {
589       NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
590                   .addReg(BaseReg)
591                   .addReg(IndexReg);
592     }
593   } else if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
594     // If the base is inefficient try switching the index and base operands,
595     // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
596     // lea offset(%base,%index,scale),%dst =>
597     // lea (%base,%index,scale); add offset,%dst
598     NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
599                 .add(Dest)
600                 .add(IsInefficientBase ? Index : Base)
601                 .add(Scale)
602                 .add(IsInefficientBase ? Base : Index)
603                 .addImm(0)
604                 .add(Segment);
605     LLVM_DEBUG(NewMI->dump(););
606   }
607 
608   // If either replacement succeeded above, add the offset if needed, then
609   // replace the instruction.
610   if (NewMI) {
611     // Create ADD instruction for the Offset in case of 3-Ops LEA.
612     if (hasLEAOffset(Offset)) {
613       if (OptIncDec && Offset.isImm() &&
614           (Offset.getImm() == 1 || Offset.getImm() == -1)) {
615         unsigned NewOpc =
616             getINCDECFromLEA(MI.getOpcode(), Offset.getImm() == 1);
617         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
618                     .addReg(DestReg);
619         LLVM_DEBUG(NewMI->dump(););
620       } else {
621         unsigned NewOpc = getADDriFromLEA(MI.getOpcode(), Offset);
622         NewMI = BuildMI(MBB, I, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
623                     .addReg(DestReg)
624                     .add(Offset);
625         LLVM_DEBUG(NewMI->dump(););
626       }
627     }
628 
629     MBB.erase(I);
630     I = NewMI;
631     return;
632   }
633 
634   // Handle the rest of the cases with inefficient base register:
635   assert(DestReg != BaseReg && "DestReg == BaseReg should be handled already!");
636   assert(IsInefficientBase && "efficient base should be handled already!");
637 
638   // FIXME: Handle LEA64_32r.
639   if (LEAOpcode == X86::LEA64_32r)
640     return;
641 
642   // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
643   if (IsScale1 && !hasLEAOffset(Offset)) {
644     bool BIK = Base.isKill() && BaseReg != IndexReg;
645     TII->copyPhysReg(MBB, MI, MI.getDebugLoc(), DestReg, BaseReg, BIK);
646     LLVM_DEBUG(MI.getPrevNode()->dump(););
647 
648     unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
649     NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
650                 .addReg(DestReg)
651                 .add(Index);
652     LLVM_DEBUG(NewMI->dump(););
653 
654     MBB.erase(I);
655     I = NewMI;
656     return;
657   }
658 
659   // lea offset(%base,%index,scale), %dst =>
660   // lea offset( ,%index,scale), %dst; add %base,%dst
661   NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(LEAOpcode))
662               .add(Dest)
663               .addReg(0)
664               .add(Scale)
665               .add(Index)
666               .add(Offset)
667               .add(Segment);
668   LLVM_DEBUG(NewMI->dump(););
669 
670   unsigned NewOpc = getADDrrFromLEA(MI.getOpcode());
671   NewMI = BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), DestReg)
672               .addReg(DestReg)
673               .add(Base);
674   LLVM_DEBUG(NewMI->dump(););
675 
676   MBB.erase(I);
677   I = NewMI;
678 }
679