1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file defines the pass that looks through the machine instructions 10 /// late in the compilation, and finds byte or word instructions that 11 /// can be profitably replaced with 32 bit instructions that give equivalent 12 /// results for the bits of the results that are used. There are two possible 13 /// reasons to do this. 14 /// 15 /// One reason is to avoid false-dependences on the upper portions 16 /// of the registers. Only instructions that have a destination register 17 /// which is not in any of the source registers can be affected by this. 18 /// Any instruction where one of the source registers is also the destination 19 /// register is unaffected, because it has a true dependence on the source 20 /// register already. So, this consideration primarily affects load 21 /// instructions and register-to-register moves. It would 22 /// seem like cmov(s) would also be affected, but because of the way cmov is 23 /// really implemented by most machines as reading both the destination and 24 /// and source registers, and then "merging" the two based on a condition, 25 /// it really already should be considered as having a true dependence on the 26 /// destination register as well. 27 /// 28 /// The other reason to do this is for potential code size savings. Word 29 /// operations need an extra override byte compared to their 32 bit 30 /// versions. So this can convert many word operations to their larger 31 /// size, saving a byte in encoding. This could introduce partial register 32 /// dependences where none existed however. As an example take: 33 /// orw ax, $0x1000 34 /// addw ax, $3 35 /// now if this were to get transformed into 36 /// orw ax, $1000 37 /// addl eax, $3 38 /// because the addl encodes shorter than the addw, this would introduce 39 /// a use of a register that was only partially written earlier. On older 40 /// Intel processors this can be quite a performance penalty, so this should 41 /// probably only be done when it can be proven that a new partial dependence 42 /// wouldn't be created, or when your know a newer processor is being 43 /// targeted, or when optimizing for minimum code size. 44 /// 45 //===----------------------------------------------------------------------===// 46 47 #include "X86.h" 48 #include "X86InstrInfo.h" 49 #include "X86Subtarget.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/ProfileSummaryInfo.h" 52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 53 #include "llvm/CodeGen/LivePhysRegs.h" 54 #include "llvm/CodeGen/MachineFunctionPass.h" 55 #include "llvm/CodeGen/MachineInstrBuilder.h" 56 #include "llvm/CodeGen/MachineLoopInfo.h" 57 #include "llvm/CodeGen/MachineRegisterInfo.h" 58 #include "llvm/CodeGen/MachineSizeOpts.h" 59 #include "llvm/CodeGen/Passes.h" 60 #include "llvm/CodeGen/TargetInstrInfo.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 using namespace llvm; 64 65 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" 66 #define FIXUPBW_NAME "x86-fixup-bw-insts" 67 68 #define DEBUG_TYPE FIXUPBW_NAME 69 70 // Option to allow this optimization pass to have fine-grained control. 71 static cl::opt<bool> 72 FixupBWInsts("fixup-byte-word-insts", 73 cl::desc("Change byte and word instructions to larger sizes"), 74 cl::init(true), cl::Hidden); 75 76 namespace { 77 class FixupBWInstPass : public MachineFunctionPass { 78 /// Loop over all of the instructions in the basic block replacing applicable 79 /// byte or word instructions with better alternatives. 80 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 81 82 /// This sets the \p SuperDestReg to the 32 bit super reg of the original 83 /// destination register of the MachineInstr passed in. It returns true if 84 /// that super register is dead just prior to \p OrigMI, and false if not. 85 bool getSuperRegDestIfDead(MachineInstr *OrigMI, 86 Register &SuperDestReg) const; 87 88 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit 89 /// register if it is safe to do so. Return the replacement instruction if 90 /// OK, otherwise return nullptr. 91 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; 92 93 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is 94 /// safe to do so. Return the replacement instruction if OK, otherwise return 95 /// nullptr. 96 MachineInstr *tryReplaceCopy(MachineInstr *MI) const; 97 98 /// Change the MachineInstr \p MI into the equivalent extend to 32 bit 99 /// register if it is safe to do so. Return the replacement instruction if 100 /// OK, otherwise return nullptr. 101 MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, 102 MachineInstr *MI) const; 103 104 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if 105 // possible. Return the replacement instruction if OK, return nullptr 106 // otherwise. 107 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; 108 109 public: 110 static char ID; 111 112 StringRef getPassName() const override { return FIXUPBW_DESC; } 113 114 FixupBWInstPass() : MachineFunctionPass(ID) { } 115 116 void getAnalysisUsage(AnalysisUsage &AU) const override { 117 AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to 118 // guide some heuristics. 119 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 120 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 121 MachineFunctionPass::getAnalysisUsage(AU); 122 } 123 124 /// Loop over all of the basic blocks, replacing byte and word instructions by 125 /// equivalent 32 bit instructions where performance or code size can be 126 /// improved. 127 bool runOnMachineFunction(MachineFunction &MF) override; 128 129 MachineFunctionProperties getRequiredProperties() const override { 130 return MachineFunctionProperties().set( 131 MachineFunctionProperties::Property::NoVRegs); 132 } 133 134 private: 135 MachineFunction *MF = nullptr; 136 137 /// Machine instruction info used throughout the class. 138 const X86InstrInfo *TII = nullptr; 139 140 const TargetRegisterInfo *TRI = nullptr; 141 142 /// Local member for function's OptForSize attribute. 143 bool OptForSize = false; 144 145 /// Machine loop info used for guiding some heruistics. 146 MachineLoopInfo *MLI = nullptr; 147 148 /// Register Liveness information after the current instruction. 149 LivePhysRegs LiveRegs; 150 151 ProfileSummaryInfo *PSI; 152 MachineBlockFrequencyInfo *MBFI; 153 }; 154 char FixupBWInstPass::ID = 0; 155 } 156 157 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) 158 159 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } 160 161 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { 162 if (!FixupBWInsts || skipFunction(MF.getFunction())) 163 return false; 164 165 this->MF = &MF; 166 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 167 TRI = MF.getRegInfo().getTargetRegisterInfo(); 168 MLI = &getAnalysis<MachineLoopInfo>(); 169 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 170 MBFI = (PSI && PSI->hasProfileSummary()) ? 171 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 172 nullptr; 173 LiveRegs.init(TII->getRegisterInfo()); 174 175 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); 176 177 // Process all basic blocks. 178 for (auto &MBB : MF) 179 processBasicBlock(MF, MBB); 180 181 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); 182 183 return true; 184 } 185 186 /// Check if after \p OrigMI the only portion of super register 187 /// of the destination register of \p OrigMI that is alive is that 188 /// destination register. 189 /// 190 /// If so, return that super register in \p SuperDestReg. 191 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI, 192 Register &SuperDestReg) const { 193 const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 194 Register OrigDestReg = OrigMI->getOperand(0).getReg(); 195 SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); 196 197 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); 198 199 // Make sure that the sub-register that this instruction has as its 200 // destination is the lowest order sub-register of the super-register. 201 // If it isn't, then the register isn't really dead even if the 202 // super-register is considered dead. 203 if (SubRegIdx == X86::sub_8bit_hi) 204 return false; 205 206 // If neither the destination-super register nor any applicable subregisters 207 // are live after this instruction, then the super register is safe to use. 208 if (!LiveRegs.contains(SuperDestReg)) { 209 // If the original destination register was not the low 8-bit subregister 210 // then the super register check is sufficient. 211 if (SubRegIdx != X86::sub_8bit) 212 return true; 213 // If the original destination register was the low 8-bit subregister and 214 // we also need to check the 16-bit subregister and the high 8-bit 215 // subregister. 216 if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) && 217 !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8, 218 /*High=*/true))) 219 return true; 220 // Otherwise, we have a little more checking to do. 221 } 222 223 // If we get here, the super-register destination (or some part of it) is 224 // marked as live after the original instruction. 225 // 226 // The X86 backend does not have subregister liveness tracking enabled, 227 // so liveness information might be overly conservative. Specifically, the 228 // super register might be marked as live because it is implicitly defined 229 // by the instruction we are examining. 230 // 231 // However, for some specific instructions (this pass only cares about MOVs) 232 // we can produce more precise results by analysing that MOV's operands. 233 // 234 // Indeed, if super-register is not live before the mov it means that it 235 // was originally <read-undef> and so we are free to modify these 236 // undef upper bits. That may happen in case where the use is in another MBB 237 // and the vreg/physreg corresponding to the move has higher width than 238 // necessary (e.g. due to register coalescing with a "truncate" copy). 239 // So, we would like to handle patterns like this: 240 // 241 // %bb.2: derived from LLVM BB %if.then 242 // Live Ins: %rdi 243 // Predecessors according to CFG: %bb.0 244 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax 245 // ; No implicit %eax 246 // Successors according to CFG: %bb.3(?%) 247 // 248 // %bb.3: derived from LLVM BB %if.end 249 // Live Ins: %eax Only %ax is actually live 250 // Predecessors according to CFG: %bb.2 %bb.1 251 // %ax = KILL %ax, implicit killed %eax 252 // RET 0, %ax 253 unsigned Opc = OrigMI->getOpcode(); (void)Opc; 254 // These are the opcodes currently known to work with the code below, if 255 // something // else will be added we need to ensure that new opcode has the 256 // same properties. 257 if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && 258 Opc != X86::MOV16rr) 259 return false; 260 261 bool IsDefined = false; 262 for (auto &MO: OrigMI->implicit_operands()) { 263 if (!MO.isReg()) 264 continue; 265 266 assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!"); 267 268 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) 269 IsDefined = true; 270 271 // If MO is a use of any part of the destination register but is not equal 272 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. 273 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, 274 // %eax, or %rax will prevent us from using the %eax register. 275 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && 276 TRI->regsOverlap(SuperDestReg, MO.getReg())) 277 return false; 278 } 279 // Reg is not Imp-def'ed -> it's live both before/after the instruction. 280 if (!IsDefined) 281 return false; 282 283 // Otherwise, the Reg is not live before the MI and the MOV can't 284 // make it really live, so it's in fact dead even after the MI. 285 return true; 286 } 287 288 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, 289 MachineInstr *MI) const { 290 Register NewDestReg; 291 292 // We are going to try to rewrite this load to a larger zero-extending 293 // load. This is safe if all portions of the 32 bit super-register 294 // of the original destination register, except for the original destination 295 // register are dead. getSuperRegDestIfDead checks that. 296 if (!getSuperRegDestIfDead(MI, NewDestReg)) 297 return nullptr; 298 299 // Safe to change the instruction. 300 MachineInstrBuilder MIB = 301 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg); 302 303 unsigned NumArgs = MI->getNumOperands(); 304 for (unsigned i = 1; i < NumArgs; ++i) 305 MIB.add(MI->getOperand(i)); 306 307 MIB.setMemRefs(MI->memoperands()); 308 309 // If it was debug tracked, record a substitution. 310 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 311 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 312 MI->getOperand(0).getReg()); 313 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 314 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 315 } 316 317 return MIB; 318 } 319 320 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { 321 assert(MI->getNumExplicitOperands() == 2); 322 auto &OldDest = MI->getOperand(0); 323 auto &OldSrc = MI->getOperand(1); 324 325 Register NewDestReg; 326 if (!getSuperRegDestIfDead(MI, NewDestReg)) 327 return nullptr; 328 329 Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); 330 331 // This is only correct if we access the same subregister index: otherwise, 332 // we could try to replace "movb %ah, %al" with "movl %eax, %eax". 333 const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 334 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != 335 TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) 336 return nullptr; 337 338 // Safe to change the instruction. 339 // Don't set src flags, as we don't know if we're also killing the superreg. 340 // However, the superregister might not be defined; make it explicit that 341 // we don't care about the higher bits by reading it as Undef, and adding 342 // an imp-use on the original subregister. 343 MachineInstrBuilder MIB = 344 BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg) 345 .addReg(NewSrcReg, RegState::Undef) 346 .addReg(OldSrc.getReg(), RegState::Implicit); 347 348 // Drop imp-defs/uses that would be redundant with the new def/use. 349 for (auto &Op : MI->implicit_operands()) 350 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) 351 MIB.add(Op); 352 353 return MIB; 354 } 355 356 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode, 357 MachineInstr *MI) const { 358 Register NewDestReg; 359 if (!getSuperRegDestIfDead(MI, NewDestReg)) 360 return nullptr; 361 362 // Don't interfere with formation of CBW instructions which should be a 363 // shorter encoding than even the MOVSX32rr8. It's also immune to partial 364 // merge issues on Intel CPUs. 365 if (MI->getOpcode() == X86::MOVSX16rr8 && 366 MI->getOperand(0).getReg() == X86::AX && 367 MI->getOperand(1).getReg() == X86::AL) 368 return nullptr; 369 370 // Safe to change the instruction. 371 MachineInstrBuilder MIB = 372 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg); 373 374 unsigned NumArgs = MI->getNumOperands(); 375 for (unsigned i = 1; i < NumArgs; ++i) 376 MIB.add(MI->getOperand(i)); 377 378 MIB.setMemRefs(MI->memoperands()); 379 380 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 381 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 382 MI->getOperand(0).getReg()); 383 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 384 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 385 } 386 387 return MIB; 388 } 389 390 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, 391 MachineBasicBlock &MBB) const { 392 // See if this is an instruction of the type we are currently looking for. 393 switch (MI->getOpcode()) { 394 395 case X86::MOV8rm: 396 // Replace 8-bit loads with the zero-extending version if not optimizing 397 // for size. The extending op is cheaper across a wide range of uarch and 398 // it avoids a potentially expensive partial register stall. It takes an 399 // extra byte to encode, however, so don't do this when optimizing for size. 400 if (!OptForSize) 401 return tryReplaceLoad(X86::MOVZX32rm8, MI); 402 break; 403 404 case X86::MOV16rm: 405 // Always try to replace 16 bit load with 32 bit zero extending. 406 // Code size is the same, and there is sometimes a perf advantage 407 // from eliminating a false dependence on the upper portion of 408 // the register. 409 return tryReplaceLoad(X86::MOVZX32rm16, MI); 410 411 case X86::MOV8rr: 412 case X86::MOV16rr: 413 // Always try to replace 8/16 bit copies with a 32 bit copy. 414 // Code size is either less (16) or equal (8), and there is sometimes a 415 // perf advantage from eliminating a false dependence on the upper portion 416 // of the register. 417 return tryReplaceCopy(MI); 418 419 case X86::MOVSX16rr8: 420 return tryReplaceExtend(X86::MOVSX32rr8, MI); 421 case X86::MOVSX16rm8: 422 return tryReplaceExtend(X86::MOVSX32rm8, MI); 423 case X86::MOVZX16rr8: 424 return tryReplaceExtend(X86::MOVZX32rr8, MI); 425 case X86::MOVZX16rm8: 426 return tryReplaceExtend(X86::MOVZX32rm8, MI); 427 428 default: 429 // nothing to do here. 430 break; 431 } 432 433 return nullptr; 434 } 435 436 void FixupBWInstPass::processBasicBlock(MachineFunction &MF, 437 MachineBasicBlock &MBB) { 438 439 // This algorithm doesn't delete the instructions it is replacing 440 // right away. By leaving the existing instructions in place, the 441 // register liveness information doesn't change, and this makes the 442 // analysis that goes on be better than if the replaced instructions 443 // were immediately removed. 444 // 445 // This algorithm always creates a replacement instruction 446 // and notes that and the original in a data structure, until the 447 // whole BB has been analyzed. This keeps the replacement instructions 448 // from making it seem as if the larger register might be live. 449 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; 450 451 // Start computing liveness for this block. We iterate from the end to be able 452 // to update this for each instruction. 453 LiveRegs.clear(); 454 // We run after PEI, so we need to AddPristinesAndCSRs. 455 LiveRegs.addLiveOuts(MBB); 456 457 OptForSize = MF.getFunction().hasOptSize() || 458 llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); 459 460 for (MachineInstr &MI : llvm::reverse(MBB)) { 461 if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB)) 462 MIReplacements.push_back(std::make_pair(&MI, NewMI)); 463 464 // We're done with this instruction, update liveness for the next one. 465 LiveRegs.stepBackward(MI); 466 } 467 468 while (!MIReplacements.empty()) { 469 MachineInstr *MI = MIReplacements.back().first; 470 MachineInstr *NewMI = MIReplacements.back().second; 471 MIReplacements.pop_back(); 472 MBB.insert(MI, NewMI); 473 MBB.erase(MI); 474 } 475 } 476