1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file defines the pass that looks through the machine instructions 10 /// late in the compilation, and finds byte or word instructions that 11 /// can be profitably replaced with 32 bit instructions that give equivalent 12 /// results for the bits of the results that are used. There are two possible 13 /// reasons to do this. 14 /// 15 /// One reason is to avoid false-dependences on the upper portions 16 /// of the registers. Only instructions that have a destination register 17 /// which is not in any of the source registers can be affected by this. 18 /// Any instruction where one of the source registers is also the destination 19 /// register is unaffected, because it has a true dependence on the source 20 /// register already. So, this consideration primarily affects load 21 /// instructions and register-to-register moves. It would 22 /// seem like cmov(s) would also be affected, but because of the way cmov is 23 /// really implemented by most machines as reading both the destination and 24 /// and source registers, and then "merging" the two based on a condition, 25 /// it really already should be considered as having a true dependence on the 26 /// destination register as well. 27 /// 28 /// The other reason to do this is for potential code size savings. Word 29 /// operations need an extra override byte compared to their 32 bit 30 /// versions. So this can convert many word operations to their larger 31 /// size, saving a byte in encoding. This could introduce partial register 32 /// dependences where none existed however. As an example take: 33 /// orw ax, $0x1000 34 /// addw ax, $3 35 /// now if this were to get transformed into 36 /// orw ax, $1000 37 /// addl eax, $3 38 /// because the addl encodes shorter than the addw, this would introduce 39 /// a use of a register that was only partially written earlier. On older 40 /// Intel processors this can be quite a performance penalty, so this should 41 /// probably only be done when it can be proven that a new partial dependence 42 /// wouldn't be created, or when your know a newer processor is being 43 /// targeted, or when optimizing for minimum code size. 44 /// 45 //===----------------------------------------------------------------------===// 46 47 #include "X86.h" 48 #include "X86InstrInfo.h" 49 #include "X86Subtarget.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/CodeGen/LivePhysRegs.h" 52 #include "llvm/CodeGen/MachineFunctionPass.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineRegisterInfo.h" 56 #include "llvm/CodeGen/Passes.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 using namespace llvm; 61 62 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" 63 #define FIXUPBW_NAME "x86-fixup-bw-insts" 64 65 #define DEBUG_TYPE FIXUPBW_NAME 66 67 // Option to allow this optimization pass to have fine-grained control. 68 static cl::opt<bool> 69 FixupBWInsts("fixup-byte-word-insts", 70 cl::desc("Change byte and word instructions to larger sizes"), 71 cl::init(true), cl::Hidden); 72 73 namespace { 74 class FixupBWInstPass : public MachineFunctionPass { 75 /// Loop over all of the instructions in the basic block replacing applicable 76 /// byte or word instructions with better alternatives. 77 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 78 79 /// This sets the \p SuperDestReg to the 32 bit super reg of the original 80 /// destination register of the MachineInstr passed in. It returns true if 81 /// that super register is dead just prior to \p OrigMI, and false if not. 82 bool getSuperRegDestIfDead(MachineInstr *OrigMI, 83 Register &SuperDestReg) const; 84 85 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit 86 /// register if it is safe to do so. Return the replacement instruction if 87 /// OK, otherwise return nullptr. 88 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; 89 90 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is 91 /// safe to do so. Return the replacement instruction if OK, otherwise return 92 /// nullptr. 93 MachineInstr *tryReplaceCopy(MachineInstr *MI) const; 94 95 /// Change the MachineInstr \p MI into the equivalent extend to 32 bit 96 /// register if it is safe to do so. Return the replacement instruction if 97 /// OK, otherwise return nullptr. 98 MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, 99 MachineInstr *MI) const; 100 101 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if 102 // possible. Return the replacement instruction if OK, return nullptr 103 // otherwise. 104 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; 105 106 public: 107 static char ID; 108 109 StringRef getPassName() const override { return FIXUPBW_DESC; } 110 111 FixupBWInstPass() : MachineFunctionPass(ID) { } 112 113 void getAnalysisUsage(AnalysisUsage &AU) const override { 114 AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to 115 // guide some heuristics. 116 MachineFunctionPass::getAnalysisUsage(AU); 117 } 118 119 /// Loop over all of the basic blocks, replacing byte and word instructions by 120 /// equivalent 32 bit instructions where performance or code size can be 121 /// improved. 122 bool runOnMachineFunction(MachineFunction &MF) override; 123 124 MachineFunctionProperties getRequiredProperties() const override { 125 return MachineFunctionProperties().set( 126 MachineFunctionProperties::Property::NoVRegs); 127 } 128 129 private: 130 MachineFunction *MF; 131 132 /// Machine instruction info used throughout the class. 133 const X86InstrInfo *TII; 134 135 /// Local member for function's OptForSize attribute. 136 bool OptForSize; 137 138 /// Machine loop info used for guiding some heruistics. 139 MachineLoopInfo *MLI; 140 141 /// Register Liveness information after the current instruction. 142 LivePhysRegs LiveRegs; 143 }; 144 char FixupBWInstPass::ID = 0; 145 } 146 147 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) 148 149 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } 150 151 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { 152 if (!FixupBWInsts || skipFunction(MF.getFunction())) 153 return false; 154 155 this->MF = &MF; 156 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 157 OptForSize = MF.getFunction().hasOptSize(); 158 MLI = &getAnalysis<MachineLoopInfo>(); 159 LiveRegs.init(TII->getRegisterInfo()); 160 161 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); 162 163 // Process all basic blocks. 164 for (auto &MBB : MF) 165 processBasicBlock(MF, MBB); 166 167 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); 168 169 return true; 170 } 171 172 /// Check if after \p OrigMI the only portion of super register 173 /// of the destination register of \p OrigMI that is alive is that 174 /// destination register. 175 /// 176 /// If so, return that super register in \p SuperDestReg. 177 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI, 178 Register &SuperDestReg) const { 179 auto *TRI = &TII->getRegisterInfo(); 180 181 Register OrigDestReg = OrigMI->getOperand(0).getReg(); 182 SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); 183 184 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); 185 186 // Make sure that the sub-register that this instruction has as its 187 // destination is the lowest order sub-register of the super-register. 188 // If it isn't, then the register isn't really dead even if the 189 // super-register is considered dead. 190 if (SubRegIdx == X86::sub_8bit_hi) 191 return false; 192 193 // If neither the destination-super register nor any applicable subregisters 194 // are live after this instruction, then the super register is safe to use. 195 if (!LiveRegs.contains(SuperDestReg)) { 196 // If the original destination register was not the low 8-bit subregister 197 // then the super register check is sufficient. 198 if (SubRegIdx != X86::sub_8bit) 199 return true; 200 // If the original destination register was the low 8-bit subregister and 201 // we also need to check the 16-bit subregister and the high 8-bit 202 // subregister. 203 if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) && 204 !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8, 205 /*High=*/true))) 206 return true; 207 // Otherwise, we have a little more checking to do. 208 } 209 210 // If we get here, the super-register destination (or some part of it) is 211 // marked as live after the original instruction. 212 // 213 // The X86 backend does not have subregister liveness tracking enabled, 214 // so liveness information might be overly conservative. Specifically, the 215 // super register might be marked as live because it is implicitly defined 216 // by the instruction we are examining. 217 // 218 // However, for some specific instructions (this pass only cares about MOVs) 219 // we can produce more precise results by analysing that MOV's operands. 220 // 221 // Indeed, if super-register is not live before the mov it means that it 222 // was originally <read-undef> and so we are free to modify these 223 // undef upper bits. That may happen in case where the use is in another MBB 224 // and the vreg/physreg corresponding to the move has higher width than 225 // necessary (e.g. due to register coalescing with a "truncate" copy). 226 // So, we would like to handle patterns like this: 227 // 228 // %bb.2: derived from LLVM BB %if.then 229 // Live Ins: %rdi 230 // Predecessors according to CFG: %bb.0 231 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax 232 // ; No implicit %eax 233 // Successors according to CFG: %bb.3(?%) 234 // 235 // %bb.3: derived from LLVM BB %if.end 236 // Live Ins: %eax Only %ax is actually live 237 // Predecessors according to CFG: %bb.2 %bb.1 238 // %ax = KILL %ax, implicit killed %eax 239 // RET 0, %ax 240 unsigned Opc = OrigMI->getOpcode(); (void)Opc; 241 // These are the opcodes currently known to work with the code below, if 242 // something // else will be added we need to ensure that new opcode has the 243 // same properties. 244 if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && 245 Opc != X86::MOV16rr) 246 return false; 247 248 bool IsDefined = false; 249 for (auto &MO: OrigMI->implicit_operands()) { 250 if (!MO.isReg()) 251 continue; 252 253 assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!"); 254 255 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) 256 IsDefined = true; 257 258 // If MO is a use of any part of the destination register but is not equal 259 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. 260 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, 261 // %eax, or %rax will prevent us from using the %eax register. 262 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && 263 TRI->regsOverlap(SuperDestReg, MO.getReg())) 264 return false; 265 } 266 // Reg is not Imp-def'ed -> it's live both before/after the instruction. 267 if (!IsDefined) 268 return false; 269 270 // Otherwise, the Reg is not live before the MI and the MOV can't 271 // make it really live, so it's in fact dead even after the MI. 272 return true; 273 } 274 275 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, 276 MachineInstr *MI) const { 277 Register NewDestReg; 278 279 // We are going to try to rewrite this load to a larger zero-extending 280 // load. This is safe if all portions of the 32 bit super-register 281 // of the original destination register, except for the original destination 282 // register are dead. getSuperRegDestIfDead checks that. 283 if (!getSuperRegDestIfDead(MI, NewDestReg)) 284 return nullptr; 285 286 // Safe to change the instruction. 287 MachineInstrBuilder MIB = 288 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg); 289 290 unsigned NumArgs = MI->getNumOperands(); 291 for (unsigned i = 1; i < NumArgs; ++i) 292 MIB.add(MI->getOperand(i)); 293 294 MIB.setMemRefs(MI->memoperands()); 295 296 return MIB; 297 } 298 299 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { 300 assert(MI->getNumExplicitOperands() == 2); 301 auto &OldDest = MI->getOperand(0); 302 auto &OldSrc = MI->getOperand(1); 303 304 Register NewDestReg; 305 if (!getSuperRegDestIfDead(MI, NewDestReg)) 306 return nullptr; 307 308 Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); 309 310 // This is only correct if we access the same subregister index: otherwise, 311 // we could try to replace "movb %ah, %al" with "movl %eax, %eax". 312 auto *TRI = &TII->getRegisterInfo(); 313 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != 314 TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) 315 return nullptr; 316 317 // Safe to change the instruction. 318 // Don't set src flags, as we don't know if we're also killing the superreg. 319 // However, the superregister might not be defined; make it explicit that 320 // we don't care about the higher bits by reading it as Undef, and adding 321 // an imp-use on the original subregister. 322 MachineInstrBuilder MIB = 323 BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg) 324 .addReg(NewSrcReg, RegState::Undef) 325 .addReg(OldSrc.getReg(), RegState::Implicit); 326 327 // Drop imp-defs/uses that would be redundant with the new def/use. 328 for (auto &Op : MI->implicit_operands()) 329 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) 330 MIB.add(Op); 331 332 return MIB; 333 } 334 335 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode, 336 MachineInstr *MI) const { 337 Register NewDestReg; 338 if (!getSuperRegDestIfDead(MI, NewDestReg)) 339 return nullptr; 340 341 // Don't interfere with formation of CBW instructions which should be a 342 // shorter encoding than even the MOVSX32rr8. It's also immunte to partial 343 // merge issues on Intel CPUs. 344 if (MI->getOpcode() == X86::MOVSX16rr8 && 345 MI->getOperand(0).getReg() == X86::AX && 346 MI->getOperand(1).getReg() == X86::AL) 347 return nullptr; 348 349 // Safe to change the instruction. 350 MachineInstrBuilder MIB = 351 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg); 352 353 unsigned NumArgs = MI->getNumOperands(); 354 for (unsigned i = 1; i < NumArgs; ++i) 355 MIB.add(MI->getOperand(i)); 356 357 MIB.setMemRefs(MI->memoperands()); 358 359 return MIB; 360 } 361 362 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, 363 MachineBasicBlock &MBB) const { 364 // See if this is an instruction of the type we are currently looking for. 365 switch (MI->getOpcode()) { 366 367 case X86::MOV8rm: 368 // Only replace 8 bit loads with the zero extending versions if 369 // in an inner most loop and not optimizing for size. This takes 370 // an extra byte to encode, and provides limited performance upside. 371 if (MachineLoop *ML = MLI->getLoopFor(&MBB)) 372 if (ML->begin() == ML->end() && !OptForSize) 373 return tryReplaceLoad(X86::MOVZX32rm8, MI); 374 break; 375 376 case X86::MOV16rm: 377 // Always try to replace 16 bit load with 32 bit zero extending. 378 // Code size is the same, and there is sometimes a perf advantage 379 // from eliminating a false dependence on the upper portion of 380 // the register. 381 return tryReplaceLoad(X86::MOVZX32rm16, MI); 382 383 case X86::MOV8rr: 384 case X86::MOV16rr: 385 // Always try to replace 8/16 bit copies with a 32 bit copy. 386 // Code size is either less (16) or equal (8), and there is sometimes a 387 // perf advantage from eliminating a false dependence on the upper portion 388 // of the register. 389 return tryReplaceCopy(MI); 390 391 case X86::MOVSX16rr8: 392 return tryReplaceExtend(X86::MOVSX32rr8, MI); 393 case X86::MOVSX16rm8: 394 return tryReplaceExtend(X86::MOVSX32rm8, MI); 395 case X86::MOVZX16rr8: 396 return tryReplaceExtend(X86::MOVZX32rr8, MI); 397 case X86::MOVZX16rm8: 398 return tryReplaceExtend(X86::MOVZX32rm8, MI); 399 400 default: 401 // nothing to do here. 402 break; 403 } 404 405 return nullptr; 406 } 407 408 void FixupBWInstPass::processBasicBlock(MachineFunction &MF, 409 MachineBasicBlock &MBB) { 410 411 // This algorithm doesn't delete the instructions it is replacing 412 // right away. By leaving the existing instructions in place, the 413 // register liveness information doesn't change, and this makes the 414 // analysis that goes on be better than if the replaced instructions 415 // were immediately removed. 416 // 417 // This algorithm always creates a replacement instruction 418 // and notes that and the original in a data structure, until the 419 // whole BB has been analyzed. This keeps the replacement instructions 420 // from making it seem as if the larger register might be live. 421 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; 422 423 // Start computing liveness for this block. We iterate from the end to be able 424 // to update this for each instruction. 425 LiveRegs.clear(); 426 // We run after PEI, so we need to AddPristinesAndCSRs. 427 LiveRegs.addLiveOuts(MBB); 428 429 for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) { 430 MachineInstr *MI = &*I; 431 432 if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB)) 433 MIReplacements.push_back(std::make_pair(MI, NewMI)); 434 435 // We're done with this instruction, update liveness for the next one. 436 LiveRegs.stepBackward(*MI); 437 } 438 439 while (!MIReplacements.empty()) { 440 MachineInstr *MI = MIReplacements.back().first; 441 MachineInstr *NewMI = MIReplacements.back().second; 442 MIReplacements.pop_back(); 443 MBB.insert(MI, NewMI); 444 MBB.erase(MI); 445 } 446 } 447