1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file defines the pass that looks through the machine instructions 10 /// late in the compilation, and finds byte or word instructions that 11 /// can be profitably replaced with 32 bit instructions that give equivalent 12 /// results for the bits of the results that are used. There are two possible 13 /// reasons to do this. 14 /// 15 /// One reason is to avoid false-dependences on the upper portions 16 /// of the registers. Only instructions that have a destination register 17 /// which is not in any of the source registers can be affected by this. 18 /// Any instruction where one of the source registers is also the destination 19 /// register is unaffected, because it has a true dependence on the source 20 /// register already. So, this consideration primarily affects load 21 /// instructions and register-to-register moves. It would 22 /// seem like cmov(s) would also be affected, but because of the way cmov is 23 /// really implemented by most machines as reading both the destination and 24 /// and source registers, and then "merging" the two based on a condition, 25 /// it really already should be considered as having a true dependence on the 26 /// destination register as well. 27 /// 28 /// The other reason to do this is for potential code size savings. Word 29 /// operations need an extra override byte compared to their 32 bit 30 /// versions. So this can convert many word operations to their larger 31 /// size, saving a byte in encoding. This could introduce partial register 32 /// dependences where none existed however. As an example take: 33 /// orw ax, $0x1000 34 /// addw ax, $3 35 /// now if this were to get transformed into 36 /// orw ax, $1000 37 /// addl eax, $3 38 /// because the addl encodes shorter than the addw, this would introduce 39 /// a use of a register that was only partially written earlier. On older 40 /// Intel processors this can be quite a performance penalty, so this should 41 /// probably only be done when it can be proven that a new partial dependence 42 /// wouldn't be created, or when your know a newer processor is being 43 /// targeted, or when optimizing for minimum code size. 44 /// 45 //===----------------------------------------------------------------------===// 46 47 #include "X86.h" 48 #include "X86InstrInfo.h" 49 #include "X86Subtarget.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/ProfileSummaryInfo.h" 52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 53 #include "llvm/CodeGen/LivePhysRegs.h" 54 #include "llvm/CodeGen/MachineFunctionPass.h" 55 #include "llvm/CodeGen/MachineInstrBuilder.h" 56 #include "llvm/CodeGen/MachineLoopInfo.h" 57 #include "llvm/CodeGen/MachineRegisterInfo.h" 58 #include "llvm/CodeGen/MachineSizeOpts.h" 59 #include "llvm/CodeGen/Passes.h" 60 #include "llvm/CodeGen/TargetInstrInfo.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 using namespace llvm; 64 65 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" 66 #define FIXUPBW_NAME "x86-fixup-bw-insts" 67 68 #define DEBUG_TYPE FIXUPBW_NAME 69 70 // Option to allow this optimization pass to have fine-grained control. 71 static cl::opt<bool> 72 FixupBWInsts("fixup-byte-word-insts", 73 cl::desc("Change byte and word instructions to larger sizes"), 74 cl::init(true), cl::Hidden); 75 76 namespace { 77 class FixupBWInstPass : public MachineFunctionPass { 78 /// Loop over all of the instructions in the basic block replacing applicable 79 /// byte or word instructions with better alternatives. 80 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 81 82 /// This sets the \p SuperDestReg to the 32 bit super reg of the original 83 /// destination register of the MachineInstr passed in. It returns true if 84 /// that super register is dead just prior to \p OrigMI, and false if not. 85 bool getSuperRegDestIfDead(MachineInstr *OrigMI, 86 Register &SuperDestReg) const; 87 88 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit 89 /// register if it is safe to do so. Return the replacement instruction if 90 /// OK, otherwise return nullptr. 91 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; 92 93 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is 94 /// safe to do so. Return the replacement instruction if OK, otherwise return 95 /// nullptr. 96 MachineInstr *tryReplaceCopy(MachineInstr *MI) const; 97 98 /// Change the MachineInstr \p MI into the equivalent extend to 32 bit 99 /// register if it is safe to do so. Return the replacement instruction if 100 /// OK, otherwise return nullptr. 101 MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, 102 MachineInstr *MI) const; 103 104 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if 105 // possible. Return the replacement instruction if OK, return nullptr 106 // otherwise. 107 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; 108 109 public: 110 static char ID; 111 112 StringRef getPassName() const override { return FIXUPBW_DESC; } 113 114 FixupBWInstPass() : MachineFunctionPass(ID) { } 115 116 void getAnalysisUsage(AnalysisUsage &AU) const override { 117 AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to 118 // guide some heuristics. 119 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 120 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 121 MachineFunctionPass::getAnalysisUsage(AU); 122 } 123 124 /// Loop over all of the basic blocks, replacing byte and word instructions by 125 /// equivalent 32 bit instructions where performance or code size can be 126 /// improved. 127 bool runOnMachineFunction(MachineFunction &MF) override; 128 129 MachineFunctionProperties getRequiredProperties() const override { 130 return MachineFunctionProperties().set( 131 MachineFunctionProperties::Property::NoVRegs); 132 } 133 134 private: 135 MachineFunction *MF = nullptr; 136 137 /// Machine instruction info used throughout the class. 138 const X86InstrInfo *TII = nullptr; 139 140 const TargetRegisterInfo *TRI = nullptr; 141 142 /// Local member for function's OptForSize attribute. 143 bool OptForSize = false; 144 145 /// Machine loop info used for guiding some heruistics. 146 MachineLoopInfo *MLI = nullptr; 147 148 /// Register Liveness information after the current instruction. 149 LivePhysRegs LiveRegs; 150 151 ProfileSummaryInfo *PSI = nullptr; 152 MachineBlockFrequencyInfo *MBFI = nullptr; 153 }; 154 char FixupBWInstPass::ID = 0; 155 } 156 157 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) 158 159 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } 160 161 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { 162 if (!FixupBWInsts || skipFunction(MF.getFunction())) 163 return false; 164 165 this->MF = &MF; 166 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 167 TRI = MF.getRegInfo().getTargetRegisterInfo(); 168 MLI = &getAnalysis<MachineLoopInfo>(); 169 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 170 MBFI = (PSI && PSI->hasProfileSummary()) ? 171 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 172 nullptr; 173 LiveRegs.init(TII->getRegisterInfo()); 174 175 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); 176 177 // Process all basic blocks. 178 for (auto &MBB : MF) 179 processBasicBlock(MF, MBB); 180 181 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); 182 183 return true; 184 } 185 186 /// Check if after \p OrigMI the only portion of super register 187 /// of the destination register of \p OrigMI that is alive is that 188 /// destination register. 189 /// 190 /// If so, return that super register in \p SuperDestReg. 191 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI, 192 Register &SuperDestReg) const { 193 const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 194 Register OrigDestReg = OrigMI->getOperand(0).getReg(); 195 SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); 196 assert(SuperDestReg.isValid() && "Invalid Operand"); 197 198 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); 199 200 // Make sure that the sub-register that this instruction has as its 201 // destination is the lowest order sub-register of the super-register. 202 // If it isn't, then the register isn't really dead even if the 203 // super-register is considered dead. 204 if (SubRegIdx == X86::sub_8bit_hi) 205 return false; 206 207 // If neither the destination-super register nor any applicable subregisters 208 // are live after this instruction, then the super register is safe to use. 209 if (!LiveRegs.contains(SuperDestReg)) { 210 // If the original destination register was not the low 8-bit subregister 211 // then the super register check is sufficient. 212 if (SubRegIdx != X86::sub_8bit) 213 return true; 214 // If the original destination register was the low 8-bit subregister and 215 // we also need to check the 16-bit subregister and the high 8-bit 216 // subregister. 217 MCRegister HighReg = getX86SubSuperRegister(SuperDestReg, 8, /*High=*/true); 218 if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) && 219 (!HighReg.isValid() || !LiveRegs.contains(HighReg))) 220 return true; 221 // Otherwise, we have a little more checking to do. 222 } 223 224 // If we get here, the super-register destination (or some part of it) is 225 // marked as live after the original instruction. 226 // 227 // The X86 backend does not have subregister liveness tracking enabled, 228 // so liveness information might be overly conservative. Specifically, the 229 // super register might be marked as live because it is implicitly defined 230 // by the instruction we are examining. 231 // 232 // However, for some specific instructions (this pass only cares about MOVs) 233 // we can produce more precise results by analysing that MOV's operands. 234 // 235 // Indeed, if super-register is not live before the mov it means that it 236 // was originally <read-undef> and so we are free to modify these 237 // undef upper bits. That may happen in case where the use is in another MBB 238 // and the vreg/physreg corresponding to the move has higher width than 239 // necessary (e.g. due to register coalescing with a "truncate" copy). 240 // So, we would like to handle patterns like this: 241 // 242 // %bb.2: derived from LLVM BB %if.then 243 // Live Ins: %rdi 244 // Predecessors according to CFG: %bb.0 245 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax 246 // ; No implicit %eax 247 // Successors according to CFG: %bb.3(?%) 248 // 249 // %bb.3: derived from LLVM BB %if.end 250 // Live Ins: %eax Only %ax is actually live 251 // Predecessors according to CFG: %bb.2 %bb.1 252 // %ax = KILL %ax, implicit killed %eax 253 // RET 0, %ax 254 unsigned Opc = OrigMI->getOpcode(); (void)Opc; 255 // These are the opcodes currently known to work with the code below, if 256 // something // else will be added we need to ensure that new opcode has the 257 // same properties. 258 if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && 259 Opc != X86::MOV16rr) 260 return false; 261 262 bool IsDefined = false; 263 for (auto &MO: OrigMI->implicit_operands()) { 264 if (!MO.isReg()) 265 continue; 266 267 assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!"); 268 269 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) 270 IsDefined = true; 271 272 // If MO is a use of any part of the destination register but is not equal 273 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. 274 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, 275 // %eax, or %rax will prevent us from using the %eax register. 276 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && 277 TRI->regsOverlap(SuperDestReg, MO.getReg())) 278 return false; 279 } 280 // Reg is not Imp-def'ed -> it's live both before/after the instruction. 281 if (!IsDefined) 282 return false; 283 284 // Otherwise, the Reg is not live before the MI and the MOV can't 285 // make it really live, so it's in fact dead even after the MI. 286 return true; 287 } 288 289 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, 290 MachineInstr *MI) const { 291 Register NewDestReg; 292 293 // We are going to try to rewrite this load to a larger zero-extending 294 // load. This is safe if all portions of the 32 bit super-register 295 // of the original destination register, except for the original destination 296 // register are dead. getSuperRegDestIfDead checks that. 297 if (!getSuperRegDestIfDead(MI, NewDestReg)) 298 return nullptr; 299 300 // Safe to change the instruction. 301 MachineInstrBuilder MIB = 302 BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg); 303 304 unsigned NumArgs = MI->getNumOperands(); 305 for (unsigned i = 1; i < NumArgs; ++i) 306 MIB.add(MI->getOperand(i)); 307 308 MIB.setMemRefs(MI->memoperands()); 309 310 // If it was debug tracked, record a substitution. 311 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 312 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 313 MI->getOperand(0).getReg()); 314 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 315 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 316 } 317 318 return MIB; 319 } 320 321 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { 322 assert(MI->getNumExplicitOperands() == 2); 323 auto &OldDest = MI->getOperand(0); 324 auto &OldSrc = MI->getOperand(1); 325 326 Register NewDestReg; 327 if (!getSuperRegDestIfDead(MI, NewDestReg)) 328 return nullptr; 329 330 Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); 331 assert(NewSrcReg.isValid() && "Invalid Operand"); 332 333 // This is only correct if we access the same subregister index: otherwise, 334 // we could try to replace "movb %ah, %al" with "movl %eax, %eax". 335 const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 336 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != 337 TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) 338 return nullptr; 339 340 // Safe to change the instruction. 341 // Don't set src flags, as we don't know if we're also killing the superreg. 342 // However, the superregister might not be defined; make it explicit that 343 // we don't care about the higher bits by reading it as Undef, and adding 344 // an imp-use on the original subregister. 345 MachineInstrBuilder MIB = 346 BuildMI(*MF, MIMetadata(*MI), TII->get(X86::MOV32rr), NewDestReg) 347 .addReg(NewSrcReg, RegState::Undef) 348 .addReg(OldSrc.getReg(), RegState::Implicit); 349 350 // Drop imp-defs/uses that would be redundant with the new def/use. 351 for (auto &Op : MI->implicit_operands()) 352 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) 353 MIB.add(Op); 354 355 return MIB; 356 } 357 358 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode, 359 MachineInstr *MI) const { 360 Register NewDestReg; 361 if (!getSuperRegDestIfDead(MI, NewDestReg)) 362 return nullptr; 363 364 // Don't interfere with formation of CBW instructions which should be a 365 // shorter encoding than even the MOVSX32rr8. It's also immune to partial 366 // merge issues on Intel CPUs. 367 if (MI->getOpcode() == X86::MOVSX16rr8 && 368 MI->getOperand(0).getReg() == X86::AX && 369 MI->getOperand(1).getReg() == X86::AL) 370 return nullptr; 371 372 // Safe to change the instruction. 373 MachineInstrBuilder MIB = 374 BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg); 375 376 unsigned NumArgs = MI->getNumOperands(); 377 for (unsigned i = 1; i < NumArgs; ++i) 378 MIB.add(MI->getOperand(i)); 379 380 MIB.setMemRefs(MI->memoperands()); 381 382 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 383 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 384 MI->getOperand(0).getReg()); 385 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 386 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 387 } 388 389 return MIB; 390 } 391 392 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, 393 MachineBasicBlock &MBB) const { 394 // See if this is an instruction of the type we are currently looking for. 395 switch (MI->getOpcode()) { 396 397 case X86::MOV8rm: 398 // Replace 8-bit loads with the zero-extending version if not optimizing 399 // for size. The extending op is cheaper across a wide range of uarch and 400 // it avoids a potentially expensive partial register stall. It takes an 401 // extra byte to encode, however, so don't do this when optimizing for size. 402 if (!OptForSize) 403 return tryReplaceLoad(X86::MOVZX32rm8, MI); 404 break; 405 406 case X86::MOV16rm: 407 // Always try to replace 16 bit load with 32 bit zero extending. 408 // Code size is the same, and there is sometimes a perf advantage 409 // from eliminating a false dependence on the upper portion of 410 // the register. 411 return tryReplaceLoad(X86::MOVZX32rm16, MI); 412 413 case X86::MOV8rr: 414 case X86::MOV16rr: 415 // Always try to replace 8/16 bit copies with a 32 bit copy. 416 // Code size is either less (16) or equal (8), and there is sometimes a 417 // perf advantage from eliminating a false dependence on the upper portion 418 // of the register. 419 return tryReplaceCopy(MI); 420 421 case X86::MOVSX16rr8: 422 return tryReplaceExtend(X86::MOVSX32rr8, MI); 423 case X86::MOVSX16rm8: 424 return tryReplaceExtend(X86::MOVSX32rm8, MI); 425 case X86::MOVZX16rr8: 426 return tryReplaceExtend(X86::MOVZX32rr8, MI); 427 case X86::MOVZX16rm8: 428 return tryReplaceExtend(X86::MOVZX32rm8, MI); 429 430 default: 431 // nothing to do here. 432 break; 433 } 434 435 return nullptr; 436 } 437 438 void FixupBWInstPass::processBasicBlock(MachineFunction &MF, 439 MachineBasicBlock &MBB) { 440 441 // This algorithm doesn't delete the instructions it is replacing 442 // right away. By leaving the existing instructions in place, the 443 // register liveness information doesn't change, and this makes the 444 // analysis that goes on be better than if the replaced instructions 445 // were immediately removed. 446 // 447 // This algorithm always creates a replacement instruction 448 // and notes that and the original in a data structure, until the 449 // whole BB has been analyzed. This keeps the replacement instructions 450 // from making it seem as if the larger register might be live. 451 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; 452 453 // Start computing liveness for this block. We iterate from the end to be able 454 // to update this for each instruction. 455 LiveRegs.clear(); 456 // We run after PEI, so we need to AddPristinesAndCSRs. 457 LiveRegs.addLiveOuts(MBB); 458 459 OptForSize = MF.getFunction().hasOptSize() || 460 llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); 461 462 for (MachineInstr &MI : llvm::reverse(MBB)) { 463 if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB)) 464 MIReplacements.push_back(std::make_pair(&MI, NewMI)); 465 466 // We're done with this instruction, update liveness for the next one. 467 LiveRegs.stepBackward(MI); 468 } 469 470 while (!MIReplacements.empty()) { 471 MachineInstr *MI = MIReplacements.back().first; 472 MachineInstr *NewMI = MIReplacements.back().second; 473 MIReplacements.pop_back(); 474 MBB.insert(MI, NewMI); 475 MBB.erase(MI); 476 } 477 } 478