1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file defines the pass that looks through the machine instructions 10 /// late in the compilation, and finds byte or word instructions that 11 /// can be profitably replaced with 32 bit instructions that give equivalent 12 /// results for the bits of the results that are used. There are two possible 13 /// reasons to do this. 14 /// 15 /// One reason is to avoid false-dependences on the upper portions 16 /// of the registers. Only instructions that have a destination register 17 /// which is not in any of the source registers can be affected by this. 18 /// Any instruction where one of the source registers is also the destination 19 /// register is unaffected, because it has a true dependence on the source 20 /// register already. So, this consideration primarily affects load 21 /// instructions and register-to-register moves. It would 22 /// seem like cmov(s) would also be affected, but because of the way cmov is 23 /// really implemented by most machines as reading both the destination and 24 /// and source registers, and then "merging" the two based on a condition, 25 /// it really already should be considered as having a true dependence on the 26 /// destination register as well. 27 /// 28 /// The other reason to do this is for potential code size savings. Word 29 /// operations need an extra override byte compared to their 32 bit 30 /// versions. So this can convert many word operations to their larger 31 /// size, saving a byte in encoding. This could introduce partial register 32 /// dependences where none existed however. As an example take: 33 /// orw ax, $0x1000 34 /// addw ax, $3 35 /// now if this were to get transformed into 36 /// orw ax, $1000 37 /// addl eax, $3 38 /// because the addl encodes shorter than the addw, this would introduce 39 /// a use of a register that was only partially written earlier. On older 40 /// Intel processors this can be quite a performance penalty, so this should 41 /// probably only be done when it can be proven that a new partial dependence 42 /// wouldn't be created, or when your know a newer processor is being 43 /// targeted, or when optimizing for minimum code size. 44 /// 45 //===----------------------------------------------------------------------===// 46 47 #include "X86.h" 48 #include "X86InstrInfo.h" 49 #include "X86Subtarget.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/CodeGen/LivePhysRegs.h" 52 #include "llvm/CodeGen/MachineFunctionPass.h" 53 #include "llvm/CodeGen/MachineInstrBuilder.h" 54 #include "llvm/CodeGen/MachineLoopInfo.h" 55 #include "llvm/CodeGen/MachineRegisterInfo.h" 56 #include "llvm/CodeGen/Passes.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 using namespace llvm; 61 62 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" 63 #define FIXUPBW_NAME "x86-fixup-bw-insts" 64 65 #define DEBUG_TYPE FIXUPBW_NAME 66 67 // Option to allow this optimization pass to have fine-grained control. 68 static cl::opt<bool> 69 FixupBWInsts("fixup-byte-word-insts", 70 cl::desc("Change byte and word instructions to larger sizes"), 71 cl::init(true), cl::Hidden); 72 73 namespace { 74 class FixupBWInstPass : public MachineFunctionPass { 75 /// Loop over all of the instructions in the basic block replacing applicable 76 /// byte or word instructions with better alternatives. 77 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 78 79 /// This sets the \p SuperDestReg to the 32 bit super reg of the original 80 /// destination register of the MachineInstr passed in. It returns true if 81 /// that super register is dead just prior to \p OrigMI, and false if not. 82 bool getSuperRegDestIfDead(MachineInstr *OrigMI, 83 unsigned &SuperDestReg) const; 84 85 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit 86 /// register if it is safe to do so. Return the replacement instruction if 87 /// OK, otherwise return nullptr. 88 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; 89 90 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is 91 /// safe to do so. Return the replacement instruction if OK, otherwise return 92 /// nullptr. 93 MachineInstr *tryReplaceCopy(MachineInstr *MI) const; 94 95 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if 96 // possible. Return the replacement instruction if OK, return nullptr 97 // otherwise. 98 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; 99 100 public: 101 static char ID; 102 103 StringRef getPassName() const override { return FIXUPBW_DESC; } 104 105 FixupBWInstPass() : MachineFunctionPass(ID) { } 106 107 void getAnalysisUsage(AnalysisUsage &AU) const override { 108 AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to 109 // guide some heuristics. 110 MachineFunctionPass::getAnalysisUsage(AU); 111 } 112 113 /// Loop over all of the basic blocks, replacing byte and word instructions by 114 /// equivalent 32 bit instructions where performance or code size can be 115 /// improved. 116 bool runOnMachineFunction(MachineFunction &MF) override; 117 118 MachineFunctionProperties getRequiredProperties() const override { 119 return MachineFunctionProperties().set( 120 MachineFunctionProperties::Property::NoVRegs); 121 } 122 123 private: 124 MachineFunction *MF; 125 126 /// Machine instruction info used throughout the class. 127 const X86InstrInfo *TII; 128 129 /// Local member for function's OptForSize attribute. 130 bool OptForSize; 131 132 /// Machine loop info used for guiding some heruistics. 133 MachineLoopInfo *MLI; 134 135 /// Register Liveness information after the current instruction. 136 LivePhysRegs LiveRegs; 137 }; 138 char FixupBWInstPass::ID = 0; 139 } 140 141 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) 142 143 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } 144 145 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { 146 if (!FixupBWInsts || skipFunction(MF.getFunction())) 147 return false; 148 149 this->MF = &MF; 150 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 151 OptForSize = MF.getFunction().hasOptSize(); 152 MLI = &getAnalysis<MachineLoopInfo>(); 153 LiveRegs.init(TII->getRegisterInfo()); 154 155 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); 156 157 // Process all basic blocks. 158 for (auto &MBB : MF) 159 processBasicBlock(MF, MBB); 160 161 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); 162 163 return true; 164 } 165 166 /// Check if after \p OrigMI the only portion of super register 167 /// of the destination register of \p OrigMI that is alive is that 168 /// destination register. 169 /// 170 /// If so, return that super register in \p SuperDestReg. 171 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI, 172 unsigned &SuperDestReg) const { 173 auto *TRI = &TII->getRegisterInfo(); 174 175 unsigned OrigDestReg = OrigMI->getOperand(0).getReg(); 176 SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); 177 178 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); 179 180 // Make sure that the sub-register that this instruction has as its 181 // destination is the lowest order sub-register of the super-register. 182 // If it isn't, then the register isn't really dead even if the 183 // super-register is considered dead. 184 if (SubRegIdx == X86::sub_8bit_hi) 185 return false; 186 187 // If neither the destination-super register nor any applicable subregisters 188 // are live after this instruction, then the super register is safe to use. 189 if (!LiveRegs.contains(SuperDestReg)) { 190 // If the original destination register was not the low 8-bit subregister 191 // then the super register check is sufficient. 192 if (SubRegIdx != X86::sub_8bit) 193 return true; 194 // If the original destination register was the low 8-bit subregister and 195 // we also need to check the 16-bit subregister and the high 8-bit 196 // subregister. 197 if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) && 198 !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8, 199 /*High=*/true))) 200 return true; 201 // Otherwise, we have a little more checking to do. 202 } 203 204 // If we get here, the super-register destination (or some part of it) is 205 // marked as live after the original instruction. 206 // 207 // The X86 backend does not have subregister liveness tracking enabled, 208 // so liveness information might be overly conservative. Specifically, the 209 // super register might be marked as live because it is implicitly defined 210 // by the instruction we are examining. 211 // 212 // However, for some specific instructions (this pass only cares about MOVs) 213 // we can produce more precise results by analysing that MOV's operands. 214 // 215 // Indeed, if super-register is not live before the mov it means that it 216 // was originally <read-undef> and so we are free to modify these 217 // undef upper bits. That may happen in case where the use is in another MBB 218 // and the vreg/physreg corresponding to the move has higher width than 219 // necessary (e.g. due to register coalescing with a "truncate" copy). 220 // So, we would like to handle patterns like this: 221 // 222 // %bb.2: derived from LLVM BB %if.then 223 // Live Ins: %rdi 224 // Predecessors according to CFG: %bb.0 225 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax 226 // ; No implicit %eax 227 // Successors according to CFG: %bb.3(?%) 228 // 229 // %bb.3: derived from LLVM BB %if.end 230 // Live Ins: %eax Only %ax is actually live 231 // Predecessors according to CFG: %bb.2 %bb.1 232 // %ax = KILL %ax, implicit killed %eax 233 // RET 0, %ax 234 unsigned Opc = OrigMI->getOpcode(); (void)Opc; 235 // These are the opcodes currently handled by the pass, if something 236 // else will be added we need to ensure that new opcode has the same 237 // properties. 238 assert((Opc == X86::MOV8rm || Opc == X86::MOV16rm || Opc == X86::MOV8rr || 239 Opc == X86::MOV16rr) && 240 "Unexpected opcode."); 241 242 bool IsDefined = false; 243 for (auto &MO: OrigMI->implicit_operands()) { 244 if (!MO.isReg()) 245 continue; 246 247 assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!"); 248 249 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) 250 IsDefined = true; 251 252 // If MO is a use of any part of the destination register but is not equal 253 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. 254 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, 255 // %eax, or %rax will prevent us from using the %eax register. 256 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && 257 TRI->regsOverlap(SuperDestReg, MO.getReg())) 258 return false; 259 } 260 // Reg is not Imp-def'ed -> it's live both before/after the instruction. 261 if (!IsDefined) 262 return false; 263 264 // Otherwise, the Reg is not live before the MI and the MOV can't 265 // make it really live, so it's in fact dead even after the MI. 266 return true; 267 } 268 269 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, 270 MachineInstr *MI) const { 271 unsigned NewDestReg; 272 273 // We are going to try to rewrite this load to a larger zero-extending 274 // load. This is safe if all portions of the 32 bit super-register 275 // of the original destination register, except for the original destination 276 // register are dead. getSuperRegDestIfDead checks that. 277 if (!getSuperRegDestIfDead(MI, NewDestReg)) 278 return nullptr; 279 280 // Safe to change the instruction. 281 MachineInstrBuilder MIB = 282 BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg); 283 284 unsigned NumArgs = MI->getNumOperands(); 285 for (unsigned i = 1; i < NumArgs; ++i) 286 MIB.add(MI->getOperand(i)); 287 288 MIB.setMemRefs(MI->memoperands()); 289 290 return MIB; 291 } 292 293 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { 294 assert(MI->getNumExplicitOperands() == 2); 295 auto &OldDest = MI->getOperand(0); 296 auto &OldSrc = MI->getOperand(1); 297 298 unsigned NewDestReg; 299 if (!getSuperRegDestIfDead(MI, NewDestReg)) 300 return nullptr; 301 302 unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); 303 304 // This is only correct if we access the same subregister index: otherwise, 305 // we could try to replace "movb %ah, %al" with "movl %eax, %eax". 306 auto *TRI = &TII->getRegisterInfo(); 307 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != 308 TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) 309 return nullptr; 310 311 // Safe to change the instruction. 312 // Don't set src flags, as we don't know if we're also killing the superreg. 313 // However, the superregister might not be defined; make it explicit that 314 // we don't care about the higher bits by reading it as Undef, and adding 315 // an imp-use on the original subregister. 316 MachineInstrBuilder MIB = 317 BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg) 318 .addReg(NewSrcReg, RegState::Undef) 319 .addReg(OldSrc.getReg(), RegState::Implicit); 320 321 // Drop imp-defs/uses that would be redundant with the new def/use. 322 for (auto &Op : MI->implicit_operands()) 323 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) 324 MIB.add(Op); 325 326 return MIB; 327 } 328 329 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, 330 MachineBasicBlock &MBB) const { 331 // See if this is an instruction of the type we are currently looking for. 332 switch (MI->getOpcode()) { 333 334 case X86::MOV8rm: 335 // Only replace 8 bit loads with the zero extending versions if 336 // in an inner most loop and not optimizing for size. This takes 337 // an extra byte to encode, and provides limited performance upside. 338 if (MachineLoop *ML = MLI->getLoopFor(&MBB)) 339 if (ML->begin() == ML->end() && !OptForSize) 340 return tryReplaceLoad(X86::MOVZX32rm8, MI); 341 break; 342 343 case X86::MOV16rm: 344 // Always try to replace 16 bit load with 32 bit zero extending. 345 // Code size is the same, and there is sometimes a perf advantage 346 // from eliminating a false dependence on the upper portion of 347 // the register. 348 return tryReplaceLoad(X86::MOVZX32rm16, MI); 349 350 case X86::MOV8rr: 351 case X86::MOV16rr: 352 // Always try to replace 8/16 bit copies with a 32 bit copy. 353 // Code size is either less (16) or equal (8), and there is sometimes a 354 // perf advantage from eliminating a false dependence on the upper portion 355 // of the register. 356 return tryReplaceCopy(MI); 357 358 default: 359 // nothing to do here. 360 break; 361 } 362 363 return nullptr; 364 } 365 366 void FixupBWInstPass::processBasicBlock(MachineFunction &MF, 367 MachineBasicBlock &MBB) { 368 369 // This algorithm doesn't delete the instructions it is replacing 370 // right away. By leaving the existing instructions in place, the 371 // register liveness information doesn't change, and this makes the 372 // analysis that goes on be better than if the replaced instructions 373 // were immediately removed. 374 // 375 // This algorithm always creates a replacement instruction 376 // and notes that and the original in a data structure, until the 377 // whole BB has been analyzed. This keeps the replacement instructions 378 // from making it seem as if the larger register might be live. 379 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; 380 381 // Start computing liveness for this block. We iterate from the end to be able 382 // to update this for each instruction. 383 LiveRegs.clear(); 384 // We run after PEI, so we need to AddPristinesAndCSRs. 385 LiveRegs.addLiveOuts(MBB); 386 387 for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) { 388 MachineInstr *MI = &*I; 389 390 if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB)) 391 MIReplacements.push_back(std::make_pair(MI, NewMI)); 392 393 // We're done with this instruction, update liveness for the next one. 394 LiveRegs.stepBackward(*MI); 395 } 396 397 while (!MIReplacements.empty()) { 398 MachineInstr *MI = MIReplacements.back().first; 399 MachineInstr *NewMI = MIReplacements.back().second; 400 MIReplacements.pop_back(); 401 MBB.insert(MI, NewMI); 402 MBB.erase(MI); 403 } 404 } 405