xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FixupBWInsts.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file defines the pass that looks through the machine instructions
10 /// late in the compilation, and finds byte or word instructions that
11 /// can be profitably replaced with 32 bit instructions that give equivalent
12 /// results for the bits of the results that are used. There are two possible
13 /// reasons to do this.
14 ///
15 /// One reason is to avoid false-dependences on the upper portions
16 /// of the registers.  Only instructions that have a destination register
17 /// which is not in any of the source registers can be affected by this.
18 /// Any instruction where one of the source registers is also the destination
19 /// register is unaffected, because it has a true dependence on the source
20 /// register already.  So, this consideration primarily affects load
21 /// instructions and register-to-register moves.  It would
22 /// seem like cmov(s) would also be affected, but because of the way cmov is
23 /// really implemented by most machines as reading both the destination and
24 /// and source registers, and then "merging" the two based on a condition,
25 /// it really already should be considered as having a true dependence on the
26 /// destination register as well.
27 ///
28 /// The other reason to do this is for potential code size savings.  Word
29 /// operations need an extra override byte compared to their 32 bit
30 /// versions. So this can convert many word operations to their larger
31 /// size, saving a byte in encoding. This could introduce partial register
32 /// dependences where none existed however.  As an example take:
33 ///   orw  ax, $0x1000
34 ///   addw ax, $3
35 /// now if this were to get transformed into
36 ///   orw  ax, $1000
37 ///   addl eax, $3
38 /// because the addl encodes shorter than the addw, this would introduce
39 /// a use of a register that was only partially written earlier.  On older
40 /// Intel processors this can be quite a performance penalty, so this should
41 /// probably only be done when it can be proven that a new partial dependence
42 /// wouldn't be created, or when your know a newer processor is being
43 /// targeted, or when optimizing for minimum code size.
44 ///
45 //===----------------------------------------------------------------------===//
46 
47 #include "X86.h"
48 #include "X86InstrInfo.h"
49 #include "X86Subtarget.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/LivePhysRegs.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstrBuilder.h"
54 #include "llvm/CodeGen/MachineLoopInfo.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/Passes.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 using namespace llvm;
61 
62 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
63 #define FIXUPBW_NAME "x86-fixup-bw-insts"
64 
65 #define DEBUG_TYPE FIXUPBW_NAME
66 
67 // Option to allow this optimization pass to have fine-grained control.
68 static cl::opt<bool>
69     FixupBWInsts("fixup-byte-word-insts",
70                  cl::desc("Change byte and word instructions to larger sizes"),
71                  cl::init(true), cl::Hidden);
72 
73 namespace {
74 class FixupBWInstPass : public MachineFunctionPass {
75   /// Loop over all of the instructions in the basic block replacing applicable
76   /// byte or word instructions with better alternatives.
77   void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
78 
79   /// This sets the \p SuperDestReg to the 32 bit super reg of the original
80   /// destination register of the MachineInstr passed in. It returns true if
81   /// that super register is dead just prior to \p OrigMI, and false if not.
82   bool getSuperRegDestIfDead(MachineInstr *OrigMI,
83                              unsigned &SuperDestReg) const;
84 
85   /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
86   /// register if it is safe to do so.  Return the replacement instruction if
87   /// OK, otherwise return nullptr.
88   MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
89 
90   /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
91   /// safe to do so.  Return the replacement instruction if OK, otherwise return
92   /// nullptr.
93   MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
94 
95   // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
96   // possible.  Return the replacement instruction if OK, return nullptr
97   // otherwise.
98   MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
99 
100 public:
101   static char ID;
102 
103   StringRef getPassName() const override { return FIXUPBW_DESC; }
104 
105   FixupBWInstPass() : MachineFunctionPass(ID) { }
106 
107   void getAnalysisUsage(AnalysisUsage &AU) const override {
108     AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
109                                        // guide some heuristics.
110     MachineFunctionPass::getAnalysisUsage(AU);
111   }
112 
113   /// Loop over all of the basic blocks, replacing byte and word instructions by
114   /// equivalent 32 bit instructions where performance or code size can be
115   /// improved.
116   bool runOnMachineFunction(MachineFunction &MF) override;
117 
118   MachineFunctionProperties getRequiredProperties() const override {
119     return MachineFunctionProperties().set(
120         MachineFunctionProperties::Property::NoVRegs);
121   }
122 
123 private:
124   MachineFunction *MF;
125 
126   /// Machine instruction info used throughout the class.
127   const X86InstrInfo *TII;
128 
129   /// Local member for function's OptForSize attribute.
130   bool OptForSize;
131 
132   /// Machine loop info used for guiding some heruistics.
133   MachineLoopInfo *MLI;
134 
135   /// Register Liveness information after the current instruction.
136   LivePhysRegs LiveRegs;
137 };
138 char FixupBWInstPass::ID = 0;
139 }
140 
141 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
142 
143 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
144 
145 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
146   if (!FixupBWInsts || skipFunction(MF.getFunction()))
147     return false;
148 
149   this->MF = &MF;
150   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
151   OptForSize = MF.getFunction().hasOptSize();
152   MLI = &getAnalysis<MachineLoopInfo>();
153   LiveRegs.init(TII->getRegisterInfo());
154 
155   LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
156 
157   // Process all basic blocks.
158   for (auto &MBB : MF)
159     processBasicBlock(MF, MBB);
160 
161   LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
162 
163   return true;
164 }
165 
166 /// Check if after \p OrigMI the only portion of super register
167 /// of the destination register of \p OrigMI that is alive is that
168 /// destination register.
169 ///
170 /// If so, return that super register in \p SuperDestReg.
171 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
172                                             unsigned &SuperDestReg) const {
173   auto *TRI = &TII->getRegisterInfo();
174 
175   unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
176   SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
177 
178   const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
179 
180   // Make sure that the sub-register that this instruction has as its
181   // destination is the lowest order sub-register of the super-register.
182   // If it isn't, then the register isn't really dead even if the
183   // super-register is considered dead.
184   if (SubRegIdx == X86::sub_8bit_hi)
185     return false;
186 
187   // If neither the destination-super register nor any applicable subregisters
188   // are live after this instruction, then the super register is safe to use.
189   if (!LiveRegs.contains(SuperDestReg)) {
190     // If the original destination register was not the low 8-bit subregister
191     // then the super register check is sufficient.
192     if (SubRegIdx != X86::sub_8bit)
193       return true;
194     // If the original destination register was the low 8-bit subregister and
195     // we also need to check the 16-bit subregister and the high 8-bit
196     // subregister.
197     if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
198         !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
199                                                   /*High=*/true)))
200       return true;
201     // Otherwise, we have a little more checking to do.
202   }
203 
204   // If we get here, the super-register destination (or some part of it) is
205   // marked as live after the original instruction.
206   //
207   // The X86 backend does not have subregister liveness tracking enabled,
208   // so liveness information might be overly conservative. Specifically, the
209   // super register might be marked as live because it is implicitly defined
210   // by the instruction we are examining.
211   //
212   // However, for some specific instructions (this pass only cares about MOVs)
213   // we can produce more precise results by analysing that MOV's operands.
214   //
215   // Indeed, if super-register is not live before the mov it means that it
216   // was originally <read-undef> and so we are free to modify these
217   // undef upper bits. That may happen in case where the use is in another MBB
218   // and the vreg/physreg corresponding to the move has higher width than
219   // necessary (e.g. due to register coalescing with a "truncate" copy).
220   // So, we would like to handle patterns like this:
221   //
222   //   %bb.2: derived from LLVM BB %if.then
223   //   Live Ins: %rdi
224   //   Predecessors according to CFG: %bb.0
225   //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
226   //                                 ; No implicit %eax
227   //   Successors according to CFG: %bb.3(?%)
228   //
229   //   %bb.3: derived from LLVM BB %if.end
230   //   Live Ins: %eax                            Only %ax is actually live
231   //   Predecessors according to CFG: %bb.2 %bb.1
232   //   %ax = KILL %ax, implicit killed %eax
233   //   RET 0, %ax
234   unsigned Opc = OrigMI->getOpcode(); (void)Opc;
235   // These are the opcodes currently handled by the pass, if something
236   // else will be added we need to ensure that new opcode has the same
237   // properties.
238   assert((Opc == X86::MOV8rm || Opc == X86::MOV16rm || Opc == X86::MOV8rr ||
239           Opc == X86::MOV16rr) &&
240          "Unexpected opcode.");
241 
242   bool IsDefined = false;
243   for (auto &MO: OrigMI->implicit_operands()) {
244     if (!MO.isReg())
245       continue;
246 
247     assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
248 
249     if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
250         IsDefined = true;
251 
252     // If MO is a use of any part of the destination register but is not equal
253     // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
254     // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
255     // %eax, or %rax will prevent us from using the %eax register.
256     if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
257         TRI->regsOverlap(SuperDestReg, MO.getReg()))
258       return false;
259   }
260   // Reg is not Imp-def'ed -> it's live both before/after the instruction.
261   if (!IsDefined)
262     return false;
263 
264   // Otherwise, the Reg is not live before the MI and the MOV can't
265   // make it really live, so it's in fact dead even after the MI.
266   return true;
267 }
268 
269 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
270                                               MachineInstr *MI) const {
271   unsigned NewDestReg;
272 
273   // We are going to try to rewrite this load to a larger zero-extending
274   // load.  This is safe if all portions of the 32 bit super-register
275   // of the original destination register, except for the original destination
276   // register are dead. getSuperRegDestIfDead checks that.
277   if (!getSuperRegDestIfDead(MI, NewDestReg))
278     return nullptr;
279 
280   // Safe to change the instruction.
281   MachineInstrBuilder MIB =
282       BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
283 
284   unsigned NumArgs = MI->getNumOperands();
285   for (unsigned i = 1; i < NumArgs; ++i)
286     MIB.add(MI->getOperand(i));
287 
288   MIB.setMemRefs(MI->memoperands());
289 
290   return MIB;
291 }
292 
293 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
294   assert(MI->getNumExplicitOperands() == 2);
295   auto &OldDest = MI->getOperand(0);
296   auto &OldSrc = MI->getOperand(1);
297 
298   unsigned NewDestReg;
299   if (!getSuperRegDestIfDead(MI, NewDestReg))
300     return nullptr;
301 
302   unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
303 
304   // This is only correct if we access the same subregister index: otherwise,
305   // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
306   auto *TRI = &TII->getRegisterInfo();
307   if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
308       TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
309     return nullptr;
310 
311   // Safe to change the instruction.
312   // Don't set src flags, as we don't know if we're also killing the superreg.
313   // However, the superregister might not be defined; make it explicit that
314   // we don't care about the higher bits by reading it as Undef, and adding
315   // an imp-use on the original subregister.
316   MachineInstrBuilder MIB =
317       BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
318           .addReg(NewSrcReg, RegState::Undef)
319           .addReg(OldSrc.getReg(), RegState::Implicit);
320 
321   // Drop imp-defs/uses that would be redundant with the new def/use.
322   for (auto &Op : MI->implicit_operands())
323     if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
324       MIB.add(Op);
325 
326   return MIB;
327 }
328 
329 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
330                                                MachineBasicBlock &MBB) const {
331   // See if this is an instruction of the type we are currently looking for.
332   switch (MI->getOpcode()) {
333 
334   case X86::MOV8rm:
335     // Only replace 8 bit loads with the zero extending versions if
336     // in an inner most loop and not optimizing for size. This takes
337     // an extra byte to encode, and provides limited performance upside.
338     if (MachineLoop *ML = MLI->getLoopFor(&MBB))
339       if (ML->begin() == ML->end() && !OptForSize)
340         return tryReplaceLoad(X86::MOVZX32rm8, MI);
341     break;
342 
343   case X86::MOV16rm:
344     // Always try to replace 16 bit load with 32 bit zero extending.
345     // Code size is the same, and there is sometimes a perf advantage
346     // from eliminating a false dependence on the upper portion of
347     // the register.
348     return tryReplaceLoad(X86::MOVZX32rm16, MI);
349 
350   case X86::MOV8rr:
351   case X86::MOV16rr:
352     // Always try to replace 8/16 bit copies with a 32 bit copy.
353     // Code size is either less (16) or equal (8), and there is sometimes a
354     // perf advantage from eliminating a false dependence on the upper portion
355     // of the register.
356     return tryReplaceCopy(MI);
357 
358   default:
359     // nothing to do here.
360     break;
361   }
362 
363   return nullptr;
364 }
365 
366 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
367                                         MachineBasicBlock &MBB) {
368 
369   // This algorithm doesn't delete the instructions it is replacing
370   // right away.  By leaving the existing instructions in place, the
371   // register liveness information doesn't change, and this makes the
372   // analysis that goes on be better than if the replaced instructions
373   // were immediately removed.
374   //
375   // This algorithm always creates a replacement instruction
376   // and notes that and the original in a data structure, until the
377   // whole BB has been analyzed.  This keeps the replacement instructions
378   // from making it seem as if the larger register might be live.
379   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
380 
381   // Start computing liveness for this block. We iterate from the end to be able
382   // to update this for each instruction.
383   LiveRegs.clear();
384   // We run after PEI, so we need to AddPristinesAndCSRs.
385   LiveRegs.addLiveOuts(MBB);
386 
387   for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
388     MachineInstr *MI = &*I;
389 
390     if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
391       MIReplacements.push_back(std::make_pair(MI, NewMI));
392 
393     // We're done with this instruction, update liveness for the next one.
394     LiveRegs.stepBackward(*MI);
395   }
396 
397   while (!MIReplacements.empty()) {
398     MachineInstr *MI = MIReplacements.back().first;
399     MachineInstr *NewMI = MIReplacements.back().second;
400     MIReplacements.pop_back();
401     MBB.insert(MI, NewMI);
402     MBB.erase(MI);
403   }
404 }
405