xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FixupBWInsts.cpp (revision 47ef2a131091508e049ab10cad7f91a3c1342cd9)
1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file defines the pass that looks through the machine instructions
10 /// late in the compilation, and finds byte or word instructions that
11 /// can be profitably replaced with 32 bit instructions that give equivalent
12 /// results for the bits of the results that are used. There are two possible
13 /// reasons to do this.
14 ///
15 /// One reason is to avoid false-dependences on the upper portions
16 /// of the registers.  Only instructions that have a destination register
17 /// which is not in any of the source registers can be affected by this.
18 /// Any instruction where one of the source registers is also the destination
19 /// register is unaffected, because it has a true dependence on the source
20 /// register already.  So, this consideration primarily affects load
21 /// instructions and register-to-register moves.  It would
22 /// seem like cmov(s) would also be affected, but because of the way cmov is
23 /// really implemented by most machines as reading both the destination and
24 /// and source registers, and then "merging" the two based on a condition,
25 /// it really already should be considered as having a true dependence on the
26 /// destination register as well.
27 ///
28 /// The other reason to do this is for potential code size savings.  Word
29 /// operations need an extra override byte compared to their 32 bit
30 /// versions. So this can convert many word operations to their larger
31 /// size, saving a byte in encoding. This could introduce partial register
32 /// dependences where none existed however.  As an example take:
33 ///   orw  ax, $0x1000
34 ///   addw ax, $3
35 /// now if this were to get transformed into
36 ///   orw  ax, $1000
37 ///   addl eax, $3
38 /// because the addl encodes shorter than the addw, this would introduce
39 /// a use of a register that was only partially written earlier.  On older
40 /// Intel processors this can be quite a performance penalty, so this should
41 /// probably only be done when it can be proven that a new partial dependence
42 /// wouldn't be created, or when your know a newer processor is being
43 /// targeted, or when optimizing for minimum code size.
44 ///
45 //===----------------------------------------------------------------------===//
46 
47 #include "X86.h"
48 #include "X86InstrInfo.h"
49 #include "X86Subtarget.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/ProfileSummaryInfo.h"
52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
53 #include "llvm/CodeGen/LiveRegUnits.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineRegisterInfo.h"
57 #include "llvm/CodeGen/MachineSizeOpts.h"
58 #include "llvm/CodeGen/Passes.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 using namespace llvm;
63 
64 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
65 #define FIXUPBW_NAME "x86-fixup-bw-insts"
66 
67 #define DEBUG_TYPE FIXUPBW_NAME
68 
69 // Option to allow this optimization pass to have fine-grained control.
70 static cl::opt<bool>
71     FixupBWInsts("fixup-byte-word-insts",
72                  cl::desc("Change byte and word instructions to larger sizes"),
73                  cl::init(true), cl::Hidden);
74 
75 namespace {
76 class FixupBWInstPass : public MachineFunctionPass {
77   /// Loop over all of the instructions in the basic block replacing applicable
78   /// byte or word instructions with better alternatives.
79   void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
80 
81   /// This returns the 32 bit super reg of the original destination register of
82   /// the MachineInstr passed in, if that super register is dead just prior to
83   /// \p OrigMI. Otherwise it returns Register().
84   Register getSuperRegDestIfDead(MachineInstr *OrigMI) const;
85 
86   /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
87   /// register if it is safe to do so.  Return the replacement instruction if
88   /// OK, otherwise return nullptr.
89   MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
90 
91   /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
92   /// safe to do so.  Return the replacement instruction if OK, otherwise return
93   /// nullptr.
94   MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
95 
96   /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
97   /// register if it is safe to do so.  Return the replacement instruction if
98   /// OK, otherwise return nullptr.
99   MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
100                                  MachineInstr *MI) const;
101 
102   // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
103   // possible.  Return the replacement instruction if OK, return nullptr
104   // otherwise.
105   MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
106 
107 public:
108   static char ID;
109 
110   StringRef getPassName() const override { return FIXUPBW_DESC; }
111 
112   FixupBWInstPass() : MachineFunctionPass(ID) { }
113 
114   void getAnalysisUsage(AnalysisUsage &AU) const override {
115     AU.addRequired<ProfileSummaryInfoWrapperPass>();
116     AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
117     MachineFunctionPass::getAnalysisUsage(AU);
118   }
119 
120   /// Loop over all of the basic blocks, replacing byte and word instructions by
121   /// equivalent 32 bit instructions where performance or code size can be
122   /// improved.
123   bool runOnMachineFunction(MachineFunction &MF) override;
124 
125   MachineFunctionProperties getRequiredProperties() const override {
126     return MachineFunctionProperties().set(
127         MachineFunctionProperties::Property::NoVRegs);
128   }
129 
130 private:
131   MachineFunction *MF = nullptr;
132 
133   /// Machine instruction info used throughout the class.
134   const X86InstrInfo *TII = nullptr;
135 
136   const TargetRegisterInfo *TRI = nullptr;
137 
138   /// Local member for function's OptForSize attribute.
139   bool OptForSize = false;
140 
141   /// Register Liveness information after the current instruction.
142   LiveRegUnits LiveUnits;
143 
144   ProfileSummaryInfo *PSI = nullptr;
145   MachineBlockFrequencyInfo *MBFI = nullptr;
146 };
147 char FixupBWInstPass::ID = 0;
148 }
149 
150 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
151 
152 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
153 
154 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
155   if (!FixupBWInsts || skipFunction(MF.getFunction()))
156     return false;
157 
158   this->MF = &MF;
159   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
160   TRI = MF.getRegInfo().getTargetRegisterInfo();
161   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
162   MBFI = (PSI && PSI->hasProfileSummary()) ?
163          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
164          nullptr;
165   LiveUnits.init(TII->getRegisterInfo());
166 
167   LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
168 
169   // Process all basic blocks.
170   for (auto &MBB : MF)
171     processBasicBlock(MF, MBB);
172 
173   LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
174 
175   return true;
176 }
177 
178 /// Check if after \p OrigMI the only portion of super register
179 /// of the destination register of \p OrigMI that is alive is that
180 /// destination register.
181 ///
182 /// If so, return that super register in \p SuperDestReg.
183 Register FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI) const {
184   const X86RegisterInfo *TRI = &TII->getRegisterInfo();
185   Register OrigDestReg = OrigMI->getOperand(0).getReg();
186   Register SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
187   assert(SuperDestReg.isValid() && "Invalid Operand");
188 
189   const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
190 
191   // Make sure that the sub-register that this instruction has as its
192   // destination is the lowest order sub-register of the super-register.
193   // If it isn't, then the register isn't really dead even if the
194   // super-register is considered dead.
195   if (SubRegIdx == X86::sub_8bit_hi)
196     return Register();
197 
198   // Test all regunits of the super register that are not part of the
199   // sub register. If none of them are live then the super register is safe to
200   // use.
201   bool SuperIsLive = false;
202   auto Range = TRI->regunits(OrigDestReg);
203   MCRegUnitIterator I = Range.begin(), E = Range.end();
204   for (MCRegUnit S : TRI->regunits(SuperDestReg)) {
205     I = std::lower_bound(I, E, S);
206     if ((I == E || *I > S) && LiveUnits.getBitVector().test(S)) {
207       SuperIsLive = true;
208       break;
209     }
210   }
211   if (!SuperIsLive)
212     return SuperDestReg;
213 
214   // If we get here, the super-register destination (or some part of it) is
215   // marked as live after the original instruction.
216   //
217   // The X86 backend does not have subregister liveness tracking enabled,
218   // so liveness information might be overly conservative. Specifically, the
219   // super register might be marked as live because it is implicitly defined
220   // by the instruction we are examining.
221   //
222   // However, for some specific instructions (this pass only cares about MOVs)
223   // we can produce more precise results by analysing that MOV's operands.
224   //
225   // Indeed, if super-register is not live before the mov it means that it
226   // was originally <read-undef> and so we are free to modify these
227   // undef upper bits. That may happen in case where the use is in another MBB
228   // and the vreg/physreg corresponding to the move has higher width than
229   // necessary (e.g. due to register coalescing with a "truncate" copy).
230   // So, we would like to handle patterns like this:
231   //
232   //   %bb.2: derived from LLVM BB %if.then
233   //   Live Ins: %rdi
234   //   Predecessors according to CFG: %bb.0
235   //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
236   //                                 ; No implicit %eax
237   //   Successors according to CFG: %bb.3(?%)
238   //
239   //   %bb.3: derived from LLVM BB %if.end
240   //   Live Ins: %eax                            Only %ax is actually live
241   //   Predecessors according to CFG: %bb.2 %bb.1
242   //   %ax = KILL %ax, implicit killed %eax
243   //   RET 0, %ax
244   unsigned Opc = OrigMI->getOpcode();
245   // These are the opcodes currently known to work with the code below, if
246   // something // else will be added we need to ensure that new opcode has the
247   // same properties.
248   if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
249       Opc != X86::MOV16rr)
250     return Register();
251 
252   bool IsDefined = false;
253   for (auto &MO: OrigMI->implicit_operands()) {
254     if (!MO.isReg())
255       continue;
256 
257     if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
258       IsDefined = true;
259 
260     // If MO is a use of any part of the destination register but is not equal
261     // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
262     // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
263     // %eax, or %rax will prevent us from using the %eax register.
264     if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
265         TRI->regsOverlap(SuperDestReg, MO.getReg()))
266       return Register();
267   }
268   // Reg is not Imp-def'ed -> it's live both before/after the instruction.
269   if (!IsDefined)
270     return Register();
271 
272   // Otherwise, the Reg is not live before the MI and the MOV can't
273   // make it really live, so it's in fact dead even after the MI.
274   return SuperDestReg;
275 }
276 
277 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
278                                               MachineInstr *MI) const {
279   // We are going to try to rewrite this load to a larger zero-extending
280   // load.  This is safe if all portions of the 32 bit super-register
281   // of the original destination register, except for the original destination
282   // register are dead. getSuperRegDestIfDead checks that.
283   Register NewDestReg = getSuperRegDestIfDead(MI);
284   if (!NewDestReg)
285     return nullptr;
286 
287   // Safe to change the instruction.
288   MachineInstrBuilder MIB =
289       BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg);
290 
291   unsigned NumArgs = MI->getNumOperands();
292   for (unsigned i = 1; i < NumArgs; ++i)
293     MIB.add(MI->getOperand(i));
294 
295   MIB.setMemRefs(MI->memoperands());
296 
297   // If it was debug tracked, record a substitution.
298   if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
299     unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
300                                           MI->getOperand(0).getReg());
301     unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
302     MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
303   }
304 
305   return MIB;
306 }
307 
308 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
309   assert(MI->getNumExplicitOperands() == 2);
310   auto &OldDest = MI->getOperand(0);
311   auto &OldSrc = MI->getOperand(1);
312 
313   Register NewDestReg = getSuperRegDestIfDead(MI);
314   if (!NewDestReg)
315     return nullptr;
316 
317   Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
318   assert(NewSrcReg.isValid() && "Invalid Operand");
319 
320   // This is only correct if we access the same subregister index: otherwise,
321   // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
322   const X86RegisterInfo *TRI = &TII->getRegisterInfo();
323   if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
324       TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
325     return nullptr;
326 
327   // Safe to change the instruction.
328   // Don't set src flags, as we don't know if we're also killing the superreg.
329   // However, the superregister might not be defined; make it explicit that
330   // we don't care about the higher bits by reading it as Undef, and adding
331   // an imp-use on the original subregister.
332   MachineInstrBuilder MIB =
333       BuildMI(*MF, MIMetadata(*MI), TII->get(X86::MOV32rr), NewDestReg)
334           .addReg(NewSrcReg, RegState::Undef)
335           .addReg(OldSrc.getReg(), RegState::Implicit);
336 
337   // Drop imp-defs/uses that would be redundant with the new def/use.
338   for (auto &Op : MI->implicit_operands())
339     if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
340       MIB.add(Op);
341 
342   return MIB;
343 }
344 
345 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
346                                                 MachineInstr *MI) const {
347   Register NewDestReg = getSuperRegDestIfDead(MI);
348   if (!NewDestReg)
349     return nullptr;
350 
351   // Don't interfere with formation of CBW instructions which should be a
352   // shorter encoding than even the MOVSX32rr8. It's also immune to partial
353   // merge issues on Intel CPUs.
354   if (MI->getOpcode() == X86::MOVSX16rr8 &&
355       MI->getOperand(0).getReg() == X86::AX &&
356       MI->getOperand(1).getReg() == X86::AL)
357     return nullptr;
358 
359   // Safe to change the instruction.
360   MachineInstrBuilder MIB =
361       BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg);
362 
363   unsigned NumArgs = MI->getNumOperands();
364   for (unsigned i = 1; i < NumArgs; ++i)
365     MIB.add(MI->getOperand(i));
366 
367   MIB.setMemRefs(MI->memoperands());
368 
369   if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
370     unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
371                                           MI->getOperand(0).getReg());
372     unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
373     MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
374   }
375 
376   return MIB;
377 }
378 
379 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
380                                                MachineBasicBlock &MBB) const {
381   // See if this is an instruction of the type we are currently looking for.
382   switch (MI->getOpcode()) {
383 
384   case X86::MOV8rm:
385     // Replace 8-bit loads with the zero-extending version if not optimizing
386     // for size. The extending op is cheaper across a wide range of uarch and
387     // it avoids a potentially expensive partial register stall. It takes an
388     // extra byte to encode, however, so don't do this when optimizing for size.
389     if (!OptForSize)
390       return tryReplaceLoad(X86::MOVZX32rm8, MI);
391     break;
392 
393   case X86::MOV16rm:
394     // Always try to replace 16 bit load with 32 bit zero extending.
395     // Code size is the same, and there is sometimes a perf advantage
396     // from eliminating a false dependence on the upper portion of
397     // the register.
398     return tryReplaceLoad(X86::MOVZX32rm16, MI);
399 
400   case X86::MOV8rr:
401   case X86::MOV16rr:
402     // Always try to replace 8/16 bit copies with a 32 bit copy.
403     // Code size is either less (16) or equal (8), and there is sometimes a
404     // perf advantage from eliminating a false dependence on the upper portion
405     // of the register.
406     return tryReplaceCopy(MI);
407 
408   case X86::MOVSX16rr8:
409     return tryReplaceExtend(X86::MOVSX32rr8, MI);
410   case X86::MOVSX16rm8:
411     return tryReplaceExtend(X86::MOVSX32rm8, MI);
412   case X86::MOVZX16rr8:
413     return tryReplaceExtend(X86::MOVZX32rr8, MI);
414   case X86::MOVZX16rm8:
415     return tryReplaceExtend(X86::MOVZX32rm8, MI);
416 
417   default:
418     // nothing to do here.
419     break;
420   }
421 
422   return nullptr;
423 }
424 
425 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
426                                         MachineBasicBlock &MBB) {
427 
428   // This algorithm doesn't delete the instructions it is replacing
429   // right away.  By leaving the existing instructions in place, the
430   // register liveness information doesn't change, and this makes the
431   // analysis that goes on be better than if the replaced instructions
432   // were immediately removed.
433   //
434   // This algorithm always creates a replacement instruction
435   // and notes that and the original in a data structure, until the
436   // whole BB has been analyzed.  This keeps the replacement instructions
437   // from making it seem as if the larger register might be live.
438   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
439 
440   // Start computing liveness for this block. We iterate from the end to be able
441   // to update this for each instruction.
442   LiveUnits.clear();
443   // We run after PEI, so we need to AddPristinesAndCSRs.
444   LiveUnits.addLiveOuts(MBB);
445 
446   OptForSize = MF.getFunction().hasOptSize() ||
447                llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
448 
449   for (MachineInstr &MI : llvm::reverse(MBB)) {
450     if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB))
451       MIReplacements.push_back(std::make_pair(&MI, NewMI));
452 
453     // We're done with this instruction, update liveness for the next one.
454     LiveUnits.stepBackward(MI);
455   }
456 
457   while (!MIReplacements.empty()) {
458     MachineInstr *MI = MIReplacements.back().first;
459     MachineInstr *NewMI = MIReplacements.back().second;
460     MIReplacements.pop_back();
461     MBB.insert(MI, NewMI);
462     MBB.erase(MI);
463   }
464 }
465