1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file defines the pass that looks through the machine instructions 10 /// late in the compilation, and finds byte or word instructions that 11 /// can be profitably replaced with 32 bit instructions that give equivalent 12 /// results for the bits of the results that are used. There are two possible 13 /// reasons to do this. 14 /// 15 /// One reason is to avoid false-dependences on the upper portions 16 /// of the registers. Only instructions that have a destination register 17 /// which is not in any of the source registers can be affected by this. 18 /// Any instruction where one of the source registers is also the destination 19 /// register is unaffected, because it has a true dependence on the source 20 /// register already. So, this consideration primarily affects load 21 /// instructions and register-to-register moves. It would 22 /// seem like cmov(s) would also be affected, but because of the way cmov is 23 /// really implemented by most machines as reading both the destination and 24 /// and source registers, and then "merging" the two based on a condition, 25 /// it really already should be considered as having a true dependence on the 26 /// destination register as well. 27 /// 28 /// The other reason to do this is for potential code size savings. Word 29 /// operations need an extra override byte compared to their 32 bit 30 /// versions. So this can convert many word operations to their larger 31 /// size, saving a byte in encoding. This could introduce partial register 32 /// dependences where none existed however. As an example take: 33 /// orw ax, $0x1000 34 /// addw ax, $3 35 /// now if this were to get transformed into 36 /// orw ax, $1000 37 /// addl eax, $3 38 /// because the addl encodes shorter than the addw, this would introduce 39 /// a use of a register that was only partially written earlier. On older 40 /// Intel processors this can be quite a performance penalty, so this should 41 /// probably only be done when it can be proven that a new partial dependence 42 /// wouldn't be created, or when your know a newer processor is being 43 /// targeted, or when optimizing for minimum code size. 44 /// 45 //===----------------------------------------------------------------------===// 46 47 #include "X86.h" 48 #include "X86InstrInfo.h" 49 #include "X86Subtarget.h" 50 #include "llvm/ADT/Statistic.h" 51 #include "llvm/Analysis/ProfileSummaryInfo.h" 52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 53 #include "llvm/CodeGen/LiveRegUnits.h" 54 #include "llvm/CodeGen/MachineFunctionPass.h" 55 #include "llvm/CodeGen/MachineInstrBuilder.h" 56 #include "llvm/CodeGen/MachineRegisterInfo.h" 57 #include "llvm/CodeGen/MachineSizeOpts.h" 58 #include "llvm/CodeGen/Passes.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/raw_ostream.h" 62 using namespace llvm; 63 64 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" 65 #define FIXUPBW_NAME "x86-fixup-bw-insts" 66 67 #define DEBUG_TYPE FIXUPBW_NAME 68 69 // Option to allow this optimization pass to have fine-grained control. 70 static cl::opt<bool> 71 FixupBWInsts("fixup-byte-word-insts", 72 cl::desc("Change byte and word instructions to larger sizes"), 73 cl::init(true), cl::Hidden); 74 75 namespace { 76 class FixupBWInstPass : public MachineFunctionPass { 77 /// Loop over all of the instructions in the basic block replacing applicable 78 /// byte or word instructions with better alternatives. 79 void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 80 81 /// This returns the 32 bit super reg of the original destination register of 82 /// the MachineInstr passed in, if that super register is dead just prior to 83 /// \p OrigMI. Otherwise it returns Register(). 84 Register getSuperRegDestIfDead(MachineInstr *OrigMI) const; 85 86 /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit 87 /// register if it is safe to do so. Return the replacement instruction if 88 /// OK, otherwise return nullptr. 89 MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; 90 91 /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is 92 /// safe to do so. Return the replacement instruction if OK, otherwise return 93 /// nullptr. 94 MachineInstr *tryReplaceCopy(MachineInstr *MI) const; 95 96 /// Change the MachineInstr \p MI into the equivalent extend to 32 bit 97 /// register if it is safe to do so. Return the replacement instruction if 98 /// OK, otherwise return nullptr. 99 MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, 100 MachineInstr *MI) const; 101 102 // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if 103 // possible. Return the replacement instruction if OK, return nullptr 104 // otherwise. 105 MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; 106 107 public: 108 static char ID; 109 110 StringRef getPassName() const override { return FIXUPBW_DESC; } 111 112 FixupBWInstPass() : MachineFunctionPass(ID) { } 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override { 115 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 116 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 117 MachineFunctionPass::getAnalysisUsage(AU); 118 } 119 120 /// Loop over all of the basic blocks, replacing byte and word instructions by 121 /// equivalent 32 bit instructions where performance or code size can be 122 /// improved. 123 bool runOnMachineFunction(MachineFunction &MF) override; 124 125 MachineFunctionProperties getRequiredProperties() const override { 126 return MachineFunctionProperties().set( 127 MachineFunctionProperties::Property::NoVRegs); 128 } 129 130 private: 131 MachineFunction *MF = nullptr; 132 133 /// Machine instruction info used throughout the class. 134 const X86InstrInfo *TII = nullptr; 135 136 const TargetRegisterInfo *TRI = nullptr; 137 138 /// Local member for function's OptForSize attribute. 139 bool OptForSize = false; 140 141 /// Register Liveness information after the current instruction. 142 LiveRegUnits LiveUnits; 143 144 ProfileSummaryInfo *PSI = nullptr; 145 MachineBlockFrequencyInfo *MBFI = nullptr; 146 }; 147 char FixupBWInstPass::ID = 0; 148 } 149 150 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) 151 152 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } 153 154 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { 155 if (!FixupBWInsts || skipFunction(MF.getFunction())) 156 return false; 157 158 this->MF = &MF; 159 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 160 TRI = MF.getRegInfo().getTargetRegisterInfo(); 161 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 162 MBFI = (PSI && PSI->hasProfileSummary()) ? 163 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 164 nullptr; 165 LiveUnits.init(TII->getRegisterInfo()); 166 167 LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); 168 169 // Process all basic blocks. 170 for (auto &MBB : MF) 171 processBasicBlock(MF, MBB); 172 173 LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); 174 175 return true; 176 } 177 178 /// Check if after \p OrigMI the only portion of super register 179 /// of the destination register of \p OrigMI that is alive is that 180 /// destination register. 181 /// 182 /// If so, return that super register in \p SuperDestReg. 183 Register FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI) const { 184 const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 185 Register OrigDestReg = OrigMI->getOperand(0).getReg(); 186 Register SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); 187 assert(SuperDestReg.isValid() && "Invalid Operand"); 188 189 const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); 190 191 // Make sure that the sub-register that this instruction has as its 192 // destination is the lowest order sub-register of the super-register. 193 // If it isn't, then the register isn't really dead even if the 194 // super-register is considered dead. 195 if (SubRegIdx == X86::sub_8bit_hi) 196 return Register(); 197 198 // Test all regunits of the super register that are not part of the 199 // sub register. If none of them are live then the super register is safe to 200 // use. 201 bool SuperIsLive = false; 202 auto Range = TRI->regunits(OrigDestReg); 203 MCRegUnitIterator I = Range.begin(), E = Range.end(); 204 for (MCRegUnit S : TRI->regunits(SuperDestReg)) { 205 I = std::lower_bound(I, E, S); 206 if ((I == E || *I > S) && LiveUnits.getBitVector().test(S)) { 207 SuperIsLive = true; 208 break; 209 } 210 } 211 if (!SuperIsLive) 212 return SuperDestReg; 213 214 // If we get here, the super-register destination (or some part of it) is 215 // marked as live after the original instruction. 216 // 217 // The X86 backend does not have subregister liveness tracking enabled, 218 // so liveness information might be overly conservative. Specifically, the 219 // super register might be marked as live because it is implicitly defined 220 // by the instruction we are examining. 221 // 222 // However, for some specific instructions (this pass only cares about MOVs) 223 // we can produce more precise results by analysing that MOV's operands. 224 // 225 // Indeed, if super-register is not live before the mov it means that it 226 // was originally <read-undef> and so we are free to modify these 227 // undef upper bits. That may happen in case where the use is in another MBB 228 // and the vreg/physreg corresponding to the move has higher width than 229 // necessary (e.g. due to register coalescing with a "truncate" copy). 230 // So, we would like to handle patterns like this: 231 // 232 // %bb.2: derived from LLVM BB %if.then 233 // Live Ins: %rdi 234 // Predecessors according to CFG: %bb.0 235 // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax 236 // ; No implicit %eax 237 // Successors according to CFG: %bb.3(?%) 238 // 239 // %bb.3: derived from LLVM BB %if.end 240 // Live Ins: %eax Only %ax is actually live 241 // Predecessors according to CFG: %bb.2 %bb.1 242 // %ax = KILL %ax, implicit killed %eax 243 // RET 0, %ax 244 unsigned Opc = OrigMI->getOpcode(); 245 // These are the opcodes currently known to work with the code below, if 246 // something // else will be added we need to ensure that new opcode has the 247 // same properties. 248 if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && 249 Opc != X86::MOV16rr) 250 return Register(); 251 252 bool IsDefined = false; 253 for (auto &MO: OrigMI->implicit_operands()) { 254 if (!MO.isReg()) 255 continue; 256 257 if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) 258 IsDefined = true; 259 260 // If MO is a use of any part of the destination register but is not equal 261 // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. 262 // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, 263 // %eax, or %rax will prevent us from using the %eax register. 264 if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && 265 TRI->regsOverlap(SuperDestReg, MO.getReg())) 266 return Register(); 267 } 268 // Reg is not Imp-def'ed -> it's live both before/after the instruction. 269 if (!IsDefined) 270 return Register(); 271 272 // Otherwise, the Reg is not live before the MI and the MOV can't 273 // make it really live, so it's in fact dead even after the MI. 274 return SuperDestReg; 275 } 276 277 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, 278 MachineInstr *MI) const { 279 // We are going to try to rewrite this load to a larger zero-extending 280 // load. This is safe if all portions of the 32 bit super-register 281 // of the original destination register, except for the original destination 282 // register are dead. getSuperRegDestIfDead checks that. 283 Register NewDestReg = getSuperRegDestIfDead(MI); 284 if (!NewDestReg) 285 return nullptr; 286 287 // Safe to change the instruction. 288 MachineInstrBuilder MIB = 289 BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg); 290 291 unsigned NumArgs = MI->getNumOperands(); 292 for (unsigned i = 1; i < NumArgs; ++i) 293 MIB.add(MI->getOperand(i)); 294 295 MIB.setMemRefs(MI->memoperands()); 296 297 // If it was debug tracked, record a substitution. 298 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 299 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 300 MI->getOperand(0).getReg()); 301 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 302 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 303 } 304 305 return MIB; 306 } 307 308 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { 309 assert(MI->getNumExplicitOperands() == 2); 310 auto &OldDest = MI->getOperand(0); 311 auto &OldSrc = MI->getOperand(1); 312 313 Register NewDestReg = getSuperRegDestIfDead(MI); 314 if (!NewDestReg) 315 return nullptr; 316 317 Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); 318 assert(NewSrcReg.isValid() && "Invalid Operand"); 319 320 // This is only correct if we access the same subregister index: otherwise, 321 // we could try to replace "movb %ah, %al" with "movl %eax, %eax". 322 const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 323 if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != 324 TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) 325 return nullptr; 326 327 // Safe to change the instruction. 328 // Don't set src flags, as we don't know if we're also killing the superreg. 329 // However, the superregister might not be defined; make it explicit that 330 // we don't care about the higher bits by reading it as Undef, and adding 331 // an imp-use on the original subregister. 332 MachineInstrBuilder MIB = 333 BuildMI(*MF, MIMetadata(*MI), TII->get(X86::MOV32rr), NewDestReg) 334 .addReg(NewSrcReg, RegState::Undef) 335 .addReg(OldSrc.getReg(), RegState::Implicit); 336 337 // Drop imp-defs/uses that would be redundant with the new def/use. 338 for (auto &Op : MI->implicit_operands()) 339 if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) 340 MIB.add(Op); 341 342 return MIB; 343 } 344 345 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode, 346 MachineInstr *MI) const { 347 Register NewDestReg = getSuperRegDestIfDead(MI); 348 if (!NewDestReg) 349 return nullptr; 350 351 // Don't interfere with formation of CBW instructions which should be a 352 // shorter encoding than even the MOVSX32rr8. It's also immune to partial 353 // merge issues on Intel CPUs. 354 if (MI->getOpcode() == X86::MOVSX16rr8 && 355 MI->getOperand(0).getReg() == X86::AX && 356 MI->getOperand(1).getReg() == X86::AL) 357 return nullptr; 358 359 // Safe to change the instruction. 360 MachineInstrBuilder MIB = 361 BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg); 362 363 unsigned NumArgs = MI->getNumOperands(); 364 for (unsigned i = 1; i < NumArgs; ++i) 365 MIB.add(MI->getOperand(i)); 366 367 MIB.setMemRefs(MI->memoperands()); 368 369 if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 370 unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 371 MI->getOperand(0).getReg()); 372 unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 373 MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 374 } 375 376 return MIB; 377 } 378 379 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, 380 MachineBasicBlock &MBB) const { 381 // See if this is an instruction of the type we are currently looking for. 382 switch (MI->getOpcode()) { 383 384 case X86::MOV8rm: 385 // Replace 8-bit loads with the zero-extending version if not optimizing 386 // for size. The extending op is cheaper across a wide range of uarch and 387 // it avoids a potentially expensive partial register stall. It takes an 388 // extra byte to encode, however, so don't do this when optimizing for size. 389 if (!OptForSize) 390 return tryReplaceLoad(X86::MOVZX32rm8, MI); 391 break; 392 393 case X86::MOV16rm: 394 // Always try to replace 16 bit load with 32 bit zero extending. 395 // Code size is the same, and there is sometimes a perf advantage 396 // from eliminating a false dependence on the upper portion of 397 // the register. 398 return tryReplaceLoad(X86::MOVZX32rm16, MI); 399 400 case X86::MOV8rr: 401 case X86::MOV16rr: 402 // Always try to replace 8/16 bit copies with a 32 bit copy. 403 // Code size is either less (16) or equal (8), and there is sometimes a 404 // perf advantage from eliminating a false dependence on the upper portion 405 // of the register. 406 return tryReplaceCopy(MI); 407 408 case X86::MOVSX16rr8: 409 return tryReplaceExtend(X86::MOVSX32rr8, MI); 410 case X86::MOVSX16rm8: 411 return tryReplaceExtend(X86::MOVSX32rm8, MI); 412 case X86::MOVZX16rr8: 413 return tryReplaceExtend(X86::MOVZX32rr8, MI); 414 case X86::MOVZX16rm8: 415 return tryReplaceExtend(X86::MOVZX32rm8, MI); 416 417 default: 418 // nothing to do here. 419 break; 420 } 421 422 return nullptr; 423 } 424 425 void FixupBWInstPass::processBasicBlock(MachineFunction &MF, 426 MachineBasicBlock &MBB) { 427 428 // This algorithm doesn't delete the instructions it is replacing 429 // right away. By leaving the existing instructions in place, the 430 // register liveness information doesn't change, and this makes the 431 // analysis that goes on be better than if the replaced instructions 432 // were immediately removed. 433 // 434 // This algorithm always creates a replacement instruction 435 // and notes that and the original in a data structure, until the 436 // whole BB has been analyzed. This keeps the replacement instructions 437 // from making it seem as if the larger register might be live. 438 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; 439 440 // Start computing liveness for this block. We iterate from the end to be able 441 // to update this for each instruction. 442 LiveUnits.clear(); 443 // We run after PEI, so we need to AddPristinesAndCSRs. 444 LiveUnits.addLiveOuts(MBB); 445 446 OptForSize = MF.getFunction().hasOptSize() || 447 llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); 448 449 for (MachineInstr &MI : llvm::reverse(MBB)) { 450 if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB)) 451 MIReplacements.push_back(std::make_pair(&MI, NewMI)); 452 453 // We're done with this instruction, update liveness for the next one. 454 LiveUnits.stepBackward(MI); 455 } 456 457 while (!MIReplacements.empty()) { 458 MachineInstr *MI = MIReplacements.back().first; 459 MachineInstr *NewMI = MIReplacements.back().second; 460 MIReplacements.pop_back(); 461 MBB.insert(MI, NewMI); 462 MBB.erase(MI); 463 } 464 } 465