xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FixupBWInsts.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file defines the pass that looks through the machine instructions
10 /// late in the compilation, and finds byte or word instructions that
11 /// can be profitably replaced with 32 bit instructions that give equivalent
12 /// results for the bits of the results that are used. There are two possible
13 /// reasons to do this.
14 ///
15 /// One reason is to avoid false-dependences on the upper portions
16 /// of the registers.  Only instructions that have a destination register
17 /// which is not in any of the source registers can be affected by this.
18 /// Any instruction where one of the source registers is also the destination
19 /// register is unaffected, because it has a true dependence on the source
20 /// register already.  So, this consideration primarily affects load
21 /// instructions and register-to-register moves.  It would
22 /// seem like cmov(s) would also be affected, but because of the way cmov is
23 /// really implemented by most machines as reading both the destination and
24 /// and source registers, and then "merging" the two based on a condition,
25 /// it really already should be considered as having a true dependence on the
26 /// destination register as well.
27 ///
28 /// The other reason to do this is for potential code size savings.  Word
29 /// operations need an extra override byte compared to their 32 bit
30 /// versions. So this can convert many word operations to their larger
31 /// size, saving a byte in encoding. This could introduce partial register
32 /// dependences where none existed however.  As an example take:
33 ///   orw  ax, $0x1000
34 ///   addw ax, $3
35 /// now if this were to get transformed into
36 ///   orw  ax, $1000
37 ///   addl eax, $3
38 /// because the addl encodes shorter than the addw, this would introduce
39 /// a use of a register that was only partially written earlier.  On older
40 /// Intel processors this can be quite a performance penalty, so this should
41 /// probably only be done when it can be proven that a new partial dependence
42 /// wouldn't be created, or when your know a newer processor is being
43 /// targeted, or when optimizing for minimum code size.
44 ///
45 //===----------------------------------------------------------------------===//
46 
47 #include "X86.h"
48 #include "X86InstrInfo.h"
49 #include "X86Subtarget.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/Analysis/ProfileSummaryInfo.h"
52 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
53 #include "llvm/CodeGen/LivePhysRegs.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineRegisterInfo.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/Passes.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 using namespace llvm;
64 
65 #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
66 #define FIXUPBW_NAME "x86-fixup-bw-insts"
67 
68 #define DEBUG_TYPE FIXUPBW_NAME
69 
70 // Option to allow this optimization pass to have fine-grained control.
71 static cl::opt<bool>
72     FixupBWInsts("fixup-byte-word-insts",
73                  cl::desc("Change byte and word instructions to larger sizes"),
74                  cl::init(true), cl::Hidden);
75 
76 namespace {
77 class FixupBWInstPass : public MachineFunctionPass {
78   /// Loop over all of the instructions in the basic block replacing applicable
79   /// byte or word instructions with better alternatives.
80   void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
81 
82   /// This sets the \p SuperDestReg to the 32 bit super reg of the original
83   /// destination register of the MachineInstr passed in. It returns true if
84   /// that super register is dead just prior to \p OrigMI, and false if not.
85   bool getSuperRegDestIfDead(MachineInstr *OrigMI,
86                              Register &SuperDestReg) const;
87 
88   /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
89   /// register if it is safe to do so.  Return the replacement instruction if
90   /// OK, otherwise return nullptr.
91   MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
92 
93   /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
94   /// safe to do so.  Return the replacement instruction if OK, otherwise return
95   /// nullptr.
96   MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
97 
98   /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
99   /// register if it is safe to do so.  Return the replacement instruction if
100   /// OK, otherwise return nullptr.
101   MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
102                                  MachineInstr *MI) const;
103 
104   // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
105   // possible.  Return the replacement instruction if OK, return nullptr
106   // otherwise.
107   MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
108 
109 public:
110   static char ID;
111 
112   StringRef getPassName() const override { return FIXUPBW_DESC; }
113 
114   FixupBWInstPass() : MachineFunctionPass(ID) { }
115 
116   void getAnalysisUsage(AnalysisUsage &AU) const override {
117     AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
118                                        // guide some heuristics.
119     AU.addRequired<ProfileSummaryInfoWrapperPass>();
120     AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
121     MachineFunctionPass::getAnalysisUsage(AU);
122   }
123 
124   /// Loop over all of the basic blocks, replacing byte and word instructions by
125   /// equivalent 32 bit instructions where performance or code size can be
126   /// improved.
127   bool runOnMachineFunction(MachineFunction &MF) override;
128 
129   MachineFunctionProperties getRequiredProperties() const override {
130     return MachineFunctionProperties().set(
131         MachineFunctionProperties::Property::NoVRegs);
132   }
133 
134 private:
135   MachineFunction *MF = nullptr;
136 
137   /// Machine instruction info used throughout the class.
138   const X86InstrInfo *TII = nullptr;
139 
140   /// Local member for function's OptForSize attribute.
141   bool OptForSize = false;
142 
143   /// Machine loop info used for guiding some heruistics.
144   MachineLoopInfo *MLI = nullptr;
145 
146   /// Register Liveness information after the current instruction.
147   LivePhysRegs LiveRegs;
148 
149   ProfileSummaryInfo *PSI;
150   MachineBlockFrequencyInfo *MBFI;
151 };
152 char FixupBWInstPass::ID = 0;
153 }
154 
155 INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
156 
157 FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
158 
159 bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
160   if (!FixupBWInsts || skipFunction(MF.getFunction()))
161     return false;
162 
163   this->MF = &MF;
164   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
165   MLI = &getAnalysis<MachineLoopInfo>();
166   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
167   MBFI = (PSI && PSI->hasProfileSummary()) ?
168          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
169          nullptr;
170   LiveRegs.init(TII->getRegisterInfo());
171 
172   LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
173 
174   // Process all basic blocks.
175   for (auto &MBB : MF)
176     processBasicBlock(MF, MBB);
177 
178   LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
179 
180   return true;
181 }
182 
183 /// Check if after \p OrigMI the only portion of super register
184 /// of the destination register of \p OrigMI that is alive is that
185 /// destination register.
186 ///
187 /// If so, return that super register in \p SuperDestReg.
188 bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
189                                             Register &SuperDestReg) const {
190   const X86RegisterInfo *TRI = &TII->getRegisterInfo();
191   Register OrigDestReg = OrigMI->getOperand(0).getReg();
192   SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
193 
194   const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
195 
196   // Make sure that the sub-register that this instruction has as its
197   // destination is the lowest order sub-register of the super-register.
198   // If it isn't, then the register isn't really dead even if the
199   // super-register is considered dead.
200   if (SubRegIdx == X86::sub_8bit_hi)
201     return false;
202 
203   // If neither the destination-super register nor any applicable subregisters
204   // are live after this instruction, then the super register is safe to use.
205   if (!LiveRegs.contains(SuperDestReg)) {
206     // If the original destination register was not the low 8-bit subregister
207     // then the super register check is sufficient.
208     if (SubRegIdx != X86::sub_8bit)
209       return true;
210     // If the original destination register was the low 8-bit subregister and
211     // we also need to check the 16-bit subregister and the high 8-bit
212     // subregister.
213     if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
214         !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
215                                                   /*High=*/true)))
216       return true;
217     // Otherwise, we have a little more checking to do.
218   }
219 
220   // If we get here, the super-register destination (or some part of it) is
221   // marked as live after the original instruction.
222   //
223   // The X86 backend does not have subregister liveness tracking enabled,
224   // so liveness information might be overly conservative. Specifically, the
225   // super register might be marked as live because it is implicitly defined
226   // by the instruction we are examining.
227   //
228   // However, for some specific instructions (this pass only cares about MOVs)
229   // we can produce more precise results by analysing that MOV's operands.
230   //
231   // Indeed, if super-register is not live before the mov it means that it
232   // was originally <read-undef> and so we are free to modify these
233   // undef upper bits. That may happen in case where the use is in another MBB
234   // and the vreg/physreg corresponding to the move has higher width than
235   // necessary (e.g. due to register coalescing with a "truncate" copy).
236   // So, we would like to handle patterns like this:
237   //
238   //   %bb.2: derived from LLVM BB %if.then
239   //   Live Ins: %rdi
240   //   Predecessors according to CFG: %bb.0
241   //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
242   //                                 ; No implicit %eax
243   //   Successors according to CFG: %bb.3(?%)
244   //
245   //   %bb.3: derived from LLVM BB %if.end
246   //   Live Ins: %eax                            Only %ax is actually live
247   //   Predecessors according to CFG: %bb.2 %bb.1
248   //   %ax = KILL %ax, implicit killed %eax
249   //   RET 0, %ax
250   unsigned Opc = OrigMI->getOpcode(); (void)Opc;
251   // These are the opcodes currently known to work with the code below, if
252   // something // else will be added we need to ensure that new opcode has the
253   // same properties.
254   if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
255       Opc != X86::MOV16rr)
256     return false;
257 
258   bool IsDefined = false;
259   for (auto &MO: OrigMI->implicit_operands()) {
260     if (!MO.isReg())
261       continue;
262 
263     assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
264 
265     if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
266       IsDefined = true;
267 
268     // If MO is a use of any part of the destination register but is not equal
269     // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
270     // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
271     // %eax, or %rax will prevent us from using the %eax register.
272     if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
273         TRI->regsOverlap(SuperDestReg, MO.getReg()))
274       return false;
275   }
276   // Reg is not Imp-def'ed -> it's live both before/after the instruction.
277   if (!IsDefined)
278     return false;
279 
280   // Otherwise, the Reg is not live before the MI and the MOV can't
281   // make it really live, so it's in fact dead even after the MI.
282   return true;
283 }
284 
285 MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
286                                               MachineInstr *MI) const {
287   Register NewDestReg;
288 
289   // We are going to try to rewrite this load to a larger zero-extending
290   // load.  This is safe if all portions of the 32 bit super-register
291   // of the original destination register, except for the original destination
292   // register are dead. getSuperRegDestIfDead checks that.
293   if (!getSuperRegDestIfDead(MI, NewDestReg))
294     return nullptr;
295 
296   // Safe to change the instruction.
297   MachineInstrBuilder MIB =
298       BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
299 
300   unsigned NumArgs = MI->getNumOperands();
301   for (unsigned i = 1; i < NumArgs; ++i)
302     MIB.add(MI->getOperand(i));
303 
304   MIB.setMemRefs(MI->memoperands());
305 
306   return MIB;
307 }
308 
309 MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
310   assert(MI->getNumExplicitOperands() == 2);
311   auto &OldDest = MI->getOperand(0);
312   auto &OldSrc = MI->getOperand(1);
313 
314   Register NewDestReg;
315   if (!getSuperRegDestIfDead(MI, NewDestReg))
316     return nullptr;
317 
318   Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
319 
320   // This is only correct if we access the same subregister index: otherwise,
321   // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
322   const X86RegisterInfo *TRI = &TII->getRegisterInfo();
323   if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
324       TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
325     return nullptr;
326 
327   // Safe to change the instruction.
328   // Don't set src flags, as we don't know if we're also killing the superreg.
329   // However, the superregister might not be defined; make it explicit that
330   // we don't care about the higher bits by reading it as Undef, and adding
331   // an imp-use on the original subregister.
332   MachineInstrBuilder MIB =
333       BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
334           .addReg(NewSrcReg, RegState::Undef)
335           .addReg(OldSrc.getReg(), RegState::Implicit);
336 
337   // Drop imp-defs/uses that would be redundant with the new def/use.
338   for (auto &Op : MI->implicit_operands())
339     if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
340       MIB.add(Op);
341 
342   return MIB;
343 }
344 
345 MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
346                                                 MachineInstr *MI) const {
347   Register NewDestReg;
348   if (!getSuperRegDestIfDead(MI, NewDestReg))
349     return nullptr;
350 
351   // Don't interfere with formation of CBW instructions which should be a
352   // shorter encoding than even the MOVSX32rr8. It's also immune to partial
353   // merge issues on Intel CPUs.
354   if (MI->getOpcode() == X86::MOVSX16rr8 &&
355       MI->getOperand(0).getReg() == X86::AX &&
356       MI->getOperand(1).getReg() == X86::AL)
357     return nullptr;
358 
359   // Safe to change the instruction.
360   MachineInstrBuilder MIB =
361       BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
362 
363   unsigned NumArgs = MI->getNumOperands();
364   for (unsigned i = 1; i < NumArgs; ++i)
365     MIB.add(MI->getOperand(i));
366 
367   MIB.setMemRefs(MI->memoperands());
368 
369   return MIB;
370 }
371 
372 MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
373                                                MachineBasicBlock &MBB) const {
374   // See if this is an instruction of the type we are currently looking for.
375   switch (MI->getOpcode()) {
376 
377   case X86::MOV8rm:
378     // Only replace 8 bit loads with the zero extending versions if
379     // in an inner most loop and not optimizing for size. This takes
380     // an extra byte to encode, and provides limited performance upside.
381     if (MachineLoop *ML = MLI->getLoopFor(&MBB))
382       if (ML->begin() == ML->end() && !OptForSize)
383         return tryReplaceLoad(X86::MOVZX32rm8, MI);
384     break;
385 
386   case X86::MOV16rm:
387     // Always try to replace 16 bit load with 32 bit zero extending.
388     // Code size is the same, and there is sometimes a perf advantage
389     // from eliminating a false dependence on the upper portion of
390     // the register.
391     return tryReplaceLoad(X86::MOVZX32rm16, MI);
392 
393   case X86::MOV8rr:
394   case X86::MOV16rr:
395     // Always try to replace 8/16 bit copies with a 32 bit copy.
396     // Code size is either less (16) or equal (8), and there is sometimes a
397     // perf advantage from eliminating a false dependence on the upper portion
398     // of the register.
399     return tryReplaceCopy(MI);
400 
401   case X86::MOVSX16rr8:
402     return tryReplaceExtend(X86::MOVSX32rr8, MI);
403   case X86::MOVSX16rm8:
404     return tryReplaceExtend(X86::MOVSX32rm8, MI);
405   case X86::MOVZX16rr8:
406     return tryReplaceExtend(X86::MOVZX32rr8, MI);
407   case X86::MOVZX16rm8:
408     return tryReplaceExtend(X86::MOVZX32rm8, MI);
409 
410   default:
411     // nothing to do here.
412     break;
413   }
414 
415   return nullptr;
416 }
417 
418 void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
419                                         MachineBasicBlock &MBB) {
420 
421   // This algorithm doesn't delete the instructions it is replacing
422   // right away.  By leaving the existing instructions in place, the
423   // register liveness information doesn't change, and this makes the
424   // analysis that goes on be better than if the replaced instructions
425   // were immediately removed.
426   //
427   // This algorithm always creates a replacement instruction
428   // and notes that and the original in a data structure, until the
429   // whole BB has been analyzed.  This keeps the replacement instructions
430   // from making it seem as if the larger register might be live.
431   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
432 
433   // Start computing liveness for this block. We iterate from the end to be able
434   // to update this for each instruction.
435   LiveRegs.clear();
436   // We run after PEI, so we need to AddPristinesAndCSRs.
437   LiveRegs.addLiveOuts(MBB);
438 
439   OptForSize = MF.getFunction().hasOptSize() ||
440                llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
441 
442   for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
443     MachineInstr *MI = &*I;
444 
445     if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
446       MIReplacements.push_back(std::make_pair(MI, NewMI));
447 
448     // We're done with this instruction, update liveness for the next one.
449     LiveRegs.stepBackward(*MI);
450   }
451 
452   while (!MIReplacements.empty()) {
453     MachineInstr *MI = MIReplacements.back().first;
454     MachineInstr *NewMI = MIReplacements.back().second;
455     MIReplacements.pop_back();
456     MBB.insert(MI, NewMI);
457     MBB.erase(MI);
458   }
459 }
460