1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Target/TargetOptions.h" 43 using namespace llvm; 44 45 namespace { 46 47 class X86FastISel final : public FastISel { 48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 49 /// make the right decision when generating code for different targets. 50 const X86Subtarget *Subtarget; 51 52 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 53 /// floating point ops. 54 /// When SSE is available, use it for f32 operations. 55 /// When SSE2 is available, use it for f64 operations. 56 bool X86ScalarSSEf64; 57 bool X86ScalarSSEf32; 58 59 public: 60 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 61 const TargetLibraryInfo *libInfo) 62 : FastISel(funcInfo, libInfo) { 63 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 64 X86ScalarSSEf64 = Subtarget->hasSSE2(); 65 X86ScalarSSEf32 = Subtarget->hasSSE1(); 66 } 67 68 bool fastSelectInstruction(const Instruction *I) override; 69 70 /// The specified machine instr operand is a vreg, and that 71 /// vreg is being provided by the specified load instruction. If possible, 72 /// try to fold the load as an operand to the instruction, returning true if 73 /// possible. 74 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 75 const LoadInst *LI) override; 76 77 bool fastLowerArguments() override; 78 bool fastLowerCall(CallLoweringInfo &CLI) override; 79 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 80 81 #include "X86GenFastISel.inc" 82 83 private: 84 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 85 const DebugLoc &DL); 86 87 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 88 unsigned &ResultReg, unsigned Alignment = 1); 89 90 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 91 MachineMemOperand *MMO = nullptr, bool Aligned = false); 92 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, 93 X86AddressMode &AM, 94 MachineMemOperand *MMO = nullptr, bool Aligned = false); 95 96 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 97 unsigned &ResultReg); 98 99 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 100 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 101 102 bool X86SelectLoad(const Instruction *I); 103 104 bool X86SelectStore(const Instruction *I); 105 106 bool X86SelectRet(const Instruction *I); 107 108 bool X86SelectCmp(const Instruction *I); 109 110 bool X86SelectZExt(const Instruction *I); 111 112 bool X86SelectSExt(const Instruction *I); 113 114 bool X86SelectBranch(const Instruction *I); 115 116 bool X86SelectShift(const Instruction *I); 117 118 bool X86SelectDivRem(const Instruction *I); 119 120 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 121 122 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 123 124 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 125 126 bool X86SelectSelect(const Instruction *I); 127 128 bool X86SelectTrunc(const Instruction *I); 129 130 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 131 const TargetRegisterClass *RC); 132 133 bool X86SelectFPExt(const Instruction *I); 134 bool X86SelectFPTrunc(const Instruction *I); 135 bool X86SelectSIToFP(const Instruction *I); 136 bool X86SelectUIToFP(const Instruction *I); 137 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 138 139 const X86InstrInfo *getInstrInfo() const { 140 return Subtarget->getInstrInfo(); 141 } 142 const X86TargetMachine *getTargetMachine() const { 143 return static_cast<const X86TargetMachine *>(&TM); 144 } 145 146 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 147 148 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 149 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 150 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 151 unsigned fastMaterializeConstant(const Constant *C) override; 152 153 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 154 155 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 156 157 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 158 /// computed in an SSE register, not on the X87 floating point stack. 159 bool isScalarFPTypeInSSEReg(EVT VT) const { 160 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 161 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 162 } 163 164 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 165 166 bool IsMemcpySmall(uint64_t Len); 167 168 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 169 X86AddressMode SrcAM, uint64_t Len); 170 171 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 172 const Value *Cond); 173 174 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 175 X86AddressMode &AM); 176 177 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 178 const TargetRegisterClass *RC, unsigned Op0, 179 bool Op0IsKill, unsigned Op1, bool Op1IsKill, 180 unsigned Op2, bool Op2IsKill, unsigned Op3, 181 bool Op3IsKill); 182 }; 183 184 } // end anonymous namespace. 185 186 static std::pair<unsigned, bool> 187 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 188 unsigned CC; 189 bool NeedSwap = false; 190 191 // SSE Condition code mapping: 192 // 0 - EQ 193 // 1 - LT 194 // 2 - LE 195 // 3 - UNORD 196 // 4 - NEQ 197 // 5 - NLT 198 // 6 - NLE 199 // 7 - ORD 200 switch (Predicate) { 201 default: llvm_unreachable("Unexpected predicate"); 202 case CmpInst::FCMP_OEQ: CC = 0; break; 203 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; 204 case CmpInst::FCMP_OLT: CC = 1; break; 205 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; 206 case CmpInst::FCMP_OLE: CC = 2; break; 207 case CmpInst::FCMP_UNO: CC = 3; break; 208 case CmpInst::FCMP_UNE: CC = 4; break; 209 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; 210 case CmpInst::FCMP_UGE: CC = 5; break; 211 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; 212 case CmpInst::FCMP_UGT: CC = 6; break; 213 case CmpInst::FCMP_ORD: CC = 7; break; 214 case CmpInst::FCMP_UEQ: CC = 8; break; 215 case CmpInst::FCMP_ONE: CC = 12; break; 216 } 217 218 return std::make_pair(CC, NeedSwap); 219 } 220 221 /// Adds a complex addressing mode to the given machine instr builder. 222 /// Note, this will constrain the index register. If its not possible to 223 /// constrain the given index register, then a new one will be created. The 224 /// IndexReg field of the addressing mode will be updated to match in this case. 225 const MachineInstrBuilder & 226 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 227 X86AddressMode &AM) { 228 // First constrain the index register. It needs to be a GR64_NOSP. 229 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 230 MIB->getNumOperands() + 231 X86::AddrIndexReg); 232 return ::addFullAddress(MIB, AM); 233 } 234 235 /// Check if it is possible to fold the condition from the XALU intrinsic 236 /// into the user. The condition code will only be updated on success. 237 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 238 const Value *Cond) { 239 if (!isa<ExtractValueInst>(Cond)) 240 return false; 241 242 const auto *EV = cast<ExtractValueInst>(Cond); 243 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 244 return false; 245 246 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 247 MVT RetVT; 248 const Function *Callee = II->getCalledFunction(); 249 Type *RetTy = 250 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 251 if (!isTypeLegal(RetTy, RetVT)) 252 return false; 253 254 if (RetVT != MVT::i32 && RetVT != MVT::i64) 255 return false; 256 257 X86::CondCode TmpCC; 258 switch (II->getIntrinsicID()) { 259 default: return false; 260 case Intrinsic::sadd_with_overflow: 261 case Intrinsic::ssub_with_overflow: 262 case Intrinsic::smul_with_overflow: 263 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 264 case Intrinsic::uadd_with_overflow: 265 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 266 } 267 268 // Check if both instructions are in the same basic block. 269 if (II->getParent() != I->getParent()) 270 return false; 271 272 // Make sure nothing is in the way 273 BasicBlock::const_iterator Start(I); 274 BasicBlock::const_iterator End(II); 275 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 276 // We only expect extractvalue instructions between the intrinsic and the 277 // instruction to be selected. 278 if (!isa<ExtractValueInst>(Itr)) 279 return false; 280 281 // Check that the extractvalue operand comes from the intrinsic. 282 const auto *EVI = cast<ExtractValueInst>(Itr); 283 if (EVI->getAggregateOperand() != II) 284 return false; 285 } 286 287 CC = TmpCC; 288 return true; 289 } 290 291 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 292 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 293 if (evt == MVT::Other || !evt.isSimple()) 294 // Unhandled type. Halt "fast" selection and bail. 295 return false; 296 297 VT = evt.getSimpleVT(); 298 // For now, require SSE/SSE2 for performing floating-point operations, 299 // since x87 requires additional work. 300 if (VT == MVT::f64 && !X86ScalarSSEf64) 301 return false; 302 if (VT == MVT::f32 && !X86ScalarSSEf32) 303 return false; 304 // Similarly, no f80 support yet. 305 if (VT == MVT::f80) 306 return false; 307 // We only handle legal types. For example, on x86-32 the instruction 308 // selector contains all of the 64-bit instructions from x86-64, 309 // under the assumption that i64 won't be used if the target doesn't 310 // support it. 311 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 312 } 313 314 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 315 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 316 /// Return true and the result register by reference if it is possible. 317 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 318 MachineMemOperand *MMO, unsigned &ResultReg, 319 unsigned Alignment) { 320 bool HasSSE41 = Subtarget->hasSSE41(); 321 bool HasAVX = Subtarget->hasAVX(); 322 bool HasAVX2 = Subtarget->hasAVX2(); 323 bool HasAVX512 = Subtarget->hasAVX512(); 324 bool HasVLX = Subtarget->hasVLX(); 325 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 326 327 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 328 if (VT == MVT::i1) 329 VT = MVT::i8; 330 331 // Get opcode and regclass of the output for the given load instruction. 332 unsigned Opc = 0; 333 switch (VT.SimpleTy) { 334 default: return false; 335 case MVT::i8: 336 Opc = X86::MOV8rm; 337 break; 338 case MVT::i16: 339 Opc = X86::MOV16rm; 340 break; 341 case MVT::i32: 342 Opc = X86::MOV32rm; 343 break; 344 case MVT::i64: 345 // Must be in x86-64 mode. 346 Opc = X86::MOV64rm; 347 break; 348 case MVT::f32: 349 if (X86ScalarSSEf32) 350 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 351 HasAVX ? X86::VMOVSSrm_alt : 352 X86::MOVSSrm_alt; 353 else 354 Opc = X86::LD_Fp32m; 355 break; 356 case MVT::f64: 357 if (X86ScalarSSEf64) 358 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 359 HasAVX ? X86::VMOVSDrm_alt : 360 X86::MOVSDrm_alt; 361 else 362 Opc = X86::LD_Fp64m; 363 break; 364 case MVT::f80: 365 // No f80 support yet. 366 return false; 367 case MVT::v4f32: 368 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 369 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 370 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 371 else if (Alignment >= 16) 372 Opc = HasVLX ? X86::VMOVAPSZ128rm : 373 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 374 else 375 Opc = HasVLX ? X86::VMOVUPSZ128rm : 376 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 377 break; 378 case MVT::v2f64: 379 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 380 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 381 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 382 else if (Alignment >= 16) 383 Opc = HasVLX ? X86::VMOVAPDZ128rm : 384 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 385 else 386 Opc = HasVLX ? X86::VMOVUPDZ128rm : 387 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 388 break; 389 case MVT::v4i32: 390 case MVT::v2i64: 391 case MVT::v8i16: 392 case MVT::v16i8: 393 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 394 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 395 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 396 else if (Alignment >= 16) 397 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 398 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 399 else 400 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 401 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 402 break; 403 case MVT::v8f32: 404 assert(HasAVX); 405 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 406 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 407 else if (IsNonTemporal && Alignment >= 16) 408 return false; // Force split for X86::VMOVNTDQArm 409 else if (Alignment >= 32) 410 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 411 else 412 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 413 break; 414 case MVT::v4f64: 415 assert(HasAVX); 416 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 417 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 418 else if (IsNonTemporal && Alignment >= 16) 419 return false; // Force split for X86::VMOVNTDQArm 420 else if (Alignment >= 32) 421 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 422 else 423 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 424 break; 425 case MVT::v8i32: 426 case MVT::v4i64: 427 case MVT::v16i16: 428 case MVT::v32i8: 429 assert(HasAVX); 430 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 431 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 432 else if (IsNonTemporal && Alignment >= 16) 433 return false; // Force split for X86::VMOVNTDQArm 434 else if (Alignment >= 32) 435 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 436 else 437 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 438 break; 439 case MVT::v16f32: 440 assert(HasAVX512); 441 if (IsNonTemporal && Alignment >= 64) 442 Opc = X86::VMOVNTDQAZrm; 443 else 444 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 445 break; 446 case MVT::v8f64: 447 assert(HasAVX512); 448 if (IsNonTemporal && Alignment >= 64) 449 Opc = X86::VMOVNTDQAZrm; 450 else 451 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 452 break; 453 case MVT::v8i64: 454 case MVT::v16i32: 455 case MVT::v32i16: 456 case MVT::v64i8: 457 assert(HasAVX512); 458 // Note: There are a lot more choices based on type with AVX-512, but 459 // there's really no advantage when the load isn't masked. 460 if (IsNonTemporal && Alignment >= 64) 461 Opc = X86::VMOVNTDQAZrm; 462 else 463 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 464 break; 465 } 466 467 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 468 469 ResultReg = createResultReg(RC); 470 MachineInstrBuilder MIB = 471 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 472 addFullAddress(MIB, AM); 473 if (MMO) 474 MIB->addMemOperand(*FuncInfo.MF, MMO); 475 return true; 476 } 477 478 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 479 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 480 /// and a displacement offset, or a GlobalAddress, 481 /// i.e. V. Return true if it is possible. 482 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, 483 X86AddressMode &AM, 484 MachineMemOperand *MMO, bool Aligned) { 485 bool HasSSE1 = Subtarget->hasSSE1(); 486 bool HasSSE2 = Subtarget->hasSSE2(); 487 bool HasSSE4A = Subtarget->hasSSE4A(); 488 bool HasAVX = Subtarget->hasAVX(); 489 bool HasAVX512 = Subtarget->hasAVX512(); 490 bool HasVLX = Subtarget->hasVLX(); 491 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 492 493 // Get opcode and regclass of the output for the given store instruction. 494 unsigned Opc = 0; 495 switch (VT.getSimpleVT().SimpleTy) { 496 case MVT::f80: // No f80 support yet. 497 default: return false; 498 case MVT::i1: { 499 // Mask out all but lowest bit. 500 unsigned AndResult = createResultReg(&X86::GR8RegClass); 501 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 502 TII.get(X86::AND8ri), AndResult) 503 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); 504 ValReg = AndResult; 505 LLVM_FALLTHROUGH; // handle i1 as i8. 506 } 507 case MVT::i8: Opc = X86::MOV8mr; break; 508 case MVT::i16: Opc = X86::MOV16mr; break; 509 case MVT::i32: 510 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 511 break; 512 case MVT::i64: 513 // Must be in x86-64 mode. 514 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 515 break; 516 case MVT::f32: 517 if (X86ScalarSSEf32) { 518 if (IsNonTemporal && HasSSE4A) 519 Opc = X86::MOVNTSS; 520 else 521 Opc = HasAVX512 ? X86::VMOVSSZmr : 522 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 523 } else 524 Opc = X86::ST_Fp32m; 525 break; 526 case MVT::f64: 527 if (X86ScalarSSEf32) { 528 if (IsNonTemporal && HasSSE4A) 529 Opc = X86::MOVNTSD; 530 else 531 Opc = HasAVX512 ? X86::VMOVSDZmr : 532 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 533 } else 534 Opc = X86::ST_Fp64m; 535 break; 536 case MVT::x86mmx: 537 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 538 break; 539 case MVT::v4f32: 540 if (Aligned) { 541 if (IsNonTemporal) 542 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 543 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 544 else 545 Opc = HasVLX ? X86::VMOVAPSZ128mr : 546 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 547 } else 548 Opc = HasVLX ? X86::VMOVUPSZ128mr : 549 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 550 break; 551 case MVT::v2f64: 552 if (Aligned) { 553 if (IsNonTemporal) 554 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 555 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 556 else 557 Opc = HasVLX ? X86::VMOVAPDZ128mr : 558 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 559 } else 560 Opc = HasVLX ? X86::VMOVUPDZ128mr : 561 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 562 break; 563 case MVT::v4i32: 564 case MVT::v2i64: 565 case MVT::v8i16: 566 case MVT::v16i8: 567 if (Aligned) { 568 if (IsNonTemporal) 569 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 570 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 571 else 572 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 573 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 574 } else 575 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 576 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 577 break; 578 case MVT::v8f32: 579 assert(HasAVX); 580 if (Aligned) { 581 if (IsNonTemporal) 582 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 583 else 584 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 585 } else 586 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 587 break; 588 case MVT::v4f64: 589 assert(HasAVX); 590 if (Aligned) { 591 if (IsNonTemporal) 592 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 593 else 594 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 595 } else 596 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 597 break; 598 case MVT::v8i32: 599 case MVT::v4i64: 600 case MVT::v16i16: 601 case MVT::v32i8: 602 assert(HasAVX); 603 if (Aligned) { 604 if (IsNonTemporal) 605 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 606 else 607 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 608 } else 609 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 610 break; 611 case MVT::v16f32: 612 assert(HasAVX512); 613 if (Aligned) 614 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 615 else 616 Opc = X86::VMOVUPSZmr; 617 break; 618 case MVT::v8f64: 619 assert(HasAVX512); 620 if (Aligned) { 621 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 622 } else 623 Opc = X86::VMOVUPDZmr; 624 break; 625 case MVT::v8i64: 626 case MVT::v16i32: 627 case MVT::v32i16: 628 case MVT::v64i8: 629 assert(HasAVX512); 630 // Note: There are a lot more choices based on type with AVX-512, but 631 // there's really no advantage when the store isn't masked. 632 if (Aligned) 633 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 634 else 635 Opc = X86::VMOVDQU64Zmr; 636 break; 637 } 638 639 const MCInstrDesc &Desc = TII.get(Opc); 640 // Some of the instructions in the previous switch use FR128 instead 641 // of FR32 for ValReg. Make sure the register we feed the instruction 642 // matches its register class constraints. 643 // Note: This is fine to do a copy from FR32 to FR128, this is the 644 // same registers behind the scene and actually why it did not trigger 645 // any bugs before. 646 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 647 MachineInstrBuilder MIB = 648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); 649 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); 650 if (MMO) 651 MIB->addMemOperand(*FuncInfo.MF, MMO); 652 653 return true; 654 } 655 656 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 657 X86AddressMode &AM, 658 MachineMemOperand *MMO, bool Aligned) { 659 // Handle 'null' like i32/i64 0. 660 if (isa<ConstantPointerNull>(Val)) 661 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 662 663 // If this is a store of a simple constant, fold the constant into the store. 664 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 665 unsigned Opc = 0; 666 bool Signed = true; 667 switch (VT.getSimpleVT().SimpleTy) { 668 default: break; 669 case MVT::i1: 670 Signed = false; 671 LLVM_FALLTHROUGH; // Handle as i8. 672 case MVT::i8: Opc = X86::MOV8mi; break; 673 case MVT::i16: Opc = X86::MOV16mi; break; 674 case MVT::i32: Opc = X86::MOV32mi; break; 675 case MVT::i64: 676 // Must be a 32-bit sign extended value. 677 if (isInt<32>(CI->getSExtValue())) 678 Opc = X86::MOV64mi32; 679 break; 680 } 681 682 if (Opc) { 683 MachineInstrBuilder MIB = 684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 685 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 686 : CI->getZExtValue()); 687 if (MMO) 688 MIB->addMemOperand(*FuncInfo.MF, MMO); 689 return true; 690 } 691 } 692 693 unsigned ValReg = getRegForValue(Val); 694 if (ValReg == 0) 695 return false; 696 697 bool ValKill = hasTrivialKill(Val); 698 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); 699 } 700 701 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 702 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 703 /// ISD::SIGN_EXTEND). 704 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 705 unsigned Src, EVT SrcVT, 706 unsigned &ResultReg) { 707 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, 708 Src, /*TODO: Kill=*/false); 709 if (RR == 0) 710 return false; 711 712 ResultReg = RR; 713 return true; 714 } 715 716 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 717 // Handle constant address. 718 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 719 // Can't handle alternate code models yet. 720 if (TM.getCodeModel() != CodeModel::Small) 721 return false; 722 723 // Can't handle TLS yet. 724 if (GV->isThreadLocal()) 725 return false; 726 727 // Can't handle !absolute_symbol references yet. 728 if (GV->isAbsoluteSymbolRef()) 729 return false; 730 731 // RIP-relative addresses can't have additional register operands, so if 732 // we've already folded stuff into the addressing mode, just force the 733 // global value into its own register, which we can use as the basereg. 734 if (!Subtarget->isPICStyleRIPRel() || 735 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 736 // Okay, we've committed to selecting this global. Set up the address. 737 AM.GV = GV; 738 739 // Allow the subtarget to classify the global. 740 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 741 742 // If this reference is relative to the pic base, set it now. 743 if (isGlobalRelativeToPICBase(GVFlags)) { 744 // FIXME: How do we know Base.Reg is free?? 745 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 746 } 747 748 // Unless the ABI requires an extra load, return a direct reference to 749 // the global. 750 if (!isGlobalStubReference(GVFlags)) { 751 if (Subtarget->isPICStyleRIPRel()) { 752 // Use rip-relative addressing if we can. Above we verified that the 753 // base and index registers are unused. 754 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 755 AM.Base.Reg = X86::RIP; 756 } 757 AM.GVOpFlags = GVFlags; 758 return true; 759 } 760 761 // Ok, we need to do a load from a stub. If we've already loaded from 762 // this stub, reuse the loaded pointer, otherwise emit the load now. 763 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V); 764 unsigned LoadReg; 765 if (I != LocalValueMap.end() && I->second != 0) { 766 LoadReg = I->second; 767 } else { 768 // Issue load from stub. 769 unsigned Opc = 0; 770 const TargetRegisterClass *RC = nullptr; 771 X86AddressMode StubAM; 772 StubAM.Base.Reg = AM.Base.Reg; 773 StubAM.GV = GV; 774 StubAM.GVOpFlags = GVFlags; 775 776 // Prepare for inserting code in the local-value area. 777 SavePoint SaveInsertPt = enterLocalValueArea(); 778 779 if (TLI.getPointerTy(DL) == MVT::i64) { 780 Opc = X86::MOV64rm; 781 RC = &X86::GR64RegClass; 782 783 if (Subtarget->isPICStyleRIPRel()) 784 StubAM.Base.Reg = X86::RIP; 785 } else { 786 Opc = X86::MOV32rm; 787 RC = &X86::GR32RegClass; 788 } 789 790 LoadReg = createResultReg(RC); 791 MachineInstrBuilder LoadMI = 792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); 793 addFullAddress(LoadMI, StubAM); 794 795 // Ok, back to normal mode. 796 leaveLocalValueArea(SaveInsertPt); 797 798 // Prevent loading GV stub multiple times in same MBB. 799 LocalValueMap[V] = LoadReg; 800 } 801 802 // Now construct the final address. Note that the Disp, Scale, 803 // and Index values may already be set here. 804 AM.Base.Reg = LoadReg; 805 AM.GV = nullptr; 806 return true; 807 } 808 } 809 810 // If all else fails, try to materialize the value in a register. 811 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 812 if (AM.Base.Reg == 0) { 813 AM.Base.Reg = getRegForValue(V); 814 return AM.Base.Reg != 0; 815 } 816 if (AM.IndexReg == 0) { 817 assert(AM.Scale == 1 && "Scale with no index!"); 818 AM.IndexReg = getRegForValue(V); 819 return AM.IndexReg != 0; 820 } 821 } 822 823 return false; 824 } 825 826 /// X86SelectAddress - Attempt to fill in an address from the given value. 827 /// 828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 829 SmallVector<const Value *, 32> GEPs; 830 redo_gep: 831 const User *U = nullptr; 832 unsigned Opcode = Instruction::UserOp1; 833 if (const Instruction *I = dyn_cast<Instruction>(V)) { 834 // Don't walk into other basic blocks; it's possible we haven't 835 // visited them yet, so the instructions may not yet be assigned 836 // virtual registers. 837 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 838 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 839 Opcode = I->getOpcode(); 840 U = I; 841 } 842 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 843 Opcode = C->getOpcode(); 844 U = C; 845 } 846 847 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 848 if (Ty->getAddressSpace() > 255) 849 // Fast instruction selection doesn't support the special 850 // address spaces. 851 return false; 852 853 switch (Opcode) { 854 default: break; 855 case Instruction::BitCast: 856 // Look past bitcasts. 857 return X86SelectAddress(U->getOperand(0), AM); 858 859 case Instruction::IntToPtr: 860 // Look past no-op inttoptrs. 861 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 862 TLI.getPointerTy(DL)) 863 return X86SelectAddress(U->getOperand(0), AM); 864 break; 865 866 case Instruction::PtrToInt: 867 // Look past no-op ptrtoints. 868 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 869 return X86SelectAddress(U->getOperand(0), AM); 870 break; 871 872 case Instruction::Alloca: { 873 // Do static allocas. 874 const AllocaInst *A = cast<AllocaInst>(V); 875 DenseMap<const AllocaInst *, int>::iterator SI = 876 FuncInfo.StaticAllocaMap.find(A); 877 if (SI != FuncInfo.StaticAllocaMap.end()) { 878 AM.BaseType = X86AddressMode::FrameIndexBase; 879 AM.Base.FrameIndex = SI->second; 880 return true; 881 } 882 break; 883 } 884 885 case Instruction::Add: { 886 // Adds of constants are common and easy enough. 887 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 888 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 889 // They have to fit in the 32-bit signed displacement field though. 890 if (isInt<32>(Disp)) { 891 AM.Disp = (uint32_t)Disp; 892 return X86SelectAddress(U->getOperand(0), AM); 893 } 894 } 895 break; 896 } 897 898 case Instruction::GetElementPtr: { 899 X86AddressMode SavedAM = AM; 900 901 // Pattern-match simple GEPs. 902 uint64_t Disp = (int32_t)AM.Disp; 903 unsigned IndexReg = AM.IndexReg; 904 unsigned Scale = AM.Scale; 905 gep_type_iterator GTI = gep_type_begin(U); 906 // Iterate through the indices, folding what we can. Constants can be 907 // folded, and one dynamic index can be handled, if the scale is supported. 908 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 909 i != e; ++i, ++GTI) { 910 const Value *Op = *i; 911 if (StructType *STy = GTI.getStructTypeOrNull()) { 912 const StructLayout *SL = DL.getStructLayout(STy); 913 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 914 continue; 915 } 916 917 // A array/variable index is always of the form i*S where S is the 918 // constant scale size. See if we can push the scale into immediates. 919 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 920 for (;;) { 921 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 922 // Constant-offset addressing. 923 Disp += CI->getSExtValue() * S; 924 break; 925 } 926 if (canFoldAddIntoGEP(U, Op)) { 927 // A compatible add with a constant operand. Fold the constant. 928 ConstantInt *CI = 929 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 930 Disp += CI->getSExtValue() * S; 931 // Iterate on the other operand. 932 Op = cast<AddOperator>(Op)->getOperand(0); 933 continue; 934 } 935 if (IndexReg == 0 && 936 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 937 (S == 1 || S == 2 || S == 4 || S == 8)) { 938 // Scaled-index addressing. 939 Scale = S; 940 IndexReg = getRegForGEPIndex(Op).first; 941 if (IndexReg == 0) 942 return false; 943 break; 944 } 945 // Unsupported. 946 goto unsupported_gep; 947 } 948 } 949 950 // Check for displacement overflow. 951 if (!isInt<32>(Disp)) 952 break; 953 954 AM.IndexReg = IndexReg; 955 AM.Scale = Scale; 956 AM.Disp = (uint32_t)Disp; 957 GEPs.push_back(V); 958 959 if (const GetElementPtrInst *GEP = 960 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 961 // Ok, the GEP indices were covered by constant-offset and scaled-index 962 // addressing. Update the address state and move on to examining the base. 963 V = GEP; 964 goto redo_gep; 965 } else if (X86SelectAddress(U->getOperand(0), AM)) { 966 return true; 967 } 968 969 // If we couldn't merge the gep value into this addr mode, revert back to 970 // our address and just match the value instead of completely failing. 971 AM = SavedAM; 972 973 for (const Value *I : reverse(GEPs)) 974 if (handleConstantAddresses(I, AM)) 975 return true; 976 977 return false; 978 unsupported_gep: 979 // Ok, the GEP indices weren't all covered. 980 break; 981 } 982 } 983 984 return handleConstantAddresses(V, AM); 985 } 986 987 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 988 /// 989 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 990 const User *U = nullptr; 991 unsigned Opcode = Instruction::UserOp1; 992 const Instruction *I = dyn_cast<Instruction>(V); 993 // Record if the value is defined in the same basic block. 994 // 995 // This information is crucial to know whether or not folding an 996 // operand is valid. 997 // Indeed, FastISel generates or reuses a virtual register for all 998 // operands of all instructions it selects. Obviously, the definition and 999 // its uses must use the same virtual register otherwise the produced 1000 // code is incorrect. 1001 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 1002 // registers for values that are alive across basic blocks. This ensures 1003 // that the values are consistently set between across basic block, even 1004 // if different instruction selection mechanisms are used (e.g., a mix of 1005 // SDISel and FastISel). 1006 // For values local to a basic block, the instruction selection process 1007 // generates these virtual registers with whatever method is appropriate 1008 // for its needs. In particular, FastISel and SDISel do not share the way 1009 // local virtual registers are set. 1010 // Therefore, this is impossible (or at least unsafe) to share values 1011 // between basic blocks unless they use the same instruction selection 1012 // method, which is not guarantee for X86. 1013 // Moreover, things like hasOneUse could not be used accurately, if we 1014 // allow to reference values across basic blocks whereas they are not 1015 // alive across basic blocks initially. 1016 bool InMBB = true; 1017 if (I) { 1018 Opcode = I->getOpcode(); 1019 U = I; 1020 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1021 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1022 Opcode = C->getOpcode(); 1023 U = C; 1024 } 1025 1026 switch (Opcode) { 1027 default: break; 1028 case Instruction::BitCast: 1029 // Look past bitcasts if its operand is in the same BB. 1030 if (InMBB) 1031 return X86SelectCallAddress(U->getOperand(0), AM); 1032 break; 1033 1034 case Instruction::IntToPtr: 1035 // Look past no-op inttoptrs if its operand is in the same BB. 1036 if (InMBB && 1037 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1038 TLI.getPointerTy(DL)) 1039 return X86SelectCallAddress(U->getOperand(0), AM); 1040 break; 1041 1042 case Instruction::PtrToInt: 1043 // Look past no-op ptrtoints if its operand is in the same BB. 1044 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1045 return X86SelectCallAddress(U->getOperand(0), AM); 1046 break; 1047 } 1048 1049 // Handle constant address. 1050 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1051 // Can't handle alternate code models yet. 1052 if (TM.getCodeModel() != CodeModel::Small) 1053 return false; 1054 1055 // RIP-relative addresses can't have additional register operands. 1056 if (Subtarget->isPICStyleRIPRel() && 1057 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1058 return false; 1059 1060 // Can't handle TLS. 1061 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1062 if (GVar->isThreadLocal()) 1063 return false; 1064 1065 // Okay, we've committed to selecting this global. Set up the basic address. 1066 AM.GV = GV; 1067 1068 // Return a direct reference to the global. Fastisel can handle calls to 1069 // functions that require loads, such as dllimport and nonlazybind 1070 // functions. 1071 if (Subtarget->isPICStyleRIPRel()) { 1072 // Use rip-relative addressing if we can. Above we verified that the 1073 // base and index registers are unused. 1074 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1075 AM.Base.Reg = X86::RIP; 1076 } else { 1077 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1078 } 1079 1080 return true; 1081 } 1082 1083 // If all else fails, try to materialize the value in a register. 1084 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1085 if (AM.Base.Reg == 0) { 1086 AM.Base.Reg = getRegForValue(V); 1087 return AM.Base.Reg != 0; 1088 } 1089 if (AM.IndexReg == 0) { 1090 assert(AM.Scale == 1 && "Scale with no index!"); 1091 AM.IndexReg = getRegForValue(V); 1092 return AM.IndexReg != 0; 1093 } 1094 } 1095 1096 return false; 1097 } 1098 1099 1100 /// X86SelectStore - Select and emit code to implement store instructions. 1101 bool X86FastISel::X86SelectStore(const Instruction *I) { 1102 // Atomic stores need special handling. 1103 const StoreInst *S = cast<StoreInst>(I); 1104 1105 if (S->isAtomic()) 1106 return false; 1107 1108 const Value *PtrV = I->getOperand(1); 1109 if (TLI.supportSwiftError()) { 1110 // Swifterror values can come from either a function parameter with 1111 // swifterror attribute or an alloca with swifterror attribute. 1112 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1113 if (Arg->hasSwiftErrorAttr()) 1114 return false; 1115 } 1116 1117 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1118 if (Alloca->isSwiftError()) 1119 return false; 1120 } 1121 } 1122 1123 const Value *Val = S->getValueOperand(); 1124 const Value *Ptr = S->getPointerOperand(); 1125 1126 MVT VT; 1127 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1128 return false; 1129 1130 unsigned Alignment = S->getAlignment(); 1131 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); 1132 if (Alignment == 0) // Ensure that codegen never sees alignment 0 1133 Alignment = ABIAlignment; 1134 bool Aligned = Alignment >= ABIAlignment; 1135 1136 X86AddressMode AM; 1137 if (!X86SelectAddress(Ptr, AM)) 1138 return false; 1139 1140 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1141 } 1142 1143 /// X86SelectRet - Select and emit code to implement ret instructions. 1144 bool X86FastISel::X86SelectRet(const Instruction *I) { 1145 const ReturnInst *Ret = cast<ReturnInst>(I); 1146 const Function &F = *I->getParent()->getParent(); 1147 const X86MachineFunctionInfo *X86MFInfo = 1148 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1149 1150 if (!FuncInfo.CanLowerReturn) 1151 return false; 1152 1153 if (TLI.supportSwiftError() && 1154 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1155 return false; 1156 1157 if (TLI.supportSplitCSR(FuncInfo.MF)) 1158 return false; 1159 1160 CallingConv::ID CC = F.getCallingConv(); 1161 if (CC != CallingConv::C && 1162 CC != CallingConv::Fast && 1163 CC != CallingConv::X86_FastCall && 1164 CC != CallingConv::X86_StdCall && 1165 CC != CallingConv::X86_ThisCall && 1166 CC != CallingConv::X86_64_SysV && 1167 CC != CallingConv::Win64) 1168 return false; 1169 1170 // Don't handle popping bytes if they don't fit the ret's immediate. 1171 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1172 return false; 1173 1174 // fastcc with -tailcallopt is intended to provide a guaranteed 1175 // tail call optimization. Fastisel doesn't know how to do that. 1176 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) 1177 return false; 1178 1179 // Let SDISel handle vararg functions. 1180 if (F.isVarArg()) 1181 return false; 1182 1183 // Build a list of return value registers. 1184 SmallVector<unsigned, 4> RetRegs; 1185 1186 if (Ret->getNumOperands() > 0) { 1187 SmallVector<ISD::OutputArg, 4> Outs; 1188 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1189 1190 // Analyze operands of the call, assigning locations to each operand. 1191 SmallVector<CCValAssign, 16> ValLocs; 1192 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1193 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1194 1195 const Value *RV = Ret->getOperand(0); 1196 unsigned Reg = getRegForValue(RV); 1197 if (Reg == 0) 1198 return false; 1199 1200 // Only handle a single return value for now. 1201 if (ValLocs.size() != 1) 1202 return false; 1203 1204 CCValAssign &VA = ValLocs[0]; 1205 1206 // Don't bother handling odd stuff for now. 1207 if (VA.getLocInfo() != CCValAssign::Full) 1208 return false; 1209 // Only handle register returns for now. 1210 if (!VA.isRegLoc()) 1211 return false; 1212 1213 // The calling-convention tables for x87 returns don't tell 1214 // the whole story. 1215 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1216 return false; 1217 1218 unsigned SrcReg = Reg + VA.getValNo(); 1219 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1220 EVT DstVT = VA.getValVT(); 1221 // Special handling for extended integers. 1222 if (SrcVT != DstVT) { 1223 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1224 return false; 1225 1226 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1227 return false; 1228 1229 assert(DstVT == MVT::i32 && "X86 should always ext to i32"); 1230 1231 if (SrcVT == MVT::i1) { 1232 if (Outs[0].Flags.isSExt()) 1233 return false; 1234 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); 1235 SrcVT = MVT::i8; 1236 } 1237 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : 1238 ISD::SIGN_EXTEND; 1239 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, 1240 SrcReg, /*TODO: Kill=*/false); 1241 } 1242 1243 // Make the copy. 1244 unsigned DstReg = VA.getLocReg(); 1245 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1246 // Avoid a cross-class copy. This is very unlikely. 1247 if (!SrcRC->contains(DstReg)) 1248 return false; 1249 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1250 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1251 1252 // Add register to return instruction. 1253 RetRegs.push_back(VA.getLocReg()); 1254 } 1255 1256 // Swift calling convention does not require we copy the sret argument 1257 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1258 1259 // All x86 ABIs require that for returning structs by value we copy 1260 // the sret argument into %rax/%eax (depending on ABI) for the return. 1261 // We saved the argument into a virtual register in the entry block, 1262 // so now we copy the value out and into %rax/%eax. 1263 if (F.hasStructRetAttr() && CC != CallingConv::Swift) { 1264 unsigned Reg = X86MFInfo->getSRetReturnReg(); 1265 assert(Reg && 1266 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1267 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1268 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1269 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1270 RetRegs.push_back(RetReg); 1271 } 1272 1273 // Now emit the RET. 1274 MachineInstrBuilder MIB; 1275 if (X86MFInfo->getBytesToPopOnReturn()) { 1276 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1277 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL)) 1278 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1279 } else { 1280 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1281 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); 1282 } 1283 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1284 MIB.addReg(RetRegs[i], RegState::Implicit); 1285 return true; 1286 } 1287 1288 /// X86SelectLoad - Select and emit code to implement load instructions. 1289 /// 1290 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1291 const LoadInst *LI = cast<LoadInst>(I); 1292 1293 // Atomic loads need special handling. 1294 if (LI->isAtomic()) 1295 return false; 1296 1297 const Value *SV = I->getOperand(0); 1298 if (TLI.supportSwiftError()) { 1299 // Swifterror values can come from either a function parameter with 1300 // swifterror attribute or an alloca with swifterror attribute. 1301 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1302 if (Arg->hasSwiftErrorAttr()) 1303 return false; 1304 } 1305 1306 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1307 if (Alloca->isSwiftError()) 1308 return false; 1309 } 1310 } 1311 1312 MVT VT; 1313 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1314 return false; 1315 1316 const Value *Ptr = LI->getPointerOperand(); 1317 1318 X86AddressMode AM; 1319 if (!X86SelectAddress(Ptr, AM)) 1320 return false; 1321 1322 unsigned Alignment = LI->getAlignment(); 1323 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType()); 1324 if (Alignment == 0) // Ensure that codegen never sees alignment 0 1325 Alignment = ABIAlignment; 1326 1327 unsigned ResultReg = 0; 1328 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1329 Alignment)) 1330 return false; 1331 1332 updateValueMap(I, ResultReg); 1333 return true; 1334 } 1335 1336 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1337 bool HasAVX512 = Subtarget->hasAVX512(); 1338 bool HasAVX = Subtarget->hasAVX(); 1339 bool X86ScalarSSEf32 = Subtarget->hasSSE1(); 1340 bool X86ScalarSSEf64 = Subtarget->hasSSE2(); 1341 1342 switch (VT.getSimpleVT().SimpleTy) { 1343 default: return 0; 1344 case MVT::i8: return X86::CMP8rr; 1345 case MVT::i16: return X86::CMP16rr; 1346 case MVT::i32: return X86::CMP32rr; 1347 case MVT::i64: return X86::CMP64rr; 1348 case MVT::f32: 1349 return X86ScalarSSEf32 1350 ? (HasAVX512 ? X86::VUCOMISSZrr 1351 : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) 1352 : 0; 1353 case MVT::f64: 1354 return X86ScalarSSEf64 1355 ? (HasAVX512 ? X86::VUCOMISDZrr 1356 : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) 1357 : 0; 1358 } 1359 } 1360 1361 /// If we have a comparison with RHS as the RHS of the comparison, return an 1362 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1363 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1364 int64_t Val = RHSC->getSExtValue(); 1365 switch (VT.getSimpleVT().SimpleTy) { 1366 // Otherwise, we can't fold the immediate into this comparison. 1367 default: 1368 return 0; 1369 case MVT::i8: 1370 return X86::CMP8ri; 1371 case MVT::i16: 1372 if (isInt<8>(Val)) 1373 return X86::CMP16ri8; 1374 return X86::CMP16ri; 1375 case MVT::i32: 1376 if (isInt<8>(Val)) 1377 return X86::CMP32ri8; 1378 return X86::CMP32ri; 1379 case MVT::i64: 1380 if (isInt<8>(Val)) 1381 return X86::CMP64ri8; 1382 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1383 // field. 1384 if (isInt<32>(Val)) 1385 return X86::CMP64ri32; 1386 return 0; 1387 } 1388 } 1389 1390 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1391 const DebugLoc &CurDbgLoc) { 1392 unsigned Op0Reg = getRegForValue(Op0); 1393 if (Op0Reg == 0) return false; 1394 1395 // Handle 'null' like i32/i64 0. 1396 if (isa<ConstantPointerNull>(Op1)) 1397 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1398 1399 // We have two options: compare with register or immediate. If the RHS of 1400 // the compare is an immediate that we can fold into this compare, use 1401 // CMPri, otherwise use CMPrr. 1402 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1403 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1404 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) 1405 .addReg(Op0Reg) 1406 .addImm(Op1C->getSExtValue()); 1407 return true; 1408 } 1409 } 1410 1411 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1412 if (CompareOpc == 0) return false; 1413 1414 unsigned Op1Reg = getRegForValue(Op1); 1415 if (Op1Reg == 0) return false; 1416 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) 1417 .addReg(Op0Reg) 1418 .addReg(Op1Reg); 1419 1420 return true; 1421 } 1422 1423 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1424 const CmpInst *CI = cast<CmpInst>(I); 1425 1426 MVT VT; 1427 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1428 return false; 1429 1430 // Try to optimize or fold the cmp. 1431 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1432 unsigned ResultReg = 0; 1433 switch (Predicate) { 1434 default: break; 1435 case CmpInst::FCMP_FALSE: { 1436 ResultReg = createResultReg(&X86::GR32RegClass); 1437 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), 1438 ResultReg); 1439 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, 1440 X86::sub_8bit); 1441 if (!ResultReg) 1442 return false; 1443 break; 1444 } 1445 case CmpInst::FCMP_TRUE: { 1446 ResultReg = createResultReg(&X86::GR8RegClass); 1447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 1448 ResultReg).addImm(1); 1449 break; 1450 } 1451 } 1452 1453 if (ResultReg) { 1454 updateValueMap(I, ResultReg); 1455 return true; 1456 } 1457 1458 const Value *LHS = CI->getOperand(0); 1459 const Value *RHS = CI->getOperand(1); 1460 1461 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1462 // We don't have to materialize a zero constant for this case and can just use 1463 // %x again on the RHS. 1464 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1465 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1466 if (RHSC && RHSC->isNullValue()) 1467 RHS = LHS; 1468 } 1469 1470 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1471 static const uint16_t SETFOpcTable[2][3] = { 1472 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1473 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1474 }; 1475 const uint16_t *SETFOpc = nullptr; 1476 switch (Predicate) { 1477 default: break; 1478 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1479 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1480 } 1481 1482 ResultReg = createResultReg(&X86::GR8RegClass); 1483 if (SETFOpc) { 1484 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1485 return false; 1486 1487 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); 1488 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); 1489 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1490 FlagReg1).addImm(SETFOpc[0]); 1491 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1492 FlagReg2).addImm(SETFOpc[1]); 1493 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), 1494 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1495 updateValueMap(I, ResultReg); 1496 return true; 1497 } 1498 1499 X86::CondCode CC; 1500 bool SwapArgs; 1501 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1502 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1503 1504 if (SwapArgs) 1505 std::swap(LHS, RHS); 1506 1507 // Emit a compare of LHS/RHS. 1508 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1509 return false; 1510 1511 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1512 ResultReg).addImm(CC); 1513 updateValueMap(I, ResultReg); 1514 return true; 1515 } 1516 1517 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1518 EVT DstVT = TLI.getValueType(DL, I->getType()); 1519 if (!TLI.isTypeLegal(DstVT)) 1520 return false; 1521 1522 unsigned ResultReg = getRegForValue(I->getOperand(0)); 1523 if (ResultReg == 0) 1524 return false; 1525 1526 // Handle zero-extension from i1 to i8, which is common. 1527 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1528 if (SrcVT == MVT::i1) { 1529 // Set the high bits to zero. 1530 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); 1531 SrcVT = MVT::i8; 1532 1533 if (ResultReg == 0) 1534 return false; 1535 } 1536 1537 if (DstVT == MVT::i64) { 1538 // Handle extension to 64-bits via sub-register shenanigans. 1539 unsigned MovInst; 1540 1541 switch (SrcVT.SimpleTy) { 1542 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1543 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1544 case MVT::i32: MovInst = X86::MOV32rr; break; 1545 default: llvm_unreachable("Unexpected zext to i64 source type"); 1546 } 1547 1548 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1549 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) 1550 .addReg(ResultReg); 1551 1552 ResultReg = createResultReg(&X86::GR64RegClass); 1553 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), 1554 ResultReg) 1555 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1556 } else if (DstVT == MVT::i16) { 1557 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1558 // extend to 32-bits and then extract down to 16-bits. 1559 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1560 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), 1561 Result32).addReg(ResultReg); 1562 1563 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, 1564 X86::sub_16bit); 1565 } else if (DstVT != MVT::i8) { 1566 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1567 ResultReg, /*Kill=*/true); 1568 if (ResultReg == 0) 1569 return false; 1570 } 1571 1572 updateValueMap(I, ResultReg); 1573 return true; 1574 } 1575 1576 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1577 EVT DstVT = TLI.getValueType(DL, I->getType()); 1578 if (!TLI.isTypeLegal(DstVT)) 1579 return false; 1580 1581 unsigned ResultReg = getRegForValue(I->getOperand(0)); 1582 if (ResultReg == 0) 1583 return false; 1584 1585 // Handle sign-extension from i1 to i8. 1586 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1587 if (SrcVT == MVT::i1) { 1588 // Set the high bits to zero. 1589 unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg, 1590 /*TODO: Kill=*/false); 1591 if (ZExtReg == 0) 1592 return false; 1593 1594 // Negate the result to make an 8-bit sign extended value. 1595 ResultReg = createResultReg(&X86::GR8RegClass); 1596 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), 1597 ResultReg).addReg(ZExtReg); 1598 1599 SrcVT = MVT::i8; 1600 } 1601 1602 if (DstVT == MVT::i16) { 1603 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1604 // extend to 32-bits and then extract down to 16-bits. 1605 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1606 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), 1607 Result32).addReg(ResultReg); 1608 1609 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, 1610 X86::sub_16bit); 1611 } else if (DstVT != MVT::i8) { 1612 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1613 ResultReg, /*Kill=*/true); 1614 if (ResultReg == 0) 1615 return false; 1616 } 1617 1618 updateValueMap(I, ResultReg); 1619 return true; 1620 } 1621 1622 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1623 // Unconditional branches are selected by tablegen-generated code. 1624 // Handle a conditional branch. 1625 const BranchInst *BI = cast<BranchInst>(I); 1626 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1627 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1628 1629 // Fold the common case of a conditional branch with a comparison 1630 // in the same block (values defined on other blocks may not have 1631 // initialized registers). 1632 X86::CondCode CC; 1633 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1634 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1635 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1636 1637 // Try to optimize or fold the cmp. 1638 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1639 switch (Predicate) { 1640 default: break; 1641 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; 1642 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; 1643 } 1644 1645 const Value *CmpLHS = CI->getOperand(0); 1646 const Value *CmpRHS = CI->getOperand(1); 1647 1648 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1649 // 0.0. 1650 // We don't have to materialize a zero constant for this case and can just 1651 // use %x again on the RHS. 1652 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1653 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1654 if (CmpRHSC && CmpRHSC->isNullValue()) 1655 CmpRHS = CmpLHS; 1656 } 1657 1658 // Try to take advantage of fallthrough opportunities. 1659 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1660 std::swap(TrueMBB, FalseMBB); 1661 Predicate = CmpInst::getInversePredicate(Predicate); 1662 } 1663 1664 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1665 // code check. Instead two branch instructions are required to check all 1666 // the flags. First we change the predicate to a supported condition code, 1667 // which will be the first branch. Later one we will emit the second 1668 // branch. 1669 bool NeedExtraBranch = false; 1670 switch (Predicate) { 1671 default: break; 1672 case CmpInst::FCMP_OEQ: 1673 std::swap(TrueMBB, FalseMBB); 1674 LLVM_FALLTHROUGH; 1675 case CmpInst::FCMP_UNE: 1676 NeedExtraBranch = true; 1677 Predicate = CmpInst::FCMP_ONE; 1678 break; 1679 } 1680 1681 bool SwapArgs; 1682 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1683 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1684 1685 if (SwapArgs) 1686 std::swap(CmpLHS, CmpRHS); 1687 1688 // Emit a compare of the LHS and RHS, setting the flags. 1689 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1690 return false; 1691 1692 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1693 .addMBB(TrueMBB).addImm(CC); 1694 1695 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1696 // to UNE above). 1697 if (NeedExtraBranch) { 1698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1699 .addMBB(TrueMBB).addImm(X86::COND_P); 1700 } 1701 1702 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1703 return true; 1704 } 1705 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1706 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1707 // typically happen for _Bool and C++ bools. 1708 MVT SourceVT; 1709 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1710 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1711 unsigned TestOpc = 0; 1712 switch (SourceVT.SimpleTy) { 1713 default: break; 1714 case MVT::i8: TestOpc = X86::TEST8ri; break; 1715 case MVT::i16: TestOpc = X86::TEST16ri; break; 1716 case MVT::i32: TestOpc = X86::TEST32ri; break; 1717 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1718 } 1719 if (TestOpc) { 1720 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1721 if (OpReg == 0) return false; 1722 1723 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) 1724 .addReg(OpReg).addImm(1); 1725 1726 unsigned JmpCond = X86::COND_NE; 1727 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1728 std::swap(TrueMBB, FalseMBB); 1729 JmpCond = X86::COND_E; 1730 } 1731 1732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1733 .addMBB(TrueMBB).addImm(JmpCond); 1734 1735 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1736 return true; 1737 } 1738 } 1739 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1740 // Fake request the condition, otherwise the intrinsic might be completely 1741 // optimized away. 1742 unsigned TmpReg = getRegForValue(BI->getCondition()); 1743 if (TmpReg == 0) 1744 return false; 1745 1746 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1747 .addMBB(TrueMBB).addImm(CC); 1748 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1749 return true; 1750 } 1751 1752 // Otherwise do a clumsy setcc and re-test it. 1753 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1754 // in an explicit cast, so make sure to handle that correctly. 1755 unsigned OpReg = getRegForValue(BI->getCondition()); 1756 if (OpReg == 0) return false; 1757 1758 // In case OpReg is a K register, COPY to a GPR 1759 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1760 unsigned KOpReg = OpReg; 1761 OpReg = createResultReg(&X86::GR32RegClass); 1762 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1763 TII.get(TargetOpcode::COPY), OpReg) 1764 .addReg(KOpReg); 1765 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true, 1766 X86::sub_8bit); 1767 } 1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 1769 .addReg(OpReg) 1770 .addImm(1); 1771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1772 .addMBB(TrueMBB).addImm(X86::COND_NE); 1773 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1774 return true; 1775 } 1776 1777 bool X86FastISel::X86SelectShift(const Instruction *I) { 1778 unsigned CReg = 0, OpReg = 0; 1779 const TargetRegisterClass *RC = nullptr; 1780 if (I->getType()->isIntegerTy(8)) { 1781 CReg = X86::CL; 1782 RC = &X86::GR8RegClass; 1783 switch (I->getOpcode()) { 1784 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1785 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1786 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1787 default: return false; 1788 } 1789 } else if (I->getType()->isIntegerTy(16)) { 1790 CReg = X86::CX; 1791 RC = &X86::GR16RegClass; 1792 switch (I->getOpcode()) { 1793 default: llvm_unreachable("Unexpected shift opcode"); 1794 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1795 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1796 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1797 } 1798 } else if (I->getType()->isIntegerTy(32)) { 1799 CReg = X86::ECX; 1800 RC = &X86::GR32RegClass; 1801 switch (I->getOpcode()) { 1802 default: llvm_unreachable("Unexpected shift opcode"); 1803 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1804 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1805 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1806 } 1807 } else if (I->getType()->isIntegerTy(64)) { 1808 CReg = X86::RCX; 1809 RC = &X86::GR64RegClass; 1810 switch (I->getOpcode()) { 1811 default: llvm_unreachable("Unexpected shift opcode"); 1812 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1813 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1814 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1815 } 1816 } else { 1817 return false; 1818 } 1819 1820 MVT VT; 1821 if (!isTypeLegal(I->getType(), VT)) 1822 return false; 1823 1824 unsigned Op0Reg = getRegForValue(I->getOperand(0)); 1825 if (Op0Reg == 0) return false; 1826 1827 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1828 if (Op1Reg == 0) return false; 1829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1830 CReg).addReg(Op1Reg); 1831 1832 // The shift instruction uses X86::CL. If we defined a super-register 1833 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1834 if (CReg != X86::CL) 1835 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1836 TII.get(TargetOpcode::KILL), X86::CL) 1837 .addReg(CReg, RegState::Kill); 1838 1839 unsigned ResultReg = createResultReg(RC); 1840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) 1841 .addReg(Op0Reg); 1842 updateValueMap(I, ResultReg); 1843 return true; 1844 } 1845 1846 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1847 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1848 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1849 const static bool S = true; // IsSigned 1850 const static bool U = false; // !IsSigned 1851 const static unsigned Copy = TargetOpcode::COPY; 1852 // For the X86 DIV/IDIV instruction, in most cases the dividend 1853 // (numerator) must be in a specific register pair highreg:lowreg, 1854 // producing the quotient in lowreg and the remainder in highreg. 1855 // For most data types, to set up the instruction, the dividend is 1856 // copied into lowreg, and lowreg is sign-extended or zero-extended 1857 // into highreg. The exception is i8, where the dividend is defined 1858 // as a single register rather than a register pair, and we 1859 // therefore directly sign-extend or zero-extend the dividend into 1860 // lowreg, instead of copying, and ignore the highreg. 1861 const static struct DivRemEntry { 1862 // The following portion depends only on the data type. 1863 const TargetRegisterClass *RC; 1864 unsigned LowInReg; // low part of the register pair 1865 unsigned HighInReg; // high part of the register pair 1866 // The following portion depends on both the data type and the operation. 1867 struct DivRemResult { 1868 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1869 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1870 // highreg, or copying a zero into highreg. 1871 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1872 // zero/sign-extending into lowreg for i8. 1873 unsigned DivRemResultReg; // Register containing the desired result. 1874 bool IsOpSigned; // Whether to use signed or unsigned form. 1875 } ResultTable[NumOps]; 1876 } OpTable[NumTypes] = { 1877 { &X86::GR8RegClass, X86::AX, 0, { 1878 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1879 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1880 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1881 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1882 } 1883 }, // i8 1884 { &X86::GR16RegClass, X86::AX, X86::DX, { 1885 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1886 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1887 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1888 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1889 } 1890 }, // i16 1891 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1892 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1893 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1894 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1895 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1896 } 1897 }, // i32 1898 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1899 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1900 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1901 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1902 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1903 } 1904 }, // i64 1905 }; 1906 1907 MVT VT; 1908 if (!isTypeLegal(I->getType(), VT)) 1909 return false; 1910 1911 unsigned TypeIndex, OpIndex; 1912 switch (VT.SimpleTy) { 1913 default: return false; 1914 case MVT::i8: TypeIndex = 0; break; 1915 case MVT::i16: TypeIndex = 1; break; 1916 case MVT::i32: TypeIndex = 2; break; 1917 case MVT::i64: TypeIndex = 3; 1918 if (!Subtarget->is64Bit()) 1919 return false; 1920 break; 1921 } 1922 1923 switch (I->getOpcode()) { 1924 default: llvm_unreachable("Unexpected div/rem opcode"); 1925 case Instruction::SDiv: OpIndex = 0; break; 1926 case Instruction::SRem: OpIndex = 1; break; 1927 case Instruction::UDiv: OpIndex = 2; break; 1928 case Instruction::URem: OpIndex = 3; break; 1929 } 1930 1931 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1932 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1933 unsigned Op0Reg = getRegForValue(I->getOperand(0)); 1934 if (Op0Reg == 0) 1935 return false; 1936 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1937 if (Op1Reg == 0) 1938 return false; 1939 1940 // Move op0 into low-order input register. 1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1942 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1943 // Zero-extend or sign-extend into high-order input register. 1944 if (OpEntry.OpSignExtend) { 1945 if (OpEntry.IsOpSigned) 1946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1947 TII.get(OpEntry.OpSignExtend)); 1948 else { 1949 unsigned Zero32 = createResultReg(&X86::GR32RegClass); 1950 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1951 TII.get(X86::MOV32r0), Zero32); 1952 1953 // Copy the zero into the appropriate sub/super/identical physical 1954 // register. Unfortunately the operations needed are not uniform enough 1955 // to fit neatly into the table above. 1956 if (VT == MVT::i16) { 1957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1958 TII.get(Copy), TypeEntry.HighInReg) 1959 .addReg(Zero32, 0, X86::sub_16bit); 1960 } else if (VT == MVT::i32) { 1961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1962 TII.get(Copy), TypeEntry.HighInReg) 1963 .addReg(Zero32); 1964 } else if (VT == MVT::i64) { 1965 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1966 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1967 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1968 } 1969 } 1970 } 1971 // Generate the DIV/IDIV instruction. 1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1973 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1974 // For i8 remainder, we can't reference ah directly, as we'll end 1975 // up with bogus copies like %r9b = COPY %ah. Reference ax 1976 // instead to prevent ah references in a rex instruction. 1977 // 1978 // The current assumption of the fast register allocator is that isel 1979 // won't generate explicit references to the GR8_NOREX registers. If 1980 // the allocator and/or the backend get enhanced to be more robust in 1981 // that regard, this can be, and should be, removed. 1982 unsigned ResultReg = 0; 1983 if ((I->getOpcode() == Instruction::SRem || 1984 I->getOpcode() == Instruction::URem) && 1985 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 1986 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); 1987 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); 1988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1989 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 1990 1991 // Shift AX right by 8 bits instead of using AH. 1992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), 1993 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 1994 1995 // Now reference the 8-bit subreg of the result. 1996 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 1997 /*Kill=*/true, X86::sub_8bit); 1998 } 1999 // Copy the result out of the physreg if we haven't already. 2000 if (!ResultReg) { 2001 ResultReg = createResultReg(TypeEntry.RC); 2002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) 2003 .addReg(OpEntry.DivRemResultReg); 2004 } 2005 updateValueMap(I, ResultReg); 2006 2007 return true; 2008 } 2009 2010 /// Emit a conditional move instruction (if the are supported) to lower 2011 /// the select. 2012 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2013 // Check if the subtarget supports these instructions. 2014 if (!Subtarget->hasCMov()) 2015 return false; 2016 2017 // FIXME: Add support for i8. 2018 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2019 return false; 2020 2021 const Value *Cond = I->getOperand(0); 2022 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2023 bool NeedTest = true; 2024 X86::CondCode CC = X86::COND_NE; 2025 2026 // Optimize conditions coming from a compare if both instructions are in the 2027 // same basic block (values defined in other basic blocks may not have 2028 // initialized registers). 2029 const auto *CI = dyn_cast<CmpInst>(Cond); 2030 if (CI && (CI->getParent() == I->getParent())) { 2031 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2032 2033 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2034 static const uint16_t SETFOpcTable[2][3] = { 2035 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2036 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2037 }; 2038 const uint16_t *SETFOpc = nullptr; 2039 switch (Predicate) { 2040 default: break; 2041 case CmpInst::FCMP_OEQ: 2042 SETFOpc = &SETFOpcTable[0][0]; 2043 Predicate = CmpInst::ICMP_NE; 2044 break; 2045 case CmpInst::FCMP_UNE: 2046 SETFOpc = &SETFOpcTable[1][0]; 2047 Predicate = CmpInst::ICMP_NE; 2048 break; 2049 } 2050 2051 bool NeedSwap; 2052 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2053 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2054 2055 const Value *CmpLHS = CI->getOperand(0); 2056 const Value *CmpRHS = CI->getOperand(1); 2057 if (NeedSwap) 2058 std::swap(CmpLHS, CmpRHS); 2059 2060 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2061 // Emit a compare of the LHS and RHS, setting the flags. 2062 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2063 return false; 2064 2065 if (SETFOpc) { 2066 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); 2067 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); 2068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2069 FlagReg1).addImm(SETFOpc[0]); 2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2071 FlagReg2).addImm(SETFOpc[1]); 2072 auto const &II = TII.get(SETFOpc[2]); 2073 if (II.getNumDefs()) { 2074 unsigned TmpReg = createResultReg(&X86::GR8RegClass); 2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) 2076 .addReg(FlagReg2).addReg(FlagReg1); 2077 } else { 2078 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2079 .addReg(FlagReg2).addReg(FlagReg1); 2080 } 2081 } 2082 NeedTest = false; 2083 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2084 // Fake request the condition, otherwise the intrinsic might be completely 2085 // optimized away. 2086 unsigned TmpReg = getRegForValue(Cond); 2087 if (TmpReg == 0) 2088 return false; 2089 2090 NeedTest = false; 2091 } 2092 2093 if (NeedTest) { 2094 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2095 // garbage. Indeed, only the less significant bit is supposed to be 2096 // accurate. If we read more than the lsb, we may see non-zero values 2097 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2098 // the select. This is achieved by performing TEST against 1. 2099 unsigned CondReg = getRegForValue(Cond); 2100 if (CondReg == 0) 2101 return false; 2102 bool CondIsKill = hasTrivialKill(Cond); 2103 2104 // In case OpReg is a K register, COPY to a GPR 2105 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2106 unsigned KCondReg = CondReg; 2107 CondReg = createResultReg(&X86::GR32RegClass); 2108 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2109 TII.get(TargetOpcode::COPY), CondReg) 2110 .addReg(KCondReg, getKillRegState(CondIsKill)); 2111 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, 2112 X86::sub_8bit); 2113 } 2114 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2115 .addReg(CondReg, getKillRegState(CondIsKill)) 2116 .addImm(1); 2117 } 2118 2119 const Value *LHS = I->getOperand(1); 2120 const Value *RHS = I->getOperand(2); 2121 2122 unsigned RHSReg = getRegForValue(RHS); 2123 bool RHSIsKill = hasTrivialKill(RHS); 2124 2125 unsigned LHSReg = getRegForValue(LHS); 2126 bool LHSIsKill = hasTrivialKill(LHS); 2127 2128 if (!LHSReg || !RHSReg) 2129 return false; 2130 2131 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2132 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); 2133 unsigned ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, 2134 LHSReg, LHSIsKill, CC); 2135 updateValueMap(I, ResultReg); 2136 return true; 2137 } 2138 2139 /// Emit SSE or AVX instructions to lower the select. 2140 /// 2141 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2142 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2143 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2144 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2145 // Optimize conditions coming from a compare if both instructions are in the 2146 // same basic block (values defined in other basic blocks may not have 2147 // initialized registers). 2148 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2149 if (!CI || (CI->getParent() != I->getParent())) 2150 return false; 2151 2152 if (I->getType() != CI->getOperand(0)->getType() || 2153 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2154 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2155 return false; 2156 2157 const Value *CmpLHS = CI->getOperand(0); 2158 const Value *CmpRHS = CI->getOperand(1); 2159 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2160 2161 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2162 // We don't have to materialize a zero constant for this case and can just use 2163 // %x again on the RHS. 2164 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2165 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2166 if (CmpRHSC && CmpRHSC->isNullValue()) 2167 CmpRHS = CmpLHS; 2168 } 2169 2170 unsigned CC; 2171 bool NeedSwap; 2172 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2173 if (CC > 7 && !Subtarget->hasAVX()) 2174 return false; 2175 2176 if (NeedSwap) 2177 std::swap(CmpLHS, CmpRHS); 2178 2179 const Value *LHS = I->getOperand(1); 2180 const Value *RHS = I->getOperand(2); 2181 2182 unsigned LHSReg = getRegForValue(LHS); 2183 bool LHSIsKill = hasTrivialKill(LHS); 2184 2185 unsigned RHSReg = getRegForValue(RHS); 2186 bool RHSIsKill = hasTrivialKill(RHS); 2187 2188 unsigned CmpLHSReg = getRegForValue(CmpLHS); 2189 bool CmpLHSIsKill = hasTrivialKill(CmpLHS); 2190 2191 unsigned CmpRHSReg = getRegForValue(CmpRHS); 2192 bool CmpRHSIsKill = hasTrivialKill(CmpRHS); 2193 2194 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) 2195 return false; 2196 2197 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2198 unsigned ResultReg; 2199 2200 if (Subtarget->hasAVX512()) { 2201 // If we have AVX512 we can use a mask compare and masked movss/sd. 2202 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2203 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2204 2205 unsigned CmpOpcode = 2206 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; 2207 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill, 2208 CmpRHSReg, CmpRHSIsKill, CC); 2209 2210 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2211 // bits of the result register since its not based on any of the inputs. 2212 unsigned ImplicitDefReg = createResultReg(VR128X); 2213 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2214 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2215 2216 // Place RHSReg is the passthru of the masked movss/sd operation and put 2217 // LHS in the input. The mask input comes from the compare. 2218 unsigned MovOpcode = 2219 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2220 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill, 2221 CmpReg, true, ImplicitDefReg, true, 2222 LHSReg, LHSIsKill); 2223 2224 ResultReg = createResultReg(RC); 2225 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2226 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2227 2228 } else if (Subtarget->hasAVX()) { 2229 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2230 2231 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2232 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2233 // uses XMM0 as the selection register. That may need just as many 2234 // instructions as the AND/ANDN/OR sequence due to register moves, so 2235 // don't bother. 2236 unsigned CmpOpcode = 2237 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; 2238 unsigned BlendOpcode = 2239 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; 2240 2241 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill, 2242 CmpRHSReg, CmpRHSIsKill, CC); 2243 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill, 2244 LHSReg, LHSIsKill, CmpReg, true); 2245 ResultReg = createResultReg(RC); 2246 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2247 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2248 } else { 2249 // Choose the SSE instruction sequence based on data type (float or double). 2250 static const uint16_t OpcTable[2][4] = { 2251 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2252 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2253 }; 2254 2255 const uint16_t *Opc = nullptr; 2256 switch (RetVT.SimpleTy) { 2257 default: return false; 2258 case MVT::f32: Opc = &OpcTable[0][0]; break; 2259 case MVT::f64: Opc = &OpcTable[1][0]; break; 2260 } 2261 2262 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2263 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, 2264 CmpRHSReg, CmpRHSIsKill, CC); 2265 unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false, 2266 LHSReg, LHSIsKill); 2267 unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true, 2268 RHSReg, RHSIsKill); 2269 unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true, 2270 AndReg, /*IsKill=*/true); 2271 ResultReg = createResultReg(RC); 2272 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2273 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2274 } 2275 updateValueMap(I, ResultReg); 2276 return true; 2277 } 2278 2279 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2280 // These are pseudo CMOV instructions and will be later expanded into control- 2281 // flow. 2282 unsigned Opc; 2283 switch (RetVT.SimpleTy) { 2284 default: return false; 2285 case MVT::i8: Opc = X86::CMOV_GR8; break; 2286 case MVT::i16: Opc = X86::CMOV_GR16; break; 2287 case MVT::i32: Opc = X86::CMOV_GR32; break; 2288 case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X 2289 : X86::CMOV_FR32; break; 2290 case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X 2291 : X86::CMOV_FR64; break; 2292 } 2293 2294 const Value *Cond = I->getOperand(0); 2295 X86::CondCode CC = X86::COND_NE; 2296 2297 // Optimize conditions coming from a compare if both instructions are in the 2298 // same basic block (values defined in other basic blocks may not have 2299 // initialized registers). 2300 const auto *CI = dyn_cast<CmpInst>(Cond); 2301 if (CI && (CI->getParent() == I->getParent())) { 2302 bool NeedSwap; 2303 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2304 if (CC > X86::LAST_VALID_COND) 2305 return false; 2306 2307 const Value *CmpLHS = CI->getOperand(0); 2308 const Value *CmpRHS = CI->getOperand(1); 2309 2310 if (NeedSwap) 2311 std::swap(CmpLHS, CmpRHS); 2312 2313 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2314 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2315 return false; 2316 } else { 2317 unsigned CondReg = getRegForValue(Cond); 2318 if (CondReg == 0) 2319 return false; 2320 bool CondIsKill = hasTrivialKill(Cond); 2321 2322 // In case OpReg is a K register, COPY to a GPR 2323 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2324 unsigned KCondReg = CondReg; 2325 CondReg = createResultReg(&X86::GR32RegClass); 2326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2327 TII.get(TargetOpcode::COPY), CondReg) 2328 .addReg(KCondReg, getKillRegState(CondIsKill)); 2329 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, 2330 X86::sub_8bit); 2331 } 2332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2333 .addReg(CondReg, getKillRegState(CondIsKill)) 2334 .addImm(1); 2335 } 2336 2337 const Value *LHS = I->getOperand(1); 2338 const Value *RHS = I->getOperand(2); 2339 2340 unsigned LHSReg = getRegForValue(LHS); 2341 bool LHSIsKill = hasTrivialKill(LHS); 2342 2343 unsigned RHSReg = getRegForValue(RHS); 2344 bool RHSIsKill = hasTrivialKill(RHS); 2345 2346 if (!LHSReg || !RHSReg) 2347 return false; 2348 2349 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2350 2351 unsigned ResultReg = 2352 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); 2353 updateValueMap(I, ResultReg); 2354 return true; 2355 } 2356 2357 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2358 MVT RetVT; 2359 if (!isTypeLegal(I->getType(), RetVT)) 2360 return false; 2361 2362 // Check if we can fold the select. 2363 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2364 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2365 const Value *Opnd = nullptr; 2366 switch (Predicate) { 2367 default: break; 2368 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2369 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2370 } 2371 // No need for a select anymore - this is an unconditional move. 2372 if (Opnd) { 2373 unsigned OpReg = getRegForValue(Opnd); 2374 if (OpReg == 0) 2375 return false; 2376 bool OpIsKill = hasTrivialKill(Opnd); 2377 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2378 unsigned ResultReg = createResultReg(RC); 2379 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2380 TII.get(TargetOpcode::COPY), ResultReg) 2381 .addReg(OpReg, getKillRegState(OpIsKill)); 2382 updateValueMap(I, ResultReg); 2383 return true; 2384 } 2385 } 2386 2387 // First try to use real conditional move instructions. 2388 if (X86FastEmitCMoveSelect(RetVT, I)) 2389 return true; 2390 2391 // Try to use a sequence of SSE instructions to simulate a conditional move. 2392 if (X86FastEmitSSESelect(RetVT, I)) 2393 return true; 2394 2395 // Fall-back to pseudo conditional move instructions, which will be later 2396 // converted to control-flow. 2397 if (X86FastEmitPseudoSelect(RetVT, I)) 2398 return true; 2399 2400 return false; 2401 } 2402 2403 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2404 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2405 // The target-independent selection algorithm in FastISel already knows how 2406 // to select a SINT_TO_FP if the target is SSE but not AVX. 2407 // Early exit if the subtarget doesn't have AVX. 2408 // Unsigned conversion requires avx512. 2409 bool HasAVX512 = Subtarget->hasAVX512(); 2410 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2411 return false; 2412 2413 // TODO: We could sign extend narrower types. 2414 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 2415 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2416 return false; 2417 2418 // Select integer to float/double conversion. 2419 unsigned OpReg = getRegForValue(I->getOperand(0)); 2420 if (OpReg == 0) 2421 return false; 2422 2423 unsigned Opcode; 2424 2425 static const uint16_t SCvtOpc[2][2][2] = { 2426 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2427 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2428 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2429 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2430 }; 2431 static const uint16_t UCvtOpc[2][2] = { 2432 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2433 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2434 }; 2435 bool Is64Bit = SrcVT == MVT::i64; 2436 2437 if (I->getType()->isDoubleTy()) { 2438 // s/uitofp int -> double 2439 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2440 } else if (I->getType()->isFloatTy()) { 2441 // s/uitofp int -> float 2442 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2443 } else 2444 return false; 2445 2446 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2447 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2448 unsigned ImplicitDefReg = createResultReg(RC); 2449 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2450 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2451 unsigned ResultReg = 2452 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false); 2453 updateValueMap(I, ResultReg); 2454 return true; 2455 } 2456 2457 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2458 return X86SelectIntToFP(I, /*IsSigned*/true); 2459 } 2460 2461 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2462 return X86SelectIntToFP(I, /*IsSigned*/false); 2463 } 2464 2465 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2466 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2467 unsigned TargetOpc, 2468 const TargetRegisterClass *RC) { 2469 assert((I->getOpcode() == Instruction::FPExt || 2470 I->getOpcode() == Instruction::FPTrunc) && 2471 "Instruction must be an FPExt or FPTrunc!"); 2472 bool HasAVX = Subtarget->hasAVX(); 2473 2474 unsigned OpReg = getRegForValue(I->getOperand(0)); 2475 if (OpReg == 0) 2476 return false; 2477 2478 unsigned ImplicitDefReg; 2479 if (HasAVX) { 2480 ImplicitDefReg = createResultReg(RC); 2481 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2482 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2483 2484 } 2485 2486 unsigned ResultReg = createResultReg(RC); 2487 MachineInstrBuilder MIB; 2488 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), 2489 ResultReg); 2490 2491 if (HasAVX) 2492 MIB.addReg(ImplicitDefReg); 2493 2494 MIB.addReg(OpReg); 2495 updateValueMap(I, ResultReg); 2496 return true; 2497 } 2498 2499 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2500 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && 2501 I->getOperand(0)->getType()->isFloatTy()) { 2502 bool HasAVX512 = Subtarget->hasAVX512(); 2503 // fpext from float to double. 2504 unsigned Opc = 2505 HasAVX512 ? X86::VCVTSS2SDZrr 2506 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2507 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2508 } 2509 2510 return false; 2511 } 2512 2513 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2514 if (X86ScalarSSEf64 && I->getType()->isFloatTy() && 2515 I->getOperand(0)->getType()->isDoubleTy()) { 2516 bool HasAVX512 = Subtarget->hasAVX512(); 2517 // fptrunc from double to float. 2518 unsigned Opc = 2519 HasAVX512 ? X86::VCVTSD2SSZrr 2520 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2521 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2522 } 2523 2524 return false; 2525 } 2526 2527 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2528 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2529 EVT DstVT = TLI.getValueType(DL, I->getType()); 2530 2531 // This code only handles truncation to byte. 2532 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2533 return false; 2534 if (!TLI.isTypeLegal(SrcVT)) 2535 return false; 2536 2537 unsigned InputReg = getRegForValue(I->getOperand(0)); 2538 if (!InputReg) 2539 // Unhandled operand. Halt "fast" selection and bail. 2540 return false; 2541 2542 if (SrcVT == MVT::i8) { 2543 // Truncate from i8 to i1; no code needed. 2544 updateValueMap(I, InputReg); 2545 return true; 2546 } 2547 2548 // Issue an extract_subreg. 2549 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8, 2550 InputReg, false, 2551 X86::sub_8bit); 2552 if (!ResultReg) 2553 return false; 2554 2555 updateValueMap(I, ResultReg); 2556 return true; 2557 } 2558 2559 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2560 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2561 } 2562 2563 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2564 X86AddressMode SrcAM, uint64_t Len) { 2565 2566 // Make sure we don't bloat code by inlining very large memcpy's. 2567 if (!IsMemcpySmall(Len)) 2568 return false; 2569 2570 bool i64Legal = Subtarget->is64Bit(); 2571 2572 // We don't care about alignment here since we just emit integer accesses. 2573 while (Len) { 2574 MVT VT; 2575 if (Len >= 8 && i64Legal) 2576 VT = MVT::i64; 2577 else if (Len >= 4) 2578 VT = MVT::i32; 2579 else if (Len >= 2) 2580 VT = MVT::i16; 2581 else 2582 VT = MVT::i8; 2583 2584 unsigned Reg; 2585 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2586 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); 2587 assert(RV && "Failed to emit load or store??"); 2588 2589 unsigned Size = VT.getSizeInBits()/8; 2590 Len -= Size; 2591 DestAM.Disp += Size; 2592 SrcAM.Disp += Size; 2593 } 2594 2595 return true; 2596 } 2597 2598 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2599 // FIXME: Handle more intrinsics. 2600 switch (II->getIntrinsicID()) { 2601 default: return false; 2602 case Intrinsic::convert_from_fp16: 2603 case Intrinsic::convert_to_fp16: { 2604 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2605 return false; 2606 2607 const Value *Op = II->getArgOperand(0); 2608 unsigned InputReg = getRegForValue(Op); 2609 if (InputReg == 0) 2610 return false; 2611 2612 // F16C only allows converting from float to half and from half to float. 2613 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2614 if (IsFloatToHalf) { 2615 if (!Op->getType()->isFloatTy()) 2616 return false; 2617 } else { 2618 if (!II->getType()->isFloatTy()) 2619 return false; 2620 } 2621 2622 unsigned ResultReg = 0; 2623 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2624 if (IsFloatToHalf) { 2625 // 'InputReg' is implicitly promoted from register class FR32 to 2626 // register class VR128 by method 'constrainOperandRegClass' which is 2627 // directly called by 'fastEmitInst_ri'. 2628 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2629 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2630 // It's consistent with the other FP instructions, which are usually 2631 // controlled by MXCSR. 2632 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4); 2633 2634 // Move the lower 32-bits of ResultReg to another register of class GR32. 2635 ResultReg = createResultReg(&X86::GR32RegClass); 2636 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2637 TII.get(X86::VMOVPDI2DIrr), ResultReg) 2638 .addReg(InputReg, RegState::Kill); 2639 2640 // The result value is in the lower 16-bits of ResultReg. 2641 unsigned RegIdx = X86::sub_16bit; 2642 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx); 2643 } else { 2644 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2645 // Explicitly sign-extend the input to 32-bit. 2646 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg, 2647 /*Kill=*/false); 2648 2649 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2650 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2651 InputReg, /*Kill=*/true); 2652 2653 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true); 2654 2655 // The result value is in the lower 32-bits of ResultReg. 2656 // Emit an explicit copy from register class VR128 to register class FR32. 2657 ResultReg = createResultReg(&X86::FR32RegClass); 2658 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2659 TII.get(TargetOpcode::COPY), ResultReg) 2660 .addReg(InputReg, RegState::Kill); 2661 } 2662 2663 updateValueMap(II, ResultReg); 2664 return true; 2665 } 2666 case Intrinsic::frameaddress: { 2667 MachineFunction *MF = FuncInfo.MF; 2668 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2669 return false; 2670 2671 Type *RetTy = II->getCalledFunction()->getReturnType(); 2672 2673 MVT VT; 2674 if (!isTypeLegal(RetTy, VT)) 2675 return false; 2676 2677 unsigned Opc; 2678 const TargetRegisterClass *RC = nullptr; 2679 2680 switch (VT.SimpleTy) { 2681 default: llvm_unreachable("Invalid result type for frameaddress."); 2682 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2683 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2684 } 2685 2686 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2687 // we get the wrong frame register. 2688 MachineFrameInfo &MFI = MF->getFrameInfo(); 2689 MFI.setFrameAddressIsTaken(true); 2690 2691 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2692 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2693 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2694 (FrameReg == X86::EBP && VT == MVT::i32)) && 2695 "Invalid Frame Register!"); 2696 2697 // Always make a copy of the frame register to a vreg first, so that we 2698 // never directly reference the frame register (the TwoAddressInstruction- 2699 // Pass doesn't like that). 2700 unsigned SrcReg = createResultReg(RC); 2701 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2702 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2703 2704 // Now recursively load from the frame address. 2705 // movq (%rbp), %rax 2706 // movq (%rax), %rax 2707 // movq (%rax), %rax 2708 // ... 2709 unsigned DestReg; 2710 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2711 while (Depth--) { 2712 DestReg = createResultReg(RC); 2713 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2714 TII.get(Opc), DestReg), SrcReg); 2715 SrcReg = DestReg; 2716 } 2717 2718 updateValueMap(II, SrcReg); 2719 return true; 2720 } 2721 case Intrinsic::memcpy: { 2722 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2723 // Don't handle volatile or variable length memcpys. 2724 if (MCI->isVolatile()) 2725 return false; 2726 2727 if (isa<ConstantInt>(MCI->getLength())) { 2728 // Small memcpy's are common enough that we want to do them 2729 // without a call if possible. 2730 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2731 if (IsMemcpySmall(Len)) { 2732 X86AddressMode DestAM, SrcAM; 2733 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2734 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2735 return false; 2736 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2737 return true; 2738 } 2739 } 2740 2741 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2742 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2743 return false; 2744 2745 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2746 return false; 2747 2748 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1); 2749 } 2750 case Intrinsic::memset: { 2751 const MemSetInst *MSI = cast<MemSetInst>(II); 2752 2753 if (MSI->isVolatile()) 2754 return false; 2755 2756 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2757 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2758 return false; 2759 2760 if (MSI->getDestAddressSpace() > 255) 2761 return false; 2762 2763 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); 2764 } 2765 case Intrinsic::stackprotector: { 2766 // Emit code to store the stack guard onto the stack. 2767 EVT PtrTy = TLI.getPointerTy(DL); 2768 2769 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2770 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2771 2772 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2773 2774 // Grab the frame index. 2775 X86AddressMode AM; 2776 if (!X86SelectAddress(Slot, AM)) return false; 2777 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2778 return true; 2779 } 2780 case Intrinsic::dbg_declare: { 2781 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2782 X86AddressMode AM; 2783 assert(DI->getAddress() && "Null address should be checked earlier!"); 2784 if (!X86SelectAddress(DI->getAddress(), AM)) 2785 return false; 2786 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2787 // FIXME may need to add RegState::Debug to any registers produced, 2788 // although ESP/EBP should be the only ones at the moment. 2789 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 2790 "Expected inlined-at fields to agree"); 2791 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) 2792 .addImm(0) 2793 .addMetadata(DI->getVariable()) 2794 .addMetadata(DI->getExpression()); 2795 return true; 2796 } 2797 case Intrinsic::trap: { 2798 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); 2799 return true; 2800 } 2801 case Intrinsic::sqrt: { 2802 if (!Subtarget->hasSSE1()) 2803 return false; 2804 2805 Type *RetTy = II->getCalledFunction()->getReturnType(); 2806 2807 MVT VT; 2808 if (!isTypeLegal(RetTy, VT)) 2809 return false; 2810 2811 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2812 // is not generated by FastISel yet. 2813 // FIXME: Update this code once tablegen can handle it. 2814 static const uint16_t SqrtOpc[3][2] = { 2815 { X86::SQRTSSr, X86::SQRTSDr }, 2816 { X86::VSQRTSSr, X86::VSQRTSDr }, 2817 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2818 }; 2819 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2820 Subtarget->hasAVX() ? 1 : 2821 0; 2822 unsigned Opc; 2823 switch (VT.SimpleTy) { 2824 default: return false; 2825 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2826 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2827 } 2828 2829 const Value *SrcVal = II->getArgOperand(0); 2830 unsigned SrcReg = getRegForValue(SrcVal); 2831 2832 if (SrcReg == 0) 2833 return false; 2834 2835 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2836 unsigned ImplicitDefReg = 0; 2837 if (AVXLevel > 0) { 2838 ImplicitDefReg = createResultReg(RC); 2839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2840 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2841 } 2842 2843 unsigned ResultReg = createResultReg(RC); 2844 MachineInstrBuilder MIB; 2845 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 2846 ResultReg); 2847 2848 if (ImplicitDefReg) 2849 MIB.addReg(ImplicitDefReg); 2850 2851 MIB.addReg(SrcReg); 2852 2853 updateValueMap(II, ResultReg); 2854 return true; 2855 } 2856 case Intrinsic::sadd_with_overflow: 2857 case Intrinsic::uadd_with_overflow: 2858 case Intrinsic::ssub_with_overflow: 2859 case Intrinsic::usub_with_overflow: 2860 case Intrinsic::smul_with_overflow: 2861 case Intrinsic::umul_with_overflow: { 2862 // This implements the basic lowering of the xalu with overflow intrinsics 2863 // into add/sub/mul followed by either seto or setb. 2864 const Function *Callee = II->getCalledFunction(); 2865 auto *Ty = cast<StructType>(Callee->getReturnType()); 2866 Type *RetTy = Ty->getTypeAtIndex(0U); 2867 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2868 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2869 "Overflow value expected to be an i1"); 2870 2871 MVT VT; 2872 if (!isTypeLegal(RetTy, VT)) 2873 return false; 2874 2875 if (VT < MVT::i8 || VT > MVT::i64) 2876 return false; 2877 2878 const Value *LHS = II->getArgOperand(0); 2879 const Value *RHS = II->getArgOperand(1); 2880 2881 // Canonicalize immediate to the RHS. 2882 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && 2883 isCommutativeIntrinsic(II)) 2884 std::swap(LHS, RHS); 2885 2886 unsigned BaseOpc, CondCode; 2887 switch (II->getIntrinsicID()) { 2888 default: llvm_unreachable("Unexpected intrinsic!"); 2889 case Intrinsic::sadd_with_overflow: 2890 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2891 case Intrinsic::uadd_with_overflow: 2892 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2893 case Intrinsic::ssub_with_overflow: 2894 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2895 case Intrinsic::usub_with_overflow: 2896 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2897 case Intrinsic::smul_with_overflow: 2898 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2899 case Intrinsic::umul_with_overflow: 2900 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2901 } 2902 2903 unsigned LHSReg = getRegForValue(LHS); 2904 if (LHSReg == 0) 2905 return false; 2906 bool LHSIsKill = hasTrivialKill(LHS); 2907 2908 unsigned ResultReg = 0; 2909 // Check if we have an immediate version. 2910 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2911 static const uint16_t Opc[2][4] = { 2912 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2913 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2914 }; 2915 2916 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2917 CondCode == X86::COND_O) { 2918 // We can use INC/DEC. 2919 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2920 bool IsDec = BaseOpc == ISD::SUB; 2921 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2922 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2923 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2924 } else 2925 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, 2926 CI->getZExtValue()); 2927 } 2928 2929 unsigned RHSReg; 2930 bool RHSIsKill; 2931 if (!ResultReg) { 2932 RHSReg = getRegForValue(RHS); 2933 if (RHSReg == 0) 2934 return false; 2935 RHSIsKill = hasTrivialKill(RHS); 2936 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, 2937 RHSIsKill); 2938 } 2939 2940 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2941 // it manually. 2942 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2943 static const uint16_t MULOpc[] = 2944 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2945 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2946 // First copy the first operand into RAX, which is an implicit input to 2947 // the X86::MUL*r instruction. 2948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2949 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2950 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2951 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2952 TLI.getRegClassFor(VT), RHSReg, RHSIsKill); 2953 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2954 static const uint16_t MULOpc[] = 2955 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2956 if (VT == MVT::i8) { 2957 // Copy the first operand into AL, which is an implicit input to the 2958 // X86::IMUL8r instruction. 2959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2960 TII.get(TargetOpcode::COPY), X86::AL) 2961 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2962 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, 2963 RHSIsKill); 2964 } else 2965 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2966 TLI.getRegClassFor(VT), LHSReg, LHSIsKill, 2967 RHSReg, RHSIsKill); 2968 } 2969 2970 if (!ResultReg) 2971 return false; 2972 2973 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2974 unsigned ResultReg2 = createResultReg(&X86::GR8RegClass); 2975 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2977 ResultReg2).addImm(CondCode); 2978 2979 updateValueMap(II, ResultReg, 2); 2980 return true; 2981 } 2982 case Intrinsic::x86_sse_cvttss2si: 2983 case Intrinsic::x86_sse_cvttss2si64: 2984 case Intrinsic::x86_sse2_cvttsd2si: 2985 case Intrinsic::x86_sse2_cvttsd2si64: { 2986 bool IsInputDouble; 2987 switch (II->getIntrinsicID()) { 2988 default: llvm_unreachable("Unexpected intrinsic."); 2989 case Intrinsic::x86_sse_cvttss2si: 2990 case Intrinsic::x86_sse_cvttss2si64: 2991 if (!Subtarget->hasSSE1()) 2992 return false; 2993 IsInputDouble = false; 2994 break; 2995 case Intrinsic::x86_sse2_cvttsd2si: 2996 case Intrinsic::x86_sse2_cvttsd2si64: 2997 if (!Subtarget->hasSSE2()) 2998 return false; 2999 IsInputDouble = true; 3000 break; 3001 } 3002 3003 Type *RetTy = II->getCalledFunction()->getReturnType(); 3004 MVT VT; 3005 if (!isTypeLegal(RetTy, VT)) 3006 return false; 3007 3008 static const uint16_t CvtOpc[3][2][2] = { 3009 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 3010 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 3011 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 3012 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 3013 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 3014 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 3015 }; 3016 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 3017 Subtarget->hasAVX() ? 1 : 3018 0; 3019 unsigned Opc; 3020 switch (VT.SimpleTy) { 3021 default: llvm_unreachable("Unexpected result type."); 3022 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 3023 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 3024 } 3025 3026 // Check if we can fold insertelement instructions into the convert. 3027 const Value *Op = II->getArgOperand(0); 3028 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3029 const Value *Index = IE->getOperand(2); 3030 if (!isa<ConstantInt>(Index)) 3031 break; 3032 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3033 3034 if (Idx == 0) { 3035 Op = IE->getOperand(1); 3036 break; 3037 } 3038 Op = IE->getOperand(0); 3039 } 3040 3041 unsigned Reg = getRegForValue(Op); 3042 if (Reg == 0) 3043 return false; 3044 3045 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3046 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 3047 .addReg(Reg); 3048 3049 updateValueMap(II, ResultReg); 3050 return true; 3051 } 3052 } 3053 } 3054 3055 bool X86FastISel::fastLowerArguments() { 3056 if (!FuncInfo.CanLowerReturn) 3057 return false; 3058 3059 const Function *F = FuncInfo.Fn; 3060 if (F->isVarArg()) 3061 return false; 3062 3063 CallingConv::ID CC = F->getCallingConv(); 3064 if (CC != CallingConv::C) 3065 return false; 3066 3067 if (Subtarget->isCallingConvWin64(CC)) 3068 return false; 3069 3070 if (!Subtarget->is64Bit()) 3071 return false; 3072 3073 if (Subtarget->useSoftFloat()) 3074 return false; 3075 3076 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3077 unsigned GPRCnt = 0; 3078 unsigned FPRCnt = 0; 3079 for (auto const &Arg : F->args()) { 3080 if (Arg.hasAttribute(Attribute::ByVal) || 3081 Arg.hasAttribute(Attribute::InReg) || 3082 Arg.hasAttribute(Attribute::StructRet) || 3083 Arg.hasAttribute(Attribute::SwiftSelf) || 3084 Arg.hasAttribute(Attribute::SwiftError) || 3085 Arg.hasAttribute(Attribute::Nest)) 3086 return false; 3087 3088 Type *ArgTy = Arg.getType(); 3089 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3090 return false; 3091 3092 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3093 if (!ArgVT.isSimple()) return false; 3094 switch (ArgVT.getSimpleVT().SimpleTy) { 3095 default: return false; 3096 case MVT::i32: 3097 case MVT::i64: 3098 ++GPRCnt; 3099 break; 3100 case MVT::f32: 3101 case MVT::f64: 3102 if (!Subtarget->hasSSE1()) 3103 return false; 3104 ++FPRCnt; 3105 break; 3106 } 3107 3108 if (GPRCnt > 6) 3109 return false; 3110 3111 if (FPRCnt > 8) 3112 return false; 3113 } 3114 3115 static const MCPhysReg GPR32ArgRegs[] = { 3116 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3117 }; 3118 static const MCPhysReg GPR64ArgRegs[] = { 3119 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3120 }; 3121 static const MCPhysReg XMMArgRegs[] = { 3122 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3123 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3124 }; 3125 3126 unsigned GPRIdx = 0; 3127 unsigned FPRIdx = 0; 3128 for (auto const &Arg : F->args()) { 3129 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3130 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3131 unsigned SrcReg; 3132 switch (VT.SimpleTy) { 3133 default: llvm_unreachable("Unexpected value type."); 3134 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3135 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3136 case MVT::f32: LLVM_FALLTHROUGH; 3137 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3138 } 3139 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3140 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3141 // Without this, EmitLiveInCopies may eliminate the livein if its only 3142 // use is a bitcast (which isn't turned into an instruction). 3143 unsigned ResultReg = createResultReg(RC); 3144 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3145 TII.get(TargetOpcode::COPY), ResultReg) 3146 .addReg(DstReg, getKillRegState(true)); 3147 updateValueMap(&Arg, ResultReg); 3148 } 3149 return true; 3150 } 3151 3152 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3153 CallingConv::ID CC, 3154 ImmutableCallSite *CS) { 3155 if (Subtarget->is64Bit()) 3156 return 0; 3157 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3158 return 0; 3159 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3160 CC == CallingConv::HiPE) 3161 return 0; 3162 3163 if (CS) 3164 if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) || 3165 CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3166 return 0; 3167 3168 return 4; 3169 } 3170 3171 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3172 auto &OutVals = CLI.OutVals; 3173 auto &OutFlags = CLI.OutFlags; 3174 auto &OutRegs = CLI.OutRegs; 3175 auto &Ins = CLI.Ins; 3176 auto &InRegs = CLI.InRegs; 3177 CallingConv::ID CC = CLI.CallConv; 3178 bool &IsTailCall = CLI.IsTailCall; 3179 bool IsVarArg = CLI.IsVarArg; 3180 const Value *Callee = CLI.Callee; 3181 MCSymbol *Symbol = CLI.Symbol; 3182 3183 bool Is64Bit = Subtarget->is64Bit(); 3184 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3185 3186 const CallInst *CI = 3187 CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr; 3188 const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr; 3189 3190 // Call / invoke instructions with NoCfCheck attribute require special 3191 // handling. 3192 const auto *II = 3193 CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr; 3194 if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck())) 3195 return false; 3196 3197 // Functions with no_caller_saved_registers that need special handling. 3198 if ((CI && CI->hasFnAttr("no_caller_saved_registers")) || 3199 (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers"))) 3200 return false; 3201 3202 // Functions using retpoline for indirect calls need to use SDISel. 3203 if (Subtarget->useRetpolineIndirectCalls()) 3204 return false; 3205 3206 // Handle only C, fastcc, and webkit_js calling conventions for now. 3207 switch (CC) { 3208 default: return false; 3209 case CallingConv::C: 3210 case CallingConv::Fast: 3211 case CallingConv::WebKit_JS: 3212 case CallingConv::Swift: 3213 case CallingConv::X86_FastCall: 3214 case CallingConv::X86_StdCall: 3215 case CallingConv::X86_ThisCall: 3216 case CallingConv::Win64: 3217 case CallingConv::X86_64_SysV: 3218 break; 3219 } 3220 3221 // Allow SelectionDAG isel to handle tail calls. 3222 if (IsTailCall) 3223 return false; 3224 3225 // fastcc with -tailcallopt is intended to provide a guaranteed 3226 // tail call optimization. Fastisel doesn't know how to do that. 3227 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) 3228 return false; 3229 3230 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3231 // x86-32. Special handling for x86-64 is implemented. 3232 if (IsVarArg && IsWin64) 3233 return false; 3234 3235 // Don't know about inalloca yet. 3236 if (CLI.CS && CLI.CS->hasInAllocaArgument()) 3237 return false; 3238 3239 for (auto Flag : CLI.OutFlags) 3240 if (Flag.isSwiftError()) 3241 return false; 3242 3243 SmallVector<MVT, 16> OutVTs; 3244 SmallVector<unsigned, 16> ArgRegs; 3245 3246 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3247 // instruction. This is safe because it is common to all FastISel supported 3248 // calling conventions on x86. 3249 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3250 Value *&Val = OutVals[i]; 3251 ISD::ArgFlagsTy Flags = OutFlags[i]; 3252 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3253 if (CI->getBitWidth() < 32) { 3254 if (Flags.isSExt()) 3255 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); 3256 else 3257 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); 3258 } 3259 } 3260 3261 // Passing bools around ends up doing a trunc to i1 and passing it. 3262 // Codegen this as an argument + "and 1". 3263 MVT VT; 3264 auto *TI = dyn_cast<TruncInst>(Val); 3265 unsigned ResultReg; 3266 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS && 3267 (TI->getParent() == CLI.CS->getInstruction()->getParent()) && 3268 TI->hasOneUse()) { 3269 Value *PrevVal = TI->getOperand(0); 3270 ResultReg = getRegForValue(PrevVal); 3271 3272 if (!ResultReg) 3273 return false; 3274 3275 if (!isTypeLegal(PrevVal->getType(), VT)) 3276 return false; 3277 3278 ResultReg = 3279 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); 3280 } else { 3281 if (!isTypeLegal(Val->getType(), VT)) 3282 return false; 3283 ResultReg = getRegForValue(Val); 3284 } 3285 3286 if (!ResultReg) 3287 return false; 3288 3289 ArgRegs.push_back(ResultReg); 3290 OutVTs.push_back(VT); 3291 } 3292 3293 // Analyze operands of the call, assigning locations to each operand. 3294 SmallVector<CCValAssign, 16> ArgLocs; 3295 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3296 3297 // Allocate shadow area for Win64 3298 if (IsWin64) 3299 CCInfo.AllocateStack(32, 8); 3300 3301 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3302 3303 // Get a count of how many bytes are to be pushed on the stack. 3304 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3305 3306 // Issue CALLSEQ_START 3307 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3308 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 3309 .addImm(NumBytes).addImm(0).addImm(0); 3310 3311 // Walk the register/memloc assignments, inserting copies/loads. 3312 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3313 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3314 CCValAssign const &VA = ArgLocs[i]; 3315 const Value *ArgVal = OutVals[VA.getValNo()]; 3316 MVT ArgVT = OutVTs[VA.getValNo()]; 3317 3318 if (ArgVT == MVT::x86mmx) 3319 return false; 3320 3321 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3322 3323 // Promote the value if needed. 3324 switch (VA.getLocInfo()) { 3325 case CCValAssign::Full: break; 3326 case CCValAssign::SExt: { 3327 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3328 "Unexpected extend"); 3329 3330 if (ArgVT == MVT::i1) 3331 return false; 3332 3333 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3334 ArgVT, ArgReg); 3335 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3336 ArgVT = VA.getLocVT(); 3337 break; 3338 } 3339 case CCValAssign::ZExt: { 3340 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3341 "Unexpected extend"); 3342 3343 // Handle zero-extension from i1 to i8, which is common. 3344 if (ArgVT == MVT::i1) { 3345 // Set the high bits to zero. 3346 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false); 3347 ArgVT = MVT::i8; 3348 3349 if (ArgReg == 0) 3350 return false; 3351 } 3352 3353 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3354 ArgVT, ArgReg); 3355 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3356 ArgVT = VA.getLocVT(); 3357 break; 3358 } 3359 case CCValAssign::AExt: { 3360 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3361 "Unexpected extend"); 3362 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3363 ArgVT, ArgReg); 3364 if (!Emitted) 3365 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3366 ArgVT, ArgReg); 3367 if (!Emitted) 3368 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3369 ArgVT, ArgReg); 3370 3371 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3372 ArgVT = VA.getLocVT(); 3373 break; 3374 } 3375 case CCValAssign::BCvt: { 3376 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, 3377 /*TODO: Kill=*/false); 3378 assert(ArgReg && "Failed to emit a bitcast!"); 3379 ArgVT = VA.getLocVT(); 3380 break; 3381 } 3382 case CCValAssign::VExt: 3383 // VExt has not been implemented, so this should be impossible to reach 3384 // for now. However, fallback to Selection DAG isel once implemented. 3385 return false; 3386 case CCValAssign::AExtUpper: 3387 case CCValAssign::SExtUpper: 3388 case CCValAssign::ZExtUpper: 3389 case CCValAssign::FPExt: 3390 llvm_unreachable("Unexpected loc info!"); 3391 case CCValAssign::Indirect: 3392 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3393 // support this. 3394 return false; 3395 } 3396 3397 if (VA.isRegLoc()) { 3398 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3399 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3400 OutRegs.push_back(VA.getLocReg()); 3401 } else { 3402 assert(VA.isMemLoc()); 3403 3404 // Don't emit stores for undef values. 3405 if (isa<UndefValue>(ArgVal)) 3406 continue; 3407 3408 unsigned LocMemOffset = VA.getLocMemOffset(); 3409 X86AddressMode AM; 3410 AM.Base.Reg = RegInfo->getStackRegister(); 3411 AM.Disp = LocMemOffset; 3412 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3413 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); 3414 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3415 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3416 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3417 if (Flags.isByVal()) { 3418 X86AddressMode SrcAM; 3419 SrcAM.Base.Reg = ArgReg; 3420 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3421 return false; 3422 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3423 // If this is a really simple value, emit this with the Value* version 3424 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3425 // as it can cause us to reevaluate the argument. 3426 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3427 return false; 3428 } else { 3429 bool ValIsKill = hasTrivialKill(ArgVal); 3430 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) 3431 return false; 3432 } 3433 } 3434 } 3435 3436 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3437 // GOT pointer. 3438 if (Subtarget->isPICStyleGOT()) { 3439 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3440 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3441 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3442 } 3443 3444 if (Is64Bit && IsVarArg && !IsWin64) { 3445 // From AMD64 ABI document: 3446 // For calls that may call functions that use varargs or stdargs 3447 // (prototype-less calls or calls to functions containing ellipsis (...) in 3448 // the declaration) %al is used as hidden argument to specify the number 3449 // of SSE registers used. The contents of %al do not need to match exactly 3450 // the number of registers, but must be an ubound on the number of SSE 3451 // registers used and is in the range 0 - 8 inclusive. 3452 3453 // Count the number of XMM registers allocated. 3454 static const MCPhysReg XMMArgRegs[] = { 3455 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3456 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3457 }; 3458 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3459 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3460 && "SSE registers cannot be used when SSE is disabled"); 3461 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 3462 X86::AL).addImm(NumXMMRegs); 3463 } 3464 3465 // Materialize callee address in a register. FIXME: GV address can be 3466 // handled with a CALLpcrel32 instead. 3467 X86AddressMode CalleeAM; 3468 if (!X86SelectCallAddress(Callee, CalleeAM)) 3469 return false; 3470 3471 unsigned CalleeOp = 0; 3472 const GlobalValue *GV = nullptr; 3473 if (CalleeAM.GV != nullptr) { 3474 GV = CalleeAM.GV; 3475 } else if (CalleeAM.Base.Reg != 0) { 3476 CalleeOp = CalleeAM.Base.Reg; 3477 } else 3478 return false; 3479 3480 // Issue the call. 3481 MachineInstrBuilder MIB; 3482 if (CalleeOp) { 3483 // Register-indirect call. 3484 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3485 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) 3486 .addReg(CalleeOp); 3487 } else { 3488 // Direct call. 3489 assert(GV && "Not a direct call"); 3490 // See if we need any target-specific flags on the GV operand. 3491 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3492 3493 // This will be a direct call, or an indirect call through memory for 3494 // NonLazyBind calls or dllimport calls. 3495 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3496 OpFlags == X86II::MO_GOTPCREL || 3497 OpFlags == X86II::MO_COFFSTUB; 3498 unsigned CallOpc = NeedLoad 3499 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3500 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3501 3502 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); 3503 if (NeedLoad) 3504 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); 3505 if (Symbol) 3506 MIB.addSym(Symbol, OpFlags); 3507 else 3508 MIB.addGlobalAddress(GV, 0, OpFlags); 3509 if (NeedLoad) 3510 MIB.addReg(0); 3511 } 3512 3513 // Add a register mask operand representing the call-preserved registers. 3514 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3515 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3516 3517 // Add an implicit use GOT pointer in EBX. 3518 if (Subtarget->isPICStyleGOT()) 3519 MIB.addReg(X86::EBX, RegState::Implicit); 3520 3521 if (Is64Bit && IsVarArg && !IsWin64) 3522 MIB.addReg(X86::AL, RegState::Implicit); 3523 3524 // Add implicit physical register uses to the call. 3525 for (auto Reg : OutRegs) 3526 MIB.addReg(Reg, RegState::Implicit); 3527 3528 // Issue CALLSEQ_END 3529 unsigned NumBytesForCalleeToPop = 3530 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3531 TM.Options.GuaranteedTailCallOpt) 3532 ? NumBytes // Callee pops everything. 3533 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS); 3534 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3535 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 3536 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3537 3538 // Now handle call return values. 3539 SmallVector<CCValAssign, 16> RVLocs; 3540 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3541 CLI.RetTy->getContext()); 3542 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3543 3544 // Copy all of the result registers out of their specified physreg. 3545 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3546 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3547 CCValAssign &VA = RVLocs[i]; 3548 EVT CopyVT = VA.getValVT(); 3549 unsigned CopyReg = ResultReg + i; 3550 unsigned SrcReg = VA.getLocReg(); 3551 3552 // If this is x86-64, and we disabled SSE, we can't return FP values 3553 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3554 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3555 report_fatal_error("SSE register return with SSE disabled"); 3556 } 3557 3558 // If we prefer to use the value in xmm registers, copy it out as f80 and 3559 // use a truncate to move it from fp stack reg to xmm reg. 3560 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3561 isScalarFPTypeInSSEReg(VA.getValVT())) { 3562 CopyVT = MVT::f80; 3563 CopyReg = createResultReg(&X86::RFP80RegClass); 3564 } 3565 3566 // Copy out the result. 3567 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3568 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3569 InRegs.push_back(VA.getLocReg()); 3570 3571 // Round the f80 to the right size, which also moves it to the appropriate 3572 // xmm register. This is accomplished by storing the f80 value in memory 3573 // and then loading it back. 3574 if (CopyVT != VA.getValVT()) { 3575 EVT ResVT = VA.getValVT(); 3576 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3577 unsigned MemSize = ResVT.getSizeInBits()/8; 3578 int FI = MFI.CreateStackObject(MemSize, MemSize, false); 3579 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3580 TII.get(Opc)), FI) 3581 .addReg(CopyReg); 3582 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3583 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3584 TII.get(Opc), ResultReg + i), FI); 3585 } 3586 } 3587 3588 CLI.ResultReg = ResultReg; 3589 CLI.NumResultRegs = RVLocs.size(); 3590 CLI.Call = MIB; 3591 3592 return true; 3593 } 3594 3595 bool 3596 X86FastISel::fastSelectInstruction(const Instruction *I) { 3597 switch (I->getOpcode()) { 3598 default: break; 3599 case Instruction::Load: 3600 return X86SelectLoad(I); 3601 case Instruction::Store: 3602 return X86SelectStore(I); 3603 case Instruction::Ret: 3604 return X86SelectRet(I); 3605 case Instruction::ICmp: 3606 case Instruction::FCmp: 3607 return X86SelectCmp(I); 3608 case Instruction::ZExt: 3609 return X86SelectZExt(I); 3610 case Instruction::SExt: 3611 return X86SelectSExt(I); 3612 case Instruction::Br: 3613 return X86SelectBranch(I); 3614 case Instruction::LShr: 3615 case Instruction::AShr: 3616 case Instruction::Shl: 3617 return X86SelectShift(I); 3618 case Instruction::SDiv: 3619 case Instruction::UDiv: 3620 case Instruction::SRem: 3621 case Instruction::URem: 3622 return X86SelectDivRem(I); 3623 case Instruction::Select: 3624 return X86SelectSelect(I); 3625 case Instruction::Trunc: 3626 return X86SelectTrunc(I); 3627 case Instruction::FPExt: 3628 return X86SelectFPExt(I); 3629 case Instruction::FPTrunc: 3630 return X86SelectFPTrunc(I); 3631 case Instruction::SIToFP: 3632 return X86SelectSIToFP(I); 3633 case Instruction::UIToFP: 3634 return X86SelectUIToFP(I); 3635 case Instruction::IntToPtr: // Deliberate fall-through. 3636 case Instruction::PtrToInt: { 3637 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3638 EVT DstVT = TLI.getValueType(DL, I->getType()); 3639 if (DstVT.bitsGT(SrcVT)) 3640 return X86SelectZExt(I); 3641 if (DstVT.bitsLT(SrcVT)) 3642 return X86SelectTrunc(I); 3643 unsigned Reg = getRegForValue(I->getOperand(0)); 3644 if (Reg == 0) return false; 3645 updateValueMap(I, Reg); 3646 return true; 3647 } 3648 case Instruction::BitCast: { 3649 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3650 if (!Subtarget->hasSSE2()) 3651 return false; 3652 3653 MVT SrcVT, DstVT; 3654 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3655 !isTypeLegal(I->getType(), DstVT)) 3656 return false; 3657 3658 // Only allow vectors that use xmm/ymm/zmm. 3659 if (!SrcVT.isVector() || !DstVT.isVector() || 3660 SrcVT.getVectorElementType() == MVT::i1 || 3661 DstVT.getVectorElementType() == MVT::i1) 3662 return false; 3663 3664 unsigned Reg = getRegForValue(I->getOperand(0)); 3665 if (Reg == 0) 3666 return false; 3667 3668 // No instruction is needed for conversion. Reuse the register used by 3669 // the fist operand. 3670 updateValueMap(I, Reg); 3671 return true; 3672 } 3673 } 3674 3675 return false; 3676 } 3677 3678 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3679 if (VT > MVT::i64) 3680 return 0; 3681 3682 uint64_t Imm = CI->getZExtValue(); 3683 if (Imm == 0) { 3684 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3685 switch (VT.SimpleTy) { 3686 default: llvm_unreachable("Unexpected value type"); 3687 case MVT::i1: 3688 case MVT::i8: 3689 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, 3690 X86::sub_8bit); 3691 case MVT::i16: 3692 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, 3693 X86::sub_16bit); 3694 case MVT::i32: 3695 return SrcReg; 3696 case MVT::i64: { 3697 unsigned ResultReg = createResultReg(&X86::GR64RegClass); 3698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3699 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3700 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3701 return ResultReg; 3702 } 3703 } 3704 } 3705 3706 unsigned Opc = 0; 3707 switch (VT.SimpleTy) { 3708 default: llvm_unreachable("Unexpected value type"); 3709 case MVT::i1: 3710 VT = MVT::i8; 3711 LLVM_FALLTHROUGH; 3712 case MVT::i8: Opc = X86::MOV8ri; break; 3713 case MVT::i16: Opc = X86::MOV16ri; break; 3714 case MVT::i32: Opc = X86::MOV32ri; break; 3715 case MVT::i64: { 3716 if (isUInt<32>(Imm)) 3717 Opc = X86::MOV32ri64; 3718 else if (isInt<32>(Imm)) 3719 Opc = X86::MOV64ri32; 3720 else 3721 Opc = X86::MOV64ri; 3722 break; 3723 } 3724 } 3725 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3726 } 3727 3728 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3729 if (CFP->isNullValue()) 3730 return fastMaterializeFloatZero(CFP); 3731 3732 // Can't handle alternate code models yet. 3733 CodeModel::Model CM = TM.getCodeModel(); 3734 if (CM != CodeModel::Small && CM != CodeModel::Large) 3735 return 0; 3736 3737 // Get opcode and regclass of the output for the given load instruction. 3738 unsigned Opc = 0; 3739 bool HasAVX = Subtarget->hasAVX(); 3740 bool HasAVX512 = Subtarget->hasAVX512(); 3741 switch (VT.SimpleTy) { 3742 default: return 0; 3743 case MVT::f32: 3744 if (X86ScalarSSEf32) 3745 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 3746 HasAVX ? X86::VMOVSSrm_alt : 3747 X86::MOVSSrm_alt; 3748 else 3749 Opc = X86::LD_Fp32m; 3750 break; 3751 case MVT::f64: 3752 if (X86ScalarSSEf64) 3753 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 3754 HasAVX ? X86::VMOVSDrm_alt : 3755 X86::MOVSDrm_alt; 3756 else 3757 Opc = X86::LD_Fp64m; 3758 break; 3759 case MVT::f80: 3760 // No f80 support yet. 3761 return 0; 3762 } 3763 3764 // MachineConstantPool wants an explicit alignment. 3765 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 3766 if (Align == 0) { 3767 // Alignment of vector types. FIXME! 3768 Align = DL.getTypeAllocSize(CFP->getType()); 3769 } 3770 3771 // x86-32 PIC requires a PIC base register for constant pools. 3772 unsigned PICBase = 0; 3773 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3774 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3775 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3776 else if (OpFlag == X86II::MO_GOTOFF) 3777 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3778 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) 3779 PICBase = X86::RIP; 3780 3781 // Create the load from the constant pool. 3782 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align); 3783 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3784 3785 if (CM == CodeModel::Large) { 3786 unsigned AddrReg = createResultReg(&X86::GR64RegClass); 3787 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3788 AddrReg) 3789 .addConstantPoolIndex(CPI, 0, OpFlag); 3790 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3791 TII.get(Opc), ResultReg); 3792 addDirectMem(MIB, AddrReg); 3793 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3794 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3795 MachineMemOperand::MOLoad, DL.getPointerSize(), Align); 3796 MIB->addMemOperand(*FuncInfo.MF, MMO); 3797 return ResultReg; 3798 } 3799 3800 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3801 TII.get(Opc), ResultReg), 3802 CPI, PICBase, OpFlag); 3803 return ResultReg; 3804 } 3805 3806 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3807 // Can't handle alternate code models yet. 3808 if (TM.getCodeModel() != CodeModel::Small) 3809 return 0; 3810 3811 // Materialize addresses with LEA/MOV instructions. 3812 X86AddressMode AM; 3813 if (X86SelectAddress(GV, AM)) { 3814 // If the expression is just a basereg, then we're done, otherwise we need 3815 // to emit an LEA. 3816 if (AM.BaseType == X86AddressMode::RegBase && 3817 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3818 return AM.Base.Reg; 3819 3820 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3821 if (TM.getRelocationModel() == Reloc::Static && 3822 TLI.getPointerTy(DL) == MVT::i64) { 3823 // The displacement code could be more than 32 bits away so we need to use 3824 // an instruction with a 64 bit immediate 3825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3826 ResultReg) 3827 .addGlobalAddress(GV); 3828 } else { 3829 unsigned Opc = 3830 TLI.getPointerTy(DL) == MVT::i32 3831 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3832 : X86::LEA64r; 3833 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3834 TII.get(Opc), ResultReg), AM); 3835 } 3836 return ResultReg; 3837 } 3838 return 0; 3839 } 3840 3841 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3842 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3843 3844 // Only handle simple types. 3845 if (!CEVT.isSimple()) 3846 return 0; 3847 MVT VT = CEVT.getSimpleVT(); 3848 3849 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3850 return X86MaterializeInt(CI, VT); 3851 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 3852 return X86MaterializeFP(CFP, VT); 3853 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 3854 return X86MaterializeGV(GV, VT); 3855 3856 return 0; 3857 } 3858 3859 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3860 // Fail on dynamic allocas. At this point, getRegForValue has already 3861 // checked its CSE maps, so if we're here trying to handle a dynamic 3862 // alloca, we're not going to succeed. X86SelectAddress has a 3863 // check for dynamic allocas, because it's called directly from 3864 // various places, but targetMaterializeAlloca also needs a check 3865 // in order to avoid recursion between getRegForValue, 3866 // X86SelectAddrss, and targetMaterializeAlloca. 3867 if (!FuncInfo.StaticAllocaMap.count(C)) 3868 return 0; 3869 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3870 3871 X86AddressMode AM; 3872 if (!X86SelectAddress(C, AM)) 3873 return 0; 3874 unsigned Opc = 3875 TLI.getPointerTy(DL) == MVT::i32 3876 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3877 : X86::LEA64r; 3878 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3879 unsigned ResultReg = createResultReg(RC); 3880 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3881 TII.get(Opc), ResultReg), AM); 3882 return ResultReg; 3883 } 3884 3885 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3886 MVT VT; 3887 if (!isTypeLegal(CF->getType(), VT)) 3888 return 0; 3889 3890 // Get opcode and regclass for the given zero. 3891 bool HasAVX512 = Subtarget->hasAVX512(); 3892 unsigned Opc = 0; 3893 switch (VT.SimpleTy) { 3894 default: return 0; 3895 case MVT::f32: 3896 if (X86ScalarSSEf32) 3897 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; 3898 else 3899 Opc = X86::LD_Fp032; 3900 break; 3901 case MVT::f64: 3902 if (X86ScalarSSEf64) 3903 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; 3904 else 3905 Opc = X86::LD_Fp064; 3906 break; 3907 case MVT::f80: 3908 // No f80 support yet. 3909 return 0; 3910 } 3911 3912 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3913 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 3914 return ResultReg; 3915 } 3916 3917 3918 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3919 const LoadInst *LI) { 3920 const Value *Ptr = LI->getPointerOperand(); 3921 X86AddressMode AM; 3922 if (!X86SelectAddress(Ptr, AM)) 3923 return false; 3924 3925 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3926 3927 unsigned Size = DL.getTypeAllocSize(LI->getType()); 3928 unsigned Alignment = LI->getAlignment(); 3929 3930 if (Alignment == 0) // Ensure that codegen never sees alignment 0 3931 Alignment = DL.getABITypeAlignment(LI->getType()); 3932 3933 SmallVector<MachineOperand, 8> AddrOps; 3934 AM.getFullAddress(AddrOps); 3935 3936 MachineInstr *Result = XII.foldMemoryOperandImpl( 3937 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment, 3938 /*AllowCommute=*/true); 3939 if (!Result) 3940 return false; 3941 3942 // The index register could be in the wrong register class. Unfortunately, 3943 // foldMemoryOperandImpl could have commuted the instruction so its not enough 3944 // to just look at OpNo + the offset to the index reg. We actually need to 3945 // scan the instruction to find the index reg and see if its the correct reg 3946 // class. 3947 unsigned OperandNo = 0; 3948 for (MachineInstr::mop_iterator I = Result->operands_begin(), 3949 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 3950 MachineOperand &MO = *I; 3951 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 3952 continue; 3953 // Found the index reg, now try to rewrite it. 3954 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(), 3955 MO.getReg(), OperandNo); 3956 if (IndexReg == MO.getReg()) 3957 continue; 3958 MO.setReg(IndexReg); 3959 } 3960 3961 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 3962 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 3963 MachineBasicBlock::iterator I(MI); 3964 removeDeadCode(I, std::next(I)); 3965 return true; 3966 } 3967 3968 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 3969 const TargetRegisterClass *RC, 3970 unsigned Op0, bool Op0IsKill, 3971 unsigned Op1, bool Op1IsKill, 3972 unsigned Op2, bool Op2IsKill, 3973 unsigned Op3, bool Op3IsKill) { 3974 const MCInstrDesc &II = TII.get(MachineInstOpcode); 3975 3976 unsigned ResultReg = createResultReg(RC); 3977 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 3978 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 3979 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 3980 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 3981 3982 if (II.getNumDefs() >= 1) 3983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 3984 .addReg(Op0, getKillRegState(Op0IsKill)) 3985 .addReg(Op1, getKillRegState(Op1IsKill)) 3986 .addReg(Op2, getKillRegState(Op2IsKill)) 3987 .addReg(Op3, getKillRegState(Op3IsKill)); 3988 else { 3989 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 3990 .addReg(Op0, getKillRegState(Op0IsKill)) 3991 .addReg(Op1, getKillRegState(Op1IsKill)) 3992 .addReg(Op2, getKillRegState(Op2IsKill)) 3993 .addReg(Op3, getKillRegState(Op3IsKill)); 3994 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3995 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 3996 } 3997 return ResultReg; 3998 } 3999 4000 4001 namespace llvm { 4002 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4003 const TargetLibraryInfo *libInfo) { 4004 return new X86FastISel(funcInfo, libInfo); 4005 } 4006 } 4007