xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp (revision e1c4c8dd8d2d10b6104f06856a77bd5b4813a801)
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/IntrinsicsX86.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
44 
45 namespace {
46 
47 class X86FastISel final : public FastISel {
48   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49   /// make the right decision when generating code for different targets.
50   const X86Subtarget *Subtarget;
51 
52 public:
53   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
54                        const TargetLibraryInfo *libInfo)
55       : FastISel(funcInfo, libInfo) {
56     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
57   }
58 
59   bool fastSelectInstruction(const Instruction *I) override;
60 
61   /// The specified machine instr operand is a vreg, and that
62   /// vreg is being provided by the specified load instruction.  If possible,
63   /// try to fold the load as an operand to the instruction, returning true if
64   /// possible.
65   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
66                            const LoadInst *LI) override;
67 
68   bool fastLowerArguments() override;
69   bool fastLowerCall(CallLoweringInfo &CLI) override;
70   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
71 
72 #include "X86GenFastISel.inc"
73 
74 private:
75   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
76                           const DebugLoc &DL);
77 
78   bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
79                        unsigned &ResultReg, unsigned Alignment = 1);
80 
81   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
82                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
83   bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
84                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
85 
86   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
87                          unsigned &ResultReg);
88 
89   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
90   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
91 
92   bool X86SelectLoad(const Instruction *I);
93 
94   bool X86SelectStore(const Instruction *I);
95 
96   bool X86SelectRet(const Instruction *I);
97 
98   bool X86SelectCmp(const Instruction *I);
99 
100   bool X86SelectZExt(const Instruction *I);
101 
102   bool X86SelectSExt(const Instruction *I);
103 
104   bool X86SelectBranch(const Instruction *I);
105 
106   bool X86SelectShift(const Instruction *I);
107 
108   bool X86SelectDivRem(const Instruction *I);
109 
110   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
111 
112   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
113 
114   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
115 
116   bool X86SelectSelect(const Instruction *I);
117 
118   bool X86SelectTrunc(const Instruction *I);
119 
120   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
121                                const TargetRegisterClass *RC);
122 
123   bool X86SelectFPExt(const Instruction *I);
124   bool X86SelectFPTrunc(const Instruction *I);
125   bool X86SelectSIToFP(const Instruction *I);
126   bool X86SelectUIToFP(const Instruction *I);
127   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
128 
129   const X86InstrInfo *getInstrInfo() const {
130     return Subtarget->getInstrInfo();
131   }
132   const X86TargetMachine *getTargetMachine() const {
133     return static_cast<const X86TargetMachine *>(&TM);
134   }
135 
136   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
137 
138   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
139   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
140   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
141   unsigned fastMaterializeConstant(const Constant *C) override;
142 
143   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
144 
145   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
146 
147   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
148   /// computed in an SSE register, not on the X87 floating point stack.
149   bool isScalarFPTypeInSSEReg(EVT VT) const {
150     return (VT == MVT::f64 && Subtarget->hasSSE2()) ||
151            (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16;
152   }
153 
154   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
155 
156   bool IsMemcpySmall(uint64_t Len);
157 
158   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
159                           X86AddressMode SrcAM, uint64_t Len);
160 
161   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
162                             const Value *Cond);
163 
164   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
165                                             X86AddressMode &AM);
166 
167   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
168                              const TargetRegisterClass *RC, unsigned Op0,
169                              unsigned Op1, unsigned Op2, unsigned Op3);
170 };
171 
172 } // end anonymous namespace.
173 
174 static std::pair<unsigned, bool>
175 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
176   unsigned CC;
177   bool NeedSwap = false;
178 
179   // SSE Condition code mapping:
180   //  0 - EQ
181   //  1 - LT
182   //  2 - LE
183   //  3 - UNORD
184   //  4 - NEQ
185   //  5 - NLT
186   //  6 - NLE
187   //  7 - ORD
188   switch (Predicate) {
189   default: llvm_unreachable("Unexpected predicate");
190   case CmpInst::FCMP_OEQ: CC = 0;          break;
191   case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]];
192   case CmpInst::FCMP_OLT: CC = 1;          break;
193   case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]];
194   case CmpInst::FCMP_OLE: CC = 2;          break;
195   case CmpInst::FCMP_UNO: CC = 3;          break;
196   case CmpInst::FCMP_UNE: CC = 4;          break;
197   case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]];
198   case CmpInst::FCMP_UGE: CC = 5;          break;
199   case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]];
200   case CmpInst::FCMP_UGT: CC = 6;          break;
201   case CmpInst::FCMP_ORD: CC = 7;          break;
202   case CmpInst::FCMP_UEQ: CC = 8;          break;
203   case CmpInst::FCMP_ONE: CC = 12;         break;
204   }
205 
206   return std::make_pair(CC, NeedSwap);
207 }
208 
209 /// Adds a complex addressing mode to the given machine instr builder.
210 /// Note, this will constrain the index register.  If its not possible to
211 /// constrain the given index register, then a new one will be created.  The
212 /// IndexReg field of the addressing mode will be updated to match in this case.
213 const MachineInstrBuilder &
214 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
215                             X86AddressMode &AM) {
216   // First constrain the index register.  It needs to be a GR64_NOSP.
217   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
218                                          MIB->getNumOperands() +
219                                          X86::AddrIndexReg);
220   return ::addFullAddress(MIB, AM);
221 }
222 
223 /// Check if it is possible to fold the condition from the XALU intrinsic
224 /// into the user. The condition code will only be updated on success.
225 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
226                                        const Value *Cond) {
227   if (!isa<ExtractValueInst>(Cond))
228     return false;
229 
230   const auto *EV = cast<ExtractValueInst>(Cond);
231   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
232     return false;
233 
234   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
235   MVT RetVT;
236   const Function *Callee = II->getCalledFunction();
237   Type *RetTy =
238     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
239   if (!isTypeLegal(RetTy, RetVT))
240     return false;
241 
242   if (RetVT != MVT::i32 && RetVT != MVT::i64)
243     return false;
244 
245   X86::CondCode TmpCC;
246   switch (II->getIntrinsicID()) {
247   default: return false;
248   case Intrinsic::sadd_with_overflow:
249   case Intrinsic::ssub_with_overflow:
250   case Intrinsic::smul_with_overflow:
251   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
252   case Intrinsic::uadd_with_overflow:
253   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
254   }
255 
256   // Check if both instructions are in the same basic block.
257   if (II->getParent() != I->getParent())
258     return false;
259 
260   // Make sure nothing is in the way
261   BasicBlock::const_iterator Start(I);
262   BasicBlock::const_iterator End(II);
263   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
264     // We only expect extractvalue instructions between the intrinsic and the
265     // instruction to be selected.
266     if (!isa<ExtractValueInst>(Itr))
267       return false;
268 
269     // Check that the extractvalue operand comes from the intrinsic.
270     const auto *EVI = cast<ExtractValueInst>(Itr);
271     if (EVI->getAggregateOperand() != II)
272       return false;
273   }
274 
275   // Make sure no potentially eflags clobbering phi moves can be inserted in
276   // between.
277   auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); };
278   if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
279     return false;
280 
281   // Make sure there are no potentially eflags clobbering constant
282   // materializations in between.
283   if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); }))
284     return false;
285 
286   CC = TmpCC;
287   return true;
288 }
289 
290 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
291   EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
292   if (evt == MVT::Other || !evt.isSimple())
293     // Unhandled type. Halt "fast" selection and bail.
294     return false;
295 
296   VT = evt.getSimpleVT();
297   // For now, require SSE/SSE2 for performing floating-point operations,
298   // since x87 requires additional work.
299   if (VT == MVT::f64 && !Subtarget->hasSSE2())
300     return false;
301   if (VT == MVT::f32 && !Subtarget->hasSSE1())
302     return false;
303   // Similarly, no f80 support yet.
304   if (VT == MVT::f80)
305     return false;
306   // We only handle legal types. For example, on x86-32 the instruction
307   // selector contains all of the 64-bit instructions from x86-64,
308   // under the assumption that i64 won't be used if the target doesn't
309   // support it.
310   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
311 }
312 
313 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
314 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
315 /// Return true and the result register by reference if it is possible.
316 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
317                                   MachineMemOperand *MMO, unsigned &ResultReg,
318                                   unsigned Alignment) {
319   bool HasSSE1 = Subtarget->hasSSE1();
320   bool HasSSE2 = Subtarget->hasSSE2();
321   bool HasSSE41 = Subtarget->hasSSE41();
322   bool HasAVX = Subtarget->hasAVX();
323   bool HasAVX2 = Subtarget->hasAVX2();
324   bool HasAVX512 = Subtarget->hasAVX512();
325   bool HasVLX = Subtarget->hasVLX();
326   bool IsNonTemporal = MMO && MMO->isNonTemporal();
327 
328   // Treat i1 loads the same as i8 loads. Masking will be done when storing.
329   if (VT == MVT::i1)
330     VT = MVT::i8;
331 
332   // Get opcode and regclass of the output for the given load instruction.
333   unsigned Opc = 0;
334   switch (VT.SimpleTy) {
335   default: return false;
336   case MVT::i8:
337     Opc = X86::MOV8rm;
338     break;
339   case MVT::i16:
340     Opc = X86::MOV16rm;
341     break;
342   case MVT::i32:
343     Opc = X86::MOV32rm;
344     break;
345   case MVT::i64:
346     // Must be in x86-64 mode.
347     Opc = X86::MOV64rm;
348     break;
349   case MVT::f32:
350     Opc = HasAVX512 ? X86::VMOVSSZrm_alt
351           : HasAVX  ? X86::VMOVSSrm_alt
352           : HasSSE1 ? X86::MOVSSrm_alt
353                     : X86::LD_Fp32m;
354     break;
355   case MVT::f64:
356     Opc = HasAVX512 ? X86::VMOVSDZrm_alt
357           : HasAVX  ? X86::VMOVSDrm_alt
358           : HasSSE2 ? X86::MOVSDrm_alt
359                     : X86::LD_Fp64m;
360     break;
361   case MVT::f80:
362     // No f80 support yet.
363     return false;
364   case MVT::v4f32:
365     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
366       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
367             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
368     else if (Alignment >= 16)
369       Opc = HasVLX ? X86::VMOVAPSZ128rm :
370             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
371     else
372       Opc = HasVLX ? X86::VMOVUPSZ128rm :
373             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
374     break;
375   case MVT::v2f64:
376     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
377       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
378             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
379     else if (Alignment >= 16)
380       Opc = HasVLX ? X86::VMOVAPDZ128rm :
381             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
382     else
383       Opc = HasVLX ? X86::VMOVUPDZ128rm :
384             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
385     break;
386   case MVT::v4i32:
387   case MVT::v2i64:
388   case MVT::v8i16:
389   case MVT::v16i8:
390     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
391       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
392             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
393     else if (Alignment >= 16)
394       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
395             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
396     else
397       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
398             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
399     break;
400   case MVT::v8f32:
401     assert(HasAVX);
402     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
403       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
404     else if (IsNonTemporal && Alignment >= 16)
405       return false; // Force split for X86::VMOVNTDQArm
406     else if (Alignment >= 32)
407       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
408     else
409       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
410     break;
411   case MVT::v4f64:
412     assert(HasAVX);
413     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
414       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
415     else if (IsNonTemporal && Alignment >= 16)
416       return false; // Force split for X86::VMOVNTDQArm
417     else if (Alignment >= 32)
418       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
419     else
420       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
421     break;
422   case MVT::v8i32:
423   case MVT::v4i64:
424   case MVT::v16i16:
425   case MVT::v32i8:
426     assert(HasAVX);
427     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
428       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
429     else if (IsNonTemporal && Alignment >= 16)
430       return false; // Force split for X86::VMOVNTDQArm
431     else if (Alignment >= 32)
432       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
433     else
434       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
435     break;
436   case MVT::v16f32:
437     assert(HasAVX512);
438     if (IsNonTemporal && Alignment >= 64)
439       Opc = X86::VMOVNTDQAZrm;
440     else
441       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
442     break;
443   case MVT::v8f64:
444     assert(HasAVX512);
445     if (IsNonTemporal && Alignment >= 64)
446       Opc = X86::VMOVNTDQAZrm;
447     else
448       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
449     break;
450   case MVT::v8i64:
451   case MVT::v16i32:
452   case MVT::v32i16:
453   case MVT::v64i8:
454     assert(HasAVX512);
455     // Note: There are a lot more choices based on type with AVX-512, but
456     // there's really no advantage when the load isn't masked.
457     if (IsNonTemporal && Alignment >= 64)
458       Opc = X86::VMOVNTDQAZrm;
459     else
460       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
461     break;
462   }
463 
464   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
465 
466   ResultReg = createResultReg(RC);
467   MachineInstrBuilder MIB =
468     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
469   addFullAddress(MIB, AM);
470   if (MMO)
471     MIB->addMemOperand(*FuncInfo.MF, MMO);
472   return true;
473 }
474 
475 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
476 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
477 /// and a displacement offset, or a GlobalAddress,
478 /// i.e. V. Return true if it is possible.
479 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
480                                    MachineMemOperand *MMO, bool Aligned) {
481   bool HasSSE1 = Subtarget->hasSSE1();
482   bool HasSSE2 = Subtarget->hasSSE2();
483   bool HasSSE4A = Subtarget->hasSSE4A();
484   bool HasAVX = Subtarget->hasAVX();
485   bool HasAVX512 = Subtarget->hasAVX512();
486   bool HasVLX = Subtarget->hasVLX();
487   bool IsNonTemporal = MMO && MMO->isNonTemporal();
488 
489   // Get opcode and regclass of the output for the given store instruction.
490   unsigned Opc = 0;
491   switch (VT.getSimpleVT().SimpleTy) {
492   case MVT::f80: // No f80 support yet.
493   default: return false;
494   case MVT::i1: {
495     // Mask out all but lowest bit.
496     Register AndResult = createResultReg(&X86::GR8RegClass);
497     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
498             TII.get(X86::AND8ri), AndResult)
499       .addReg(ValReg).addImm(1);
500     ValReg = AndResult;
501     [[fallthrough]]; // handle i1 as i8.
502   }
503   case MVT::i8:  Opc = X86::MOV8mr;  break;
504   case MVT::i16: Opc = X86::MOV16mr; break;
505   case MVT::i32:
506     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
507     break;
508   case MVT::i64:
509     // Must be in x86-64 mode.
510     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
511     break;
512   case MVT::f32:
513     if (HasSSE1) {
514       if (IsNonTemporal && HasSSE4A)
515         Opc = X86::MOVNTSS;
516       else
517         Opc = HasAVX512 ? X86::VMOVSSZmr :
518               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
519     } else
520       Opc = X86::ST_Fp32m;
521     break;
522   case MVT::f64:
523     if (HasSSE2) {
524       if (IsNonTemporal && HasSSE4A)
525         Opc = X86::MOVNTSD;
526       else
527         Opc = HasAVX512 ? X86::VMOVSDZmr :
528               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
529     } else
530       Opc = X86::ST_Fp64m;
531     break;
532   case MVT::x86mmx:
533     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
534     break;
535   case MVT::v4f32:
536     if (Aligned) {
537       if (IsNonTemporal)
538         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
539               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
540       else
541         Opc = HasVLX ? X86::VMOVAPSZ128mr :
542               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
543     } else
544       Opc = HasVLX ? X86::VMOVUPSZ128mr :
545             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
546     break;
547   case MVT::v2f64:
548     if (Aligned) {
549       if (IsNonTemporal)
550         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
551               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
552       else
553         Opc = HasVLX ? X86::VMOVAPDZ128mr :
554               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
555     } else
556       Opc = HasVLX ? X86::VMOVUPDZ128mr :
557             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
558     break;
559   case MVT::v4i32:
560   case MVT::v2i64:
561   case MVT::v8i16:
562   case MVT::v16i8:
563     if (Aligned) {
564       if (IsNonTemporal)
565         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
566               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
567       else
568         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
569               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
570     } else
571       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
572             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
573     break;
574   case MVT::v8f32:
575     assert(HasAVX);
576     if (Aligned) {
577       if (IsNonTemporal)
578         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
579       else
580         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
581     } else
582       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
583     break;
584   case MVT::v4f64:
585     assert(HasAVX);
586     if (Aligned) {
587       if (IsNonTemporal)
588         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
589       else
590         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
591     } else
592       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
593     break;
594   case MVT::v8i32:
595   case MVT::v4i64:
596   case MVT::v16i16:
597   case MVT::v32i8:
598     assert(HasAVX);
599     if (Aligned) {
600       if (IsNonTemporal)
601         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
602       else
603         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
604     } else
605       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
606     break;
607   case MVT::v16f32:
608     assert(HasAVX512);
609     if (Aligned)
610       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
611     else
612       Opc = X86::VMOVUPSZmr;
613     break;
614   case MVT::v8f64:
615     assert(HasAVX512);
616     if (Aligned) {
617       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
618     } else
619       Opc = X86::VMOVUPDZmr;
620     break;
621   case MVT::v8i64:
622   case MVT::v16i32:
623   case MVT::v32i16:
624   case MVT::v64i8:
625     assert(HasAVX512);
626     // Note: There are a lot more choices based on type with AVX-512, but
627     // there's really no advantage when the store isn't masked.
628     if (Aligned)
629       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
630     else
631       Opc = X86::VMOVDQU64Zmr;
632     break;
633   }
634 
635   const MCInstrDesc &Desc = TII.get(Opc);
636   // Some of the instructions in the previous switch use FR128 instead
637   // of FR32 for ValReg. Make sure the register we feed the instruction
638   // matches its register class constraints.
639   // Note: This is fine to do a copy from FR32 to FR128, this is the
640   // same registers behind the scene and actually why it did not trigger
641   // any bugs before.
642   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
643   MachineInstrBuilder MIB =
644       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc);
645   addFullAddress(MIB, AM).addReg(ValReg);
646   if (MMO)
647     MIB->addMemOperand(*FuncInfo.MF, MMO);
648 
649   return true;
650 }
651 
652 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
653                                    X86AddressMode &AM,
654                                    MachineMemOperand *MMO, bool Aligned) {
655   // Handle 'null' like i32/i64 0.
656   if (isa<ConstantPointerNull>(Val))
657     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
658 
659   // If this is a store of a simple constant, fold the constant into the store.
660   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
661     unsigned Opc = 0;
662     bool Signed = true;
663     switch (VT.getSimpleVT().SimpleTy) {
664     default: break;
665     case MVT::i1:
666       Signed = false;
667       [[fallthrough]]; // Handle as i8.
668     case MVT::i8:  Opc = X86::MOV8mi;  break;
669     case MVT::i16: Opc = X86::MOV16mi; break;
670     case MVT::i32: Opc = X86::MOV32mi; break;
671     case MVT::i64:
672       // Must be a 32-bit sign extended value.
673       if (isInt<32>(CI->getSExtValue()))
674         Opc = X86::MOV64mi32;
675       break;
676     }
677 
678     if (Opc) {
679       MachineInstrBuilder MIB =
680         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
681       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
682                                             : CI->getZExtValue());
683       if (MMO)
684         MIB->addMemOperand(*FuncInfo.MF, MMO);
685       return true;
686     }
687   }
688 
689   Register ValReg = getRegForValue(Val);
690   if (ValReg == 0)
691     return false;
692 
693   return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
694 }
695 
696 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
697 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
698 /// ISD::SIGN_EXTEND).
699 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
700                                     unsigned Src, EVT SrcVT,
701                                     unsigned &ResultReg) {
702   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
703   if (RR == 0)
704     return false;
705 
706   ResultReg = RR;
707   return true;
708 }
709 
710 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
711   // Handle constant address.
712   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
713     // Can't handle alternate code models yet.
714     if (TM.getCodeModel() != CodeModel::Small &&
715         TM.getCodeModel() != CodeModel::Medium)
716       return false;
717 
718     // Can't handle large objects yet.
719     if (TM.isLargeGlobalValue(GV))
720       return false;
721 
722     // Can't handle TLS yet.
723     if (GV->isThreadLocal())
724       return false;
725 
726     // Can't handle !absolute_symbol references yet.
727     if (GV->isAbsoluteSymbolRef())
728       return false;
729 
730     // RIP-relative addresses can't have additional register operands, so if
731     // we've already folded stuff into the addressing mode, just force the
732     // global value into its own register, which we can use as the basereg.
733     if (!Subtarget->isPICStyleRIPRel() ||
734         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
735       // Okay, we've committed to selecting this global. Set up the address.
736       AM.GV = GV;
737 
738       // Allow the subtarget to classify the global.
739       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
740 
741       // If this reference is relative to the pic base, set it now.
742       if (isGlobalRelativeToPICBase(GVFlags)) {
743         // FIXME: How do we know Base.Reg is free??
744         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
745       }
746 
747       // Unless the ABI requires an extra load, return a direct reference to
748       // the global.
749       if (!isGlobalStubReference(GVFlags)) {
750         if (Subtarget->isPICStyleRIPRel()) {
751           // Use rip-relative addressing if we can.  Above we verified that the
752           // base and index registers are unused.
753           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
754           AM.Base.Reg = X86::RIP;
755         }
756         AM.GVOpFlags = GVFlags;
757         return true;
758       }
759 
760       // Ok, we need to do a load from a stub.  If we've already loaded from
761       // this stub, reuse the loaded pointer, otherwise emit the load now.
762       DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
763       Register LoadReg;
764       if (I != LocalValueMap.end() && I->second) {
765         LoadReg = I->second;
766       } else {
767         // Issue load from stub.
768         unsigned Opc = 0;
769         const TargetRegisterClass *RC = nullptr;
770         X86AddressMode StubAM;
771         StubAM.Base.Reg = AM.Base.Reg;
772         StubAM.GV = GV;
773         StubAM.GVOpFlags = GVFlags;
774 
775         // Prepare for inserting code in the local-value area.
776         SavePoint SaveInsertPt = enterLocalValueArea();
777 
778         if (TLI.getPointerTy(DL) == MVT::i64) {
779           Opc = X86::MOV64rm;
780           RC  = &X86::GR64RegClass;
781         } else {
782           Opc = X86::MOV32rm;
783           RC  = &X86::GR32RegClass;
784         }
785 
786         if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL ||
787             GVFlags == X86II::MO_GOTPCREL_NORELAX)
788           StubAM.Base.Reg = X86::RIP;
789 
790         LoadReg = createResultReg(RC);
791         MachineInstrBuilder LoadMI =
792           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg);
793         addFullAddress(LoadMI, StubAM);
794 
795         // Ok, back to normal mode.
796         leaveLocalValueArea(SaveInsertPt);
797 
798         // Prevent loading GV stub multiple times in same MBB.
799         LocalValueMap[V] = LoadReg;
800       }
801 
802       // Now construct the final address. Note that the Disp, Scale,
803       // and Index values may already be set here.
804       AM.Base.Reg = LoadReg;
805       AM.GV = nullptr;
806       return true;
807     }
808   }
809 
810   // If all else fails, try to materialize the value in a register.
811   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
812     if (AM.Base.Reg == 0) {
813       AM.Base.Reg = getRegForValue(V);
814       return AM.Base.Reg != 0;
815     }
816     if (AM.IndexReg == 0) {
817       assert(AM.Scale == 1 && "Scale with no index!");
818       AM.IndexReg = getRegForValue(V);
819       return AM.IndexReg != 0;
820     }
821   }
822 
823   return false;
824 }
825 
826 /// X86SelectAddress - Attempt to fill in an address from the given value.
827 ///
828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
829   SmallVector<const Value *, 32> GEPs;
830 redo_gep:
831   const User *U = nullptr;
832   unsigned Opcode = Instruction::UserOp1;
833   if (const Instruction *I = dyn_cast<Instruction>(V)) {
834     // Don't walk into other basic blocks; it's possible we haven't
835     // visited them yet, so the instructions may not yet be assigned
836     // virtual registers.
837     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
838         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
839       Opcode = I->getOpcode();
840       U = I;
841     }
842   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
843     Opcode = C->getOpcode();
844     U = C;
845   }
846 
847   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
848     if (Ty->getAddressSpace() > 255)
849       // Fast instruction selection doesn't support the special
850       // address spaces.
851       return false;
852 
853   switch (Opcode) {
854   default: break;
855   case Instruction::BitCast:
856     // Look past bitcasts.
857     return X86SelectAddress(U->getOperand(0), AM);
858 
859   case Instruction::IntToPtr:
860     // Look past no-op inttoptrs.
861     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
862         TLI.getPointerTy(DL))
863       return X86SelectAddress(U->getOperand(0), AM);
864     break;
865 
866   case Instruction::PtrToInt:
867     // Look past no-op ptrtoints.
868     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
869       return X86SelectAddress(U->getOperand(0), AM);
870     break;
871 
872   case Instruction::Alloca: {
873     // Do static allocas.
874     const AllocaInst *A = cast<AllocaInst>(V);
875     DenseMap<const AllocaInst *, int>::iterator SI =
876       FuncInfo.StaticAllocaMap.find(A);
877     if (SI != FuncInfo.StaticAllocaMap.end()) {
878       AM.BaseType = X86AddressMode::FrameIndexBase;
879       AM.Base.FrameIndex = SI->second;
880       return true;
881     }
882     break;
883   }
884 
885   case Instruction::Add: {
886     // Adds of constants are common and easy enough.
887     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
888       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
889       // They have to fit in the 32-bit signed displacement field though.
890       if (isInt<32>(Disp)) {
891         AM.Disp = (uint32_t)Disp;
892         return X86SelectAddress(U->getOperand(0), AM);
893       }
894     }
895     break;
896   }
897 
898   case Instruction::GetElementPtr: {
899     X86AddressMode SavedAM = AM;
900 
901     // Pattern-match simple GEPs.
902     uint64_t Disp = (int32_t)AM.Disp;
903     unsigned IndexReg = AM.IndexReg;
904     unsigned Scale = AM.Scale;
905     gep_type_iterator GTI = gep_type_begin(U);
906     // Iterate through the indices, folding what we can. Constants can be
907     // folded, and one dynamic index can be handled, if the scale is supported.
908     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
909          i != e; ++i, ++GTI) {
910       const Value *Op = *i;
911       if (StructType *STy = GTI.getStructTypeOrNull()) {
912         const StructLayout *SL = DL.getStructLayout(STy);
913         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
914         continue;
915       }
916 
917       // A array/variable index is always of the form i*S where S is the
918       // constant scale size.  See if we can push the scale into immediates.
919       uint64_t S = GTI.getSequentialElementStride(DL);
920       for (;;) {
921         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
922           // Constant-offset addressing.
923           Disp += CI->getSExtValue() * S;
924           break;
925         }
926         if (canFoldAddIntoGEP(U, Op)) {
927           // A compatible add with a constant operand. Fold the constant.
928           ConstantInt *CI =
929             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
930           Disp += CI->getSExtValue() * S;
931           // Iterate on the other operand.
932           Op = cast<AddOperator>(Op)->getOperand(0);
933           continue;
934         }
935         if (IndexReg == 0 &&
936             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
937             (S == 1 || S == 2 || S == 4 || S == 8)) {
938           // Scaled-index addressing.
939           Scale = S;
940           IndexReg = getRegForGEPIndex(Op);
941           if (IndexReg == 0)
942             return false;
943           break;
944         }
945         // Unsupported.
946         goto unsupported_gep;
947       }
948     }
949 
950     // Check for displacement overflow.
951     if (!isInt<32>(Disp))
952       break;
953 
954     AM.IndexReg = IndexReg;
955     AM.Scale = Scale;
956     AM.Disp = (uint32_t)Disp;
957     GEPs.push_back(V);
958 
959     if (const GetElementPtrInst *GEP =
960           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
961       // Ok, the GEP indices were covered by constant-offset and scaled-index
962       // addressing. Update the address state and move on to examining the base.
963       V = GEP;
964       goto redo_gep;
965     } else if (X86SelectAddress(U->getOperand(0), AM)) {
966       return true;
967     }
968 
969     // If we couldn't merge the gep value into this addr mode, revert back to
970     // our address and just match the value instead of completely failing.
971     AM = SavedAM;
972 
973     for (const Value *I : reverse(GEPs))
974       if (handleConstantAddresses(I, AM))
975         return true;
976 
977     return false;
978   unsupported_gep:
979     // Ok, the GEP indices weren't all covered.
980     break;
981   }
982   }
983 
984   return handleConstantAddresses(V, AM);
985 }
986 
987 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
988 ///
989 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
990   const User *U = nullptr;
991   unsigned Opcode = Instruction::UserOp1;
992   const Instruction *I = dyn_cast<Instruction>(V);
993   // Record if the value is defined in the same basic block.
994   //
995   // This information is crucial to know whether or not folding an
996   // operand is valid.
997   // Indeed, FastISel generates or reuses a virtual register for all
998   // operands of all instructions it selects. Obviously, the definition and
999   // its uses must use the same virtual register otherwise the produced
1000   // code is incorrect.
1001   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1002   // registers for values that are alive across basic blocks. This ensures
1003   // that the values are consistently set between across basic block, even
1004   // if different instruction selection mechanisms are used (e.g., a mix of
1005   // SDISel and FastISel).
1006   // For values local to a basic block, the instruction selection process
1007   // generates these virtual registers with whatever method is appropriate
1008   // for its needs. In particular, FastISel and SDISel do not share the way
1009   // local virtual registers are set.
1010   // Therefore, this is impossible (or at least unsafe) to share values
1011   // between basic blocks unless they use the same instruction selection
1012   // method, which is not guarantee for X86.
1013   // Moreover, things like hasOneUse could not be used accurately, if we
1014   // allow to reference values across basic blocks whereas they are not
1015   // alive across basic blocks initially.
1016   bool InMBB = true;
1017   if (I) {
1018     Opcode = I->getOpcode();
1019     U = I;
1020     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1021   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1022     Opcode = C->getOpcode();
1023     U = C;
1024   }
1025 
1026   switch (Opcode) {
1027   default: break;
1028   case Instruction::BitCast:
1029     // Look past bitcasts if its operand is in the same BB.
1030     if (InMBB)
1031       return X86SelectCallAddress(U->getOperand(0), AM);
1032     break;
1033 
1034   case Instruction::IntToPtr:
1035     // Look past no-op inttoptrs if its operand is in the same BB.
1036     if (InMBB &&
1037         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1038             TLI.getPointerTy(DL))
1039       return X86SelectCallAddress(U->getOperand(0), AM);
1040     break;
1041 
1042   case Instruction::PtrToInt:
1043     // Look past no-op ptrtoints if its operand is in the same BB.
1044     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1045       return X86SelectCallAddress(U->getOperand(0), AM);
1046     break;
1047   }
1048 
1049   // Handle constant address.
1050   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1051     // Can't handle alternate code models yet.
1052     if (TM.getCodeModel() != CodeModel::Small &&
1053         TM.getCodeModel() != CodeModel::Medium)
1054       return false;
1055 
1056     // RIP-relative addresses can't have additional register operands.
1057     if (Subtarget->isPICStyleRIPRel() &&
1058         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1059       return false;
1060 
1061     // Can't handle TLS.
1062     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1063       if (GVar->isThreadLocal())
1064         return false;
1065 
1066     // Okay, we've committed to selecting this global. Set up the basic address.
1067     AM.GV = GV;
1068 
1069     // Return a direct reference to the global. Fastisel can handle calls to
1070     // functions that require loads, such as dllimport and nonlazybind
1071     // functions.
1072     if (Subtarget->isPICStyleRIPRel()) {
1073       // Use rip-relative addressing if we can.  Above we verified that the
1074       // base and index registers are unused.
1075       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1076       AM.Base.Reg = X86::RIP;
1077     } else {
1078       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1079     }
1080 
1081     return true;
1082   }
1083 
1084   // If all else fails, try to materialize the value in a register.
1085   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1086     auto GetCallRegForValue = [this](const Value *V) {
1087       Register Reg = getRegForValue(V);
1088 
1089       // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1090       if (Reg && Subtarget->isTarget64BitILP32()) {
1091         Register CopyReg = createResultReg(&X86::GR32RegClass);
1092         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr),
1093                 CopyReg)
1094             .addReg(Reg);
1095 
1096         Register ExtReg = createResultReg(&X86::GR64RegClass);
1097         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1098                 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1099             .addImm(0)
1100             .addReg(CopyReg)
1101             .addImm(X86::sub_32bit);
1102         Reg = ExtReg;
1103       }
1104 
1105       return Reg;
1106     };
1107 
1108     if (AM.Base.Reg == 0) {
1109       AM.Base.Reg = GetCallRegForValue(V);
1110       return AM.Base.Reg != 0;
1111     }
1112     if (AM.IndexReg == 0) {
1113       assert(AM.Scale == 1 && "Scale with no index!");
1114       AM.IndexReg = GetCallRegForValue(V);
1115       return AM.IndexReg != 0;
1116     }
1117   }
1118 
1119   return false;
1120 }
1121 
1122 
1123 /// X86SelectStore - Select and emit code to implement store instructions.
1124 bool X86FastISel::X86SelectStore(const Instruction *I) {
1125   // Atomic stores need special handling.
1126   const StoreInst *S = cast<StoreInst>(I);
1127 
1128   if (S->isAtomic())
1129     return false;
1130 
1131   const Value *PtrV = I->getOperand(1);
1132   if (TLI.supportSwiftError()) {
1133     // Swifterror values can come from either a function parameter with
1134     // swifterror attribute or an alloca with swifterror attribute.
1135     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1136       if (Arg->hasSwiftErrorAttr())
1137         return false;
1138     }
1139 
1140     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1141       if (Alloca->isSwiftError())
1142         return false;
1143     }
1144   }
1145 
1146   const Value *Val = S->getValueOperand();
1147   const Value *Ptr = S->getPointerOperand();
1148 
1149   MVT VT;
1150   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1151     return false;
1152 
1153   Align Alignment = S->getAlign();
1154   Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1155   bool Aligned = Alignment >= ABIAlignment;
1156 
1157   X86AddressMode AM;
1158   if (!X86SelectAddress(Ptr, AM))
1159     return false;
1160 
1161   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1162 }
1163 
1164 /// X86SelectRet - Select and emit code to implement ret instructions.
1165 bool X86FastISel::X86SelectRet(const Instruction *I) {
1166   const ReturnInst *Ret = cast<ReturnInst>(I);
1167   const Function &F = *I->getParent()->getParent();
1168   const X86MachineFunctionInfo *X86MFInfo =
1169       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1170 
1171   if (!FuncInfo.CanLowerReturn)
1172     return false;
1173 
1174   if (TLI.supportSwiftError() &&
1175       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1176     return false;
1177 
1178   if (TLI.supportSplitCSR(FuncInfo.MF))
1179     return false;
1180 
1181   CallingConv::ID CC = F.getCallingConv();
1182   if (CC != CallingConv::C &&
1183       CC != CallingConv::Fast &&
1184       CC != CallingConv::Tail &&
1185       CC != CallingConv::SwiftTail &&
1186       CC != CallingConv::X86_FastCall &&
1187       CC != CallingConv::X86_StdCall &&
1188       CC != CallingConv::X86_ThisCall &&
1189       CC != CallingConv::X86_64_SysV &&
1190       CC != CallingConv::Win64)
1191     return false;
1192 
1193   // Don't handle popping bytes if they don't fit the ret's immediate.
1194   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1195     return false;
1196 
1197   // fastcc with -tailcallopt is intended to provide a guaranteed
1198   // tail call optimization. Fastisel doesn't know how to do that.
1199   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1200       CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
1201     return false;
1202 
1203   // Let SDISel handle vararg functions.
1204   if (F.isVarArg())
1205     return false;
1206 
1207   // Build a list of return value registers.
1208   SmallVector<unsigned, 4> RetRegs;
1209 
1210   if (Ret->getNumOperands() > 0) {
1211     SmallVector<ISD::OutputArg, 4> Outs;
1212     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1213 
1214     // Analyze operands of the call, assigning locations to each operand.
1215     SmallVector<CCValAssign, 16> ValLocs;
1216     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1217     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1218 
1219     const Value *RV = Ret->getOperand(0);
1220     Register Reg = getRegForValue(RV);
1221     if (Reg == 0)
1222       return false;
1223 
1224     // Only handle a single return value for now.
1225     if (ValLocs.size() != 1)
1226       return false;
1227 
1228     CCValAssign &VA = ValLocs[0];
1229 
1230     // Don't bother handling odd stuff for now.
1231     if (VA.getLocInfo() != CCValAssign::Full)
1232       return false;
1233     // Only handle register returns for now.
1234     if (!VA.isRegLoc())
1235       return false;
1236 
1237     // The calling-convention tables for x87 returns don't tell
1238     // the whole story.
1239     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1240       return false;
1241 
1242     unsigned SrcReg = Reg + VA.getValNo();
1243     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1244     EVT DstVT = VA.getValVT();
1245     // Special handling for extended integers.
1246     if (SrcVT != DstVT) {
1247       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1248         return false;
1249 
1250       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1251         return false;
1252 
1253       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1254 
1255       if (SrcVT == MVT::i1) {
1256         if (Outs[0].Flags.isSExt())
1257           return false;
1258         // TODO
1259         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
1260         SrcVT = MVT::i8;
1261       }
1262       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1263                                              ISD::SIGN_EXTEND;
1264       // TODO
1265       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
1266     }
1267 
1268     // Make the copy.
1269     Register DstReg = VA.getLocReg();
1270     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1271     // Avoid a cross-class copy. This is very unlikely.
1272     if (!SrcRC->contains(DstReg))
1273       return false;
1274     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1275             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1276 
1277     // Add register to return instruction.
1278     RetRegs.push_back(VA.getLocReg());
1279   }
1280 
1281   // Swift calling convention does not require we copy the sret argument
1282   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1283 
1284   // All x86 ABIs require that for returning structs by value we copy
1285   // the sret argument into %rax/%eax (depending on ABI) for the return.
1286   // We saved the argument into a virtual register in the entry block,
1287   // so now we copy the value out and into %rax/%eax.
1288   if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
1289       CC != CallingConv::SwiftTail) {
1290     Register Reg = X86MFInfo->getSRetReturnReg();
1291     assert(Reg &&
1292            "SRetReturnReg should have been set in LowerFormalArguments()!");
1293     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1294     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1295             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1296     RetRegs.push_back(RetReg);
1297   }
1298 
1299   // Now emit the RET.
1300   MachineInstrBuilder MIB;
1301   if (X86MFInfo->getBytesToPopOnReturn()) {
1302     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1303                   TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32))
1304               .addImm(X86MFInfo->getBytesToPopOnReturn());
1305   } else {
1306     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1307                   TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32));
1308   }
1309   for (unsigned Reg : RetRegs)
1310     MIB.addReg(Reg, RegState::Implicit);
1311   return true;
1312 }
1313 
1314 /// X86SelectLoad - Select and emit code to implement load instructions.
1315 ///
1316 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1317   const LoadInst *LI = cast<LoadInst>(I);
1318 
1319   // Atomic loads need special handling.
1320   if (LI->isAtomic())
1321     return false;
1322 
1323   const Value *SV = I->getOperand(0);
1324   if (TLI.supportSwiftError()) {
1325     // Swifterror values can come from either a function parameter with
1326     // swifterror attribute or an alloca with swifterror attribute.
1327     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1328       if (Arg->hasSwiftErrorAttr())
1329         return false;
1330     }
1331 
1332     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1333       if (Alloca->isSwiftError())
1334         return false;
1335     }
1336   }
1337 
1338   MVT VT;
1339   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1340     return false;
1341 
1342   const Value *Ptr = LI->getPointerOperand();
1343 
1344   X86AddressMode AM;
1345   if (!X86SelectAddress(Ptr, AM))
1346     return false;
1347 
1348   unsigned ResultReg = 0;
1349   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1350                        LI->getAlign().value()))
1351     return false;
1352 
1353   updateValueMap(I, ResultReg);
1354   return true;
1355 }
1356 
1357 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1358   bool HasAVX512 = Subtarget->hasAVX512();
1359   bool HasAVX = Subtarget->hasAVX();
1360   bool HasSSE1 = Subtarget->hasSSE1();
1361   bool HasSSE2 = Subtarget->hasSSE2();
1362 
1363   switch (VT.getSimpleVT().SimpleTy) {
1364   default:       return 0;
1365   case MVT::i8:  return X86::CMP8rr;
1366   case MVT::i16: return X86::CMP16rr;
1367   case MVT::i32: return X86::CMP32rr;
1368   case MVT::i64: return X86::CMP64rr;
1369   case MVT::f32:
1370     return HasAVX512 ? X86::VUCOMISSZrr
1371            : HasAVX  ? X86::VUCOMISSrr
1372            : HasSSE1 ? X86::UCOMISSrr
1373                      : 0;
1374   case MVT::f64:
1375     return HasAVX512 ? X86::VUCOMISDZrr
1376            : HasAVX  ? X86::VUCOMISDrr
1377            : HasSSE2 ? X86::UCOMISDrr
1378                      : 0;
1379   }
1380 }
1381 
1382 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1383 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1384 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1385   switch (VT.getSimpleVT().SimpleTy) {
1386   // Otherwise, we can't fold the immediate into this comparison.
1387   default:
1388     return 0;
1389   case MVT::i8:
1390     return X86::CMP8ri;
1391   case MVT::i16:
1392     return X86::CMP16ri;
1393   case MVT::i32:
1394     return X86::CMP32ri;
1395   case MVT::i64:
1396     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1397     // field.
1398     return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0;
1399   }
1400 }
1401 
1402 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1403                                      const DebugLoc &CurMIMD) {
1404   Register Op0Reg = getRegForValue(Op0);
1405   if (Op0Reg == 0) return false;
1406 
1407   // Handle 'null' like i32/i64 0.
1408   if (isa<ConstantPointerNull>(Op1))
1409     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1410 
1411   // We have two options: compare with register or immediate.  If the RHS of
1412   // the compare is an immediate that we can fold into this compare, use
1413   // CMPri, otherwise use CMPrr.
1414   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1415     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1416       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc))
1417         .addReg(Op0Reg)
1418         .addImm(Op1C->getSExtValue());
1419       return true;
1420     }
1421   }
1422 
1423   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1424   if (CompareOpc == 0) return false;
1425 
1426   Register Op1Reg = getRegForValue(Op1);
1427   if (Op1Reg == 0) return false;
1428   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc))
1429     .addReg(Op0Reg)
1430     .addReg(Op1Reg);
1431 
1432   return true;
1433 }
1434 
1435 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1436   const CmpInst *CI = cast<CmpInst>(I);
1437 
1438   MVT VT;
1439   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1440     return false;
1441 
1442   // Below code only works for scalars.
1443   if (VT.isVector())
1444     return false;
1445 
1446   // Try to optimize or fold the cmp.
1447   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1448   unsigned ResultReg = 0;
1449   switch (Predicate) {
1450   default: break;
1451   case CmpInst::FCMP_FALSE: {
1452     ResultReg = createResultReg(&X86::GR32RegClass);
1453     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0),
1454             ResultReg);
1455     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
1456     if (!ResultReg)
1457       return false;
1458     break;
1459   }
1460   case CmpInst::FCMP_TRUE: {
1461     ResultReg = createResultReg(&X86::GR8RegClass);
1462     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
1463             ResultReg).addImm(1);
1464     break;
1465   }
1466   }
1467 
1468   if (ResultReg) {
1469     updateValueMap(I, ResultReg);
1470     return true;
1471   }
1472 
1473   const Value *LHS = CI->getOperand(0);
1474   const Value *RHS = CI->getOperand(1);
1475 
1476   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1477   // We don't have to materialize a zero constant for this case and can just use
1478   // %x again on the RHS.
1479   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1480     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1481     if (RHSC && RHSC->isNullValue())
1482       RHS = LHS;
1483   }
1484 
1485   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1486   static const uint16_t SETFOpcTable[2][3] = {
1487     { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1488     { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1489   };
1490   const uint16_t *SETFOpc = nullptr;
1491   switch (Predicate) {
1492   default: break;
1493   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1494   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1495   }
1496 
1497   ResultReg = createResultReg(&X86::GR8RegClass);
1498   if (SETFOpc) {
1499     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1500       return false;
1501 
1502     Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1503     Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1504     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1505             FlagReg1).addImm(SETFOpc[0]);
1506     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1507             FlagReg2).addImm(SETFOpc[1]);
1508     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]),
1509             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1510     updateValueMap(I, ResultReg);
1511     return true;
1512   }
1513 
1514   X86::CondCode CC;
1515   bool SwapArgs;
1516   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1517   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1518 
1519   if (SwapArgs)
1520     std::swap(LHS, RHS);
1521 
1522   // Emit a compare of LHS/RHS.
1523   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1524     return false;
1525 
1526   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1527           ResultReg).addImm(CC);
1528   updateValueMap(I, ResultReg);
1529   return true;
1530 }
1531 
1532 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1533   EVT DstVT = TLI.getValueType(DL, I->getType());
1534   if (!TLI.isTypeLegal(DstVT))
1535     return false;
1536 
1537   Register ResultReg = getRegForValue(I->getOperand(0));
1538   if (ResultReg == 0)
1539     return false;
1540 
1541   // Handle zero-extension from i1 to i8, which is common.
1542   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1543   if (SrcVT == MVT::i1) {
1544     // Set the high bits to zero.
1545     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1546     SrcVT = MVT::i8;
1547 
1548     if (ResultReg == 0)
1549       return false;
1550   }
1551 
1552   if (DstVT == MVT::i64) {
1553     // Handle extension to 64-bits via sub-register shenanigans.
1554     unsigned MovInst;
1555 
1556     switch (SrcVT.SimpleTy) {
1557     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1558     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1559     case MVT::i32: MovInst = X86::MOV32rr;     break;
1560     default: llvm_unreachable("Unexpected zext to i64 source type");
1561     }
1562 
1563     Register Result32 = createResultReg(&X86::GR32RegClass);
1564     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32)
1565       .addReg(ResultReg);
1566 
1567     ResultReg = createResultReg(&X86::GR64RegClass);
1568     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG),
1569             ResultReg)
1570       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1571   } else if (DstVT == MVT::i16) {
1572     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1573     // extend to 32-bits and then extract down to 16-bits.
1574     Register Result32 = createResultReg(&X86::GR32RegClass);
1575     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8),
1576             Result32).addReg(ResultReg);
1577 
1578     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1579   } else if (DstVT != MVT::i8) {
1580     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1581                            ResultReg);
1582     if (ResultReg == 0)
1583       return false;
1584   }
1585 
1586   updateValueMap(I, ResultReg);
1587   return true;
1588 }
1589 
1590 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1591   EVT DstVT = TLI.getValueType(DL, I->getType());
1592   if (!TLI.isTypeLegal(DstVT))
1593     return false;
1594 
1595   Register ResultReg = getRegForValue(I->getOperand(0));
1596   if (ResultReg == 0)
1597     return false;
1598 
1599   // Handle sign-extension from i1 to i8.
1600   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1601   if (SrcVT == MVT::i1) {
1602     // Set the high bits to zero.
1603     Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1604     if (ZExtReg == 0)
1605       return false;
1606 
1607     // Negate the result to make an 8-bit sign extended value.
1608     ResultReg = createResultReg(&X86::GR8RegClass);
1609     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r),
1610             ResultReg).addReg(ZExtReg);
1611 
1612     SrcVT = MVT::i8;
1613   }
1614 
1615   if (DstVT == MVT::i16) {
1616     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1617     // extend to 32-bits and then extract down to 16-bits.
1618     Register Result32 = createResultReg(&X86::GR32RegClass);
1619     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8),
1620             Result32).addReg(ResultReg);
1621 
1622     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1623   } else if (DstVT != MVT::i8) {
1624     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1625                            ResultReg);
1626     if (ResultReg == 0)
1627       return false;
1628   }
1629 
1630   updateValueMap(I, ResultReg);
1631   return true;
1632 }
1633 
1634 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1635   // Unconditional branches are selected by tablegen-generated code.
1636   // Handle a conditional branch.
1637   const BranchInst *BI = cast<BranchInst>(I);
1638   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1639   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1640 
1641   // Fold the common case of a conditional branch with a comparison
1642   // in the same block (values defined on other blocks may not have
1643   // initialized registers).
1644   X86::CondCode CC;
1645   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1646     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1647       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1648 
1649       // Try to optimize or fold the cmp.
1650       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1651       switch (Predicate) {
1652       default: break;
1653       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true;
1654       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, MIMD.getDL()); return true;
1655       }
1656 
1657       const Value *CmpLHS = CI->getOperand(0);
1658       const Value *CmpRHS = CI->getOperand(1);
1659 
1660       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1661       // 0.0.
1662       // We don't have to materialize a zero constant for this case and can just
1663       // use %x again on the RHS.
1664       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1665         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1666         if (CmpRHSC && CmpRHSC->isNullValue())
1667           CmpRHS = CmpLHS;
1668       }
1669 
1670       // Try to take advantage of fallthrough opportunities.
1671       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1672         std::swap(TrueMBB, FalseMBB);
1673         Predicate = CmpInst::getInversePredicate(Predicate);
1674       }
1675 
1676       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1677       // code check. Instead two branch instructions are required to check all
1678       // the flags. First we change the predicate to a supported condition code,
1679       // which will be the first branch. Later one we will emit the second
1680       // branch.
1681       bool NeedExtraBranch = false;
1682       switch (Predicate) {
1683       default: break;
1684       case CmpInst::FCMP_OEQ:
1685         std::swap(TrueMBB, FalseMBB);
1686         [[fallthrough]];
1687       case CmpInst::FCMP_UNE:
1688         NeedExtraBranch = true;
1689         Predicate = CmpInst::FCMP_ONE;
1690         break;
1691       }
1692 
1693       bool SwapArgs;
1694       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1695       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1696 
1697       if (SwapArgs)
1698         std::swap(CmpLHS, CmpRHS);
1699 
1700       // Emit a compare of the LHS and RHS, setting the flags.
1701       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1702         return false;
1703 
1704       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1705         .addMBB(TrueMBB).addImm(CC);
1706 
1707       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1708       // to UNE above).
1709       if (NeedExtraBranch) {
1710         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1711           .addMBB(TrueMBB).addImm(X86::COND_P);
1712       }
1713 
1714       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1715       return true;
1716     }
1717   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1718     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1719     // typically happen for _Bool and C++ bools.
1720     MVT SourceVT;
1721     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1722         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1723       unsigned TestOpc = 0;
1724       switch (SourceVT.SimpleTy) {
1725       default: break;
1726       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1727       case MVT::i16: TestOpc = X86::TEST16ri; break;
1728       case MVT::i32: TestOpc = X86::TEST32ri; break;
1729       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1730       }
1731       if (TestOpc) {
1732         Register OpReg = getRegForValue(TI->getOperand(0));
1733         if (OpReg == 0) return false;
1734 
1735         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc))
1736           .addReg(OpReg).addImm(1);
1737 
1738         unsigned JmpCond = X86::COND_NE;
1739         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1740           std::swap(TrueMBB, FalseMBB);
1741           JmpCond = X86::COND_E;
1742         }
1743 
1744         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1745           .addMBB(TrueMBB).addImm(JmpCond);
1746 
1747         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1748         return true;
1749       }
1750     }
1751   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1752     // Fake request the condition, otherwise the intrinsic might be completely
1753     // optimized away.
1754     Register TmpReg = getRegForValue(BI->getCondition());
1755     if (TmpReg == 0)
1756       return false;
1757 
1758     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1759       .addMBB(TrueMBB).addImm(CC);
1760     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1761     return true;
1762   }
1763 
1764   // Otherwise do a clumsy setcc and re-test it.
1765   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1766   // in an explicit cast, so make sure to handle that correctly.
1767   Register OpReg = getRegForValue(BI->getCondition());
1768   if (OpReg == 0) return false;
1769 
1770   // In case OpReg is a K register, COPY to a GPR
1771   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1772     unsigned KOpReg = OpReg;
1773     OpReg = createResultReg(&X86::GR32RegClass);
1774     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1775             TII.get(TargetOpcode::COPY), OpReg)
1776         .addReg(KOpReg);
1777     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
1778   }
1779   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
1780       .addReg(OpReg)
1781       .addImm(1);
1782   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1783     .addMBB(TrueMBB).addImm(X86::COND_NE);
1784   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1785   return true;
1786 }
1787 
1788 bool X86FastISel::X86SelectShift(const Instruction *I) {
1789   unsigned CReg = 0, OpReg = 0;
1790   const TargetRegisterClass *RC = nullptr;
1791   if (I->getType()->isIntegerTy(8)) {
1792     CReg = X86::CL;
1793     RC = &X86::GR8RegClass;
1794     switch (I->getOpcode()) {
1795     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1796     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1797     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1798     default: return false;
1799     }
1800   } else if (I->getType()->isIntegerTy(16)) {
1801     CReg = X86::CX;
1802     RC = &X86::GR16RegClass;
1803     switch (I->getOpcode()) {
1804     default: llvm_unreachable("Unexpected shift opcode");
1805     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1806     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1807     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1808     }
1809   } else if (I->getType()->isIntegerTy(32)) {
1810     CReg = X86::ECX;
1811     RC = &X86::GR32RegClass;
1812     switch (I->getOpcode()) {
1813     default: llvm_unreachable("Unexpected shift opcode");
1814     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1815     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1816     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1817     }
1818   } else if (I->getType()->isIntegerTy(64)) {
1819     CReg = X86::RCX;
1820     RC = &X86::GR64RegClass;
1821     switch (I->getOpcode()) {
1822     default: llvm_unreachable("Unexpected shift opcode");
1823     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1824     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1825     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1826     }
1827   } else {
1828     return false;
1829   }
1830 
1831   MVT VT;
1832   if (!isTypeLegal(I->getType(), VT))
1833     return false;
1834 
1835   Register Op0Reg = getRegForValue(I->getOperand(0));
1836   if (Op0Reg == 0) return false;
1837 
1838   Register Op1Reg = getRegForValue(I->getOperand(1));
1839   if (Op1Reg == 0) return false;
1840   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1841           CReg).addReg(Op1Reg);
1842 
1843   // The shift instruction uses X86::CL. If we defined a super-register
1844   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1845   if (CReg != X86::CL)
1846     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1847             TII.get(TargetOpcode::KILL), X86::CL)
1848       .addReg(CReg, RegState::Kill);
1849 
1850   Register ResultReg = createResultReg(RC);
1851   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg)
1852     .addReg(Op0Reg);
1853   updateValueMap(I, ResultReg);
1854   return true;
1855 }
1856 
1857 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1858   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1859   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1860   const static bool S = true;  // IsSigned
1861   const static bool U = false; // !IsSigned
1862   const static unsigned Copy = TargetOpcode::COPY;
1863   // For the X86 DIV/IDIV instruction, in most cases the dividend
1864   // (numerator) must be in a specific register pair highreg:lowreg,
1865   // producing the quotient in lowreg and the remainder in highreg.
1866   // For most data types, to set up the instruction, the dividend is
1867   // copied into lowreg, and lowreg is sign-extended or zero-extended
1868   // into highreg.  The exception is i8, where the dividend is defined
1869   // as a single register rather than a register pair, and we
1870   // therefore directly sign-extend or zero-extend the dividend into
1871   // lowreg, instead of copying, and ignore the highreg.
1872   const static struct DivRemEntry {
1873     // The following portion depends only on the data type.
1874     const TargetRegisterClass *RC;
1875     unsigned LowInReg;  // low part of the register pair
1876     unsigned HighInReg; // high part of the register pair
1877     // The following portion depends on both the data type and the operation.
1878     struct DivRemResult {
1879     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1880     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1881                               // highreg, or copying a zero into highreg.
1882     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1883                               // zero/sign-extending into lowreg for i8.
1884     unsigned DivRemResultReg; // Register containing the desired result.
1885     bool IsOpSigned;          // Whether to use signed or unsigned form.
1886     } ResultTable[NumOps];
1887   } OpTable[NumTypes] = {
1888     { &X86::GR8RegClass,  X86::AX,  0, {
1889         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1890         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1891         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1892         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1893       }
1894     }, // i8
1895     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1896         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1897         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1898         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1899         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1900       }
1901     }, // i16
1902     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1903         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1904         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1905         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1906         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1907       }
1908     }, // i32
1909     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1910         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1911         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1912         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1913         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1914       }
1915     }, // i64
1916   };
1917 
1918   MVT VT;
1919   if (!isTypeLegal(I->getType(), VT))
1920     return false;
1921 
1922   unsigned TypeIndex, OpIndex;
1923   switch (VT.SimpleTy) {
1924   default: return false;
1925   case MVT::i8:  TypeIndex = 0; break;
1926   case MVT::i16: TypeIndex = 1; break;
1927   case MVT::i32: TypeIndex = 2; break;
1928   case MVT::i64: TypeIndex = 3;
1929     if (!Subtarget->is64Bit())
1930       return false;
1931     break;
1932   }
1933 
1934   switch (I->getOpcode()) {
1935   default: llvm_unreachable("Unexpected div/rem opcode");
1936   case Instruction::SDiv: OpIndex = 0; break;
1937   case Instruction::SRem: OpIndex = 1; break;
1938   case Instruction::UDiv: OpIndex = 2; break;
1939   case Instruction::URem: OpIndex = 3; break;
1940   }
1941 
1942   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1943   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1944   Register Op0Reg = getRegForValue(I->getOperand(0));
1945   if (Op0Reg == 0)
1946     return false;
1947   Register Op1Reg = getRegForValue(I->getOperand(1));
1948   if (Op1Reg == 0)
1949     return false;
1950 
1951   // Move op0 into low-order input register.
1952   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1953           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1954   // Zero-extend or sign-extend into high-order input register.
1955   if (OpEntry.OpSignExtend) {
1956     if (OpEntry.IsOpSigned)
1957       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1958               TII.get(OpEntry.OpSignExtend));
1959     else {
1960       Register Zero32 = createResultReg(&X86::GR32RegClass);
1961       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1962               TII.get(X86::MOV32r0), Zero32);
1963 
1964       // Copy the zero into the appropriate sub/super/identical physical
1965       // register. Unfortunately the operations needed are not uniform enough
1966       // to fit neatly into the table above.
1967       if (VT == MVT::i16) {
1968         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1969                 TII.get(Copy), TypeEntry.HighInReg)
1970           .addReg(Zero32, 0, X86::sub_16bit);
1971       } else if (VT == MVT::i32) {
1972         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1973                 TII.get(Copy), TypeEntry.HighInReg)
1974             .addReg(Zero32);
1975       } else if (VT == MVT::i64) {
1976         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1977                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1978             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1979       }
1980     }
1981   }
1982   // Generate the DIV/IDIV instruction.
1983   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1984           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1985   // For i8 remainder, we can't reference ah directly, as we'll end
1986   // up with bogus copies like %r9b = COPY %ah. Reference ax
1987   // instead to prevent ah references in a rex instruction.
1988   //
1989   // The current assumption of the fast register allocator is that isel
1990   // won't generate explicit references to the GR8_NOREX registers. If
1991   // the allocator and/or the backend get enhanced to be more robust in
1992   // that regard, this can be, and should be, removed.
1993   unsigned ResultReg = 0;
1994   if ((I->getOpcode() == Instruction::SRem ||
1995        I->getOpcode() == Instruction::URem) &&
1996       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1997     Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
1998     Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
1999     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2000             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2001 
2002     // Shift AX right by 8 bits instead of using AH.
2003     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri),
2004             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2005 
2006     // Now reference the 8-bit subreg of the result.
2007     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2008                                            X86::sub_8bit);
2009   }
2010   // Copy the result out of the physreg if we haven't already.
2011   if (!ResultReg) {
2012     ResultReg = createResultReg(TypeEntry.RC);
2013     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg)
2014         .addReg(OpEntry.DivRemResultReg);
2015   }
2016   updateValueMap(I, ResultReg);
2017 
2018   return true;
2019 }
2020 
2021 /// Emit a conditional move instruction (if the are supported) to lower
2022 /// the select.
2023 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2024   // Check if the subtarget supports these instructions.
2025   if (!Subtarget->canUseCMOV())
2026     return false;
2027 
2028   // FIXME: Add support for i8.
2029   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2030     return false;
2031 
2032   const Value *Cond = I->getOperand(0);
2033   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2034   bool NeedTest = true;
2035   X86::CondCode CC = X86::COND_NE;
2036 
2037   // Optimize conditions coming from a compare if both instructions are in the
2038   // same basic block (values defined in other basic blocks may not have
2039   // initialized registers).
2040   const auto *CI = dyn_cast<CmpInst>(Cond);
2041   if (CI && (CI->getParent() == I->getParent())) {
2042     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2043 
2044     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2045     static const uint16_t SETFOpcTable[2][3] = {
2046       { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2047       { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2048     };
2049     const uint16_t *SETFOpc = nullptr;
2050     switch (Predicate) {
2051     default: break;
2052     case CmpInst::FCMP_OEQ:
2053       SETFOpc = &SETFOpcTable[0][0];
2054       Predicate = CmpInst::ICMP_NE;
2055       break;
2056     case CmpInst::FCMP_UNE:
2057       SETFOpc = &SETFOpcTable[1][0];
2058       Predicate = CmpInst::ICMP_NE;
2059       break;
2060     }
2061 
2062     bool NeedSwap;
2063     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2064     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2065 
2066     const Value *CmpLHS = CI->getOperand(0);
2067     const Value *CmpRHS = CI->getOperand(1);
2068     if (NeedSwap)
2069       std::swap(CmpLHS, CmpRHS);
2070 
2071     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2072     // Emit a compare of the LHS and RHS, setting the flags.
2073     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2074       return false;
2075 
2076     if (SETFOpc) {
2077       Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2078       Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2079       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2080               FlagReg1).addImm(SETFOpc[0]);
2081       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2082               FlagReg2).addImm(SETFOpc[1]);
2083       auto const &II = TII.get(SETFOpc[2]);
2084       if (II.getNumDefs()) {
2085         Register TmpReg = createResultReg(&X86::GR8RegClass);
2086         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg)
2087           .addReg(FlagReg2).addReg(FlagReg1);
2088       } else {
2089         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2090           .addReg(FlagReg2).addReg(FlagReg1);
2091       }
2092     }
2093     NeedTest = false;
2094   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2095     // Fake request the condition, otherwise the intrinsic might be completely
2096     // optimized away.
2097     Register TmpReg = getRegForValue(Cond);
2098     if (TmpReg == 0)
2099       return false;
2100 
2101     NeedTest = false;
2102   }
2103 
2104   if (NeedTest) {
2105     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2106     // garbage. Indeed, only the less significant bit is supposed to be
2107     // accurate. If we read more than the lsb, we may see non-zero values
2108     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2109     // the select. This is achieved by performing TEST against 1.
2110     Register CondReg = getRegForValue(Cond);
2111     if (CondReg == 0)
2112       return false;
2113 
2114     // In case OpReg is a K register, COPY to a GPR
2115     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2116       unsigned KCondReg = CondReg;
2117       CondReg = createResultReg(&X86::GR32RegClass);
2118       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2119               TII.get(TargetOpcode::COPY), CondReg)
2120           .addReg(KCondReg);
2121       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2122     }
2123     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2124         .addReg(CondReg)
2125         .addImm(1);
2126   }
2127 
2128   const Value *LHS = I->getOperand(1);
2129   const Value *RHS = I->getOperand(2);
2130 
2131   Register RHSReg = getRegForValue(RHS);
2132   Register LHSReg = getRegForValue(LHS);
2133   if (!LHSReg || !RHSReg)
2134     return false;
2135 
2136   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2137   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2138   Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2139   updateValueMap(I, ResultReg);
2140   return true;
2141 }
2142 
2143 /// Emit SSE or AVX instructions to lower the select.
2144 ///
2145 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2146 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2147 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2148 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2149   // Optimize conditions coming from a compare if both instructions are in the
2150   // same basic block (values defined in other basic blocks may not have
2151   // initialized registers).
2152   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2153   if (!CI || (CI->getParent() != I->getParent()))
2154     return false;
2155 
2156   if (I->getType() != CI->getOperand(0)->getType() ||
2157       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2158         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2159     return false;
2160 
2161   const Value *CmpLHS = CI->getOperand(0);
2162   const Value *CmpRHS = CI->getOperand(1);
2163   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2164 
2165   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2166   // We don't have to materialize a zero constant for this case and can just use
2167   // %x again on the RHS.
2168   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2169     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2170     if (CmpRHSC && CmpRHSC->isNullValue())
2171       CmpRHS = CmpLHS;
2172   }
2173 
2174   unsigned CC;
2175   bool NeedSwap;
2176   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2177   if (CC > 7 && !Subtarget->hasAVX())
2178     return false;
2179 
2180   if (NeedSwap)
2181     std::swap(CmpLHS, CmpRHS);
2182 
2183   const Value *LHS = I->getOperand(1);
2184   const Value *RHS = I->getOperand(2);
2185 
2186   Register LHSReg = getRegForValue(LHS);
2187   Register RHSReg = getRegForValue(RHS);
2188   Register CmpLHSReg = getRegForValue(CmpLHS);
2189   Register CmpRHSReg = getRegForValue(CmpRHS);
2190   if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2191     return false;
2192 
2193   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2194   unsigned ResultReg;
2195 
2196   if (Subtarget->hasAVX512()) {
2197     // If we have AVX512 we can use a mask compare and masked movss/sd.
2198     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2199     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2200 
2201     unsigned CmpOpcode =
2202       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2203     Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
2204                                        CC);
2205 
2206     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2207     // bits of the result register since its not based on any of the inputs.
2208     Register ImplicitDefReg = createResultReg(VR128X);
2209     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2210             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2211 
2212     // Place RHSReg is the passthru of the masked movss/sd operation and put
2213     // LHS in the input. The mask input comes from the compare.
2214     unsigned MovOpcode =
2215       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2216     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
2217                                         ImplicitDefReg, LHSReg);
2218 
2219     ResultReg = createResultReg(RC);
2220     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2221             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2222 
2223   } else if (Subtarget->hasAVX()) {
2224     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2225 
2226     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2227     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2228     // uses XMM0 as the selection register. That may need just as many
2229     // instructions as the AND/ANDN/OR sequence due to register moves, so
2230     // don't bother.
2231     unsigned CmpOpcode =
2232       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2233     unsigned BlendOpcode =
2234       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2235 
2236     Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
2237                                        CC);
2238     Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
2239                                           CmpReg);
2240     ResultReg = createResultReg(RC);
2241     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2242             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2243   } else {
2244     // Choose the SSE instruction sequence based on data type (float or double).
2245     static const uint16_t OpcTable[2][4] = {
2246       { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2247       { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2248     };
2249 
2250     const uint16_t *Opc = nullptr;
2251     switch (RetVT.SimpleTy) {
2252     default: return false;
2253     case MVT::f32: Opc = &OpcTable[0][0]; break;
2254     case MVT::f64: Opc = &OpcTable[1][0]; break;
2255     }
2256 
2257     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2258     Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
2259     Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
2260     Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
2261     Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
2262     ResultReg = createResultReg(RC);
2263     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2264             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2265   }
2266   updateValueMap(I, ResultReg);
2267   return true;
2268 }
2269 
2270 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2271   // These are pseudo CMOV instructions and will be later expanded into control-
2272   // flow.
2273   unsigned Opc;
2274   switch (RetVT.SimpleTy) {
2275   default: return false;
2276   case MVT::i8:  Opc = X86::CMOV_GR8;   break;
2277   case MVT::i16: Opc = X86::CMOV_GR16;  break;
2278   case MVT::i32: Opc = X86::CMOV_GR32;  break;
2279   case MVT::f16:
2280     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break;
2281   case MVT::f32:
2282     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break;
2283   case MVT::f64:
2284     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break;
2285   }
2286 
2287   const Value *Cond = I->getOperand(0);
2288   X86::CondCode CC = X86::COND_NE;
2289 
2290   // Optimize conditions coming from a compare if both instructions are in the
2291   // same basic block (values defined in other basic blocks may not have
2292   // initialized registers).
2293   const auto *CI = dyn_cast<CmpInst>(Cond);
2294   if (CI && (CI->getParent() == I->getParent())) {
2295     bool NeedSwap;
2296     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2297     if (CC > X86::LAST_VALID_COND)
2298       return false;
2299 
2300     const Value *CmpLHS = CI->getOperand(0);
2301     const Value *CmpRHS = CI->getOperand(1);
2302 
2303     if (NeedSwap)
2304       std::swap(CmpLHS, CmpRHS);
2305 
2306     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2307     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2308       return false;
2309   } else {
2310     Register CondReg = getRegForValue(Cond);
2311     if (CondReg == 0)
2312       return false;
2313 
2314     // In case OpReg is a K register, COPY to a GPR
2315     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2316       unsigned KCondReg = CondReg;
2317       CondReg = createResultReg(&X86::GR32RegClass);
2318       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2319               TII.get(TargetOpcode::COPY), CondReg)
2320           .addReg(KCondReg);
2321       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2322     }
2323     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2324         .addReg(CondReg)
2325         .addImm(1);
2326   }
2327 
2328   const Value *LHS = I->getOperand(1);
2329   const Value *RHS = I->getOperand(2);
2330 
2331   Register LHSReg = getRegForValue(LHS);
2332   Register RHSReg = getRegForValue(RHS);
2333   if (!LHSReg || !RHSReg)
2334     return false;
2335 
2336   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2337 
2338   Register ResultReg =
2339     fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2340   updateValueMap(I, ResultReg);
2341   return true;
2342 }
2343 
2344 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2345   MVT RetVT;
2346   if (!isTypeLegal(I->getType(), RetVT))
2347     return false;
2348 
2349   // Check if we can fold the select.
2350   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2351     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2352     const Value *Opnd = nullptr;
2353     switch (Predicate) {
2354     default:                              break;
2355     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2356     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2357     }
2358     // No need for a select anymore - this is an unconditional move.
2359     if (Opnd) {
2360       Register OpReg = getRegForValue(Opnd);
2361       if (OpReg == 0)
2362         return false;
2363       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2364       Register ResultReg = createResultReg(RC);
2365       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2366               TII.get(TargetOpcode::COPY), ResultReg)
2367         .addReg(OpReg);
2368       updateValueMap(I, ResultReg);
2369       return true;
2370     }
2371   }
2372 
2373   // First try to use real conditional move instructions.
2374   if (X86FastEmitCMoveSelect(RetVT, I))
2375     return true;
2376 
2377   // Try to use a sequence of SSE instructions to simulate a conditional move.
2378   if (X86FastEmitSSESelect(RetVT, I))
2379     return true;
2380 
2381   // Fall-back to pseudo conditional move instructions, which will be later
2382   // converted to control-flow.
2383   if (X86FastEmitPseudoSelect(RetVT, I))
2384     return true;
2385 
2386   return false;
2387 }
2388 
2389 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2390 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2391   // The target-independent selection algorithm in FastISel already knows how
2392   // to select a SINT_TO_FP if the target is SSE but not AVX.
2393   // Early exit if the subtarget doesn't have AVX.
2394   // Unsigned conversion requires avx512.
2395   bool HasAVX512 = Subtarget->hasAVX512();
2396   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2397     return false;
2398 
2399   // TODO: We could sign extend narrower types.
2400   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2401   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2402     return false;
2403 
2404   // Select integer to float/double conversion.
2405   Register OpReg = getRegForValue(I->getOperand(0));
2406   if (OpReg == 0)
2407     return false;
2408 
2409   unsigned Opcode;
2410 
2411   static const uint16_t SCvtOpc[2][2][2] = {
2412     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2413       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2414     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2415       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2416   };
2417   static const uint16_t UCvtOpc[2][2] = {
2418     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2419     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2420   };
2421   bool Is64Bit = SrcVT == MVT::i64;
2422 
2423   if (I->getType()->isDoubleTy()) {
2424     // s/uitofp int -> double
2425     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2426   } else if (I->getType()->isFloatTy()) {
2427     // s/uitofp int -> float
2428     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2429   } else
2430     return false;
2431 
2432   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2433   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2434   Register ImplicitDefReg = createResultReg(RC);
2435   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2436           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2437   Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
2438   updateValueMap(I, ResultReg);
2439   return true;
2440 }
2441 
2442 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2443   return X86SelectIntToFP(I, /*IsSigned*/true);
2444 }
2445 
2446 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2447   return X86SelectIntToFP(I, /*IsSigned*/false);
2448 }
2449 
2450 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2451 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2452                                           unsigned TargetOpc,
2453                                           const TargetRegisterClass *RC) {
2454   assert((I->getOpcode() == Instruction::FPExt ||
2455           I->getOpcode() == Instruction::FPTrunc) &&
2456          "Instruction must be an FPExt or FPTrunc!");
2457   bool HasAVX = Subtarget->hasAVX();
2458 
2459   Register OpReg = getRegForValue(I->getOperand(0));
2460   if (OpReg == 0)
2461     return false;
2462 
2463   unsigned ImplicitDefReg;
2464   if (HasAVX) {
2465     ImplicitDefReg = createResultReg(RC);
2466     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2467             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2468 
2469   }
2470 
2471   Register ResultReg = createResultReg(RC);
2472   MachineInstrBuilder MIB;
2473   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc),
2474                 ResultReg);
2475 
2476   if (HasAVX)
2477     MIB.addReg(ImplicitDefReg);
2478 
2479   MIB.addReg(OpReg);
2480   updateValueMap(I, ResultReg);
2481   return true;
2482 }
2483 
2484 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2485   if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() &&
2486       I->getOperand(0)->getType()->isFloatTy()) {
2487     bool HasAVX512 = Subtarget->hasAVX512();
2488     // fpext from float to double.
2489     unsigned Opc =
2490         HasAVX512 ? X86::VCVTSS2SDZrr
2491                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2492     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2493   }
2494 
2495   return false;
2496 }
2497 
2498 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2499   if (Subtarget->hasSSE2() && I->getType()->isFloatTy() &&
2500       I->getOperand(0)->getType()->isDoubleTy()) {
2501     bool HasAVX512 = Subtarget->hasAVX512();
2502     // fptrunc from double to float.
2503     unsigned Opc =
2504         HasAVX512 ? X86::VCVTSD2SSZrr
2505                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2506     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2507   }
2508 
2509   return false;
2510 }
2511 
2512 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2513   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2514   EVT DstVT = TLI.getValueType(DL, I->getType());
2515 
2516   // This code only handles truncation to byte.
2517   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2518     return false;
2519   if (!TLI.isTypeLegal(SrcVT))
2520     return false;
2521 
2522   Register InputReg = getRegForValue(I->getOperand(0));
2523   if (!InputReg)
2524     // Unhandled operand.  Halt "fast" selection and bail.
2525     return false;
2526 
2527   if (SrcVT == MVT::i8) {
2528     // Truncate from i8 to i1; no code needed.
2529     updateValueMap(I, InputReg);
2530     return true;
2531   }
2532 
2533   // Issue an extract_subreg.
2534   Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
2535                                                   X86::sub_8bit);
2536   if (!ResultReg)
2537     return false;
2538 
2539   updateValueMap(I, ResultReg);
2540   return true;
2541 }
2542 
2543 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2544   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2545 }
2546 
2547 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2548                                      X86AddressMode SrcAM, uint64_t Len) {
2549 
2550   // Make sure we don't bloat code by inlining very large memcpy's.
2551   if (!IsMemcpySmall(Len))
2552     return false;
2553 
2554   bool i64Legal = Subtarget->is64Bit();
2555 
2556   // We don't care about alignment here since we just emit integer accesses.
2557   while (Len) {
2558     MVT VT;
2559     if (Len >= 8 && i64Legal)
2560       VT = MVT::i64;
2561     else if (Len >= 4)
2562       VT = MVT::i32;
2563     else if (Len >= 2)
2564       VT = MVT::i16;
2565     else
2566       VT = MVT::i8;
2567 
2568     unsigned Reg;
2569     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2570     RV &= X86FastEmitStore(VT, Reg, DestAM);
2571     assert(RV && "Failed to emit load or store??");
2572     (void)RV;
2573 
2574     unsigned Size = VT.getSizeInBits()/8;
2575     Len -= Size;
2576     DestAM.Disp += Size;
2577     SrcAM.Disp += Size;
2578   }
2579 
2580   return true;
2581 }
2582 
2583 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2584   // FIXME: Handle more intrinsics.
2585   switch (II->getIntrinsicID()) {
2586   default: return false;
2587   case Intrinsic::convert_from_fp16:
2588   case Intrinsic::convert_to_fp16: {
2589     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2590       return false;
2591 
2592     const Value *Op = II->getArgOperand(0);
2593     Register InputReg = getRegForValue(Op);
2594     if (InputReg == 0)
2595       return false;
2596 
2597     // F16C only allows converting from float to half and from half to float.
2598     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2599     if (IsFloatToHalf) {
2600       if (!Op->getType()->isFloatTy())
2601         return false;
2602     } else {
2603       if (!II->getType()->isFloatTy())
2604         return false;
2605     }
2606 
2607     unsigned ResultReg = 0;
2608     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2609     if (IsFloatToHalf) {
2610       // 'InputReg' is implicitly promoted from register class FR32 to
2611       // register class VR128 by method 'constrainOperandRegClass' which is
2612       // directly called by 'fastEmitInst_ri'.
2613       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2614       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2615       // It's consistent with the other FP instructions, which are usually
2616       // controlled by MXCSR.
2617       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2618                                          : X86::VCVTPS2PHrr;
2619       InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
2620 
2621       // Move the lower 32-bits of ResultReg to another register of class GR32.
2622       Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2623                                    : X86::VMOVPDI2DIrr;
2624       ResultReg = createResultReg(&X86::GR32RegClass);
2625       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
2626           .addReg(InputReg, RegState::Kill);
2627 
2628       // The result value is in the lower 16-bits of ResultReg.
2629       unsigned RegIdx = X86::sub_16bit;
2630       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
2631     } else {
2632       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2633       // Explicitly zero-extend the input to 32-bit.
2634       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
2635 
2636       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2637       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2638                             InputReg);
2639 
2640       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2641                                          : X86::VCVTPH2PSrr;
2642       InputReg = fastEmitInst_r(Opc, RC, InputReg);
2643 
2644       // The result value is in the lower 32-bits of ResultReg.
2645       // Emit an explicit copy from register class VR128 to register class FR32.
2646       ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2647       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2648               TII.get(TargetOpcode::COPY), ResultReg)
2649           .addReg(InputReg, RegState::Kill);
2650     }
2651 
2652     updateValueMap(II, ResultReg);
2653     return true;
2654   }
2655   case Intrinsic::frameaddress: {
2656     MachineFunction *MF = FuncInfo.MF;
2657     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2658       return false;
2659 
2660     Type *RetTy = II->getCalledFunction()->getReturnType();
2661 
2662     MVT VT;
2663     if (!isTypeLegal(RetTy, VT))
2664       return false;
2665 
2666     unsigned Opc;
2667     const TargetRegisterClass *RC = nullptr;
2668 
2669     switch (VT.SimpleTy) {
2670     default: llvm_unreachable("Invalid result type for frameaddress.");
2671     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2672     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2673     }
2674 
2675     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2676     // we get the wrong frame register.
2677     MachineFrameInfo &MFI = MF->getFrameInfo();
2678     MFI.setFrameAddressIsTaken(true);
2679 
2680     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2681     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2682     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2683             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2684            "Invalid Frame Register!");
2685 
2686     // Always make a copy of the frame register to a vreg first, so that we
2687     // never directly reference the frame register (the TwoAddressInstruction-
2688     // Pass doesn't like that).
2689     Register SrcReg = createResultReg(RC);
2690     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2691             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2692 
2693     // Now recursively load from the frame address.
2694     // movq (%rbp), %rax
2695     // movq (%rax), %rax
2696     // movq (%rax), %rax
2697     // ...
2698     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2699     while (Depth--) {
2700       Register DestReg = createResultReg(RC);
2701       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2702                            TII.get(Opc), DestReg), SrcReg);
2703       SrcReg = DestReg;
2704     }
2705 
2706     updateValueMap(II, SrcReg);
2707     return true;
2708   }
2709   case Intrinsic::memcpy: {
2710     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2711     // Don't handle volatile or variable length memcpys.
2712     if (MCI->isVolatile())
2713       return false;
2714 
2715     if (isa<ConstantInt>(MCI->getLength())) {
2716       // Small memcpy's are common enough that we want to do them
2717       // without a call if possible.
2718       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2719       if (IsMemcpySmall(Len)) {
2720         X86AddressMode DestAM, SrcAM;
2721         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2722             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2723           return false;
2724         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2725         return true;
2726       }
2727     }
2728 
2729     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2730     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2731       return false;
2732 
2733     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2734       return false;
2735 
2736     return lowerCallTo(II, "memcpy", II->arg_size() - 1);
2737   }
2738   case Intrinsic::memset: {
2739     const MemSetInst *MSI = cast<MemSetInst>(II);
2740 
2741     if (MSI->isVolatile())
2742       return false;
2743 
2744     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2745     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2746       return false;
2747 
2748     if (MSI->getDestAddressSpace() > 255)
2749       return false;
2750 
2751     return lowerCallTo(II, "memset", II->arg_size() - 1);
2752   }
2753   case Intrinsic::stackprotector: {
2754     // Emit code to store the stack guard onto the stack.
2755     EVT PtrTy = TLI.getPointerTy(DL);
2756 
2757     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2758     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2759 
2760     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2761 
2762     // Grab the frame index.
2763     X86AddressMode AM;
2764     if (!X86SelectAddress(Slot, AM)) return false;
2765     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2766     return true;
2767   }
2768   case Intrinsic::dbg_declare: {
2769     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2770     X86AddressMode AM;
2771     assert(DI->getAddress() && "Null address should be checked earlier!");
2772     if (!X86SelectAddress(DI->getAddress(), AM))
2773       return false;
2774     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2775     assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
2776            "Expected inlined-at fields to agree");
2777     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM)
2778         .addImm(0)
2779         .addMetadata(DI->getVariable())
2780         .addMetadata(DI->getExpression());
2781     return true;
2782   }
2783   case Intrinsic::trap: {
2784     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP));
2785     return true;
2786   }
2787   case Intrinsic::sqrt: {
2788     if (!Subtarget->hasSSE1())
2789       return false;
2790 
2791     Type *RetTy = II->getCalledFunction()->getReturnType();
2792 
2793     MVT VT;
2794     if (!isTypeLegal(RetTy, VT))
2795       return false;
2796 
2797     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2798     // is not generated by FastISel yet.
2799     // FIXME: Update this code once tablegen can handle it.
2800     static const uint16_t SqrtOpc[3][2] = {
2801       { X86::SQRTSSr,   X86::SQRTSDr },
2802       { X86::VSQRTSSr,  X86::VSQRTSDr },
2803       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2804     };
2805     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2806                         Subtarget->hasAVX()    ? 1 :
2807                                                  0;
2808     unsigned Opc;
2809     switch (VT.SimpleTy) {
2810     default: return false;
2811     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2812     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2813     }
2814 
2815     const Value *SrcVal = II->getArgOperand(0);
2816     Register SrcReg = getRegForValue(SrcVal);
2817 
2818     if (SrcReg == 0)
2819       return false;
2820 
2821     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2822     unsigned ImplicitDefReg = 0;
2823     if (AVXLevel > 0) {
2824       ImplicitDefReg = createResultReg(RC);
2825       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2826               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2827     }
2828 
2829     Register ResultReg = createResultReg(RC);
2830     MachineInstrBuilder MIB;
2831     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
2832                   ResultReg);
2833 
2834     if (ImplicitDefReg)
2835       MIB.addReg(ImplicitDefReg);
2836 
2837     MIB.addReg(SrcReg);
2838 
2839     updateValueMap(II, ResultReg);
2840     return true;
2841   }
2842   case Intrinsic::sadd_with_overflow:
2843   case Intrinsic::uadd_with_overflow:
2844   case Intrinsic::ssub_with_overflow:
2845   case Intrinsic::usub_with_overflow:
2846   case Intrinsic::smul_with_overflow:
2847   case Intrinsic::umul_with_overflow: {
2848     // This implements the basic lowering of the xalu with overflow intrinsics
2849     // into add/sub/mul followed by either seto or setb.
2850     const Function *Callee = II->getCalledFunction();
2851     auto *Ty = cast<StructType>(Callee->getReturnType());
2852     Type *RetTy = Ty->getTypeAtIndex(0U);
2853     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2854            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2855            "Overflow value expected to be an i1");
2856 
2857     MVT VT;
2858     if (!isTypeLegal(RetTy, VT))
2859       return false;
2860 
2861     if (VT < MVT::i8 || VT > MVT::i64)
2862       return false;
2863 
2864     const Value *LHS = II->getArgOperand(0);
2865     const Value *RHS = II->getArgOperand(1);
2866 
2867     // Canonicalize immediate to the RHS.
2868     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2869       std::swap(LHS, RHS);
2870 
2871     unsigned BaseOpc, CondCode;
2872     switch (II->getIntrinsicID()) {
2873     default: llvm_unreachable("Unexpected intrinsic!");
2874     case Intrinsic::sadd_with_overflow:
2875       BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2876     case Intrinsic::uadd_with_overflow:
2877       BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2878     case Intrinsic::ssub_with_overflow:
2879       BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2880     case Intrinsic::usub_with_overflow:
2881       BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2882     case Intrinsic::smul_with_overflow:
2883       BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2884     case Intrinsic::umul_with_overflow:
2885       BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2886     }
2887 
2888     Register LHSReg = getRegForValue(LHS);
2889     if (LHSReg == 0)
2890       return false;
2891 
2892     unsigned ResultReg = 0;
2893     // Check if we have an immediate version.
2894     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2895       static const uint16_t Opc[2][4] = {
2896         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2897         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2898       };
2899 
2900       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2901           CondCode == X86::COND_O) {
2902         // We can use INC/DEC.
2903         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2904         bool IsDec = BaseOpc == ISD::SUB;
2905         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2906                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2907           .addReg(LHSReg);
2908       } else
2909         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
2910     }
2911 
2912     unsigned RHSReg;
2913     if (!ResultReg) {
2914       RHSReg = getRegForValue(RHS);
2915       if (RHSReg == 0)
2916         return false;
2917       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
2918     }
2919 
2920     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2921     // it manually.
2922     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2923       static const uint16_t MULOpc[] =
2924         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2925       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2926       // First copy the first operand into RAX, which is an implicit input to
2927       // the X86::MUL*r instruction.
2928       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2929               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2930         .addReg(LHSReg);
2931       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2932                                  TLI.getRegClassFor(VT), RHSReg);
2933     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2934       static const uint16_t MULOpc[] =
2935         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2936       if (VT == MVT::i8) {
2937         // Copy the first operand into AL, which is an implicit input to the
2938         // X86::IMUL8r instruction.
2939         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2940                TII.get(TargetOpcode::COPY), X86::AL)
2941           .addReg(LHSReg);
2942         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
2943       } else
2944         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2945                                     TLI.getRegClassFor(VT), LHSReg, RHSReg);
2946     }
2947 
2948     if (!ResultReg)
2949       return false;
2950 
2951     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2952     Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2953     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2954     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2955             ResultReg2).addImm(CondCode);
2956 
2957     updateValueMap(II, ResultReg, 2);
2958     return true;
2959   }
2960   case Intrinsic::x86_sse_cvttss2si:
2961   case Intrinsic::x86_sse_cvttss2si64:
2962   case Intrinsic::x86_sse2_cvttsd2si:
2963   case Intrinsic::x86_sse2_cvttsd2si64: {
2964     bool IsInputDouble;
2965     switch (II->getIntrinsicID()) {
2966     default: llvm_unreachable("Unexpected intrinsic.");
2967     case Intrinsic::x86_sse_cvttss2si:
2968     case Intrinsic::x86_sse_cvttss2si64:
2969       if (!Subtarget->hasSSE1())
2970         return false;
2971       IsInputDouble = false;
2972       break;
2973     case Intrinsic::x86_sse2_cvttsd2si:
2974     case Intrinsic::x86_sse2_cvttsd2si64:
2975       if (!Subtarget->hasSSE2())
2976         return false;
2977       IsInputDouble = true;
2978       break;
2979     }
2980 
2981     Type *RetTy = II->getCalledFunction()->getReturnType();
2982     MVT VT;
2983     if (!isTypeLegal(RetTy, VT))
2984       return false;
2985 
2986     static const uint16_t CvtOpc[3][2][2] = {
2987       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
2988         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
2989       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
2990         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
2991       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
2992         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
2993     };
2994     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2995                         Subtarget->hasAVX()    ? 1 :
2996                                                  0;
2997     unsigned Opc;
2998     switch (VT.SimpleTy) {
2999     default: llvm_unreachable("Unexpected result type.");
3000     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3001     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3002     }
3003 
3004     // Check if we can fold insertelement instructions into the convert.
3005     const Value *Op = II->getArgOperand(0);
3006     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3007       const Value *Index = IE->getOperand(2);
3008       if (!isa<ConstantInt>(Index))
3009         break;
3010       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3011 
3012       if (Idx == 0) {
3013         Op = IE->getOperand(1);
3014         break;
3015       }
3016       Op = IE->getOperand(0);
3017     }
3018 
3019     Register Reg = getRegForValue(Op);
3020     if (Reg == 0)
3021       return false;
3022 
3023     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3024     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
3025       .addReg(Reg);
3026 
3027     updateValueMap(II, ResultReg);
3028     return true;
3029   }
3030   case Intrinsic::x86_sse42_crc32_32_8:
3031   case Intrinsic::x86_sse42_crc32_32_16:
3032   case Intrinsic::x86_sse42_crc32_32_32:
3033   case Intrinsic::x86_sse42_crc32_64_64: {
3034     if (!Subtarget->hasCRC32())
3035       return false;
3036 
3037     Type *RetTy = II->getCalledFunction()->getReturnType();
3038 
3039     MVT VT;
3040     if (!isTypeLegal(RetTy, VT))
3041       return false;
3042 
3043     unsigned Opc;
3044     const TargetRegisterClass *RC = nullptr;
3045 
3046     switch (II->getIntrinsicID()) {
3047     default:
3048       llvm_unreachable("Unexpected intrinsic.");
3049 #define GET_EGPR_IF_ENABLED(OPC) Subtarget->hasEGPR() ? OPC##_EVEX : OPC
3050     case Intrinsic::x86_sse42_crc32_32_8:
3051       Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r8);
3052       RC = &X86::GR32RegClass;
3053       break;
3054     case Intrinsic::x86_sse42_crc32_32_16:
3055       Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r16);
3056       RC = &X86::GR32RegClass;
3057       break;
3058     case Intrinsic::x86_sse42_crc32_32_32:
3059       Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r32);
3060       RC = &X86::GR32RegClass;
3061       break;
3062     case Intrinsic::x86_sse42_crc32_64_64:
3063       Opc = GET_EGPR_IF_ENABLED(X86::CRC32r64r64);
3064       RC = &X86::GR64RegClass;
3065       break;
3066 #undef GET_EGPR_IF_ENABLED
3067     }
3068 
3069     const Value *LHS = II->getArgOperand(0);
3070     const Value *RHS = II->getArgOperand(1);
3071 
3072     Register LHSReg = getRegForValue(LHS);
3073     Register RHSReg = getRegForValue(RHS);
3074     if (!LHSReg || !RHSReg)
3075       return false;
3076 
3077     Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg);
3078     if (!ResultReg)
3079       return false;
3080 
3081     updateValueMap(II, ResultReg);
3082     return true;
3083   }
3084   }
3085 }
3086 
3087 bool X86FastISel::fastLowerArguments() {
3088   if (!FuncInfo.CanLowerReturn)
3089     return false;
3090 
3091   const Function *F = FuncInfo.Fn;
3092   if (F->isVarArg())
3093     return false;
3094 
3095   CallingConv::ID CC = F->getCallingConv();
3096   if (CC != CallingConv::C)
3097     return false;
3098 
3099   if (Subtarget->isCallingConvWin64(CC))
3100     return false;
3101 
3102   if (!Subtarget->is64Bit())
3103     return false;
3104 
3105   if (Subtarget->useSoftFloat())
3106     return false;
3107 
3108   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3109   unsigned GPRCnt = 0;
3110   unsigned FPRCnt = 0;
3111   for (auto const &Arg : F->args()) {
3112     if (Arg.hasAttribute(Attribute::ByVal) ||
3113         Arg.hasAttribute(Attribute::InReg) ||
3114         Arg.hasAttribute(Attribute::StructRet) ||
3115         Arg.hasAttribute(Attribute::SwiftSelf) ||
3116         Arg.hasAttribute(Attribute::SwiftAsync) ||
3117         Arg.hasAttribute(Attribute::SwiftError) ||
3118         Arg.hasAttribute(Attribute::Nest))
3119       return false;
3120 
3121     Type *ArgTy = Arg.getType();
3122     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3123       return false;
3124 
3125     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3126     if (!ArgVT.isSimple()) return false;
3127     switch (ArgVT.getSimpleVT().SimpleTy) {
3128     default: return false;
3129     case MVT::i32:
3130     case MVT::i64:
3131       ++GPRCnt;
3132       break;
3133     case MVT::f32:
3134     case MVT::f64:
3135       if (!Subtarget->hasSSE1())
3136         return false;
3137       ++FPRCnt;
3138       break;
3139     }
3140 
3141     if (GPRCnt > 6)
3142       return false;
3143 
3144     if (FPRCnt > 8)
3145       return false;
3146   }
3147 
3148   static const MCPhysReg GPR32ArgRegs[] = {
3149     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3150   };
3151   static const MCPhysReg GPR64ArgRegs[] = {
3152     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3153   };
3154   static const MCPhysReg XMMArgRegs[] = {
3155     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3156     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3157   };
3158 
3159   unsigned GPRIdx = 0;
3160   unsigned FPRIdx = 0;
3161   for (auto const &Arg : F->args()) {
3162     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3163     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3164     unsigned SrcReg;
3165     switch (VT.SimpleTy) {
3166     default: llvm_unreachable("Unexpected value type.");
3167     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3168     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3169     case MVT::f32: [[fallthrough]];
3170     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3171     }
3172     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3173     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3174     // Without this, EmitLiveInCopies may eliminate the livein if its only
3175     // use is a bitcast (which isn't turned into an instruction).
3176     Register ResultReg = createResultReg(RC);
3177     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3178             TII.get(TargetOpcode::COPY), ResultReg)
3179       .addReg(DstReg, getKillRegState(true));
3180     updateValueMap(&Arg, ResultReg);
3181   }
3182   return true;
3183 }
3184 
3185 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3186                                                   CallingConv::ID CC,
3187                                                   const CallBase *CB) {
3188   if (Subtarget->is64Bit())
3189     return 0;
3190   if (Subtarget->getTargetTriple().isOSMSVCRT())
3191     return 0;
3192   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3193       CC == CallingConv::HiPE || CC == CallingConv::Tail ||
3194       CC == CallingConv::SwiftTail)
3195     return 0;
3196 
3197   if (CB)
3198     if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3199         CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3200       return 0;
3201 
3202   return 4;
3203 }
3204 
3205 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3206   auto &OutVals       = CLI.OutVals;
3207   auto &OutFlags      = CLI.OutFlags;
3208   auto &OutRegs       = CLI.OutRegs;
3209   auto &Ins           = CLI.Ins;
3210   auto &InRegs        = CLI.InRegs;
3211   CallingConv::ID CC  = CLI.CallConv;
3212   bool &IsTailCall    = CLI.IsTailCall;
3213   bool IsVarArg       = CLI.IsVarArg;
3214   const Value *Callee = CLI.Callee;
3215   MCSymbol *Symbol    = CLI.Symbol;
3216   const auto *CB      = CLI.CB;
3217 
3218   bool Is64Bit        = Subtarget->is64Bit();
3219   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3220 
3221   // Call / invoke instructions with NoCfCheck attribute require special
3222   // handling.
3223   if (CB && CB->doesNoCfCheck())
3224     return false;
3225 
3226   // Functions with no_caller_saved_registers that need special handling.
3227   if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
3228     return false;
3229 
3230   // Functions with no_callee_saved_registers that need special handling.
3231   if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
3232     return false;
3233 
3234   // Indirect calls with CFI checks need special handling.
3235   if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi))
3236     return false;
3237 
3238   // Functions using thunks for indirect calls need to use SDISel.
3239   if (Subtarget->useIndirectThunkCalls())
3240     return false;
3241 
3242   // Handle only C and fastcc calling conventions for now.
3243   switch (CC) {
3244   default: return false;
3245   case CallingConv::C:
3246   case CallingConv::Fast:
3247   case CallingConv::Tail:
3248   case CallingConv::Swift:
3249   case CallingConv::SwiftTail:
3250   case CallingConv::X86_FastCall:
3251   case CallingConv::X86_StdCall:
3252   case CallingConv::X86_ThisCall:
3253   case CallingConv::Win64:
3254   case CallingConv::X86_64_SysV:
3255   case CallingConv::CFGuard_Check:
3256     break;
3257   }
3258 
3259   // Allow SelectionDAG isel to handle tail calls.
3260   if (IsTailCall)
3261     return false;
3262 
3263   // fastcc with -tailcallopt is intended to provide a guaranteed
3264   // tail call optimization. Fastisel doesn't know how to do that.
3265   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3266       CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
3267     return false;
3268 
3269   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3270   // x86-32. Special handling for x86-64 is implemented.
3271   if (IsVarArg && IsWin64)
3272     return false;
3273 
3274   // Don't know about inalloca yet.
3275   if (CLI.CB && CLI.CB->hasInAllocaArgument())
3276     return false;
3277 
3278   for (auto Flag : CLI.OutFlags)
3279     if (Flag.isSwiftError() || Flag.isPreallocated())
3280       return false;
3281 
3282   SmallVector<MVT, 16> OutVTs;
3283   SmallVector<unsigned, 16> ArgRegs;
3284 
3285   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3286   // instruction. This is safe because it is common to all FastISel supported
3287   // calling conventions on x86.
3288   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3289     Value *&Val = OutVals[i];
3290     ISD::ArgFlagsTy Flags = OutFlags[i];
3291     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3292       if (CI->getBitWidth() < 32) {
3293         if (Flags.isSExt())
3294           Val = ConstantInt::get(CI->getContext(), CI->getValue().sext(32));
3295         else
3296           Val = ConstantInt::get(CI->getContext(), CI->getValue().zext(32));
3297       }
3298     }
3299 
3300     // Passing bools around ends up doing a trunc to i1 and passing it.
3301     // Codegen this as an argument + "and 1".
3302     MVT VT;
3303     auto *TI = dyn_cast<TruncInst>(Val);
3304     unsigned ResultReg;
3305     if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3306         (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3307       Value *PrevVal = TI->getOperand(0);
3308       ResultReg = getRegForValue(PrevVal);
3309 
3310       if (!ResultReg)
3311         return false;
3312 
3313       if (!isTypeLegal(PrevVal->getType(), VT))
3314         return false;
3315 
3316       ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
3317     } else {
3318       if (!isTypeLegal(Val->getType(), VT) ||
3319           (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3320         return false;
3321       ResultReg = getRegForValue(Val);
3322     }
3323 
3324     if (!ResultReg)
3325       return false;
3326 
3327     ArgRegs.push_back(ResultReg);
3328     OutVTs.push_back(VT);
3329   }
3330 
3331   // Analyze operands of the call, assigning locations to each operand.
3332   SmallVector<CCValAssign, 16> ArgLocs;
3333   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3334 
3335   // Allocate shadow area for Win64
3336   if (IsWin64)
3337     CCInfo.AllocateStack(32, Align(8));
3338 
3339   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3340 
3341   // Get a count of how many bytes are to be pushed on the stack.
3342   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3343 
3344   // Issue CALLSEQ_START
3345   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3346   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown))
3347     .addImm(NumBytes).addImm(0).addImm(0);
3348 
3349   // Walk the register/memloc assignments, inserting copies/loads.
3350   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3351   for (const CCValAssign &VA : ArgLocs) {
3352     const Value *ArgVal = OutVals[VA.getValNo()];
3353     MVT ArgVT = OutVTs[VA.getValNo()];
3354 
3355     if (ArgVT == MVT::x86mmx)
3356       return false;
3357 
3358     unsigned ArgReg = ArgRegs[VA.getValNo()];
3359 
3360     // Promote the value if needed.
3361     switch (VA.getLocInfo()) {
3362     case CCValAssign::Full: break;
3363     case CCValAssign::SExt: {
3364       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3365              "Unexpected extend");
3366 
3367       if (ArgVT == MVT::i1)
3368         return false;
3369 
3370       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3371                                        ArgVT, ArgReg);
3372       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3373       ArgVT = VA.getLocVT();
3374       break;
3375     }
3376     case CCValAssign::ZExt: {
3377       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3378              "Unexpected extend");
3379 
3380       // Handle zero-extension from i1 to i8, which is common.
3381       if (ArgVT == MVT::i1) {
3382         // Set the high bits to zero.
3383         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
3384         ArgVT = MVT::i8;
3385 
3386         if (ArgReg == 0)
3387           return false;
3388       }
3389 
3390       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3391                                        ArgVT, ArgReg);
3392       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3393       ArgVT = VA.getLocVT();
3394       break;
3395     }
3396     case CCValAssign::AExt: {
3397       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3398              "Unexpected extend");
3399       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3400                                        ArgVT, ArgReg);
3401       if (!Emitted)
3402         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3403                                     ArgVT, ArgReg);
3404       if (!Emitted)
3405         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3406                                     ArgVT, ArgReg);
3407 
3408       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3409       ArgVT = VA.getLocVT();
3410       break;
3411     }
3412     case CCValAssign::BCvt: {
3413       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
3414       assert(ArgReg && "Failed to emit a bitcast!");
3415       ArgVT = VA.getLocVT();
3416       break;
3417     }
3418     case CCValAssign::VExt:
3419       // VExt has not been implemented, so this should be impossible to reach
3420       // for now.  However, fallback to Selection DAG isel once implemented.
3421       return false;
3422     case CCValAssign::AExtUpper:
3423     case CCValAssign::SExtUpper:
3424     case CCValAssign::ZExtUpper:
3425     case CCValAssign::FPExt:
3426     case CCValAssign::Trunc:
3427       llvm_unreachable("Unexpected loc info!");
3428     case CCValAssign::Indirect:
3429       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3430       // support this.
3431       return false;
3432     }
3433 
3434     if (VA.isRegLoc()) {
3435       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3436               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3437       OutRegs.push_back(VA.getLocReg());
3438     } else {
3439       assert(VA.isMemLoc() && "Unknown value location!");
3440 
3441       // Don't emit stores for undef values.
3442       if (isa<UndefValue>(ArgVal))
3443         continue;
3444 
3445       unsigned LocMemOffset = VA.getLocMemOffset();
3446       X86AddressMode AM;
3447       AM.Base.Reg = RegInfo->getStackRegister();
3448       AM.Disp = LocMemOffset;
3449       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3450       Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3451       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3452           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3453           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3454       if (Flags.isByVal()) {
3455         X86AddressMode SrcAM;
3456         SrcAM.Base.Reg = ArgReg;
3457         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3458           return false;
3459       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3460         // If this is a really simple value, emit this with the Value* version
3461         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3462         // as it can cause us to reevaluate the argument.
3463         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3464           return false;
3465       } else {
3466         if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
3467           return false;
3468       }
3469     }
3470   }
3471 
3472   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3473   // GOT pointer.
3474   if (Subtarget->isPICStyleGOT()) {
3475     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3476     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3477             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3478   }
3479 
3480   if (Is64Bit && IsVarArg && !IsWin64) {
3481     // From AMD64 ABI document:
3482     // For calls that may call functions that use varargs or stdargs
3483     // (prototype-less calls or calls to functions containing ellipsis (...) in
3484     // the declaration) %al is used as hidden argument to specify the number
3485     // of SSE registers used. The contents of %al do not need to match exactly
3486     // the number of registers, but must be an ubound on the number of SSE
3487     // registers used and is in the range 0 - 8 inclusive.
3488 
3489     // Count the number of XMM registers allocated.
3490     static const MCPhysReg XMMArgRegs[] = {
3491       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3492       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3493     };
3494     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3495     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3496            && "SSE registers cannot be used when SSE is disabled");
3497     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
3498             X86::AL).addImm(NumXMMRegs);
3499   }
3500 
3501   // Materialize callee address in a register. FIXME: GV address can be
3502   // handled with a CALLpcrel32 instead.
3503   X86AddressMode CalleeAM;
3504   if (!X86SelectCallAddress(Callee, CalleeAM))
3505     return false;
3506 
3507   unsigned CalleeOp = 0;
3508   const GlobalValue *GV = nullptr;
3509   if (CalleeAM.GV != nullptr) {
3510     GV = CalleeAM.GV;
3511   } else if (CalleeAM.Base.Reg != 0) {
3512     CalleeOp = CalleeAM.Base.Reg;
3513   } else
3514     return false;
3515 
3516   // Issue the call.
3517   MachineInstrBuilder MIB;
3518   if (CalleeOp) {
3519     // Register-indirect call.
3520     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3521     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc))
3522       .addReg(CalleeOp);
3523   } else {
3524     // Direct call.
3525     assert(GV && "Not a direct call");
3526     // See if we need any target-specific flags on the GV operand.
3527     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3528     if (OpFlags == X86II::MO_PLT && !Is64Bit &&
3529         TM.getRelocationModel() == Reloc::Static && isa<Function>(GV) &&
3530         cast<Function>(GV)->isIntrinsic())
3531       OpFlags = X86II::MO_NO_FLAG;
3532 
3533     // This will be a direct call, or an indirect call through memory for
3534     // NonLazyBind calls or dllimport calls.
3535     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3536                     OpFlags == X86II::MO_GOTPCREL ||
3537                     OpFlags == X86II::MO_GOTPCREL_NORELAX ||
3538                     OpFlags == X86II::MO_COFFSTUB;
3539     unsigned CallOpc = NeedLoad
3540                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3541                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3542 
3543     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc));
3544     if (NeedLoad)
3545       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3546     if (Symbol)
3547       MIB.addSym(Symbol, OpFlags);
3548     else
3549       MIB.addGlobalAddress(GV, 0, OpFlags);
3550     if (NeedLoad)
3551       MIB.addReg(0);
3552   }
3553 
3554   // Add a register mask operand representing the call-preserved registers.
3555   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3556   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3557 
3558   // Add an implicit use GOT pointer in EBX.
3559   if (Subtarget->isPICStyleGOT())
3560     MIB.addReg(X86::EBX, RegState::Implicit);
3561 
3562   if (Is64Bit && IsVarArg && !IsWin64)
3563     MIB.addReg(X86::AL, RegState::Implicit);
3564 
3565   // Add implicit physical register uses to the call.
3566   for (auto Reg : OutRegs)
3567     MIB.addReg(Reg, RegState::Implicit);
3568 
3569   // Issue CALLSEQ_END
3570   unsigned NumBytesForCalleeToPop =
3571       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3572                        TM.Options.GuaranteedTailCallOpt)
3573           ? NumBytes // Callee pops everything.
3574           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3575   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3576   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
3577     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3578 
3579   // Now handle call return values.
3580   SmallVector<CCValAssign, 16> RVLocs;
3581   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3582                     CLI.RetTy->getContext());
3583   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3584 
3585   // Copy all of the result registers out of their specified physreg.
3586   Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3587   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3588     CCValAssign &VA = RVLocs[i];
3589     EVT CopyVT = VA.getValVT();
3590     unsigned CopyReg = ResultReg + i;
3591     Register SrcReg = VA.getLocReg();
3592 
3593     // If this is x86-64, and we disabled SSE, we can't return FP values
3594     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3595         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3596       report_fatal_error("SSE register return with SSE disabled");
3597     }
3598 
3599     // If we prefer to use the value in xmm registers, copy it out as f80 and
3600     // use a truncate to move it from fp stack reg to xmm reg.
3601     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3602         isScalarFPTypeInSSEReg(VA.getValVT())) {
3603       CopyVT = MVT::f80;
3604       CopyReg = createResultReg(&X86::RFP80RegClass);
3605     }
3606 
3607     // Copy out the result.
3608     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3609             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3610     InRegs.push_back(VA.getLocReg());
3611 
3612     // Round the f80 to the right size, which also moves it to the appropriate
3613     // xmm register. This is accomplished by storing the f80 value in memory
3614     // and then loading it back.
3615     if (CopyVT != VA.getValVT()) {
3616       EVT ResVT = VA.getValVT();
3617       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3618       unsigned MemSize = ResVT.getSizeInBits()/8;
3619       int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3620       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3621                                 TII.get(Opc)), FI)
3622         .addReg(CopyReg);
3623       Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3624       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3625                                 TII.get(Opc), ResultReg + i), FI);
3626     }
3627   }
3628 
3629   CLI.ResultReg = ResultReg;
3630   CLI.NumResultRegs = RVLocs.size();
3631   CLI.Call = MIB;
3632 
3633   return true;
3634 }
3635 
3636 bool
3637 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3638   switch (I->getOpcode()) {
3639   default: break;
3640   case Instruction::Load:
3641     return X86SelectLoad(I);
3642   case Instruction::Store:
3643     return X86SelectStore(I);
3644   case Instruction::Ret:
3645     return X86SelectRet(I);
3646   case Instruction::ICmp:
3647   case Instruction::FCmp:
3648     return X86SelectCmp(I);
3649   case Instruction::ZExt:
3650     return X86SelectZExt(I);
3651   case Instruction::SExt:
3652     return X86SelectSExt(I);
3653   case Instruction::Br:
3654     return X86SelectBranch(I);
3655   case Instruction::LShr:
3656   case Instruction::AShr:
3657   case Instruction::Shl:
3658     return X86SelectShift(I);
3659   case Instruction::SDiv:
3660   case Instruction::UDiv:
3661   case Instruction::SRem:
3662   case Instruction::URem:
3663     return X86SelectDivRem(I);
3664   case Instruction::Select:
3665     return X86SelectSelect(I);
3666   case Instruction::Trunc:
3667     return X86SelectTrunc(I);
3668   case Instruction::FPExt:
3669     return X86SelectFPExt(I);
3670   case Instruction::FPTrunc:
3671     return X86SelectFPTrunc(I);
3672   case Instruction::SIToFP:
3673     return X86SelectSIToFP(I);
3674   case Instruction::UIToFP:
3675     return X86SelectUIToFP(I);
3676   case Instruction::IntToPtr: // Deliberate fall-through.
3677   case Instruction::PtrToInt: {
3678     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3679     EVT DstVT = TLI.getValueType(DL, I->getType());
3680     if (DstVT.bitsGT(SrcVT))
3681       return X86SelectZExt(I);
3682     if (DstVT.bitsLT(SrcVT))
3683       return X86SelectTrunc(I);
3684     Register Reg = getRegForValue(I->getOperand(0));
3685     if (Reg == 0) return false;
3686     updateValueMap(I, Reg);
3687     return true;
3688   }
3689   case Instruction::BitCast: {
3690     // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3691     if (!Subtarget->hasSSE2())
3692       return false;
3693 
3694     MVT SrcVT, DstVT;
3695     if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3696         !isTypeLegal(I->getType(), DstVT))
3697       return false;
3698 
3699     // Only allow vectors that use xmm/ymm/zmm.
3700     if (!SrcVT.isVector() || !DstVT.isVector() ||
3701         SrcVT.getVectorElementType() == MVT::i1 ||
3702         DstVT.getVectorElementType() == MVT::i1)
3703       return false;
3704 
3705     Register Reg = getRegForValue(I->getOperand(0));
3706     if (!Reg)
3707       return false;
3708 
3709     // Emit a reg-reg copy so we don't propagate cached known bits information
3710     // with the wrong VT if we fall out of fast isel after selecting this.
3711     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3712     Register ResultReg = createResultReg(DstClass);
3713     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3714               TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3715 
3716     updateValueMap(I, ResultReg);
3717     return true;
3718   }
3719   }
3720 
3721   return false;
3722 }
3723 
3724 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3725   if (VT > MVT::i64)
3726     return 0;
3727 
3728   uint64_t Imm = CI->getZExtValue();
3729   if (Imm == 0) {
3730     Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3731     switch (VT.SimpleTy) {
3732     default: llvm_unreachable("Unexpected value type");
3733     case MVT::i1:
3734     case MVT::i8:
3735       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
3736     case MVT::i16:
3737       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
3738     case MVT::i32:
3739       return SrcReg;
3740     case MVT::i64: {
3741       Register ResultReg = createResultReg(&X86::GR64RegClass);
3742       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3743               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3744         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3745       return ResultReg;
3746     }
3747     }
3748   }
3749 
3750   unsigned Opc = 0;
3751   switch (VT.SimpleTy) {
3752   default: llvm_unreachable("Unexpected value type");
3753   case MVT::i1:
3754     VT = MVT::i8;
3755     [[fallthrough]];
3756   case MVT::i8:  Opc = X86::MOV8ri;  break;
3757   case MVT::i16: Opc = X86::MOV16ri; break;
3758   case MVT::i32: Opc = X86::MOV32ri; break;
3759   case MVT::i64: {
3760     if (isUInt<32>(Imm))
3761       Opc = X86::MOV32ri64;
3762     else if (isInt<32>(Imm))
3763       Opc = X86::MOV64ri32;
3764     else
3765       Opc = X86::MOV64ri;
3766     break;
3767   }
3768   }
3769   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3770 }
3771 
3772 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3773   if (CFP->isNullValue())
3774     return fastMaterializeFloatZero(CFP);
3775 
3776   // Can't handle alternate code models yet.
3777   CodeModel::Model CM = TM.getCodeModel();
3778   if (CM != CodeModel::Small && CM != CodeModel::Medium &&
3779       CM != CodeModel::Large)
3780     return 0;
3781 
3782   // Get opcode and regclass of the output for the given load instruction.
3783   unsigned Opc = 0;
3784   bool HasSSE1 = Subtarget->hasSSE1();
3785   bool HasSSE2 = Subtarget->hasSSE2();
3786   bool HasAVX = Subtarget->hasAVX();
3787   bool HasAVX512 = Subtarget->hasAVX512();
3788   switch (VT.SimpleTy) {
3789   default: return 0;
3790   case MVT::f32:
3791     Opc = HasAVX512 ? X86::VMOVSSZrm_alt
3792           : HasAVX  ? X86::VMOVSSrm_alt
3793           : HasSSE1 ? X86::MOVSSrm_alt
3794                     : X86::LD_Fp32m;
3795     break;
3796   case MVT::f64:
3797     Opc = HasAVX512 ? X86::VMOVSDZrm_alt
3798           : HasAVX  ? X86::VMOVSDrm_alt
3799           : HasSSE2 ? X86::MOVSDrm_alt
3800                     : X86::LD_Fp64m;
3801     break;
3802   case MVT::f80:
3803     // No f80 support yet.
3804     return 0;
3805   }
3806 
3807   // MachineConstantPool wants an explicit alignment.
3808   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3809 
3810   // x86-32 PIC requires a PIC base register for constant pools.
3811   unsigned PICBase = 0;
3812   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3813   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3814     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3815   else if (OpFlag == X86II::MO_GOTOFF)
3816     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3817   else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large)
3818     PICBase = X86::RIP;
3819 
3820   // Create the load from the constant pool.
3821   unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3822   Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3823 
3824   // Large code model only applies to 64-bit mode.
3825   if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3826     Register AddrReg = createResultReg(&X86::GR64RegClass);
3827     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3828             AddrReg)
3829       .addConstantPoolIndex(CPI, 0, OpFlag);
3830     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3831                                       TII.get(Opc), ResultReg);
3832     addRegReg(MIB, AddrReg, false, PICBase, false);
3833     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3834         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3835         MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3836     MIB->addMemOperand(*FuncInfo.MF, MMO);
3837     return ResultReg;
3838   }
3839 
3840   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3841                                    TII.get(Opc), ResultReg),
3842                            CPI, PICBase, OpFlag);
3843   return ResultReg;
3844 }
3845 
3846 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3847   // Can't handle large GlobalValues yet.
3848   if (TM.getCodeModel() != CodeModel::Small &&
3849       TM.getCodeModel() != CodeModel::Medium)
3850     return 0;
3851   if (TM.isLargeGlobalValue(GV))
3852     return 0;
3853 
3854   // Materialize addresses with LEA/MOV instructions.
3855   X86AddressMode AM;
3856   if (X86SelectAddress(GV, AM)) {
3857     // If the expression is just a basereg, then we're done, otherwise we need
3858     // to emit an LEA.
3859     if (AM.BaseType == X86AddressMode::RegBase &&
3860         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3861       return AM.Base.Reg;
3862 
3863     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3864     if (TM.getRelocationModel() == Reloc::Static &&
3865         TLI.getPointerTy(DL) == MVT::i64) {
3866       // The displacement code could be more than 32 bits away so we need to use
3867       // an instruction with a 64 bit immediate
3868       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3869               ResultReg)
3870         .addGlobalAddress(GV);
3871     } else {
3872       unsigned Opc =
3873           TLI.getPointerTy(DL) == MVT::i32
3874               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3875               : X86::LEA64r;
3876       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3877                              TII.get(Opc), ResultReg), AM);
3878     }
3879     return ResultReg;
3880   }
3881   return 0;
3882 }
3883 
3884 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3885   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3886 
3887   // Only handle simple types.
3888   if (!CEVT.isSimple())
3889     return 0;
3890   MVT VT = CEVT.getSimpleVT();
3891 
3892   if (const auto *CI = dyn_cast<ConstantInt>(C))
3893     return X86MaterializeInt(CI, VT);
3894   if (const auto *CFP = dyn_cast<ConstantFP>(C))
3895     return X86MaterializeFP(CFP, VT);
3896   if (const auto *GV = dyn_cast<GlobalValue>(C))
3897     return X86MaterializeGV(GV, VT);
3898   if (isa<UndefValue>(C)) {
3899     unsigned Opc = 0;
3900     switch (VT.SimpleTy) {
3901     default:
3902       break;
3903     case MVT::f32:
3904       if (!Subtarget->hasSSE1())
3905         Opc = X86::LD_Fp032;
3906       break;
3907     case MVT::f64:
3908       if (!Subtarget->hasSSE2())
3909         Opc = X86::LD_Fp064;
3910       break;
3911     case MVT::f80:
3912       Opc = X86::LD_Fp080;
3913       break;
3914     }
3915 
3916     if (Opc) {
3917       Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3918       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
3919               ResultReg);
3920       return ResultReg;
3921     }
3922   }
3923 
3924   return 0;
3925 }
3926 
3927 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3928   // Fail on dynamic allocas. At this point, getRegForValue has already
3929   // checked its CSE maps, so if we're here trying to handle a dynamic
3930   // alloca, we're not going to succeed. X86SelectAddress has a
3931   // check for dynamic allocas, because it's called directly from
3932   // various places, but targetMaterializeAlloca also needs a check
3933   // in order to avoid recursion between getRegForValue,
3934   // X86SelectAddrss, and targetMaterializeAlloca.
3935   if (!FuncInfo.StaticAllocaMap.count(C))
3936     return 0;
3937   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3938 
3939   X86AddressMode AM;
3940   if (!X86SelectAddress(C, AM))
3941     return 0;
3942   unsigned Opc =
3943       TLI.getPointerTy(DL) == MVT::i32
3944           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3945           : X86::LEA64r;
3946   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3947   Register ResultReg = createResultReg(RC);
3948   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3949                          TII.get(Opc), ResultReg), AM);
3950   return ResultReg;
3951 }
3952 
3953 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3954   MVT VT;
3955   if (!isTypeLegal(CF->getType(), VT))
3956     return 0;
3957 
3958   // Get opcode and regclass for the given zero.
3959   bool HasSSE1 = Subtarget->hasSSE1();
3960   bool HasSSE2 = Subtarget->hasSSE2();
3961   bool HasAVX512 = Subtarget->hasAVX512();
3962   unsigned Opc = 0;
3963   switch (VT.SimpleTy) {
3964   default: return 0;
3965   case MVT::f16:
3966     Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH;
3967     break;
3968   case MVT::f32:
3969     Opc = HasAVX512 ? X86::AVX512_FsFLD0SS
3970           : HasSSE1 ? X86::FsFLD0SS
3971                     : X86::LD_Fp032;
3972     break;
3973   case MVT::f64:
3974     Opc = HasAVX512 ? X86::AVX512_FsFLD0SD
3975           : HasSSE2 ? X86::FsFLD0SD
3976                     : X86::LD_Fp064;
3977     break;
3978   case MVT::f80:
3979     // No f80 support yet.
3980     return 0;
3981   }
3982 
3983   Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3984   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
3985   return ResultReg;
3986 }
3987 
3988 
3989 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3990                                       const LoadInst *LI) {
3991   const Value *Ptr = LI->getPointerOperand();
3992   X86AddressMode AM;
3993   if (!X86SelectAddress(Ptr, AM))
3994     return false;
3995 
3996   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3997 
3998   unsigned Size = DL.getTypeAllocSize(LI->getType());
3999 
4000   SmallVector<MachineOperand, 8> AddrOps;
4001   AM.getFullAddress(AddrOps);
4002 
4003   MachineInstr *Result = XII.foldMemoryOperandImpl(
4004       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
4005       /*AllowCommute=*/true);
4006   if (!Result)
4007     return false;
4008 
4009   // The index register could be in the wrong register class.  Unfortunately,
4010   // foldMemoryOperandImpl could have commuted the instruction so its not enough
4011   // to just look at OpNo + the offset to the index reg.  We actually need to
4012   // scan the instruction to find the index reg and see if its the correct reg
4013   // class.
4014   unsigned OperandNo = 0;
4015   for (MachineInstr::mop_iterator I = Result->operands_begin(),
4016        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
4017     MachineOperand &MO = *I;
4018     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
4019       continue;
4020     // Found the index reg, now try to rewrite it.
4021     Register IndexReg = constrainOperandRegClass(Result->getDesc(),
4022                                                  MO.getReg(), OperandNo);
4023     if (IndexReg == MO.getReg())
4024       continue;
4025     MO.setReg(IndexReg);
4026   }
4027 
4028   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
4029   Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
4030   MachineBasicBlock::iterator I(MI);
4031   removeDeadCode(I, std::next(I));
4032   return true;
4033 }
4034 
4035 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
4036                                         const TargetRegisterClass *RC,
4037                                         unsigned Op0, unsigned Op1,
4038                                         unsigned Op2, unsigned Op3) {
4039   const MCInstrDesc &II = TII.get(MachineInstOpcode);
4040 
4041   Register ResultReg = createResultReg(RC);
4042   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4043   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4044   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4045   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4046 
4047   if (II.getNumDefs() >= 1)
4048     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
4049         .addReg(Op0)
4050         .addReg(Op1)
4051         .addReg(Op2)
4052         .addReg(Op3);
4053   else {
4054     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
4055         .addReg(Op0)
4056         .addReg(Op1)
4057         .addReg(Op2)
4058         .addReg(Op3);
4059     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
4060             ResultReg)
4061         .addReg(II.implicit_defs()[0]);
4062   }
4063   return ResultReg;
4064 }
4065 
4066 
4067 namespace llvm {
4068   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4069                                 const TargetLibraryInfo *libInfo) {
4070     return new X86FastISel(funcInfo, libInfo);
4071   }
4072 }
4073