1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/IntrinsicsX86.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Target/TargetOptions.h" 43 using namespace llvm; 44 45 namespace { 46 47 class X86FastISel final : public FastISel { 48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 49 /// make the right decision when generating code for different targets. 50 const X86Subtarget *Subtarget; 51 52 public: 53 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 54 const TargetLibraryInfo *libInfo) 55 : FastISel(funcInfo, libInfo) { 56 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 57 } 58 59 bool fastSelectInstruction(const Instruction *I) override; 60 61 /// The specified machine instr operand is a vreg, and that 62 /// vreg is being provided by the specified load instruction. If possible, 63 /// try to fold the load as an operand to the instruction, returning true if 64 /// possible. 65 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 66 const LoadInst *LI) override; 67 68 bool fastLowerArguments() override; 69 bool fastLowerCall(CallLoweringInfo &CLI) override; 70 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 71 72 #include "X86GenFastISel.inc" 73 74 private: 75 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 76 const DebugLoc &DL); 77 78 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 79 unsigned &ResultReg, unsigned Alignment = 1); 80 81 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 82 MachineMemOperand *MMO = nullptr, bool Aligned = false); 83 bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 84 MachineMemOperand *MMO = nullptr, bool Aligned = false); 85 86 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 87 unsigned &ResultReg); 88 89 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 90 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 91 92 bool X86SelectLoad(const Instruction *I); 93 94 bool X86SelectStore(const Instruction *I); 95 96 bool X86SelectRet(const Instruction *I); 97 98 bool X86SelectCmp(const Instruction *I); 99 100 bool X86SelectZExt(const Instruction *I); 101 102 bool X86SelectSExt(const Instruction *I); 103 104 bool X86SelectBranch(const Instruction *I); 105 106 bool X86SelectShift(const Instruction *I); 107 108 bool X86SelectDivRem(const Instruction *I); 109 110 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 111 112 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 113 114 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 115 116 bool X86SelectSelect(const Instruction *I); 117 118 bool X86SelectTrunc(const Instruction *I); 119 120 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 121 const TargetRegisterClass *RC); 122 123 bool X86SelectFPExt(const Instruction *I); 124 bool X86SelectFPTrunc(const Instruction *I); 125 bool X86SelectSIToFP(const Instruction *I); 126 bool X86SelectUIToFP(const Instruction *I); 127 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 128 129 const X86InstrInfo *getInstrInfo() const { 130 return Subtarget->getInstrInfo(); 131 } 132 const X86TargetMachine *getTargetMachine() const { 133 return static_cast<const X86TargetMachine *>(&TM); 134 } 135 136 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 137 138 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 139 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 140 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 141 unsigned fastMaterializeConstant(const Constant *C) override; 142 143 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 144 145 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 146 147 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 148 /// computed in an SSE register, not on the X87 floating point stack. 149 bool isScalarFPTypeInSSEReg(EVT VT) const { 150 return (VT == MVT::f64 && Subtarget->hasSSE2()) || 151 (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16; 152 } 153 154 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 155 156 bool IsMemcpySmall(uint64_t Len); 157 158 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 159 X86AddressMode SrcAM, uint64_t Len); 160 161 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 162 const Value *Cond); 163 164 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 165 X86AddressMode &AM); 166 167 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 168 const TargetRegisterClass *RC, unsigned Op0, 169 unsigned Op1, unsigned Op2, unsigned Op3); 170 }; 171 172 } // end anonymous namespace. 173 174 static std::pair<unsigned, bool> 175 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 176 unsigned CC; 177 bool NeedSwap = false; 178 179 // SSE Condition code mapping: 180 // 0 - EQ 181 // 1 - LT 182 // 2 - LE 183 // 3 - UNORD 184 // 4 - NEQ 185 // 5 - NLT 186 // 6 - NLE 187 // 7 - ORD 188 switch (Predicate) { 189 default: llvm_unreachable("Unexpected predicate"); 190 case CmpInst::FCMP_OEQ: CC = 0; break; 191 case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]]; 192 case CmpInst::FCMP_OLT: CC = 1; break; 193 case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]]; 194 case CmpInst::FCMP_OLE: CC = 2; break; 195 case CmpInst::FCMP_UNO: CC = 3; break; 196 case CmpInst::FCMP_UNE: CC = 4; break; 197 case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]]; 198 case CmpInst::FCMP_UGE: CC = 5; break; 199 case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]]; 200 case CmpInst::FCMP_UGT: CC = 6; break; 201 case CmpInst::FCMP_ORD: CC = 7; break; 202 case CmpInst::FCMP_UEQ: CC = 8; break; 203 case CmpInst::FCMP_ONE: CC = 12; break; 204 } 205 206 return std::make_pair(CC, NeedSwap); 207 } 208 209 /// Adds a complex addressing mode to the given machine instr builder. 210 /// Note, this will constrain the index register. If its not possible to 211 /// constrain the given index register, then a new one will be created. The 212 /// IndexReg field of the addressing mode will be updated to match in this case. 213 const MachineInstrBuilder & 214 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 215 X86AddressMode &AM) { 216 // First constrain the index register. It needs to be a GR64_NOSP. 217 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 218 MIB->getNumOperands() + 219 X86::AddrIndexReg); 220 return ::addFullAddress(MIB, AM); 221 } 222 223 /// Check if it is possible to fold the condition from the XALU intrinsic 224 /// into the user. The condition code will only be updated on success. 225 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 226 const Value *Cond) { 227 if (!isa<ExtractValueInst>(Cond)) 228 return false; 229 230 const auto *EV = cast<ExtractValueInst>(Cond); 231 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 232 return false; 233 234 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 235 MVT RetVT; 236 const Function *Callee = II->getCalledFunction(); 237 Type *RetTy = 238 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 239 if (!isTypeLegal(RetTy, RetVT)) 240 return false; 241 242 if (RetVT != MVT::i32 && RetVT != MVT::i64) 243 return false; 244 245 X86::CondCode TmpCC; 246 switch (II->getIntrinsicID()) { 247 default: return false; 248 case Intrinsic::sadd_with_overflow: 249 case Intrinsic::ssub_with_overflow: 250 case Intrinsic::smul_with_overflow: 251 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 252 case Intrinsic::uadd_with_overflow: 253 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 254 } 255 256 // Check if both instructions are in the same basic block. 257 if (II->getParent() != I->getParent()) 258 return false; 259 260 // Make sure nothing is in the way 261 BasicBlock::const_iterator Start(I); 262 BasicBlock::const_iterator End(II); 263 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 264 // We only expect extractvalue instructions between the intrinsic and the 265 // instruction to be selected. 266 if (!isa<ExtractValueInst>(Itr)) 267 return false; 268 269 // Check that the extractvalue operand comes from the intrinsic. 270 const auto *EVI = cast<ExtractValueInst>(Itr); 271 if (EVI->getAggregateOperand() != II) 272 return false; 273 } 274 275 // Make sure no potentially eflags clobbering phi moves can be inserted in 276 // between. 277 auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); }; 278 if (I->isTerminator() && llvm::any_of(successors(I), HasPhis)) 279 return false; 280 281 // Make sure there are no potentially eflags clobbering constant 282 // materializations in between. 283 if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); })) 284 return false; 285 286 CC = TmpCC; 287 return true; 288 } 289 290 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 291 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 292 if (evt == MVT::Other || !evt.isSimple()) 293 // Unhandled type. Halt "fast" selection and bail. 294 return false; 295 296 VT = evt.getSimpleVT(); 297 // For now, require SSE/SSE2 for performing floating-point operations, 298 // since x87 requires additional work. 299 if (VT == MVT::f64 && !Subtarget->hasSSE2()) 300 return false; 301 if (VT == MVT::f32 && !Subtarget->hasSSE1()) 302 return false; 303 // Similarly, no f80 support yet. 304 if (VT == MVT::f80) 305 return false; 306 // We only handle legal types. For example, on x86-32 the instruction 307 // selector contains all of the 64-bit instructions from x86-64, 308 // under the assumption that i64 won't be used if the target doesn't 309 // support it. 310 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 311 } 312 313 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 314 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 315 /// Return true and the result register by reference if it is possible. 316 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 317 MachineMemOperand *MMO, unsigned &ResultReg, 318 unsigned Alignment) { 319 bool HasSSE1 = Subtarget->hasSSE1(); 320 bool HasSSE2 = Subtarget->hasSSE2(); 321 bool HasSSE41 = Subtarget->hasSSE41(); 322 bool HasAVX = Subtarget->hasAVX(); 323 bool HasAVX2 = Subtarget->hasAVX2(); 324 bool HasAVX512 = Subtarget->hasAVX512(); 325 bool HasVLX = Subtarget->hasVLX(); 326 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 327 328 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 329 if (VT == MVT::i1) 330 VT = MVT::i8; 331 332 // Get opcode and regclass of the output for the given load instruction. 333 unsigned Opc = 0; 334 switch (VT.SimpleTy) { 335 default: return false; 336 case MVT::i8: 337 Opc = X86::MOV8rm; 338 break; 339 case MVT::i16: 340 Opc = X86::MOV16rm; 341 break; 342 case MVT::i32: 343 Opc = X86::MOV32rm; 344 break; 345 case MVT::i64: 346 // Must be in x86-64 mode. 347 Opc = X86::MOV64rm; 348 break; 349 case MVT::f32: 350 Opc = HasAVX512 ? X86::VMOVSSZrm_alt 351 : HasAVX ? X86::VMOVSSrm_alt 352 : HasSSE1 ? X86::MOVSSrm_alt 353 : X86::LD_Fp32m; 354 break; 355 case MVT::f64: 356 Opc = HasAVX512 ? X86::VMOVSDZrm_alt 357 : HasAVX ? X86::VMOVSDrm_alt 358 : HasSSE2 ? X86::MOVSDrm_alt 359 : X86::LD_Fp64m; 360 break; 361 case MVT::f80: 362 // No f80 support yet. 363 return false; 364 case MVT::v4f32: 365 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 366 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 367 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 368 else if (Alignment >= 16) 369 Opc = HasVLX ? X86::VMOVAPSZ128rm : 370 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 371 else 372 Opc = HasVLX ? X86::VMOVUPSZ128rm : 373 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 374 break; 375 case MVT::v2f64: 376 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 377 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 378 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 379 else if (Alignment >= 16) 380 Opc = HasVLX ? X86::VMOVAPDZ128rm : 381 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 382 else 383 Opc = HasVLX ? X86::VMOVUPDZ128rm : 384 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 385 break; 386 case MVT::v4i32: 387 case MVT::v2i64: 388 case MVT::v8i16: 389 case MVT::v16i8: 390 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 391 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 392 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 393 else if (Alignment >= 16) 394 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 395 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 396 else 397 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 398 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 399 break; 400 case MVT::v8f32: 401 assert(HasAVX); 402 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 403 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 404 else if (IsNonTemporal && Alignment >= 16) 405 return false; // Force split for X86::VMOVNTDQArm 406 else if (Alignment >= 32) 407 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 408 else 409 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 410 break; 411 case MVT::v4f64: 412 assert(HasAVX); 413 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 414 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 415 else if (IsNonTemporal && Alignment >= 16) 416 return false; // Force split for X86::VMOVNTDQArm 417 else if (Alignment >= 32) 418 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 419 else 420 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 421 break; 422 case MVT::v8i32: 423 case MVT::v4i64: 424 case MVT::v16i16: 425 case MVT::v32i8: 426 assert(HasAVX); 427 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 428 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 429 else if (IsNonTemporal && Alignment >= 16) 430 return false; // Force split for X86::VMOVNTDQArm 431 else if (Alignment >= 32) 432 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 433 else 434 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 435 break; 436 case MVT::v16f32: 437 assert(HasAVX512); 438 if (IsNonTemporal && Alignment >= 64) 439 Opc = X86::VMOVNTDQAZrm; 440 else 441 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 442 break; 443 case MVT::v8f64: 444 assert(HasAVX512); 445 if (IsNonTemporal && Alignment >= 64) 446 Opc = X86::VMOVNTDQAZrm; 447 else 448 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 449 break; 450 case MVT::v8i64: 451 case MVT::v16i32: 452 case MVT::v32i16: 453 case MVT::v64i8: 454 assert(HasAVX512); 455 // Note: There are a lot more choices based on type with AVX-512, but 456 // there's really no advantage when the load isn't masked. 457 if (IsNonTemporal && Alignment >= 64) 458 Opc = X86::VMOVNTDQAZrm; 459 else 460 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 461 break; 462 } 463 464 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 465 466 ResultReg = createResultReg(RC); 467 MachineInstrBuilder MIB = 468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); 469 addFullAddress(MIB, AM); 470 if (MMO) 471 MIB->addMemOperand(*FuncInfo.MF, MMO); 472 return true; 473 } 474 475 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 476 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 477 /// and a displacement offset, or a GlobalAddress, 478 /// i.e. V. Return true if it is possible. 479 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 480 MachineMemOperand *MMO, bool Aligned) { 481 bool HasSSE1 = Subtarget->hasSSE1(); 482 bool HasSSE2 = Subtarget->hasSSE2(); 483 bool HasSSE4A = Subtarget->hasSSE4A(); 484 bool HasAVX = Subtarget->hasAVX(); 485 bool HasAVX512 = Subtarget->hasAVX512(); 486 bool HasVLX = Subtarget->hasVLX(); 487 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 488 489 // Get opcode and regclass of the output for the given store instruction. 490 unsigned Opc = 0; 491 switch (VT.getSimpleVT().SimpleTy) { 492 case MVT::f80: // No f80 support yet. 493 default: return false; 494 case MVT::i1: { 495 // Mask out all but lowest bit. 496 Register AndResult = createResultReg(&X86::GR8RegClass); 497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 498 TII.get(X86::AND8ri), AndResult) 499 .addReg(ValReg).addImm(1); 500 ValReg = AndResult; 501 [[fallthrough]]; // handle i1 as i8. 502 } 503 case MVT::i8: Opc = X86::MOV8mr; break; 504 case MVT::i16: Opc = X86::MOV16mr; break; 505 case MVT::i32: 506 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 507 break; 508 case MVT::i64: 509 // Must be in x86-64 mode. 510 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 511 break; 512 case MVT::f32: 513 if (HasSSE1) { 514 if (IsNonTemporal && HasSSE4A) 515 Opc = X86::MOVNTSS; 516 else 517 Opc = HasAVX512 ? X86::VMOVSSZmr : 518 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 519 } else 520 Opc = X86::ST_Fp32m; 521 break; 522 case MVT::f64: 523 if (HasSSE2) { 524 if (IsNonTemporal && HasSSE4A) 525 Opc = X86::MOVNTSD; 526 else 527 Opc = HasAVX512 ? X86::VMOVSDZmr : 528 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 529 } else 530 Opc = X86::ST_Fp64m; 531 break; 532 case MVT::x86mmx: 533 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 534 break; 535 case MVT::v4f32: 536 if (Aligned) { 537 if (IsNonTemporal) 538 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 539 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 540 else 541 Opc = HasVLX ? X86::VMOVAPSZ128mr : 542 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 543 } else 544 Opc = HasVLX ? X86::VMOVUPSZ128mr : 545 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 546 break; 547 case MVT::v2f64: 548 if (Aligned) { 549 if (IsNonTemporal) 550 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 551 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 552 else 553 Opc = HasVLX ? X86::VMOVAPDZ128mr : 554 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 555 } else 556 Opc = HasVLX ? X86::VMOVUPDZ128mr : 557 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 558 break; 559 case MVT::v4i32: 560 case MVT::v2i64: 561 case MVT::v8i16: 562 case MVT::v16i8: 563 if (Aligned) { 564 if (IsNonTemporal) 565 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 566 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 567 else 568 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 569 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 570 } else 571 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 572 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 573 break; 574 case MVT::v8f32: 575 assert(HasAVX); 576 if (Aligned) { 577 if (IsNonTemporal) 578 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 579 else 580 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 581 } else 582 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 583 break; 584 case MVT::v4f64: 585 assert(HasAVX); 586 if (Aligned) { 587 if (IsNonTemporal) 588 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 589 else 590 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 591 } else 592 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 593 break; 594 case MVT::v8i32: 595 case MVT::v4i64: 596 case MVT::v16i16: 597 case MVT::v32i8: 598 assert(HasAVX); 599 if (Aligned) { 600 if (IsNonTemporal) 601 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 602 else 603 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 604 } else 605 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 606 break; 607 case MVT::v16f32: 608 assert(HasAVX512); 609 if (Aligned) 610 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 611 else 612 Opc = X86::VMOVUPSZmr; 613 break; 614 case MVT::v8f64: 615 assert(HasAVX512); 616 if (Aligned) { 617 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 618 } else 619 Opc = X86::VMOVUPDZmr; 620 break; 621 case MVT::v8i64: 622 case MVT::v16i32: 623 case MVT::v32i16: 624 case MVT::v64i8: 625 assert(HasAVX512); 626 // Note: There are a lot more choices based on type with AVX-512, but 627 // there's really no advantage when the store isn't masked. 628 if (Aligned) 629 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 630 else 631 Opc = X86::VMOVDQU64Zmr; 632 break; 633 } 634 635 const MCInstrDesc &Desc = TII.get(Opc); 636 // Some of the instructions in the previous switch use FR128 instead 637 // of FR32 for ValReg. Make sure the register we feed the instruction 638 // matches its register class constraints. 639 // Note: This is fine to do a copy from FR32 to FR128, this is the 640 // same registers behind the scene and actually why it did not trigger 641 // any bugs before. 642 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 643 MachineInstrBuilder MIB = 644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc); 645 addFullAddress(MIB, AM).addReg(ValReg); 646 if (MMO) 647 MIB->addMemOperand(*FuncInfo.MF, MMO); 648 649 return true; 650 } 651 652 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 653 X86AddressMode &AM, 654 MachineMemOperand *MMO, bool Aligned) { 655 // Handle 'null' like i32/i64 0. 656 if (isa<ConstantPointerNull>(Val)) 657 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 658 659 // If this is a store of a simple constant, fold the constant into the store. 660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 661 unsigned Opc = 0; 662 bool Signed = true; 663 switch (VT.getSimpleVT().SimpleTy) { 664 default: break; 665 case MVT::i1: 666 Signed = false; 667 [[fallthrough]]; // Handle as i8. 668 case MVT::i8: Opc = X86::MOV8mi; break; 669 case MVT::i16: Opc = X86::MOV16mi; break; 670 case MVT::i32: Opc = X86::MOV32mi; break; 671 case MVT::i64: 672 // Must be a 32-bit sign extended value. 673 if (isInt<32>(CI->getSExtValue())) 674 Opc = X86::MOV64mi32; 675 break; 676 } 677 678 if (Opc) { 679 MachineInstrBuilder MIB = 680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)); 681 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 682 : CI->getZExtValue()); 683 if (MMO) 684 MIB->addMemOperand(*FuncInfo.MF, MMO); 685 return true; 686 } 687 } 688 689 Register ValReg = getRegForValue(Val); 690 if (ValReg == 0) 691 return false; 692 693 return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); 694 } 695 696 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 697 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 698 /// ISD::SIGN_EXTEND). 699 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 700 unsigned Src, EVT SrcVT, 701 unsigned &ResultReg) { 702 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); 703 if (RR == 0) 704 return false; 705 706 ResultReg = RR; 707 return true; 708 } 709 710 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 711 // Handle constant address. 712 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 713 // Can't handle alternate code models yet. 714 if (TM.getCodeModel() != CodeModel::Small) 715 return false; 716 717 // Can't handle TLS yet. 718 if (GV->isThreadLocal()) 719 return false; 720 721 // Can't handle !absolute_symbol references yet. 722 if (GV->isAbsoluteSymbolRef()) 723 return false; 724 725 // RIP-relative addresses can't have additional register operands, so if 726 // we've already folded stuff into the addressing mode, just force the 727 // global value into its own register, which we can use as the basereg. 728 if (!Subtarget->isPICStyleRIPRel() || 729 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 730 // Okay, we've committed to selecting this global. Set up the address. 731 AM.GV = GV; 732 733 // Allow the subtarget to classify the global. 734 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 735 736 // If this reference is relative to the pic base, set it now. 737 if (isGlobalRelativeToPICBase(GVFlags)) { 738 // FIXME: How do we know Base.Reg is free?? 739 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 740 } 741 742 // Unless the ABI requires an extra load, return a direct reference to 743 // the global. 744 if (!isGlobalStubReference(GVFlags)) { 745 if (Subtarget->isPICStyleRIPRel()) { 746 // Use rip-relative addressing if we can. Above we verified that the 747 // base and index registers are unused. 748 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 749 AM.Base.Reg = X86::RIP; 750 } 751 AM.GVOpFlags = GVFlags; 752 return true; 753 } 754 755 // Ok, we need to do a load from a stub. If we've already loaded from 756 // this stub, reuse the loaded pointer, otherwise emit the load now. 757 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V); 758 Register LoadReg; 759 if (I != LocalValueMap.end() && I->second) { 760 LoadReg = I->second; 761 } else { 762 // Issue load from stub. 763 unsigned Opc = 0; 764 const TargetRegisterClass *RC = nullptr; 765 X86AddressMode StubAM; 766 StubAM.Base.Reg = AM.Base.Reg; 767 StubAM.GV = GV; 768 StubAM.GVOpFlags = GVFlags; 769 770 // Prepare for inserting code in the local-value area. 771 SavePoint SaveInsertPt = enterLocalValueArea(); 772 773 if (TLI.getPointerTy(DL) == MVT::i64) { 774 Opc = X86::MOV64rm; 775 RC = &X86::GR64RegClass; 776 } else { 777 Opc = X86::MOV32rm; 778 RC = &X86::GR32RegClass; 779 } 780 781 if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || 782 GVFlags == X86II::MO_GOTPCREL_NORELAX) 783 StubAM.Base.Reg = X86::RIP; 784 785 LoadReg = createResultReg(RC); 786 MachineInstrBuilder LoadMI = 787 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg); 788 addFullAddress(LoadMI, StubAM); 789 790 // Ok, back to normal mode. 791 leaveLocalValueArea(SaveInsertPt); 792 793 // Prevent loading GV stub multiple times in same MBB. 794 LocalValueMap[V] = LoadReg; 795 } 796 797 // Now construct the final address. Note that the Disp, Scale, 798 // and Index values may already be set here. 799 AM.Base.Reg = LoadReg; 800 AM.GV = nullptr; 801 return true; 802 } 803 } 804 805 // If all else fails, try to materialize the value in a register. 806 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 807 if (AM.Base.Reg == 0) { 808 AM.Base.Reg = getRegForValue(V); 809 return AM.Base.Reg != 0; 810 } 811 if (AM.IndexReg == 0) { 812 assert(AM.Scale == 1 && "Scale with no index!"); 813 AM.IndexReg = getRegForValue(V); 814 return AM.IndexReg != 0; 815 } 816 } 817 818 return false; 819 } 820 821 /// X86SelectAddress - Attempt to fill in an address from the given value. 822 /// 823 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 824 SmallVector<const Value *, 32> GEPs; 825 redo_gep: 826 const User *U = nullptr; 827 unsigned Opcode = Instruction::UserOp1; 828 if (const Instruction *I = dyn_cast<Instruction>(V)) { 829 // Don't walk into other basic blocks; it's possible we haven't 830 // visited them yet, so the instructions may not yet be assigned 831 // virtual registers. 832 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 833 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 834 Opcode = I->getOpcode(); 835 U = I; 836 } 837 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 838 Opcode = C->getOpcode(); 839 U = C; 840 } 841 842 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 843 if (Ty->getAddressSpace() > 255) 844 // Fast instruction selection doesn't support the special 845 // address spaces. 846 return false; 847 848 switch (Opcode) { 849 default: break; 850 case Instruction::BitCast: 851 // Look past bitcasts. 852 return X86SelectAddress(U->getOperand(0), AM); 853 854 case Instruction::IntToPtr: 855 // Look past no-op inttoptrs. 856 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 857 TLI.getPointerTy(DL)) 858 return X86SelectAddress(U->getOperand(0), AM); 859 break; 860 861 case Instruction::PtrToInt: 862 // Look past no-op ptrtoints. 863 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 864 return X86SelectAddress(U->getOperand(0), AM); 865 break; 866 867 case Instruction::Alloca: { 868 // Do static allocas. 869 const AllocaInst *A = cast<AllocaInst>(V); 870 DenseMap<const AllocaInst *, int>::iterator SI = 871 FuncInfo.StaticAllocaMap.find(A); 872 if (SI != FuncInfo.StaticAllocaMap.end()) { 873 AM.BaseType = X86AddressMode::FrameIndexBase; 874 AM.Base.FrameIndex = SI->second; 875 return true; 876 } 877 break; 878 } 879 880 case Instruction::Add: { 881 // Adds of constants are common and easy enough. 882 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 883 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 884 // They have to fit in the 32-bit signed displacement field though. 885 if (isInt<32>(Disp)) { 886 AM.Disp = (uint32_t)Disp; 887 return X86SelectAddress(U->getOperand(0), AM); 888 } 889 } 890 break; 891 } 892 893 case Instruction::GetElementPtr: { 894 X86AddressMode SavedAM = AM; 895 896 // Pattern-match simple GEPs. 897 uint64_t Disp = (int32_t)AM.Disp; 898 unsigned IndexReg = AM.IndexReg; 899 unsigned Scale = AM.Scale; 900 gep_type_iterator GTI = gep_type_begin(U); 901 // Iterate through the indices, folding what we can. Constants can be 902 // folded, and one dynamic index can be handled, if the scale is supported. 903 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 904 i != e; ++i, ++GTI) { 905 const Value *Op = *i; 906 if (StructType *STy = GTI.getStructTypeOrNull()) { 907 const StructLayout *SL = DL.getStructLayout(STy); 908 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 909 continue; 910 } 911 912 // A array/variable index is always of the form i*S where S is the 913 // constant scale size. See if we can push the scale into immediates. 914 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 915 for (;;) { 916 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 917 // Constant-offset addressing. 918 Disp += CI->getSExtValue() * S; 919 break; 920 } 921 if (canFoldAddIntoGEP(U, Op)) { 922 // A compatible add with a constant operand. Fold the constant. 923 ConstantInt *CI = 924 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 925 Disp += CI->getSExtValue() * S; 926 // Iterate on the other operand. 927 Op = cast<AddOperator>(Op)->getOperand(0); 928 continue; 929 } 930 if (IndexReg == 0 && 931 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 932 (S == 1 || S == 2 || S == 4 || S == 8)) { 933 // Scaled-index addressing. 934 Scale = S; 935 IndexReg = getRegForGEPIndex(Op); 936 if (IndexReg == 0) 937 return false; 938 break; 939 } 940 // Unsupported. 941 goto unsupported_gep; 942 } 943 } 944 945 // Check for displacement overflow. 946 if (!isInt<32>(Disp)) 947 break; 948 949 AM.IndexReg = IndexReg; 950 AM.Scale = Scale; 951 AM.Disp = (uint32_t)Disp; 952 GEPs.push_back(V); 953 954 if (const GetElementPtrInst *GEP = 955 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 956 // Ok, the GEP indices were covered by constant-offset and scaled-index 957 // addressing. Update the address state and move on to examining the base. 958 V = GEP; 959 goto redo_gep; 960 } else if (X86SelectAddress(U->getOperand(0), AM)) { 961 return true; 962 } 963 964 // If we couldn't merge the gep value into this addr mode, revert back to 965 // our address and just match the value instead of completely failing. 966 AM = SavedAM; 967 968 for (const Value *I : reverse(GEPs)) 969 if (handleConstantAddresses(I, AM)) 970 return true; 971 972 return false; 973 unsupported_gep: 974 // Ok, the GEP indices weren't all covered. 975 break; 976 } 977 } 978 979 return handleConstantAddresses(V, AM); 980 } 981 982 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 983 /// 984 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 985 const User *U = nullptr; 986 unsigned Opcode = Instruction::UserOp1; 987 const Instruction *I = dyn_cast<Instruction>(V); 988 // Record if the value is defined in the same basic block. 989 // 990 // This information is crucial to know whether or not folding an 991 // operand is valid. 992 // Indeed, FastISel generates or reuses a virtual register for all 993 // operands of all instructions it selects. Obviously, the definition and 994 // its uses must use the same virtual register otherwise the produced 995 // code is incorrect. 996 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 997 // registers for values that are alive across basic blocks. This ensures 998 // that the values are consistently set between across basic block, even 999 // if different instruction selection mechanisms are used (e.g., a mix of 1000 // SDISel and FastISel). 1001 // For values local to a basic block, the instruction selection process 1002 // generates these virtual registers with whatever method is appropriate 1003 // for its needs. In particular, FastISel and SDISel do not share the way 1004 // local virtual registers are set. 1005 // Therefore, this is impossible (or at least unsafe) to share values 1006 // between basic blocks unless they use the same instruction selection 1007 // method, which is not guarantee for X86. 1008 // Moreover, things like hasOneUse could not be used accurately, if we 1009 // allow to reference values across basic blocks whereas they are not 1010 // alive across basic blocks initially. 1011 bool InMBB = true; 1012 if (I) { 1013 Opcode = I->getOpcode(); 1014 U = I; 1015 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1016 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1017 Opcode = C->getOpcode(); 1018 U = C; 1019 } 1020 1021 switch (Opcode) { 1022 default: break; 1023 case Instruction::BitCast: 1024 // Look past bitcasts if its operand is in the same BB. 1025 if (InMBB) 1026 return X86SelectCallAddress(U->getOperand(0), AM); 1027 break; 1028 1029 case Instruction::IntToPtr: 1030 // Look past no-op inttoptrs if its operand is in the same BB. 1031 if (InMBB && 1032 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1033 TLI.getPointerTy(DL)) 1034 return X86SelectCallAddress(U->getOperand(0), AM); 1035 break; 1036 1037 case Instruction::PtrToInt: 1038 // Look past no-op ptrtoints if its operand is in the same BB. 1039 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1040 return X86SelectCallAddress(U->getOperand(0), AM); 1041 break; 1042 } 1043 1044 // Handle constant address. 1045 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1046 // Can't handle alternate code models yet. 1047 if (TM.getCodeModel() != CodeModel::Small) 1048 return false; 1049 1050 // RIP-relative addresses can't have additional register operands. 1051 if (Subtarget->isPICStyleRIPRel() && 1052 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1053 return false; 1054 1055 // Can't handle TLS. 1056 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1057 if (GVar->isThreadLocal()) 1058 return false; 1059 1060 // Okay, we've committed to selecting this global. Set up the basic address. 1061 AM.GV = GV; 1062 1063 // Return a direct reference to the global. Fastisel can handle calls to 1064 // functions that require loads, such as dllimport and nonlazybind 1065 // functions. 1066 if (Subtarget->isPICStyleRIPRel()) { 1067 // Use rip-relative addressing if we can. Above we verified that the 1068 // base and index registers are unused. 1069 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1070 AM.Base.Reg = X86::RIP; 1071 } else { 1072 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1073 } 1074 1075 return true; 1076 } 1077 1078 // If all else fails, try to materialize the value in a register. 1079 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1080 auto GetCallRegForValue = [this](const Value *V) { 1081 Register Reg = getRegForValue(V); 1082 1083 // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. 1084 if (Reg && Subtarget->isTarget64BitILP32()) { 1085 Register CopyReg = createResultReg(&X86::GR32RegClass); 1086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr), 1087 CopyReg) 1088 .addReg(Reg); 1089 1090 Register ExtReg = createResultReg(&X86::GR64RegClass); 1091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1092 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg) 1093 .addImm(0) 1094 .addReg(CopyReg) 1095 .addImm(X86::sub_32bit); 1096 Reg = ExtReg; 1097 } 1098 1099 return Reg; 1100 }; 1101 1102 if (AM.Base.Reg == 0) { 1103 AM.Base.Reg = GetCallRegForValue(V); 1104 return AM.Base.Reg != 0; 1105 } 1106 if (AM.IndexReg == 0) { 1107 assert(AM.Scale == 1 && "Scale with no index!"); 1108 AM.IndexReg = GetCallRegForValue(V); 1109 return AM.IndexReg != 0; 1110 } 1111 } 1112 1113 return false; 1114 } 1115 1116 1117 /// X86SelectStore - Select and emit code to implement store instructions. 1118 bool X86FastISel::X86SelectStore(const Instruction *I) { 1119 // Atomic stores need special handling. 1120 const StoreInst *S = cast<StoreInst>(I); 1121 1122 if (S->isAtomic()) 1123 return false; 1124 1125 const Value *PtrV = I->getOperand(1); 1126 if (TLI.supportSwiftError()) { 1127 // Swifterror values can come from either a function parameter with 1128 // swifterror attribute or an alloca with swifterror attribute. 1129 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1130 if (Arg->hasSwiftErrorAttr()) 1131 return false; 1132 } 1133 1134 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1135 if (Alloca->isSwiftError()) 1136 return false; 1137 } 1138 } 1139 1140 const Value *Val = S->getValueOperand(); 1141 const Value *Ptr = S->getPointerOperand(); 1142 1143 MVT VT; 1144 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1145 return false; 1146 1147 Align Alignment = S->getAlign(); 1148 Align ABIAlignment = DL.getABITypeAlign(Val->getType()); 1149 bool Aligned = Alignment >= ABIAlignment; 1150 1151 X86AddressMode AM; 1152 if (!X86SelectAddress(Ptr, AM)) 1153 return false; 1154 1155 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1156 } 1157 1158 /// X86SelectRet - Select and emit code to implement ret instructions. 1159 bool X86FastISel::X86SelectRet(const Instruction *I) { 1160 const ReturnInst *Ret = cast<ReturnInst>(I); 1161 const Function &F = *I->getParent()->getParent(); 1162 const X86MachineFunctionInfo *X86MFInfo = 1163 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1164 1165 if (!FuncInfo.CanLowerReturn) 1166 return false; 1167 1168 if (TLI.supportSwiftError() && 1169 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1170 return false; 1171 1172 if (TLI.supportSplitCSR(FuncInfo.MF)) 1173 return false; 1174 1175 CallingConv::ID CC = F.getCallingConv(); 1176 if (CC != CallingConv::C && 1177 CC != CallingConv::Fast && 1178 CC != CallingConv::Tail && 1179 CC != CallingConv::SwiftTail && 1180 CC != CallingConv::X86_FastCall && 1181 CC != CallingConv::X86_StdCall && 1182 CC != CallingConv::X86_ThisCall && 1183 CC != CallingConv::X86_64_SysV && 1184 CC != CallingConv::Win64) 1185 return false; 1186 1187 // Don't handle popping bytes if they don't fit the ret's immediate. 1188 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1189 return false; 1190 1191 // fastcc with -tailcallopt is intended to provide a guaranteed 1192 // tail call optimization. Fastisel doesn't know how to do that. 1193 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 1194 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 1195 return false; 1196 1197 // Let SDISel handle vararg functions. 1198 if (F.isVarArg()) 1199 return false; 1200 1201 // Build a list of return value registers. 1202 SmallVector<unsigned, 4> RetRegs; 1203 1204 if (Ret->getNumOperands() > 0) { 1205 SmallVector<ISD::OutputArg, 4> Outs; 1206 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1207 1208 // Analyze operands of the call, assigning locations to each operand. 1209 SmallVector<CCValAssign, 16> ValLocs; 1210 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1211 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1212 1213 const Value *RV = Ret->getOperand(0); 1214 Register Reg = getRegForValue(RV); 1215 if (Reg == 0) 1216 return false; 1217 1218 // Only handle a single return value for now. 1219 if (ValLocs.size() != 1) 1220 return false; 1221 1222 CCValAssign &VA = ValLocs[0]; 1223 1224 // Don't bother handling odd stuff for now. 1225 if (VA.getLocInfo() != CCValAssign::Full) 1226 return false; 1227 // Only handle register returns for now. 1228 if (!VA.isRegLoc()) 1229 return false; 1230 1231 // The calling-convention tables for x87 returns don't tell 1232 // the whole story. 1233 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1234 return false; 1235 1236 unsigned SrcReg = Reg + VA.getValNo(); 1237 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1238 EVT DstVT = VA.getValVT(); 1239 // Special handling for extended integers. 1240 if (SrcVT != DstVT) { 1241 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1242 return false; 1243 1244 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1245 return false; 1246 1247 assert(DstVT == MVT::i32 && "X86 should always ext to i32"); 1248 1249 if (SrcVT == MVT::i1) { 1250 if (Outs[0].Flags.isSExt()) 1251 return false; 1252 // TODO 1253 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg); 1254 SrcVT = MVT::i8; 1255 } 1256 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : 1257 ISD::SIGN_EXTEND; 1258 // TODO 1259 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg); 1260 } 1261 1262 // Make the copy. 1263 Register DstReg = VA.getLocReg(); 1264 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1265 // Avoid a cross-class copy. This is very unlikely. 1266 if (!SrcRC->contains(DstReg)) 1267 return false; 1268 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1269 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1270 1271 // Add register to return instruction. 1272 RetRegs.push_back(VA.getLocReg()); 1273 } 1274 1275 // Swift calling convention does not require we copy the sret argument 1276 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1277 1278 // All x86 ABIs require that for returning structs by value we copy 1279 // the sret argument into %rax/%eax (depending on ABI) for the return. 1280 // We saved the argument into a virtual register in the entry block, 1281 // so now we copy the value out and into %rax/%eax. 1282 if (F.hasStructRetAttr() && CC != CallingConv::Swift && 1283 CC != CallingConv::SwiftTail) { 1284 Register Reg = X86MFInfo->getSRetReturnReg(); 1285 assert(Reg && 1286 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1287 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1288 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1289 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1290 RetRegs.push_back(RetReg); 1291 } 1292 1293 // Now emit the RET. 1294 MachineInstrBuilder MIB; 1295 if (X86MFInfo->getBytesToPopOnReturn()) { 1296 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1297 TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) 1298 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1299 } else { 1300 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1301 TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); 1302 } 1303 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1304 MIB.addReg(RetRegs[i], RegState::Implicit); 1305 return true; 1306 } 1307 1308 /// X86SelectLoad - Select and emit code to implement load instructions. 1309 /// 1310 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1311 const LoadInst *LI = cast<LoadInst>(I); 1312 1313 // Atomic loads need special handling. 1314 if (LI->isAtomic()) 1315 return false; 1316 1317 const Value *SV = I->getOperand(0); 1318 if (TLI.supportSwiftError()) { 1319 // Swifterror values can come from either a function parameter with 1320 // swifterror attribute or an alloca with swifterror attribute. 1321 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1322 if (Arg->hasSwiftErrorAttr()) 1323 return false; 1324 } 1325 1326 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1327 if (Alloca->isSwiftError()) 1328 return false; 1329 } 1330 } 1331 1332 MVT VT; 1333 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1334 return false; 1335 1336 const Value *Ptr = LI->getPointerOperand(); 1337 1338 X86AddressMode AM; 1339 if (!X86SelectAddress(Ptr, AM)) 1340 return false; 1341 1342 unsigned ResultReg = 0; 1343 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1344 LI->getAlign().value())) 1345 return false; 1346 1347 updateValueMap(I, ResultReg); 1348 return true; 1349 } 1350 1351 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1352 bool HasAVX512 = Subtarget->hasAVX512(); 1353 bool HasAVX = Subtarget->hasAVX(); 1354 bool HasSSE1 = Subtarget->hasSSE1(); 1355 bool HasSSE2 = Subtarget->hasSSE2(); 1356 1357 switch (VT.getSimpleVT().SimpleTy) { 1358 default: return 0; 1359 case MVT::i8: return X86::CMP8rr; 1360 case MVT::i16: return X86::CMP16rr; 1361 case MVT::i32: return X86::CMP32rr; 1362 case MVT::i64: return X86::CMP64rr; 1363 case MVT::f32: 1364 return HasAVX512 ? X86::VUCOMISSZrr 1365 : HasAVX ? X86::VUCOMISSrr 1366 : HasSSE1 ? X86::UCOMISSrr 1367 : 0; 1368 case MVT::f64: 1369 return HasAVX512 ? X86::VUCOMISDZrr 1370 : HasAVX ? X86::VUCOMISDrr 1371 : HasSSE2 ? X86::UCOMISDrr 1372 : 0; 1373 } 1374 } 1375 1376 /// If we have a comparison with RHS as the RHS of the comparison, return an 1377 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1378 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1379 switch (VT.getSimpleVT().SimpleTy) { 1380 // Otherwise, we can't fold the immediate into this comparison. 1381 default: 1382 return 0; 1383 case MVT::i8: 1384 return X86::CMP8ri; 1385 case MVT::i16: 1386 return X86::CMP16ri; 1387 case MVT::i32: 1388 return X86::CMP32ri; 1389 case MVT::i64: 1390 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1391 // field. 1392 return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0; 1393 } 1394 } 1395 1396 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1397 const DebugLoc &CurMIMD) { 1398 Register Op0Reg = getRegForValue(Op0); 1399 if (Op0Reg == 0) return false; 1400 1401 // Handle 'null' like i32/i64 0. 1402 if (isa<ConstantPointerNull>(Op1)) 1403 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1404 1405 // We have two options: compare with register or immediate. If the RHS of 1406 // the compare is an immediate that we can fold into this compare, use 1407 // CMPri, otherwise use CMPrr. 1408 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1409 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc)) 1411 .addReg(Op0Reg) 1412 .addImm(Op1C->getSExtValue()); 1413 return true; 1414 } 1415 } 1416 1417 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1418 if (CompareOpc == 0) return false; 1419 1420 Register Op1Reg = getRegForValue(Op1); 1421 if (Op1Reg == 0) return false; 1422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc)) 1423 .addReg(Op0Reg) 1424 .addReg(Op1Reg); 1425 1426 return true; 1427 } 1428 1429 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1430 const CmpInst *CI = cast<CmpInst>(I); 1431 1432 MVT VT; 1433 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1434 return false; 1435 1436 // Below code only works for scalars. 1437 if (VT.isVector()) 1438 return false; 1439 1440 // Try to optimize or fold the cmp. 1441 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1442 unsigned ResultReg = 0; 1443 switch (Predicate) { 1444 default: break; 1445 case CmpInst::FCMP_FALSE: { 1446 ResultReg = createResultReg(&X86::GR32RegClass); 1447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0), 1448 ResultReg); 1449 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit); 1450 if (!ResultReg) 1451 return false; 1452 break; 1453 } 1454 case CmpInst::FCMP_TRUE: { 1455 ResultReg = createResultReg(&X86::GR8RegClass); 1456 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), 1457 ResultReg).addImm(1); 1458 break; 1459 } 1460 } 1461 1462 if (ResultReg) { 1463 updateValueMap(I, ResultReg); 1464 return true; 1465 } 1466 1467 const Value *LHS = CI->getOperand(0); 1468 const Value *RHS = CI->getOperand(1); 1469 1470 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1471 // We don't have to materialize a zero constant for this case and can just use 1472 // %x again on the RHS. 1473 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1474 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1475 if (RHSC && RHSC->isNullValue()) 1476 RHS = LHS; 1477 } 1478 1479 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1480 static const uint16_t SETFOpcTable[2][3] = { 1481 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1482 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1483 }; 1484 const uint16_t *SETFOpc = nullptr; 1485 switch (Predicate) { 1486 default: break; 1487 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1488 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1489 } 1490 1491 ResultReg = createResultReg(&X86::GR8RegClass); 1492 if (SETFOpc) { 1493 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1494 return false; 1495 1496 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 1497 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 1498 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1499 FlagReg1).addImm(SETFOpc[0]); 1500 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1501 FlagReg2).addImm(SETFOpc[1]); 1502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]), 1503 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1504 updateValueMap(I, ResultReg); 1505 return true; 1506 } 1507 1508 X86::CondCode CC; 1509 bool SwapArgs; 1510 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1511 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1512 1513 if (SwapArgs) 1514 std::swap(LHS, RHS); 1515 1516 // Emit a compare of LHS/RHS. 1517 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1518 return false; 1519 1520 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1521 ResultReg).addImm(CC); 1522 updateValueMap(I, ResultReg); 1523 return true; 1524 } 1525 1526 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1527 EVT DstVT = TLI.getValueType(DL, I->getType()); 1528 if (!TLI.isTypeLegal(DstVT)) 1529 return false; 1530 1531 Register ResultReg = getRegForValue(I->getOperand(0)); 1532 if (ResultReg == 0) 1533 return false; 1534 1535 // Handle zero-extension from i1 to i8, which is common. 1536 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1537 if (SrcVT == MVT::i1) { 1538 // Set the high bits to zero. 1539 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1540 SrcVT = MVT::i8; 1541 1542 if (ResultReg == 0) 1543 return false; 1544 } 1545 1546 if (DstVT == MVT::i64) { 1547 // Handle extension to 64-bits via sub-register shenanigans. 1548 unsigned MovInst; 1549 1550 switch (SrcVT.SimpleTy) { 1551 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1552 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1553 case MVT::i32: MovInst = X86::MOV32rr; break; 1554 default: llvm_unreachable("Unexpected zext to i64 source type"); 1555 } 1556 1557 Register Result32 = createResultReg(&X86::GR32RegClass); 1558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32) 1559 .addReg(ResultReg); 1560 1561 ResultReg = createResultReg(&X86::GR64RegClass); 1562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), 1563 ResultReg) 1564 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1565 } else if (DstVT == MVT::i16) { 1566 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1567 // extend to 32-bits and then extract down to 16-bits. 1568 Register Result32 = createResultReg(&X86::GR32RegClass); 1569 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8), 1570 Result32).addReg(ResultReg); 1571 1572 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1573 } else if (DstVT != MVT::i8) { 1574 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1575 ResultReg); 1576 if (ResultReg == 0) 1577 return false; 1578 } 1579 1580 updateValueMap(I, ResultReg); 1581 return true; 1582 } 1583 1584 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1585 EVT DstVT = TLI.getValueType(DL, I->getType()); 1586 if (!TLI.isTypeLegal(DstVT)) 1587 return false; 1588 1589 Register ResultReg = getRegForValue(I->getOperand(0)); 1590 if (ResultReg == 0) 1591 return false; 1592 1593 // Handle sign-extension from i1 to i8. 1594 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1595 if (SrcVT == MVT::i1) { 1596 // Set the high bits to zero. 1597 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1598 if (ZExtReg == 0) 1599 return false; 1600 1601 // Negate the result to make an 8-bit sign extended value. 1602 ResultReg = createResultReg(&X86::GR8RegClass); 1603 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r), 1604 ResultReg).addReg(ZExtReg); 1605 1606 SrcVT = MVT::i8; 1607 } 1608 1609 if (DstVT == MVT::i16) { 1610 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1611 // extend to 32-bits and then extract down to 16-bits. 1612 Register Result32 = createResultReg(&X86::GR32RegClass); 1613 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8), 1614 Result32).addReg(ResultReg); 1615 1616 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1617 } else if (DstVT != MVT::i8) { 1618 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1619 ResultReg); 1620 if (ResultReg == 0) 1621 return false; 1622 } 1623 1624 updateValueMap(I, ResultReg); 1625 return true; 1626 } 1627 1628 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1629 // Unconditional branches are selected by tablegen-generated code. 1630 // Handle a conditional branch. 1631 const BranchInst *BI = cast<BranchInst>(I); 1632 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1633 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1634 1635 // Fold the common case of a conditional branch with a comparison 1636 // in the same block (values defined on other blocks may not have 1637 // initialized registers). 1638 X86::CondCode CC; 1639 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1640 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1641 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1642 1643 // Try to optimize or fold the cmp. 1644 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1645 switch (Predicate) { 1646 default: break; 1647 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true; 1648 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, MIMD.getDL()); return true; 1649 } 1650 1651 const Value *CmpLHS = CI->getOperand(0); 1652 const Value *CmpRHS = CI->getOperand(1); 1653 1654 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1655 // 0.0. 1656 // We don't have to materialize a zero constant for this case and can just 1657 // use %x again on the RHS. 1658 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1659 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1660 if (CmpRHSC && CmpRHSC->isNullValue()) 1661 CmpRHS = CmpLHS; 1662 } 1663 1664 // Try to take advantage of fallthrough opportunities. 1665 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1666 std::swap(TrueMBB, FalseMBB); 1667 Predicate = CmpInst::getInversePredicate(Predicate); 1668 } 1669 1670 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1671 // code check. Instead two branch instructions are required to check all 1672 // the flags. First we change the predicate to a supported condition code, 1673 // which will be the first branch. Later one we will emit the second 1674 // branch. 1675 bool NeedExtraBranch = false; 1676 switch (Predicate) { 1677 default: break; 1678 case CmpInst::FCMP_OEQ: 1679 std::swap(TrueMBB, FalseMBB); 1680 [[fallthrough]]; 1681 case CmpInst::FCMP_UNE: 1682 NeedExtraBranch = true; 1683 Predicate = CmpInst::FCMP_ONE; 1684 break; 1685 } 1686 1687 bool SwapArgs; 1688 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1689 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1690 1691 if (SwapArgs) 1692 std::swap(CmpLHS, CmpRHS); 1693 1694 // Emit a compare of the LHS and RHS, setting the flags. 1695 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1696 return false; 1697 1698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1699 .addMBB(TrueMBB).addImm(CC); 1700 1701 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1702 // to UNE above). 1703 if (NeedExtraBranch) { 1704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1705 .addMBB(TrueMBB).addImm(X86::COND_P); 1706 } 1707 1708 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1709 return true; 1710 } 1711 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1712 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1713 // typically happen for _Bool and C++ bools. 1714 MVT SourceVT; 1715 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1716 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1717 unsigned TestOpc = 0; 1718 switch (SourceVT.SimpleTy) { 1719 default: break; 1720 case MVT::i8: TestOpc = X86::TEST8ri; break; 1721 case MVT::i16: TestOpc = X86::TEST16ri; break; 1722 case MVT::i32: TestOpc = X86::TEST32ri; break; 1723 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1724 } 1725 if (TestOpc) { 1726 Register OpReg = getRegForValue(TI->getOperand(0)); 1727 if (OpReg == 0) return false; 1728 1729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc)) 1730 .addReg(OpReg).addImm(1); 1731 1732 unsigned JmpCond = X86::COND_NE; 1733 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1734 std::swap(TrueMBB, FalseMBB); 1735 JmpCond = X86::COND_E; 1736 } 1737 1738 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1739 .addMBB(TrueMBB).addImm(JmpCond); 1740 1741 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1742 return true; 1743 } 1744 } 1745 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1746 // Fake request the condition, otherwise the intrinsic might be completely 1747 // optimized away. 1748 Register TmpReg = getRegForValue(BI->getCondition()); 1749 if (TmpReg == 0) 1750 return false; 1751 1752 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1753 .addMBB(TrueMBB).addImm(CC); 1754 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1755 return true; 1756 } 1757 1758 // Otherwise do a clumsy setcc and re-test it. 1759 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1760 // in an explicit cast, so make sure to handle that correctly. 1761 Register OpReg = getRegForValue(BI->getCondition()); 1762 if (OpReg == 0) return false; 1763 1764 // In case OpReg is a K register, COPY to a GPR 1765 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1766 unsigned KOpReg = OpReg; 1767 OpReg = createResultReg(&X86::GR32RegClass); 1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1769 TII.get(TargetOpcode::COPY), OpReg) 1770 .addReg(KOpReg); 1771 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit); 1772 } 1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 1774 .addReg(OpReg) 1775 .addImm(1); 1776 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1777 .addMBB(TrueMBB).addImm(X86::COND_NE); 1778 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1779 return true; 1780 } 1781 1782 bool X86FastISel::X86SelectShift(const Instruction *I) { 1783 unsigned CReg = 0, OpReg = 0; 1784 const TargetRegisterClass *RC = nullptr; 1785 if (I->getType()->isIntegerTy(8)) { 1786 CReg = X86::CL; 1787 RC = &X86::GR8RegClass; 1788 switch (I->getOpcode()) { 1789 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1790 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1791 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1792 default: return false; 1793 } 1794 } else if (I->getType()->isIntegerTy(16)) { 1795 CReg = X86::CX; 1796 RC = &X86::GR16RegClass; 1797 switch (I->getOpcode()) { 1798 default: llvm_unreachable("Unexpected shift opcode"); 1799 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1800 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1801 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1802 } 1803 } else if (I->getType()->isIntegerTy(32)) { 1804 CReg = X86::ECX; 1805 RC = &X86::GR32RegClass; 1806 switch (I->getOpcode()) { 1807 default: llvm_unreachable("Unexpected shift opcode"); 1808 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1809 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1810 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1811 } 1812 } else if (I->getType()->isIntegerTy(64)) { 1813 CReg = X86::RCX; 1814 RC = &X86::GR64RegClass; 1815 switch (I->getOpcode()) { 1816 default: llvm_unreachable("Unexpected shift opcode"); 1817 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1818 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1819 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1820 } 1821 } else { 1822 return false; 1823 } 1824 1825 MVT VT; 1826 if (!isTypeLegal(I->getType(), VT)) 1827 return false; 1828 1829 Register Op0Reg = getRegForValue(I->getOperand(0)); 1830 if (Op0Reg == 0) return false; 1831 1832 Register Op1Reg = getRegForValue(I->getOperand(1)); 1833 if (Op1Reg == 0) return false; 1834 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 1835 CReg).addReg(Op1Reg); 1836 1837 // The shift instruction uses X86::CL. If we defined a super-register 1838 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1839 if (CReg != X86::CL) 1840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1841 TII.get(TargetOpcode::KILL), X86::CL) 1842 .addReg(CReg, RegState::Kill); 1843 1844 Register ResultReg = createResultReg(RC); 1845 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg) 1846 .addReg(Op0Reg); 1847 updateValueMap(I, ResultReg); 1848 return true; 1849 } 1850 1851 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1852 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1853 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1854 const static bool S = true; // IsSigned 1855 const static bool U = false; // !IsSigned 1856 const static unsigned Copy = TargetOpcode::COPY; 1857 // For the X86 DIV/IDIV instruction, in most cases the dividend 1858 // (numerator) must be in a specific register pair highreg:lowreg, 1859 // producing the quotient in lowreg and the remainder in highreg. 1860 // For most data types, to set up the instruction, the dividend is 1861 // copied into lowreg, and lowreg is sign-extended or zero-extended 1862 // into highreg. The exception is i8, where the dividend is defined 1863 // as a single register rather than a register pair, and we 1864 // therefore directly sign-extend or zero-extend the dividend into 1865 // lowreg, instead of copying, and ignore the highreg. 1866 const static struct DivRemEntry { 1867 // The following portion depends only on the data type. 1868 const TargetRegisterClass *RC; 1869 unsigned LowInReg; // low part of the register pair 1870 unsigned HighInReg; // high part of the register pair 1871 // The following portion depends on both the data type and the operation. 1872 struct DivRemResult { 1873 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1874 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1875 // highreg, or copying a zero into highreg. 1876 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1877 // zero/sign-extending into lowreg for i8. 1878 unsigned DivRemResultReg; // Register containing the desired result. 1879 bool IsOpSigned; // Whether to use signed or unsigned form. 1880 } ResultTable[NumOps]; 1881 } OpTable[NumTypes] = { 1882 { &X86::GR8RegClass, X86::AX, 0, { 1883 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1884 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1885 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1886 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1887 } 1888 }, // i8 1889 { &X86::GR16RegClass, X86::AX, X86::DX, { 1890 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1891 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1892 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1893 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1894 } 1895 }, // i16 1896 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1897 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1898 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1899 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1900 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1901 } 1902 }, // i32 1903 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1904 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1905 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1906 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1907 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1908 } 1909 }, // i64 1910 }; 1911 1912 MVT VT; 1913 if (!isTypeLegal(I->getType(), VT)) 1914 return false; 1915 1916 unsigned TypeIndex, OpIndex; 1917 switch (VT.SimpleTy) { 1918 default: return false; 1919 case MVT::i8: TypeIndex = 0; break; 1920 case MVT::i16: TypeIndex = 1; break; 1921 case MVT::i32: TypeIndex = 2; break; 1922 case MVT::i64: TypeIndex = 3; 1923 if (!Subtarget->is64Bit()) 1924 return false; 1925 break; 1926 } 1927 1928 switch (I->getOpcode()) { 1929 default: llvm_unreachable("Unexpected div/rem opcode"); 1930 case Instruction::SDiv: OpIndex = 0; break; 1931 case Instruction::SRem: OpIndex = 1; break; 1932 case Instruction::UDiv: OpIndex = 2; break; 1933 case Instruction::URem: OpIndex = 3; break; 1934 } 1935 1936 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1937 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1938 Register Op0Reg = getRegForValue(I->getOperand(0)); 1939 if (Op0Reg == 0) 1940 return false; 1941 Register Op1Reg = getRegForValue(I->getOperand(1)); 1942 if (Op1Reg == 0) 1943 return false; 1944 1945 // Move op0 into low-order input register. 1946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1947 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1948 // Zero-extend or sign-extend into high-order input register. 1949 if (OpEntry.OpSignExtend) { 1950 if (OpEntry.IsOpSigned) 1951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1952 TII.get(OpEntry.OpSignExtend)); 1953 else { 1954 Register Zero32 = createResultReg(&X86::GR32RegClass); 1955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1956 TII.get(X86::MOV32r0), Zero32); 1957 1958 // Copy the zero into the appropriate sub/super/identical physical 1959 // register. Unfortunately the operations needed are not uniform enough 1960 // to fit neatly into the table above. 1961 if (VT == MVT::i16) { 1962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1963 TII.get(Copy), TypeEntry.HighInReg) 1964 .addReg(Zero32, 0, X86::sub_16bit); 1965 } else if (VT == MVT::i32) { 1966 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1967 TII.get(Copy), TypeEntry.HighInReg) 1968 .addReg(Zero32); 1969 } else if (VT == MVT::i64) { 1970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1971 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1972 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1973 } 1974 } 1975 } 1976 // Generate the DIV/IDIV instruction. 1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1978 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1979 // For i8 remainder, we can't reference ah directly, as we'll end 1980 // up with bogus copies like %r9b = COPY %ah. Reference ax 1981 // instead to prevent ah references in a rex instruction. 1982 // 1983 // The current assumption of the fast register allocator is that isel 1984 // won't generate explicit references to the GR8_NOREX registers. If 1985 // the allocator and/or the backend get enhanced to be more robust in 1986 // that regard, this can be, and should be, removed. 1987 unsigned ResultReg = 0; 1988 if ((I->getOpcode() == Instruction::SRem || 1989 I->getOpcode() == Instruction::URem) && 1990 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 1991 Register SourceSuperReg = createResultReg(&X86::GR16RegClass); 1992 Register ResultSuperReg = createResultReg(&X86::GR16RegClass); 1993 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1994 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 1995 1996 // Shift AX right by 8 bits instead of using AH. 1997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri), 1998 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 1999 2000 // Now reference the 8-bit subreg of the result. 2001 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 2002 X86::sub_8bit); 2003 } 2004 // Copy the result out of the physreg if we haven't already. 2005 if (!ResultReg) { 2006 ResultReg = createResultReg(TypeEntry.RC); 2007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg) 2008 .addReg(OpEntry.DivRemResultReg); 2009 } 2010 updateValueMap(I, ResultReg); 2011 2012 return true; 2013 } 2014 2015 /// Emit a conditional move instruction (if the are supported) to lower 2016 /// the select. 2017 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2018 // Check if the subtarget supports these instructions. 2019 if (!Subtarget->canUseCMOV()) 2020 return false; 2021 2022 // FIXME: Add support for i8. 2023 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2024 return false; 2025 2026 const Value *Cond = I->getOperand(0); 2027 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2028 bool NeedTest = true; 2029 X86::CondCode CC = X86::COND_NE; 2030 2031 // Optimize conditions coming from a compare if both instructions are in the 2032 // same basic block (values defined in other basic blocks may not have 2033 // initialized registers). 2034 const auto *CI = dyn_cast<CmpInst>(Cond); 2035 if (CI && (CI->getParent() == I->getParent())) { 2036 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2037 2038 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2039 static const uint16_t SETFOpcTable[2][3] = { 2040 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2041 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2042 }; 2043 const uint16_t *SETFOpc = nullptr; 2044 switch (Predicate) { 2045 default: break; 2046 case CmpInst::FCMP_OEQ: 2047 SETFOpc = &SETFOpcTable[0][0]; 2048 Predicate = CmpInst::ICMP_NE; 2049 break; 2050 case CmpInst::FCMP_UNE: 2051 SETFOpc = &SETFOpcTable[1][0]; 2052 Predicate = CmpInst::ICMP_NE; 2053 break; 2054 } 2055 2056 bool NeedSwap; 2057 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2058 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2059 2060 const Value *CmpLHS = CI->getOperand(0); 2061 const Value *CmpRHS = CI->getOperand(1); 2062 if (NeedSwap) 2063 std::swap(CmpLHS, CmpRHS); 2064 2065 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2066 // Emit a compare of the LHS and RHS, setting the flags. 2067 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2068 return false; 2069 2070 if (SETFOpc) { 2071 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 2072 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 2073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2074 FlagReg1).addImm(SETFOpc[0]); 2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2076 FlagReg2).addImm(SETFOpc[1]); 2077 auto const &II = TII.get(SETFOpc[2]); 2078 if (II.getNumDefs()) { 2079 Register TmpReg = createResultReg(&X86::GR8RegClass); 2080 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg) 2081 .addReg(FlagReg2).addReg(FlagReg1); 2082 } else { 2083 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2084 .addReg(FlagReg2).addReg(FlagReg1); 2085 } 2086 } 2087 NeedTest = false; 2088 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2089 // Fake request the condition, otherwise the intrinsic might be completely 2090 // optimized away. 2091 Register TmpReg = getRegForValue(Cond); 2092 if (TmpReg == 0) 2093 return false; 2094 2095 NeedTest = false; 2096 } 2097 2098 if (NeedTest) { 2099 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2100 // garbage. Indeed, only the less significant bit is supposed to be 2101 // accurate. If we read more than the lsb, we may see non-zero values 2102 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2103 // the select. This is achieved by performing TEST against 1. 2104 Register CondReg = getRegForValue(Cond); 2105 if (CondReg == 0) 2106 return false; 2107 2108 // In case OpReg is a K register, COPY to a GPR 2109 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2110 unsigned KCondReg = CondReg; 2111 CondReg = createResultReg(&X86::GR32RegClass); 2112 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2113 TII.get(TargetOpcode::COPY), CondReg) 2114 .addReg(KCondReg); 2115 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2116 } 2117 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 2118 .addReg(CondReg) 2119 .addImm(1); 2120 } 2121 2122 const Value *LHS = I->getOperand(1); 2123 const Value *RHS = I->getOperand(2); 2124 2125 Register RHSReg = getRegForValue(RHS); 2126 Register LHSReg = getRegForValue(LHS); 2127 if (!LHSReg || !RHSReg) 2128 return false; 2129 2130 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2131 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); 2132 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2133 updateValueMap(I, ResultReg); 2134 return true; 2135 } 2136 2137 /// Emit SSE or AVX instructions to lower the select. 2138 /// 2139 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2140 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2141 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2142 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2143 // Optimize conditions coming from a compare if both instructions are in the 2144 // same basic block (values defined in other basic blocks may not have 2145 // initialized registers). 2146 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2147 if (!CI || (CI->getParent() != I->getParent())) 2148 return false; 2149 2150 if (I->getType() != CI->getOperand(0)->getType() || 2151 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2152 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2153 return false; 2154 2155 const Value *CmpLHS = CI->getOperand(0); 2156 const Value *CmpRHS = CI->getOperand(1); 2157 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2158 2159 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2160 // We don't have to materialize a zero constant for this case and can just use 2161 // %x again on the RHS. 2162 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2163 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2164 if (CmpRHSC && CmpRHSC->isNullValue()) 2165 CmpRHS = CmpLHS; 2166 } 2167 2168 unsigned CC; 2169 bool NeedSwap; 2170 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2171 if (CC > 7 && !Subtarget->hasAVX()) 2172 return false; 2173 2174 if (NeedSwap) 2175 std::swap(CmpLHS, CmpRHS); 2176 2177 const Value *LHS = I->getOperand(1); 2178 const Value *RHS = I->getOperand(2); 2179 2180 Register LHSReg = getRegForValue(LHS); 2181 Register RHSReg = getRegForValue(RHS); 2182 Register CmpLHSReg = getRegForValue(CmpLHS); 2183 Register CmpRHSReg = getRegForValue(CmpRHS); 2184 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) 2185 return false; 2186 2187 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2188 unsigned ResultReg; 2189 2190 if (Subtarget->hasAVX512()) { 2191 // If we have AVX512 we can use a mask compare and masked movss/sd. 2192 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2193 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2194 2195 unsigned CmpOpcode = 2196 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; 2197 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg, 2198 CC); 2199 2200 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2201 // bits of the result register since its not based on any of the inputs. 2202 Register ImplicitDefReg = createResultReg(VR128X); 2203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2204 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2205 2206 // Place RHSReg is the passthru of the masked movss/sd operation and put 2207 // LHS in the input. The mask input comes from the compare. 2208 unsigned MovOpcode = 2209 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2210 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg, 2211 ImplicitDefReg, LHSReg); 2212 2213 ResultReg = createResultReg(RC); 2214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2215 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2216 2217 } else if (Subtarget->hasAVX()) { 2218 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2219 2220 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2221 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2222 // uses XMM0 as the selection register. That may need just as many 2223 // instructions as the AND/ANDN/OR sequence due to register moves, so 2224 // don't bother. 2225 unsigned CmpOpcode = 2226 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; 2227 unsigned BlendOpcode = 2228 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; 2229 2230 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg, 2231 CC); 2232 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg, 2233 CmpReg); 2234 ResultReg = createResultReg(RC); 2235 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2236 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2237 } else { 2238 // Choose the SSE instruction sequence based on data type (float or double). 2239 static const uint16_t OpcTable[2][4] = { 2240 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2241 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2242 }; 2243 2244 const uint16_t *Opc = nullptr; 2245 switch (RetVT.SimpleTy) { 2246 default: return false; 2247 case MVT::f32: Opc = &OpcTable[0][0]; break; 2248 case MVT::f64: Opc = &OpcTable[1][0]; break; 2249 } 2250 2251 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2252 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC); 2253 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg); 2254 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg); 2255 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg); 2256 ResultReg = createResultReg(RC); 2257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2258 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2259 } 2260 updateValueMap(I, ResultReg); 2261 return true; 2262 } 2263 2264 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2265 // These are pseudo CMOV instructions and will be later expanded into control- 2266 // flow. 2267 unsigned Opc; 2268 switch (RetVT.SimpleTy) { 2269 default: return false; 2270 case MVT::i8: Opc = X86::CMOV_GR8; break; 2271 case MVT::i16: Opc = X86::CMOV_GR16; break; 2272 case MVT::i32: Opc = X86::CMOV_GR32; break; 2273 case MVT::f16: 2274 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break; 2275 case MVT::f32: 2276 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break; 2277 case MVT::f64: 2278 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break; 2279 } 2280 2281 const Value *Cond = I->getOperand(0); 2282 X86::CondCode CC = X86::COND_NE; 2283 2284 // Optimize conditions coming from a compare if both instructions are in the 2285 // same basic block (values defined in other basic blocks may not have 2286 // initialized registers). 2287 const auto *CI = dyn_cast<CmpInst>(Cond); 2288 if (CI && (CI->getParent() == I->getParent())) { 2289 bool NeedSwap; 2290 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2291 if (CC > X86::LAST_VALID_COND) 2292 return false; 2293 2294 const Value *CmpLHS = CI->getOperand(0); 2295 const Value *CmpRHS = CI->getOperand(1); 2296 2297 if (NeedSwap) 2298 std::swap(CmpLHS, CmpRHS); 2299 2300 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2301 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2302 return false; 2303 } else { 2304 Register CondReg = getRegForValue(Cond); 2305 if (CondReg == 0) 2306 return false; 2307 2308 // In case OpReg is a K register, COPY to a GPR 2309 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2310 unsigned KCondReg = CondReg; 2311 CondReg = createResultReg(&X86::GR32RegClass); 2312 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2313 TII.get(TargetOpcode::COPY), CondReg) 2314 .addReg(KCondReg); 2315 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2316 } 2317 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 2318 .addReg(CondReg) 2319 .addImm(1); 2320 } 2321 2322 const Value *LHS = I->getOperand(1); 2323 const Value *RHS = I->getOperand(2); 2324 2325 Register LHSReg = getRegForValue(LHS); 2326 Register RHSReg = getRegForValue(RHS); 2327 if (!LHSReg || !RHSReg) 2328 return false; 2329 2330 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2331 2332 Register ResultReg = 2333 fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2334 updateValueMap(I, ResultReg); 2335 return true; 2336 } 2337 2338 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2339 MVT RetVT; 2340 if (!isTypeLegal(I->getType(), RetVT)) 2341 return false; 2342 2343 // Check if we can fold the select. 2344 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2345 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2346 const Value *Opnd = nullptr; 2347 switch (Predicate) { 2348 default: break; 2349 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2350 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2351 } 2352 // No need for a select anymore - this is an unconditional move. 2353 if (Opnd) { 2354 Register OpReg = getRegForValue(Opnd); 2355 if (OpReg == 0) 2356 return false; 2357 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2358 Register ResultReg = createResultReg(RC); 2359 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2360 TII.get(TargetOpcode::COPY), ResultReg) 2361 .addReg(OpReg); 2362 updateValueMap(I, ResultReg); 2363 return true; 2364 } 2365 } 2366 2367 // First try to use real conditional move instructions. 2368 if (X86FastEmitCMoveSelect(RetVT, I)) 2369 return true; 2370 2371 // Try to use a sequence of SSE instructions to simulate a conditional move. 2372 if (X86FastEmitSSESelect(RetVT, I)) 2373 return true; 2374 2375 // Fall-back to pseudo conditional move instructions, which will be later 2376 // converted to control-flow. 2377 if (X86FastEmitPseudoSelect(RetVT, I)) 2378 return true; 2379 2380 return false; 2381 } 2382 2383 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2384 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2385 // The target-independent selection algorithm in FastISel already knows how 2386 // to select a SINT_TO_FP if the target is SSE but not AVX. 2387 // Early exit if the subtarget doesn't have AVX. 2388 // Unsigned conversion requires avx512. 2389 bool HasAVX512 = Subtarget->hasAVX512(); 2390 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2391 return false; 2392 2393 // TODO: We could sign extend narrower types. 2394 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 2395 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2396 return false; 2397 2398 // Select integer to float/double conversion. 2399 Register OpReg = getRegForValue(I->getOperand(0)); 2400 if (OpReg == 0) 2401 return false; 2402 2403 unsigned Opcode; 2404 2405 static const uint16_t SCvtOpc[2][2][2] = { 2406 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2407 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2408 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2409 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2410 }; 2411 static const uint16_t UCvtOpc[2][2] = { 2412 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2413 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2414 }; 2415 bool Is64Bit = SrcVT == MVT::i64; 2416 2417 if (I->getType()->isDoubleTy()) { 2418 // s/uitofp int -> double 2419 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2420 } else if (I->getType()->isFloatTy()) { 2421 // s/uitofp int -> float 2422 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2423 } else 2424 return false; 2425 2426 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2427 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2428 Register ImplicitDefReg = createResultReg(RC); 2429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2430 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2431 Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg); 2432 updateValueMap(I, ResultReg); 2433 return true; 2434 } 2435 2436 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2437 return X86SelectIntToFP(I, /*IsSigned*/true); 2438 } 2439 2440 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2441 return X86SelectIntToFP(I, /*IsSigned*/false); 2442 } 2443 2444 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2445 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2446 unsigned TargetOpc, 2447 const TargetRegisterClass *RC) { 2448 assert((I->getOpcode() == Instruction::FPExt || 2449 I->getOpcode() == Instruction::FPTrunc) && 2450 "Instruction must be an FPExt or FPTrunc!"); 2451 bool HasAVX = Subtarget->hasAVX(); 2452 2453 Register OpReg = getRegForValue(I->getOperand(0)); 2454 if (OpReg == 0) 2455 return false; 2456 2457 unsigned ImplicitDefReg; 2458 if (HasAVX) { 2459 ImplicitDefReg = createResultReg(RC); 2460 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2461 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2462 2463 } 2464 2465 Register ResultReg = createResultReg(RC); 2466 MachineInstrBuilder MIB; 2467 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc), 2468 ResultReg); 2469 2470 if (HasAVX) 2471 MIB.addReg(ImplicitDefReg); 2472 2473 MIB.addReg(OpReg); 2474 updateValueMap(I, ResultReg); 2475 return true; 2476 } 2477 2478 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2479 if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() && 2480 I->getOperand(0)->getType()->isFloatTy()) { 2481 bool HasAVX512 = Subtarget->hasAVX512(); 2482 // fpext from float to double. 2483 unsigned Opc = 2484 HasAVX512 ? X86::VCVTSS2SDZrr 2485 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2486 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2487 } 2488 2489 return false; 2490 } 2491 2492 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2493 if (Subtarget->hasSSE2() && I->getType()->isFloatTy() && 2494 I->getOperand(0)->getType()->isDoubleTy()) { 2495 bool HasAVX512 = Subtarget->hasAVX512(); 2496 // fptrunc from double to float. 2497 unsigned Opc = 2498 HasAVX512 ? X86::VCVTSD2SSZrr 2499 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2500 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2501 } 2502 2503 return false; 2504 } 2505 2506 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2507 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2508 EVT DstVT = TLI.getValueType(DL, I->getType()); 2509 2510 // This code only handles truncation to byte. 2511 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2512 return false; 2513 if (!TLI.isTypeLegal(SrcVT)) 2514 return false; 2515 2516 Register InputReg = getRegForValue(I->getOperand(0)); 2517 if (!InputReg) 2518 // Unhandled operand. Halt "fast" selection and bail. 2519 return false; 2520 2521 if (SrcVT == MVT::i8) { 2522 // Truncate from i8 to i1; no code needed. 2523 updateValueMap(I, InputReg); 2524 return true; 2525 } 2526 2527 // Issue an extract_subreg. 2528 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg, 2529 X86::sub_8bit); 2530 if (!ResultReg) 2531 return false; 2532 2533 updateValueMap(I, ResultReg); 2534 return true; 2535 } 2536 2537 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2538 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2539 } 2540 2541 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2542 X86AddressMode SrcAM, uint64_t Len) { 2543 2544 // Make sure we don't bloat code by inlining very large memcpy's. 2545 if (!IsMemcpySmall(Len)) 2546 return false; 2547 2548 bool i64Legal = Subtarget->is64Bit(); 2549 2550 // We don't care about alignment here since we just emit integer accesses. 2551 while (Len) { 2552 MVT VT; 2553 if (Len >= 8 && i64Legal) 2554 VT = MVT::i64; 2555 else if (Len >= 4) 2556 VT = MVT::i32; 2557 else if (Len >= 2) 2558 VT = MVT::i16; 2559 else 2560 VT = MVT::i8; 2561 2562 unsigned Reg; 2563 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2564 RV &= X86FastEmitStore(VT, Reg, DestAM); 2565 assert(RV && "Failed to emit load or store??"); 2566 (void)RV; 2567 2568 unsigned Size = VT.getSizeInBits()/8; 2569 Len -= Size; 2570 DestAM.Disp += Size; 2571 SrcAM.Disp += Size; 2572 } 2573 2574 return true; 2575 } 2576 2577 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2578 // FIXME: Handle more intrinsics. 2579 switch (II->getIntrinsicID()) { 2580 default: return false; 2581 case Intrinsic::convert_from_fp16: 2582 case Intrinsic::convert_to_fp16: { 2583 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2584 return false; 2585 2586 const Value *Op = II->getArgOperand(0); 2587 Register InputReg = getRegForValue(Op); 2588 if (InputReg == 0) 2589 return false; 2590 2591 // F16C only allows converting from float to half and from half to float. 2592 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2593 if (IsFloatToHalf) { 2594 if (!Op->getType()->isFloatTy()) 2595 return false; 2596 } else { 2597 if (!II->getType()->isFloatTy()) 2598 return false; 2599 } 2600 2601 unsigned ResultReg = 0; 2602 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2603 if (IsFloatToHalf) { 2604 // 'InputReg' is implicitly promoted from register class FR32 to 2605 // register class VR128 by method 'constrainOperandRegClass' which is 2606 // directly called by 'fastEmitInst_ri'. 2607 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2608 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2609 // It's consistent with the other FP instructions, which are usually 2610 // controlled by MXCSR. 2611 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr 2612 : X86::VCVTPS2PHrr; 2613 InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4); 2614 2615 // Move the lower 32-bits of ResultReg to another register of class GR32. 2616 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr 2617 : X86::VMOVPDI2DIrr; 2618 ResultReg = createResultReg(&X86::GR32RegClass); 2619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 2620 .addReg(InputReg, RegState::Kill); 2621 2622 // The result value is in the lower 16-bits of ResultReg. 2623 unsigned RegIdx = X86::sub_16bit; 2624 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx); 2625 } else { 2626 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2627 // Explicitly zero-extend the input to 32-bit. 2628 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg); 2629 2630 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2631 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2632 InputReg); 2633 2634 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr 2635 : X86::VCVTPH2PSrr; 2636 InputReg = fastEmitInst_r(Opc, RC, InputReg); 2637 2638 // The result value is in the lower 32-bits of ResultReg. 2639 // Emit an explicit copy from register class VR128 to register class FR32. 2640 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 2641 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2642 TII.get(TargetOpcode::COPY), ResultReg) 2643 .addReg(InputReg, RegState::Kill); 2644 } 2645 2646 updateValueMap(II, ResultReg); 2647 return true; 2648 } 2649 case Intrinsic::frameaddress: { 2650 MachineFunction *MF = FuncInfo.MF; 2651 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2652 return false; 2653 2654 Type *RetTy = II->getCalledFunction()->getReturnType(); 2655 2656 MVT VT; 2657 if (!isTypeLegal(RetTy, VT)) 2658 return false; 2659 2660 unsigned Opc; 2661 const TargetRegisterClass *RC = nullptr; 2662 2663 switch (VT.SimpleTy) { 2664 default: llvm_unreachable("Invalid result type for frameaddress."); 2665 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2666 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2667 } 2668 2669 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2670 // we get the wrong frame register. 2671 MachineFrameInfo &MFI = MF->getFrameInfo(); 2672 MFI.setFrameAddressIsTaken(true); 2673 2674 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2675 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2676 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2677 (FrameReg == X86::EBP && VT == MVT::i32)) && 2678 "Invalid Frame Register!"); 2679 2680 // Always make a copy of the frame register to a vreg first, so that we 2681 // never directly reference the frame register (the TwoAddressInstruction- 2682 // Pass doesn't like that). 2683 Register SrcReg = createResultReg(RC); 2684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2685 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2686 2687 // Now recursively load from the frame address. 2688 // movq (%rbp), %rax 2689 // movq (%rax), %rax 2690 // movq (%rax), %rax 2691 // ... 2692 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2693 while (Depth--) { 2694 Register DestReg = createResultReg(RC); 2695 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2696 TII.get(Opc), DestReg), SrcReg); 2697 SrcReg = DestReg; 2698 } 2699 2700 updateValueMap(II, SrcReg); 2701 return true; 2702 } 2703 case Intrinsic::memcpy: { 2704 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2705 // Don't handle volatile or variable length memcpys. 2706 if (MCI->isVolatile()) 2707 return false; 2708 2709 if (isa<ConstantInt>(MCI->getLength())) { 2710 // Small memcpy's are common enough that we want to do them 2711 // without a call if possible. 2712 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2713 if (IsMemcpySmall(Len)) { 2714 X86AddressMode DestAM, SrcAM; 2715 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2716 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2717 return false; 2718 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2719 return true; 2720 } 2721 } 2722 2723 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2724 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2725 return false; 2726 2727 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2728 return false; 2729 2730 return lowerCallTo(II, "memcpy", II->arg_size() - 1); 2731 } 2732 case Intrinsic::memset: { 2733 const MemSetInst *MSI = cast<MemSetInst>(II); 2734 2735 if (MSI->isVolatile()) 2736 return false; 2737 2738 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2739 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2740 return false; 2741 2742 if (MSI->getDestAddressSpace() > 255) 2743 return false; 2744 2745 return lowerCallTo(II, "memset", II->arg_size() - 1); 2746 } 2747 case Intrinsic::stackprotector: { 2748 // Emit code to store the stack guard onto the stack. 2749 EVT PtrTy = TLI.getPointerTy(DL); 2750 2751 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2752 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2753 2754 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2755 2756 // Grab the frame index. 2757 X86AddressMode AM; 2758 if (!X86SelectAddress(Slot, AM)) return false; 2759 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2760 return true; 2761 } 2762 case Intrinsic::dbg_declare: { 2763 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2764 X86AddressMode AM; 2765 assert(DI->getAddress() && "Null address should be checked earlier!"); 2766 if (!X86SelectAddress(DI->getAddress(), AM)) 2767 return false; 2768 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2769 assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && 2770 "Expected inlined-at fields to agree"); 2771 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM) 2772 .addImm(0) 2773 .addMetadata(DI->getVariable()) 2774 .addMetadata(DI->getExpression()); 2775 return true; 2776 } 2777 case Intrinsic::trap: { 2778 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP)); 2779 return true; 2780 } 2781 case Intrinsic::sqrt: { 2782 if (!Subtarget->hasSSE1()) 2783 return false; 2784 2785 Type *RetTy = II->getCalledFunction()->getReturnType(); 2786 2787 MVT VT; 2788 if (!isTypeLegal(RetTy, VT)) 2789 return false; 2790 2791 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2792 // is not generated by FastISel yet. 2793 // FIXME: Update this code once tablegen can handle it. 2794 static const uint16_t SqrtOpc[3][2] = { 2795 { X86::SQRTSSr, X86::SQRTSDr }, 2796 { X86::VSQRTSSr, X86::VSQRTSDr }, 2797 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2798 }; 2799 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2800 Subtarget->hasAVX() ? 1 : 2801 0; 2802 unsigned Opc; 2803 switch (VT.SimpleTy) { 2804 default: return false; 2805 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2806 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2807 } 2808 2809 const Value *SrcVal = II->getArgOperand(0); 2810 Register SrcReg = getRegForValue(SrcVal); 2811 2812 if (SrcReg == 0) 2813 return false; 2814 2815 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2816 unsigned ImplicitDefReg = 0; 2817 if (AVXLevel > 0) { 2818 ImplicitDefReg = createResultReg(RC); 2819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2820 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2821 } 2822 2823 Register ResultReg = createResultReg(RC); 2824 MachineInstrBuilder MIB; 2825 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 2826 ResultReg); 2827 2828 if (ImplicitDefReg) 2829 MIB.addReg(ImplicitDefReg); 2830 2831 MIB.addReg(SrcReg); 2832 2833 updateValueMap(II, ResultReg); 2834 return true; 2835 } 2836 case Intrinsic::sadd_with_overflow: 2837 case Intrinsic::uadd_with_overflow: 2838 case Intrinsic::ssub_with_overflow: 2839 case Intrinsic::usub_with_overflow: 2840 case Intrinsic::smul_with_overflow: 2841 case Intrinsic::umul_with_overflow: { 2842 // This implements the basic lowering of the xalu with overflow intrinsics 2843 // into add/sub/mul followed by either seto or setb. 2844 const Function *Callee = II->getCalledFunction(); 2845 auto *Ty = cast<StructType>(Callee->getReturnType()); 2846 Type *RetTy = Ty->getTypeAtIndex(0U); 2847 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2848 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2849 "Overflow value expected to be an i1"); 2850 2851 MVT VT; 2852 if (!isTypeLegal(RetTy, VT)) 2853 return false; 2854 2855 if (VT < MVT::i8 || VT > MVT::i64) 2856 return false; 2857 2858 const Value *LHS = II->getArgOperand(0); 2859 const Value *RHS = II->getArgOperand(1); 2860 2861 // Canonicalize immediate to the RHS. 2862 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative()) 2863 std::swap(LHS, RHS); 2864 2865 unsigned BaseOpc, CondCode; 2866 switch (II->getIntrinsicID()) { 2867 default: llvm_unreachable("Unexpected intrinsic!"); 2868 case Intrinsic::sadd_with_overflow: 2869 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2870 case Intrinsic::uadd_with_overflow: 2871 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2872 case Intrinsic::ssub_with_overflow: 2873 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2874 case Intrinsic::usub_with_overflow: 2875 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2876 case Intrinsic::smul_with_overflow: 2877 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2878 case Intrinsic::umul_with_overflow: 2879 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2880 } 2881 2882 Register LHSReg = getRegForValue(LHS); 2883 if (LHSReg == 0) 2884 return false; 2885 2886 unsigned ResultReg = 0; 2887 // Check if we have an immediate version. 2888 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2889 static const uint16_t Opc[2][4] = { 2890 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2891 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2892 }; 2893 2894 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2895 CondCode == X86::COND_O) { 2896 // We can use INC/DEC. 2897 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2898 bool IsDec = BaseOpc == ISD::SUB; 2899 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2900 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2901 .addReg(LHSReg); 2902 } else 2903 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue()); 2904 } 2905 2906 unsigned RHSReg; 2907 if (!ResultReg) { 2908 RHSReg = getRegForValue(RHS); 2909 if (RHSReg == 0) 2910 return false; 2911 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg); 2912 } 2913 2914 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2915 // it manually. 2916 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2917 static const uint16_t MULOpc[] = 2918 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2919 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2920 // First copy the first operand into RAX, which is an implicit input to 2921 // the X86::MUL*r instruction. 2922 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2923 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2924 .addReg(LHSReg); 2925 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2926 TLI.getRegClassFor(VT), RHSReg); 2927 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2928 static const uint16_t MULOpc[] = 2929 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2930 if (VT == MVT::i8) { 2931 // Copy the first operand into AL, which is an implicit input to the 2932 // X86::IMUL8r instruction. 2933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2934 TII.get(TargetOpcode::COPY), X86::AL) 2935 .addReg(LHSReg); 2936 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg); 2937 } else 2938 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2939 TLI.getRegClassFor(VT), LHSReg, RHSReg); 2940 } 2941 2942 if (!ResultReg) 2943 return false; 2944 2945 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2946 Register ResultReg2 = createResultReg(&X86::GR8RegClass); 2947 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2949 ResultReg2).addImm(CondCode); 2950 2951 updateValueMap(II, ResultReg, 2); 2952 return true; 2953 } 2954 case Intrinsic::x86_sse_cvttss2si: 2955 case Intrinsic::x86_sse_cvttss2si64: 2956 case Intrinsic::x86_sse2_cvttsd2si: 2957 case Intrinsic::x86_sse2_cvttsd2si64: { 2958 bool IsInputDouble; 2959 switch (II->getIntrinsicID()) { 2960 default: llvm_unreachable("Unexpected intrinsic."); 2961 case Intrinsic::x86_sse_cvttss2si: 2962 case Intrinsic::x86_sse_cvttss2si64: 2963 if (!Subtarget->hasSSE1()) 2964 return false; 2965 IsInputDouble = false; 2966 break; 2967 case Intrinsic::x86_sse2_cvttsd2si: 2968 case Intrinsic::x86_sse2_cvttsd2si64: 2969 if (!Subtarget->hasSSE2()) 2970 return false; 2971 IsInputDouble = true; 2972 break; 2973 } 2974 2975 Type *RetTy = II->getCalledFunction()->getReturnType(); 2976 MVT VT; 2977 if (!isTypeLegal(RetTy, VT)) 2978 return false; 2979 2980 static const uint16_t CvtOpc[3][2][2] = { 2981 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 2982 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 2983 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 2984 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 2985 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 2986 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 2987 }; 2988 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2989 Subtarget->hasAVX() ? 1 : 2990 0; 2991 unsigned Opc; 2992 switch (VT.SimpleTy) { 2993 default: llvm_unreachable("Unexpected result type."); 2994 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 2995 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 2996 } 2997 2998 // Check if we can fold insertelement instructions into the convert. 2999 const Value *Op = II->getArgOperand(0); 3000 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3001 const Value *Index = IE->getOperand(2); 3002 if (!isa<ConstantInt>(Index)) 3003 break; 3004 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3005 3006 if (Idx == 0) { 3007 Op = IE->getOperand(1); 3008 break; 3009 } 3010 Op = IE->getOperand(0); 3011 } 3012 3013 Register Reg = getRegForValue(Op); 3014 if (Reg == 0) 3015 return false; 3016 3017 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3018 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 3019 .addReg(Reg); 3020 3021 updateValueMap(II, ResultReg); 3022 return true; 3023 } 3024 case Intrinsic::x86_sse42_crc32_32_8: 3025 case Intrinsic::x86_sse42_crc32_32_16: 3026 case Intrinsic::x86_sse42_crc32_32_32: 3027 case Intrinsic::x86_sse42_crc32_64_64: { 3028 if (!Subtarget->hasCRC32()) 3029 return false; 3030 3031 Type *RetTy = II->getCalledFunction()->getReturnType(); 3032 3033 MVT VT; 3034 if (!isTypeLegal(RetTy, VT)) 3035 return false; 3036 3037 unsigned Opc; 3038 const TargetRegisterClass *RC = nullptr; 3039 3040 switch (II->getIntrinsicID()) { 3041 default: 3042 llvm_unreachable("Unexpected intrinsic."); 3043 case Intrinsic::x86_sse42_crc32_32_8: 3044 Opc = X86::CRC32r32r8; 3045 RC = &X86::GR32RegClass; 3046 break; 3047 case Intrinsic::x86_sse42_crc32_32_16: 3048 Opc = X86::CRC32r32r16; 3049 RC = &X86::GR32RegClass; 3050 break; 3051 case Intrinsic::x86_sse42_crc32_32_32: 3052 Opc = X86::CRC32r32r32; 3053 RC = &X86::GR32RegClass; 3054 break; 3055 case Intrinsic::x86_sse42_crc32_64_64: 3056 Opc = X86::CRC32r64r64; 3057 RC = &X86::GR64RegClass; 3058 break; 3059 } 3060 3061 const Value *LHS = II->getArgOperand(0); 3062 const Value *RHS = II->getArgOperand(1); 3063 3064 Register LHSReg = getRegForValue(LHS); 3065 Register RHSReg = getRegForValue(RHS); 3066 if (!LHSReg || !RHSReg) 3067 return false; 3068 3069 Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg); 3070 if (!ResultReg) 3071 return false; 3072 3073 updateValueMap(II, ResultReg); 3074 return true; 3075 } 3076 } 3077 } 3078 3079 bool X86FastISel::fastLowerArguments() { 3080 if (!FuncInfo.CanLowerReturn) 3081 return false; 3082 3083 const Function *F = FuncInfo.Fn; 3084 if (F->isVarArg()) 3085 return false; 3086 3087 CallingConv::ID CC = F->getCallingConv(); 3088 if (CC != CallingConv::C) 3089 return false; 3090 3091 if (Subtarget->isCallingConvWin64(CC)) 3092 return false; 3093 3094 if (!Subtarget->is64Bit()) 3095 return false; 3096 3097 if (Subtarget->useSoftFloat()) 3098 return false; 3099 3100 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3101 unsigned GPRCnt = 0; 3102 unsigned FPRCnt = 0; 3103 for (auto const &Arg : F->args()) { 3104 if (Arg.hasAttribute(Attribute::ByVal) || 3105 Arg.hasAttribute(Attribute::InReg) || 3106 Arg.hasAttribute(Attribute::StructRet) || 3107 Arg.hasAttribute(Attribute::SwiftSelf) || 3108 Arg.hasAttribute(Attribute::SwiftAsync) || 3109 Arg.hasAttribute(Attribute::SwiftError) || 3110 Arg.hasAttribute(Attribute::Nest)) 3111 return false; 3112 3113 Type *ArgTy = Arg.getType(); 3114 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3115 return false; 3116 3117 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3118 if (!ArgVT.isSimple()) return false; 3119 switch (ArgVT.getSimpleVT().SimpleTy) { 3120 default: return false; 3121 case MVT::i32: 3122 case MVT::i64: 3123 ++GPRCnt; 3124 break; 3125 case MVT::f32: 3126 case MVT::f64: 3127 if (!Subtarget->hasSSE1()) 3128 return false; 3129 ++FPRCnt; 3130 break; 3131 } 3132 3133 if (GPRCnt > 6) 3134 return false; 3135 3136 if (FPRCnt > 8) 3137 return false; 3138 } 3139 3140 static const MCPhysReg GPR32ArgRegs[] = { 3141 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3142 }; 3143 static const MCPhysReg GPR64ArgRegs[] = { 3144 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3145 }; 3146 static const MCPhysReg XMMArgRegs[] = { 3147 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3148 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3149 }; 3150 3151 unsigned GPRIdx = 0; 3152 unsigned FPRIdx = 0; 3153 for (auto const &Arg : F->args()) { 3154 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3155 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3156 unsigned SrcReg; 3157 switch (VT.SimpleTy) { 3158 default: llvm_unreachable("Unexpected value type."); 3159 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3160 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3161 case MVT::f32: [[fallthrough]]; 3162 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3163 } 3164 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3165 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3166 // Without this, EmitLiveInCopies may eliminate the livein if its only 3167 // use is a bitcast (which isn't turned into an instruction). 3168 Register ResultReg = createResultReg(RC); 3169 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3170 TII.get(TargetOpcode::COPY), ResultReg) 3171 .addReg(DstReg, getKillRegState(true)); 3172 updateValueMap(&Arg, ResultReg); 3173 } 3174 return true; 3175 } 3176 3177 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3178 CallingConv::ID CC, 3179 const CallBase *CB) { 3180 if (Subtarget->is64Bit()) 3181 return 0; 3182 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3183 return 0; 3184 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3185 CC == CallingConv::HiPE || CC == CallingConv::Tail || 3186 CC == CallingConv::SwiftTail) 3187 return 0; 3188 3189 if (CB) 3190 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) || 3191 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3192 return 0; 3193 3194 return 4; 3195 } 3196 3197 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3198 auto &OutVals = CLI.OutVals; 3199 auto &OutFlags = CLI.OutFlags; 3200 auto &OutRegs = CLI.OutRegs; 3201 auto &Ins = CLI.Ins; 3202 auto &InRegs = CLI.InRegs; 3203 CallingConv::ID CC = CLI.CallConv; 3204 bool &IsTailCall = CLI.IsTailCall; 3205 bool IsVarArg = CLI.IsVarArg; 3206 const Value *Callee = CLI.Callee; 3207 MCSymbol *Symbol = CLI.Symbol; 3208 const auto *CB = CLI.CB; 3209 3210 bool Is64Bit = Subtarget->is64Bit(); 3211 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3212 3213 // Call / invoke instructions with NoCfCheck attribute require special 3214 // handling. 3215 if (CB && CB->doesNoCfCheck()) 3216 return false; 3217 3218 // Functions with no_caller_saved_registers that need special handling. 3219 if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers"))) 3220 return false; 3221 3222 // Functions with no_callee_saved_registers that need special handling. 3223 if ((CB && CB->hasFnAttr("no_callee_saved_registers"))) 3224 return false; 3225 3226 // Indirect calls with CFI checks need special handling. 3227 if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi)) 3228 return false; 3229 3230 // Functions using thunks for indirect calls need to use SDISel. 3231 if (Subtarget->useIndirectThunkCalls()) 3232 return false; 3233 3234 // Handle only C, fastcc, and webkit_js calling conventions for now. 3235 switch (CC) { 3236 default: return false; 3237 case CallingConv::C: 3238 case CallingConv::Fast: 3239 case CallingConv::Tail: 3240 case CallingConv::WebKit_JS: 3241 case CallingConv::Swift: 3242 case CallingConv::SwiftTail: 3243 case CallingConv::X86_FastCall: 3244 case CallingConv::X86_StdCall: 3245 case CallingConv::X86_ThisCall: 3246 case CallingConv::Win64: 3247 case CallingConv::X86_64_SysV: 3248 case CallingConv::CFGuard_Check: 3249 break; 3250 } 3251 3252 // Allow SelectionDAG isel to handle tail calls. 3253 if (IsTailCall) 3254 return false; 3255 3256 // fastcc with -tailcallopt is intended to provide a guaranteed 3257 // tail call optimization. Fastisel doesn't know how to do that. 3258 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 3259 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 3260 return false; 3261 3262 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3263 // x86-32. Special handling for x86-64 is implemented. 3264 if (IsVarArg && IsWin64) 3265 return false; 3266 3267 // Don't know about inalloca yet. 3268 if (CLI.CB && CLI.CB->hasInAllocaArgument()) 3269 return false; 3270 3271 for (auto Flag : CLI.OutFlags) 3272 if (Flag.isSwiftError() || Flag.isPreallocated()) 3273 return false; 3274 3275 SmallVector<MVT, 16> OutVTs; 3276 SmallVector<unsigned, 16> ArgRegs; 3277 3278 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3279 // instruction. This is safe because it is common to all FastISel supported 3280 // calling conventions on x86. 3281 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3282 Value *&Val = OutVals[i]; 3283 ISD::ArgFlagsTy Flags = OutFlags[i]; 3284 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3285 if (CI->getBitWidth() < 32) { 3286 if (Flags.isSExt()) 3287 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); 3288 else 3289 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); 3290 } 3291 } 3292 3293 // Passing bools around ends up doing a trunc to i1 and passing it. 3294 // Codegen this as an argument + "and 1". 3295 MVT VT; 3296 auto *TI = dyn_cast<TruncInst>(Val); 3297 unsigned ResultReg; 3298 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB && 3299 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { 3300 Value *PrevVal = TI->getOperand(0); 3301 ResultReg = getRegForValue(PrevVal); 3302 3303 if (!ResultReg) 3304 return false; 3305 3306 if (!isTypeLegal(PrevVal->getType(), VT)) 3307 return false; 3308 3309 ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1); 3310 } else { 3311 if (!isTypeLegal(Val->getType(), VT) || 3312 (VT.isVector() && VT.getVectorElementType() == MVT::i1)) 3313 return false; 3314 ResultReg = getRegForValue(Val); 3315 } 3316 3317 if (!ResultReg) 3318 return false; 3319 3320 ArgRegs.push_back(ResultReg); 3321 OutVTs.push_back(VT); 3322 } 3323 3324 // Analyze operands of the call, assigning locations to each operand. 3325 SmallVector<CCValAssign, 16> ArgLocs; 3326 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3327 3328 // Allocate shadow area for Win64 3329 if (IsWin64) 3330 CCInfo.AllocateStack(32, Align(8)); 3331 3332 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3333 3334 // Get a count of how many bytes are to be pushed on the stack. 3335 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3336 3337 // Issue CALLSEQ_START 3338 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3339 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)) 3340 .addImm(NumBytes).addImm(0).addImm(0); 3341 3342 // Walk the register/memloc assignments, inserting copies/loads. 3343 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3344 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3345 CCValAssign const &VA = ArgLocs[i]; 3346 const Value *ArgVal = OutVals[VA.getValNo()]; 3347 MVT ArgVT = OutVTs[VA.getValNo()]; 3348 3349 if (ArgVT == MVT::x86mmx) 3350 return false; 3351 3352 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3353 3354 // Promote the value if needed. 3355 switch (VA.getLocInfo()) { 3356 case CCValAssign::Full: break; 3357 case CCValAssign::SExt: { 3358 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3359 "Unexpected extend"); 3360 3361 if (ArgVT == MVT::i1) 3362 return false; 3363 3364 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3365 ArgVT, ArgReg); 3366 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3367 ArgVT = VA.getLocVT(); 3368 break; 3369 } 3370 case CCValAssign::ZExt: { 3371 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3372 "Unexpected extend"); 3373 3374 // Handle zero-extension from i1 to i8, which is common. 3375 if (ArgVT == MVT::i1) { 3376 // Set the high bits to zero. 3377 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg); 3378 ArgVT = MVT::i8; 3379 3380 if (ArgReg == 0) 3381 return false; 3382 } 3383 3384 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3385 ArgVT, ArgReg); 3386 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3387 ArgVT = VA.getLocVT(); 3388 break; 3389 } 3390 case CCValAssign::AExt: { 3391 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3392 "Unexpected extend"); 3393 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3394 ArgVT, ArgReg); 3395 if (!Emitted) 3396 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3397 ArgVT, ArgReg); 3398 if (!Emitted) 3399 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3400 ArgVT, ArgReg); 3401 3402 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3403 ArgVT = VA.getLocVT(); 3404 break; 3405 } 3406 case CCValAssign::BCvt: { 3407 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg); 3408 assert(ArgReg && "Failed to emit a bitcast!"); 3409 ArgVT = VA.getLocVT(); 3410 break; 3411 } 3412 case CCValAssign::VExt: 3413 // VExt has not been implemented, so this should be impossible to reach 3414 // for now. However, fallback to Selection DAG isel once implemented. 3415 return false; 3416 case CCValAssign::AExtUpper: 3417 case CCValAssign::SExtUpper: 3418 case CCValAssign::ZExtUpper: 3419 case CCValAssign::FPExt: 3420 case CCValAssign::Trunc: 3421 llvm_unreachable("Unexpected loc info!"); 3422 case CCValAssign::Indirect: 3423 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3424 // support this. 3425 return false; 3426 } 3427 3428 if (VA.isRegLoc()) { 3429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3430 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3431 OutRegs.push_back(VA.getLocReg()); 3432 } else { 3433 assert(VA.isMemLoc() && "Unknown value location!"); 3434 3435 // Don't emit stores for undef values. 3436 if (isa<UndefValue>(ArgVal)) 3437 continue; 3438 3439 unsigned LocMemOffset = VA.getLocMemOffset(); 3440 X86AddressMode AM; 3441 AM.Base.Reg = RegInfo->getStackRegister(); 3442 AM.Disp = LocMemOffset; 3443 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3444 Align Alignment = DL.getABITypeAlign(ArgVal->getType()); 3445 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3446 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3447 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3448 if (Flags.isByVal()) { 3449 X86AddressMode SrcAM; 3450 SrcAM.Base.Reg = ArgReg; 3451 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3452 return false; 3453 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3454 // If this is a really simple value, emit this with the Value* version 3455 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3456 // as it can cause us to reevaluate the argument. 3457 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3458 return false; 3459 } else { 3460 if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO)) 3461 return false; 3462 } 3463 } 3464 } 3465 3466 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3467 // GOT pointer. 3468 if (Subtarget->isPICStyleGOT()) { 3469 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3470 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3471 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3472 } 3473 3474 if (Is64Bit && IsVarArg && !IsWin64) { 3475 // From AMD64 ABI document: 3476 // For calls that may call functions that use varargs or stdargs 3477 // (prototype-less calls or calls to functions containing ellipsis (...) in 3478 // the declaration) %al is used as hidden argument to specify the number 3479 // of SSE registers used. The contents of %al do not need to match exactly 3480 // the number of registers, but must be an ubound on the number of SSE 3481 // registers used and is in the range 0 - 8 inclusive. 3482 3483 // Count the number of XMM registers allocated. 3484 static const MCPhysReg XMMArgRegs[] = { 3485 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3486 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3487 }; 3488 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3489 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3490 && "SSE registers cannot be used when SSE is disabled"); 3491 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), 3492 X86::AL).addImm(NumXMMRegs); 3493 } 3494 3495 // Materialize callee address in a register. FIXME: GV address can be 3496 // handled with a CALLpcrel32 instead. 3497 X86AddressMode CalleeAM; 3498 if (!X86SelectCallAddress(Callee, CalleeAM)) 3499 return false; 3500 3501 unsigned CalleeOp = 0; 3502 const GlobalValue *GV = nullptr; 3503 if (CalleeAM.GV != nullptr) { 3504 GV = CalleeAM.GV; 3505 } else if (CalleeAM.Base.Reg != 0) { 3506 CalleeOp = CalleeAM.Base.Reg; 3507 } else 3508 return false; 3509 3510 // Issue the call. 3511 MachineInstrBuilder MIB; 3512 if (CalleeOp) { 3513 // Register-indirect call. 3514 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3515 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)) 3516 .addReg(CalleeOp); 3517 } else { 3518 // Direct call. 3519 assert(GV && "Not a direct call"); 3520 // See if we need any target-specific flags on the GV operand. 3521 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3522 3523 // This will be a direct call, or an indirect call through memory for 3524 // NonLazyBind calls or dllimport calls. 3525 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3526 OpFlags == X86II::MO_GOTPCREL || 3527 OpFlags == X86II::MO_GOTPCREL_NORELAX || 3528 OpFlags == X86II::MO_COFFSTUB; 3529 unsigned CallOpc = NeedLoad 3530 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3531 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3532 3533 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)); 3534 if (NeedLoad) 3535 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); 3536 if (Symbol) 3537 MIB.addSym(Symbol, OpFlags); 3538 else 3539 MIB.addGlobalAddress(GV, 0, OpFlags); 3540 if (NeedLoad) 3541 MIB.addReg(0); 3542 } 3543 3544 // Add a register mask operand representing the call-preserved registers. 3545 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3546 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3547 3548 // Add an implicit use GOT pointer in EBX. 3549 if (Subtarget->isPICStyleGOT()) 3550 MIB.addReg(X86::EBX, RegState::Implicit); 3551 3552 if (Is64Bit && IsVarArg && !IsWin64) 3553 MIB.addReg(X86::AL, RegState::Implicit); 3554 3555 // Add implicit physical register uses to the call. 3556 for (auto Reg : OutRegs) 3557 MIB.addReg(Reg, RegState::Implicit); 3558 3559 // Issue CALLSEQ_END 3560 unsigned NumBytesForCalleeToPop = 3561 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3562 TM.Options.GuaranteedTailCallOpt) 3563 ? NumBytes // Callee pops everything. 3564 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB); 3565 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3566 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) 3567 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3568 3569 // Now handle call return values. 3570 SmallVector<CCValAssign, 16> RVLocs; 3571 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3572 CLI.RetTy->getContext()); 3573 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3574 3575 // Copy all of the result registers out of their specified physreg. 3576 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3577 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3578 CCValAssign &VA = RVLocs[i]; 3579 EVT CopyVT = VA.getValVT(); 3580 unsigned CopyReg = ResultReg + i; 3581 Register SrcReg = VA.getLocReg(); 3582 3583 // If this is x86-64, and we disabled SSE, we can't return FP values 3584 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3585 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3586 report_fatal_error("SSE register return with SSE disabled"); 3587 } 3588 3589 // If we prefer to use the value in xmm registers, copy it out as f80 and 3590 // use a truncate to move it from fp stack reg to xmm reg. 3591 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3592 isScalarFPTypeInSSEReg(VA.getValVT())) { 3593 CopyVT = MVT::f80; 3594 CopyReg = createResultReg(&X86::RFP80RegClass); 3595 } 3596 3597 // Copy out the result. 3598 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3599 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3600 InRegs.push_back(VA.getLocReg()); 3601 3602 // Round the f80 to the right size, which also moves it to the appropriate 3603 // xmm register. This is accomplished by storing the f80 value in memory 3604 // and then loading it back. 3605 if (CopyVT != VA.getValVT()) { 3606 EVT ResVT = VA.getValVT(); 3607 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3608 unsigned MemSize = ResVT.getSizeInBits()/8; 3609 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false); 3610 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3611 TII.get(Opc)), FI) 3612 .addReg(CopyReg); 3613 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3614 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3615 TII.get(Opc), ResultReg + i), FI); 3616 } 3617 } 3618 3619 CLI.ResultReg = ResultReg; 3620 CLI.NumResultRegs = RVLocs.size(); 3621 CLI.Call = MIB; 3622 3623 return true; 3624 } 3625 3626 bool 3627 X86FastISel::fastSelectInstruction(const Instruction *I) { 3628 switch (I->getOpcode()) { 3629 default: break; 3630 case Instruction::Load: 3631 return X86SelectLoad(I); 3632 case Instruction::Store: 3633 return X86SelectStore(I); 3634 case Instruction::Ret: 3635 return X86SelectRet(I); 3636 case Instruction::ICmp: 3637 case Instruction::FCmp: 3638 return X86SelectCmp(I); 3639 case Instruction::ZExt: 3640 return X86SelectZExt(I); 3641 case Instruction::SExt: 3642 return X86SelectSExt(I); 3643 case Instruction::Br: 3644 return X86SelectBranch(I); 3645 case Instruction::LShr: 3646 case Instruction::AShr: 3647 case Instruction::Shl: 3648 return X86SelectShift(I); 3649 case Instruction::SDiv: 3650 case Instruction::UDiv: 3651 case Instruction::SRem: 3652 case Instruction::URem: 3653 return X86SelectDivRem(I); 3654 case Instruction::Select: 3655 return X86SelectSelect(I); 3656 case Instruction::Trunc: 3657 return X86SelectTrunc(I); 3658 case Instruction::FPExt: 3659 return X86SelectFPExt(I); 3660 case Instruction::FPTrunc: 3661 return X86SelectFPTrunc(I); 3662 case Instruction::SIToFP: 3663 return X86SelectSIToFP(I); 3664 case Instruction::UIToFP: 3665 return X86SelectUIToFP(I); 3666 case Instruction::IntToPtr: // Deliberate fall-through. 3667 case Instruction::PtrToInt: { 3668 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3669 EVT DstVT = TLI.getValueType(DL, I->getType()); 3670 if (DstVT.bitsGT(SrcVT)) 3671 return X86SelectZExt(I); 3672 if (DstVT.bitsLT(SrcVT)) 3673 return X86SelectTrunc(I); 3674 Register Reg = getRegForValue(I->getOperand(0)); 3675 if (Reg == 0) return false; 3676 updateValueMap(I, Reg); 3677 return true; 3678 } 3679 case Instruction::BitCast: { 3680 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3681 if (!Subtarget->hasSSE2()) 3682 return false; 3683 3684 MVT SrcVT, DstVT; 3685 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3686 !isTypeLegal(I->getType(), DstVT)) 3687 return false; 3688 3689 // Only allow vectors that use xmm/ymm/zmm. 3690 if (!SrcVT.isVector() || !DstVT.isVector() || 3691 SrcVT.getVectorElementType() == MVT::i1 || 3692 DstVT.getVectorElementType() == MVT::i1) 3693 return false; 3694 3695 Register Reg = getRegForValue(I->getOperand(0)); 3696 if (!Reg) 3697 return false; 3698 3699 // Emit a reg-reg copy so we don't propagate cached known bits information 3700 // with the wrong VT if we fall out of fast isel after selecting this. 3701 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 3702 Register ResultReg = createResultReg(DstClass); 3703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3704 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 3705 3706 updateValueMap(I, ResultReg); 3707 return true; 3708 } 3709 } 3710 3711 return false; 3712 } 3713 3714 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3715 if (VT > MVT::i64) 3716 return 0; 3717 3718 uint64_t Imm = CI->getZExtValue(); 3719 if (Imm == 0) { 3720 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3721 switch (VT.SimpleTy) { 3722 default: llvm_unreachable("Unexpected value type"); 3723 case MVT::i1: 3724 case MVT::i8: 3725 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit); 3726 case MVT::i16: 3727 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit); 3728 case MVT::i32: 3729 return SrcReg; 3730 case MVT::i64: { 3731 Register ResultReg = createResultReg(&X86::GR64RegClass); 3732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3733 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3734 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3735 return ResultReg; 3736 } 3737 } 3738 } 3739 3740 unsigned Opc = 0; 3741 switch (VT.SimpleTy) { 3742 default: llvm_unreachable("Unexpected value type"); 3743 case MVT::i1: 3744 VT = MVT::i8; 3745 [[fallthrough]]; 3746 case MVT::i8: Opc = X86::MOV8ri; break; 3747 case MVT::i16: Opc = X86::MOV16ri; break; 3748 case MVT::i32: Opc = X86::MOV32ri; break; 3749 case MVT::i64: { 3750 if (isUInt<32>(Imm)) 3751 Opc = X86::MOV32ri64; 3752 else if (isInt<32>(Imm)) 3753 Opc = X86::MOV64ri32; 3754 else 3755 Opc = X86::MOV64ri; 3756 break; 3757 } 3758 } 3759 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3760 } 3761 3762 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3763 if (CFP->isNullValue()) 3764 return fastMaterializeFloatZero(CFP); 3765 3766 // Can't handle alternate code models yet. 3767 CodeModel::Model CM = TM.getCodeModel(); 3768 if (CM != CodeModel::Small && CM != CodeModel::Large) 3769 return 0; 3770 3771 // Get opcode and regclass of the output for the given load instruction. 3772 unsigned Opc = 0; 3773 bool HasSSE1 = Subtarget->hasSSE1(); 3774 bool HasSSE2 = Subtarget->hasSSE2(); 3775 bool HasAVX = Subtarget->hasAVX(); 3776 bool HasAVX512 = Subtarget->hasAVX512(); 3777 switch (VT.SimpleTy) { 3778 default: return 0; 3779 case MVT::f32: 3780 Opc = HasAVX512 ? X86::VMOVSSZrm_alt 3781 : HasAVX ? X86::VMOVSSrm_alt 3782 : HasSSE1 ? X86::MOVSSrm_alt 3783 : X86::LD_Fp32m; 3784 break; 3785 case MVT::f64: 3786 Opc = HasAVX512 ? X86::VMOVSDZrm_alt 3787 : HasAVX ? X86::VMOVSDrm_alt 3788 : HasSSE2 ? X86::MOVSDrm_alt 3789 : X86::LD_Fp64m; 3790 break; 3791 case MVT::f80: 3792 // No f80 support yet. 3793 return 0; 3794 } 3795 3796 // MachineConstantPool wants an explicit alignment. 3797 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 3798 3799 // x86-32 PIC requires a PIC base register for constant pools. 3800 unsigned PICBase = 0; 3801 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3802 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3803 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3804 else if (OpFlag == X86II::MO_GOTOFF) 3805 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3806 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) 3807 PICBase = X86::RIP; 3808 3809 // Create the load from the constant pool. 3810 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment); 3811 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3812 3813 // Large code model only applies to 64-bit mode. 3814 if (Subtarget->is64Bit() && CM == CodeModel::Large) { 3815 Register AddrReg = createResultReg(&X86::GR64RegClass); 3816 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), 3817 AddrReg) 3818 .addConstantPoolIndex(CPI, 0, OpFlag); 3819 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3820 TII.get(Opc), ResultReg); 3821 addRegReg(MIB, AddrReg, false, PICBase, false); 3822 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3823 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3824 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment); 3825 MIB->addMemOperand(*FuncInfo.MF, MMO); 3826 return ResultReg; 3827 } 3828 3829 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3830 TII.get(Opc), ResultReg), 3831 CPI, PICBase, OpFlag); 3832 return ResultReg; 3833 } 3834 3835 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3836 // Can't handle alternate code models yet. 3837 if (TM.getCodeModel() != CodeModel::Small) 3838 return 0; 3839 3840 // Materialize addresses with LEA/MOV instructions. 3841 X86AddressMode AM; 3842 if (X86SelectAddress(GV, AM)) { 3843 // If the expression is just a basereg, then we're done, otherwise we need 3844 // to emit an LEA. 3845 if (AM.BaseType == X86AddressMode::RegBase && 3846 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3847 return AM.Base.Reg; 3848 3849 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3850 if (TM.getRelocationModel() == Reloc::Static && 3851 TLI.getPointerTy(DL) == MVT::i64) { 3852 // The displacement code could be more than 32 bits away so we need to use 3853 // an instruction with a 64 bit immediate 3854 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), 3855 ResultReg) 3856 .addGlobalAddress(GV); 3857 } else { 3858 unsigned Opc = 3859 TLI.getPointerTy(DL) == MVT::i32 3860 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3861 : X86::LEA64r; 3862 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3863 TII.get(Opc), ResultReg), AM); 3864 } 3865 return ResultReg; 3866 } 3867 return 0; 3868 } 3869 3870 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3871 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3872 3873 // Only handle simple types. 3874 if (!CEVT.isSimple()) 3875 return 0; 3876 MVT VT = CEVT.getSimpleVT(); 3877 3878 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3879 return X86MaterializeInt(CI, VT); 3880 if (const auto *CFP = dyn_cast<ConstantFP>(C)) 3881 return X86MaterializeFP(CFP, VT); 3882 if (const auto *GV = dyn_cast<GlobalValue>(C)) 3883 return X86MaterializeGV(GV, VT); 3884 if (isa<UndefValue>(C)) { 3885 unsigned Opc = 0; 3886 switch (VT.SimpleTy) { 3887 default: 3888 break; 3889 case MVT::f32: 3890 if (!Subtarget->hasSSE1()) 3891 Opc = X86::LD_Fp032; 3892 break; 3893 case MVT::f64: 3894 if (!Subtarget->hasSSE2()) 3895 Opc = X86::LD_Fp064; 3896 break; 3897 case MVT::f80: 3898 Opc = X86::LD_Fp080; 3899 break; 3900 } 3901 3902 if (Opc) { 3903 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3904 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 3905 ResultReg); 3906 return ResultReg; 3907 } 3908 } 3909 3910 return 0; 3911 } 3912 3913 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3914 // Fail on dynamic allocas. At this point, getRegForValue has already 3915 // checked its CSE maps, so if we're here trying to handle a dynamic 3916 // alloca, we're not going to succeed. X86SelectAddress has a 3917 // check for dynamic allocas, because it's called directly from 3918 // various places, but targetMaterializeAlloca also needs a check 3919 // in order to avoid recursion between getRegForValue, 3920 // X86SelectAddrss, and targetMaterializeAlloca. 3921 if (!FuncInfo.StaticAllocaMap.count(C)) 3922 return 0; 3923 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3924 3925 X86AddressMode AM; 3926 if (!X86SelectAddress(C, AM)) 3927 return 0; 3928 unsigned Opc = 3929 TLI.getPointerTy(DL) == MVT::i32 3930 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3931 : X86::LEA64r; 3932 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3933 Register ResultReg = createResultReg(RC); 3934 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3935 TII.get(Opc), ResultReg), AM); 3936 return ResultReg; 3937 } 3938 3939 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3940 MVT VT; 3941 if (!isTypeLegal(CF->getType(), VT)) 3942 return 0; 3943 3944 // Get opcode and regclass for the given zero. 3945 bool HasSSE1 = Subtarget->hasSSE1(); 3946 bool HasSSE2 = Subtarget->hasSSE2(); 3947 bool HasAVX512 = Subtarget->hasAVX512(); 3948 unsigned Opc = 0; 3949 switch (VT.SimpleTy) { 3950 default: return 0; 3951 case MVT::f16: 3952 Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH; 3953 break; 3954 case MVT::f32: 3955 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS 3956 : HasSSE1 ? X86::FsFLD0SS 3957 : X86::LD_Fp032; 3958 break; 3959 case MVT::f64: 3960 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD 3961 : HasSSE2 ? X86::FsFLD0SD 3962 : X86::LD_Fp064; 3963 break; 3964 case MVT::f80: 3965 // No f80 support yet. 3966 return 0; 3967 } 3968 3969 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); 3971 return ResultReg; 3972 } 3973 3974 3975 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3976 const LoadInst *LI) { 3977 const Value *Ptr = LI->getPointerOperand(); 3978 X86AddressMode AM; 3979 if (!X86SelectAddress(Ptr, AM)) 3980 return false; 3981 3982 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3983 3984 unsigned Size = DL.getTypeAllocSize(LI->getType()); 3985 3986 SmallVector<MachineOperand, 8> AddrOps; 3987 AM.getFullAddress(AddrOps); 3988 3989 MachineInstr *Result = XII.foldMemoryOperandImpl( 3990 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(), 3991 /*AllowCommute=*/true); 3992 if (!Result) 3993 return false; 3994 3995 // The index register could be in the wrong register class. Unfortunately, 3996 // foldMemoryOperandImpl could have commuted the instruction so its not enough 3997 // to just look at OpNo + the offset to the index reg. We actually need to 3998 // scan the instruction to find the index reg and see if its the correct reg 3999 // class. 4000 unsigned OperandNo = 0; 4001 for (MachineInstr::mop_iterator I = Result->operands_begin(), 4002 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 4003 MachineOperand &MO = *I; 4004 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 4005 continue; 4006 // Found the index reg, now try to rewrite it. 4007 Register IndexReg = constrainOperandRegClass(Result->getDesc(), 4008 MO.getReg(), OperandNo); 4009 if (IndexReg == MO.getReg()) 4010 continue; 4011 MO.setReg(IndexReg); 4012 } 4013 4014 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 4015 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 4016 MachineBasicBlock::iterator I(MI); 4017 removeDeadCode(I, std::next(I)); 4018 return true; 4019 } 4020 4021 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 4022 const TargetRegisterClass *RC, 4023 unsigned Op0, unsigned Op1, 4024 unsigned Op2, unsigned Op3) { 4025 const MCInstrDesc &II = TII.get(MachineInstOpcode); 4026 4027 Register ResultReg = createResultReg(RC); 4028 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 4029 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 4030 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 4031 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 4032 4033 if (II.getNumDefs() >= 1) 4034 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 4035 .addReg(Op0) 4036 .addReg(Op1) 4037 .addReg(Op2) 4038 .addReg(Op3); 4039 else { 4040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 4041 .addReg(Op0) 4042 .addReg(Op1) 4043 .addReg(Op2) 4044 .addReg(Op3); 4045 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 4046 ResultReg) 4047 .addReg(II.implicit_defs()[0]); 4048 } 4049 return ResultReg; 4050 } 4051 4052 4053 namespace llvm { 4054 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4055 const TargetLibraryInfo *libInfo) { 4056 return new X86FastISel(funcInfo, libInfo); 4057 } 4058 } 4059