1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/IntrinsicsX86.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Target/TargetOptions.h" 43 using namespace llvm; 44 45 namespace { 46 47 class X86FastISel final : public FastISel { 48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 49 /// make the right decision when generating code for different targets. 50 const X86Subtarget *Subtarget; 51 52 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 53 /// floating point ops. 54 /// When SSE is available, use it for f32 operations. 55 /// When SSE2 is available, use it for f64 operations. 56 bool X86ScalarSSEf64; 57 bool X86ScalarSSEf32; 58 59 public: 60 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 61 const TargetLibraryInfo *libInfo) 62 : FastISel(funcInfo, libInfo) { 63 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 64 X86ScalarSSEf64 = Subtarget->hasSSE2(); 65 X86ScalarSSEf32 = Subtarget->hasSSE1(); 66 } 67 68 bool fastSelectInstruction(const Instruction *I) override; 69 70 /// The specified machine instr operand is a vreg, and that 71 /// vreg is being provided by the specified load instruction. If possible, 72 /// try to fold the load as an operand to the instruction, returning true if 73 /// possible. 74 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 75 const LoadInst *LI) override; 76 77 bool fastLowerArguments() override; 78 bool fastLowerCall(CallLoweringInfo &CLI) override; 79 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 80 81 #include "X86GenFastISel.inc" 82 83 private: 84 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 85 const DebugLoc &DL); 86 87 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 88 unsigned &ResultReg, unsigned Alignment = 1); 89 90 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 91 MachineMemOperand *MMO = nullptr, bool Aligned = false); 92 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, 93 X86AddressMode &AM, 94 MachineMemOperand *MMO = nullptr, bool Aligned = false); 95 96 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 97 unsigned &ResultReg); 98 99 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 100 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 101 102 bool X86SelectLoad(const Instruction *I); 103 104 bool X86SelectStore(const Instruction *I); 105 106 bool X86SelectRet(const Instruction *I); 107 108 bool X86SelectCmp(const Instruction *I); 109 110 bool X86SelectZExt(const Instruction *I); 111 112 bool X86SelectSExt(const Instruction *I); 113 114 bool X86SelectBranch(const Instruction *I); 115 116 bool X86SelectShift(const Instruction *I); 117 118 bool X86SelectDivRem(const Instruction *I); 119 120 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 121 122 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 123 124 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 125 126 bool X86SelectSelect(const Instruction *I); 127 128 bool X86SelectTrunc(const Instruction *I); 129 130 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 131 const TargetRegisterClass *RC); 132 133 bool X86SelectFPExt(const Instruction *I); 134 bool X86SelectFPTrunc(const Instruction *I); 135 bool X86SelectSIToFP(const Instruction *I); 136 bool X86SelectUIToFP(const Instruction *I); 137 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 138 139 const X86InstrInfo *getInstrInfo() const { 140 return Subtarget->getInstrInfo(); 141 } 142 const X86TargetMachine *getTargetMachine() const { 143 return static_cast<const X86TargetMachine *>(&TM); 144 } 145 146 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 147 148 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 149 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 150 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 151 unsigned fastMaterializeConstant(const Constant *C) override; 152 153 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 154 155 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 156 157 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 158 /// computed in an SSE register, not on the X87 floating point stack. 159 bool isScalarFPTypeInSSEReg(EVT VT) const { 160 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 161 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 162 } 163 164 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 165 166 bool IsMemcpySmall(uint64_t Len); 167 168 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 169 X86AddressMode SrcAM, uint64_t Len); 170 171 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 172 const Value *Cond); 173 174 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 175 X86AddressMode &AM); 176 177 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 178 const TargetRegisterClass *RC, unsigned Op0, 179 bool Op0IsKill, unsigned Op1, bool Op1IsKill, 180 unsigned Op2, bool Op2IsKill, unsigned Op3, 181 bool Op3IsKill); 182 }; 183 184 } // end anonymous namespace. 185 186 static std::pair<unsigned, bool> 187 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 188 unsigned CC; 189 bool NeedSwap = false; 190 191 // SSE Condition code mapping: 192 // 0 - EQ 193 // 1 - LT 194 // 2 - LE 195 // 3 - UNORD 196 // 4 - NEQ 197 // 5 - NLT 198 // 6 - NLE 199 // 7 - ORD 200 switch (Predicate) { 201 default: llvm_unreachable("Unexpected predicate"); 202 case CmpInst::FCMP_OEQ: CC = 0; break; 203 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; 204 case CmpInst::FCMP_OLT: CC = 1; break; 205 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; 206 case CmpInst::FCMP_OLE: CC = 2; break; 207 case CmpInst::FCMP_UNO: CC = 3; break; 208 case CmpInst::FCMP_UNE: CC = 4; break; 209 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; 210 case CmpInst::FCMP_UGE: CC = 5; break; 211 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; 212 case CmpInst::FCMP_UGT: CC = 6; break; 213 case CmpInst::FCMP_ORD: CC = 7; break; 214 case CmpInst::FCMP_UEQ: CC = 8; break; 215 case CmpInst::FCMP_ONE: CC = 12; break; 216 } 217 218 return std::make_pair(CC, NeedSwap); 219 } 220 221 /// Adds a complex addressing mode to the given machine instr builder. 222 /// Note, this will constrain the index register. If its not possible to 223 /// constrain the given index register, then a new one will be created. The 224 /// IndexReg field of the addressing mode will be updated to match in this case. 225 const MachineInstrBuilder & 226 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 227 X86AddressMode &AM) { 228 // First constrain the index register. It needs to be a GR64_NOSP. 229 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 230 MIB->getNumOperands() + 231 X86::AddrIndexReg); 232 return ::addFullAddress(MIB, AM); 233 } 234 235 /// Check if it is possible to fold the condition from the XALU intrinsic 236 /// into the user. The condition code will only be updated on success. 237 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 238 const Value *Cond) { 239 if (!isa<ExtractValueInst>(Cond)) 240 return false; 241 242 const auto *EV = cast<ExtractValueInst>(Cond); 243 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 244 return false; 245 246 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 247 MVT RetVT; 248 const Function *Callee = II->getCalledFunction(); 249 Type *RetTy = 250 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 251 if (!isTypeLegal(RetTy, RetVT)) 252 return false; 253 254 if (RetVT != MVT::i32 && RetVT != MVT::i64) 255 return false; 256 257 X86::CondCode TmpCC; 258 switch (II->getIntrinsicID()) { 259 default: return false; 260 case Intrinsic::sadd_with_overflow: 261 case Intrinsic::ssub_with_overflow: 262 case Intrinsic::smul_with_overflow: 263 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 264 case Intrinsic::uadd_with_overflow: 265 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 266 } 267 268 // Check if both instructions are in the same basic block. 269 if (II->getParent() != I->getParent()) 270 return false; 271 272 // Make sure nothing is in the way 273 BasicBlock::const_iterator Start(I); 274 BasicBlock::const_iterator End(II); 275 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 276 // We only expect extractvalue instructions between the intrinsic and the 277 // instruction to be selected. 278 if (!isa<ExtractValueInst>(Itr)) 279 return false; 280 281 // Check that the extractvalue operand comes from the intrinsic. 282 const auto *EVI = cast<ExtractValueInst>(Itr); 283 if (EVI->getAggregateOperand() != II) 284 return false; 285 } 286 287 CC = TmpCC; 288 return true; 289 } 290 291 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 292 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 293 if (evt == MVT::Other || !evt.isSimple()) 294 // Unhandled type. Halt "fast" selection and bail. 295 return false; 296 297 VT = evt.getSimpleVT(); 298 // For now, require SSE/SSE2 for performing floating-point operations, 299 // since x87 requires additional work. 300 if (VT == MVT::f64 && !X86ScalarSSEf64) 301 return false; 302 if (VT == MVT::f32 && !X86ScalarSSEf32) 303 return false; 304 // Similarly, no f80 support yet. 305 if (VT == MVT::f80) 306 return false; 307 // We only handle legal types. For example, on x86-32 the instruction 308 // selector contains all of the 64-bit instructions from x86-64, 309 // under the assumption that i64 won't be used if the target doesn't 310 // support it. 311 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 312 } 313 314 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 315 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 316 /// Return true and the result register by reference if it is possible. 317 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 318 MachineMemOperand *MMO, unsigned &ResultReg, 319 unsigned Alignment) { 320 bool HasSSE41 = Subtarget->hasSSE41(); 321 bool HasAVX = Subtarget->hasAVX(); 322 bool HasAVX2 = Subtarget->hasAVX2(); 323 bool HasAVX512 = Subtarget->hasAVX512(); 324 bool HasVLX = Subtarget->hasVLX(); 325 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 326 327 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 328 if (VT == MVT::i1) 329 VT = MVT::i8; 330 331 // Get opcode and regclass of the output for the given load instruction. 332 unsigned Opc = 0; 333 switch (VT.SimpleTy) { 334 default: return false; 335 case MVT::i8: 336 Opc = X86::MOV8rm; 337 break; 338 case MVT::i16: 339 Opc = X86::MOV16rm; 340 break; 341 case MVT::i32: 342 Opc = X86::MOV32rm; 343 break; 344 case MVT::i64: 345 // Must be in x86-64 mode. 346 Opc = X86::MOV64rm; 347 break; 348 case MVT::f32: 349 if (X86ScalarSSEf32) 350 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 351 HasAVX ? X86::VMOVSSrm_alt : 352 X86::MOVSSrm_alt; 353 else 354 Opc = X86::LD_Fp32m; 355 break; 356 case MVT::f64: 357 if (X86ScalarSSEf64) 358 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 359 HasAVX ? X86::VMOVSDrm_alt : 360 X86::MOVSDrm_alt; 361 else 362 Opc = X86::LD_Fp64m; 363 break; 364 case MVT::f80: 365 // No f80 support yet. 366 return false; 367 case MVT::v4f32: 368 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 369 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 370 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 371 else if (Alignment >= 16) 372 Opc = HasVLX ? X86::VMOVAPSZ128rm : 373 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 374 else 375 Opc = HasVLX ? X86::VMOVUPSZ128rm : 376 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 377 break; 378 case MVT::v2f64: 379 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 380 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 381 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 382 else if (Alignment >= 16) 383 Opc = HasVLX ? X86::VMOVAPDZ128rm : 384 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 385 else 386 Opc = HasVLX ? X86::VMOVUPDZ128rm : 387 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 388 break; 389 case MVT::v4i32: 390 case MVT::v2i64: 391 case MVT::v8i16: 392 case MVT::v16i8: 393 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 394 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 395 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 396 else if (Alignment >= 16) 397 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 398 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 399 else 400 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 401 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 402 break; 403 case MVT::v8f32: 404 assert(HasAVX); 405 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 406 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 407 else if (IsNonTemporal && Alignment >= 16) 408 return false; // Force split for X86::VMOVNTDQArm 409 else if (Alignment >= 32) 410 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 411 else 412 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 413 break; 414 case MVT::v4f64: 415 assert(HasAVX); 416 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 417 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 418 else if (IsNonTemporal && Alignment >= 16) 419 return false; // Force split for X86::VMOVNTDQArm 420 else if (Alignment >= 32) 421 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 422 else 423 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 424 break; 425 case MVT::v8i32: 426 case MVT::v4i64: 427 case MVT::v16i16: 428 case MVT::v32i8: 429 assert(HasAVX); 430 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 431 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 432 else if (IsNonTemporal && Alignment >= 16) 433 return false; // Force split for X86::VMOVNTDQArm 434 else if (Alignment >= 32) 435 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 436 else 437 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 438 break; 439 case MVT::v16f32: 440 assert(HasAVX512); 441 if (IsNonTemporal && Alignment >= 64) 442 Opc = X86::VMOVNTDQAZrm; 443 else 444 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 445 break; 446 case MVT::v8f64: 447 assert(HasAVX512); 448 if (IsNonTemporal && Alignment >= 64) 449 Opc = X86::VMOVNTDQAZrm; 450 else 451 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 452 break; 453 case MVT::v8i64: 454 case MVT::v16i32: 455 case MVT::v32i16: 456 case MVT::v64i8: 457 assert(HasAVX512); 458 // Note: There are a lot more choices based on type with AVX-512, but 459 // there's really no advantage when the load isn't masked. 460 if (IsNonTemporal && Alignment >= 64) 461 Opc = X86::VMOVNTDQAZrm; 462 else 463 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 464 break; 465 } 466 467 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 468 469 ResultReg = createResultReg(RC); 470 MachineInstrBuilder MIB = 471 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 472 addFullAddress(MIB, AM); 473 if (MMO) 474 MIB->addMemOperand(*FuncInfo.MF, MMO); 475 return true; 476 } 477 478 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 479 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 480 /// and a displacement offset, or a GlobalAddress, 481 /// i.e. V. Return true if it is possible. 482 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, 483 X86AddressMode &AM, 484 MachineMemOperand *MMO, bool Aligned) { 485 bool HasSSE1 = Subtarget->hasSSE1(); 486 bool HasSSE2 = Subtarget->hasSSE2(); 487 bool HasSSE4A = Subtarget->hasSSE4A(); 488 bool HasAVX = Subtarget->hasAVX(); 489 bool HasAVX512 = Subtarget->hasAVX512(); 490 bool HasVLX = Subtarget->hasVLX(); 491 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 492 493 // Get opcode and regclass of the output for the given store instruction. 494 unsigned Opc = 0; 495 switch (VT.getSimpleVT().SimpleTy) { 496 case MVT::f80: // No f80 support yet. 497 default: return false; 498 case MVT::i1: { 499 // Mask out all but lowest bit. 500 Register AndResult = createResultReg(&X86::GR8RegClass); 501 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 502 TII.get(X86::AND8ri), AndResult) 503 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); 504 ValReg = AndResult; 505 LLVM_FALLTHROUGH; // handle i1 as i8. 506 } 507 case MVT::i8: Opc = X86::MOV8mr; break; 508 case MVT::i16: Opc = X86::MOV16mr; break; 509 case MVT::i32: 510 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 511 break; 512 case MVT::i64: 513 // Must be in x86-64 mode. 514 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 515 break; 516 case MVT::f32: 517 if (X86ScalarSSEf32) { 518 if (IsNonTemporal && HasSSE4A) 519 Opc = X86::MOVNTSS; 520 else 521 Opc = HasAVX512 ? X86::VMOVSSZmr : 522 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 523 } else 524 Opc = X86::ST_Fp32m; 525 break; 526 case MVT::f64: 527 if (X86ScalarSSEf32) { 528 if (IsNonTemporal && HasSSE4A) 529 Opc = X86::MOVNTSD; 530 else 531 Opc = HasAVX512 ? X86::VMOVSDZmr : 532 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 533 } else 534 Opc = X86::ST_Fp64m; 535 break; 536 case MVT::x86mmx: 537 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 538 break; 539 case MVT::v4f32: 540 if (Aligned) { 541 if (IsNonTemporal) 542 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 543 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 544 else 545 Opc = HasVLX ? X86::VMOVAPSZ128mr : 546 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 547 } else 548 Opc = HasVLX ? X86::VMOVUPSZ128mr : 549 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 550 break; 551 case MVT::v2f64: 552 if (Aligned) { 553 if (IsNonTemporal) 554 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 555 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 556 else 557 Opc = HasVLX ? X86::VMOVAPDZ128mr : 558 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 559 } else 560 Opc = HasVLX ? X86::VMOVUPDZ128mr : 561 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 562 break; 563 case MVT::v4i32: 564 case MVT::v2i64: 565 case MVT::v8i16: 566 case MVT::v16i8: 567 if (Aligned) { 568 if (IsNonTemporal) 569 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 570 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 571 else 572 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 573 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 574 } else 575 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 576 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 577 break; 578 case MVT::v8f32: 579 assert(HasAVX); 580 if (Aligned) { 581 if (IsNonTemporal) 582 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 583 else 584 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 585 } else 586 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 587 break; 588 case MVT::v4f64: 589 assert(HasAVX); 590 if (Aligned) { 591 if (IsNonTemporal) 592 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 593 else 594 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 595 } else 596 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 597 break; 598 case MVT::v8i32: 599 case MVT::v4i64: 600 case MVT::v16i16: 601 case MVT::v32i8: 602 assert(HasAVX); 603 if (Aligned) { 604 if (IsNonTemporal) 605 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 606 else 607 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 608 } else 609 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 610 break; 611 case MVT::v16f32: 612 assert(HasAVX512); 613 if (Aligned) 614 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 615 else 616 Opc = X86::VMOVUPSZmr; 617 break; 618 case MVT::v8f64: 619 assert(HasAVX512); 620 if (Aligned) { 621 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 622 } else 623 Opc = X86::VMOVUPDZmr; 624 break; 625 case MVT::v8i64: 626 case MVT::v16i32: 627 case MVT::v32i16: 628 case MVT::v64i8: 629 assert(HasAVX512); 630 // Note: There are a lot more choices based on type with AVX-512, but 631 // there's really no advantage when the store isn't masked. 632 if (Aligned) 633 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 634 else 635 Opc = X86::VMOVDQU64Zmr; 636 break; 637 } 638 639 const MCInstrDesc &Desc = TII.get(Opc); 640 // Some of the instructions in the previous switch use FR128 instead 641 // of FR32 for ValReg. Make sure the register we feed the instruction 642 // matches its register class constraints. 643 // Note: This is fine to do a copy from FR32 to FR128, this is the 644 // same registers behind the scene and actually why it did not trigger 645 // any bugs before. 646 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 647 MachineInstrBuilder MIB = 648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); 649 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); 650 if (MMO) 651 MIB->addMemOperand(*FuncInfo.MF, MMO); 652 653 return true; 654 } 655 656 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 657 X86AddressMode &AM, 658 MachineMemOperand *MMO, bool Aligned) { 659 // Handle 'null' like i32/i64 0. 660 if (isa<ConstantPointerNull>(Val)) 661 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 662 663 // If this is a store of a simple constant, fold the constant into the store. 664 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 665 unsigned Opc = 0; 666 bool Signed = true; 667 switch (VT.getSimpleVT().SimpleTy) { 668 default: break; 669 case MVT::i1: 670 Signed = false; 671 LLVM_FALLTHROUGH; // Handle as i8. 672 case MVT::i8: Opc = X86::MOV8mi; break; 673 case MVT::i16: Opc = X86::MOV16mi; break; 674 case MVT::i32: Opc = X86::MOV32mi; break; 675 case MVT::i64: 676 // Must be a 32-bit sign extended value. 677 if (isInt<32>(CI->getSExtValue())) 678 Opc = X86::MOV64mi32; 679 break; 680 } 681 682 if (Opc) { 683 MachineInstrBuilder MIB = 684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 685 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 686 : CI->getZExtValue()); 687 if (MMO) 688 MIB->addMemOperand(*FuncInfo.MF, MMO); 689 return true; 690 } 691 } 692 693 Register ValReg = getRegForValue(Val); 694 if (ValReg == 0) 695 return false; 696 697 bool ValKill = hasTrivialKill(Val); 698 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); 699 } 700 701 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 702 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 703 /// ISD::SIGN_EXTEND). 704 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 705 unsigned Src, EVT SrcVT, 706 unsigned &ResultReg) { 707 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, 708 Src, /*TODO: Kill=*/false); 709 if (RR == 0) 710 return false; 711 712 ResultReg = RR; 713 return true; 714 } 715 716 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 717 // Handle constant address. 718 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 719 // Can't handle alternate code models yet. 720 if (TM.getCodeModel() != CodeModel::Small) 721 return false; 722 723 // Can't handle TLS yet. 724 if (GV->isThreadLocal()) 725 return false; 726 727 // Can't handle !absolute_symbol references yet. 728 if (GV->isAbsoluteSymbolRef()) 729 return false; 730 731 // RIP-relative addresses can't have additional register operands, so if 732 // we've already folded stuff into the addressing mode, just force the 733 // global value into its own register, which we can use as the basereg. 734 if (!Subtarget->isPICStyleRIPRel() || 735 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 736 // Okay, we've committed to selecting this global. Set up the address. 737 AM.GV = GV; 738 739 // Allow the subtarget to classify the global. 740 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 741 742 // If this reference is relative to the pic base, set it now. 743 if (isGlobalRelativeToPICBase(GVFlags)) { 744 // FIXME: How do we know Base.Reg is free?? 745 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 746 } 747 748 // Unless the ABI requires an extra load, return a direct reference to 749 // the global. 750 if (!isGlobalStubReference(GVFlags)) { 751 if (Subtarget->isPICStyleRIPRel()) { 752 // Use rip-relative addressing if we can. Above we verified that the 753 // base and index registers are unused. 754 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 755 AM.Base.Reg = X86::RIP; 756 } 757 AM.GVOpFlags = GVFlags; 758 return true; 759 } 760 761 // Ok, we need to do a load from a stub. If we've already loaded from 762 // this stub, reuse the loaded pointer, otherwise emit the load now. 763 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V); 764 Register LoadReg; 765 if (I != LocalValueMap.end() && I->second) { 766 LoadReg = I->second; 767 } else { 768 // Issue load from stub. 769 unsigned Opc = 0; 770 const TargetRegisterClass *RC = nullptr; 771 X86AddressMode StubAM; 772 StubAM.Base.Reg = AM.Base.Reg; 773 StubAM.GV = GV; 774 StubAM.GVOpFlags = GVFlags; 775 776 // Prepare for inserting code in the local-value area. 777 SavePoint SaveInsertPt = enterLocalValueArea(); 778 779 if (TLI.getPointerTy(DL) == MVT::i64) { 780 Opc = X86::MOV64rm; 781 RC = &X86::GR64RegClass; 782 783 if (Subtarget->isPICStyleRIPRel()) 784 StubAM.Base.Reg = X86::RIP; 785 } else { 786 Opc = X86::MOV32rm; 787 RC = &X86::GR32RegClass; 788 } 789 790 LoadReg = createResultReg(RC); 791 MachineInstrBuilder LoadMI = 792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); 793 addFullAddress(LoadMI, StubAM); 794 795 // Ok, back to normal mode. 796 leaveLocalValueArea(SaveInsertPt); 797 798 // Prevent loading GV stub multiple times in same MBB. 799 LocalValueMap[V] = LoadReg; 800 } 801 802 // Now construct the final address. Note that the Disp, Scale, 803 // and Index values may already be set here. 804 AM.Base.Reg = LoadReg; 805 AM.GV = nullptr; 806 return true; 807 } 808 } 809 810 // If all else fails, try to materialize the value in a register. 811 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 812 if (AM.Base.Reg == 0) { 813 AM.Base.Reg = getRegForValue(V); 814 return AM.Base.Reg != 0; 815 } 816 if (AM.IndexReg == 0) { 817 assert(AM.Scale == 1 && "Scale with no index!"); 818 AM.IndexReg = getRegForValue(V); 819 return AM.IndexReg != 0; 820 } 821 } 822 823 return false; 824 } 825 826 /// X86SelectAddress - Attempt to fill in an address from the given value. 827 /// 828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 829 SmallVector<const Value *, 32> GEPs; 830 redo_gep: 831 const User *U = nullptr; 832 unsigned Opcode = Instruction::UserOp1; 833 if (const Instruction *I = dyn_cast<Instruction>(V)) { 834 // Don't walk into other basic blocks; it's possible we haven't 835 // visited them yet, so the instructions may not yet be assigned 836 // virtual registers. 837 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 838 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 839 Opcode = I->getOpcode(); 840 U = I; 841 } 842 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 843 Opcode = C->getOpcode(); 844 U = C; 845 } 846 847 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 848 if (Ty->getAddressSpace() > 255) 849 // Fast instruction selection doesn't support the special 850 // address spaces. 851 return false; 852 853 switch (Opcode) { 854 default: break; 855 case Instruction::BitCast: 856 // Look past bitcasts. 857 return X86SelectAddress(U->getOperand(0), AM); 858 859 case Instruction::IntToPtr: 860 // Look past no-op inttoptrs. 861 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 862 TLI.getPointerTy(DL)) 863 return X86SelectAddress(U->getOperand(0), AM); 864 break; 865 866 case Instruction::PtrToInt: 867 // Look past no-op ptrtoints. 868 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 869 return X86SelectAddress(U->getOperand(0), AM); 870 break; 871 872 case Instruction::Alloca: { 873 // Do static allocas. 874 const AllocaInst *A = cast<AllocaInst>(V); 875 DenseMap<const AllocaInst *, int>::iterator SI = 876 FuncInfo.StaticAllocaMap.find(A); 877 if (SI != FuncInfo.StaticAllocaMap.end()) { 878 AM.BaseType = X86AddressMode::FrameIndexBase; 879 AM.Base.FrameIndex = SI->second; 880 return true; 881 } 882 break; 883 } 884 885 case Instruction::Add: { 886 // Adds of constants are common and easy enough. 887 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 888 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 889 // They have to fit in the 32-bit signed displacement field though. 890 if (isInt<32>(Disp)) { 891 AM.Disp = (uint32_t)Disp; 892 return X86SelectAddress(U->getOperand(0), AM); 893 } 894 } 895 break; 896 } 897 898 case Instruction::GetElementPtr: { 899 X86AddressMode SavedAM = AM; 900 901 // Pattern-match simple GEPs. 902 uint64_t Disp = (int32_t)AM.Disp; 903 unsigned IndexReg = AM.IndexReg; 904 unsigned Scale = AM.Scale; 905 gep_type_iterator GTI = gep_type_begin(U); 906 // Iterate through the indices, folding what we can. Constants can be 907 // folded, and one dynamic index can be handled, if the scale is supported. 908 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 909 i != e; ++i, ++GTI) { 910 const Value *Op = *i; 911 if (StructType *STy = GTI.getStructTypeOrNull()) { 912 const StructLayout *SL = DL.getStructLayout(STy); 913 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 914 continue; 915 } 916 917 // A array/variable index is always of the form i*S where S is the 918 // constant scale size. See if we can push the scale into immediates. 919 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 920 for (;;) { 921 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 922 // Constant-offset addressing. 923 Disp += CI->getSExtValue() * S; 924 break; 925 } 926 if (canFoldAddIntoGEP(U, Op)) { 927 // A compatible add with a constant operand. Fold the constant. 928 ConstantInt *CI = 929 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 930 Disp += CI->getSExtValue() * S; 931 // Iterate on the other operand. 932 Op = cast<AddOperator>(Op)->getOperand(0); 933 continue; 934 } 935 if (IndexReg == 0 && 936 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 937 (S == 1 || S == 2 || S == 4 || S == 8)) { 938 // Scaled-index addressing. 939 Scale = S; 940 IndexReg = getRegForGEPIndex(Op).first; 941 if (IndexReg == 0) 942 return false; 943 break; 944 } 945 // Unsupported. 946 goto unsupported_gep; 947 } 948 } 949 950 // Check for displacement overflow. 951 if (!isInt<32>(Disp)) 952 break; 953 954 AM.IndexReg = IndexReg; 955 AM.Scale = Scale; 956 AM.Disp = (uint32_t)Disp; 957 GEPs.push_back(V); 958 959 if (const GetElementPtrInst *GEP = 960 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 961 // Ok, the GEP indices were covered by constant-offset and scaled-index 962 // addressing. Update the address state and move on to examining the base. 963 V = GEP; 964 goto redo_gep; 965 } else if (X86SelectAddress(U->getOperand(0), AM)) { 966 return true; 967 } 968 969 // If we couldn't merge the gep value into this addr mode, revert back to 970 // our address and just match the value instead of completely failing. 971 AM = SavedAM; 972 973 for (const Value *I : reverse(GEPs)) 974 if (handleConstantAddresses(I, AM)) 975 return true; 976 977 return false; 978 unsupported_gep: 979 // Ok, the GEP indices weren't all covered. 980 break; 981 } 982 } 983 984 return handleConstantAddresses(V, AM); 985 } 986 987 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 988 /// 989 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 990 const User *U = nullptr; 991 unsigned Opcode = Instruction::UserOp1; 992 const Instruction *I = dyn_cast<Instruction>(V); 993 // Record if the value is defined in the same basic block. 994 // 995 // This information is crucial to know whether or not folding an 996 // operand is valid. 997 // Indeed, FastISel generates or reuses a virtual register for all 998 // operands of all instructions it selects. Obviously, the definition and 999 // its uses must use the same virtual register otherwise the produced 1000 // code is incorrect. 1001 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 1002 // registers for values that are alive across basic blocks. This ensures 1003 // that the values are consistently set between across basic block, even 1004 // if different instruction selection mechanisms are used (e.g., a mix of 1005 // SDISel and FastISel). 1006 // For values local to a basic block, the instruction selection process 1007 // generates these virtual registers with whatever method is appropriate 1008 // for its needs. In particular, FastISel and SDISel do not share the way 1009 // local virtual registers are set. 1010 // Therefore, this is impossible (or at least unsafe) to share values 1011 // between basic blocks unless they use the same instruction selection 1012 // method, which is not guarantee for X86. 1013 // Moreover, things like hasOneUse could not be used accurately, if we 1014 // allow to reference values across basic blocks whereas they are not 1015 // alive across basic blocks initially. 1016 bool InMBB = true; 1017 if (I) { 1018 Opcode = I->getOpcode(); 1019 U = I; 1020 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1021 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1022 Opcode = C->getOpcode(); 1023 U = C; 1024 } 1025 1026 switch (Opcode) { 1027 default: break; 1028 case Instruction::BitCast: 1029 // Look past bitcasts if its operand is in the same BB. 1030 if (InMBB) 1031 return X86SelectCallAddress(U->getOperand(0), AM); 1032 break; 1033 1034 case Instruction::IntToPtr: 1035 // Look past no-op inttoptrs if its operand is in the same BB. 1036 if (InMBB && 1037 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1038 TLI.getPointerTy(DL)) 1039 return X86SelectCallAddress(U->getOperand(0), AM); 1040 break; 1041 1042 case Instruction::PtrToInt: 1043 // Look past no-op ptrtoints if its operand is in the same BB. 1044 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1045 return X86SelectCallAddress(U->getOperand(0), AM); 1046 break; 1047 } 1048 1049 // Handle constant address. 1050 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1051 // Can't handle alternate code models yet. 1052 if (TM.getCodeModel() != CodeModel::Small) 1053 return false; 1054 1055 // RIP-relative addresses can't have additional register operands. 1056 if (Subtarget->isPICStyleRIPRel() && 1057 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1058 return false; 1059 1060 // Can't handle TLS. 1061 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1062 if (GVar->isThreadLocal()) 1063 return false; 1064 1065 // Okay, we've committed to selecting this global. Set up the basic address. 1066 AM.GV = GV; 1067 1068 // Return a direct reference to the global. Fastisel can handle calls to 1069 // functions that require loads, such as dllimport and nonlazybind 1070 // functions. 1071 if (Subtarget->isPICStyleRIPRel()) { 1072 // Use rip-relative addressing if we can. Above we verified that the 1073 // base and index registers are unused. 1074 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1075 AM.Base.Reg = X86::RIP; 1076 } else { 1077 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1078 } 1079 1080 return true; 1081 } 1082 1083 // If all else fails, try to materialize the value in a register. 1084 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1085 if (AM.Base.Reg == 0) { 1086 AM.Base.Reg = getRegForValue(V); 1087 return AM.Base.Reg != 0; 1088 } 1089 if (AM.IndexReg == 0) { 1090 assert(AM.Scale == 1 && "Scale with no index!"); 1091 AM.IndexReg = getRegForValue(V); 1092 return AM.IndexReg != 0; 1093 } 1094 } 1095 1096 return false; 1097 } 1098 1099 1100 /// X86SelectStore - Select and emit code to implement store instructions. 1101 bool X86FastISel::X86SelectStore(const Instruction *I) { 1102 // Atomic stores need special handling. 1103 const StoreInst *S = cast<StoreInst>(I); 1104 1105 if (S->isAtomic()) 1106 return false; 1107 1108 const Value *PtrV = I->getOperand(1); 1109 if (TLI.supportSwiftError()) { 1110 // Swifterror values can come from either a function parameter with 1111 // swifterror attribute or an alloca with swifterror attribute. 1112 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1113 if (Arg->hasSwiftErrorAttr()) 1114 return false; 1115 } 1116 1117 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1118 if (Alloca->isSwiftError()) 1119 return false; 1120 } 1121 } 1122 1123 const Value *Val = S->getValueOperand(); 1124 const Value *Ptr = S->getPointerOperand(); 1125 1126 MVT VT; 1127 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1128 return false; 1129 1130 Align Alignment = S->getAlign(); 1131 Align ABIAlignment = DL.getABITypeAlign(Val->getType()); 1132 bool Aligned = Alignment >= ABIAlignment; 1133 1134 X86AddressMode AM; 1135 if (!X86SelectAddress(Ptr, AM)) 1136 return false; 1137 1138 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1139 } 1140 1141 /// X86SelectRet - Select and emit code to implement ret instructions. 1142 bool X86FastISel::X86SelectRet(const Instruction *I) { 1143 const ReturnInst *Ret = cast<ReturnInst>(I); 1144 const Function &F = *I->getParent()->getParent(); 1145 const X86MachineFunctionInfo *X86MFInfo = 1146 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1147 1148 if (!FuncInfo.CanLowerReturn) 1149 return false; 1150 1151 if (TLI.supportSwiftError() && 1152 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1153 return false; 1154 1155 if (TLI.supportSplitCSR(FuncInfo.MF)) 1156 return false; 1157 1158 CallingConv::ID CC = F.getCallingConv(); 1159 if (CC != CallingConv::C && 1160 CC != CallingConv::Fast && 1161 CC != CallingConv::Tail && 1162 CC != CallingConv::X86_FastCall && 1163 CC != CallingConv::X86_StdCall && 1164 CC != CallingConv::X86_ThisCall && 1165 CC != CallingConv::X86_64_SysV && 1166 CC != CallingConv::Win64) 1167 return false; 1168 1169 // Don't handle popping bytes if they don't fit the ret's immediate. 1170 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1171 return false; 1172 1173 // fastcc with -tailcallopt is intended to provide a guaranteed 1174 // tail call optimization. Fastisel doesn't know how to do that. 1175 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 1176 CC == CallingConv::Tail) 1177 return false; 1178 1179 // Let SDISel handle vararg functions. 1180 if (F.isVarArg()) 1181 return false; 1182 1183 // Build a list of return value registers. 1184 SmallVector<unsigned, 4> RetRegs; 1185 1186 if (Ret->getNumOperands() > 0) { 1187 SmallVector<ISD::OutputArg, 4> Outs; 1188 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1189 1190 // Analyze operands of the call, assigning locations to each operand. 1191 SmallVector<CCValAssign, 16> ValLocs; 1192 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1193 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1194 1195 const Value *RV = Ret->getOperand(0); 1196 Register Reg = getRegForValue(RV); 1197 if (Reg == 0) 1198 return false; 1199 1200 // Only handle a single return value for now. 1201 if (ValLocs.size() != 1) 1202 return false; 1203 1204 CCValAssign &VA = ValLocs[0]; 1205 1206 // Don't bother handling odd stuff for now. 1207 if (VA.getLocInfo() != CCValAssign::Full) 1208 return false; 1209 // Only handle register returns for now. 1210 if (!VA.isRegLoc()) 1211 return false; 1212 1213 // The calling-convention tables for x87 returns don't tell 1214 // the whole story. 1215 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1216 return false; 1217 1218 unsigned SrcReg = Reg + VA.getValNo(); 1219 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1220 EVT DstVT = VA.getValVT(); 1221 // Special handling for extended integers. 1222 if (SrcVT != DstVT) { 1223 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1224 return false; 1225 1226 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1227 return false; 1228 1229 assert(DstVT == MVT::i32 && "X86 should always ext to i32"); 1230 1231 if (SrcVT == MVT::i1) { 1232 if (Outs[0].Flags.isSExt()) 1233 return false; 1234 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); 1235 SrcVT = MVT::i8; 1236 } 1237 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : 1238 ISD::SIGN_EXTEND; 1239 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, 1240 SrcReg, /*TODO: Kill=*/false); 1241 } 1242 1243 // Make the copy. 1244 Register DstReg = VA.getLocReg(); 1245 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1246 // Avoid a cross-class copy. This is very unlikely. 1247 if (!SrcRC->contains(DstReg)) 1248 return false; 1249 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1250 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1251 1252 // Add register to return instruction. 1253 RetRegs.push_back(VA.getLocReg()); 1254 } 1255 1256 // Swift calling convention does not require we copy the sret argument 1257 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1258 1259 // All x86 ABIs require that for returning structs by value we copy 1260 // the sret argument into %rax/%eax (depending on ABI) for the return. 1261 // We saved the argument into a virtual register in the entry block, 1262 // so now we copy the value out and into %rax/%eax. 1263 if (F.hasStructRetAttr() && CC != CallingConv::Swift) { 1264 Register Reg = X86MFInfo->getSRetReturnReg(); 1265 assert(Reg && 1266 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1267 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1268 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1269 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1270 RetRegs.push_back(RetReg); 1271 } 1272 1273 // Now emit the RET. 1274 MachineInstrBuilder MIB; 1275 if (X86MFInfo->getBytesToPopOnReturn()) { 1276 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1277 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL)) 1278 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1279 } else { 1280 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1281 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); 1282 } 1283 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1284 MIB.addReg(RetRegs[i], RegState::Implicit); 1285 return true; 1286 } 1287 1288 /// X86SelectLoad - Select and emit code to implement load instructions. 1289 /// 1290 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1291 const LoadInst *LI = cast<LoadInst>(I); 1292 1293 // Atomic loads need special handling. 1294 if (LI->isAtomic()) 1295 return false; 1296 1297 const Value *SV = I->getOperand(0); 1298 if (TLI.supportSwiftError()) { 1299 // Swifterror values can come from either a function parameter with 1300 // swifterror attribute or an alloca with swifterror attribute. 1301 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1302 if (Arg->hasSwiftErrorAttr()) 1303 return false; 1304 } 1305 1306 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1307 if (Alloca->isSwiftError()) 1308 return false; 1309 } 1310 } 1311 1312 MVT VT; 1313 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1314 return false; 1315 1316 const Value *Ptr = LI->getPointerOperand(); 1317 1318 X86AddressMode AM; 1319 if (!X86SelectAddress(Ptr, AM)) 1320 return false; 1321 1322 unsigned ResultReg = 0; 1323 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1324 LI->getAlign().value())) 1325 return false; 1326 1327 updateValueMap(I, ResultReg); 1328 return true; 1329 } 1330 1331 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1332 bool HasAVX512 = Subtarget->hasAVX512(); 1333 bool HasAVX = Subtarget->hasAVX(); 1334 bool X86ScalarSSEf32 = Subtarget->hasSSE1(); 1335 bool X86ScalarSSEf64 = Subtarget->hasSSE2(); 1336 1337 switch (VT.getSimpleVT().SimpleTy) { 1338 default: return 0; 1339 case MVT::i8: return X86::CMP8rr; 1340 case MVT::i16: return X86::CMP16rr; 1341 case MVT::i32: return X86::CMP32rr; 1342 case MVT::i64: return X86::CMP64rr; 1343 case MVT::f32: 1344 return X86ScalarSSEf32 1345 ? (HasAVX512 ? X86::VUCOMISSZrr 1346 : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) 1347 : 0; 1348 case MVT::f64: 1349 return X86ScalarSSEf64 1350 ? (HasAVX512 ? X86::VUCOMISDZrr 1351 : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) 1352 : 0; 1353 } 1354 } 1355 1356 /// If we have a comparison with RHS as the RHS of the comparison, return an 1357 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1358 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1359 int64_t Val = RHSC->getSExtValue(); 1360 switch (VT.getSimpleVT().SimpleTy) { 1361 // Otherwise, we can't fold the immediate into this comparison. 1362 default: 1363 return 0; 1364 case MVT::i8: 1365 return X86::CMP8ri; 1366 case MVT::i16: 1367 if (isInt<8>(Val)) 1368 return X86::CMP16ri8; 1369 return X86::CMP16ri; 1370 case MVT::i32: 1371 if (isInt<8>(Val)) 1372 return X86::CMP32ri8; 1373 return X86::CMP32ri; 1374 case MVT::i64: 1375 if (isInt<8>(Val)) 1376 return X86::CMP64ri8; 1377 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1378 // field. 1379 if (isInt<32>(Val)) 1380 return X86::CMP64ri32; 1381 return 0; 1382 } 1383 } 1384 1385 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1386 const DebugLoc &CurDbgLoc) { 1387 Register Op0Reg = getRegForValue(Op0); 1388 if (Op0Reg == 0) return false; 1389 1390 // Handle 'null' like i32/i64 0. 1391 if (isa<ConstantPointerNull>(Op1)) 1392 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1393 1394 // We have two options: compare with register or immediate. If the RHS of 1395 // the compare is an immediate that we can fold into this compare, use 1396 // CMPri, otherwise use CMPrr. 1397 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1398 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1399 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) 1400 .addReg(Op0Reg) 1401 .addImm(Op1C->getSExtValue()); 1402 return true; 1403 } 1404 } 1405 1406 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1407 if (CompareOpc == 0) return false; 1408 1409 Register Op1Reg = getRegForValue(Op1); 1410 if (Op1Reg == 0) return false; 1411 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) 1412 .addReg(Op0Reg) 1413 .addReg(Op1Reg); 1414 1415 return true; 1416 } 1417 1418 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1419 const CmpInst *CI = cast<CmpInst>(I); 1420 1421 MVT VT; 1422 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1423 return false; 1424 1425 // Try to optimize or fold the cmp. 1426 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1427 unsigned ResultReg = 0; 1428 switch (Predicate) { 1429 default: break; 1430 case CmpInst::FCMP_FALSE: { 1431 ResultReg = createResultReg(&X86::GR32RegClass); 1432 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), 1433 ResultReg); 1434 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, 1435 X86::sub_8bit); 1436 if (!ResultReg) 1437 return false; 1438 break; 1439 } 1440 case CmpInst::FCMP_TRUE: { 1441 ResultReg = createResultReg(&X86::GR8RegClass); 1442 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 1443 ResultReg).addImm(1); 1444 break; 1445 } 1446 } 1447 1448 if (ResultReg) { 1449 updateValueMap(I, ResultReg); 1450 return true; 1451 } 1452 1453 const Value *LHS = CI->getOperand(0); 1454 const Value *RHS = CI->getOperand(1); 1455 1456 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1457 // We don't have to materialize a zero constant for this case and can just use 1458 // %x again on the RHS. 1459 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1460 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1461 if (RHSC && RHSC->isNullValue()) 1462 RHS = LHS; 1463 } 1464 1465 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1466 static const uint16_t SETFOpcTable[2][3] = { 1467 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1468 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1469 }; 1470 const uint16_t *SETFOpc = nullptr; 1471 switch (Predicate) { 1472 default: break; 1473 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1474 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1475 } 1476 1477 ResultReg = createResultReg(&X86::GR8RegClass); 1478 if (SETFOpc) { 1479 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1480 return false; 1481 1482 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 1483 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 1484 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1485 FlagReg1).addImm(SETFOpc[0]); 1486 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1487 FlagReg2).addImm(SETFOpc[1]); 1488 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), 1489 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1490 updateValueMap(I, ResultReg); 1491 return true; 1492 } 1493 1494 X86::CondCode CC; 1495 bool SwapArgs; 1496 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1497 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1498 1499 if (SwapArgs) 1500 std::swap(LHS, RHS); 1501 1502 // Emit a compare of LHS/RHS. 1503 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1504 return false; 1505 1506 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1507 ResultReg).addImm(CC); 1508 updateValueMap(I, ResultReg); 1509 return true; 1510 } 1511 1512 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1513 EVT DstVT = TLI.getValueType(DL, I->getType()); 1514 if (!TLI.isTypeLegal(DstVT)) 1515 return false; 1516 1517 Register ResultReg = getRegForValue(I->getOperand(0)); 1518 if (ResultReg == 0) 1519 return false; 1520 1521 // Handle zero-extension from i1 to i8, which is common. 1522 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1523 if (SrcVT == MVT::i1) { 1524 // Set the high bits to zero. 1525 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); 1526 SrcVT = MVT::i8; 1527 1528 if (ResultReg == 0) 1529 return false; 1530 } 1531 1532 if (DstVT == MVT::i64) { 1533 // Handle extension to 64-bits via sub-register shenanigans. 1534 unsigned MovInst; 1535 1536 switch (SrcVT.SimpleTy) { 1537 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1538 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1539 case MVT::i32: MovInst = X86::MOV32rr; break; 1540 default: llvm_unreachable("Unexpected zext to i64 source type"); 1541 } 1542 1543 Register Result32 = createResultReg(&X86::GR32RegClass); 1544 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) 1545 .addReg(ResultReg); 1546 1547 ResultReg = createResultReg(&X86::GR64RegClass); 1548 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), 1549 ResultReg) 1550 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1551 } else if (DstVT == MVT::i16) { 1552 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1553 // extend to 32-bits and then extract down to 16-bits. 1554 Register Result32 = createResultReg(&X86::GR32RegClass); 1555 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), 1556 Result32).addReg(ResultReg); 1557 1558 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, 1559 X86::sub_16bit); 1560 } else if (DstVT != MVT::i8) { 1561 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1562 ResultReg, /*Kill=*/true); 1563 if (ResultReg == 0) 1564 return false; 1565 } 1566 1567 updateValueMap(I, ResultReg); 1568 return true; 1569 } 1570 1571 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1572 EVT DstVT = TLI.getValueType(DL, I->getType()); 1573 if (!TLI.isTypeLegal(DstVT)) 1574 return false; 1575 1576 Register ResultReg = getRegForValue(I->getOperand(0)); 1577 if (ResultReg == 0) 1578 return false; 1579 1580 // Handle sign-extension from i1 to i8. 1581 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1582 if (SrcVT == MVT::i1) { 1583 // Set the high bits to zero. 1584 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg, 1585 /*TODO: Kill=*/false); 1586 if (ZExtReg == 0) 1587 return false; 1588 1589 // Negate the result to make an 8-bit sign extended value. 1590 ResultReg = createResultReg(&X86::GR8RegClass); 1591 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), 1592 ResultReg).addReg(ZExtReg); 1593 1594 SrcVT = MVT::i8; 1595 } 1596 1597 if (DstVT == MVT::i16) { 1598 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1599 // extend to 32-bits and then extract down to 16-bits. 1600 Register Result32 = createResultReg(&X86::GR32RegClass); 1601 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), 1602 Result32).addReg(ResultReg); 1603 1604 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, 1605 X86::sub_16bit); 1606 } else if (DstVT != MVT::i8) { 1607 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1608 ResultReg, /*Kill=*/true); 1609 if (ResultReg == 0) 1610 return false; 1611 } 1612 1613 updateValueMap(I, ResultReg); 1614 return true; 1615 } 1616 1617 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1618 // Unconditional branches are selected by tablegen-generated code. 1619 // Handle a conditional branch. 1620 const BranchInst *BI = cast<BranchInst>(I); 1621 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1622 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1623 1624 // Fold the common case of a conditional branch with a comparison 1625 // in the same block (values defined on other blocks may not have 1626 // initialized registers). 1627 X86::CondCode CC; 1628 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1629 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1630 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1631 1632 // Try to optimize or fold the cmp. 1633 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1634 switch (Predicate) { 1635 default: break; 1636 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; 1637 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; 1638 } 1639 1640 const Value *CmpLHS = CI->getOperand(0); 1641 const Value *CmpRHS = CI->getOperand(1); 1642 1643 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1644 // 0.0. 1645 // We don't have to materialize a zero constant for this case and can just 1646 // use %x again on the RHS. 1647 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1648 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1649 if (CmpRHSC && CmpRHSC->isNullValue()) 1650 CmpRHS = CmpLHS; 1651 } 1652 1653 // Try to take advantage of fallthrough opportunities. 1654 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1655 std::swap(TrueMBB, FalseMBB); 1656 Predicate = CmpInst::getInversePredicate(Predicate); 1657 } 1658 1659 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1660 // code check. Instead two branch instructions are required to check all 1661 // the flags. First we change the predicate to a supported condition code, 1662 // which will be the first branch. Later one we will emit the second 1663 // branch. 1664 bool NeedExtraBranch = false; 1665 switch (Predicate) { 1666 default: break; 1667 case CmpInst::FCMP_OEQ: 1668 std::swap(TrueMBB, FalseMBB); 1669 LLVM_FALLTHROUGH; 1670 case CmpInst::FCMP_UNE: 1671 NeedExtraBranch = true; 1672 Predicate = CmpInst::FCMP_ONE; 1673 break; 1674 } 1675 1676 bool SwapArgs; 1677 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1678 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1679 1680 if (SwapArgs) 1681 std::swap(CmpLHS, CmpRHS); 1682 1683 // Emit a compare of the LHS and RHS, setting the flags. 1684 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1685 return false; 1686 1687 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1688 .addMBB(TrueMBB).addImm(CC); 1689 1690 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1691 // to UNE above). 1692 if (NeedExtraBranch) { 1693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1694 .addMBB(TrueMBB).addImm(X86::COND_P); 1695 } 1696 1697 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1698 return true; 1699 } 1700 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1701 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1702 // typically happen for _Bool and C++ bools. 1703 MVT SourceVT; 1704 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1705 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1706 unsigned TestOpc = 0; 1707 switch (SourceVT.SimpleTy) { 1708 default: break; 1709 case MVT::i8: TestOpc = X86::TEST8ri; break; 1710 case MVT::i16: TestOpc = X86::TEST16ri; break; 1711 case MVT::i32: TestOpc = X86::TEST32ri; break; 1712 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1713 } 1714 if (TestOpc) { 1715 Register OpReg = getRegForValue(TI->getOperand(0)); 1716 if (OpReg == 0) return false; 1717 1718 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) 1719 .addReg(OpReg).addImm(1); 1720 1721 unsigned JmpCond = X86::COND_NE; 1722 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1723 std::swap(TrueMBB, FalseMBB); 1724 JmpCond = X86::COND_E; 1725 } 1726 1727 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1728 .addMBB(TrueMBB).addImm(JmpCond); 1729 1730 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1731 return true; 1732 } 1733 } 1734 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1735 // Fake request the condition, otherwise the intrinsic might be completely 1736 // optimized away. 1737 Register TmpReg = getRegForValue(BI->getCondition()); 1738 if (TmpReg == 0) 1739 return false; 1740 1741 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1742 .addMBB(TrueMBB).addImm(CC); 1743 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1744 return true; 1745 } 1746 1747 // Otherwise do a clumsy setcc and re-test it. 1748 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1749 // in an explicit cast, so make sure to handle that correctly. 1750 Register OpReg = getRegForValue(BI->getCondition()); 1751 if (OpReg == 0) return false; 1752 1753 // In case OpReg is a K register, COPY to a GPR 1754 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1755 unsigned KOpReg = OpReg; 1756 OpReg = createResultReg(&X86::GR32RegClass); 1757 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1758 TII.get(TargetOpcode::COPY), OpReg) 1759 .addReg(KOpReg); 1760 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true, 1761 X86::sub_8bit); 1762 } 1763 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 1764 .addReg(OpReg) 1765 .addImm(1); 1766 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1767 .addMBB(TrueMBB).addImm(X86::COND_NE); 1768 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1769 return true; 1770 } 1771 1772 bool X86FastISel::X86SelectShift(const Instruction *I) { 1773 unsigned CReg = 0, OpReg = 0; 1774 const TargetRegisterClass *RC = nullptr; 1775 if (I->getType()->isIntegerTy(8)) { 1776 CReg = X86::CL; 1777 RC = &X86::GR8RegClass; 1778 switch (I->getOpcode()) { 1779 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1780 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1781 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1782 default: return false; 1783 } 1784 } else if (I->getType()->isIntegerTy(16)) { 1785 CReg = X86::CX; 1786 RC = &X86::GR16RegClass; 1787 switch (I->getOpcode()) { 1788 default: llvm_unreachable("Unexpected shift opcode"); 1789 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1790 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1791 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1792 } 1793 } else if (I->getType()->isIntegerTy(32)) { 1794 CReg = X86::ECX; 1795 RC = &X86::GR32RegClass; 1796 switch (I->getOpcode()) { 1797 default: llvm_unreachable("Unexpected shift opcode"); 1798 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1799 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1800 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1801 } 1802 } else if (I->getType()->isIntegerTy(64)) { 1803 CReg = X86::RCX; 1804 RC = &X86::GR64RegClass; 1805 switch (I->getOpcode()) { 1806 default: llvm_unreachable("Unexpected shift opcode"); 1807 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1808 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1809 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1810 } 1811 } else { 1812 return false; 1813 } 1814 1815 MVT VT; 1816 if (!isTypeLegal(I->getType(), VT)) 1817 return false; 1818 1819 Register Op0Reg = getRegForValue(I->getOperand(0)); 1820 if (Op0Reg == 0) return false; 1821 1822 Register Op1Reg = getRegForValue(I->getOperand(1)); 1823 if (Op1Reg == 0) return false; 1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1825 CReg).addReg(Op1Reg); 1826 1827 // The shift instruction uses X86::CL. If we defined a super-register 1828 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1829 if (CReg != X86::CL) 1830 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1831 TII.get(TargetOpcode::KILL), X86::CL) 1832 .addReg(CReg, RegState::Kill); 1833 1834 Register ResultReg = createResultReg(RC); 1835 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) 1836 .addReg(Op0Reg); 1837 updateValueMap(I, ResultReg); 1838 return true; 1839 } 1840 1841 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1842 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1843 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1844 const static bool S = true; // IsSigned 1845 const static bool U = false; // !IsSigned 1846 const static unsigned Copy = TargetOpcode::COPY; 1847 // For the X86 DIV/IDIV instruction, in most cases the dividend 1848 // (numerator) must be in a specific register pair highreg:lowreg, 1849 // producing the quotient in lowreg and the remainder in highreg. 1850 // For most data types, to set up the instruction, the dividend is 1851 // copied into lowreg, and lowreg is sign-extended or zero-extended 1852 // into highreg. The exception is i8, where the dividend is defined 1853 // as a single register rather than a register pair, and we 1854 // therefore directly sign-extend or zero-extend the dividend into 1855 // lowreg, instead of copying, and ignore the highreg. 1856 const static struct DivRemEntry { 1857 // The following portion depends only on the data type. 1858 const TargetRegisterClass *RC; 1859 unsigned LowInReg; // low part of the register pair 1860 unsigned HighInReg; // high part of the register pair 1861 // The following portion depends on both the data type and the operation. 1862 struct DivRemResult { 1863 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1864 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1865 // highreg, or copying a zero into highreg. 1866 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1867 // zero/sign-extending into lowreg for i8. 1868 unsigned DivRemResultReg; // Register containing the desired result. 1869 bool IsOpSigned; // Whether to use signed or unsigned form. 1870 } ResultTable[NumOps]; 1871 } OpTable[NumTypes] = { 1872 { &X86::GR8RegClass, X86::AX, 0, { 1873 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1874 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1875 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1876 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1877 } 1878 }, // i8 1879 { &X86::GR16RegClass, X86::AX, X86::DX, { 1880 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1881 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1882 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1883 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1884 } 1885 }, // i16 1886 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1887 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1888 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1889 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1890 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1891 } 1892 }, // i32 1893 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1894 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1895 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1896 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1897 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1898 } 1899 }, // i64 1900 }; 1901 1902 MVT VT; 1903 if (!isTypeLegal(I->getType(), VT)) 1904 return false; 1905 1906 unsigned TypeIndex, OpIndex; 1907 switch (VT.SimpleTy) { 1908 default: return false; 1909 case MVT::i8: TypeIndex = 0; break; 1910 case MVT::i16: TypeIndex = 1; break; 1911 case MVT::i32: TypeIndex = 2; break; 1912 case MVT::i64: TypeIndex = 3; 1913 if (!Subtarget->is64Bit()) 1914 return false; 1915 break; 1916 } 1917 1918 switch (I->getOpcode()) { 1919 default: llvm_unreachable("Unexpected div/rem opcode"); 1920 case Instruction::SDiv: OpIndex = 0; break; 1921 case Instruction::SRem: OpIndex = 1; break; 1922 case Instruction::UDiv: OpIndex = 2; break; 1923 case Instruction::URem: OpIndex = 3; break; 1924 } 1925 1926 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1927 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1928 Register Op0Reg = getRegForValue(I->getOperand(0)); 1929 if (Op0Reg == 0) 1930 return false; 1931 Register Op1Reg = getRegForValue(I->getOperand(1)); 1932 if (Op1Reg == 0) 1933 return false; 1934 1935 // Move op0 into low-order input register. 1936 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1937 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1938 // Zero-extend or sign-extend into high-order input register. 1939 if (OpEntry.OpSignExtend) { 1940 if (OpEntry.IsOpSigned) 1941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1942 TII.get(OpEntry.OpSignExtend)); 1943 else { 1944 Register Zero32 = createResultReg(&X86::GR32RegClass); 1945 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1946 TII.get(X86::MOV32r0), Zero32); 1947 1948 // Copy the zero into the appropriate sub/super/identical physical 1949 // register. Unfortunately the operations needed are not uniform enough 1950 // to fit neatly into the table above. 1951 if (VT == MVT::i16) { 1952 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1953 TII.get(Copy), TypeEntry.HighInReg) 1954 .addReg(Zero32, 0, X86::sub_16bit); 1955 } else if (VT == MVT::i32) { 1956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1957 TII.get(Copy), TypeEntry.HighInReg) 1958 .addReg(Zero32); 1959 } else if (VT == MVT::i64) { 1960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1961 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1962 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1963 } 1964 } 1965 } 1966 // Generate the DIV/IDIV instruction. 1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1968 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1969 // For i8 remainder, we can't reference ah directly, as we'll end 1970 // up with bogus copies like %r9b = COPY %ah. Reference ax 1971 // instead to prevent ah references in a rex instruction. 1972 // 1973 // The current assumption of the fast register allocator is that isel 1974 // won't generate explicit references to the GR8_NOREX registers. If 1975 // the allocator and/or the backend get enhanced to be more robust in 1976 // that regard, this can be, and should be, removed. 1977 unsigned ResultReg = 0; 1978 if ((I->getOpcode() == Instruction::SRem || 1979 I->getOpcode() == Instruction::URem) && 1980 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 1981 Register SourceSuperReg = createResultReg(&X86::GR16RegClass); 1982 Register ResultSuperReg = createResultReg(&X86::GR16RegClass); 1983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1984 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 1985 1986 // Shift AX right by 8 bits instead of using AH. 1987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), 1988 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 1989 1990 // Now reference the 8-bit subreg of the result. 1991 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 1992 /*Kill=*/true, X86::sub_8bit); 1993 } 1994 // Copy the result out of the physreg if we haven't already. 1995 if (!ResultReg) { 1996 ResultReg = createResultReg(TypeEntry.RC); 1997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) 1998 .addReg(OpEntry.DivRemResultReg); 1999 } 2000 updateValueMap(I, ResultReg); 2001 2002 return true; 2003 } 2004 2005 /// Emit a conditional move instruction (if the are supported) to lower 2006 /// the select. 2007 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2008 // Check if the subtarget supports these instructions. 2009 if (!Subtarget->hasCMov()) 2010 return false; 2011 2012 // FIXME: Add support for i8. 2013 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2014 return false; 2015 2016 const Value *Cond = I->getOperand(0); 2017 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2018 bool NeedTest = true; 2019 X86::CondCode CC = X86::COND_NE; 2020 2021 // Optimize conditions coming from a compare if both instructions are in the 2022 // same basic block (values defined in other basic blocks may not have 2023 // initialized registers). 2024 const auto *CI = dyn_cast<CmpInst>(Cond); 2025 if (CI && (CI->getParent() == I->getParent())) { 2026 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2027 2028 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2029 static const uint16_t SETFOpcTable[2][3] = { 2030 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2031 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2032 }; 2033 const uint16_t *SETFOpc = nullptr; 2034 switch (Predicate) { 2035 default: break; 2036 case CmpInst::FCMP_OEQ: 2037 SETFOpc = &SETFOpcTable[0][0]; 2038 Predicate = CmpInst::ICMP_NE; 2039 break; 2040 case CmpInst::FCMP_UNE: 2041 SETFOpc = &SETFOpcTable[1][0]; 2042 Predicate = CmpInst::ICMP_NE; 2043 break; 2044 } 2045 2046 bool NeedSwap; 2047 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2048 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2049 2050 const Value *CmpLHS = CI->getOperand(0); 2051 const Value *CmpRHS = CI->getOperand(1); 2052 if (NeedSwap) 2053 std::swap(CmpLHS, CmpRHS); 2054 2055 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2056 // Emit a compare of the LHS and RHS, setting the flags. 2057 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2058 return false; 2059 2060 if (SETFOpc) { 2061 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 2062 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 2063 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2064 FlagReg1).addImm(SETFOpc[0]); 2065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2066 FlagReg2).addImm(SETFOpc[1]); 2067 auto const &II = TII.get(SETFOpc[2]); 2068 if (II.getNumDefs()) { 2069 Register TmpReg = createResultReg(&X86::GR8RegClass); 2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) 2071 .addReg(FlagReg2).addReg(FlagReg1); 2072 } else { 2073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2074 .addReg(FlagReg2).addReg(FlagReg1); 2075 } 2076 } 2077 NeedTest = false; 2078 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2079 // Fake request the condition, otherwise the intrinsic might be completely 2080 // optimized away. 2081 Register TmpReg = getRegForValue(Cond); 2082 if (TmpReg == 0) 2083 return false; 2084 2085 NeedTest = false; 2086 } 2087 2088 if (NeedTest) { 2089 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2090 // garbage. Indeed, only the less significant bit is supposed to be 2091 // accurate. If we read more than the lsb, we may see non-zero values 2092 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2093 // the select. This is achieved by performing TEST against 1. 2094 Register CondReg = getRegForValue(Cond); 2095 if (CondReg == 0) 2096 return false; 2097 bool CondIsKill = hasTrivialKill(Cond); 2098 2099 // In case OpReg is a K register, COPY to a GPR 2100 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2101 unsigned KCondReg = CondReg; 2102 CondReg = createResultReg(&X86::GR32RegClass); 2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2104 TII.get(TargetOpcode::COPY), CondReg) 2105 .addReg(KCondReg, getKillRegState(CondIsKill)); 2106 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, 2107 X86::sub_8bit); 2108 } 2109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2110 .addReg(CondReg, getKillRegState(CondIsKill)) 2111 .addImm(1); 2112 } 2113 2114 const Value *LHS = I->getOperand(1); 2115 const Value *RHS = I->getOperand(2); 2116 2117 Register RHSReg = getRegForValue(RHS); 2118 bool RHSIsKill = hasTrivialKill(RHS); 2119 2120 Register LHSReg = getRegForValue(LHS); 2121 bool LHSIsKill = hasTrivialKill(LHS); 2122 2123 if (!LHSReg || !RHSReg) 2124 return false; 2125 2126 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2127 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); 2128 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, 2129 LHSReg, LHSIsKill, CC); 2130 updateValueMap(I, ResultReg); 2131 return true; 2132 } 2133 2134 /// Emit SSE or AVX instructions to lower the select. 2135 /// 2136 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2137 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2138 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2139 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2140 // Optimize conditions coming from a compare if both instructions are in the 2141 // same basic block (values defined in other basic blocks may not have 2142 // initialized registers). 2143 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2144 if (!CI || (CI->getParent() != I->getParent())) 2145 return false; 2146 2147 if (I->getType() != CI->getOperand(0)->getType() || 2148 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2149 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2150 return false; 2151 2152 const Value *CmpLHS = CI->getOperand(0); 2153 const Value *CmpRHS = CI->getOperand(1); 2154 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2155 2156 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2157 // We don't have to materialize a zero constant for this case and can just use 2158 // %x again on the RHS. 2159 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2160 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2161 if (CmpRHSC && CmpRHSC->isNullValue()) 2162 CmpRHS = CmpLHS; 2163 } 2164 2165 unsigned CC; 2166 bool NeedSwap; 2167 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2168 if (CC > 7 && !Subtarget->hasAVX()) 2169 return false; 2170 2171 if (NeedSwap) 2172 std::swap(CmpLHS, CmpRHS); 2173 2174 const Value *LHS = I->getOperand(1); 2175 const Value *RHS = I->getOperand(2); 2176 2177 Register LHSReg = getRegForValue(LHS); 2178 bool LHSIsKill = hasTrivialKill(LHS); 2179 2180 Register RHSReg = getRegForValue(RHS); 2181 bool RHSIsKill = hasTrivialKill(RHS); 2182 2183 Register CmpLHSReg = getRegForValue(CmpLHS); 2184 bool CmpLHSIsKill = hasTrivialKill(CmpLHS); 2185 2186 Register CmpRHSReg = getRegForValue(CmpRHS); 2187 bool CmpRHSIsKill = hasTrivialKill(CmpRHS); 2188 2189 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) 2190 return false; 2191 2192 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2193 unsigned ResultReg; 2194 2195 if (Subtarget->hasAVX512()) { 2196 // If we have AVX512 we can use a mask compare and masked movss/sd. 2197 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2198 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2199 2200 unsigned CmpOpcode = 2201 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; 2202 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill, 2203 CmpRHSReg, CmpRHSIsKill, CC); 2204 2205 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2206 // bits of the result register since its not based on any of the inputs. 2207 Register ImplicitDefReg = createResultReg(VR128X); 2208 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2209 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2210 2211 // Place RHSReg is the passthru of the masked movss/sd operation and put 2212 // LHS in the input. The mask input comes from the compare. 2213 unsigned MovOpcode = 2214 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2215 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill, 2216 CmpReg, true, ImplicitDefReg, true, 2217 LHSReg, LHSIsKill); 2218 2219 ResultReg = createResultReg(RC); 2220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2221 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2222 2223 } else if (Subtarget->hasAVX()) { 2224 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2225 2226 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2227 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2228 // uses XMM0 as the selection register. That may need just as many 2229 // instructions as the AND/ANDN/OR sequence due to register moves, so 2230 // don't bother. 2231 unsigned CmpOpcode = 2232 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; 2233 unsigned BlendOpcode = 2234 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; 2235 2236 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill, 2237 CmpRHSReg, CmpRHSIsKill, CC); 2238 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill, 2239 LHSReg, LHSIsKill, CmpReg, true); 2240 ResultReg = createResultReg(RC); 2241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2242 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2243 } else { 2244 // Choose the SSE instruction sequence based on data type (float or double). 2245 static const uint16_t OpcTable[2][4] = { 2246 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2247 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2248 }; 2249 2250 const uint16_t *Opc = nullptr; 2251 switch (RetVT.SimpleTy) { 2252 default: return false; 2253 case MVT::f32: Opc = &OpcTable[0][0]; break; 2254 case MVT::f64: Opc = &OpcTable[1][0]; break; 2255 } 2256 2257 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2258 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, 2259 CmpRHSReg, CmpRHSIsKill, CC); 2260 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false, 2261 LHSReg, LHSIsKill); 2262 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true, 2263 RHSReg, RHSIsKill); 2264 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true, 2265 AndReg, /*IsKill=*/true); 2266 ResultReg = createResultReg(RC); 2267 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2268 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2269 } 2270 updateValueMap(I, ResultReg); 2271 return true; 2272 } 2273 2274 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2275 // These are pseudo CMOV instructions and will be later expanded into control- 2276 // flow. 2277 unsigned Opc; 2278 switch (RetVT.SimpleTy) { 2279 default: return false; 2280 case MVT::i8: Opc = X86::CMOV_GR8; break; 2281 case MVT::i16: Opc = X86::CMOV_GR16; break; 2282 case MVT::i32: Opc = X86::CMOV_GR32; break; 2283 case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X 2284 : X86::CMOV_FR32; break; 2285 case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X 2286 : X86::CMOV_FR64; break; 2287 } 2288 2289 const Value *Cond = I->getOperand(0); 2290 X86::CondCode CC = X86::COND_NE; 2291 2292 // Optimize conditions coming from a compare if both instructions are in the 2293 // same basic block (values defined in other basic blocks may not have 2294 // initialized registers). 2295 const auto *CI = dyn_cast<CmpInst>(Cond); 2296 if (CI && (CI->getParent() == I->getParent())) { 2297 bool NeedSwap; 2298 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2299 if (CC > X86::LAST_VALID_COND) 2300 return false; 2301 2302 const Value *CmpLHS = CI->getOperand(0); 2303 const Value *CmpRHS = CI->getOperand(1); 2304 2305 if (NeedSwap) 2306 std::swap(CmpLHS, CmpRHS); 2307 2308 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2309 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2310 return false; 2311 } else { 2312 Register CondReg = getRegForValue(Cond); 2313 if (CondReg == 0) 2314 return false; 2315 bool CondIsKill = hasTrivialKill(Cond); 2316 2317 // In case OpReg is a K register, COPY to a GPR 2318 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2319 unsigned KCondReg = CondReg; 2320 CondReg = createResultReg(&X86::GR32RegClass); 2321 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2322 TII.get(TargetOpcode::COPY), CondReg) 2323 .addReg(KCondReg, getKillRegState(CondIsKill)); 2324 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, 2325 X86::sub_8bit); 2326 } 2327 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2328 .addReg(CondReg, getKillRegState(CondIsKill)) 2329 .addImm(1); 2330 } 2331 2332 const Value *LHS = I->getOperand(1); 2333 const Value *RHS = I->getOperand(2); 2334 2335 Register LHSReg = getRegForValue(LHS); 2336 bool LHSIsKill = hasTrivialKill(LHS); 2337 2338 Register RHSReg = getRegForValue(RHS); 2339 bool RHSIsKill = hasTrivialKill(RHS); 2340 2341 if (!LHSReg || !RHSReg) 2342 return false; 2343 2344 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2345 2346 Register ResultReg = 2347 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); 2348 updateValueMap(I, ResultReg); 2349 return true; 2350 } 2351 2352 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2353 MVT RetVT; 2354 if (!isTypeLegal(I->getType(), RetVT)) 2355 return false; 2356 2357 // Check if we can fold the select. 2358 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2359 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2360 const Value *Opnd = nullptr; 2361 switch (Predicate) { 2362 default: break; 2363 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2364 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2365 } 2366 // No need for a select anymore - this is an unconditional move. 2367 if (Opnd) { 2368 Register OpReg = getRegForValue(Opnd); 2369 if (OpReg == 0) 2370 return false; 2371 bool OpIsKill = hasTrivialKill(Opnd); 2372 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2373 Register ResultReg = createResultReg(RC); 2374 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2375 TII.get(TargetOpcode::COPY), ResultReg) 2376 .addReg(OpReg, getKillRegState(OpIsKill)); 2377 updateValueMap(I, ResultReg); 2378 return true; 2379 } 2380 } 2381 2382 // First try to use real conditional move instructions. 2383 if (X86FastEmitCMoveSelect(RetVT, I)) 2384 return true; 2385 2386 // Try to use a sequence of SSE instructions to simulate a conditional move. 2387 if (X86FastEmitSSESelect(RetVT, I)) 2388 return true; 2389 2390 // Fall-back to pseudo conditional move instructions, which will be later 2391 // converted to control-flow. 2392 if (X86FastEmitPseudoSelect(RetVT, I)) 2393 return true; 2394 2395 return false; 2396 } 2397 2398 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2399 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2400 // The target-independent selection algorithm in FastISel already knows how 2401 // to select a SINT_TO_FP if the target is SSE but not AVX. 2402 // Early exit if the subtarget doesn't have AVX. 2403 // Unsigned conversion requires avx512. 2404 bool HasAVX512 = Subtarget->hasAVX512(); 2405 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2406 return false; 2407 2408 // TODO: We could sign extend narrower types. 2409 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 2410 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2411 return false; 2412 2413 // Select integer to float/double conversion. 2414 Register OpReg = getRegForValue(I->getOperand(0)); 2415 if (OpReg == 0) 2416 return false; 2417 2418 unsigned Opcode; 2419 2420 static const uint16_t SCvtOpc[2][2][2] = { 2421 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2422 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2423 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2424 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2425 }; 2426 static const uint16_t UCvtOpc[2][2] = { 2427 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2428 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2429 }; 2430 bool Is64Bit = SrcVT == MVT::i64; 2431 2432 if (I->getType()->isDoubleTy()) { 2433 // s/uitofp int -> double 2434 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2435 } else if (I->getType()->isFloatTy()) { 2436 // s/uitofp int -> float 2437 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2438 } else 2439 return false; 2440 2441 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2442 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2443 Register ImplicitDefReg = createResultReg(RC); 2444 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2445 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2446 Register ResultReg = 2447 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false); 2448 updateValueMap(I, ResultReg); 2449 return true; 2450 } 2451 2452 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2453 return X86SelectIntToFP(I, /*IsSigned*/true); 2454 } 2455 2456 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2457 return X86SelectIntToFP(I, /*IsSigned*/false); 2458 } 2459 2460 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2461 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2462 unsigned TargetOpc, 2463 const TargetRegisterClass *RC) { 2464 assert((I->getOpcode() == Instruction::FPExt || 2465 I->getOpcode() == Instruction::FPTrunc) && 2466 "Instruction must be an FPExt or FPTrunc!"); 2467 bool HasAVX = Subtarget->hasAVX(); 2468 2469 Register OpReg = getRegForValue(I->getOperand(0)); 2470 if (OpReg == 0) 2471 return false; 2472 2473 unsigned ImplicitDefReg; 2474 if (HasAVX) { 2475 ImplicitDefReg = createResultReg(RC); 2476 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2477 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2478 2479 } 2480 2481 Register ResultReg = createResultReg(RC); 2482 MachineInstrBuilder MIB; 2483 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), 2484 ResultReg); 2485 2486 if (HasAVX) 2487 MIB.addReg(ImplicitDefReg); 2488 2489 MIB.addReg(OpReg); 2490 updateValueMap(I, ResultReg); 2491 return true; 2492 } 2493 2494 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2495 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && 2496 I->getOperand(0)->getType()->isFloatTy()) { 2497 bool HasAVX512 = Subtarget->hasAVX512(); 2498 // fpext from float to double. 2499 unsigned Opc = 2500 HasAVX512 ? X86::VCVTSS2SDZrr 2501 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2502 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2503 } 2504 2505 return false; 2506 } 2507 2508 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2509 if (X86ScalarSSEf64 && I->getType()->isFloatTy() && 2510 I->getOperand(0)->getType()->isDoubleTy()) { 2511 bool HasAVX512 = Subtarget->hasAVX512(); 2512 // fptrunc from double to float. 2513 unsigned Opc = 2514 HasAVX512 ? X86::VCVTSD2SSZrr 2515 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2516 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2517 } 2518 2519 return false; 2520 } 2521 2522 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2523 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2524 EVT DstVT = TLI.getValueType(DL, I->getType()); 2525 2526 // This code only handles truncation to byte. 2527 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2528 return false; 2529 if (!TLI.isTypeLegal(SrcVT)) 2530 return false; 2531 2532 Register InputReg = getRegForValue(I->getOperand(0)); 2533 if (!InputReg) 2534 // Unhandled operand. Halt "fast" selection and bail. 2535 return false; 2536 2537 if (SrcVT == MVT::i8) { 2538 // Truncate from i8 to i1; no code needed. 2539 updateValueMap(I, InputReg); 2540 return true; 2541 } 2542 2543 // Issue an extract_subreg. 2544 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, 2545 InputReg, false, 2546 X86::sub_8bit); 2547 if (!ResultReg) 2548 return false; 2549 2550 updateValueMap(I, ResultReg); 2551 return true; 2552 } 2553 2554 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2555 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2556 } 2557 2558 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2559 X86AddressMode SrcAM, uint64_t Len) { 2560 2561 // Make sure we don't bloat code by inlining very large memcpy's. 2562 if (!IsMemcpySmall(Len)) 2563 return false; 2564 2565 bool i64Legal = Subtarget->is64Bit(); 2566 2567 // We don't care about alignment here since we just emit integer accesses. 2568 while (Len) { 2569 MVT VT; 2570 if (Len >= 8 && i64Legal) 2571 VT = MVT::i64; 2572 else if (Len >= 4) 2573 VT = MVT::i32; 2574 else if (Len >= 2) 2575 VT = MVT::i16; 2576 else 2577 VT = MVT::i8; 2578 2579 unsigned Reg; 2580 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2581 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); 2582 assert(RV && "Failed to emit load or store??"); 2583 2584 unsigned Size = VT.getSizeInBits()/8; 2585 Len -= Size; 2586 DestAM.Disp += Size; 2587 SrcAM.Disp += Size; 2588 } 2589 2590 return true; 2591 } 2592 2593 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2594 // FIXME: Handle more intrinsics. 2595 switch (II->getIntrinsicID()) { 2596 default: return false; 2597 case Intrinsic::convert_from_fp16: 2598 case Intrinsic::convert_to_fp16: { 2599 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2600 return false; 2601 2602 const Value *Op = II->getArgOperand(0); 2603 Register InputReg = getRegForValue(Op); 2604 if (InputReg == 0) 2605 return false; 2606 2607 // F16C only allows converting from float to half and from half to float. 2608 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2609 if (IsFloatToHalf) { 2610 if (!Op->getType()->isFloatTy()) 2611 return false; 2612 } else { 2613 if (!II->getType()->isFloatTy()) 2614 return false; 2615 } 2616 2617 unsigned ResultReg = 0; 2618 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2619 if (IsFloatToHalf) { 2620 // 'InputReg' is implicitly promoted from register class FR32 to 2621 // register class VR128 by method 'constrainOperandRegClass' which is 2622 // directly called by 'fastEmitInst_ri'. 2623 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2624 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2625 // It's consistent with the other FP instructions, which are usually 2626 // controlled by MXCSR. 2627 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr 2628 : X86::VCVTPS2PHrr; 2629 InputReg = fastEmitInst_ri(Opc, RC, InputReg, false, 4); 2630 2631 // Move the lower 32-bits of ResultReg to another register of class GR32. 2632 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr 2633 : X86::VMOVPDI2DIrr; 2634 ResultReg = createResultReg(&X86::GR32RegClass); 2635 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 2636 .addReg(InputReg, RegState::Kill); 2637 2638 // The result value is in the lower 16-bits of ResultReg. 2639 unsigned RegIdx = X86::sub_16bit; 2640 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx); 2641 } else { 2642 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2643 // Explicitly zero-extend the input to 32-bit. 2644 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg, 2645 /*Kill=*/false); 2646 2647 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2648 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2649 InputReg, /*Kill=*/true); 2650 2651 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr 2652 : X86::VCVTPH2PSrr; 2653 InputReg = fastEmitInst_r(Opc, RC, InputReg, /*Kill=*/true); 2654 2655 // The result value is in the lower 32-bits of ResultReg. 2656 // Emit an explicit copy from register class VR128 to register class FR32. 2657 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 2658 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2659 TII.get(TargetOpcode::COPY), ResultReg) 2660 .addReg(InputReg, RegState::Kill); 2661 } 2662 2663 updateValueMap(II, ResultReg); 2664 return true; 2665 } 2666 case Intrinsic::frameaddress: { 2667 MachineFunction *MF = FuncInfo.MF; 2668 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2669 return false; 2670 2671 Type *RetTy = II->getCalledFunction()->getReturnType(); 2672 2673 MVT VT; 2674 if (!isTypeLegal(RetTy, VT)) 2675 return false; 2676 2677 unsigned Opc; 2678 const TargetRegisterClass *RC = nullptr; 2679 2680 switch (VT.SimpleTy) { 2681 default: llvm_unreachable("Invalid result type for frameaddress."); 2682 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2683 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2684 } 2685 2686 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2687 // we get the wrong frame register. 2688 MachineFrameInfo &MFI = MF->getFrameInfo(); 2689 MFI.setFrameAddressIsTaken(true); 2690 2691 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2692 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2693 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2694 (FrameReg == X86::EBP && VT == MVT::i32)) && 2695 "Invalid Frame Register!"); 2696 2697 // Always make a copy of the frame register to a vreg first, so that we 2698 // never directly reference the frame register (the TwoAddressInstruction- 2699 // Pass doesn't like that). 2700 Register SrcReg = createResultReg(RC); 2701 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2702 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2703 2704 // Now recursively load from the frame address. 2705 // movq (%rbp), %rax 2706 // movq (%rax), %rax 2707 // movq (%rax), %rax 2708 // ... 2709 unsigned DestReg; 2710 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2711 while (Depth--) { 2712 DestReg = createResultReg(RC); 2713 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2714 TII.get(Opc), DestReg), SrcReg); 2715 SrcReg = DestReg; 2716 } 2717 2718 updateValueMap(II, SrcReg); 2719 return true; 2720 } 2721 case Intrinsic::memcpy: { 2722 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2723 // Don't handle volatile or variable length memcpys. 2724 if (MCI->isVolatile()) 2725 return false; 2726 2727 if (isa<ConstantInt>(MCI->getLength())) { 2728 // Small memcpy's are common enough that we want to do them 2729 // without a call if possible. 2730 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2731 if (IsMemcpySmall(Len)) { 2732 X86AddressMode DestAM, SrcAM; 2733 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2734 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2735 return false; 2736 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2737 return true; 2738 } 2739 } 2740 2741 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2742 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2743 return false; 2744 2745 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2746 return false; 2747 2748 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1); 2749 } 2750 case Intrinsic::memset: { 2751 const MemSetInst *MSI = cast<MemSetInst>(II); 2752 2753 if (MSI->isVolatile()) 2754 return false; 2755 2756 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2757 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2758 return false; 2759 2760 if (MSI->getDestAddressSpace() > 255) 2761 return false; 2762 2763 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); 2764 } 2765 case Intrinsic::stackprotector: { 2766 // Emit code to store the stack guard onto the stack. 2767 EVT PtrTy = TLI.getPointerTy(DL); 2768 2769 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2770 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2771 2772 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2773 2774 // Grab the frame index. 2775 X86AddressMode AM; 2776 if (!X86SelectAddress(Slot, AM)) return false; 2777 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2778 return true; 2779 } 2780 case Intrinsic::dbg_declare: { 2781 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2782 X86AddressMode AM; 2783 assert(DI->getAddress() && "Null address should be checked earlier!"); 2784 if (!X86SelectAddress(DI->getAddress(), AM)) 2785 return false; 2786 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2787 // FIXME may need to add RegState::Debug to any registers produced, 2788 // although ESP/EBP should be the only ones at the moment. 2789 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 2790 "Expected inlined-at fields to agree"); 2791 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) 2792 .addImm(0) 2793 .addMetadata(DI->getVariable()) 2794 .addMetadata(DI->getExpression()); 2795 return true; 2796 } 2797 case Intrinsic::trap: { 2798 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); 2799 return true; 2800 } 2801 case Intrinsic::sqrt: { 2802 if (!Subtarget->hasSSE1()) 2803 return false; 2804 2805 Type *RetTy = II->getCalledFunction()->getReturnType(); 2806 2807 MVT VT; 2808 if (!isTypeLegal(RetTy, VT)) 2809 return false; 2810 2811 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2812 // is not generated by FastISel yet. 2813 // FIXME: Update this code once tablegen can handle it. 2814 static const uint16_t SqrtOpc[3][2] = { 2815 { X86::SQRTSSr, X86::SQRTSDr }, 2816 { X86::VSQRTSSr, X86::VSQRTSDr }, 2817 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2818 }; 2819 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2820 Subtarget->hasAVX() ? 1 : 2821 0; 2822 unsigned Opc; 2823 switch (VT.SimpleTy) { 2824 default: return false; 2825 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2826 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2827 } 2828 2829 const Value *SrcVal = II->getArgOperand(0); 2830 Register SrcReg = getRegForValue(SrcVal); 2831 2832 if (SrcReg == 0) 2833 return false; 2834 2835 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2836 unsigned ImplicitDefReg = 0; 2837 if (AVXLevel > 0) { 2838 ImplicitDefReg = createResultReg(RC); 2839 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2840 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2841 } 2842 2843 Register ResultReg = createResultReg(RC); 2844 MachineInstrBuilder MIB; 2845 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 2846 ResultReg); 2847 2848 if (ImplicitDefReg) 2849 MIB.addReg(ImplicitDefReg); 2850 2851 MIB.addReg(SrcReg); 2852 2853 updateValueMap(II, ResultReg); 2854 return true; 2855 } 2856 case Intrinsic::sadd_with_overflow: 2857 case Intrinsic::uadd_with_overflow: 2858 case Intrinsic::ssub_with_overflow: 2859 case Intrinsic::usub_with_overflow: 2860 case Intrinsic::smul_with_overflow: 2861 case Intrinsic::umul_with_overflow: { 2862 // This implements the basic lowering of the xalu with overflow intrinsics 2863 // into add/sub/mul followed by either seto or setb. 2864 const Function *Callee = II->getCalledFunction(); 2865 auto *Ty = cast<StructType>(Callee->getReturnType()); 2866 Type *RetTy = Ty->getTypeAtIndex(0U); 2867 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2868 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2869 "Overflow value expected to be an i1"); 2870 2871 MVT VT; 2872 if (!isTypeLegal(RetTy, VT)) 2873 return false; 2874 2875 if (VT < MVT::i8 || VT > MVT::i64) 2876 return false; 2877 2878 const Value *LHS = II->getArgOperand(0); 2879 const Value *RHS = II->getArgOperand(1); 2880 2881 // Canonicalize immediate to the RHS. 2882 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && 2883 isCommutativeIntrinsic(II)) 2884 std::swap(LHS, RHS); 2885 2886 unsigned BaseOpc, CondCode; 2887 switch (II->getIntrinsicID()) { 2888 default: llvm_unreachable("Unexpected intrinsic!"); 2889 case Intrinsic::sadd_with_overflow: 2890 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2891 case Intrinsic::uadd_with_overflow: 2892 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2893 case Intrinsic::ssub_with_overflow: 2894 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2895 case Intrinsic::usub_with_overflow: 2896 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2897 case Intrinsic::smul_with_overflow: 2898 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2899 case Intrinsic::umul_with_overflow: 2900 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2901 } 2902 2903 Register LHSReg = getRegForValue(LHS); 2904 if (LHSReg == 0) 2905 return false; 2906 bool LHSIsKill = hasTrivialKill(LHS); 2907 2908 unsigned ResultReg = 0; 2909 // Check if we have an immediate version. 2910 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2911 static const uint16_t Opc[2][4] = { 2912 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2913 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2914 }; 2915 2916 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2917 CondCode == X86::COND_O) { 2918 // We can use INC/DEC. 2919 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2920 bool IsDec = BaseOpc == ISD::SUB; 2921 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2922 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2923 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2924 } else 2925 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, 2926 CI->getZExtValue()); 2927 } 2928 2929 unsigned RHSReg; 2930 bool RHSIsKill; 2931 if (!ResultReg) { 2932 RHSReg = getRegForValue(RHS); 2933 if (RHSReg == 0) 2934 return false; 2935 RHSIsKill = hasTrivialKill(RHS); 2936 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, 2937 RHSIsKill); 2938 } 2939 2940 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2941 // it manually. 2942 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2943 static const uint16_t MULOpc[] = 2944 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2945 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2946 // First copy the first operand into RAX, which is an implicit input to 2947 // the X86::MUL*r instruction. 2948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2949 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2950 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2951 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2952 TLI.getRegClassFor(VT), RHSReg, RHSIsKill); 2953 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2954 static const uint16_t MULOpc[] = 2955 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2956 if (VT == MVT::i8) { 2957 // Copy the first operand into AL, which is an implicit input to the 2958 // X86::IMUL8r instruction. 2959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2960 TII.get(TargetOpcode::COPY), X86::AL) 2961 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2962 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, 2963 RHSIsKill); 2964 } else 2965 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2966 TLI.getRegClassFor(VT), LHSReg, LHSIsKill, 2967 RHSReg, RHSIsKill); 2968 } 2969 2970 if (!ResultReg) 2971 return false; 2972 2973 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2974 Register ResultReg2 = createResultReg(&X86::GR8RegClass); 2975 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2977 ResultReg2).addImm(CondCode); 2978 2979 updateValueMap(II, ResultReg, 2); 2980 return true; 2981 } 2982 case Intrinsic::x86_sse_cvttss2si: 2983 case Intrinsic::x86_sse_cvttss2si64: 2984 case Intrinsic::x86_sse2_cvttsd2si: 2985 case Intrinsic::x86_sse2_cvttsd2si64: { 2986 bool IsInputDouble; 2987 switch (II->getIntrinsicID()) { 2988 default: llvm_unreachable("Unexpected intrinsic."); 2989 case Intrinsic::x86_sse_cvttss2si: 2990 case Intrinsic::x86_sse_cvttss2si64: 2991 if (!Subtarget->hasSSE1()) 2992 return false; 2993 IsInputDouble = false; 2994 break; 2995 case Intrinsic::x86_sse2_cvttsd2si: 2996 case Intrinsic::x86_sse2_cvttsd2si64: 2997 if (!Subtarget->hasSSE2()) 2998 return false; 2999 IsInputDouble = true; 3000 break; 3001 } 3002 3003 Type *RetTy = II->getCalledFunction()->getReturnType(); 3004 MVT VT; 3005 if (!isTypeLegal(RetTy, VT)) 3006 return false; 3007 3008 static const uint16_t CvtOpc[3][2][2] = { 3009 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 3010 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 3011 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 3012 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 3013 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 3014 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 3015 }; 3016 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 3017 Subtarget->hasAVX() ? 1 : 3018 0; 3019 unsigned Opc; 3020 switch (VT.SimpleTy) { 3021 default: llvm_unreachable("Unexpected result type."); 3022 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 3023 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 3024 } 3025 3026 // Check if we can fold insertelement instructions into the convert. 3027 const Value *Op = II->getArgOperand(0); 3028 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3029 const Value *Index = IE->getOperand(2); 3030 if (!isa<ConstantInt>(Index)) 3031 break; 3032 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3033 3034 if (Idx == 0) { 3035 Op = IE->getOperand(1); 3036 break; 3037 } 3038 Op = IE->getOperand(0); 3039 } 3040 3041 Register Reg = getRegForValue(Op); 3042 if (Reg == 0) 3043 return false; 3044 3045 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3046 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 3047 .addReg(Reg); 3048 3049 updateValueMap(II, ResultReg); 3050 return true; 3051 } 3052 } 3053 } 3054 3055 bool X86FastISel::fastLowerArguments() { 3056 if (!FuncInfo.CanLowerReturn) 3057 return false; 3058 3059 const Function *F = FuncInfo.Fn; 3060 if (F->isVarArg()) 3061 return false; 3062 3063 CallingConv::ID CC = F->getCallingConv(); 3064 if (CC != CallingConv::C) 3065 return false; 3066 3067 if (Subtarget->isCallingConvWin64(CC)) 3068 return false; 3069 3070 if (!Subtarget->is64Bit()) 3071 return false; 3072 3073 if (Subtarget->useSoftFloat()) 3074 return false; 3075 3076 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3077 unsigned GPRCnt = 0; 3078 unsigned FPRCnt = 0; 3079 for (auto const &Arg : F->args()) { 3080 if (Arg.hasAttribute(Attribute::ByVal) || 3081 Arg.hasAttribute(Attribute::InReg) || 3082 Arg.hasAttribute(Attribute::StructRet) || 3083 Arg.hasAttribute(Attribute::SwiftSelf) || 3084 Arg.hasAttribute(Attribute::SwiftError) || 3085 Arg.hasAttribute(Attribute::Nest)) 3086 return false; 3087 3088 Type *ArgTy = Arg.getType(); 3089 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3090 return false; 3091 3092 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3093 if (!ArgVT.isSimple()) return false; 3094 switch (ArgVT.getSimpleVT().SimpleTy) { 3095 default: return false; 3096 case MVT::i32: 3097 case MVT::i64: 3098 ++GPRCnt; 3099 break; 3100 case MVT::f32: 3101 case MVT::f64: 3102 if (!Subtarget->hasSSE1()) 3103 return false; 3104 ++FPRCnt; 3105 break; 3106 } 3107 3108 if (GPRCnt > 6) 3109 return false; 3110 3111 if (FPRCnt > 8) 3112 return false; 3113 } 3114 3115 static const MCPhysReg GPR32ArgRegs[] = { 3116 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3117 }; 3118 static const MCPhysReg GPR64ArgRegs[] = { 3119 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3120 }; 3121 static const MCPhysReg XMMArgRegs[] = { 3122 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3123 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3124 }; 3125 3126 unsigned GPRIdx = 0; 3127 unsigned FPRIdx = 0; 3128 for (auto const &Arg : F->args()) { 3129 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3130 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3131 unsigned SrcReg; 3132 switch (VT.SimpleTy) { 3133 default: llvm_unreachable("Unexpected value type."); 3134 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3135 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3136 case MVT::f32: LLVM_FALLTHROUGH; 3137 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3138 } 3139 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3140 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3141 // Without this, EmitLiveInCopies may eliminate the livein if its only 3142 // use is a bitcast (which isn't turned into an instruction). 3143 Register ResultReg = createResultReg(RC); 3144 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3145 TII.get(TargetOpcode::COPY), ResultReg) 3146 .addReg(DstReg, getKillRegState(true)); 3147 updateValueMap(&Arg, ResultReg); 3148 } 3149 return true; 3150 } 3151 3152 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3153 CallingConv::ID CC, 3154 const CallBase *CB) { 3155 if (Subtarget->is64Bit()) 3156 return 0; 3157 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3158 return 0; 3159 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3160 CC == CallingConv::HiPE || CC == CallingConv::Tail) 3161 return 0; 3162 3163 if (CB) 3164 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) || 3165 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3166 return 0; 3167 3168 return 4; 3169 } 3170 3171 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3172 auto &OutVals = CLI.OutVals; 3173 auto &OutFlags = CLI.OutFlags; 3174 auto &OutRegs = CLI.OutRegs; 3175 auto &Ins = CLI.Ins; 3176 auto &InRegs = CLI.InRegs; 3177 CallingConv::ID CC = CLI.CallConv; 3178 bool &IsTailCall = CLI.IsTailCall; 3179 bool IsVarArg = CLI.IsVarArg; 3180 const Value *Callee = CLI.Callee; 3181 MCSymbol *Symbol = CLI.Symbol; 3182 3183 bool Is64Bit = Subtarget->is64Bit(); 3184 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3185 3186 const CallInst *CI = dyn_cast_or_null<CallInst>(CLI.CB); 3187 const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr; 3188 3189 // Call / invoke instructions with NoCfCheck attribute require special 3190 // handling. 3191 const auto *II = dyn_cast_or_null<InvokeInst>(CLI.CB); 3192 if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck())) 3193 return false; 3194 3195 // Functions with no_caller_saved_registers that need special handling. 3196 if ((CI && CI->hasFnAttr("no_caller_saved_registers")) || 3197 (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers"))) 3198 return false; 3199 3200 // Functions using thunks for indirect calls need to use SDISel. 3201 if (Subtarget->useIndirectThunkCalls()) 3202 return false; 3203 3204 // Handle only C, fastcc, and webkit_js calling conventions for now. 3205 switch (CC) { 3206 default: return false; 3207 case CallingConv::C: 3208 case CallingConv::Fast: 3209 case CallingConv::Tail: 3210 case CallingConv::WebKit_JS: 3211 case CallingConv::Swift: 3212 case CallingConv::X86_FastCall: 3213 case CallingConv::X86_StdCall: 3214 case CallingConv::X86_ThisCall: 3215 case CallingConv::Win64: 3216 case CallingConv::X86_64_SysV: 3217 case CallingConv::CFGuard_Check: 3218 break; 3219 } 3220 3221 // Allow SelectionDAG isel to handle tail calls. 3222 if (IsTailCall) 3223 return false; 3224 3225 // fastcc with -tailcallopt is intended to provide a guaranteed 3226 // tail call optimization. Fastisel doesn't know how to do that. 3227 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 3228 CC == CallingConv::Tail) 3229 return false; 3230 3231 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3232 // x86-32. Special handling for x86-64 is implemented. 3233 if (IsVarArg && IsWin64) 3234 return false; 3235 3236 // Don't know about inalloca yet. 3237 if (CLI.CB && CLI.CB->hasInAllocaArgument()) 3238 return false; 3239 3240 for (auto Flag : CLI.OutFlags) 3241 if (Flag.isSwiftError() || Flag.isPreallocated()) 3242 return false; 3243 3244 SmallVector<MVT, 16> OutVTs; 3245 SmallVector<unsigned, 16> ArgRegs; 3246 3247 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3248 // instruction. This is safe because it is common to all FastISel supported 3249 // calling conventions on x86. 3250 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3251 Value *&Val = OutVals[i]; 3252 ISD::ArgFlagsTy Flags = OutFlags[i]; 3253 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3254 if (CI->getBitWidth() < 32) { 3255 if (Flags.isSExt()) 3256 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); 3257 else 3258 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); 3259 } 3260 } 3261 3262 // Passing bools around ends up doing a trunc to i1 and passing it. 3263 // Codegen this as an argument + "and 1". 3264 MVT VT; 3265 auto *TI = dyn_cast<TruncInst>(Val); 3266 unsigned ResultReg; 3267 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB && 3268 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { 3269 Value *PrevVal = TI->getOperand(0); 3270 ResultReg = getRegForValue(PrevVal); 3271 3272 if (!ResultReg) 3273 return false; 3274 3275 if (!isTypeLegal(PrevVal->getType(), VT)) 3276 return false; 3277 3278 ResultReg = 3279 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); 3280 } else { 3281 if (!isTypeLegal(Val->getType(), VT) || 3282 (VT.isVector() && VT.getVectorElementType() == MVT::i1)) 3283 return false; 3284 ResultReg = getRegForValue(Val); 3285 } 3286 3287 if (!ResultReg) 3288 return false; 3289 3290 ArgRegs.push_back(ResultReg); 3291 OutVTs.push_back(VT); 3292 } 3293 3294 // Analyze operands of the call, assigning locations to each operand. 3295 SmallVector<CCValAssign, 16> ArgLocs; 3296 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3297 3298 // Allocate shadow area for Win64 3299 if (IsWin64) 3300 CCInfo.AllocateStack(32, Align(8)); 3301 3302 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3303 3304 // Get a count of how many bytes are to be pushed on the stack. 3305 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3306 3307 // Issue CALLSEQ_START 3308 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3309 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 3310 .addImm(NumBytes).addImm(0).addImm(0); 3311 3312 // Walk the register/memloc assignments, inserting copies/loads. 3313 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3314 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3315 CCValAssign const &VA = ArgLocs[i]; 3316 const Value *ArgVal = OutVals[VA.getValNo()]; 3317 MVT ArgVT = OutVTs[VA.getValNo()]; 3318 3319 if (ArgVT == MVT::x86mmx) 3320 return false; 3321 3322 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3323 3324 // Promote the value if needed. 3325 switch (VA.getLocInfo()) { 3326 case CCValAssign::Full: break; 3327 case CCValAssign::SExt: { 3328 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3329 "Unexpected extend"); 3330 3331 if (ArgVT == MVT::i1) 3332 return false; 3333 3334 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3335 ArgVT, ArgReg); 3336 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3337 ArgVT = VA.getLocVT(); 3338 break; 3339 } 3340 case CCValAssign::ZExt: { 3341 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3342 "Unexpected extend"); 3343 3344 // Handle zero-extension from i1 to i8, which is common. 3345 if (ArgVT == MVT::i1) { 3346 // Set the high bits to zero. 3347 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false); 3348 ArgVT = MVT::i8; 3349 3350 if (ArgReg == 0) 3351 return false; 3352 } 3353 3354 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3355 ArgVT, ArgReg); 3356 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3357 ArgVT = VA.getLocVT(); 3358 break; 3359 } 3360 case CCValAssign::AExt: { 3361 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3362 "Unexpected extend"); 3363 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3364 ArgVT, ArgReg); 3365 if (!Emitted) 3366 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3367 ArgVT, ArgReg); 3368 if (!Emitted) 3369 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3370 ArgVT, ArgReg); 3371 3372 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3373 ArgVT = VA.getLocVT(); 3374 break; 3375 } 3376 case CCValAssign::BCvt: { 3377 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, 3378 /*TODO: Kill=*/false); 3379 assert(ArgReg && "Failed to emit a bitcast!"); 3380 ArgVT = VA.getLocVT(); 3381 break; 3382 } 3383 case CCValAssign::VExt: 3384 // VExt has not been implemented, so this should be impossible to reach 3385 // for now. However, fallback to Selection DAG isel once implemented. 3386 return false; 3387 case CCValAssign::AExtUpper: 3388 case CCValAssign::SExtUpper: 3389 case CCValAssign::ZExtUpper: 3390 case CCValAssign::FPExt: 3391 case CCValAssign::Trunc: 3392 llvm_unreachable("Unexpected loc info!"); 3393 case CCValAssign::Indirect: 3394 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3395 // support this. 3396 return false; 3397 } 3398 3399 if (VA.isRegLoc()) { 3400 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3401 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3402 OutRegs.push_back(VA.getLocReg()); 3403 } else { 3404 assert(VA.isMemLoc() && "Unknown value location!"); 3405 3406 // Don't emit stores for undef values. 3407 if (isa<UndefValue>(ArgVal)) 3408 continue; 3409 3410 unsigned LocMemOffset = VA.getLocMemOffset(); 3411 X86AddressMode AM; 3412 AM.Base.Reg = RegInfo->getStackRegister(); 3413 AM.Disp = LocMemOffset; 3414 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3415 Align Alignment = DL.getABITypeAlign(ArgVal->getType()); 3416 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3417 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3418 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3419 if (Flags.isByVal()) { 3420 X86AddressMode SrcAM; 3421 SrcAM.Base.Reg = ArgReg; 3422 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3423 return false; 3424 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3425 // If this is a really simple value, emit this with the Value* version 3426 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3427 // as it can cause us to reevaluate the argument. 3428 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3429 return false; 3430 } else { 3431 bool ValIsKill = hasTrivialKill(ArgVal); 3432 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) 3433 return false; 3434 } 3435 } 3436 } 3437 3438 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3439 // GOT pointer. 3440 if (Subtarget->isPICStyleGOT()) { 3441 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3442 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3443 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3444 } 3445 3446 if (Is64Bit && IsVarArg && !IsWin64) { 3447 // From AMD64 ABI document: 3448 // For calls that may call functions that use varargs or stdargs 3449 // (prototype-less calls or calls to functions containing ellipsis (...) in 3450 // the declaration) %al is used as hidden argument to specify the number 3451 // of SSE registers used. The contents of %al do not need to match exactly 3452 // the number of registers, but must be an ubound on the number of SSE 3453 // registers used and is in the range 0 - 8 inclusive. 3454 3455 // Count the number of XMM registers allocated. 3456 static const MCPhysReg XMMArgRegs[] = { 3457 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3458 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3459 }; 3460 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3461 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3462 && "SSE registers cannot be used when SSE is disabled"); 3463 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 3464 X86::AL).addImm(NumXMMRegs); 3465 } 3466 3467 // Materialize callee address in a register. FIXME: GV address can be 3468 // handled with a CALLpcrel32 instead. 3469 X86AddressMode CalleeAM; 3470 if (!X86SelectCallAddress(Callee, CalleeAM)) 3471 return false; 3472 3473 unsigned CalleeOp = 0; 3474 const GlobalValue *GV = nullptr; 3475 if (CalleeAM.GV != nullptr) { 3476 GV = CalleeAM.GV; 3477 } else if (CalleeAM.Base.Reg != 0) { 3478 CalleeOp = CalleeAM.Base.Reg; 3479 } else 3480 return false; 3481 3482 // Issue the call. 3483 MachineInstrBuilder MIB; 3484 if (CalleeOp) { 3485 // Register-indirect call. 3486 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3487 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) 3488 .addReg(CalleeOp); 3489 } else { 3490 // Direct call. 3491 assert(GV && "Not a direct call"); 3492 // See if we need any target-specific flags on the GV operand. 3493 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3494 3495 // This will be a direct call, or an indirect call through memory for 3496 // NonLazyBind calls or dllimport calls. 3497 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3498 OpFlags == X86II::MO_GOTPCREL || 3499 OpFlags == X86II::MO_COFFSTUB; 3500 unsigned CallOpc = NeedLoad 3501 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3502 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3503 3504 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); 3505 if (NeedLoad) 3506 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); 3507 if (Symbol) 3508 MIB.addSym(Symbol, OpFlags); 3509 else 3510 MIB.addGlobalAddress(GV, 0, OpFlags); 3511 if (NeedLoad) 3512 MIB.addReg(0); 3513 } 3514 3515 // Add a register mask operand representing the call-preserved registers. 3516 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3517 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3518 3519 // Add an implicit use GOT pointer in EBX. 3520 if (Subtarget->isPICStyleGOT()) 3521 MIB.addReg(X86::EBX, RegState::Implicit); 3522 3523 if (Is64Bit && IsVarArg && !IsWin64) 3524 MIB.addReg(X86::AL, RegState::Implicit); 3525 3526 // Add implicit physical register uses to the call. 3527 for (auto Reg : OutRegs) 3528 MIB.addReg(Reg, RegState::Implicit); 3529 3530 // Issue CALLSEQ_END 3531 unsigned NumBytesForCalleeToPop = 3532 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3533 TM.Options.GuaranteedTailCallOpt) 3534 ? NumBytes // Callee pops everything. 3535 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB); 3536 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 3538 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3539 3540 // Now handle call return values. 3541 SmallVector<CCValAssign, 16> RVLocs; 3542 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3543 CLI.RetTy->getContext()); 3544 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3545 3546 // Copy all of the result registers out of their specified physreg. 3547 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3548 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3549 CCValAssign &VA = RVLocs[i]; 3550 EVT CopyVT = VA.getValVT(); 3551 unsigned CopyReg = ResultReg + i; 3552 Register SrcReg = VA.getLocReg(); 3553 3554 // If this is x86-64, and we disabled SSE, we can't return FP values 3555 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3556 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3557 report_fatal_error("SSE register return with SSE disabled"); 3558 } 3559 3560 // If we prefer to use the value in xmm registers, copy it out as f80 and 3561 // use a truncate to move it from fp stack reg to xmm reg. 3562 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3563 isScalarFPTypeInSSEReg(VA.getValVT())) { 3564 CopyVT = MVT::f80; 3565 CopyReg = createResultReg(&X86::RFP80RegClass); 3566 } 3567 3568 // Copy out the result. 3569 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3570 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3571 InRegs.push_back(VA.getLocReg()); 3572 3573 // Round the f80 to the right size, which also moves it to the appropriate 3574 // xmm register. This is accomplished by storing the f80 value in memory 3575 // and then loading it back. 3576 if (CopyVT != VA.getValVT()) { 3577 EVT ResVT = VA.getValVT(); 3578 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3579 unsigned MemSize = ResVT.getSizeInBits()/8; 3580 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false); 3581 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3582 TII.get(Opc)), FI) 3583 .addReg(CopyReg); 3584 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3585 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3586 TII.get(Opc), ResultReg + i), FI); 3587 } 3588 } 3589 3590 CLI.ResultReg = ResultReg; 3591 CLI.NumResultRegs = RVLocs.size(); 3592 CLI.Call = MIB; 3593 3594 return true; 3595 } 3596 3597 bool 3598 X86FastISel::fastSelectInstruction(const Instruction *I) { 3599 switch (I->getOpcode()) { 3600 default: break; 3601 case Instruction::Load: 3602 return X86SelectLoad(I); 3603 case Instruction::Store: 3604 return X86SelectStore(I); 3605 case Instruction::Ret: 3606 return X86SelectRet(I); 3607 case Instruction::ICmp: 3608 case Instruction::FCmp: 3609 return X86SelectCmp(I); 3610 case Instruction::ZExt: 3611 return X86SelectZExt(I); 3612 case Instruction::SExt: 3613 return X86SelectSExt(I); 3614 case Instruction::Br: 3615 return X86SelectBranch(I); 3616 case Instruction::LShr: 3617 case Instruction::AShr: 3618 case Instruction::Shl: 3619 return X86SelectShift(I); 3620 case Instruction::SDiv: 3621 case Instruction::UDiv: 3622 case Instruction::SRem: 3623 case Instruction::URem: 3624 return X86SelectDivRem(I); 3625 case Instruction::Select: 3626 return X86SelectSelect(I); 3627 case Instruction::Trunc: 3628 return X86SelectTrunc(I); 3629 case Instruction::FPExt: 3630 return X86SelectFPExt(I); 3631 case Instruction::FPTrunc: 3632 return X86SelectFPTrunc(I); 3633 case Instruction::SIToFP: 3634 return X86SelectSIToFP(I); 3635 case Instruction::UIToFP: 3636 return X86SelectUIToFP(I); 3637 case Instruction::IntToPtr: // Deliberate fall-through. 3638 case Instruction::PtrToInt: { 3639 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3640 EVT DstVT = TLI.getValueType(DL, I->getType()); 3641 if (DstVT.bitsGT(SrcVT)) 3642 return X86SelectZExt(I); 3643 if (DstVT.bitsLT(SrcVT)) 3644 return X86SelectTrunc(I); 3645 Register Reg = getRegForValue(I->getOperand(0)); 3646 if (Reg == 0) return false; 3647 updateValueMap(I, Reg); 3648 return true; 3649 } 3650 case Instruction::BitCast: { 3651 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3652 if (!Subtarget->hasSSE2()) 3653 return false; 3654 3655 MVT SrcVT, DstVT; 3656 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3657 !isTypeLegal(I->getType(), DstVT)) 3658 return false; 3659 3660 // Only allow vectors that use xmm/ymm/zmm. 3661 if (!SrcVT.isVector() || !DstVT.isVector() || 3662 SrcVT.getVectorElementType() == MVT::i1 || 3663 DstVT.getVectorElementType() == MVT::i1) 3664 return false; 3665 3666 Register Reg = getRegForValue(I->getOperand(0)); 3667 if (!Reg) 3668 return false; 3669 3670 // Emit a reg-reg copy so we don't propagate cached known bits information 3671 // with the wrong VT if we fall out of fast isel after selecting this. 3672 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 3673 Register ResultReg = createResultReg(DstClass); 3674 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3675 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 3676 3677 updateValueMap(I, ResultReg); 3678 return true; 3679 } 3680 } 3681 3682 return false; 3683 } 3684 3685 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3686 if (VT > MVT::i64) 3687 return 0; 3688 3689 uint64_t Imm = CI->getZExtValue(); 3690 if (Imm == 0) { 3691 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3692 switch (VT.SimpleTy) { 3693 default: llvm_unreachable("Unexpected value type"); 3694 case MVT::i1: 3695 case MVT::i8: 3696 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, 3697 X86::sub_8bit); 3698 case MVT::i16: 3699 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, 3700 X86::sub_16bit); 3701 case MVT::i32: 3702 return SrcReg; 3703 case MVT::i64: { 3704 Register ResultReg = createResultReg(&X86::GR64RegClass); 3705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3706 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3707 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3708 return ResultReg; 3709 } 3710 } 3711 } 3712 3713 unsigned Opc = 0; 3714 switch (VT.SimpleTy) { 3715 default: llvm_unreachable("Unexpected value type"); 3716 case MVT::i1: 3717 VT = MVT::i8; 3718 LLVM_FALLTHROUGH; 3719 case MVT::i8: Opc = X86::MOV8ri; break; 3720 case MVT::i16: Opc = X86::MOV16ri; break; 3721 case MVT::i32: Opc = X86::MOV32ri; break; 3722 case MVT::i64: { 3723 if (isUInt<32>(Imm)) 3724 Opc = X86::MOV32ri64; 3725 else if (isInt<32>(Imm)) 3726 Opc = X86::MOV64ri32; 3727 else 3728 Opc = X86::MOV64ri; 3729 break; 3730 } 3731 } 3732 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3733 } 3734 3735 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3736 if (CFP->isNullValue()) 3737 return fastMaterializeFloatZero(CFP); 3738 3739 // Can't handle alternate code models yet. 3740 CodeModel::Model CM = TM.getCodeModel(); 3741 if (CM != CodeModel::Small && CM != CodeModel::Large) 3742 return 0; 3743 3744 // Get opcode and regclass of the output for the given load instruction. 3745 unsigned Opc = 0; 3746 bool HasAVX = Subtarget->hasAVX(); 3747 bool HasAVX512 = Subtarget->hasAVX512(); 3748 switch (VT.SimpleTy) { 3749 default: return 0; 3750 case MVT::f32: 3751 if (X86ScalarSSEf32) 3752 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 3753 HasAVX ? X86::VMOVSSrm_alt : 3754 X86::MOVSSrm_alt; 3755 else 3756 Opc = X86::LD_Fp32m; 3757 break; 3758 case MVT::f64: 3759 if (X86ScalarSSEf64) 3760 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 3761 HasAVX ? X86::VMOVSDrm_alt : 3762 X86::MOVSDrm_alt; 3763 else 3764 Opc = X86::LD_Fp64m; 3765 break; 3766 case MVT::f80: 3767 // No f80 support yet. 3768 return 0; 3769 } 3770 3771 // MachineConstantPool wants an explicit alignment. 3772 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 3773 3774 // x86-32 PIC requires a PIC base register for constant pools. 3775 unsigned PICBase = 0; 3776 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3777 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3778 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3779 else if (OpFlag == X86II::MO_GOTOFF) 3780 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3781 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) 3782 PICBase = X86::RIP; 3783 3784 // Create the load from the constant pool. 3785 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment); 3786 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3787 3788 // Large code model only applies to 64-bit mode. 3789 if (Subtarget->is64Bit() && CM == CodeModel::Large) { 3790 Register AddrReg = createResultReg(&X86::GR64RegClass); 3791 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3792 AddrReg) 3793 .addConstantPoolIndex(CPI, 0, OpFlag); 3794 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3795 TII.get(Opc), ResultReg); 3796 addDirectMem(MIB, AddrReg); 3797 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3798 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3799 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment); 3800 MIB->addMemOperand(*FuncInfo.MF, MMO); 3801 return ResultReg; 3802 } 3803 3804 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3805 TII.get(Opc), ResultReg), 3806 CPI, PICBase, OpFlag); 3807 return ResultReg; 3808 } 3809 3810 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3811 // Can't handle alternate code models yet. 3812 if (TM.getCodeModel() != CodeModel::Small) 3813 return 0; 3814 3815 // Materialize addresses with LEA/MOV instructions. 3816 X86AddressMode AM; 3817 if (X86SelectAddress(GV, AM)) { 3818 // If the expression is just a basereg, then we're done, otherwise we need 3819 // to emit an LEA. 3820 if (AM.BaseType == X86AddressMode::RegBase && 3821 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3822 return AM.Base.Reg; 3823 3824 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3825 if (TM.getRelocationModel() == Reloc::Static && 3826 TLI.getPointerTy(DL) == MVT::i64) { 3827 // The displacement code could be more than 32 bits away so we need to use 3828 // an instruction with a 64 bit immediate 3829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3830 ResultReg) 3831 .addGlobalAddress(GV); 3832 } else { 3833 unsigned Opc = 3834 TLI.getPointerTy(DL) == MVT::i32 3835 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3836 : X86::LEA64r; 3837 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3838 TII.get(Opc), ResultReg), AM); 3839 } 3840 return ResultReg; 3841 } 3842 return 0; 3843 } 3844 3845 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3846 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3847 3848 // Only handle simple types. 3849 if (!CEVT.isSimple()) 3850 return 0; 3851 MVT VT = CEVT.getSimpleVT(); 3852 3853 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3854 return X86MaterializeInt(CI, VT); 3855 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 3856 return X86MaterializeFP(CFP, VT); 3857 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 3858 return X86MaterializeGV(GV, VT); 3859 3860 return 0; 3861 } 3862 3863 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3864 // Fail on dynamic allocas. At this point, getRegForValue has already 3865 // checked its CSE maps, so if we're here trying to handle a dynamic 3866 // alloca, we're not going to succeed. X86SelectAddress has a 3867 // check for dynamic allocas, because it's called directly from 3868 // various places, but targetMaterializeAlloca also needs a check 3869 // in order to avoid recursion between getRegForValue, 3870 // X86SelectAddrss, and targetMaterializeAlloca. 3871 if (!FuncInfo.StaticAllocaMap.count(C)) 3872 return 0; 3873 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3874 3875 X86AddressMode AM; 3876 if (!X86SelectAddress(C, AM)) 3877 return 0; 3878 unsigned Opc = 3879 TLI.getPointerTy(DL) == MVT::i32 3880 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3881 : X86::LEA64r; 3882 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3883 Register ResultReg = createResultReg(RC); 3884 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3885 TII.get(Opc), ResultReg), AM); 3886 return ResultReg; 3887 } 3888 3889 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3890 MVT VT; 3891 if (!isTypeLegal(CF->getType(), VT)) 3892 return 0; 3893 3894 // Get opcode and regclass for the given zero. 3895 bool HasAVX512 = Subtarget->hasAVX512(); 3896 unsigned Opc = 0; 3897 switch (VT.SimpleTy) { 3898 default: return 0; 3899 case MVT::f32: 3900 if (X86ScalarSSEf32) 3901 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; 3902 else 3903 Opc = X86::LD_Fp032; 3904 break; 3905 case MVT::f64: 3906 if (X86ScalarSSEf64) 3907 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; 3908 else 3909 Opc = X86::LD_Fp064; 3910 break; 3911 case MVT::f80: 3912 // No f80 support yet. 3913 return 0; 3914 } 3915 3916 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3917 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 3918 return ResultReg; 3919 } 3920 3921 3922 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3923 const LoadInst *LI) { 3924 const Value *Ptr = LI->getPointerOperand(); 3925 X86AddressMode AM; 3926 if (!X86SelectAddress(Ptr, AM)) 3927 return false; 3928 3929 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3930 3931 unsigned Size = DL.getTypeAllocSize(LI->getType()); 3932 3933 SmallVector<MachineOperand, 8> AddrOps; 3934 AM.getFullAddress(AddrOps); 3935 3936 MachineInstr *Result = XII.foldMemoryOperandImpl( 3937 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(), 3938 /*AllowCommute=*/true); 3939 if (!Result) 3940 return false; 3941 3942 // The index register could be in the wrong register class. Unfortunately, 3943 // foldMemoryOperandImpl could have commuted the instruction so its not enough 3944 // to just look at OpNo + the offset to the index reg. We actually need to 3945 // scan the instruction to find the index reg and see if its the correct reg 3946 // class. 3947 unsigned OperandNo = 0; 3948 for (MachineInstr::mop_iterator I = Result->operands_begin(), 3949 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 3950 MachineOperand &MO = *I; 3951 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 3952 continue; 3953 // Found the index reg, now try to rewrite it. 3954 Register IndexReg = constrainOperandRegClass(Result->getDesc(), 3955 MO.getReg(), OperandNo); 3956 if (IndexReg == MO.getReg()) 3957 continue; 3958 MO.setReg(IndexReg); 3959 } 3960 3961 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 3962 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 3963 MachineBasicBlock::iterator I(MI); 3964 removeDeadCode(I, std::next(I)); 3965 return true; 3966 } 3967 3968 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 3969 const TargetRegisterClass *RC, 3970 unsigned Op0, bool Op0IsKill, 3971 unsigned Op1, bool Op1IsKill, 3972 unsigned Op2, bool Op2IsKill, 3973 unsigned Op3, bool Op3IsKill) { 3974 const MCInstrDesc &II = TII.get(MachineInstOpcode); 3975 3976 Register ResultReg = createResultReg(RC); 3977 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 3978 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 3979 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 3980 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 3981 3982 if (II.getNumDefs() >= 1) 3983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 3984 .addReg(Op0, getKillRegState(Op0IsKill)) 3985 .addReg(Op1, getKillRegState(Op1IsKill)) 3986 .addReg(Op2, getKillRegState(Op2IsKill)) 3987 .addReg(Op3, getKillRegState(Op3IsKill)); 3988 else { 3989 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 3990 .addReg(Op0, getKillRegState(Op0IsKill)) 3991 .addReg(Op1, getKillRegState(Op1IsKill)) 3992 .addReg(Op2, getKillRegState(Op2IsKill)) 3993 .addReg(Op3, getKillRegState(Op3IsKill)); 3994 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3995 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 3996 } 3997 return ResultReg; 3998 } 3999 4000 4001 namespace llvm { 4002 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4003 const TargetLibraryInfo *libInfo) { 4004 return new X86FastISel(funcInfo, libInfo); 4005 } 4006 } 4007