xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
44 
45 namespace {
46 
47 class X86FastISel final : public FastISel {
48   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49   /// make the right decision when generating code for different targets.
50   const X86Subtarget *Subtarget;
51 
52   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
53   /// floating point ops.
54   /// When SSE is available, use it for f32 operations.
55   /// When SSE2 is available, use it for f64 operations.
56   bool X86ScalarSSEf64;
57   bool X86ScalarSSEf32;
58 
59 public:
60   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
61                        const TargetLibraryInfo *libInfo)
62       : FastISel(funcInfo, libInfo) {
63     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
64     X86ScalarSSEf64 = Subtarget->hasSSE2();
65     X86ScalarSSEf32 = Subtarget->hasSSE1();
66   }
67 
68   bool fastSelectInstruction(const Instruction *I) override;
69 
70   /// The specified machine instr operand is a vreg, and that
71   /// vreg is being provided by the specified load instruction.  If possible,
72   /// try to fold the load as an operand to the instruction, returning true if
73   /// possible.
74   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
75                            const LoadInst *LI) override;
76 
77   bool fastLowerArguments() override;
78   bool fastLowerCall(CallLoweringInfo &CLI) override;
79   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
80 
81 #include "X86GenFastISel.inc"
82 
83 private:
84   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
85                           const DebugLoc &DL);
86 
87   bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
88                        unsigned &ResultReg, unsigned Alignment = 1);
89 
90   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
91                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
92   bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
93                         X86AddressMode &AM,
94                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
95 
96   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
97                          unsigned &ResultReg);
98 
99   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
100   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
101 
102   bool X86SelectLoad(const Instruction *I);
103 
104   bool X86SelectStore(const Instruction *I);
105 
106   bool X86SelectRet(const Instruction *I);
107 
108   bool X86SelectCmp(const Instruction *I);
109 
110   bool X86SelectZExt(const Instruction *I);
111 
112   bool X86SelectSExt(const Instruction *I);
113 
114   bool X86SelectBranch(const Instruction *I);
115 
116   bool X86SelectShift(const Instruction *I);
117 
118   bool X86SelectDivRem(const Instruction *I);
119 
120   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
121 
122   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
123 
124   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
125 
126   bool X86SelectSelect(const Instruction *I);
127 
128   bool X86SelectTrunc(const Instruction *I);
129 
130   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
131                                const TargetRegisterClass *RC);
132 
133   bool X86SelectFPExt(const Instruction *I);
134   bool X86SelectFPTrunc(const Instruction *I);
135   bool X86SelectSIToFP(const Instruction *I);
136   bool X86SelectUIToFP(const Instruction *I);
137   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
138 
139   const X86InstrInfo *getInstrInfo() const {
140     return Subtarget->getInstrInfo();
141   }
142   const X86TargetMachine *getTargetMachine() const {
143     return static_cast<const X86TargetMachine *>(&TM);
144   }
145 
146   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
147 
148   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
149   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
150   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
151   unsigned fastMaterializeConstant(const Constant *C) override;
152 
153   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
154 
155   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
156 
157   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
158   /// computed in an SSE register, not on the X87 floating point stack.
159   bool isScalarFPTypeInSSEReg(EVT VT) const {
160     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
161       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
162   }
163 
164   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
165 
166   bool IsMemcpySmall(uint64_t Len);
167 
168   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
169                           X86AddressMode SrcAM, uint64_t Len);
170 
171   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
172                             const Value *Cond);
173 
174   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
175                                             X86AddressMode &AM);
176 
177   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
178                              const TargetRegisterClass *RC, unsigned Op0,
179                              bool Op0IsKill, unsigned Op1, bool Op1IsKill,
180                              unsigned Op2, bool Op2IsKill, unsigned Op3,
181                              bool Op3IsKill);
182 };
183 
184 } // end anonymous namespace.
185 
186 static std::pair<unsigned, bool>
187 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
188   unsigned CC;
189   bool NeedSwap = false;
190 
191   // SSE Condition code mapping:
192   //  0 - EQ
193   //  1 - LT
194   //  2 - LE
195   //  3 - UNORD
196   //  4 - NEQ
197   //  5 - NLT
198   //  6 - NLE
199   //  7 - ORD
200   switch (Predicate) {
201   default: llvm_unreachable("Unexpected predicate");
202   case CmpInst::FCMP_OEQ: CC = 0;          break;
203   case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
204   case CmpInst::FCMP_OLT: CC = 1;          break;
205   case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
206   case CmpInst::FCMP_OLE: CC = 2;          break;
207   case CmpInst::FCMP_UNO: CC = 3;          break;
208   case CmpInst::FCMP_UNE: CC = 4;          break;
209   case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
210   case CmpInst::FCMP_UGE: CC = 5;          break;
211   case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
212   case CmpInst::FCMP_UGT: CC = 6;          break;
213   case CmpInst::FCMP_ORD: CC = 7;          break;
214   case CmpInst::FCMP_UEQ: CC = 8;          break;
215   case CmpInst::FCMP_ONE: CC = 12;         break;
216   }
217 
218   return std::make_pair(CC, NeedSwap);
219 }
220 
221 /// Adds a complex addressing mode to the given machine instr builder.
222 /// Note, this will constrain the index register.  If its not possible to
223 /// constrain the given index register, then a new one will be created.  The
224 /// IndexReg field of the addressing mode will be updated to match in this case.
225 const MachineInstrBuilder &
226 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
227                             X86AddressMode &AM) {
228   // First constrain the index register.  It needs to be a GR64_NOSP.
229   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
230                                          MIB->getNumOperands() +
231                                          X86::AddrIndexReg);
232   return ::addFullAddress(MIB, AM);
233 }
234 
235 /// Check if it is possible to fold the condition from the XALU intrinsic
236 /// into the user. The condition code will only be updated on success.
237 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
238                                        const Value *Cond) {
239   if (!isa<ExtractValueInst>(Cond))
240     return false;
241 
242   const auto *EV = cast<ExtractValueInst>(Cond);
243   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
244     return false;
245 
246   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
247   MVT RetVT;
248   const Function *Callee = II->getCalledFunction();
249   Type *RetTy =
250     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
251   if (!isTypeLegal(RetTy, RetVT))
252     return false;
253 
254   if (RetVT != MVT::i32 && RetVT != MVT::i64)
255     return false;
256 
257   X86::CondCode TmpCC;
258   switch (II->getIntrinsicID()) {
259   default: return false;
260   case Intrinsic::sadd_with_overflow:
261   case Intrinsic::ssub_with_overflow:
262   case Intrinsic::smul_with_overflow:
263   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
264   case Intrinsic::uadd_with_overflow:
265   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
266   }
267 
268   // Check if both instructions are in the same basic block.
269   if (II->getParent() != I->getParent())
270     return false;
271 
272   // Make sure nothing is in the way
273   BasicBlock::const_iterator Start(I);
274   BasicBlock::const_iterator End(II);
275   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
276     // We only expect extractvalue instructions between the intrinsic and the
277     // instruction to be selected.
278     if (!isa<ExtractValueInst>(Itr))
279       return false;
280 
281     // Check that the extractvalue operand comes from the intrinsic.
282     const auto *EVI = cast<ExtractValueInst>(Itr);
283     if (EVI->getAggregateOperand() != II)
284       return false;
285   }
286 
287   CC = TmpCC;
288   return true;
289 }
290 
291 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
292   EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
293   if (evt == MVT::Other || !evt.isSimple())
294     // Unhandled type. Halt "fast" selection and bail.
295     return false;
296 
297   VT = evt.getSimpleVT();
298   // For now, require SSE/SSE2 for performing floating-point operations,
299   // since x87 requires additional work.
300   if (VT == MVT::f64 && !X86ScalarSSEf64)
301     return false;
302   if (VT == MVT::f32 && !X86ScalarSSEf32)
303     return false;
304   // Similarly, no f80 support yet.
305   if (VT == MVT::f80)
306     return false;
307   // We only handle legal types. For example, on x86-32 the instruction
308   // selector contains all of the 64-bit instructions from x86-64,
309   // under the assumption that i64 won't be used if the target doesn't
310   // support it.
311   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
312 }
313 
314 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
315 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
316 /// Return true and the result register by reference if it is possible.
317 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
318                                   MachineMemOperand *MMO, unsigned &ResultReg,
319                                   unsigned Alignment) {
320   bool HasSSE41 = Subtarget->hasSSE41();
321   bool HasAVX = Subtarget->hasAVX();
322   bool HasAVX2 = Subtarget->hasAVX2();
323   bool HasAVX512 = Subtarget->hasAVX512();
324   bool HasVLX = Subtarget->hasVLX();
325   bool IsNonTemporal = MMO && MMO->isNonTemporal();
326 
327   // Treat i1 loads the same as i8 loads. Masking will be done when storing.
328   if (VT == MVT::i1)
329     VT = MVT::i8;
330 
331   // Get opcode and regclass of the output for the given load instruction.
332   unsigned Opc = 0;
333   switch (VT.SimpleTy) {
334   default: return false;
335   case MVT::i8:
336     Opc = X86::MOV8rm;
337     break;
338   case MVT::i16:
339     Opc = X86::MOV16rm;
340     break;
341   case MVT::i32:
342     Opc = X86::MOV32rm;
343     break;
344   case MVT::i64:
345     // Must be in x86-64 mode.
346     Opc = X86::MOV64rm;
347     break;
348   case MVT::f32:
349     if (X86ScalarSSEf32)
350       Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
351             HasAVX    ? X86::VMOVSSrm_alt :
352                         X86::MOVSSrm_alt;
353     else
354       Opc = X86::LD_Fp32m;
355     break;
356   case MVT::f64:
357     if (X86ScalarSSEf64)
358       Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
359             HasAVX    ? X86::VMOVSDrm_alt :
360                         X86::MOVSDrm_alt;
361     else
362       Opc = X86::LD_Fp64m;
363     break;
364   case MVT::f80:
365     // No f80 support yet.
366     return false;
367   case MVT::v4f32:
368     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
369       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
370             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
371     else if (Alignment >= 16)
372       Opc = HasVLX ? X86::VMOVAPSZ128rm :
373             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
374     else
375       Opc = HasVLX ? X86::VMOVUPSZ128rm :
376             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
377     break;
378   case MVT::v2f64:
379     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
380       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
381             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
382     else if (Alignment >= 16)
383       Opc = HasVLX ? X86::VMOVAPDZ128rm :
384             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
385     else
386       Opc = HasVLX ? X86::VMOVUPDZ128rm :
387             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
388     break;
389   case MVT::v4i32:
390   case MVT::v2i64:
391   case MVT::v8i16:
392   case MVT::v16i8:
393     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
394       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
395             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
396     else if (Alignment >= 16)
397       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
398             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
399     else
400       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
401             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
402     break;
403   case MVT::v8f32:
404     assert(HasAVX);
405     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
406       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
407     else if (IsNonTemporal && Alignment >= 16)
408       return false; // Force split for X86::VMOVNTDQArm
409     else if (Alignment >= 32)
410       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
411     else
412       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
413     break;
414   case MVT::v4f64:
415     assert(HasAVX);
416     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
417       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
418     else if (IsNonTemporal && Alignment >= 16)
419       return false; // Force split for X86::VMOVNTDQArm
420     else if (Alignment >= 32)
421       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
422     else
423       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
424     break;
425   case MVT::v8i32:
426   case MVT::v4i64:
427   case MVT::v16i16:
428   case MVT::v32i8:
429     assert(HasAVX);
430     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
431       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
432     else if (IsNonTemporal && Alignment >= 16)
433       return false; // Force split for X86::VMOVNTDQArm
434     else if (Alignment >= 32)
435       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
436     else
437       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
438     break;
439   case MVT::v16f32:
440     assert(HasAVX512);
441     if (IsNonTemporal && Alignment >= 64)
442       Opc = X86::VMOVNTDQAZrm;
443     else
444       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
445     break;
446   case MVT::v8f64:
447     assert(HasAVX512);
448     if (IsNonTemporal && Alignment >= 64)
449       Opc = X86::VMOVNTDQAZrm;
450     else
451       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
452     break;
453   case MVT::v8i64:
454   case MVT::v16i32:
455   case MVT::v32i16:
456   case MVT::v64i8:
457     assert(HasAVX512);
458     // Note: There are a lot more choices based on type with AVX-512, but
459     // there's really no advantage when the load isn't masked.
460     if (IsNonTemporal && Alignment >= 64)
461       Opc = X86::VMOVNTDQAZrm;
462     else
463       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
464     break;
465   }
466 
467   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
468 
469   ResultReg = createResultReg(RC);
470   MachineInstrBuilder MIB =
471     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
472   addFullAddress(MIB, AM);
473   if (MMO)
474     MIB->addMemOperand(*FuncInfo.MF, MMO);
475   return true;
476 }
477 
478 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
479 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
480 /// and a displacement offset, or a GlobalAddress,
481 /// i.e. V. Return true if it is possible.
482 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
483                                    X86AddressMode &AM,
484                                    MachineMemOperand *MMO, bool Aligned) {
485   bool HasSSE1 = Subtarget->hasSSE1();
486   bool HasSSE2 = Subtarget->hasSSE2();
487   bool HasSSE4A = Subtarget->hasSSE4A();
488   bool HasAVX = Subtarget->hasAVX();
489   bool HasAVX512 = Subtarget->hasAVX512();
490   bool HasVLX = Subtarget->hasVLX();
491   bool IsNonTemporal = MMO && MMO->isNonTemporal();
492 
493   // Get opcode and regclass of the output for the given store instruction.
494   unsigned Opc = 0;
495   switch (VT.getSimpleVT().SimpleTy) {
496   case MVT::f80: // No f80 support yet.
497   default: return false;
498   case MVT::i1: {
499     // Mask out all but lowest bit.
500     unsigned AndResult = createResultReg(&X86::GR8RegClass);
501     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
502             TII.get(X86::AND8ri), AndResult)
503       .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
504     ValReg = AndResult;
505     LLVM_FALLTHROUGH; // handle i1 as i8.
506   }
507   case MVT::i8:  Opc = X86::MOV8mr;  break;
508   case MVT::i16: Opc = X86::MOV16mr; break;
509   case MVT::i32:
510     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
511     break;
512   case MVT::i64:
513     // Must be in x86-64 mode.
514     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
515     break;
516   case MVT::f32:
517     if (X86ScalarSSEf32) {
518       if (IsNonTemporal && HasSSE4A)
519         Opc = X86::MOVNTSS;
520       else
521         Opc = HasAVX512 ? X86::VMOVSSZmr :
522               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
523     } else
524       Opc = X86::ST_Fp32m;
525     break;
526   case MVT::f64:
527     if (X86ScalarSSEf32) {
528       if (IsNonTemporal && HasSSE4A)
529         Opc = X86::MOVNTSD;
530       else
531         Opc = HasAVX512 ? X86::VMOVSDZmr :
532               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
533     } else
534       Opc = X86::ST_Fp64m;
535     break;
536   case MVT::x86mmx:
537     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
538     break;
539   case MVT::v4f32:
540     if (Aligned) {
541       if (IsNonTemporal)
542         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
543               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
544       else
545         Opc = HasVLX ? X86::VMOVAPSZ128mr :
546               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
547     } else
548       Opc = HasVLX ? X86::VMOVUPSZ128mr :
549             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
550     break;
551   case MVT::v2f64:
552     if (Aligned) {
553       if (IsNonTemporal)
554         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
555               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
556       else
557         Opc = HasVLX ? X86::VMOVAPDZ128mr :
558               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
559     } else
560       Opc = HasVLX ? X86::VMOVUPDZ128mr :
561             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
562     break;
563   case MVT::v4i32:
564   case MVT::v2i64:
565   case MVT::v8i16:
566   case MVT::v16i8:
567     if (Aligned) {
568       if (IsNonTemporal)
569         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
570               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
571       else
572         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
573               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
574     } else
575       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
576             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
577     break;
578   case MVT::v8f32:
579     assert(HasAVX);
580     if (Aligned) {
581       if (IsNonTemporal)
582         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
583       else
584         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
585     } else
586       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
587     break;
588   case MVT::v4f64:
589     assert(HasAVX);
590     if (Aligned) {
591       if (IsNonTemporal)
592         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
593       else
594         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
595     } else
596       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
597     break;
598   case MVT::v8i32:
599   case MVT::v4i64:
600   case MVT::v16i16:
601   case MVT::v32i8:
602     assert(HasAVX);
603     if (Aligned) {
604       if (IsNonTemporal)
605         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
606       else
607         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
608     } else
609       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
610     break;
611   case MVT::v16f32:
612     assert(HasAVX512);
613     if (Aligned)
614       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
615     else
616       Opc = X86::VMOVUPSZmr;
617     break;
618   case MVT::v8f64:
619     assert(HasAVX512);
620     if (Aligned) {
621       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
622     } else
623       Opc = X86::VMOVUPDZmr;
624     break;
625   case MVT::v8i64:
626   case MVT::v16i32:
627   case MVT::v32i16:
628   case MVT::v64i8:
629     assert(HasAVX512);
630     // Note: There are a lot more choices based on type with AVX-512, but
631     // there's really no advantage when the store isn't masked.
632     if (Aligned)
633       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
634     else
635       Opc = X86::VMOVDQU64Zmr;
636     break;
637   }
638 
639   const MCInstrDesc &Desc = TII.get(Opc);
640   // Some of the instructions in the previous switch use FR128 instead
641   // of FR32 for ValReg. Make sure the register we feed the instruction
642   // matches its register class constraints.
643   // Note: This is fine to do a copy from FR32 to FR128, this is the
644   // same registers behind the scene and actually why it did not trigger
645   // any bugs before.
646   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
647   MachineInstrBuilder MIB =
648       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
649   addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
650   if (MMO)
651     MIB->addMemOperand(*FuncInfo.MF, MMO);
652 
653   return true;
654 }
655 
656 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
657                                    X86AddressMode &AM,
658                                    MachineMemOperand *MMO, bool Aligned) {
659   // Handle 'null' like i32/i64 0.
660   if (isa<ConstantPointerNull>(Val))
661     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
662 
663   // If this is a store of a simple constant, fold the constant into the store.
664   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
665     unsigned Opc = 0;
666     bool Signed = true;
667     switch (VT.getSimpleVT().SimpleTy) {
668     default: break;
669     case MVT::i1:
670       Signed = false;
671       LLVM_FALLTHROUGH; // Handle as i8.
672     case MVT::i8:  Opc = X86::MOV8mi;  break;
673     case MVT::i16: Opc = X86::MOV16mi; break;
674     case MVT::i32: Opc = X86::MOV32mi; break;
675     case MVT::i64:
676       // Must be a 32-bit sign extended value.
677       if (isInt<32>(CI->getSExtValue()))
678         Opc = X86::MOV64mi32;
679       break;
680     }
681 
682     if (Opc) {
683       MachineInstrBuilder MIB =
684         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
685       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
686                                             : CI->getZExtValue());
687       if (MMO)
688         MIB->addMemOperand(*FuncInfo.MF, MMO);
689       return true;
690     }
691   }
692 
693   unsigned ValReg = getRegForValue(Val);
694   if (ValReg == 0)
695     return false;
696 
697   bool ValKill = hasTrivialKill(Val);
698   return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
699 }
700 
701 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
702 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
703 /// ISD::SIGN_EXTEND).
704 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
705                                     unsigned Src, EVT SrcVT,
706                                     unsigned &ResultReg) {
707   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
708                            Src, /*TODO: Kill=*/false);
709   if (RR == 0)
710     return false;
711 
712   ResultReg = RR;
713   return true;
714 }
715 
716 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
717   // Handle constant address.
718   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
719     // Can't handle alternate code models yet.
720     if (TM.getCodeModel() != CodeModel::Small)
721       return false;
722 
723     // Can't handle TLS yet.
724     if (GV->isThreadLocal())
725       return false;
726 
727     // Can't handle !absolute_symbol references yet.
728     if (GV->isAbsoluteSymbolRef())
729       return false;
730 
731     // RIP-relative addresses can't have additional register operands, so if
732     // we've already folded stuff into the addressing mode, just force the
733     // global value into its own register, which we can use as the basereg.
734     if (!Subtarget->isPICStyleRIPRel() ||
735         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
736       // Okay, we've committed to selecting this global. Set up the address.
737       AM.GV = GV;
738 
739       // Allow the subtarget to classify the global.
740       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
741 
742       // If this reference is relative to the pic base, set it now.
743       if (isGlobalRelativeToPICBase(GVFlags)) {
744         // FIXME: How do we know Base.Reg is free??
745         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
746       }
747 
748       // Unless the ABI requires an extra load, return a direct reference to
749       // the global.
750       if (!isGlobalStubReference(GVFlags)) {
751         if (Subtarget->isPICStyleRIPRel()) {
752           // Use rip-relative addressing if we can.  Above we verified that the
753           // base and index registers are unused.
754           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
755           AM.Base.Reg = X86::RIP;
756         }
757         AM.GVOpFlags = GVFlags;
758         return true;
759       }
760 
761       // Ok, we need to do a load from a stub.  If we've already loaded from
762       // this stub, reuse the loaded pointer, otherwise emit the load now.
763       DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
764       unsigned LoadReg;
765       if (I != LocalValueMap.end() && I->second != 0) {
766         LoadReg = I->second;
767       } else {
768         // Issue load from stub.
769         unsigned Opc = 0;
770         const TargetRegisterClass *RC = nullptr;
771         X86AddressMode StubAM;
772         StubAM.Base.Reg = AM.Base.Reg;
773         StubAM.GV = GV;
774         StubAM.GVOpFlags = GVFlags;
775 
776         // Prepare for inserting code in the local-value area.
777         SavePoint SaveInsertPt = enterLocalValueArea();
778 
779         if (TLI.getPointerTy(DL) == MVT::i64) {
780           Opc = X86::MOV64rm;
781           RC  = &X86::GR64RegClass;
782 
783           if (Subtarget->isPICStyleRIPRel())
784             StubAM.Base.Reg = X86::RIP;
785         } else {
786           Opc = X86::MOV32rm;
787           RC  = &X86::GR32RegClass;
788         }
789 
790         LoadReg = createResultReg(RC);
791         MachineInstrBuilder LoadMI =
792           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
793         addFullAddress(LoadMI, StubAM);
794 
795         // Ok, back to normal mode.
796         leaveLocalValueArea(SaveInsertPt);
797 
798         // Prevent loading GV stub multiple times in same MBB.
799         LocalValueMap[V] = LoadReg;
800       }
801 
802       // Now construct the final address. Note that the Disp, Scale,
803       // and Index values may already be set here.
804       AM.Base.Reg = LoadReg;
805       AM.GV = nullptr;
806       return true;
807     }
808   }
809 
810   // If all else fails, try to materialize the value in a register.
811   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
812     if (AM.Base.Reg == 0) {
813       AM.Base.Reg = getRegForValue(V);
814       return AM.Base.Reg != 0;
815     }
816     if (AM.IndexReg == 0) {
817       assert(AM.Scale == 1 && "Scale with no index!");
818       AM.IndexReg = getRegForValue(V);
819       return AM.IndexReg != 0;
820     }
821   }
822 
823   return false;
824 }
825 
826 /// X86SelectAddress - Attempt to fill in an address from the given value.
827 ///
828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
829   SmallVector<const Value *, 32> GEPs;
830 redo_gep:
831   const User *U = nullptr;
832   unsigned Opcode = Instruction::UserOp1;
833   if (const Instruction *I = dyn_cast<Instruction>(V)) {
834     // Don't walk into other basic blocks; it's possible we haven't
835     // visited them yet, so the instructions may not yet be assigned
836     // virtual registers.
837     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
838         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
839       Opcode = I->getOpcode();
840       U = I;
841     }
842   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
843     Opcode = C->getOpcode();
844     U = C;
845   }
846 
847   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
848     if (Ty->getAddressSpace() > 255)
849       // Fast instruction selection doesn't support the special
850       // address spaces.
851       return false;
852 
853   switch (Opcode) {
854   default: break;
855   case Instruction::BitCast:
856     // Look past bitcasts.
857     return X86SelectAddress(U->getOperand(0), AM);
858 
859   case Instruction::IntToPtr:
860     // Look past no-op inttoptrs.
861     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
862         TLI.getPointerTy(DL))
863       return X86SelectAddress(U->getOperand(0), AM);
864     break;
865 
866   case Instruction::PtrToInt:
867     // Look past no-op ptrtoints.
868     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
869       return X86SelectAddress(U->getOperand(0), AM);
870     break;
871 
872   case Instruction::Alloca: {
873     // Do static allocas.
874     const AllocaInst *A = cast<AllocaInst>(V);
875     DenseMap<const AllocaInst *, int>::iterator SI =
876       FuncInfo.StaticAllocaMap.find(A);
877     if (SI != FuncInfo.StaticAllocaMap.end()) {
878       AM.BaseType = X86AddressMode::FrameIndexBase;
879       AM.Base.FrameIndex = SI->second;
880       return true;
881     }
882     break;
883   }
884 
885   case Instruction::Add: {
886     // Adds of constants are common and easy enough.
887     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
888       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
889       // They have to fit in the 32-bit signed displacement field though.
890       if (isInt<32>(Disp)) {
891         AM.Disp = (uint32_t)Disp;
892         return X86SelectAddress(U->getOperand(0), AM);
893       }
894     }
895     break;
896   }
897 
898   case Instruction::GetElementPtr: {
899     X86AddressMode SavedAM = AM;
900 
901     // Pattern-match simple GEPs.
902     uint64_t Disp = (int32_t)AM.Disp;
903     unsigned IndexReg = AM.IndexReg;
904     unsigned Scale = AM.Scale;
905     gep_type_iterator GTI = gep_type_begin(U);
906     // Iterate through the indices, folding what we can. Constants can be
907     // folded, and one dynamic index can be handled, if the scale is supported.
908     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
909          i != e; ++i, ++GTI) {
910       const Value *Op = *i;
911       if (StructType *STy = GTI.getStructTypeOrNull()) {
912         const StructLayout *SL = DL.getStructLayout(STy);
913         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
914         continue;
915       }
916 
917       // A array/variable index is always of the form i*S where S is the
918       // constant scale size.  See if we can push the scale into immediates.
919       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
920       for (;;) {
921         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
922           // Constant-offset addressing.
923           Disp += CI->getSExtValue() * S;
924           break;
925         }
926         if (canFoldAddIntoGEP(U, Op)) {
927           // A compatible add with a constant operand. Fold the constant.
928           ConstantInt *CI =
929             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
930           Disp += CI->getSExtValue() * S;
931           // Iterate on the other operand.
932           Op = cast<AddOperator>(Op)->getOperand(0);
933           continue;
934         }
935         if (IndexReg == 0 &&
936             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
937             (S == 1 || S == 2 || S == 4 || S == 8)) {
938           // Scaled-index addressing.
939           Scale = S;
940           IndexReg = getRegForGEPIndex(Op).first;
941           if (IndexReg == 0)
942             return false;
943           break;
944         }
945         // Unsupported.
946         goto unsupported_gep;
947       }
948     }
949 
950     // Check for displacement overflow.
951     if (!isInt<32>(Disp))
952       break;
953 
954     AM.IndexReg = IndexReg;
955     AM.Scale = Scale;
956     AM.Disp = (uint32_t)Disp;
957     GEPs.push_back(V);
958 
959     if (const GetElementPtrInst *GEP =
960           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
961       // Ok, the GEP indices were covered by constant-offset and scaled-index
962       // addressing. Update the address state and move on to examining the base.
963       V = GEP;
964       goto redo_gep;
965     } else if (X86SelectAddress(U->getOperand(0), AM)) {
966       return true;
967     }
968 
969     // If we couldn't merge the gep value into this addr mode, revert back to
970     // our address and just match the value instead of completely failing.
971     AM = SavedAM;
972 
973     for (const Value *I : reverse(GEPs))
974       if (handleConstantAddresses(I, AM))
975         return true;
976 
977     return false;
978   unsupported_gep:
979     // Ok, the GEP indices weren't all covered.
980     break;
981   }
982   }
983 
984   return handleConstantAddresses(V, AM);
985 }
986 
987 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
988 ///
989 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
990   const User *U = nullptr;
991   unsigned Opcode = Instruction::UserOp1;
992   const Instruction *I = dyn_cast<Instruction>(V);
993   // Record if the value is defined in the same basic block.
994   //
995   // This information is crucial to know whether or not folding an
996   // operand is valid.
997   // Indeed, FastISel generates or reuses a virtual register for all
998   // operands of all instructions it selects. Obviously, the definition and
999   // its uses must use the same virtual register otherwise the produced
1000   // code is incorrect.
1001   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1002   // registers for values that are alive across basic blocks. This ensures
1003   // that the values are consistently set between across basic block, even
1004   // if different instruction selection mechanisms are used (e.g., a mix of
1005   // SDISel and FastISel).
1006   // For values local to a basic block, the instruction selection process
1007   // generates these virtual registers with whatever method is appropriate
1008   // for its needs. In particular, FastISel and SDISel do not share the way
1009   // local virtual registers are set.
1010   // Therefore, this is impossible (or at least unsafe) to share values
1011   // between basic blocks unless they use the same instruction selection
1012   // method, which is not guarantee for X86.
1013   // Moreover, things like hasOneUse could not be used accurately, if we
1014   // allow to reference values across basic blocks whereas they are not
1015   // alive across basic blocks initially.
1016   bool InMBB = true;
1017   if (I) {
1018     Opcode = I->getOpcode();
1019     U = I;
1020     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1021   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1022     Opcode = C->getOpcode();
1023     U = C;
1024   }
1025 
1026   switch (Opcode) {
1027   default: break;
1028   case Instruction::BitCast:
1029     // Look past bitcasts if its operand is in the same BB.
1030     if (InMBB)
1031       return X86SelectCallAddress(U->getOperand(0), AM);
1032     break;
1033 
1034   case Instruction::IntToPtr:
1035     // Look past no-op inttoptrs if its operand is in the same BB.
1036     if (InMBB &&
1037         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1038             TLI.getPointerTy(DL))
1039       return X86SelectCallAddress(U->getOperand(0), AM);
1040     break;
1041 
1042   case Instruction::PtrToInt:
1043     // Look past no-op ptrtoints if its operand is in the same BB.
1044     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1045       return X86SelectCallAddress(U->getOperand(0), AM);
1046     break;
1047   }
1048 
1049   // Handle constant address.
1050   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1051     // Can't handle alternate code models yet.
1052     if (TM.getCodeModel() != CodeModel::Small)
1053       return false;
1054 
1055     // RIP-relative addresses can't have additional register operands.
1056     if (Subtarget->isPICStyleRIPRel() &&
1057         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1058       return false;
1059 
1060     // Can't handle TLS.
1061     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1062       if (GVar->isThreadLocal())
1063         return false;
1064 
1065     // Okay, we've committed to selecting this global. Set up the basic address.
1066     AM.GV = GV;
1067 
1068     // Return a direct reference to the global. Fastisel can handle calls to
1069     // functions that require loads, such as dllimport and nonlazybind
1070     // functions.
1071     if (Subtarget->isPICStyleRIPRel()) {
1072       // Use rip-relative addressing if we can.  Above we verified that the
1073       // base and index registers are unused.
1074       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1075       AM.Base.Reg = X86::RIP;
1076     } else {
1077       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1078     }
1079 
1080     return true;
1081   }
1082 
1083   // If all else fails, try to materialize the value in a register.
1084   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1085     if (AM.Base.Reg == 0) {
1086       AM.Base.Reg = getRegForValue(V);
1087       return AM.Base.Reg != 0;
1088     }
1089     if (AM.IndexReg == 0) {
1090       assert(AM.Scale == 1 && "Scale with no index!");
1091       AM.IndexReg = getRegForValue(V);
1092       return AM.IndexReg != 0;
1093     }
1094   }
1095 
1096   return false;
1097 }
1098 
1099 
1100 /// X86SelectStore - Select and emit code to implement store instructions.
1101 bool X86FastISel::X86SelectStore(const Instruction *I) {
1102   // Atomic stores need special handling.
1103   const StoreInst *S = cast<StoreInst>(I);
1104 
1105   if (S->isAtomic())
1106     return false;
1107 
1108   const Value *PtrV = I->getOperand(1);
1109   if (TLI.supportSwiftError()) {
1110     // Swifterror values can come from either a function parameter with
1111     // swifterror attribute or an alloca with swifterror attribute.
1112     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1113       if (Arg->hasSwiftErrorAttr())
1114         return false;
1115     }
1116 
1117     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1118       if (Alloca->isSwiftError())
1119         return false;
1120     }
1121   }
1122 
1123   const Value *Val = S->getValueOperand();
1124   const Value *Ptr = S->getPointerOperand();
1125 
1126   MVT VT;
1127   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1128     return false;
1129 
1130   unsigned Alignment = S->getAlignment();
1131   unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1132   if (Alignment == 0) // Ensure that codegen never sees alignment 0
1133     Alignment = ABIAlignment;
1134   bool Aligned = Alignment >= ABIAlignment;
1135 
1136   X86AddressMode AM;
1137   if (!X86SelectAddress(Ptr, AM))
1138     return false;
1139 
1140   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1141 }
1142 
1143 /// X86SelectRet - Select and emit code to implement ret instructions.
1144 bool X86FastISel::X86SelectRet(const Instruction *I) {
1145   const ReturnInst *Ret = cast<ReturnInst>(I);
1146   const Function &F = *I->getParent()->getParent();
1147   const X86MachineFunctionInfo *X86MFInfo =
1148       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1149 
1150   if (!FuncInfo.CanLowerReturn)
1151     return false;
1152 
1153   if (TLI.supportSwiftError() &&
1154       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1155     return false;
1156 
1157   if (TLI.supportSplitCSR(FuncInfo.MF))
1158     return false;
1159 
1160   CallingConv::ID CC = F.getCallingConv();
1161   if (CC != CallingConv::C &&
1162       CC != CallingConv::Fast &&
1163       CC != CallingConv::Tail &&
1164       CC != CallingConv::X86_FastCall &&
1165       CC != CallingConv::X86_StdCall &&
1166       CC != CallingConv::X86_ThisCall &&
1167       CC != CallingConv::X86_64_SysV &&
1168       CC != CallingConv::Win64)
1169     return false;
1170 
1171   // Don't handle popping bytes if they don't fit the ret's immediate.
1172   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1173     return false;
1174 
1175   // fastcc with -tailcallopt is intended to provide a guaranteed
1176   // tail call optimization. Fastisel doesn't know how to do that.
1177   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1178       CC == CallingConv::Tail)
1179     return false;
1180 
1181   // Let SDISel handle vararg functions.
1182   if (F.isVarArg())
1183     return false;
1184 
1185   // Build a list of return value registers.
1186   SmallVector<unsigned, 4> RetRegs;
1187 
1188   if (Ret->getNumOperands() > 0) {
1189     SmallVector<ISD::OutputArg, 4> Outs;
1190     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1191 
1192     // Analyze operands of the call, assigning locations to each operand.
1193     SmallVector<CCValAssign, 16> ValLocs;
1194     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1195     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1196 
1197     const Value *RV = Ret->getOperand(0);
1198     unsigned Reg = getRegForValue(RV);
1199     if (Reg == 0)
1200       return false;
1201 
1202     // Only handle a single return value for now.
1203     if (ValLocs.size() != 1)
1204       return false;
1205 
1206     CCValAssign &VA = ValLocs[0];
1207 
1208     // Don't bother handling odd stuff for now.
1209     if (VA.getLocInfo() != CCValAssign::Full)
1210       return false;
1211     // Only handle register returns for now.
1212     if (!VA.isRegLoc())
1213       return false;
1214 
1215     // The calling-convention tables for x87 returns don't tell
1216     // the whole story.
1217     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1218       return false;
1219 
1220     unsigned SrcReg = Reg + VA.getValNo();
1221     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1222     EVT DstVT = VA.getValVT();
1223     // Special handling for extended integers.
1224     if (SrcVT != DstVT) {
1225       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1226         return false;
1227 
1228       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1229         return false;
1230 
1231       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1232 
1233       if (SrcVT == MVT::i1) {
1234         if (Outs[0].Flags.isSExt())
1235           return false;
1236         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1237         SrcVT = MVT::i8;
1238       }
1239       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1240                                              ISD::SIGN_EXTEND;
1241       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1242                           SrcReg, /*TODO: Kill=*/false);
1243     }
1244 
1245     // Make the copy.
1246     Register DstReg = VA.getLocReg();
1247     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1248     // Avoid a cross-class copy. This is very unlikely.
1249     if (!SrcRC->contains(DstReg))
1250       return false;
1251     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1252             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1253 
1254     // Add register to return instruction.
1255     RetRegs.push_back(VA.getLocReg());
1256   }
1257 
1258   // Swift calling convention does not require we copy the sret argument
1259   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1260 
1261   // All x86 ABIs require that for returning structs by value we copy
1262   // the sret argument into %rax/%eax (depending on ABI) for the return.
1263   // We saved the argument into a virtual register in the entry block,
1264   // so now we copy the value out and into %rax/%eax.
1265   if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1266     unsigned Reg = X86MFInfo->getSRetReturnReg();
1267     assert(Reg &&
1268            "SRetReturnReg should have been set in LowerFormalArguments()!");
1269     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1270     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1271             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1272     RetRegs.push_back(RetReg);
1273   }
1274 
1275   // Now emit the RET.
1276   MachineInstrBuilder MIB;
1277   if (X86MFInfo->getBytesToPopOnReturn()) {
1278     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1279                   TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1280               .addImm(X86MFInfo->getBytesToPopOnReturn());
1281   } else {
1282     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1283                   TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1284   }
1285   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1286     MIB.addReg(RetRegs[i], RegState::Implicit);
1287   return true;
1288 }
1289 
1290 /// X86SelectLoad - Select and emit code to implement load instructions.
1291 ///
1292 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1293   const LoadInst *LI = cast<LoadInst>(I);
1294 
1295   // Atomic loads need special handling.
1296   if (LI->isAtomic())
1297     return false;
1298 
1299   const Value *SV = I->getOperand(0);
1300   if (TLI.supportSwiftError()) {
1301     // Swifterror values can come from either a function parameter with
1302     // swifterror attribute or an alloca with swifterror attribute.
1303     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1304       if (Arg->hasSwiftErrorAttr())
1305         return false;
1306     }
1307 
1308     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1309       if (Alloca->isSwiftError())
1310         return false;
1311     }
1312   }
1313 
1314   MVT VT;
1315   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1316     return false;
1317 
1318   const Value *Ptr = LI->getPointerOperand();
1319 
1320   X86AddressMode AM;
1321   if (!X86SelectAddress(Ptr, AM))
1322     return false;
1323 
1324   unsigned Alignment = LI->getAlignment();
1325   unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1326   if (Alignment == 0) // Ensure that codegen never sees alignment 0
1327     Alignment = ABIAlignment;
1328 
1329   unsigned ResultReg = 0;
1330   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1331                        Alignment))
1332     return false;
1333 
1334   updateValueMap(I, ResultReg);
1335   return true;
1336 }
1337 
1338 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1339   bool HasAVX512 = Subtarget->hasAVX512();
1340   bool HasAVX = Subtarget->hasAVX();
1341   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1342   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1343 
1344   switch (VT.getSimpleVT().SimpleTy) {
1345   default:       return 0;
1346   case MVT::i8:  return X86::CMP8rr;
1347   case MVT::i16: return X86::CMP16rr;
1348   case MVT::i32: return X86::CMP32rr;
1349   case MVT::i64: return X86::CMP64rr;
1350   case MVT::f32:
1351     return X86ScalarSSEf32
1352                ? (HasAVX512 ? X86::VUCOMISSZrr
1353                             : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1354                : 0;
1355   case MVT::f64:
1356     return X86ScalarSSEf64
1357                ? (HasAVX512 ? X86::VUCOMISDZrr
1358                             : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1359                : 0;
1360   }
1361 }
1362 
1363 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1364 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1365 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1366   int64_t Val = RHSC->getSExtValue();
1367   switch (VT.getSimpleVT().SimpleTy) {
1368   // Otherwise, we can't fold the immediate into this comparison.
1369   default:
1370     return 0;
1371   case MVT::i8:
1372     return X86::CMP8ri;
1373   case MVT::i16:
1374     if (isInt<8>(Val))
1375       return X86::CMP16ri8;
1376     return X86::CMP16ri;
1377   case MVT::i32:
1378     if (isInt<8>(Val))
1379       return X86::CMP32ri8;
1380     return X86::CMP32ri;
1381   case MVT::i64:
1382     if (isInt<8>(Val))
1383       return X86::CMP64ri8;
1384     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1385     // field.
1386     if (isInt<32>(Val))
1387       return X86::CMP64ri32;
1388     return 0;
1389   }
1390 }
1391 
1392 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1393                                      const DebugLoc &CurDbgLoc) {
1394   unsigned Op0Reg = getRegForValue(Op0);
1395   if (Op0Reg == 0) return false;
1396 
1397   // Handle 'null' like i32/i64 0.
1398   if (isa<ConstantPointerNull>(Op1))
1399     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1400 
1401   // We have two options: compare with register or immediate.  If the RHS of
1402   // the compare is an immediate that we can fold into this compare, use
1403   // CMPri, otherwise use CMPrr.
1404   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1405     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1406       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1407         .addReg(Op0Reg)
1408         .addImm(Op1C->getSExtValue());
1409       return true;
1410     }
1411   }
1412 
1413   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1414   if (CompareOpc == 0) return false;
1415 
1416   unsigned Op1Reg = getRegForValue(Op1);
1417   if (Op1Reg == 0) return false;
1418   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1419     .addReg(Op0Reg)
1420     .addReg(Op1Reg);
1421 
1422   return true;
1423 }
1424 
1425 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1426   const CmpInst *CI = cast<CmpInst>(I);
1427 
1428   MVT VT;
1429   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1430     return false;
1431 
1432   // Try to optimize or fold the cmp.
1433   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1434   unsigned ResultReg = 0;
1435   switch (Predicate) {
1436   default: break;
1437   case CmpInst::FCMP_FALSE: {
1438     ResultReg = createResultReg(&X86::GR32RegClass);
1439     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1440             ResultReg);
1441     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1442                                            X86::sub_8bit);
1443     if (!ResultReg)
1444       return false;
1445     break;
1446   }
1447   case CmpInst::FCMP_TRUE: {
1448     ResultReg = createResultReg(&X86::GR8RegClass);
1449     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1450             ResultReg).addImm(1);
1451     break;
1452   }
1453   }
1454 
1455   if (ResultReg) {
1456     updateValueMap(I, ResultReg);
1457     return true;
1458   }
1459 
1460   const Value *LHS = CI->getOperand(0);
1461   const Value *RHS = CI->getOperand(1);
1462 
1463   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1464   // We don't have to materialize a zero constant for this case and can just use
1465   // %x again on the RHS.
1466   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1467     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1468     if (RHSC && RHSC->isNullValue())
1469       RHS = LHS;
1470   }
1471 
1472   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1473   static const uint16_t SETFOpcTable[2][3] = {
1474     { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1475     { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1476   };
1477   const uint16_t *SETFOpc = nullptr;
1478   switch (Predicate) {
1479   default: break;
1480   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1481   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1482   }
1483 
1484   ResultReg = createResultReg(&X86::GR8RegClass);
1485   if (SETFOpc) {
1486     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1487       return false;
1488 
1489     unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1490     unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1491     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1492             FlagReg1).addImm(SETFOpc[0]);
1493     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1494             FlagReg2).addImm(SETFOpc[1]);
1495     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1496             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1497     updateValueMap(I, ResultReg);
1498     return true;
1499   }
1500 
1501   X86::CondCode CC;
1502   bool SwapArgs;
1503   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1504   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1505 
1506   if (SwapArgs)
1507     std::swap(LHS, RHS);
1508 
1509   // Emit a compare of LHS/RHS.
1510   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1511     return false;
1512 
1513   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1514           ResultReg).addImm(CC);
1515   updateValueMap(I, ResultReg);
1516   return true;
1517 }
1518 
1519 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1520   EVT DstVT = TLI.getValueType(DL, I->getType());
1521   if (!TLI.isTypeLegal(DstVT))
1522     return false;
1523 
1524   unsigned ResultReg = getRegForValue(I->getOperand(0));
1525   if (ResultReg == 0)
1526     return false;
1527 
1528   // Handle zero-extension from i1 to i8, which is common.
1529   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1530   if (SrcVT == MVT::i1) {
1531     // Set the high bits to zero.
1532     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1533     SrcVT = MVT::i8;
1534 
1535     if (ResultReg == 0)
1536       return false;
1537   }
1538 
1539   if (DstVT == MVT::i64) {
1540     // Handle extension to 64-bits via sub-register shenanigans.
1541     unsigned MovInst;
1542 
1543     switch (SrcVT.SimpleTy) {
1544     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1545     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1546     case MVT::i32: MovInst = X86::MOV32rr;     break;
1547     default: llvm_unreachable("Unexpected zext to i64 source type");
1548     }
1549 
1550     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1551     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1552       .addReg(ResultReg);
1553 
1554     ResultReg = createResultReg(&X86::GR64RegClass);
1555     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1556             ResultReg)
1557       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1558   } else if (DstVT == MVT::i16) {
1559     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1560     // extend to 32-bits and then extract down to 16-bits.
1561     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1562     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1563             Result32).addReg(ResultReg);
1564 
1565     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1566                                            X86::sub_16bit);
1567   } else if (DstVT != MVT::i8) {
1568     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1569                            ResultReg, /*Kill=*/true);
1570     if (ResultReg == 0)
1571       return false;
1572   }
1573 
1574   updateValueMap(I, ResultReg);
1575   return true;
1576 }
1577 
1578 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1579   EVT DstVT = TLI.getValueType(DL, I->getType());
1580   if (!TLI.isTypeLegal(DstVT))
1581     return false;
1582 
1583   unsigned ResultReg = getRegForValue(I->getOperand(0));
1584   if (ResultReg == 0)
1585     return false;
1586 
1587   // Handle sign-extension from i1 to i8.
1588   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1589   if (SrcVT == MVT::i1) {
1590     // Set the high bits to zero.
1591     unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1592                                           /*TODO: Kill=*/false);
1593     if (ZExtReg == 0)
1594       return false;
1595 
1596     // Negate the result to make an 8-bit sign extended value.
1597     ResultReg = createResultReg(&X86::GR8RegClass);
1598     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1599             ResultReg).addReg(ZExtReg);
1600 
1601     SrcVT = MVT::i8;
1602   }
1603 
1604   if (DstVT == MVT::i16) {
1605     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1606     // extend to 32-bits and then extract down to 16-bits.
1607     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1608     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1609             Result32).addReg(ResultReg);
1610 
1611     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1612                                            X86::sub_16bit);
1613   } else if (DstVT != MVT::i8) {
1614     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1615                            ResultReg, /*Kill=*/true);
1616     if (ResultReg == 0)
1617       return false;
1618   }
1619 
1620   updateValueMap(I, ResultReg);
1621   return true;
1622 }
1623 
1624 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1625   // Unconditional branches are selected by tablegen-generated code.
1626   // Handle a conditional branch.
1627   const BranchInst *BI = cast<BranchInst>(I);
1628   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1629   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1630 
1631   // Fold the common case of a conditional branch with a comparison
1632   // in the same block (values defined on other blocks may not have
1633   // initialized registers).
1634   X86::CondCode CC;
1635   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1636     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1637       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1638 
1639       // Try to optimize or fold the cmp.
1640       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1641       switch (Predicate) {
1642       default: break;
1643       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1644       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
1645       }
1646 
1647       const Value *CmpLHS = CI->getOperand(0);
1648       const Value *CmpRHS = CI->getOperand(1);
1649 
1650       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1651       // 0.0.
1652       // We don't have to materialize a zero constant for this case and can just
1653       // use %x again on the RHS.
1654       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1655         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1656         if (CmpRHSC && CmpRHSC->isNullValue())
1657           CmpRHS = CmpLHS;
1658       }
1659 
1660       // Try to take advantage of fallthrough opportunities.
1661       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1662         std::swap(TrueMBB, FalseMBB);
1663         Predicate = CmpInst::getInversePredicate(Predicate);
1664       }
1665 
1666       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1667       // code check. Instead two branch instructions are required to check all
1668       // the flags. First we change the predicate to a supported condition code,
1669       // which will be the first branch. Later one we will emit the second
1670       // branch.
1671       bool NeedExtraBranch = false;
1672       switch (Predicate) {
1673       default: break;
1674       case CmpInst::FCMP_OEQ:
1675         std::swap(TrueMBB, FalseMBB);
1676         LLVM_FALLTHROUGH;
1677       case CmpInst::FCMP_UNE:
1678         NeedExtraBranch = true;
1679         Predicate = CmpInst::FCMP_ONE;
1680         break;
1681       }
1682 
1683       bool SwapArgs;
1684       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1685       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1686 
1687       if (SwapArgs)
1688         std::swap(CmpLHS, CmpRHS);
1689 
1690       // Emit a compare of the LHS and RHS, setting the flags.
1691       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1692         return false;
1693 
1694       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1695         .addMBB(TrueMBB).addImm(CC);
1696 
1697       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1698       // to UNE above).
1699       if (NeedExtraBranch) {
1700         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1701           .addMBB(TrueMBB).addImm(X86::COND_P);
1702       }
1703 
1704       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1705       return true;
1706     }
1707   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1708     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1709     // typically happen for _Bool and C++ bools.
1710     MVT SourceVT;
1711     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1712         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1713       unsigned TestOpc = 0;
1714       switch (SourceVT.SimpleTy) {
1715       default: break;
1716       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1717       case MVT::i16: TestOpc = X86::TEST16ri; break;
1718       case MVT::i32: TestOpc = X86::TEST32ri; break;
1719       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1720       }
1721       if (TestOpc) {
1722         unsigned OpReg = getRegForValue(TI->getOperand(0));
1723         if (OpReg == 0) return false;
1724 
1725         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1726           .addReg(OpReg).addImm(1);
1727 
1728         unsigned JmpCond = X86::COND_NE;
1729         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1730           std::swap(TrueMBB, FalseMBB);
1731           JmpCond = X86::COND_E;
1732         }
1733 
1734         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1735           .addMBB(TrueMBB).addImm(JmpCond);
1736 
1737         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1738         return true;
1739       }
1740     }
1741   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1742     // Fake request the condition, otherwise the intrinsic might be completely
1743     // optimized away.
1744     unsigned TmpReg = getRegForValue(BI->getCondition());
1745     if (TmpReg == 0)
1746       return false;
1747 
1748     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1749       .addMBB(TrueMBB).addImm(CC);
1750     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1751     return true;
1752   }
1753 
1754   // Otherwise do a clumsy setcc and re-test it.
1755   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1756   // in an explicit cast, so make sure to handle that correctly.
1757   unsigned OpReg = getRegForValue(BI->getCondition());
1758   if (OpReg == 0) return false;
1759 
1760   // In case OpReg is a K register, COPY to a GPR
1761   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1762     unsigned KOpReg = OpReg;
1763     OpReg = createResultReg(&X86::GR32RegClass);
1764     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1765             TII.get(TargetOpcode::COPY), OpReg)
1766         .addReg(KOpReg);
1767     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
1768                                        X86::sub_8bit);
1769   }
1770   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1771       .addReg(OpReg)
1772       .addImm(1);
1773   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1774     .addMBB(TrueMBB).addImm(X86::COND_NE);
1775   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1776   return true;
1777 }
1778 
1779 bool X86FastISel::X86SelectShift(const Instruction *I) {
1780   unsigned CReg = 0, OpReg = 0;
1781   const TargetRegisterClass *RC = nullptr;
1782   if (I->getType()->isIntegerTy(8)) {
1783     CReg = X86::CL;
1784     RC = &X86::GR8RegClass;
1785     switch (I->getOpcode()) {
1786     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1787     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1788     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1789     default: return false;
1790     }
1791   } else if (I->getType()->isIntegerTy(16)) {
1792     CReg = X86::CX;
1793     RC = &X86::GR16RegClass;
1794     switch (I->getOpcode()) {
1795     default: llvm_unreachable("Unexpected shift opcode");
1796     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1797     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1798     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1799     }
1800   } else if (I->getType()->isIntegerTy(32)) {
1801     CReg = X86::ECX;
1802     RC = &X86::GR32RegClass;
1803     switch (I->getOpcode()) {
1804     default: llvm_unreachable("Unexpected shift opcode");
1805     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1806     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1807     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1808     }
1809   } else if (I->getType()->isIntegerTy(64)) {
1810     CReg = X86::RCX;
1811     RC = &X86::GR64RegClass;
1812     switch (I->getOpcode()) {
1813     default: llvm_unreachable("Unexpected shift opcode");
1814     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1815     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1816     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1817     }
1818   } else {
1819     return false;
1820   }
1821 
1822   MVT VT;
1823   if (!isTypeLegal(I->getType(), VT))
1824     return false;
1825 
1826   unsigned Op0Reg = getRegForValue(I->getOperand(0));
1827   if (Op0Reg == 0) return false;
1828 
1829   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1830   if (Op1Reg == 0) return false;
1831   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1832           CReg).addReg(Op1Reg);
1833 
1834   // The shift instruction uses X86::CL. If we defined a super-register
1835   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1836   if (CReg != X86::CL)
1837     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1838             TII.get(TargetOpcode::KILL), X86::CL)
1839       .addReg(CReg, RegState::Kill);
1840 
1841   unsigned ResultReg = createResultReg(RC);
1842   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1843     .addReg(Op0Reg);
1844   updateValueMap(I, ResultReg);
1845   return true;
1846 }
1847 
1848 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1849   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1850   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1851   const static bool S = true;  // IsSigned
1852   const static bool U = false; // !IsSigned
1853   const static unsigned Copy = TargetOpcode::COPY;
1854   // For the X86 DIV/IDIV instruction, in most cases the dividend
1855   // (numerator) must be in a specific register pair highreg:lowreg,
1856   // producing the quotient in lowreg and the remainder in highreg.
1857   // For most data types, to set up the instruction, the dividend is
1858   // copied into lowreg, and lowreg is sign-extended or zero-extended
1859   // into highreg.  The exception is i8, where the dividend is defined
1860   // as a single register rather than a register pair, and we
1861   // therefore directly sign-extend or zero-extend the dividend into
1862   // lowreg, instead of copying, and ignore the highreg.
1863   const static struct DivRemEntry {
1864     // The following portion depends only on the data type.
1865     const TargetRegisterClass *RC;
1866     unsigned LowInReg;  // low part of the register pair
1867     unsigned HighInReg; // high part of the register pair
1868     // The following portion depends on both the data type and the operation.
1869     struct DivRemResult {
1870     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1871     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1872                               // highreg, or copying a zero into highreg.
1873     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1874                               // zero/sign-extending into lowreg for i8.
1875     unsigned DivRemResultReg; // Register containing the desired result.
1876     bool IsOpSigned;          // Whether to use signed or unsigned form.
1877     } ResultTable[NumOps];
1878   } OpTable[NumTypes] = {
1879     { &X86::GR8RegClass,  X86::AX,  0, {
1880         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1881         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1882         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1883         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1884       }
1885     }, // i8
1886     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1887         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1888         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1889         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1890         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1891       }
1892     }, // i16
1893     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1894         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1895         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1896         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1897         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1898       }
1899     }, // i32
1900     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1901         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1902         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1903         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1904         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1905       }
1906     }, // i64
1907   };
1908 
1909   MVT VT;
1910   if (!isTypeLegal(I->getType(), VT))
1911     return false;
1912 
1913   unsigned TypeIndex, OpIndex;
1914   switch (VT.SimpleTy) {
1915   default: return false;
1916   case MVT::i8:  TypeIndex = 0; break;
1917   case MVT::i16: TypeIndex = 1; break;
1918   case MVT::i32: TypeIndex = 2; break;
1919   case MVT::i64: TypeIndex = 3;
1920     if (!Subtarget->is64Bit())
1921       return false;
1922     break;
1923   }
1924 
1925   switch (I->getOpcode()) {
1926   default: llvm_unreachable("Unexpected div/rem opcode");
1927   case Instruction::SDiv: OpIndex = 0; break;
1928   case Instruction::SRem: OpIndex = 1; break;
1929   case Instruction::UDiv: OpIndex = 2; break;
1930   case Instruction::URem: OpIndex = 3; break;
1931   }
1932 
1933   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1934   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1935   unsigned Op0Reg = getRegForValue(I->getOperand(0));
1936   if (Op0Reg == 0)
1937     return false;
1938   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1939   if (Op1Reg == 0)
1940     return false;
1941 
1942   // Move op0 into low-order input register.
1943   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1944           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1945   // Zero-extend or sign-extend into high-order input register.
1946   if (OpEntry.OpSignExtend) {
1947     if (OpEntry.IsOpSigned)
1948       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1949               TII.get(OpEntry.OpSignExtend));
1950     else {
1951       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1952       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1953               TII.get(X86::MOV32r0), Zero32);
1954 
1955       // Copy the zero into the appropriate sub/super/identical physical
1956       // register. Unfortunately the operations needed are not uniform enough
1957       // to fit neatly into the table above.
1958       if (VT == MVT::i16) {
1959         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1960                 TII.get(Copy), TypeEntry.HighInReg)
1961           .addReg(Zero32, 0, X86::sub_16bit);
1962       } else if (VT == MVT::i32) {
1963         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1964                 TII.get(Copy), TypeEntry.HighInReg)
1965             .addReg(Zero32);
1966       } else if (VT == MVT::i64) {
1967         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1968                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1969             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1970       }
1971     }
1972   }
1973   // Generate the DIV/IDIV instruction.
1974   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1975           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1976   // For i8 remainder, we can't reference ah directly, as we'll end
1977   // up with bogus copies like %r9b = COPY %ah. Reference ax
1978   // instead to prevent ah references in a rex instruction.
1979   //
1980   // The current assumption of the fast register allocator is that isel
1981   // won't generate explicit references to the GR8_NOREX registers. If
1982   // the allocator and/or the backend get enhanced to be more robust in
1983   // that regard, this can be, and should be, removed.
1984   unsigned ResultReg = 0;
1985   if ((I->getOpcode() == Instruction::SRem ||
1986        I->getOpcode() == Instruction::URem) &&
1987       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1988     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1989     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1990     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1991             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1992 
1993     // Shift AX right by 8 bits instead of using AH.
1994     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1995             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1996 
1997     // Now reference the 8-bit subreg of the result.
1998     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1999                                            /*Kill=*/true, X86::sub_8bit);
2000   }
2001   // Copy the result out of the physreg if we haven't already.
2002   if (!ResultReg) {
2003     ResultReg = createResultReg(TypeEntry.RC);
2004     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2005         .addReg(OpEntry.DivRemResultReg);
2006   }
2007   updateValueMap(I, ResultReg);
2008 
2009   return true;
2010 }
2011 
2012 /// Emit a conditional move instruction (if the are supported) to lower
2013 /// the select.
2014 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2015   // Check if the subtarget supports these instructions.
2016   if (!Subtarget->hasCMov())
2017     return false;
2018 
2019   // FIXME: Add support for i8.
2020   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2021     return false;
2022 
2023   const Value *Cond = I->getOperand(0);
2024   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2025   bool NeedTest = true;
2026   X86::CondCode CC = X86::COND_NE;
2027 
2028   // Optimize conditions coming from a compare if both instructions are in the
2029   // same basic block (values defined in other basic blocks may not have
2030   // initialized registers).
2031   const auto *CI = dyn_cast<CmpInst>(Cond);
2032   if (CI && (CI->getParent() == I->getParent())) {
2033     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2034 
2035     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2036     static const uint16_t SETFOpcTable[2][3] = {
2037       { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2038       { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2039     };
2040     const uint16_t *SETFOpc = nullptr;
2041     switch (Predicate) {
2042     default: break;
2043     case CmpInst::FCMP_OEQ:
2044       SETFOpc = &SETFOpcTable[0][0];
2045       Predicate = CmpInst::ICMP_NE;
2046       break;
2047     case CmpInst::FCMP_UNE:
2048       SETFOpc = &SETFOpcTable[1][0];
2049       Predicate = CmpInst::ICMP_NE;
2050       break;
2051     }
2052 
2053     bool NeedSwap;
2054     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2055     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2056 
2057     const Value *CmpLHS = CI->getOperand(0);
2058     const Value *CmpRHS = CI->getOperand(1);
2059     if (NeedSwap)
2060       std::swap(CmpLHS, CmpRHS);
2061 
2062     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2063     // Emit a compare of the LHS and RHS, setting the flags.
2064     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2065       return false;
2066 
2067     if (SETFOpc) {
2068       unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2069       unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2070       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2071               FlagReg1).addImm(SETFOpc[0]);
2072       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2073               FlagReg2).addImm(SETFOpc[1]);
2074       auto const &II = TII.get(SETFOpc[2]);
2075       if (II.getNumDefs()) {
2076         unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2077         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2078           .addReg(FlagReg2).addReg(FlagReg1);
2079       } else {
2080         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2081           .addReg(FlagReg2).addReg(FlagReg1);
2082       }
2083     }
2084     NeedTest = false;
2085   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2086     // Fake request the condition, otherwise the intrinsic might be completely
2087     // optimized away.
2088     unsigned TmpReg = getRegForValue(Cond);
2089     if (TmpReg == 0)
2090       return false;
2091 
2092     NeedTest = false;
2093   }
2094 
2095   if (NeedTest) {
2096     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2097     // garbage. Indeed, only the less significant bit is supposed to be
2098     // accurate. If we read more than the lsb, we may see non-zero values
2099     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2100     // the select. This is achieved by performing TEST against 1.
2101     unsigned CondReg = getRegForValue(Cond);
2102     if (CondReg == 0)
2103       return false;
2104     bool CondIsKill = hasTrivialKill(Cond);
2105 
2106     // In case OpReg is a K register, COPY to a GPR
2107     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2108       unsigned KCondReg = CondReg;
2109       CondReg = createResultReg(&X86::GR32RegClass);
2110       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2111               TII.get(TargetOpcode::COPY), CondReg)
2112           .addReg(KCondReg, getKillRegState(CondIsKill));
2113       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2114                                            X86::sub_8bit);
2115     }
2116     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2117         .addReg(CondReg, getKillRegState(CondIsKill))
2118         .addImm(1);
2119   }
2120 
2121   const Value *LHS = I->getOperand(1);
2122   const Value *RHS = I->getOperand(2);
2123 
2124   unsigned RHSReg = getRegForValue(RHS);
2125   bool RHSIsKill = hasTrivialKill(RHS);
2126 
2127   unsigned LHSReg = getRegForValue(LHS);
2128   bool LHSIsKill = hasTrivialKill(LHS);
2129 
2130   if (!LHSReg || !RHSReg)
2131     return false;
2132 
2133   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2134   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2135   unsigned ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill,
2136                                         LHSReg, LHSIsKill, CC);
2137   updateValueMap(I, ResultReg);
2138   return true;
2139 }
2140 
2141 /// Emit SSE or AVX instructions to lower the select.
2142 ///
2143 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2144 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2145 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2146 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2147   // Optimize conditions coming from a compare if both instructions are in the
2148   // same basic block (values defined in other basic blocks may not have
2149   // initialized registers).
2150   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2151   if (!CI || (CI->getParent() != I->getParent()))
2152     return false;
2153 
2154   if (I->getType() != CI->getOperand(0)->getType() ||
2155       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2156         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2157     return false;
2158 
2159   const Value *CmpLHS = CI->getOperand(0);
2160   const Value *CmpRHS = CI->getOperand(1);
2161   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2162 
2163   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2164   // We don't have to materialize a zero constant for this case and can just use
2165   // %x again on the RHS.
2166   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2167     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2168     if (CmpRHSC && CmpRHSC->isNullValue())
2169       CmpRHS = CmpLHS;
2170   }
2171 
2172   unsigned CC;
2173   bool NeedSwap;
2174   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2175   if (CC > 7 && !Subtarget->hasAVX())
2176     return false;
2177 
2178   if (NeedSwap)
2179     std::swap(CmpLHS, CmpRHS);
2180 
2181   const Value *LHS = I->getOperand(1);
2182   const Value *RHS = I->getOperand(2);
2183 
2184   unsigned LHSReg = getRegForValue(LHS);
2185   bool LHSIsKill = hasTrivialKill(LHS);
2186 
2187   unsigned RHSReg = getRegForValue(RHS);
2188   bool RHSIsKill = hasTrivialKill(RHS);
2189 
2190   unsigned CmpLHSReg = getRegForValue(CmpLHS);
2191   bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2192 
2193   unsigned CmpRHSReg = getRegForValue(CmpRHS);
2194   bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2195 
2196   if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2197     return false;
2198 
2199   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2200   unsigned ResultReg;
2201 
2202   if (Subtarget->hasAVX512()) {
2203     // If we have AVX512 we can use a mask compare and masked movss/sd.
2204     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2205     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2206 
2207     unsigned CmpOpcode =
2208       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2209     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2210                                        CmpRHSReg, CmpRHSIsKill, CC);
2211 
2212     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2213     // bits of the result register since its not based on any of the inputs.
2214     unsigned ImplicitDefReg = createResultReg(VR128X);
2215     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2216             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2217 
2218     // Place RHSReg is the passthru of the masked movss/sd operation and put
2219     // LHS in the input. The mask input comes from the compare.
2220     unsigned MovOpcode =
2221       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2222     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2223                                         CmpReg, true, ImplicitDefReg, true,
2224                                         LHSReg, LHSIsKill);
2225 
2226     ResultReg = createResultReg(RC);
2227     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2228             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2229 
2230   } else if (Subtarget->hasAVX()) {
2231     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2232 
2233     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2234     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2235     // uses XMM0 as the selection register. That may need just as many
2236     // instructions as the AND/ANDN/OR sequence due to register moves, so
2237     // don't bother.
2238     unsigned CmpOpcode =
2239       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2240     unsigned BlendOpcode =
2241       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2242 
2243     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
2244                                        CmpRHSReg, CmpRHSIsKill, CC);
2245     unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2246                                           LHSReg, LHSIsKill, CmpReg, true);
2247     ResultReg = createResultReg(RC);
2248     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2249             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2250   } else {
2251     // Choose the SSE instruction sequence based on data type (float or double).
2252     static const uint16_t OpcTable[2][4] = {
2253       { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2254       { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2255     };
2256 
2257     const uint16_t *Opc = nullptr;
2258     switch (RetVT.SimpleTy) {
2259     default: return false;
2260     case MVT::f32: Opc = &OpcTable[0][0]; break;
2261     case MVT::f64: Opc = &OpcTable[1][0]; break;
2262     }
2263 
2264     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2265     unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2266                                        CmpRHSReg, CmpRHSIsKill, CC);
2267     unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
2268                                       LHSReg, LHSIsKill);
2269     unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
2270                                        RHSReg, RHSIsKill);
2271     unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
2272                                      AndReg, /*IsKill=*/true);
2273     ResultReg = createResultReg(RC);
2274     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2275             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2276   }
2277   updateValueMap(I, ResultReg);
2278   return true;
2279 }
2280 
2281 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2282   // These are pseudo CMOV instructions and will be later expanded into control-
2283   // flow.
2284   unsigned Opc;
2285   switch (RetVT.SimpleTy) {
2286   default: return false;
2287   case MVT::i8:  Opc = X86::CMOV_GR8;  break;
2288   case MVT::i16: Opc = X86::CMOV_GR16; break;
2289   case MVT::i32: Opc = X86::CMOV_GR32; break;
2290   case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X
2291                                               : X86::CMOV_FR32; break;
2292   case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X
2293                                               : X86::CMOV_FR64; break;
2294   }
2295 
2296   const Value *Cond = I->getOperand(0);
2297   X86::CondCode CC = X86::COND_NE;
2298 
2299   // Optimize conditions coming from a compare if both instructions are in the
2300   // same basic block (values defined in other basic blocks may not have
2301   // initialized registers).
2302   const auto *CI = dyn_cast<CmpInst>(Cond);
2303   if (CI && (CI->getParent() == I->getParent())) {
2304     bool NeedSwap;
2305     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2306     if (CC > X86::LAST_VALID_COND)
2307       return false;
2308 
2309     const Value *CmpLHS = CI->getOperand(0);
2310     const Value *CmpRHS = CI->getOperand(1);
2311 
2312     if (NeedSwap)
2313       std::swap(CmpLHS, CmpRHS);
2314 
2315     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2316     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2317       return false;
2318   } else {
2319     unsigned CondReg = getRegForValue(Cond);
2320     if (CondReg == 0)
2321       return false;
2322     bool CondIsKill = hasTrivialKill(Cond);
2323 
2324     // In case OpReg is a K register, COPY to a GPR
2325     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2326       unsigned KCondReg = CondReg;
2327       CondReg = createResultReg(&X86::GR32RegClass);
2328       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2329               TII.get(TargetOpcode::COPY), CondReg)
2330           .addReg(KCondReg, getKillRegState(CondIsKill));
2331       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2332                                            X86::sub_8bit);
2333     }
2334     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2335         .addReg(CondReg, getKillRegState(CondIsKill))
2336         .addImm(1);
2337   }
2338 
2339   const Value *LHS = I->getOperand(1);
2340   const Value *RHS = I->getOperand(2);
2341 
2342   unsigned LHSReg = getRegForValue(LHS);
2343   bool LHSIsKill = hasTrivialKill(LHS);
2344 
2345   unsigned RHSReg = getRegForValue(RHS);
2346   bool RHSIsKill = hasTrivialKill(RHS);
2347 
2348   if (!LHSReg || !RHSReg)
2349     return false;
2350 
2351   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2352 
2353   unsigned ResultReg =
2354     fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2355   updateValueMap(I, ResultReg);
2356   return true;
2357 }
2358 
2359 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2360   MVT RetVT;
2361   if (!isTypeLegal(I->getType(), RetVT))
2362     return false;
2363 
2364   // Check if we can fold the select.
2365   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2366     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2367     const Value *Opnd = nullptr;
2368     switch (Predicate) {
2369     default:                              break;
2370     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2371     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2372     }
2373     // No need for a select anymore - this is an unconditional move.
2374     if (Opnd) {
2375       unsigned OpReg = getRegForValue(Opnd);
2376       if (OpReg == 0)
2377         return false;
2378       bool OpIsKill = hasTrivialKill(Opnd);
2379       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2380       unsigned ResultReg = createResultReg(RC);
2381       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2382               TII.get(TargetOpcode::COPY), ResultReg)
2383         .addReg(OpReg, getKillRegState(OpIsKill));
2384       updateValueMap(I, ResultReg);
2385       return true;
2386     }
2387   }
2388 
2389   // First try to use real conditional move instructions.
2390   if (X86FastEmitCMoveSelect(RetVT, I))
2391     return true;
2392 
2393   // Try to use a sequence of SSE instructions to simulate a conditional move.
2394   if (X86FastEmitSSESelect(RetVT, I))
2395     return true;
2396 
2397   // Fall-back to pseudo conditional move instructions, which will be later
2398   // converted to control-flow.
2399   if (X86FastEmitPseudoSelect(RetVT, I))
2400     return true;
2401 
2402   return false;
2403 }
2404 
2405 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2406 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2407   // The target-independent selection algorithm in FastISel already knows how
2408   // to select a SINT_TO_FP if the target is SSE but not AVX.
2409   // Early exit if the subtarget doesn't have AVX.
2410   // Unsigned conversion requires avx512.
2411   bool HasAVX512 = Subtarget->hasAVX512();
2412   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2413     return false;
2414 
2415   // TODO: We could sign extend narrower types.
2416   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2417   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2418     return false;
2419 
2420   // Select integer to float/double conversion.
2421   unsigned OpReg = getRegForValue(I->getOperand(0));
2422   if (OpReg == 0)
2423     return false;
2424 
2425   unsigned Opcode;
2426 
2427   static const uint16_t SCvtOpc[2][2][2] = {
2428     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2429       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2430     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2431       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2432   };
2433   static const uint16_t UCvtOpc[2][2] = {
2434     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2435     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2436   };
2437   bool Is64Bit = SrcVT == MVT::i64;
2438 
2439   if (I->getType()->isDoubleTy()) {
2440     // s/uitofp int -> double
2441     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2442   } else if (I->getType()->isFloatTy()) {
2443     // s/uitofp int -> float
2444     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2445   } else
2446     return false;
2447 
2448   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2449   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2450   unsigned ImplicitDefReg = createResultReg(RC);
2451   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2452           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2453   unsigned ResultReg =
2454       fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2455   updateValueMap(I, ResultReg);
2456   return true;
2457 }
2458 
2459 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2460   return X86SelectIntToFP(I, /*IsSigned*/true);
2461 }
2462 
2463 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2464   return X86SelectIntToFP(I, /*IsSigned*/false);
2465 }
2466 
2467 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2468 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2469                                           unsigned TargetOpc,
2470                                           const TargetRegisterClass *RC) {
2471   assert((I->getOpcode() == Instruction::FPExt ||
2472           I->getOpcode() == Instruction::FPTrunc) &&
2473          "Instruction must be an FPExt or FPTrunc!");
2474   bool HasAVX = Subtarget->hasAVX();
2475 
2476   unsigned OpReg = getRegForValue(I->getOperand(0));
2477   if (OpReg == 0)
2478     return false;
2479 
2480   unsigned ImplicitDefReg;
2481   if (HasAVX) {
2482     ImplicitDefReg = createResultReg(RC);
2483     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2484             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2485 
2486   }
2487 
2488   unsigned ResultReg = createResultReg(RC);
2489   MachineInstrBuilder MIB;
2490   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2491                 ResultReg);
2492 
2493   if (HasAVX)
2494     MIB.addReg(ImplicitDefReg);
2495 
2496   MIB.addReg(OpReg);
2497   updateValueMap(I, ResultReg);
2498   return true;
2499 }
2500 
2501 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2502   if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2503       I->getOperand(0)->getType()->isFloatTy()) {
2504     bool HasAVX512 = Subtarget->hasAVX512();
2505     // fpext from float to double.
2506     unsigned Opc =
2507         HasAVX512 ? X86::VCVTSS2SDZrr
2508                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2509     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2510   }
2511 
2512   return false;
2513 }
2514 
2515 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2516   if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2517       I->getOperand(0)->getType()->isDoubleTy()) {
2518     bool HasAVX512 = Subtarget->hasAVX512();
2519     // fptrunc from double to float.
2520     unsigned Opc =
2521         HasAVX512 ? X86::VCVTSD2SSZrr
2522                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2523     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2524   }
2525 
2526   return false;
2527 }
2528 
2529 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2530   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2531   EVT DstVT = TLI.getValueType(DL, I->getType());
2532 
2533   // This code only handles truncation to byte.
2534   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2535     return false;
2536   if (!TLI.isTypeLegal(SrcVT))
2537     return false;
2538 
2539   unsigned InputReg = getRegForValue(I->getOperand(0));
2540   if (!InputReg)
2541     // Unhandled operand.  Halt "fast" selection and bail.
2542     return false;
2543 
2544   if (SrcVT == MVT::i8) {
2545     // Truncate from i8 to i1; no code needed.
2546     updateValueMap(I, InputReg);
2547     return true;
2548   }
2549 
2550   // Issue an extract_subreg.
2551   unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2552                                                   InputReg, false,
2553                                                   X86::sub_8bit);
2554   if (!ResultReg)
2555     return false;
2556 
2557   updateValueMap(I, ResultReg);
2558   return true;
2559 }
2560 
2561 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2562   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2563 }
2564 
2565 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2566                                      X86AddressMode SrcAM, uint64_t Len) {
2567 
2568   // Make sure we don't bloat code by inlining very large memcpy's.
2569   if (!IsMemcpySmall(Len))
2570     return false;
2571 
2572   bool i64Legal = Subtarget->is64Bit();
2573 
2574   // We don't care about alignment here since we just emit integer accesses.
2575   while (Len) {
2576     MVT VT;
2577     if (Len >= 8 && i64Legal)
2578       VT = MVT::i64;
2579     else if (Len >= 4)
2580       VT = MVT::i32;
2581     else if (Len >= 2)
2582       VT = MVT::i16;
2583     else
2584       VT = MVT::i8;
2585 
2586     unsigned Reg;
2587     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2588     RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2589     assert(RV && "Failed to emit load or store??");
2590 
2591     unsigned Size = VT.getSizeInBits()/8;
2592     Len -= Size;
2593     DestAM.Disp += Size;
2594     SrcAM.Disp += Size;
2595   }
2596 
2597   return true;
2598 }
2599 
2600 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2601   // FIXME: Handle more intrinsics.
2602   switch (II->getIntrinsicID()) {
2603   default: return false;
2604   case Intrinsic::convert_from_fp16:
2605   case Intrinsic::convert_to_fp16: {
2606     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2607       return false;
2608 
2609     const Value *Op = II->getArgOperand(0);
2610     unsigned InputReg = getRegForValue(Op);
2611     if (InputReg == 0)
2612       return false;
2613 
2614     // F16C only allows converting from float to half and from half to float.
2615     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2616     if (IsFloatToHalf) {
2617       if (!Op->getType()->isFloatTy())
2618         return false;
2619     } else {
2620       if (!II->getType()->isFloatTy())
2621         return false;
2622     }
2623 
2624     unsigned ResultReg = 0;
2625     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2626     if (IsFloatToHalf) {
2627       // 'InputReg' is implicitly promoted from register class FR32 to
2628       // register class VR128 by method 'constrainOperandRegClass' which is
2629       // directly called by 'fastEmitInst_ri'.
2630       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2631       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2632       // It's consistent with the other FP instructions, which are usually
2633       // controlled by MXCSR.
2634       InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
2635 
2636       // Move the lower 32-bits of ResultReg to another register of class GR32.
2637       ResultReg = createResultReg(&X86::GR32RegClass);
2638       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2639               TII.get(X86::VMOVPDI2DIrr), ResultReg)
2640           .addReg(InputReg, RegState::Kill);
2641 
2642       // The result value is in the lower 16-bits of ResultReg.
2643       unsigned RegIdx = X86::sub_16bit;
2644       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2645     } else {
2646       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2647       // Explicitly sign-extend the input to 32-bit.
2648       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2649                             /*Kill=*/false);
2650 
2651       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2652       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2653                             InputReg, /*Kill=*/true);
2654 
2655       InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2656 
2657       // The result value is in the lower 32-bits of ResultReg.
2658       // Emit an explicit copy from register class VR128 to register class FR32.
2659       ResultReg = createResultReg(&X86::FR32RegClass);
2660       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2661               TII.get(TargetOpcode::COPY), ResultReg)
2662           .addReg(InputReg, RegState::Kill);
2663     }
2664 
2665     updateValueMap(II, ResultReg);
2666     return true;
2667   }
2668   case Intrinsic::frameaddress: {
2669     MachineFunction *MF = FuncInfo.MF;
2670     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2671       return false;
2672 
2673     Type *RetTy = II->getCalledFunction()->getReturnType();
2674 
2675     MVT VT;
2676     if (!isTypeLegal(RetTy, VT))
2677       return false;
2678 
2679     unsigned Opc;
2680     const TargetRegisterClass *RC = nullptr;
2681 
2682     switch (VT.SimpleTy) {
2683     default: llvm_unreachable("Invalid result type for frameaddress.");
2684     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2685     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2686     }
2687 
2688     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2689     // we get the wrong frame register.
2690     MachineFrameInfo &MFI = MF->getFrameInfo();
2691     MFI.setFrameAddressIsTaken(true);
2692 
2693     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2694     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2695     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2696             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2697            "Invalid Frame Register!");
2698 
2699     // Always make a copy of the frame register to a vreg first, so that we
2700     // never directly reference the frame register (the TwoAddressInstruction-
2701     // Pass doesn't like that).
2702     unsigned SrcReg = createResultReg(RC);
2703     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2704             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2705 
2706     // Now recursively load from the frame address.
2707     // movq (%rbp), %rax
2708     // movq (%rax), %rax
2709     // movq (%rax), %rax
2710     // ...
2711     unsigned DestReg;
2712     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2713     while (Depth--) {
2714       DestReg = createResultReg(RC);
2715       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2716                            TII.get(Opc), DestReg), SrcReg);
2717       SrcReg = DestReg;
2718     }
2719 
2720     updateValueMap(II, SrcReg);
2721     return true;
2722   }
2723   case Intrinsic::memcpy: {
2724     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2725     // Don't handle volatile or variable length memcpys.
2726     if (MCI->isVolatile())
2727       return false;
2728 
2729     if (isa<ConstantInt>(MCI->getLength())) {
2730       // Small memcpy's are common enough that we want to do them
2731       // without a call if possible.
2732       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2733       if (IsMemcpySmall(Len)) {
2734         X86AddressMode DestAM, SrcAM;
2735         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2736             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2737           return false;
2738         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2739         return true;
2740       }
2741     }
2742 
2743     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2744     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2745       return false;
2746 
2747     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2748       return false;
2749 
2750     return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2751   }
2752   case Intrinsic::memset: {
2753     const MemSetInst *MSI = cast<MemSetInst>(II);
2754 
2755     if (MSI->isVolatile())
2756       return false;
2757 
2758     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2759     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2760       return false;
2761 
2762     if (MSI->getDestAddressSpace() > 255)
2763       return false;
2764 
2765     return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2766   }
2767   case Intrinsic::stackprotector: {
2768     // Emit code to store the stack guard onto the stack.
2769     EVT PtrTy = TLI.getPointerTy(DL);
2770 
2771     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2772     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2773 
2774     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2775 
2776     // Grab the frame index.
2777     X86AddressMode AM;
2778     if (!X86SelectAddress(Slot, AM)) return false;
2779     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2780     return true;
2781   }
2782   case Intrinsic::dbg_declare: {
2783     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2784     X86AddressMode AM;
2785     assert(DI->getAddress() && "Null address should be checked earlier!");
2786     if (!X86SelectAddress(DI->getAddress(), AM))
2787       return false;
2788     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2789     // FIXME may need to add RegState::Debug to any registers produced,
2790     // although ESP/EBP should be the only ones at the moment.
2791     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2792            "Expected inlined-at fields to agree");
2793     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2794         .addImm(0)
2795         .addMetadata(DI->getVariable())
2796         .addMetadata(DI->getExpression());
2797     return true;
2798   }
2799   case Intrinsic::trap: {
2800     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2801     return true;
2802   }
2803   case Intrinsic::sqrt: {
2804     if (!Subtarget->hasSSE1())
2805       return false;
2806 
2807     Type *RetTy = II->getCalledFunction()->getReturnType();
2808 
2809     MVT VT;
2810     if (!isTypeLegal(RetTy, VT))
2811       return false;
2812 
2813     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2814     // is not generated by FastISel yet.
2815     // FIXME: Update this code once tablegen can handle it.
2816     static const uint16_t SqrtOpc[3][2] = {
2817       { X86::SQRTSSr,   X86::SQRTSDr },
2818       { X86::VSQRTSSr,  X86::VSQRTSDr },
2819       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2820     };
2821     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2822                         Subtarget->hasAVX()    ? 1 :
2823                                                  0;
2824     unsigned Opc;
2825     switch (VT.SimpleTy) {
2826     default: return false;
2827     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2828     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2829     }
2830 
2831     const Value *SrcVal = II->getArgOperand(0);
2832     unsigned SrcReg = getRegForValue(SrcVal);
2833 
2834     if (SrcReg == 0)
2835       return false;
2836 
2837     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2838     unsigned ImplicitDefReg = 0;
2839     if (AVXLevel > 0) {
2840       ImplicitDefReg = createResultReg(RC);
2841       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2842               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2843     }
2844 
2845     unsigned ResultReg = createResultReg(RC);
2846     MachineInstrBuilder MIB;
2847     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2848                   ResultReg);
2849 
2850     if (ImplicitDefReg)
2851       MIB.addReg(ImplicitDefReg);
2852 
2853     MIB.addReg(SrcReg);
2854 
2855     updateValueMap(II, ResultReg);
2856     return true;
2857   }
2858   case Intrinsic::sadd_with_overflow:
2859   case Intrinsic::uadd_with_overflow:
2860   case Intrinsic::ssub_with_overflow:
2861   case Intrinsic::usub_with_overflow:
2862   case Intrinsic::smul_with_overflow:
2863   case Intrinsic::umul_with_overflow: {
2864     // This implements the basic lowering of the xalu with overflow intrinsics
2865     // into add/sub/mul followed by either seto or setb.
2866     const Function *Callee = II->getCalledFunction();
2867     auto *Ty = cast<StructType>(Callee->getReturnType());
2868     Type *RetTy = Ty->getTypeAtIndex(0U);
2869     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2870            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2871            "Overflow value expected to be an i1");
2872 
2873     MVT VT;
2874     if (!isTypeLegal(RetTy, VT))
2875       return false;
2876 
2877     if (VT < MVT::i8 || VT > MVT::i64)
2878       return false;
2879 
2880     const Value *LHS = II->getArgOperand(0);
2881     const Value *RHS = II->getArgOperand(1);
2882 
2883     // Canonicalize immediate to the RHS.
2884     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2885         isCommutativeIntrinsic(II))
2886       std::swap(LHS, RHS);
2887 
2888     unsigned BaseOpc, CondCode;
2889     switch (II->getIntrinsicID()) {
2890     default: llvm_unreachable("Unexpected intrinsic!");
2891     case Intrinsic::sadd_with_overflow:
2892       BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2893     case Intrinsic::uadd_with_overflow:
2894       BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2895     case Intrinsic::ssub_with_overflow:
2896       BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2897     case Intrinsic::usub_with_overflow:
2898       BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2899     case Intrinsic::smul_with_overflow:
2900       BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2901     case Intrinsic::umul_with_overflow:
2902       BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2903     }
2904 
2905     unsigned LHSReg = getRegForValue(LHS);
2906     if (LHSReg == 0)
2907       return false;
2908     bool LHSIsKill = hasTrivialKill(LHS);
2909 
2910     unsigned ResultReg = 0;
2911     // Check if we have an immediate version.
2912     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2913       static const uint16_t Opc[2][4] = {
2914         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2915         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2916       };
2917 
2918       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2919           CondCode == X86::COND_O) {
2920         // We can use INC/DEC.
2921         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2922         bool IsDec = BaseOpc == ISD::SUB;
2923         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2924                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2925           .addReg(LHSReg, getKillRegState(LHSIsKill));
2926       } else
2927         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2928                                 CI->getZExtValue());
2929     }
2930 
2931     unsigned RHSReg;
2932     bool RHSIsKill;
2933     if (!ResultReg) {
2934       RHSReg = getRegForValue(RHS);
2935       if (RHSReg == 0)
2936         return false;
2937       RHSIsKill = hasTrivialKill(RHS);
2938       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2939                               RHSIsKill);
2940     }
2941 
2942     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2943     // it manually.
2944     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2945       static const uint16_t MULOpc[] =
2946         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2947       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2948       // First copy the first operand into RAX, which is an implicit input to
2949       // the X86::MUL*r instruction.
2950       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2951               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2952         .addReg(LHSReg, getKillRegState(LHSIsKill));
2953       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2954                                  TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2955     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2956       static const uint16_t MULOpc[] =
2957         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2958       if (VT == MVT::i8) {
2959         // Copy the first operand into AL, which is an implicit input to the
2960         // X86::IMUL8r instruction.
2961         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2962                TII.get(TargetOpcode::COPY), X86::AL)
2963           .addReg(LHSReg, getKillRegState(LHSIsKill));
2964         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2965                                    RHSIsKill);
2966       } else
2967         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2968                                     TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2969                                     RHSReg, RHSIsKill);
2970     }
2971 
2972     if (!ResultReg)
2973       return false;
2974 
2975     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2976     unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
2977     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2978     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2979             ResultReg2).addImm(CondCode);
2980 
2981     updateValueMap(II, ResultReg, 2);
2982     return true;
2983   }
2984   case Intrinsic::x86_sse_cvttss2si:
2985   case Intrinsic::x86_sse_cvttss2si64:
2986   case Intrinsic::x86_sse2_cvttsd2si:
2987   case Intrinsic::x86_sse2_cvttsd2si64: {
2988     bool IsInputDouble;
2989     switch (II->getIntrinsicID()) {
2990     default: llvm_unreachable("Unexpected intrinsic.");
2991     case Intrinsic::x86_sse_cvttss2si:
2992     case Intrinsic::x86_sse_cvttss2si64:
2993       if (!Subtarget->hasSSE1())
2994         return false;
2995       IsInputDouble = false;
2996       break;
2997     case Intrinsic::x86_sse2_cvttsd2si:
2998     case Intrinsic::x86_sse2_cvttsd2si64:
2999       if (!Subtarget->hasSSE2())
3000         return false;
3001       IsInputDouble = true;
3002       break;
3003     }
3004 
3005     Type *RetTy = II->getCalledFunction()->getReturnType();
3006     MVT VT;
3007     if (!isTypeLegal(RetTy, VT))
3008       return false;
3009 
3010     static const uint16_t CvtOpc[3][2][2] = {
3011       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
3012         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
3013       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
3014         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
3015       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3016         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3017     };
3018     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3019                         Subtarget->hasAVX()    ? 1 :
3020                                                  0;
3021     unsigned Opc;
3022     switch (VT.SimpleTy) {
3023     default: llvm_unreachable("Unexpected result type.");
3024     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3025     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3026     }
3027 
3028     // Check if we can fold insertelement instructions into the convert.
3029     const Value *Op = II->getArgOperand(0);
3030     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3031       const Value *Index = IE->getOperand(2);
3032       if (!isa<ConstantInt>(Index))
3033         break;
3034       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3035 
3036       if (Idx == 0) {
3037         Op = IE->getOperand(1);
3038         break;
3039       }
3040       Op = IE->getOperand(0);
3041     }
3042 
3043     unsigned Reg = getRegForValue(Op);
3044     if (Reg == 0)
3045       return false;
3046 
3047     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3048     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3049       .addReg(Reg);
3050 
3051     updateValueMap(II, ResultReg);
3052     return true;
3053   }
3054   }
3055 }
3056 
3057 bool X86FastISel::fastLowerArguments() {
3058   if (!FuncInfo.CanLowerReturn)
3059     return false;
3060 
3061   const Function *F = FuncInfo.Fn;
3062   if (F->isVarArg())
3063     return false;
3064 
3065   CallingConv::ID CC = F->getCallingConv();
3066   if (CC != CallingConv::C)
3067     return false;
3068 
3069   if (Subtarget->isCallingConvWin64(CC))
3070     return false;
3071 
3072   if (!Subtarget->is64Bit())
3073     return false;
3074 
3075   if (Subtarget->useSoftFloat())
3076     return false;
3077 
3078   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3079   unsigned GPRCnt = 0;
3080   unsigned FPRCnt = 0;
3081   for (auto const &Arg : F->args()) {
3082     if (Arg.hasAttribute(Attribute::ByVal) ||
3083         Arg.hasAttribute(Attribute::InReg) ||
3084         Arg.hasAttribute(Attribute::StructRet) ||
3085         Arg.hasAttribute(Attribute::SwiftSelf) ||
3086         Arg.hasAttribute(Attribute::SwiftError) ||
3087         Arg.hasAttribute(Attribute::Nest))
3088       return false;
3089 
3090     Type *ArgTy = Arg.getType();
3091     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3092       return false;
3093 
3094     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3095     if (!ArgVT.isSimple()) return false;
3096     switch (ArgVT.getSimpleVT().SimpleTy) {
3097     default: return false;
3098     case MVT::i32:
3099     case MVT::i64:
3100       ++GPRCnt;
3101       break;
3102     case MVT::f32:
3103     case MVT::f64:
3104       if (!Subtarget->hasSSE1())
3105         return false;
3106       ++FPRCnt;
3107       break;
3108     }
3109 
3110     if (GPRCnt > 6)
3111       return false;
3112 
3113     if (FPRCnt > 8)
3114       return false;
3115   }
3116 
3117   static const MCPhysReg GPR32ArgRegs[] = {
3118     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3119   };
3120   static const MCPhysReg GPR64ArgRegs[] = {
3121     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3122   };
3123   static const MCPhysReg XMMArgRegs[] = {
3124     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3125     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3126   };
3127 
3128   unsigned GPRIdx = 0;
3129   unsigned FPRIdx = 0;
3130   for (auto const &Arg : F->args()) {
3131     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3132     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3133     unsigned SrcReg;
3134     switch (VT.SimpleTy) {
3135     default: llvm_unreachable("Unexpected value type.");
3136     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3137     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3138     case MVT::f32: LLVM_FALLTHROUGH;
3139     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3140     }
3141     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3142     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3143     // Without this, EmitLiveInCopies may eliminate the livein if its only
3144     // use is a bitcast (which isn't turned into an instruction).
3145     unsigned ResultReg = createResultReg(RC);
3146     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3147             TII.get(TargetOpcode::COPY), ResultReg)
3148       .addReg(DstReg, getKillRegState(true));
3149     updateValueMap(&Arg, ResultReg);
3150   }
3151   return true;
3152 }
3153 
3154 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3155                                                   CallingConv::ID CC,
3156                                                   ImmutableCallSite *CS) {
3157   if (Subtarget->is64Bit())
3158     return 0;
3159   if (Subtarget->getTargetTriple().isOSMSVCRT())
3160     return 0;
3161   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3162       CC == CallingConv::HiPE || CC == CallingConv::Tail)
3163     return 0;
3164 
3165   if (CS)
3166     if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
3167         CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3168       return 0;
3169 
3170   return 4;
3171 }
3172 
3173 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3174   auto &OutVals       = CLI.OutVals;
3175   auto &OutFlags      = CLI.OutFlags;
3176   auto &OutRegs       = CLI.OutRegs;
3177   auto &Ins           = CLI.Ins;
3178   auto &InRegs        = CLI.InRegs;
3179   CallingConv::ID CC  = CLI.CallConv;
3180   bool &IsTailCall    = CLI.IsTailCall;
3181   bool IsVarArg       = CLI.IsVarArg;
3182   const Value *Callee = CLI.Callee;
3183   MCSymbol *Symbol = CLI.Symbol;
3184 
3185   bool Is64Bit        = Subtarget->is64Bit();
3186   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3187 
3188   const CallInst *CI =
3189       CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
3190   const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3191 
3192   // Call / invoke instructions with NoCfCheck attribute require special
3193   // handling.
3194   const auto *II =
3195       CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr;
3196   if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
3197     return false;
3198 
3199   // Functions with no_caller_saved_registers that need special handling.
3200   if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3201       (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3202     return false;
3203 
3204   // Functions using retpoline for indirect calls need to use SDISel.
3205   if (Subtarget->useRetpolineIndirectCalls())
3206     return false;
3207 
3208   // Handle only C, fastcc, and webkit_js calling conventions for now.
3209   switch (CC) {
3210   default: return false;
3211   case CallingConv::C:
3212   case CallingConv::Fast:
3213   case CallingConv::Tail:
3214   case CallingConv::WebKit_JS:
3215   case CallingConv::Swift:
3216   case CallingConv::X86_FastCall:
3217   case CallingConv::X86_StdCall:
3218   case CallingConv::X86_ThisCall:
3219   case CallingConv::Win64:
3220   case CallingConv::X86_64_SysV:
3221     break;
3222   }
3223 
3224   // Allow SelectionDAG isel to handle tail calls.
3225   if (IsTailCall)
3226     return false;
3227 
3228   // fastcc with -tailcallopt is intended to provide a guaranteed
3229   // tail call optimization. Fastisel doesn't know how to do that.
3230   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3231       CC == CallingConv::Tail)
3232     return false;
3233 
3234   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3235   // x86-32. Special handling for x86-64 is implemented.
3236   if (IsVarArg && IsWin64)
3237     return false;
3238 
3239   // Don't know about inalloca yet.
3240   if (CLI.CS && CLI.CS->hasInAllocaArgument())
3241     return false;
3242 
3243   for (auto Flag : CLI.OutFlags)
3244     if (Flag.isSwiftError())
3245       return false;
3246 
3247   SmallVector<MVT, 16> OutVTs;
3248   SmallVector<unsigned, 16> ArgRegs;
3249 
3250   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3251   // instruction. This is safe because it is common to all FastISel supported
3252   // calling conventions on x86.
3253   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3254     Value *&Val = OutVals[i];
3255     ISD::ArgFlagsTy Flags = OutFlags[i];
3256     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3257       if (CI->getBitWidth() < 32) {
3258         if (Flags.isSExt())
3259           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3260         else
3261           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3262       }
3263     }
3264 
3265     // Passing bools around ends up doing a trunc to i1 and passing it.
3266     // Codegen this as an argument + "and 1".
3267     MVT VT;
3268     auto *TI = dyn_cast<TruncInst>(Val);
3269     unsigned ResultReg;
3270     if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3271               (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3272               TI->hasOneUse()) {
3273       Value *PrevVal = TI->getOperand(0);
3274       ResultReg = getRegForValue(PrevVal);
3275 
3276       if (!ResultReg)
3277         return false;
3278 
3279       if (!isTypeLegal(PrevVal->getType(), VT))
3280         return false;
3281 
3282       ResultReg =
3283         fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3284     } else {
3285       if (!isTypeLegal(Val->getType(), VT))
3286         return false;
3287       ResultReg = getRegForValue(Val);
3288     }
3289 
3290     if (!ResultReg)
3291       return false;
3292 
3293     ArgRegs.push_back(ResultReg);
3294     OutVTs.push_back(VT);
3295   }
3296 
3297   // Analyze operands of the call, assigning locations to each operand.
3298   SmallVector<CCValAssign, 16> ArgLocs;
3299   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3300 
3301   // Allocate shadow area for Win64
3302   if (IsWin64)
3303     CCInfo.AllocateStack(32, 8);
3304 
3305   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3306 
3307   // Get a count of how many bytes are to be pushed on the stack.
3308   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3309 
3310   // Issue CALLSEQ_START
3311   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3312   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3313     .addImm(NumBytes).addImm(0).addImm(0);
3314 
3315   // Walk the register/memloc assignments, inserting copies/loads.
3316   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3317   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3318     CCValAssign const &VA = ArgLocs[i];
3319     const Value *ArgVal = OutVals[VA.getValNo()];
3320     MVT ArgVT = OutVTs[VA.getValNo()];
3321 
3322     if (ArgVT == MVT::x86mmx)
3323       return false;
3324 
3325     unsigned ArgReg = ArgRegs[VA.getValNo()];
3326 
3327     // Promote the value if needed.
3328     switch (VA.getLocInfo()) {
3329     case CCValAssign::Full: break;
3330     case CCValAssign::SExt: {
3331       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3332              "Unexpected extend");
3333 
3334       if (ArgVT == MVT::i1)
3335         return false;
3336 
3337       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3338                                        ArgVT, ArgReg);
3339       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3340       ArgVT = VA.getLocVT();
3341       break;
3342     }
3343     case CCValAssign::ZExt: {
3344       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3345              "Unexpected extend");
3346 
3347       // Handle zero-extension from i1 to i8, which is common.
3348       if (ArgVT == MVT::i1) {
3349         // Set the high bits to zero.
3350         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3351         ArgVT = MVT::i8;
3352 
3353         if (ArgReg == 0)
3354           return false;
3355       }
3356 
3357       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3358                                        ArgVT, ArgReg);
3359       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3360       ArgVT = VA.getLocVT();
3361       break;
3362     }
3363     case CCValAssign::AExt: {
3364       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3365              "Unexpected extend");
3366       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3367                                        ArgVT, ArgReg);
3368       if (!Emitted)
3369         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3370                                     ArgVT, ArgReg);
3371       if (!Emitted)
3372         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3373                                     ArgVT, ArgReg);
3374 
3375       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3376       ArgVT = VA.getLocVT();
3377       break;
3378     }
3379     case CCValAssign::BCvt: {
3380       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3381                           /*TODO: Kill=*/false);
3382       assert(ArgReg && "Failed to emit a bitcast!");
3383       ArgVT = VA.getLocVT();
3384       break;
3385     }
3386     case CCValAssign::VExt:
3387       // VExt has not been implemented, so this should be impossible to reach
3388       // for now.  However, fallback to Selection DAG isel once implemented.
3389       return false;
3390     case CCValAssign::AExtUpper:
3391     case CCValAssign::SExtUpper:
3392     case CCValAssign::ZExtUpper:
3393     case CCValAssign::FPExt:
3394     case CCValAssign::Trunc:
3395       llvm_unreachable("Unexpected loc info!");
3396     case CCValAssign::Indirect:
3397       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3398       // support this.
3399       return false;
3400     }
3401 
3402     if (VA.isRegLoc()) {
3403       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3404               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3405       OutRegs.push_back(VA.getLocReg());
3406     } else {
3407       assert(VA.isMemLoc());
3408 
3409       // Don't emit stores for undef values.
3410       if (isa<UndefValue>(ArgVal))
3411         continue;
3412 
3413       unsigned LocMemOffset = VA.getLocMemOffset();
3414       X86AddressMode AM;
3415       AM.Base.Reg = RegInfo->getStackRegister();
3416       AM.Disp = LocMemOffset;
3417       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3418       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3419       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3420           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3421           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3422       if (Flags.isByVal()) {
3423         X86AddressMode SrcAM;
3424         SrcAM.Base.Reg = ArgReg;
3425         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3426           return false;
3427       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3428         // If this is a really simple value, emit this with the Value* version
3429         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3430         // as it can cause us to reevaluate the argument.
3431         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3432           return false;
3433       } else {
3434         bool ValIsKill = hasTrivialKill(ArgVal);
3435         if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3436           return false;
3437       }
3438     }
3439   }
3440 
3441   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3442   // GOT pointer.
3443   if (Subtarget->isPICStyleGOT()) {
3444     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3445     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3446             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3447   }
3448 
3449   if (Is64Bit && IsVarArg && !IsWin64) {
3450     // From AMD64 ABI document:
3451     // For calls that may call functions that use varargs or stdargs
3452     // (prototype-less calls or calls to functions containing ellipsis (...) in
3453     // the declaration) %al is used as hidden argument to specify the number
3454     // of SSE registers used. The contents of %al do not need to match exactly
3455     // the number of registers, but must be an ubound on the number of SSE
3456     // registers used and is in the range 0 - 8 inclusive.
3457 
3458     // Count the number of XMM registers allocated.
3459     static const MCPhysReg XMMArgRegs[] = {
3460       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3461       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3462     };
3463     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3464     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3465            && "SSE registers cannot be used when SSE is disabled");
3466     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3467             X86::AL).addImm(NumXMMRegs);
3468   }
3469 
3470   // Materialize callee address in a register. FIXME: GV address can be
3471   // handled with a CALLpcrel32 instead.
3472   X86AddressMode CalleeAM;
3473   if (!X86SelectCallAddress(Callee, CalleeAM))
3474     return false;
3475 
3476   unsigned CalleeOp = 0;
3477   const GlobalValue *GV = nullptr;
3478   if (CalleeAM.GV != nullptr) {
3479     GV = CalleeAM.GV;
3480   } else if (CalleeAM.Base.Reg != 0) {
3481     CalleeOp = CalleeAM.Base.Reg;
3482   } else
3483     return false;
3484 
3485   // Issue the call.
3486   MachineInstrBuilder MIB;
3487   if (CalleeOp) {
3488     // Register-indirect call.
3489     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3490     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3491       .addReg(CalleeOp);
3492   } else {
3493     // Direct call.
3494     assert(GV && "Not a direct call");
3495     // See if we need any target-specific flags on the GV operand.
3496     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3497 
3498     // This will be a direct call, or an indirect call through memory for
3499     // NonLazyBind calls or dllimport calls.
3500     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3501                     OpFlags == X86II::MO_GOTPCREL ||
3502                     OpFlags == X86II::MO_COFFSTUB;
3503     unsigned CallOpc = NeedLoad
3504                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3505                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3506 
3507     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3508     if (NeedLoad)
3509       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3510     if (Symbol)
3511       MIB.addSym(Symbol, OpFlags);
3512     else
3513       MIB.addGlobalAddress(GV, 0, OpFlags);
3514     if (NeedLoad)
3515       MIB.addReg(0);
3516   }
3517 
3518   // Add a register mask operand representing the call-preserved registers.
3519   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3520   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3521 
3522   // Add an implicit use GOT pointer in EBX.
3523   if (Subtarget->isPICStyleGOT())
3524     MIB.addReg(X86::EBX, RegState::Implicit);
3525 
3526   if (Is64Bit && IsVarArg && !IsWin64)
3527     MIB.addReg(X86::AL, RegState::Implicit);
3528 
3529   // Add implicit physical register uses to the call.
3530   for (auto Reg : OutRegs)
3531     MIB.addReg(Reg, RegState::Implicit);
3532 
3533   // Issue CALLSEQ_END
3534   unsigned NumBytesForCalleeToPop =
3535       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3536                        TM.Options.GuaranteedTailCallOpt)
3537           ? NumBytes // Callee pops everything.
3538           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
3539   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3540   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3541     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3542 
3543   // Now handle call return values.
3544   SmallVector<CCValAssign, 16> RVLocs;
3545   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3546                     CLI.RetTy->getContext());
3547   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3548 
3549   // Copy all of the result registers out of their specified physreg.
3550   unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3551   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3552     CCValAssign &VA = RVLocs[i];
3553     EVT CopyVT = VA.getValVT();
3554     unsigned CopyReg = ResultReg + i;
3555     Register SrcReg = VA.getLocReg();
3556 
3557     // If this is x86-64, and we disabled SSE, we can't return FP values
3558     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3559         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3560       report_fatal_error("SSE register return with SSE disabled");
3561     }
3562 
3563     // If we prefer to use the value in xmm registers, copy it out as f80 and
3564     // use a truncate to move it from fp stack reg to xmm reg.
3565     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3566         isScalarFPTypeInSSEReg(VA.getValVT())) {
3567       CopyVT = MVT::f80;
3568       CopyReg = createResultReg(&X86::RFP80RegClass);
3569     }
3570 
3571     // Copy out the result.
3572     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3573             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3574     InRegs.push_back(VA.getLocReg());
3575 
3576     // Round the f80 to the right size, which also moves it to the appropriate
3577     // xmm register. This is accomplished by storing the f80 value in memory
3578     // and then loading it back.
3579     if (CopyVT != VA.getValVT()) {
3580       EVT ResVT = VA.getValVT();
3581       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3582       unsigned MemSize = ResVT.getSizeInBits()/8;
3583       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3584       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3585                                 TII.get(Opc)), FI)
3586         .addReg(CopyReg);
3587       Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3588       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3589                                 TII.get(Opc), ResultReg + i), FI);
3590     }
3591   }
3592 
3593   CLI.ResultReg = ResultReg;
3594   CLI.NumResultRegs = RVLocs.size();
3595   CLI.Call = MIB;
3596 
3597   return true;
3598 }
3599 
3600 bool
3601 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3602   switch (I->getOpcode()) {
3603   default: break;
3604   case Instruction::Load:
3605     return X86SelectLoad(I);
3606   case Instruction::Store:
3607     return X86SelectStore(I);
3608   case Instruction::Ret:
3609     return X86SelectRet(I);
3610   case Instruction::ICmp:
3611   case Instruction::FCmp:
3612     return X86SelectCmp(I);
3613   case Instruction::ZExt:
3614     return X86SelectZExt(I);
3615   case Instruction::SExt:
3616     return X86SelectSExt(I);
3617   case Instruction::Br:
3618     return X86SelectBranch(I);
3619   case Instruction::LShr:
3620   case Instruction::AShr:
3621   case Instruction::Shl:
3622     return X86SelectShift(I);
3623   case Instruction::SDiv:
3624   case Instruction::UDiv:
3625   case Instruction::SRem:
3626   case Instruction::URem:
3627     return X86SelectDivRem(I);
3628   case Instruction::Select:
3629     return X86SelectSelect(I);
3630   case Instruction::Trunc:
3631     return X86SelectTrunc(I);
3632   case Instruction::FPExt:
3633     return X86SelectFPExt(I);
3634   case Instruction::FPTrunc:
3635     return X86SelectFPTrunc(I);
3636   case Instruction::SIToFP:
3637     return X86SelectSIToFP(I);
3638   case Instruction::UIToFP:
3639     return X86SelectUIToFP(I);
3640   case Instruction::IntToPtr: // Deliberate fall-through.
3641   case Instruction::PtrToInt: {
3642     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3643     EVT DstVT = TLI.getValueType(DL, I->getType());
3644     if (DstVT.bitsGT(SrcVT))
3645       return X86SelectZExt(I);
3646     if (DstVT.bitsLT(SrcVT))
3647       return X86SelectTrunc(I);
3648     unsigned Reg = getRegForValue(I->getOperand(0));
3649     if (Reg == 0) return false;
3650     updateValueMap(I, Reg);
3651     return true;
3652   }
3653   case Instruction::BitCast: {
3654     // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3655     if (!Subtarget->hasSSE2())
3656       return false;
3657 
3658     MVT SrcVT, DstVT;
3659     if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3660         !isTypeLegal(I->getType(), DstVT))
3661       return false;
3662 
3663     // Only allow vectors that use xmm/ymm/zmm.
3664     if (!SrcVT.isVector() || !DstVT.isVector() ||
3665         SrcVT.getVectorElementType() == MVT::i1 ||
3666         DstVT.getVectorElementType() == MVT::i1)
3667       return false;
3668 
3669     unsigned Reg = getRegForValue(I->getOperand(0));
3670     if (Reg == 0)
3671       return false;
3672 
3673     // No instruction is needed for conversion. Reuse the register used by
3674     // the fist operand.
3675     updateValueMap(I, Reg);
3676     return true;
3677   }
3678   }
3679 
3680   return false;
3681 }
3682 
3683 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3684   if (VT > MVT::i64)
3685     return 0;
3686 
3687   uint64_t Imm = CI->getZExtValue();
3688   if (Imm == 0) {
3689     unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3690     switch (VT.SimpleTy) {
3691     default: llvm_unreachable("Unexpected value type");
3692     case MVT::i1:
3693     case MVT::i8:
3694       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3695                                         X86::sub_8bit);
3696     case MVT::i16:
3697       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3698                                         X86::sub_16bit);
3699     case MVT::i32:
3700       return SrcReg;
3701     case MVT::i64: {
3702       unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3703       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3704               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3705         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3706       return ResultReg;
3707     }
3708     }
3709   }
3710 
3711   unsigned Opc = 0;
3712   switch (VT.SimpleTy) {
3713   default: llvm_unreachable("Unexpected value type");
3714   case MVT::i1:
3715     VT = MVT::i8;
3716     LLVM_FALLTHROUGH;
3717   case MVT::i8:  Opc = X86::MOV8ri;  break;
3718   case MVT::i16: Opc = X86::MOV16ri; break;
3719   case MVT::i32: Opc = X86::MOV32ri; break;
3720   case MVT::i64: {
3721     if (isUInt<32>(Imm))
3722       Opc = X86::MOV32ri64;
3723     else if (isInt<32>(Imm))
3724       Opc = X86::MOV64ri32;
3725     else
3726       Opc = X86::MOV64ri;
3727     break;
3728   }
3729   }
3730   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3731 }
3732 
3733 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3734   if (CFP->isNullValue())
3735     return fastMaterializeFloatZero(CFP);
3736 
3737   // Can't handle alternate code models yet.
3738   CodeModel::Model CM = TM.getCodeModel();
3739   if (CM != CodeModel::Small && CM != CodeModel::Large)
3740     return 0;
3741 
3742   // Get opcode and regclass of the output for the given load instruction.
3743   unsigned Opc = 0;
3744   bool HasAVX = Subtarget->hasAVX();
3745   bool HasAVX512 = Subtarget->hasAVX512();
3746   switch (VT.SimpleTy) {
3747   default: return 0;
3748   case MVT::f32:
3749     if (X86ScalarSSEf32)
3750       Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
3751             HasAVX    ? X86::VMOVSSrm_alt :
3752                         X86::MOVSSrm_alt;
3753     else
3754       Opc = X86::LD_Fp32m;
3755     break;
3756   case MVT::f64:
3757     if (X86ScalarSSEf64)
3758       Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
3759             HasAVX    ? X86::VMOVSDrm_alt :
3760                         X86::MOVSDrm_alt;
3761     else
3762       Opc = X86::LD_Fp64m;
3763     break;
3764   case MVT::f80:
3765     // No f80 support yet.
3766     return 0;
3767   }
3768 
3769   // MachineConstantPool wants an explicit alignment.
3770   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3771   if (Align == 0) {
3772     // Alignment of vector types. FIXME!
3773     Align = DL.getTypeAllocSize(CFP->getType());
3774   }
3775 
3776   // x86-32 PIC requires a PIC base register for constant pools.
3777   unsigned PICBase = 0;
3778   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3779   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3780     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3781   else if (OpFlag == X86II::MO_GOTOFF)
3782     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3783   else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3784     PICBase = X86::RIP;
3785 
3786   // Create the load from the constant pool.
3787   unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3788   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3789 
3790   if (CM == CodeModel::Large) {
3791     unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3792     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3793             AddrReg)
3794       .addConstantPoolIndex(CPI, 0, OpFlag);
3795     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3796                                       TII.get(Opc), ResultReg);
3797     addDirectMem(MIB, AddrReg);
3798     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3799         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3800         MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3801     MIB->addMemOperand(*FuncInfo.MF, MMO);
3802     return ResultReg;
3803   }
3804 
3805   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3806                                    TII.get(Opc), ResultReg),
3807                            CPI, PICBase, OpFlag);
3808   return ResultReg;
3809 }
3810 
3811 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3812   // Can't handle alternate code models yet.
3813   if (TM.getCodeModel() != CodeModel::Small)
3814     return 0;
3815 
3816   // Materialize addresses with LEA/MOV instructions.
3817   X86AddressMode AM;
3818   if (X86SelectAddress(GV, AM)) {
3819     // If the expression is just a basereg, then we're done, otherwise we need
3820     // to emit an LEA.
3821     if (AM.BaseType == X86AddressMode::RegBase &&
3822         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3823       return AM.Base.Reg;
3824 
3825     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3826     if (TM.getRelocationModel() == Reloc::Static &&
3827         TLI.getPointerTy(DL) == MVT::i64) {
3828       // The displacement code could be more than 32 bits away so we need to use
3829       // an instruction with a 64 bit immediate
3830       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3831               ResultReg)
3832         .addGlobalAddress(GV);
3833     } else {
3834       unsigned Opc =
3835           TLI.getPointerTy(DL) == MVT::i32
3836               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3837               : X86::LEA64r;
3838       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3839                              TII.get(Opc), ResultReg), AM);
3840     }
3841     return ResultReg;
3842   }
3843   return 0;
3844 }
3845 
3846 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3847   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3848 
3849   // Only handle simple types.
3850   if (!CEVT.isSimple())
3851     return 0;
3852   MVT VT = CEVT.getSimpleVT();
3853 
3854   if (const auto *CI = dyn_cast<ConstantInt>(C))
3855     return X86MaterializeInt(CI, VT);
3856   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3857     return X86MaterializeFP(CFP, VT);
3858   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3859     return X86MaterializeGV(GV, VT);
3860 
3861   return 0;
3862 }
3863 
3864 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3865   // Fail on dynamic allocas. At this point, getRegForValue has already
3866   // checked its CSE maps, so if we're here trying to handle a dynamic
3867   // alloca, we're not going to succeed. X86SelectAddress has a
3868   // check for dynamic allocas, because it's called directly from
3869   // various places, but targetMaterializeAlloca also needs a check
3870   // in order to avoid recursion between getRegForValue,
3871   // X86SelectAddrss, and targetMaterializeAlloca.
3872   if (!FuncInfo.StaticAllocaMap.count(C))
3873     return 0;
3874   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3875 
3876   X86AddressMode AM;
3877   if (!X86SelectAddress(C, AM))
3878     return 0;
3879   unsigned Opc =
3880       TLI.getPointerTy(DL) == MVT::i32
3881           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3882           : X86::LEA64r;
3883   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3884   unsigned ResultReg = createResultReg(RC);
3885   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3886                          TII.get(Opc), ResultReg), AM);
3887   return ResultReg;
3888 }
3889 
3890 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3891   MVT VT;
3892   if (!isTypeLegal(CF->getType(), VT))
3893     return 0;
3894 
3895   // Get opcode and regclass for the given zero.
3896   bool HasAVX512 = Subtarget->hasAVX512();
3897   unsigned Opc = 0;
3898   switch (VT.SimpleTy) {
3899   default: return 0;
3900   case MVT::f32:
3901     if (X86ScalarSSEf32)
3902       Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3903     else
3904       Opc = X86::LD_Fp032;
3905     break;
3906   case MVT::f64:
3907     if (X86ScalarSSEf64)
3908       Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3909     else
3910       Opc = X86::LD_Fp064;
3911     break;
3912   case MVT::f80:
3913     // No f80 support yet.
3914     return 0;
3915   }
3916 
3917   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3918   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3919   return ResultReg;
3920 }
3921 
3922 
3923 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3924                                       const LoadInst *LI) {
3925   const Value *Ptr = LI->getPointerOperand();
3926   X86AddressMode AM;
3927   if (!X86SelectAddress(Ptr, AM))
3928     return false;
3929 
3930   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3931 
3932   unsigned Size = DL.getTypeAllocSize(LI->getType());
3933   unsigned Alignment = LI->getAlignment();
3934 
3935   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3936     Alignment = DL.getABITypeAlignment(LI->getType());
3937 
3938   SmallVector<MachineOperand, 8> AddrOps;
3939   AM.getFullAddress(AddrOps);
3940 
3941   MachineInstr *Result = XII.foldMemoryOperandImpl(
3942       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3943       /*AllowCommute=*/true);
3944   if (!Result)
3945     return false;
3946 
3947   // The index register could be in the wrong register class.  Unfortunately,
3948   // foldMemoryOperandImpl could have commuted the instruction so its not enough
3949   // to just look at OpNo + the offset to the index reg.  We actually need to
3950   // scan the instruction to find the index reg and see if its the correct reg
3951   // class.
3952   unsigned OperandNo = 0;
3953   for (MachineInstr::mop_iterator I = Result->operands_begin(),
3954        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3955     MachineOperand &MO = *I;
3956     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3957       continue;
3958     // Found the index reg, now try to rewrite it.
3959     unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
3960                                                  MO.getReg(), OperandNo);
3961     if (IndexReg == MO.getReg())
3962       continue;
3963     MO.setReg(IndexReg);
3964   }
3965 
3966   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3967   Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
3968   MachineBasicBlock::iterator I(MI);
3969   removeDeadCode(I, std::next(I));
3970   return true;
3971 }
3972 
3973 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3974                                         const TargetRegisterClass *RC,
3975                                         unsigned Op0, bool Op0IsKill,
3976                                         unsigned Op1, bool Op1IsKill,
3977                                         unsigned Op2, bool Op2IsKill,
3978                                         unsigned Op3, bool Op3IsKill) {
3979   const MCInstrDesc &II = TII.get(MachineInstOpcode);
3980 
3981   unsigned ResultReg = createResultReg(RC);
3982   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
3983   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
3984   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
3985   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
3986 
3987   if (II.getNumDefs() >= 1)
3988     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
3989         .addReg(Op0, getKillRegState(Op0IsKill))
3990         .addReg(Op1, getKillRegState(Op1IsKill))
3991         .addReg(Op2, getKillRegState(Op2IsKill))
3992         .addReg(Op3, getKillRegState(Op3IsKill));
3993   else {
3994     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
3995         .addReg(Op0, getKillRegState(Op0IsKill))
3996         .addReg(Op1, getKillRegState(Op1IsKill))
3997         .addReg(Op2, getKillRegState(Op2IsKill))
3998         .addReg(Op3, getKillRegState(Op3IsKill));
3999     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4000             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4001   }
4002   return ResultReg;
4003 }
4004 
4005 
4006 namespace llvm {
4007   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4008                                 const TargetLibraryInfo *libInfo) {
4009     return new X86FastISel(funcInfo, libInfo);
4010   }
4011 }
4012