1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Target/TargetOptions.h" 43 using namespace llvm; 44 45 namespace { 46 47 class X86FastISel final : public FastISel { 48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 49 /// make the right decision when generating code for different targets. 50 const X86Subtarget *Subtarget; 51 52 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 53 /// floating point ops. 54 /// When SSE is available, use it for f32 operations. 55 /// When SSE2 is available, use it for f64 operations. 56 bool X86ScalarSSEf64; 57 bool X86ScalarSSEf32; 58 59 public: 60 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 61 const TargetLibraryInfo *libInfo) 62 : FastISel(funcInfo, libInfo) { 63 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 64 X86ScalarSSEf64 = Subtarget->hasSSE2(); 65 X86ScalarSSEf32 = Subtarget->hasSSE1(); 66 } 67 68 bool fastSelectInstruction(const Instruction *I) override; 69 70 /// The specified machine instr operand is a vreg, and that 71 /// vreg is being provided by the specified load instruction. If possible, 72 /// try to fold the load as an operand to the instruction, returning true if 73 /// possible. 74 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 75 const LoadInst *LI) override; 76 77 bool fastLowerArguments() override; 78 bool fastLowerCall(CallLoweringInfo &CLI) override; 79 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 80 81 #include "X86GenFastISel.inc" 82 83 private: 84 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 85 const DebugLoc &DL); 86 87 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 88 unsigned &ResultReg, unsigned Alignment = 1); 89 90 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 91 MachineMemOperand *MMO = nullptr, bool Aligned = false); 92 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, 93 X86AddressMode &AM, 94 MachineMemOperand *MMO = nullptr, bool Aligned = false); 95 96 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 97 unsigned &ResultReg); 98 99 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 100 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 101 102 bool X86SelectLoad(const Instruction *I); 103 104 bool X86SelectStore(const Instruction *I); 105 106 bool X86SelectRet(const Instruction *I); 107 108 bool X86SelectCmp(const Instruction *I); 109 110 bool X86SelectZExt(const Instruction *I); 111 112 bool X86SelectSExt(const Instruction *I); 113 114 bool X86SelectBranch(const Instruction *I); 115 116 bool X86SelectShift(const Instruction *I); 117 118 bool X86SelectDivRem(const Instruction *I); 119 120 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 121 122 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 123 124 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 125 126 bool X86SelectSelect(const Instruction *I); 127 128 bool X86SelectTrunc(const Instruction *I); 129 130 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 131 const TargetRegisterClass *RC); 132 133 bool X86SelectFPExt(const Instruction *I); 134 bool X86SelectFPTrunc(const Instruction *I); 135 bool X86SelectSIToFP(const Instruction *I); 136 bool X86SelectUIToFP(const Instruction *I); 137 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 138 139 const X86InstrInfo *getInstrInfo() const { 140 return Subtarget->getInstrInfo(); 141 } 142 const X86TargetMachine *getTargetMachine() const { 143 return static_cast<const X86TargetMachine *>(&TM); 144 } 145 146 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 147 148 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 149 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 150 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 151 unsigned fastMaterializeConstant(const Constant *C) override; 152 153 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 154 155 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 156 157 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 158 /// computed in an SSE register, not on the X87 floating point stack. 159 bool isScalarFPTypeInSSEReg(EVT VT) const { 160 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 161 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 162 } 163 164 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 165 166 bool IsMemcpySmall(uint64_t Len); 167 168 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 169 X86AddressMode SrcAM, uint64_t Len); 170 171 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 172 const Value *Cond); 173 174 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 175 X86AddressMode &AM); 176 177 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 178 const TargetRegisterClass *RC, unsigned Op0, 179 bool Op0IsKill, unsigned Op1, bool Op1IsKill, 180 unsigned Op2, bool Op2IsKill, unsigned Op3, 181 bool Op3IsKill); 182 }; 183 184 } // end anonymous namespace. 185 186 static std::pair<unsigned, bool> 187 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 188 unsigned CC; 189 bool NeedSwap = false; 190 191 // SSE Condition code mapping: 192 // 0 - EQ 193 // 1 - LT 194 // 2 - LE 195 // 3 - UNORD 196 // 4 - NEQ 197 // 5 - NLT 198 // 6 - NLE 199 // 7 - ORD 200 switch (Predicate) { 201 default: llvm_unreachable("Unexpected predicate"); 202 case CmpInst::FCMP_OEQ: CC = 0; break; 203 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; 204 case CmpInst::FCMP_OLT: CC = 1; break; 205 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; 206 case CmpInst::FCMP_OLE: CC = 2; break; 207 case CmpInst::FCMP_UNO: CC = 3; break; 208 case CmpInst::FCMP_UNE: CC = 4; break; 209 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; 210 case CmpInst::FCMP_UGE: CC = 5; break; 211 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; 212 case CmpInst::FCMP_UGT: CC = 6; break; 213 case CmpInst::FCMP_ORD: CC = 7; break; 214 case CmpInst::FCMP_UEQ: CC = 8; break; 215 case CmpInst::FCMP_ONE: CC = 12; break; 216 } 217 218 return std::make_pair(CC, NeedSwap); 219 } 220 221 /// Adds a complex addressing mode to the given machine instr builder. 222 /// Note, this will constrain the index register. If its not possible to 223 /// constrain the given index register, then a new one will be created. The 224 /// IndexReg field of the addressing mode will be updated to match in this case. 225 const MachineInstrBuilder & 226 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 227 X86AddressMode &AM) { 228 // First constrain the index register. It needs to be a GR64_NOSP. 229 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 230 MIB->getNumOperands() + 231 X86::AddrIndexReg); 232 return ::addFullAddress(MIB, AM); 233 } 234 235 /// Check if it is possible to fold the condition from the XALU intrinsic 236 /// into the user. The condition code will only be updated on success. 237 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 238 const Value *Cond) { 239 if (!isa<ExtractValueInst>(Cond)) 240 return false; 241 242 const auto *EV = cast<ExtractValueInst>(Cond); 243 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 244 return false; 245 246 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 247 MVT RetVT; 248 const Function *Callee = II->getCalledFunction(); 249 Type *RetTy = 250 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 251 if (!isTypeLegal(RetTy, RetVT)) 252 return false; 253 254 if (RetVT != MVT::i32 && RetVT != MVT::i64) 255 return false; 256 257 X86::CondCode TmpCC; 258 switch (II->getIntrinsicID()) { 259 default: return false; 260 case Intrinsic::sadd_with_overflow: 261 case Intrinsic::ssub_with_overflow: 262 case Intrinsic::smul_with_overflow: 263 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 264 case Intrinsic::uadd_with_overflow: 265 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 266 } 267 268 // Check if both instructions are in the same basic block. 269 if (II->getParent() != I->getParent()) 270 return false; 271 272 // Make sure nothing is in the way 273 BasicBlock::const_iterator Start(I); 274 BasicBlock::const_iterator End(II); 275 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 276 // We only expect extractvalue instructions between the intrinsic and the 277 // instruction to be selected. 278 if (!isa<ExtractValueInst>(Itr)) 279 return false; 280 281 // Check that the extractvalue operand comes from the intrinsic. 282 const auto *EVI = cast<ExtractValueInst>(Itr); 283 if (EVI->getAggregateOperand() != II) 284 return false; 285 } 286 287 CC = TmpCC; 288 return true; 289 } 290 291 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 292 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 293 if (evt == MVT::Other || !evt.isSimple()) 294 // Unhandled type. Halt "fast" selection and bail. 295 return false; 296 297 VT = evt.getSimpleVT(); 298 // For now, require SSE/SSE2 for performing floating-point operations, 299 // since x87 requires additional work. 300 if (VT == MVT::f64 && !X86ScalarSSEf64) 301 return false; 302 if (VT == MVT::f32 && !X86ScalarSSEf32) 303 return false; 304 // Similarly, no f80 support yet. 305 if (VT == MVT::f80) 306 return false; 307 // We only handle legal types. For example, on x86-32 the instruction 308 // selector contains all of the 64-bit instructions from x86-64, 309 // under the assumption that i64 won't be used if the target doesn't 310 // support it. 311 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 312 } 313 314 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 315 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 316 /// Return true and the result register by reference if it is possible. 317 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 318 MachineMemOperand *MMO, unsigned &ResultReg, 319 unsigned Alignment) { 320 bool HasSSE41 = Subtarget->hasSSE41(); 321 bool HasAVX = Subtarget->hasAVX(); 322 bool HasAVX2 = Subtarget->hasAVX2(); 323 bool HasAVX512 = Subtarget->hasAVX512(); 324 bool HasVLX = Subtarget->hasVLX(); 325 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 326 327 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 328 if (VT == MVT::i1) 329 VT = MVT::i8; 330 331 // Get opcode and regclass of the output for the given load instruction. 332 unsigned Opc = 0; 333 switch (VT.SimpleTy) { 334 default: return false; 335 case MVT::i8: 336 Opc = X86::MOV8rm; 337 break; 338 case MVT::i16: 339 Opc = X86::MOV16rm; 340 break; 341 case MVT::i32: 342 Opc = X86::MOV32rm; 343 break; 344 case MVT::i64: 345 // Must be in x86-64 mode. 346 Opc = X86::MOV64rm; 347 break; 348 case MVT::f32: 349 if (X86ScalarSSEf32) 350 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 351 HasAVX ? X86::VMOVSSrm_alt : 352 X86::MOVSSrm_alt; 353 else 354 Opc = X86::LD_Fp32m; 355 break; 356 case MVT::f64: 357 if (X86ScalarSSEf64) 358 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 359 HasAVX ? X86::VMOVSDrm_alt : 360 X86::MOVSDrm_alt; 361 else 362 Opc = X86::LD_Fp64m; 363 break; 364 case MVT::f80: 365 // No f80 support yet. 366 return false; 367 case MVT::v4f32: 368 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 369 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 370 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 371 else if (Alignment >= 16) 372 Opc = HasVLX ? X86::VMOVAPSZ128rm : 373 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 374 else 375 Opc = HasVLX ? X86::VMOVUPSZ128rm : 376 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 377 break; 378 case MVT::v2f64: 379 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 380 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 381 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 382 else if (Alignment >= 16) 383 Opc = HasVLX ? X86::VMOVAPDZ128rm : 384 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 385 else 386 Opc = HasVLX ? X86::VMOVUPDZ128rm : 387 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 388 break; 389 case MVT::v4i32: 390 case MVT::v2i64: 391 case MVT::v8i16: 392 case MVT::v16i8: 393 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 394 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 395 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 396 else if (Alignment >= 16) 397 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 398 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 399 else 400 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 401 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 402 break; 403 case MVT::v8f32: 404 assert(HasAVX); 405 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 406 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 407 else if (IsNonTemporal && Alignment >= 16) 408 return false; // Force split for X86::VMOVNTDQArm 409 else if (Alignment >= 32) 410 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 411 else 412 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 413 break; 414 case MVT::v4f64: 415 assert(HasAVX); 416 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 417 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 418 else if (IsNonTemporal && Alignment >= 16) 419 return false; // Force split for X86::VMOVNTDQArm 420 else if (Alignment >= 32) 421 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 422 else 423 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 424 break; 425 case MVT::v8i32: 426 case MVT::v4i64: 427 case MVT::v16i16: 428 case MVT::v32i8: 429 assert(HasAVX); 430 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 431 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 432 else if (IsNonTemporal && Alignment >= 16) 433 return false; // Force split for X86::VMOVNTDQArm 434 else if (Alignment >= 32) 435 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 436 else 437 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 438 break; 439 case MVT::v16f32: 440 assert(HasAVX512); 441 if (IsNonTemporal && Alignment >= 64) 442 Opc = X86::VMOVNTDQAZrm; 443 else 444 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 445 break; 446 case MVT::v8f64: 447 assert(HasAVX512); 448 if (IsNonTemporal && Alignment >= 64) 449 Opc = X86::VMOVNTDQAZrm; 450 else 451 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 452 break; 453 case MVT::v8i64: 454 case MVT::v16i32: 455 case MVT::v32i16: 456 case MVT::v64i8: 457 assert(HasAVX512); 458 // Note: There are a lot more choices based on type with AVX-512, but 459 // there's really no advantage when the load isn't masked. 460 if (IsNonTemporal && Alignment >= 64) 461 Opc = X86::VMOVNTDQAZrm; 462 else 463 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 464 break; 465 } 466 467 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 468 469 ResultReg = createResultReg(RC); 470 MachineInstrBuilder MIB = 471 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 472 addFullAddress(MIB, AM); 473 if (MMO) 474 MIB->addMemOperand(*FuncInfo.MF, MMO); 475 return true; 476 } 477 478 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 479 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 480 /// and a displacement offset, or a GlobalAddress, 481 /// i.e. V. Return true if it is possible. 482 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, 483 X86AddressMode &AM, 484 MachineMemOperand *MMO, bool Aligned) { 485 bool HasSSE1 = Subtarget->hasSSE1(); 486 bool HasSSE2 = Subtarget->hasSSE2(); 487 bool HasSSE4A = Subtarget->hasSSE4A(); 488 bool HasAVX = Subtarget->hasAVX(); 489 bool HasAVX512 = Subtarget->hasAVX512(); 490 bool HasVLX = Subtarget->hasVLX(); 491 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 492 493 // Get opcode and regclass of the output for the given store instruction. 494 unsigned Opc = 0; 495 switch (VT.getSimpleVT().SimpleTy) { 496 case MVT::f80: // No f80 support yet. 497 default: return false; 498 case MVT::i1: { 499 // Mask out all but lowest bit. 500 unsigned AndResult = createResultReg(&X86::GR8RegClass); 501 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 502 TII.get(X86::AND8ri), AndResult) 503 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); 504 ValReg = AndResult; 505 LLVM_FALLTHROUGH; // handle i1 as i8. 506 } 507 case MVT::i8: Opc = X86::MOV8mr; break; 508 case MVT::i16: Opc = X86::MOV16mr; break; 509 case MVT::i32: 510 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 511 break; 512 case MVT::i64: 513 // Must be in x86-64 mode. 514 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 515 break; 516 case MVT::f32: 517 if (X86ScalarSSEf32) { 518 if (IsNonTemporal && HasSSE4A) 519 Opc = X86::MOVNTSS; 520 else 521 Opc = HasAVX512 ? X86::VMOVSSZmr : 522 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 523 } else 524 Opc = X86::ST_Fp32m; 525 break; 526 case MVT::f64: 527 if (X86ScalarSSEf32) { 528 if (IsNonTemporal && HasSSE4A) 529 Opc = X86::MOVNTSD; 530 else 531 Opc = HasAVX512 ? X86::VMOVSDZmr : 532 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 533 } else 534 Opc = X86::ST_Fp64m; 535 break; 536 case MVT::x86mmx: 537 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 538 break; 539 case MVT::v4f32: 540 if (Aligned) { 541 if (IsNonTemporal) 542 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 543 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 544 else 545 Opc = HasVLX ? X86::VMOVAPSZ128mr : 546 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 547 } else 548 Opc = HasVLX ? X86::VMOVUPSZ128mr : 549 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 550 break; 551 case MVT::v2f64: 552 if (Aligned) { 553 if (IsNonTemporal) 554 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 555 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 556 else 557 Opc = HasVLX ? X86::VMOVAPDZ128mr : 558 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 559 } else 560 Opc = HasVLX ? X86::VMOVUPDZ128mr : 561 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 562 break; 563 case MVT::v4i32: 564 case MVT::v2i64: 565 case MVT::v8i16: 566 case MVT::v16i8: 567 if (Aligned) { 568 if (IsNonTemporal) 569 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 570 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 571 else 572 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 573 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 574 } else 575 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 576 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 577 break; 578 case MVT::v8f32: 579 assert(HasAVX); 580 if (Aligned) { 581 if (IsNonTemporal) 582 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 583 else 584 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 585 } else 586 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 587 break; 588 case MVT::v4f64: 589 assert(HasAVX); 590 if (Aligned) { 591 if (IsNonTemporal) 592 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 593 else 594 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 595 } else 596 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 597 break; 598 case MVT::v8i32: 599 case MVT::v4i64: 600 case MVT::v16i16: 601 case MVT::v32i8: 602 assert(HasAVX); 603 if (Aligned) { 604 if (IsNonTemporal) 605 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 606 else 607 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 608 } else 609 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 610 break; 611 case MVT::v16f32: 612 assert(HasAVX512); 613 if (Aligned) 614 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 615 else 616 Opc = X86::VMOVUPSZmr; 617 break; 618 case MVT::v8f64: 619 assert(HasAVX512); 620 if (Aligned) { 621 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 622 } else 623 Opc = X86::VMOVUPDZmr; 624 break; 625 case MVT::v8i64: 626 case MVT::v16i32: 627 case MVT::v32i16: 628 case MVT::v64i8: 629 assert(HasAVX512); 630 // Note: There are a lot more choices based on type with AVX-512, but 631 // there's really no advantage when the store isn't masked. 632 if (Aligned) 633 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 634 else 635 Opc = X86::VMOVDQU64Zmr; 636 break; 637 } 638 639 const MCInstrDesc &Desc = TII.get(Opc); 640 // Some of the instructions in the previous switch use FR128 instead 641 // of FR32 for ValReg. Make sure the register we feed the instruction 642 // matches its register class constraints. 643 // Note: This is fine to do a copy from FR32 to FR128, this is the 644 // same registers behind the scene and actually why it did not trigger 645 // any bugs before. 646 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 647 MachineInstrBuilder MIB = 648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); 649 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); 650 if (MMO) 651 MIB->addMemOperand(*FuncInfo.MF, MMO); 652 653 return true; 654 } 655 656 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 657 X86AddressMode &AM, 658 MachineMemOperand *MMO, bool Aligned) { 659 // Handle 'null' like i32/i64 0. 660 if (isa<ConstantPointerNull>(Val)) 661 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 662 663 // If this is a store of a simple constant, fold the constant into the store. 664 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 665 unsigned Opc = 0; 666 bool Signed = true; 667 switch (VT.getSimpleVT().SimpleTy) { 668 default: break; 669 case MVT::i1: 670 Signed = false; 671 LLVM_FALLTHROUGH; // Handle as i8. 672 case MVT::i8: Opc = X86::MOV8mi; break; 673 case MVT::i16: Opc = X86::MOV16mi; break; 674 case MVT::i32: Opc = X86::MOV32mi; break; 675 case MVT::i64: 676 // Must be a 32-bit sign extended value. 677 if (isInt<32>(CI->getSExtValue())) 678 Opc = X86::MOV64mi32; 679 break; 680 } 681 682 if (Opc) { 683 MachineInstrBuilder MIB = 684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 685 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 686 : CI->getZExtValue()); 687 if (MMO) 688 MIB->addMemOperand(*FuncInfo.MF, MMO); 689 return true; 690 } 691 } 692 693 unsigned ValReg = getRegForValue(Val); 694 if (ValReg == 0) 695 return false; 696 697 bool ValKill = hasTrivialKill(Val); 698 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); 699 } 700 701 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 702 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 703 /// ISD::SIGN_EXTEND). 704 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 705 unsigned Src, EVT SrcVT, 706 unsigned &ResultReg) { 707 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, 708 Src, /*TODO: Kill=*/false); 709 if (RR == 0) 710 return false; 711 712 ResultReg = RR; 713 return true; 714 } 715 716 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 717 // Handle constant address. 718 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 719 // Can't handle alternate code models yet. 720 if (TM.getCodeModel() != CodeModel::Small) 721 return false; 722 723 // Can't handle TLS yet. 724 if (GV->isThreadLocal()) 725 return false; 726 727 // Can't handle !absolute_symbol references yet. 728 if (GV->isAbsoluteSymbolRef()) 729 return false; 730 731 // RIP-relative addresses can't have additional register operands, so if 732 // we've already folded stuff into the addressing mode, just force the 733 // global value into its own register, which we can use as the basereg. 734 if (!Subtarget->isPICStyleRIPRel() || 735 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 736 // Okay, we've committed to selecting this global. Set up the address. 737 AM.GV = GV; 738 739 // Allow the subtarget to classify the global. 740 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 741 742 // If this reference is relative to the pic base, set it now. 743 if (isGlobalRelativeToPICBase(GVFlags)) { 744 // FIXME: How do we know Base.Reg is free?? 745 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 746 } 747 748 // Unless the ABI requires an extra load, return a direct reference to 749 // the global. 750 if (!isGlobalStubReference(GVFlags)) { 751 if (Subtarget->isPICStyleRIPRel()) { 752 // Use rip-relative addressing if we can. Above we verified that the 753 // base and index registers are unused. 754 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 755 AM.Base.Reg = X86::RIP; 756 } 757 AM.GVOpFlags = GVFlags; 758 return true; 759 } 760 761 // Ok, we need to do a load from a stub. If we've already loaded from 762 // this stub, reuse the loaded pointer, otherwise emit the load now. 763 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V); 764 unsigned LoadReg; 765 if (I != LocalValueMap.end() && I->second != 0) { 766 LoadReg = I->second; 767 } else { 768 // Issue load from stub. 769 unsigned Opc = 0; 770 const TargetRegisterClass *RC = nullptr; 771 X86AddressMode StubAM; 772 StubAM.Base.Reg = AM.Base.Reg; 773 StubAM.GV = GV; 774 StubAM.GVOpFlags = GVFlags; 775 776 // Prepare for inserting code in the local-value area. 777 SavePoint SaveInsertPt = enterLocalValueArea(); 778 779 if (TLI.getPointerTy(DL) == MVT::i64) { 780 Opc = X86::MOV64rm; 781 RC = &X86::GR64RegClass; 782 783 if (Subtarget->isPICStyleRIPRel()) 784 StubAM.Base.Reg = X86::RIP; 785 } else { 786 Opc = X86::MOV32rm; 787 RC = &X86::GR32RegClass; 788 } 789 790 LoadReg = createResultReg(RC); 791 MachineInstrBuilder LoadMI = 792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); 793 addFullAddress(LoadMI, StubAM); 794 795 // Ok, back to normal mode. 796 leaveLocalValueArea(SaveInsertPt); 797 798 // Prevent loading GV stub multiple times in same MBB. 799 LocalValueMap[V] = LoadReg; 800 } 801 802 // Now construct the final address. Note that the Disp, Scale, 803 // and Index values may already be set here. 804 AM.Base.Reg = LoadReg; 805 AM.GV = nullptr; 806 return true; 807 } 808 } 809 810 // If all else fails, try to materialize the value in a register. 811 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 812 if (AM.Base.Reg == 0) { 813 AM.Base.Reg = getRegForValue(V); 814 return AM.Base.Reg != 0; 815 } 816 if (AM.IndexReg == 0) { 817 assert(AM.Scale == 1 && "Scale with no index!"); 818 AM.IndexReg = getRegForValue(V); 819 return AM.IndexReg != 0; 820 } 821 } 822 823 return false; 824 } 825 826 /// X86SelectAddress - Attempt to fill in an address from the given value. 827 /// 828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 829 SmallVector<const Value *, 32> GEPs; 830 redo_gep: 831 const User *U = nullptr; 832 unsigned Opcode = Instruction::UserOp1; 833 if (const Instruction *I = dyn_cast<Instruction>(V)) { 834 // Don't walk into other basic blocks; it's possible we haven't 835 // visited them yet, so the instructions may not yet be assigned 836 // virtual registers. 837 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 838 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 839 Opcode = I->getOpcode(); 840 U = I; 841 } 842 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 843 Opcode = C->getOpcode(); 844 U = C; 845 } 846 847 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 848 if (Ty->getAddressSpace() > 255) 849 // Fast instruction selection doesn't support the special 850 // address spaces. 851 return false; 852 853 switch (Opcode) { 854 default: break; 855 case Instruction::BitCast: 856 // Look past bitcasts. 857 return X86SelectAddress(U->getOperand(0), AM); 858 859 case Instruction::IntToPtr: 860 // Look past no-op inttoptrs. 861 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 862 TLI.getPointerTy(DL)) 863 return X86SelectAddress(U->getOperand(0), AM); 864 break; 865 866 case Instruction::PtrToInt: 867 // Look past no-op ptrtoints. 868 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 869 return X86SelectAddress(U->getOperand(0), AM); 870 break; 871 872 case Instruction::Alloca: { 873 // Do static allocas. 874 const AllocaInst *A = cast<AllocaInst>(V); 875 DenseMap<const AllocaInst *, int>::iterator SI = 876 FuncInfo.StaticAllocaMap.find(A); 877 if (SI != FuncInfo.StaticAllocaMap.end()) { 878 AM.BaseType = X86AddressMode::FrameIndexBase; 879 AM.Base.FrameIndex = SI->second; 880 return true; 881 } 882 break; 883 } 884 885 case Instruction::Add: { 886 // Adds of constants are common and easy enough. 887 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 888 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 889 // They have to fit in the 32-bit signed displacement field though. 890 if (isInt<32>(Disp)) { 891 AM.Disp = (uint32_t)Disp; 892 return X86SelectAddress(U->getOperand(0), AM); 893 } 894 } 895 break; 896 } 897 898 case Instruction::GetElementPtr: { 899 X86AddressMode SavedAM = AM; 900 901 // Pattern-match simple GEPs. 902 uint64_t Disp = (int32_t)AM.Disp; 903 unsigned IndexReg = AM.IndexReg; 904 unsigned Scale = AM.Scale; 905 gep_type_iterator GTI = gep_type_begin(U); 906 // Iterate through the indices, folding what we can. Constants can be 907 // folded, and one dynamic index can be handled, if the scale is supported. 908 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 909 i != e; ++i, ++GTI) { 910 const Value *Op = *i; 911 if (StructType *STy = GTI.getStructTypeOrNull()) { 912 const StructLayout *SL = DL.getStructLayout(STy); 913 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 914 continue; 915 } 916 917 // A array/variable index is always of the form i*S where S is the 918 // constant scale size. See if we can push the scale into immediates. 919 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 920 for (;;) { 921 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 922 // Constant-offset addressing. 923 Disp += CI->getSExtValue() * S; 924 break; 925 } 926 if (canFoldAddIntoGEP(U, Op)) { 927 // A compatible add with a constant operand. Fold the constant. 928 ConstantInt *CI = 929 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 930 Disp += CI->getSExtValue() * S; 931 // Iterate on the other operand. 932 Op = cast<AddOperator>(Op)->getOperand(0); 933 continue; 934 } 935 if (IndexReg == 0 && 936 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 937 (S == 1 || S == 2 || S == 4 || S == 8)) { 938 // Scaled-index addressing. 939 Scale = S; 940 IndexReg = getRegForGEPIndex(Op).first; 941 if (IndexReg == 0) 942 return false; 943 break; 944 } 945 // Unsupported. 946 goto unsupported_gep; 947 } 948 } 949 950 // Check for displacement overflow. 951 if (!isInt<32>(Disp)) 952 break; 953 954 AM.IndexReg = IndexReg; 955 AM.Scale = Scale; 956 AM.Disp = (uint32_t)Disp; 957 GEPs.push_back(V); 958 959 if (const GetElementPtrInst *GEP = 960 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 961 // Ok, the GEP indices were covered by constant-offset and scaled-index 962 // addressing. Update the address state and move on to examining the base. 963 V = GEP; 964 goto redo_gep; 965 } else if (X86SelectAddress(U->getOperand(0), AM)) { 966 return true; 967 } 968 969 // If we couldn't merge the gep value into this addr mode, revert back to 970 // our address and just match the value instead of completely failing. 971 AM = SavedAM; 972 973 for (const Value *I : reverse(GEPs)) 974 if (handleConstantAddresses(I, AM)) 975 return true; 976 977 return false; 978 unsupported_gep: 979 // Ok, the GEP indices weren't all covered. 980 break; 981 } 982 } 983 984 return handleConstantAddresses(V, AM); 985 } 986 987 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 988 /// 989 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 990 const User *U = nullptr; 991 unsigned Opcode = Instruction::UserOp1; 992 const Instruction *I = dyn_cast<Instruction>(V); 993 // Record if the value is defined in the same basic block. 994 // 995 // This information is crucial to know whether or not folding an 996 // operand is valid. 997 // Indeed, FastISel generates or reuses a virtual register for all 998 // operands of all instructions it selects. Obviously, the definition and 999 // its uses must use the same virtual register otherwise the produced 1000 // code is incorrect. 1001 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 1002 // registers for values that are alive across basic blocks. This ensures 1003 // that the values are consistently set between across basic block, even 1004 // if different instruction selection mechanisms are used (e.g., a mix of 1005 // SDISel and FastISel). 1006 // For values local to a basic block, the instruction selection process 1007 // generates these virtual registers with whatever method is appropriate 1008 // for its needs. In particular, FastISel and SDISel do not share the way 1009 // local virtual registers are set. 1010 // Therefore, this is impossible (or at least unsafe) to share values 1011 // between basic blocks unless they use the same instruction selection 1012 // method, which is not guarantee for X86. 1013 // Moreover, things like hasOneUse could not be used accurately, if we 1014 // allow to reference values across basic blocks whereas they are not 1015 // alive across basic blocks initially. 1016 bool InMBB = true; 1017 if (I) { 1018 Opcode = I->getOpcode(); 1019 U = I; 1020 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1021 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1022 Opcode = C->getOpcode(); 1023 U = C; 1024 } 1025 1026 switch (Opcode) { 1027 default: break; 1028 case Instruction::BitCast: 1029 // Look past bitcasts if its operand is in the same BB. 1030 if (InMBB) 1031 return X86SelectCallAddress(U->getOperand(0), AM); 1032 break; 1033 1034 case Instruction::IntToPtr: 1035 // Look past no-op inttoptrs if its operand is in the same BB. 1036 if (InMBB && 1037 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1038 TLI.getPointerTy(DL)) 1039 return X86SelectCallAddress(U->getOperand(0), AM); 1040 break; 1041 1042 case Instruction::PtrToInt: 1043 // Look past no-op ptrtoints if its operand is in the same BB. 1044 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1045 return X86SelectCallAddress(U->getOperand(0), AM); 1046 break; 1047 } 1048 1049 // Handle constant address. 1050 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1051 // Can't handle alternate code models yet. 1052 if (TM.getCodeModel() != CodeModel::Small) 1053 return false; 1054 1055 // RIP-relative addresses can't have additional register operands. 1056 if (Subtarget->isPICStyleRIPRel() && 1057 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1058 return false; 1059 1060 // Can't handle TLS. 1061 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1062 if (GVar->isThreadLocal()) 1063 return false; 1064 1065 // Okay, we've committed to selecting this global. Set up the basic address. 1066 AM.GV = GV; 1067 1068 // Return a direct reference to the global. Fastisel can handle calls to 1069 // functions that require loads, such as dllimport and nonlazybind 1070 // functions. 1071 if (Subtarget->isPICStyleRIPRel()) { 1072 // Use rip-relative addressing if we can. Above we verified that the 1073 // base and index registers are unused. 1074 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1075 AM.Base.Reg = X86::RIP; 1076 } else { 1077 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1078 } 1079 1080 return true; 1081 } 1082 1083 // If all else fails, try to materialize the value in a register. 1084 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1085 if (AM.Base.Reg == 0) { 1086 AM.Base.Reg = getRegForValue(V); 1087 return AM.Base.Reg != 0; 1088 } 1089 if (AM.IndexReg == 0) { 1090 assert(AM.Scale == 1 && "Scale with no index!"); 1091 AM.IndexReg = getRegForValue(V); 1092 return AM.IndexReg != 0; 1093 } 1094 } 1095 1096 return false; 1097 } 1098 1099 1100 /// X86SelectStore - Select and emit code to implement store instructions. 1101 bool X86FastISel::X86SelectStore(const Instruction *I) { 1102 // Atomic stores need special handling. 1103 const StoreInst *S = cast<StoreInst>(I); 1104 1105 if (S->isAtomic()) 1106 return false; 1107 1108 const Value *PtrV = I->getOperand(1); 1109 if (TLI.supportSwiftError()) { 1110 // Swifterror values can come from either a function parameter with 1111 // swifterror attribute or an alloca with swifterror attribute. 1112 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1113 if (Arg->hasSwiftErrorAttr()) 1114 return false; 1115 } 1116 1117 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1118 if (Alloca->isSwiftError()) 1119 return false; 1120 } 1121 } 1122 1123 const Value *Val = S->getValueOperand(); 1124 const Value *Ptr = S->getPointerOperand(); 1125 1126 MVT VT; 1127 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1128 return false; 1129 1130 unsigned Alignment = S->getAlignment(); 1131 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); 1132 if (Alignment == 0) // Ensure that codegen never sees alignment 0 1133 Alignment = ABIAlignment; 1134 bool Aligned = Alignment >= ABIAlignment; 1135 1136 X86AddressMode AM; 1137 if (!X86SelectAddress(Ptr, AM)) 1138 return false; 1139 1140 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1141 } 1142 1143 /// X86SelectRet - Select and emit code to implement ret instructions. 1144 bool X86FastISel::X86SelectRet(const Instruction *I) { 1145 const ReturnInst *Ret = cast<ReturnInst>(I); 1146 const Function &F = *I->getParent()->getParent(); 1147 const X86MachineFunctionInfo *X86MFInfo = 1148 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1149 1150 if (!FuncInfo.CanLowerReturn) 1151 return false; 1152 1153 if (TLI.supportSwiftError() && 1154 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1155 return false; 1156 1157 if (TLI.supportSplitCSR(FuncInfo.MF)) 1158 return false; 1159 1160 CallingConv::ID CC = F.getCallingConv(); 1161 if (CC != CallingConv::C && 1162 CC != CallingConv::Fast && 1163 CC != CallingConv::Tail && 1164 CC != CallingConv::X86_FastCall && 1165 CC != CallingConv::X86_StdCall && 1166 CC != CallingConv::X86_ThisCall && 1167 CC != CallingConv::X86_64_SysV && 1168 CC != CallingConv::Win64) 1169 return false; 1170 1171 // Don't handle popping bytes if they don't fit the ret's immediate. 1172 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1173 return false; 1174 1175 // fastcc with -tailcallopt is intended to provide a guaranteed 1176 // tail call optimization. Fastisel doesn't know how to do that. 1177 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 1178 CC == CallingConv::Tail) 1179 return false; 1180 1181 // Let SDISel handle vararg functions. 1182 if (F.isVarArg()) 1183 return false; 1184 1185 // Build a list of return value registers. 1186 SmallVector<unsigned, 4> RetRegs; 1187 1188 if (Ret->getNumOperands() > 0) { 1189 SmallVector<ISD::OutputArg, 4> Outs; 1190 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1191 1192 // Analyze operands of the call, assigning locations to each operand. 1193 SmallVector<CCValAssign, 16> ValLocs; 1194 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1195 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1196 1197 const Value *RV = Ret->getOperand(0); 1198 unsigned Reg = getRegForValue(RV); 1199 if (Reg == 0) 1200 return false; 1201 1202 // Only handle a single return value for now. 1203 if (ValLocs.size() != 1) 1204 return false; 1205 1206 CCValAssign &VA = ValLocs[0]; 1207 1208 // Don't bother handling odd stuff for now. 1209 if (VA.getLocInfo() != CCValAssign::Full) 1210 return false; 1211 // Only handle register returns for now. 1212 if (!VA.isRegLoc()) 1213 return false; 1214 1215 // The calling-convention tables for x87 returns don't tell 1216 // the whole story. 1217 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1218 return false; 1219 1220 unsigned SrcReg = Reg + VA.getValNo(); 1221 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1222 EVT DstVT = VA.getValVT(); 1223 // Special handling for extended integers. 1224 if (SrcVT != DstVT) { 1225 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1226 return false; 1227 1228 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1229 return false; 1230 1231 assert(DstVT == MVT::i32 && "X86 should always ext to i32"); 1232 1233 if (SrcVT == MVT::i1) { 1234 if (Outs[0].Flags.isSExt()) 1235 return false; 1236 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); 1237 SrcVT = MVT::i8; 1238 } 1239 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : 1240 ISD::SIGN_EXTEND; 1241 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, 1242 SrcReg, /*TODO: Kill=*/false); 1243 } 1244 1245 // Make the copy. 1246 Register DstReg = VA.getLocReg(); 1247 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1248 // Avoid a cross-class copy. This is very unlikely. 1249 if (!SrcRC->contains(DstReg)) 1250 return false; 1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1252 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1253 1254 // Add register to return instruction. 1255 RetRegs.push_back(VA.getLocReg()); 1256 } 1257 1258 // Swift calling convention does not require we copy the sret argument 1259 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1260 1261 // All x86 ABIs require that for returning structs by value we copy 1262 // the sret argument into %rax/%eax (depending on ABI) for the return. 1263 // We saved the argument into a virtual register in the entry block, 1264 // so now we copy the value out and into %rax/%eax. 1265 if (F.hasStructRetAttr() && CC != CallingConv::Swift) { 1266 unsigned Reg = X86MFInfo->getSRetReturnReg(); 1267 assert(Reg && 1268 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1269 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1270 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1271 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1272 RetRegs.push_back(RetReg); 1273 } 1274 1275 // Now emit the RET. 1276 MachineInstrBuilder MIB; 1277 if (X86MFInfo->getBytesToPopOnReturn()) { 1278 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1279 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL)) 1280 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1281 } else { 1282 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1283 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); 1284 } 1285 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1286 MIB.addReg(RetRegs[i], RegState::Implicit); 1287 return true; 1288 } 1289 1290 /// X86SelectLoad - Select and emit code to implement load instructions. 1291 /// 1292 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1293 const LoadInst *LI = cast<LoadInst>(I); 1294 1295 // Atomic loads need special handling. 1296 if (LI->isAtomic()) 1297 return false; 1298 1299 const Value *SV = I->getOperand(0); 1300 if (TLI.supportSwiftError()) { 1301 // Swifterror values can come from either a function parameter with 1302 // swifterror attribute or an alloca with swifterror attribute. 1303 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1304 if (Arg->hasSwiftErrorAttr()) 1305 return false; 1306 } 1307 1308 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1309 if (Alloca->isSwiftError()) 1310 return false; 1311 } 1312 } 1313 1314 MVT VT; 1315 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1316 return false; 1317 1318 const Value *Ptr = LI->getPointerOperand(); 1319 1320 X86AddressMode AM; 1321 if (!X86SelectAddress(Ptr, AM)) 1322 return false; 1323 1324 unsigned Alignment = LI->getAlignment(); 1325 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType()); 1326 if (Alignment == 0) // Ensure that codegen never sees alignment 0 1327 Alignment = ABIAlignment; 1328 1329 unsigned ResultReg = 0; 1330 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1331 Alignment)) 1332 return false; 1333 1334 updateValueMap(I, ResultReg); 1335 return true; 1336 } 1337 1338 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1339 bool HasAVX512 = Subtarget->hasAVX512(); 1340 bool HasAVX = Subtarget->hasAVX(); 1341 bool X86ScalarSSEf32 = Subtarget->hasSSE1(); 1342 bool X86ScalarSSEf64 = Subtarget->hasSSE2(); 1343 1344 switch (VT.getSimpleVT().SimpleTy) { 1345 default: return 0; 1346 case MVT::i8: return X86::CMP8rr; 1347 case MVT::i16: return X86::CMP16rr; 1348 case MVT::i32: return X86::CMP32rr; 1349 case MVT::i64: return X86::CMP64rr; 1350 case MVT::f32: 1351 return X86ScalarSSEf32 1352 ? (HasAVX512 ? X86::VUCOMISSZrr 1353 : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) 1354 : 0; 1355 case MVT::f64: 1356 return X86ScalarSSEf64 1357 ? (HasAVX512 ? X86::VUCOMISDZrr 1358 : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) 1359 : 0; 1360 } 1361 } 1362 1363 /// If we have a comparison with RHS as the RHS of the comparison, return an 1364 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1365 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1366 int64_t Val = RHSC->getSExtValue(); 1367 switch (VT.getSimpleVT().SimpleTy) { 1368 // Otherwise, we can't fold the immediate into this comparison. 1369 default: 1370 return 0; 1371 case MVT::i8: 1372 return X86::CMP8ri; 1373 case MVT::i16: 1374 if (isInt<8>(Val)) 1375 return X86::CMP16ri8; 1376 return X86::CMP16ri; 1377 case MVT::i32: 1378 if (isInt<8>(Val)) 1379 return X86::CMP32ri8; 1380 return X86::CMP32ri; 1381 case MVT::i64: 1382 if (isInt<8>(Val)) 1383 return X86::CMP64ri8; 1384 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1385 // field. 1386 if (isInt<32>(Val)) 1387 return X86::CMP64ri32; 1388 return 0; 1389 } 1390 } 1391 1392 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1393 const DebugLoc &CurDbgLoc) { 1394 unsigned Op0Reg = getRegForValue(Op0); 1395 if (Op0Reg == 0) return false; 1396 1397 // Handle 'null' like i32/i64 0. 1398 if (isa<ConstantPointerNull>(Op1)) 1399 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1400 1401 // We have two options: compare with register or immediate. If the RHS of 1402 // the compare is an immediate that we can fold into this compare, use 1403 // CMPri, otherwise use CMPrr. 1404 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1405 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1406 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) 1407 .addReg(Op0Reg) 1408 .addImm(Op1C->getSExtValue()); 1409 return true; 1410 } 1411 } 1412 1413 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1414 if (CompareOpc == 0) return false; 1415 1416 unsigned Op1Reg = getRegForValue(Op1); 1417 if (Op1Reg == 0) return false; 1418 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) 1419 .addReg(Op0Reg) 1420 .addReg(Op1Reg); 1421 1422 return true; 1423 } 1424 1425 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1426 const CmpInst *CI = cast<CmpInst>(I); 1427 1428 MVT VT; 1429 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1430 return false; 1431 1432 // Try to optimize or fold the cmp. 1433 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1434 unsigned ResultReg = 0; 1435 switch (Predicate) { 1436 default: break; 1437 case CmpInst::FCMP_FALSE: { 1438 ResultReg = createResultReg(&X86::GR32RegClass); 1439 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), 1440 ResultReg); 1441 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, 1442 X86::sub_8bit); 1443 if (!ResultReg) 1444 return false; 1445 break; 1446 } 1447 case CmpInst::FCMP_TRUE: { 1448 ResultReg = createResultReg(&X86::GR8RegClass); 1449 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 1450 ResultReg).addImm(1); 1451 break; 1452 } 1453 } 1454 1455 if (ResultReg) { 1456 updateValueMap(I, ResultReg); 1457 return true; 1458 } 1459 1460 const Value *LHS = CI->getOperand(0); 1461 const Value *RHS = CI->getOperand(1); 1462 1463 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1464 // We don't have to materialize a zero constant for this case and can just use 1465 // %x again on the RHS. 1466 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1467 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1468 if (RHSC && RHSC->isNullValue()) 1469 RHS = LHS; 1470 } 1471 1472 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1473 static const uint16_t SETFOpcTable[2][3] = { 1474 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1475 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1476 }; 1477 const uint16_t *SETFOpc = nullptr; 1478 switch (Predicate) { 1479 default: break; 1480 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1481 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1482 } 1483 1484 ResultReg = createResultReg(&X86::GR8RegClass); 1485 if (SETFOpc) { 1486 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1487 return false; 1488 1489 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); 1490 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); 1491 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1492 FlagReg1).addImm(SETFOpc[0]); 1493 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1494 FlagReg2).addImm(SETFOpc[1]); 1495 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), 1496 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1497 updateValueMap(I, ResultReg); 1498 return true; 1499 } 1500 1501 X86::CondCode CC; 1502 bool SwapArgs; 1503 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1504 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1505 1506 if (SwapArgs) 1507 std::swap(LHS, RHS); 1508 1509 // Emit a compare of LHS/RHS. 1510 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1511 return false; 1512 1513 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1514 ResultReg).addImm(CC); 1515 updateValueMap(I, ResultReg); 1516 return true; 1517 } 1518 1519 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1520 EVT DstVT = TLI.getValueType(DL, I->getType()); 1521 if (!TLI.isTypeLegal(DstVT)) 1522 return false; 1523 1524 unsigned ResultReg = getRegForValue(I->getOperand(0)); 1525 if (ResultReg == 0) 1526 return false; 1527 1528 // Handle zero-extension from i1 to i8, which is common. 1529 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1530 if (SrcVT == MVT::i1) { 1531 // Set the high bits to zero. 1532 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); 1533 SrcVT = MVT::i8; 1534 1535 if (ResultReg == 0) 1536 return false; 1537 } 1538 1539 if (DstVT == MVT::i64) { 1540 // Handle extension to 64-bits via sub-register shenanigans. 1541 unsigned MovInst; 1542 1543 switch (SrcVT.SimpleTy) { 1544 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1545 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1546 case MVT::i32: MovInst = X86::MOV32rr; break; 1547 default: llvm_unreachable("Unexpected zext to i64 source type"); 1548 } 1549 1550 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1551 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) 1552 .addReg(ResultReg); 1553 1554 ResultReg = createResultReg(&X86::GR64RegClass); 1555 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), 1556 ResultReg) 1557 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1558 } else if (DstVT == MVT::i16) { 1559 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1560 // extend to 32-bits and then extract down to 16-bits. 1561 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), 1563 Result32).addReg(ResultReg); 1564 1565 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, 1566 X86::sub_16bit); 1567 } else if (DstVT != MVT::i8) { 1568 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1569 ResultReg, /*Kill=*/true); 1570 if (ResultReg == 0) 1571 return false; 1572 } 1573 1574 updateValueMap(I, ResultReg); 1575 return true; 1576 } 1577 1578 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1579 EVT DstVT = TLI.getValueType(DL, I->getType()); 1580 if (!TLI.isTypeLegal(DstVT)) 1581 return false; 1582 1583 unsigned ResultReg = getRegForValue(I->getOperand(0)); 1584 if (ResultReg == 0) 1585 return false; 1586 1587 // Handle sign-extension from i1 to i8. 1588 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1589 if (SrcVT == MVT::i1) { 1590 // Set the high bits to zero. 1591 unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg, 1592 /*TODO: Kill=*/false); 1593 if (ZExtReg == 0) 1594 return false; 1595 1596 // Negate the result to make an 8-bit sign extended value. 1597 ResultReg = createResultReg(&X86::GR8RegClass); 1598 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), 1599 ResultReg).addReg(ZExtReg); 1600 1601 SrcVT = MVT::i8; 1602 } 1603 1604 if (DstVT == MVT::i16) { 1605 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1606 // extend to 32-bits and then extract down to 16-bits. 1607 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1608 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), 1609 Result32).addReg(ResultReg); 1610 1611 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, 1612 X86::sub_16bit); 1613 } else if (DstVT != MVT::i8) { 1614 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1615 ResultReg, /*Kill=*/true); 1616 if (ResultReg == 0) 1617 return false; 1618 } 1619 1620 updateValueMap(I, ResultReg); 1621 return true; 1622 } 1623 1624 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1625 // Unconditional branches are selected by tablegen-generated code. 1626 // Handle a conditional branch. 1627 const BranchInst *BI = cast<BranchInst>(I); 1628 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1629 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1630 1631 // Fold the common case of a conditional branch with a comparison 1632 // in the same block (values defined on other blocks may not have 1633 // initialized registers). 1634 X86::CondCode CC; 1635 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1636 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1637 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1638 1639 // Try to optimize or fold the cmp. 1640 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1641 switch (Predicate) { 1642 default: break; 1643 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; 1644 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; 1645 } 1646 1647 const Value *CmpLHS = CI->getOperand(0); 1648 const Value *CmpRHS = CI->getOperand(1); 1649 1650 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1651 // 0.0. 1652 // We don't have to materialize a zero constant for this case and can just 1653 // use %x again on the RHS. 1654 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1655 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1656 if (CmpRHSC && CmpRHSC->isNullValue()) 1657 CmpRHS = CmpLHS; 1658 } 1659 1660 // Try to take advantage of fallthrough opportunities. 1661 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1662 std::swap(TrueMBB, FalseMBB); 1663 Predicate = CmpInst::getInversePredicate(Predicate); 1664 } 1665 1666 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1667 // code check. Instead two branch instructions are required to check all 1668 // the flags. First we change the predicate to a supported condition code, 1669 // which will be the first branch. Later one we will emit the second 1670 // branch. 1671 bool NeedExtraBranch = false; 1672 switch (Predicate) { 1673 default: break; 1674 case CmpInst::FCMP_OEQ: 1675 std::swap(TrueMBB, FalseMBB); 1676 LLVM_FALLTHROUGH; 1677 case CmpInst::FCMP_UNE: 1678 NeedExtraBranch = true; 1679 Predicate = CmpInst::FCMP_ONE; 1680 break; 1681 } 1682 1683 bool SwapArgs; 1684 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1685 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1686 1687 if (SwapArgs) 1688 std::swap(CmpLHS, CmpRHS); 1689 1690 // Emit a compare of the LHS and RHS, setting the flags. 1691 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1692 return false; 1693 1694 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1695 .addMBB(TrueMBB).addImm(CC); 1696 1697 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1698 // to UNE above). 1699 if (NeedExtraBranch) { 1700 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1701 .addMBB(TrueMBB).addImm(X86::COND_P); 1702 } 1703 1704 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1705 return true; 1706 } 1707 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1708 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1709 // typically happen for _Bool and C++ bools. 1710 MVT SourceVT; 1711 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1712 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1713 unsigned TestOpc = 0; 1714 switch (SourceVT.SimpleTy) { 1715 default: break; 1716 case MVT::i8: TestOpc = X86::TEST8ri; break; 1717 case MVT::i16: TestOpc = X86::TEST16ri; break; 1718 case MVT::i32: TestOpc = X86::TEST32ri; break; 1719 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1720 } 1721 if (TestOpc) { 1722 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1723 if (OpReg == 0) return false; 1724 1725 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) 1726 .addReg(OpReg).addImm(1); 1727 1728 unsigned JmpCond = X86::COND_NE; 1729 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1730 std::swap(TrueMBB, FalseMBB); 1731 JmpCond = X86::COND_E; 1732 } 1733 1734 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1735 .addMBB(TrueMBB).addImm(JmpCond); 1736 1737 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1738 return true; 1739 } 1740 } 1741 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1742 // Fake request the condition, otherwise the intrinsic might be completely 1743 // optimized away. 1744 unsigned TmpReg = getRegForValue(BI->getCondition()); 1745 if (TmpReg == 0) 1746 return false; 1747 1748 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1749 .addMBB(TrueMBB).addImm(CC); 1750 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1751 return true; 1752 } 1753 1754 // Otherwise do a clumsy setcc and re-test it. 1755 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1756 // in an explicit cast, so make sure to handle that correctly. 1757 unsigned OpReg = getRegForValue(BI->getCondition()); 1758 if (OpReg == 0) return false; 1759 1760 // In case OpReg is a K register, COPY to a GPR 1761 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1762 unsigned KOpReg = OpReg; 1763 OpReg = createResultReg(&X86::GR32RegClass); 1764 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1765 TII.get(TargetOpcode::COPY), OpReg) 1766 .addReg(KOpReg); 1767 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true, 1768 X86::sub_8bit); 1769 } 1770 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 1771 .addReg(OpReg) 1772 .addImm(1); 1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1774 .addMBB(TrueMBB).addImm(X86::COND_NE); 1775 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1776 return true; 1777 } 1778 1779 bool X86FastISel::X86SelectShift(const Instruction *I) { 1780 unsigned CReg = 0, OpReg = 0; 1781 const TargetRegisterClass *RC = nullptr; 1782 if (I->getType()->isIntegerTy(8)) { 1783 CReg = X86::CL; 1784 RC = &X86::GR8RegClass; 1785 switch (I->getOpcode()) { 1786 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1787 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1788 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1789 default: return false; 1790 } 1791 } else if (I->getType()->isIntegerTy(16)) { 1792 CReg = X86::CX; 1793 RC = &X86::GR16RegClass; 1794 switch (I->getOpcode()) { 1795 default: llvm_unreachable("Unexpected shift opcode"); 1796 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1797 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1798 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1799 } 1800 } else if (I->getType()->isIntegerTy(32)) { 1801 CReg = X86::ECX; 1802 RC = &X86::GR32RegClass; 1803 switch (I->getOpcode()) { 1804 default: llvm_unreachable("Unexpected shift opcode"); 1805 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1806 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1807 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1808 } 1809 } else if (I->getType()->isIntegerTy(64)) { 1810 CReg = X86::RCX; 1811 RC = &X86::GR64RegClass; 1812 switch (I->getOpcode()) { 1813 default: llvm_unreachable("Unexpected shift opcode"); 1814 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1815 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1816 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1817 } 1818 } else { 1819 return false; 1820 } 1821 1822 MVT VT; 1823 if (!isTypeLegal(I->getType(), VT)) 1824 return false; 1825 1826 unsigned Op0Reg = getRegForValue(I->getOperand(0)); 1827 if (Op0Reg == 0) return false; 1828 1829 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1830 if (Op1Reg == 0) return false; 1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1832 CReg).addReg(Op1Reg); 1833 1834 // The shift instruction uses X86::CL. If we defined a super-register 1835 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1836 if (CReg != X86::CL) 1837 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1838 TII.get(TargetOpcode::KILL), X86::CL) 1839 .addReg(CReg, RegState::Kill); 1840 1841 unsigned ResultReg = createResultReg(RC); 1842 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) 1843 .addReg(Op0Reg); 1844 updateValueMap(I, ResultReg); 1845 return true; 1846 } 1847 1848 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1849 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1850 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1851 const static bool S = true; // IsSigned 1852 const static bool U = false; // !IsSigned 1853 const static unsigned Copy = TargetOpcode::COPY; 1854 // For the X86 DIV/IDIV instruction, in most cases the dividend 1855 // (numerator) must be in a specific register pair highreg:lowreg, 1856 // producing the quotient in lowreg and the remainder in highreg. 1857 // For most data types, to set up the instruction, the dividend is 1858 // copied into lowreg, and lowreg is sign-extended or zero-extended 1859 // into highreg. The exception is i8, where the dividend is defined 1860 // as a single register rather than a register pair, and we 1861 // therefore directly sign-extend or zero-extend the dividend into 1862 // lowreg, instead of copying, and ignore the highreg. 1863 const static struct DivRemEntry { 1864 // The following portion depends only on the data type. 1865 const TargetRegisterClass *RC; 1866 unsigned LowInReg; // low part of the register pair 1867 unsigned HighInReg; // high part of the register pair 1868 // The following portion depends on both the data type and the operation. 1869 struct DivRemResult { 1870 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1871 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1872 // highreg, or copying a zero into highreg. 1873 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1874 // zero/sign-extending into lowreg for i8. 1875 unsigned DivRemResultReg; // Register containing the desired result. 1876 bool IsOpSigned; // Whether to use signed or unsigned form. 1877 } ResultTable[NumOps]; 1878 } OpTable[NumTypes] = { 1879 { &X86::GR8RegClass, X86::AX, 0, { 1880 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1881 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1882 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1883 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1884 } 1885 }, // i8 1886 { &X86::GR16RegClass, X86::AX, X86::DX, { 1887 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1888 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1889 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1890 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1891 } 1892 }, // i16 1893 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1894 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1895 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1896 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1897 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1898 } 1899 }, // i32 1900 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1901 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1902 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1903 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1904 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1905 } 1906 }, // i64 1907 }; 1908 1909 MVT VT; 1910 if (!isTypeLegal(I->getType(), VT)) 1911 return false; 1912 1913 unsigned TypeIndex, OpIndex; 1914 switch (VT.SimpleTy) { 1915 default: return false; 1916 case MVT::i8: TypeIndex = 0; break; 1917 case MVT::i16: TypeIndex = 1; break; 1918 case MVT::i32: TypeIndex = 2; break; 1919 case MVT::i64: TypeIndex = 3; 1920 if (!Subtarget->is64Bit()) 1921 return false; 1922 break; 1923 } 1924 1925 switch (I->getOpcode()) { 1926 default: llvm_unreachable("Unexpected div/rem opcode"); 1927 case Instruction::SDiv: OpIndex = 0; break; 1928 case Instruction::SRem: OpIndex = 1; break; 1929 case Instruction::UDiv: OpIndex = 2; break; 1930 case Instruction::URem: OpIndex = 3; break; 1931 } 1932 1933 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1934 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1935 unsigned Op0Reg = getRegForValue(I->getOperand(0)); 1936 if (Op0Reg == 0) 1937 return false; 1938 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1939 if (Op1Reg == 0) 1940 return false; 1941 1942 // Move op0 into low-order input register. 1943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1944 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1945 // Zero-extend or sign-extend into high-order input register. 1946 if (OpEntry.OpSignExtend) { 1947 if (OpEntry.IsOpSigned) 1948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1949 TII.get(OpEntry.OpSignExtend)); 1950 else { 1951 unsigned Zero32 = createResultReg(&X86::GR32RegClass); 1952 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1953 TII.get(X86::MOV32r0), Zero32); 1954 1955 // Copy the zero into the appropriate sub/super/identical physical 1956 // register. Unfortunately the operations needed are not uniform enough 1957 // to fit neatly into the table above. 1958 if (VT == MVT::i16) { 1959 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1960 TII.get(Copy), TypeEntry.HighInReg) 1961 .addReg(Zero32, 0, X86::sub_16bit); 1962 } else if (VT == MVT::i32) { 1963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1964 TII.get(Copy), TypeEntry.HighInReg) 1965 .addReg(Zero32); 1966 } else if (VT == MVT::i64) { 1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1968 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1969 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1970 } 1971 } 1972 } 1973 // Generate the DIV/IDIV instruction. 1974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1975 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1976 // For i8 remainder, we can't reference ah directly, as we'll end 1977 // up with bogus copies like %r9b = COPY %ah. Reference ax 1978 // instead to prevent ah references in a rex instruction. 1979 // 1980 // The current assumption of the fast register allocator is that isel 1981 // won't generate explicit references to the GR8_NOREX registers. If 1982 // the allocator and/or the backend get enhanced to be more robust in 1983 // that regard, this can be, and should be, removed. 1984 unsigned ResultReg = 0; 1985 if ((I->getOpcode() == Instruction::SRem || 1986 I->getOpcode() == Instruction::URem) && 1987 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 1988 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); 1989 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); 1990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1991 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 1992 1993 // Shift AX right by 8 bits instead of using AH. 1994 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), 1995 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 1996 1997 // Now reference the 8-bit subreg of the result. 1998 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 1999 /*Kill=*/true, X86::sub_8bit); 2000 } 2001 // Copy the result out of the physreg if we haven't already. 2002 if (!ResultReg) { 2003 ResultReg = createResultReg(TypeEntry.RC); 2004 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) 2005 .addReg(OpEntry.DivRemResultReg); 2006 } 2007 updateValueMap(I, ResultReg); 2008 2009 return true; 2010 } 2011 2012 /// Emit a conditional move instruction (if the are supported) to lower 2013 /// the select. 2014 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2015 // Check if the subtarget supports these instructions. 2016 if (!Subtarget->hasCMov()) 2017 return false; 2018 2019 // FIXME: Add support for i8. 2020 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2021 return false; 2022 2023 const Value *Cond = I->getOperand(0); 2024 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2025 bool NeedTest = true; 2026 X86::CondCode CC = X86::COND_NE; 2027 2028 // Optimize conditions coming from a compare if both instructions are in the 2029 // same basic block (values defined in other basic blocks may not have 2030 // initialized registers). 2031 const auto *CI = dyn_cast<CmpInst>(Cond); 2032 if (CI && (CI->getParent() == I->getParent())) { 2033 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2034 2035 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2036 static const uint16_t SETFOpcTable[2][3] = { 2037 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2038 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2039 }; 2040 const uint16_t *SETFOpc = nullptr; 2041 switch (Predicate) { 2042 default: break; 2043 case CmpInst::FCMP_OEQ: 2044 SETFOpc = &SETFOpcTable[0][0]; 2045 Predicate = CmpInst::ICMP_NE; 2046 break; 2047 case CmpInst::FCMP_UNE: 2048 SETFOpc = &SETFOpcTable[1][0]; 2049 Predicate = CmpInst::ICMP_NE; 2050 break; 2051 } 2052 2053 bool NeedSwap; 2054 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2055 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2056 2057 const Value *CmpLHS = CI->getOperand(0); 2058 const Value *CmpRHS = CI->getOperand(1); 2059 if (NeedSwap) 2060 std::swap(CmpLHS, CmpRHS); 2061 2062 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2063 // Emit a compare of the LHS and RHS, setting the flags. 2064 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2065 return false; 2066 2067 if (SETFOpc) { 2068 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); 2069 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); 2070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2071 FlagReg1).addImm(SETFOpc[0]); 2072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2073 FlagReg2).addImm(SETFOpc[1]); 2074 auto const &II = TII.get(SETFOpc[2]); 2075 if (II.getNumDefs()) { 2076 unsigned TmpReg = createResultReg(&X86::GR8RegClass); 2077 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) 2078 .addReg(FlagReg2).addReg(FlagReg1); 2079 } else { 2080 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2081 .addReg(FlagReg2).addReg(FlagReg1); 2082 } 2083 } 2084 NeedTest = false; 2085 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2086 // Fake request the condition, otherwise the intrinsic might be completely 2087 // optimized away. 2088 unsigned TmpReg = getRegForValue(Cond); 2089 if (TmpReg == 0) 2090 return false; 2091 2092 NeedTest = false; 2093 } 2094 2095 if (NeedTest) { 2096 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2097 // garbage. Indeed, only the less significant bit is supposed to be 2098 // accurate. If we read more than the lsb, we may see non-zero values 2099 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2100 // the select. This is achieved by performing TEST against 1. 2101 unsigned CondReg = getRegForValue(Cond); 2102 if (CondReg == 0) 2103 return false; 2104 bool CondIsKill = hasTrivialKill(Cond); 2105 2106 // In case OpReg is a K register, COPY to a GPR 2107 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2108 unsigned KCondReg = CondReg; 2109 CondReg = createResultReg(&X86::GR32RegClass); 2110 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2111 TII.get(TargetOpcode::COPY), CondReg) 2112 .addReg(KCondReg, getKillRegState(CondIsKill)); 2113 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, 2114 X86::sub_8bit); 2115 } 2116 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2117 .addReg(CondReg, getKillRegState(CondIsKill)) 2118 .addImm(1); 2119 } 2120 2121 const Value *LHS = I->getOperand(1); 2122 const Value *RHS = I->getOperand(2); 2123 2124 unsigned RHSReg = getRegForValue(RHS); 2125 bool RHSIsKill = hasTrivialKill(RHS); 2126 2127 unsigned LHSReg = getRegForValue(LHS); 2128 bool LHSIsKill = hasTrivialKill(LHS); 2129 2130 if (!LHSReg || !RHSReg) 2131 return false; 2132 2133 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2134 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); 2135 unsigned ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, 2136 LHSReg, LHSIsKill, CC); 2137 updateValueMap(I, ResultReg); 2138 return true; 2139 } 2140 2141 /// Emit SSE or AVX instructions to lower the select. 2142 /// 2143 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2144 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2145 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2146 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2147 // Optimize conditions coming from a compare if both instructions are in the 2148 // same basic block (values defined in other basic blocks may not have 2149 // initialized registers). 2150 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2151 if (!CI || (CI->getParent() != I->getParent())) 2152 return false; 2153 2154 if (I->getType() != CI->getOperand(0)->getType() || 2155 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2156 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2157 return false; 2158 2159 const Value *CmpLHS = CI->getOperand(0); 2160 const Value *CmpRHS = CI->getOperand(1); 2161 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2162 2163 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2164 // We don't have to materialize a zero constant for this case and can just use 2165 // %x again on the RHS. 2166 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2167 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2168 if (CmpRHSC && CmpRHSC->isNullValue()) 2169 CmpRHS = CmpLHS; 2170 } 2171 2172 unsigned CC; 2173 bool NeedSwap; 2174 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2175 if (CC > 7 && !Subtarget->hasAVX()) 2176 return false; 2177 2178 if (NeedSwap) 2179 std::swap(CmpLHS, CmpRHS); 2180 2181 const Value *LHS = I->getOperand(1); 2182 const Value *RHS = I->getOperand(2); 2183 2184 unsigned LHSReg = getRegForValue(LHS); 2185 bool LHSIsKill = hasTrivialKill(LHS); 2186 2187 unsigned RHSReg = getRegForValue(RHS); 2188 bool RHSIsKill = hasTrivialKill(RHS); 2189 2190 unsigned CmpLHSReg = getRegForValue(CmpLHS); 2191 bool CmpLHSIsKill = hasTrivialKill(CmpLHS); 2192 2193 unsigned CmpRHSReg = getRegForValue(CmpRHS); 2194 bool CmpRHSIsKill = hasTrivialKill(CmpRHS); 2195 2196 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) 2197 return false; 2198 2199 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2200 unsigned ResultReg; 2201 2202 if (Subtarget->hasAVX512()) { 2203 // If we have AVX512 we can use a mask compare and masked movss/sd. 2204 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2205 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2206 2207 unsigned CmpOpcode = 2208 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; 2209 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill, 2210 CmpRHSReg, CmpRHSIsKill, CC); 2211 2212 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2213 // bits of the result register since its not based on any of the inputs. 2214 unsigned ImplicitDefReg = createResultReg(VR128X); 2215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2216 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2217 2218 // Place RHSReg is the passthru of the masked movss/sd operation and put 2219 // LHS in the input. The mask input comes from the compare. 2220 unsigned MovOpcode = 2221 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2222 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill, 2223 CmpReg, true, ImplicitDefReg, true, 2224 LHSReg, LHSIsKill); 2225 2226 ResultReg = createResultReg(RC); 2227 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2228 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2229 2230 } else if (Subtarget->hasAVX()) { 2231 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2232 2233 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2234 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2235 // uses XMM0 as the selection register. That may need just as many 2236 // instructions as the AND/ANDN/OR sequence due to register moves, so 2237 // don't bother. 2238 unsigned CmpOpcode = 2239 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; 2240 unsigned BlendOpcode = 2241 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; 2242 2243 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill, 2244 CmpRHSReg, CmpRHSIsKill, CC); 2245 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill, 2246 LHSReg, LHSIsKill, CmpReg, true); 2247 ResultReg = createResultReg(RC); 2248 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2249 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2250 } else { 2251 // Choose the SSE instruction sequence based on data type (float or double). 2252 static const uint16_t OpcTable[2][4] = { 2253 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2254 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2255 }; 2256 2257 const uint16_t *Opc = nullptr; 2258 switch (RetVT.SimpleTy) { 2259 default: return false; 2260 case MVT::f32: Opc = &OpcTable[0][0]; break; 2261 case MVT::f64: Opc = &OpcTable[1][0]; break; 2262 } 2263 2264 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2265 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, 2266 CmpRHSReg, CmpRHSIsKill, CC); 2267 unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false, 2268 LHSReg, LHSIsKill); 2269 unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true, 2270 RHSReg, RHSIsKill); 2271 unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true, 2272 AndReg, /*IsKill=*/true); 2273 ResultReg = createResultReg(RC); 2274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2275 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2276 } 2277 updateValueMap(I, ResultReg); 2278 return true; 2279 } 2280 2281 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2282 // These are pseudo CMOV instructions and will be later expanded into control- 2283 // flow. 2284 unsigned Opc; 2285 switch (RetVT.SimpleTy) { 2286 default: return false; 2287 case MVT::i8: Opc = X86::CMOV_GR8; break; 2288 case MVT::i16: Opc = X86::CMOV_GR16; break; 2289 case MVT::i32: Opc = X86::CMOV_GR32; break; 2290 case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X 2291 : X86::CMOV_FR32; break; 2292 case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X 2293 : X86::CMOV_FR64; break; 2294 } 2295 2296 const Value *Cond = I->getOperand(0); 2297 X86::CondCode CC = X86::COND_NE; 2298 2299 // Optimize conditions coming from a compare if both instructions are in the 2300 // same basic block (values defined in other basic blocks may not have 2301 // initialized registers). 2302 const auto *CI = dyn_cast<CmpInst>(Cond); 2303 if (CI && (CI->getParent() == I->getParent())) { 2304 bool NeedSwap; 2305 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2306 if (CC > X86::LAST_VALID_COND) 2307 return false; 2308 2309 const Value *CmpLHS = CI->getOperand(0); 2310 const Value *CmpRHS = CI->getOperand(1); 2311 2312 if (NeedSwap) 2313 std::swap(CmpLHS, CmpRHS); 2314 2315 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2316 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2317 return false; 2318 } else { 2319 unsigned CondReg = getRegForValue(Cond); 2320 if (CondReg == 0) 2321 return false; 2322 bool CondIsKill = hasTrivialKill(Cond); 2323 2324 // In case OpReg is a K register, COPY to a GPR 2325 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2326 unsigned KCondReg = CondReg; 2327 CondReg = createResultReg(&X86::GR32RegClass); 2328 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2329 TII.get(TargetOpcode::COPY), CondReg) 2330 .addReg(KCondReg, getKillRegState(CondIsKill)); 2331 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, 2332 X86::sub_8bit); 2333 } 2334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2335 .addReg(CondReg, getKillRegState(CondIsKill)) 2336 .addImm(1); 2337 } 2338 2339 const Value *LHS = I->getOperand(1); 2340 const Value *RHS = I->getOperand(2); 2341 2342 unsigned LHSReg = getRegForValue(LHS); 2343 bool LHSIsKill = hasTrivialKill(LHS); 2344 2345 unsigned RHSReg = getRegForValue(RHS); 2346 bool RHSIsKill = hasTrivialKill(RHS); 2347 2348 if (!LHSReg || !RHSReg) 2349 return false; 2350 2351 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2352 2353 unsigned ResultReg = 2354 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); 2355 updateValueMap(I, ResultReg); 2356 return true; 2357 } 2358 2359 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2360 MVT RetVT; 2361 if (!isTypeLegal(I->getType(), RetVT)) 2362 return false; 2363 2364 // Check if we can fold the select. 2365 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2366 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2367 const Value *Opnd = nullptr; 2368 switch (Predicate) { 2369 default: break; 2370 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2371 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2372 } 2373 // No need for a select anymore - this is an unconditional move. 2374 if (Opnd) { 2375 unsigned OpReg = getRegForValue(Opnd); 2376 if (OpReg == 0) 2377 return false; 2378 bool OpIsKill = hasTrivialKill(Opnd); 2379 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2380 unsigned ResultReg = createResultReg(RC); 2381 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2382 TII.get(TargetOpcode::COPY), ResultReg) 2383 .addReg(OpReg, getKillRegState(OpIsKill)); 2384 updateValueMap(I, ResultReg); 2385 return true; 2386 } 2387 } 2388 2389 // First try to use real conditional move instructions. 2390 if (X86FastEmitCMoveSelect(RetVT, I)) 2391 return true; 2392 2393 // Try to use a sequence of SSE instructions to simulate a conditional move. 2394 if (X86FastEmitSSESelect(RetVT, I)) 2395 return true; 2396 2397 // Fall-back to pseudo conditional move instructions, which will be later 2398 // converted to control-flow. 2399 if (X86FastEmitPseudoSelect(RetVT, I)) 2400 return true; 2401 2402 return false; 2403 } 2404 2405 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2406 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2407 // The target-independent selection algorithm in FastISel already knows how 2408 // to select a SINT_TO_FP if the target is SSE but not AVX. 2409 // Early exit if the subtarget doesn't have AVX. 2410 // Unsigned conversion requires avx512. 2411 bool HasAVX512 = Subtarget->hasAVX512(); 2412 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2413 return false; 2414 2415 // TODO: We could sign extend narrower types. 2416 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 2417 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2418 return false; 2419 2420 // Select integer to float/double conversion. 2421 unsigned OpReg = getRegForValue(I->getOperand(0)); 2422 if (OpReg == 0) 2423 return false; 2424 2425 unsigned Opcode; 2426 2427 static const uint16_t SCvtOpc[2][2][2] = { 2428 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2429 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2430 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2431 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2432 }; 2433 static const uint16_t UCvtOpc[2][2] = { 2434 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2435 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2436 }; 2437 bool Is64Bit = SrcVT == MVT::i64; 2438 2439 if (I->getType()->isDoubleTy()) { 2440 // s/uitofp int -> double 2441 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2442 } else if (I->getType()->isFloatTy()) { 2443 // s/uitofp int -> float 2444 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2445 } else 2446 return false; 2447 2448 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2449 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2450 unsigned ImplicitDefReg = createResultReg(RC); 2451 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2452 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2453 unsigned ResultReg = 2454 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false); 2455 updateValueMap(I, ResultReg); 2456 return true; 2457 } 2458 2459 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2460 return X86SelectIntToFP(I, /*IsSigned*/true); 2461 } 2462 2463 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2464 return X86SelectIntToFP(I, /*IsSigned*/false); 2465 } 2466 2467 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2468 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2469 unsigned TargetOpc, 2470 const TargetRegisterClass *RC) { 2471 assert((I->getOpcode() == Instruction::FPExt || 2472 I->getOpcode() == Instruction::FPTrunc) && 2473 "Instruction must be an FPExt or FPTrunc!"); 2474 bool HasAVX = Subtarget->hasAVX(); 2475 2476 unsigned OpReg = getRegForValue(I->getOperand(0)); 2477 if (OpReg == 0) 2478 return false; 2479 2480 unsigned ImplicitDefReg; 2481 if (HasAVX) { 2482 ImplicitDefReg = createResultReg(RC); 2483 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2484 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2485 2486 } 2487 2488 unsigned ResultReg = createResultReg(RC); 2489 MachineInstrBuilder MIB; 2490 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), 2491 ResultReg); 2492 2493 if (HasAVX) 2494 MIB.addReg(ImplicitDefReg); 2495 2496 MIB.addReg(OpReg); 2497 updateValueMap(I, ResultReg); 2498 return true; 2499 } 2500 2501 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2502 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && 2503 I->getOperand(0)->getType()->isFloatTy()) { 2504 bool HasAVX512 = Subtarget->hasAVX512(); 2505 // fpext from float to double. 2506 unsigned Opc = 2507 HasAVX512 ? X86::VCVTSS2SDZrr 2508 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2509 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2510 } 2511 2512 return false; 2513 } 2514 2515 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2516 if (X86ScalarSSEf64 && I->getType()->isFloatTy() && 2517 I->getOperand(0)->getType()->isDoubleTy()) { 2518 bool HasAVX512 = Subtarget->hasAVX512(); 2519 // fptrunc from double to float. 2520 unsigned Opc = 2521 HasAVX512 ? X86::VCVTSD2SSZrr 2522 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2523 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2524 } 2525 2526 return false; 2527 } 2528 2529 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2530 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2531 EVT DstVT = TLI.getValueType(DL, I->getType()); 2532 2533 // This code only handles truncation to byte. 2534 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2535 return false; 2536 if (!TLI.isTypeLegal(SrcVT)) 2537 return false; 2538 2539 unsigned InputReg = getRegForValue(I->getOperand(0)); 2540 if (!InputReg) 2541 // Unhandled operand. Halt "fast" selection and bail. 2542 return false; 2543 2544 if (SrcVT == MVT::i8) { 2545 // Truncate from i8 to i1; no code needed. 2546 updateValueMap(I, InputReg); 2547 return true; 2548 } 2549 2550 // Issue an extract_subreg. 2551 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8, 2552 InputReg, false, 2553 X86::sub_8bit); 2554 if (!ResultReg) 2555 return false; 2556 2557 updateValueMap(I, ResultReg); 2558 return true; 2559 } 2560 2561 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2562 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2563 } 2564 2565 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2566 X86AddressMode SrcAM, uint64_t Len) { 2567 2568 // Make sure we don't bloat code by inlining very large memcpy's. 2569 if (!IsMemcpySmall(Len)) 2570 return false; 2571 2572 bool i64Legal = Subtarget->is64Bit(); 2573 2574 // We don't care about alignment here since we just emit integer accesses. 2575 while (Len) { 2576 MVT VT; 2577 if (Len >= 8 && i64Legal) 2578 VT = MVT::i64; 2579 else if (Len >= 4) 2580 VT = MVT::i32; 2581 else if (Len >= 2) 2582 VT = MVT::i16; 2583 else 2584 VT = MVT::i8; 2585 2586 unsigned Reg; 2587 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2588 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); 2589 assert(RV && "Failed to emit load or store??"); 2590 2591 unsigned Size = VT.getSizeInBits()/8; 2592 Len -= Size; 2593 DestAM.Disp += Size; 2594 SrcAM.Disp += Size; 2595 } 2596 2597 return true; 2598 } 2599 2600 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2601 // FIXME: Handle more intrinsics. 2602 switch (II->getIntrinsicID()) { 2603 default: return false; 2604 case Intrinsic::convert_from_fp16: 2605 case Intrinsic::convert_to_fp16: { 2606 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2607 return false; 2608 2609 const Value *Op = II->getArgOperand(0); 2610 unsigned InputReg = getRegForValue(Op); 2611 if (InputReg == 0) 2612 return false; 2613 2614 // F16C only allows converting from float to half and from half to float. 2615 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2616 if (IsFloatToHalf) { 2617 if (!Op->getType()->isFloatTy()) 2618 return false; 2619 } else { 2620 if (!II->getType()->isFloatTy()) 2621 return false; 2622 } 2623 2624 unsigned ResultReg = 0; 2625 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2626 if (IsFloatToHalf) { 2627 // 'InputReg' is implicitly promoted from register class FR32 to 2628 // register class VR128 by method 'constrainOperandRegClass' which is 2629 // directly called by 'fastEmitInst_ri'. 2630 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2631 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2632 // It's consistent with the other FP instructions, which are usually 2633 // controlled by MXCSR. 2634 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4); 2635 2636 // Move the lower 32-bits of ResultReg to another register of class GR32. 2637 ResultReg = createResultReg(&X86::GR32RegClass); 2638 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2639 TII.get(X86::VMOVPDI2DIrr), ResultReg) 2640 .addReg(InputReg, RegState::Kill); 2641 2642 // The result value is in the lower 16-bits of ResultReg. 2643 unsigned RegIdx = X86::sub_16bit; 2644 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx); 2645 } else { 2646 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2647 // Explicitly sign-extend the input to 32-bit. 2648 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg, 2649 /*Kill=*/false); 2650 2651 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2652 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2653 InputReg, /*Kill=*/true); 2654 2655 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true); 2656 2657 // The result value is in the lower 32-bits of ResultReg. 2658 // Emit an explicit copy from register class VR128 to register class FR32. 2659 ResultReg = createResultReg(&X86::FR32RegClass); 2660 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2661 TII.get(TargetOpcode::COPY), ResultReg) 2662 .addReg(InputReg, RegState::Kill); 2663 } 2664 2665 updateValueMap(II, ResultReg); 2666 return true; 2667 } 2668 case Intrinsic::frameaddress: { 2669 MachineFunction *MF = FuncInfo.MF; 2670 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2671 return false; 2672 2673 Type *RetTy = II->getCalledFunction()->getReturnType(); 2674 2675 MVT VT; 2676 if (!isTypeLegal(RetTy, VT)) 2677 return false; 2678 2679 unsigned Opc; 2680 const TargetRegisterClass *RC = nullptr; 2681 2682 switch (VT.SimpleTy) { 2683 default: llvm_unreachable("Invalid result type for frameaddress."); 2684 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2685 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2686 } 2687 2688 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2689 // we get the wrong frame register. 2690 MachineFrameInfo &MFI = MF->getFrameInfo(); 2691 MFI.setFrameAddressIsTaken(true); 2692 2693 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2694 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2695 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2696 (FrameReg == X86::EBP && VT == MVT::i32)) && 2697 "Invalid Frame Register!"); 2698 2699 // Always make a copy of the frame register to a vreg first, so that we 2700 // never directly reference the frame register (the TwoAddressInstruction- 2701 // Pass doesn't like that). 2702 unsigned SrcReg = createResultReg(RC); 2703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2704 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2705 2706 // Now recursively load from the frame address. 2707 // movq (%rbp), %rax 2708 // movq (%rax), %rax 2709 // movq (%rax), %rax 2710 // ... 2711 unsigned DestReg; 2712 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2713 while (Depth--) { 2714 DestReg = createResultReg(RC); 2715 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2716 TII.get(Opc), DestReg), SrcReg); 2717 SrcReg = DestReg; 2718 } 2719 2720 updateValueMap(II, SrcReg); 2721 return true; 2722 } 2723 case Intrinsic::memcpy: { 2724 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2725 // Don't handle volatile or variable length memcpys. 2726 if (MCI->isVolatile()) 2727 return false; 2728 2729 if (isa<ConstantInt>(MCI->getLength())) { 2730 // Small memcpy's are common enough that we want to do them 2731 // without a call if possible. 2732 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2733 if (IsMemcpySmall(Len)) { 2734 X86AddressMode DestAM, SrcAM; 2735 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2736 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2737 return false; 2738 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2739 return true; 2740 } 2741 } 2742 2743 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2744 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2745 return false; 2746 2747 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2748 return false; 2749 2750 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1); 2751 } 2752 case Intrinsic::memset: { 2753 const MemSetInst *MSI = cast<MemSetInst>(II); 2754 2755 if (MSI->isVolatile()) 2756 return false; 2757 2758 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2759 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2760 return false; 2761 2762 if (MSI->getDestAddressSpace() > 255) 2763 return false; 2764 2765 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); 2766 } 2767 case Intrinsic::stackprotector: { 2768 // Emit code to store the stack guard onto the stack. 2769 EVT PtrTy = TLI.getPointerTy(DL); 2770 2771 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2772 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2773 2774 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2775 2776 // Grab the frame index. 2777 X86AddressMode AM; 2778 if (!X86SelectAddress(Slot, AM)) return false; 2779 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2780 return true; 2781 } 2782 case Intrinsic::dbg_declare: { 2783 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2784 X86AddressMode AM; 2785 assert(DI->getAddress() && "Null address should be checked earlier!"); 2786 if (!X86SelectAddress(DI->getAddress(), AM)) 2787 return false; 2788 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2789 // FIXME may need to add RegState::Debug to any registers produced, 2790 // although ESP/EBP should be the only ones at the moment. 2791 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 2792 "Expected inlined-at fields to agree"); 2793 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) 2794 .addImm(0) 2795 .addMetadata(DI->getVariable()) 2796 .addMetadata(DI->getExpression()); 2797 return true; 2798 } 2799 case Intrinsic::trap: { 2800 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); 2801 return true; 2802 } 2803 case Intrinsic::sqrt: { 2804 if (!Subtarget->hasSSE1()) 2805 return false; 2806 2807 Type *RetTy = II->getCalledFunction()->getReturnType(); 2808 2809 MVT VT; 2810 if (!isTypeLegal(RetTy, VT)) 2811 return false; 2812 2813 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2814 // is not generated by FastISel yet. 2815 // FIXME: Update this code once tablegen can handle it. 2816 static const uint16_t SqrtOpc[3][2] = { 2817 { X86::SQRTSSr, X86::SQRTSDr }, 2818 { X86::VSQRTSSr, X86::VSQRTSDr }, 2819 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2820 }; 2821 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2822 Subtarget->hasAVX() ? 1 : 2823 0; 2824 unsigned Opc; 2825 switch (VT.SimpleTy) { 2826 default: return false; 2827 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2828 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2829 } 2830 2831 const Value *SrcVal = II->getArgOperand(0); 2832 unsigned SrcReg = getRegForValue(SrcVal); 2833 2834 if (SrcReg == 0) 2835 return false; 2836 2837 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2838 unsigned ImplicitDefReg = 0; 2839 if (AVXLevel > 0) { 2840 ImplicitDefReg = createResultReg(RC); 2841 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2842 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2843 } 2844 2845 unsigned ResultReg = createResultReg(RC); 2846 MachineInstrBuilder MIB; 2847 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 2848 ResultReg); 2849 2850 if (ImplicitDefReg) 2851 MIB.addReg(ImplicitDefReg); 2852 2853 MIB.addReg(SrcReg); 2854 2855 updateValueMap(II, ResultReg); 2856 return true; 2857 } 2858 case Intrinsic::sadd_with_overflow: 2859 case Intrinsic::uadd_with_overflow: 2860 case Intrinsic::ssub_with_overflow: 2861 case Intrinsic::usub_with_overflow: 2862 case Intrinsic::smul_with_overflow: 2863 case Intrinsic::umul_with_overflow: { 2864 // This implements the basic lowering of the xalu with overflow intrinsics 2865 // into add/sub/mul followed by either seto or setb. 2866 const Function *Callee = II->getCalledFunction(); 2867 auto *Ty = cast<StructType>(Callee->getReturnType()); 2868 Type *RetTy = Ty->getTypeAtIndex(0U); 2869 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2870 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2871 "Overflow value expected to be an i1"); 2872 2873 MVT VT; 2874 if (!isTypeLegal(RetTy, VT)) 2875 return false; 2876 2877 if (VT < MVT::i8 || VT > MVT::i64) 2878 return false; 2879 2880 const Value *LHS = II->getArgOperand(0); 2881 const Value *RHS = II->getArgOperand(1); 2882 2883 // Canonicalize immediate to the RHS. 2884 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && 2885 isCommutativeIntrinsic(II)) 2886 std::swap(LHS, RHS); 2887 2888 unsigned BaseOpc, CondCode; 2889 switch (II->getIntrinsicID()) { 2890 default: llvm_unreachable("Unexpected intrinsic!"); 2891 case Intrinsic::sadd_with_overflow: 2892 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2893 case Intrinsic::uadd_with_overflow: 2894 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2895 case Intrinsic::ssub_with_overflow: 2896 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2897 case Intrinsic::usub_with_overflow: 2898 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2899 case Intrinsic::smul_with_overflow: 2900 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2901 case Intrinsic::umul_with_overflow: 2902 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2903 } 2904 2905 unsigned LHSReg = getRegForValue(LHS); 2906 if (LHSReg == 0) 2907 return false; 2908 bool LHSIsKill = hasTrivialKill(LHS); 2909 2910 unsigned ResultReg = 0; 2911 // Check if we have an immediate version. 2912 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2913 static const uint16_t Opc[2][4] = { 2914 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2915 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2916 }; 2917 2918 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2919 CondCode == X86::COND_O) { 2920 // We can use INC/DEC. 2921 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2922 bool IsDec = BaseOpc == ISD::SUB; 2923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2924 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2925 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2926 } else 2927 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, 2928 CI->getZExtValue()); 2929 } 2930 2931 unsigned RHSReg; 2932 bool RHSIsKill; 2933 if (!ResultReg) { 2934 RHSReg = getRegForValue(RHS); 2935 if (RHSReg == 0) 2936 return false; 2937 RHSIsKill = hasTrivialKill(RHS); 2938 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, 2939 RHSIsKill); 2940 } 2941 2942 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2943 // it manually. 2944 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2945 static const uint16_t MULOpc[] = 2946 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2947 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2948 // First copy the first operand into RAX, which is an implicit input to 2949 // the X86::MUL*r instruction. 2950 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2951 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2952 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2953 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2954 TLI.getRegClassFor(VT), RHSReg, RHSIsKill); 2955 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2956 static const uint16_t MULOpc[] = 2957 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2958 if (VT == MVT::i8) { 2959 // Copy the first operand into AL, which is an implicit input to the 2960 // X86::IMUL8r instruction. 2961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2962 TII.get(TargetOpcode::COPY), X86::AL) 2963 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2964 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, 2965 RHSIsKill); 2966 } else 2967 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2968 TLI.getRegClassFor(VT), LHSReg, LHSIsKill, 2969 RHSReg, RHSIsKill); 2970 } 2971 2972 if (!ResultReg) 2973 return false; 2974 2975 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2976 unsigned ResultReg2 = createResultReg(&X86::GR8RegClass); 2977 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2979 ResultReg2).addImm(CondCode); 2980 2981 updateValueMap(II, ResultReg, 2); 2982 return true; 2983 } 2984 case Intrinsic::x86_sse_cvttss2si: 2985 case Intrinsic::x86_sse_cvttss2si64: 2986 case Intrinsic::x86_sse2_cvttsd2si: 2987 case Intrinsic::x86_sse2_cvttsd2si64: { 2988 bool IsInputDouble; 2989 switch (II->getIntrinsicID()) { 2990 default: llvm_unreachable("Unexpected intrinsic."); 2991 case Intrinsic::x86_sse_cvttss2si: 2992 case Intrinsic::x86_sse_cvttss2si64: 2993 if (!Subtarget->hasSSE1()) 2994 return false; 2995 IsInputDouble = false; 2996 break; 2997 case Intrinsic::x86_sse2_cvttsd2si: 2998 case Intrinsic::x86_sse2_cvttsd2si64: 2999 if (!Subtarget->hasSSE2()) 3000 return false; 3001 IsInputDouble = true; 3002 break; 3003 } 3004 3005 Type *RetTy = II->getCalledFunction()->getReturnType(); 3006 MVT VT; 3007 if (!isTypeLegal(RetTy, VT)) 3008 return false; 3009 3010 static const uint16_t CvtOpc[3][2][2] = { 3011 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 3012 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 3013 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 3014 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 3015 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 3016 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 3017 }; 3018 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 3019 Subtarget->hasAVX() ? 1 : 3020 0; 3021 unsigned Opc; 3022 switch (VT.SimpleTy) { 3023 default: llvm_unreachable("Unexpected result type."); 3024 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 3025 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 3026 } 3027 3028 // Check if we can fold insertelement instructions into the convert. 3029 const Value *Op = II->getArgOperand(0); 3030 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3031 const Value *Index = IE->getOperand(2); 3032 if (!isa<ConstantInt>(Index)) 3033 break; 3034 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3035 3036 if (Idx == 0) { 3037 Op = IE->getOperand(1); 3038 break; 3039 } 3040 Op = IE->getOperand(0); 3041 } 3042 3043 unsigned Reg = getRegForValue(Op); 3044 if (Reg == 0) 3045 return false; 3046 3047 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 3049 .addReg(Reg); 3050 3051 updateValueMap(II, ResultReg); 3052 return true; 3053 } 3054 } 3055 } 3056 3057 bool X86FastISel::fastLowerArguments() { 3058 if (!FuncInfo.CanLowerReturn) 3059 return false; 3060 3061 const Function *F = FuncInfo.Fn; 3062 if (F->isVarArg()) 3063 return false; 3064 3065 CallingConv::ID CC = F->getCallingConv(); 3066 if (CC != CallingConv::C) 3067 return false; 3068 3069 if (Subtarget->isCallingConvWin64(CC)) 3070 return false; 3071 3072 if (!Subtarget->is64Bit()) 3073 return false; 3074 3075 if (Subtarget->useSoftFloat()) 3076 return false; 3077 3078 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3079 unsigned GPRCnt = 0; 3080 unsigned FPRCnt = 0; 3081 for (auto const &Arg : F->args()) { 3082 if (Arg.hasAttribute(Attribute::ByVal) || 3083 Arg.hasAttribute(Attribute::InReg) || 3084 Arg.hasAttribute(Attribute::StructRet) || 3085 Arg.hasAttribute(Attribute::SwiftSelf) || 3086 Arg.hasAttribute(Attribute::SwiftError) || 3087 Arg.hasAttribute(Attribute::Nest)) 3088 return false; 3089 3090 Type *ArgTy = Arg.getType(); 3091 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3092 return false; 3093 3094 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3095 if (!ArgVT.isSimple()) return false; 3096 switch (ArgVT.getSimpleVT().SimpleTy) { 3097 default: return false; 3098 case MVT::i32: 3099 case MVT::i64: 3100 ++GPRCnt; 3101 break; 3102 case MVT::f32: 3103 case MVT::f64: 3104 if (!Subtarget->hasSSE1()) 3105 return false; 3106 ++FPRCnt; 3107 break; 3108 } 3109 3110 if (GPRCnt > 6) 3111 return false; 3112 3113 if (FPRCnt > 8) 3114 return false; 3115 } 3116 3117 static const MCPhysReg GPR32ArgRegs[] = { 3118 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3119 }; 3120 static const MCPhysReg GPR64ArgRegs[] = { 3121 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3122 }; 3123 static const MCPhysReg XMMArgRegs[] = { 3124 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3125 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3126 }; 3127 3128 unsigned GPRIdx = 0; 3129 unsigned FPRIdx = 0; 3130 for (auto const &Arg : F->args()) { 3131 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3132 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3133 unsigned SrcReg; 3134 switch (VT.SimpleTy) { 3135 default: llvm_unreachable("Unexpected value type."); 3136 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3137 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3138 case MVT::f32: LLVM_FALLTHROUGH; 3139 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3140 } 3141 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3142 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3143 // Without this, EmitLiveInCopies may eliminate the livein if its only 3144 // use is a bitcast (which isn't turned into an instruction). 3145 unsigned ResultReg = createResultReg(RC); 3146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3147 TII.get(TargetOpcode::COPY), ResultReg) 3148 .addReg(DstReg, getKillRegState(true)); 3149 updateValueMap(&Arg, ResultReg); 3150 } 3151 return true; 3152 } 3153 3154 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3155 CallingConv::ID CC, 3156 ImmutableCallSite *CS) { 3157 if (Subtarget->is64Bit()) 3158 return 0; 3159 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3160 return 0; 3161 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3162 CC == CallingConv::HiPE || CC == CallingConv::Tail) 3163 return 0; 3164 3165 if (CS) 3166 if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) || 3167 CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3168 return 0; 3169 3170 return 4; 3171 } 3172 3173 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3174 auto &OutVals = CLI.OutVals; 3175 auto &OutFlags = CLI.OutFlags; 3176 auto &OutRegs = CLI.OutRegs; 3177 auto &Ins = CLI.Ins; 3178 auto &InRegs = CLI.InRegs; 3179 CallingConv::ID CC = CLI.CallConv; 3180 bool &IsTailCall = CLI.IsTailCall; 3181 bool IsVarArg = CLI.IsVarArg; 3182 const Value *Callee = CLI.Callee; 3183 MCSymbol *Symbol = CLI.Symbol; 3184 3185 bool Is64Bit = Subtarget->is64Bit(); 3186 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3187 3188 const CallInst *CI = 3189 CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr; 3190 const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr; 3191 3192 // Call / invoke instructions with NoCfCheck attribute require special 3193 // handling. 3194 const auto *II = 3195 CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr; 3196 if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck())) 3197 return false; 3198 3199 // Functions with no_caller_saved_registers that need special handling. 3200 if ((CI && CI->hasFnAttr("no_caller_saved_registers")) || 3201 (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers"))) 3202 return false; 3203 3204 // Functions using retpoline for indirect calls need to use SDISel. 3205 if (Subtarget->useRetpolineIndirectCalls()) 3206 return false; 3207 3208 // Handle only C, fastcc, and webkit_js calling conventions for now. 3209 switch (CC) { 3210 default: return false; 3211 case CallingConv::C: 3212 case CallingConv::Fast: 3213 case CallingConv::Tail: 3214 case CallingConv::WebKit_JS: 3215 case CallingConv::Swift: 3216 case CallingConv::X86_FastCall: 3217 case CallingConv::X86_StdCall: 3218 case CallingConv::X86_ThisCall: 3219 case CallingConv::Win64: 3220 case CallingConv::X86_64_SysV: 3221 break; 3222 } 3223 3224 // Allow SelectionDAG isel to handle tail calls. 3225 if (IsTailCall) 3226 return false; 3227 3228 // fastcc with -tailcallopt is intended to provide a guaranteed 3229 // tail call optimization. Fastisel doesn't know how to do that. 3230 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 3231 CC == CallingConv::Tail) 3232 return false; 3233 3234 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3235 // x86-32. Special handling for x86-64 is implemented. 3236 if (IsVarArg && IsWin64) 3237 return false; 3238 3239 // Don't know about inalloca yet. 3240 if (CLI.CS && CLI.CS->hasInAllocaArgument()) 3241 return false; 3242 3243 for (auto Flag : CLI.OutFlags) 3244 if (Flag.isSwiftError()) 3245 return false; 3246 3247 SmallVector<MVT, 16> OutVTs; 3248 SmallVector<unsigned, 16> ArgRegs; 3249 3250 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3251 // instruction. This is safe because it is common to all FastISel supported 3252 // calling conventions on x86. 3253 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3254 Value *&Val = OutVals[i]; 3255 ISD::ArgFlagsTy Flags = OutFlags[i]; 3256 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3257 if (CI->getBitWidth() < 32) { 3258 if (Flags.isSExt()) 3259 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); 3260 else 3261 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); 3262 } 3263 } 3264 3265 // Passing bools around ends up doing a trunc to i1 and passing it. 3266 // Codegen this as an argument + "and 1". 3267 MVT VT; 3268 auto *TI = dyn_cast<TruncInst>(Val); 3269 unsigned ResultReg; 3270 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS && 3271 (TI->getParent() == CLI.CS->getInstruction()->getParent()) && 3272 TI->hasOneUse()) { 3273 Value *PrevVal = TI->getOperand(0); 3274 ResultReg = getRegForValue(PrevVal); 3275 3276 if (!ResultReg) 3277 return false; 3278 3279 if (!isTypeLegal(PrevVal->getType(), VT)) 3280 return false; 3281 3282 ResultReg = 3283 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); 3284 } else { 3285 if (!isTypeLegal(Val->getType(), VT)) 3286 return false; 3287 ResultReg = getRegForValue(Val); 3288 } 3289 3290 if (!ResultReg) 3291 return false; 3292 3293 ArgRegs.push_back(ResultReg); 3294 OutVTs.push_back(VT); 3295 } 3296 3297 // Analyze operands of the call, assigning locations to each operand. 3298 SmallVector<CCValAssign, 16> ArgLocs; 3299 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3300 3301 // Allocate shadow area for Win64 3302 if (IsWin64) 3303 CCInfo.AllocateStack(32, 8); 3304 3305 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3306 3307 // Get a count of how many bytes are to be pushed on the stack. 3308 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3309 3310 // Issue CALLSEQ_START 3311 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3312 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 3313 .addImm(NumBytes).addImm(0).addImm(0); 3314 3315 // Walk the register/memloc assignments, inserting copies/loads. 3316 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3317 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3318 CCValAssign const &VA = ArgLocs[i]; 3319 const Value *ArgVal = OutVals[VA.getValNo()]; 3320 MVT ArgVT = OutVTs[VA.getValNo()]; 3321 3322 if (ArgVT == MVT::x86mmx) 3323 return false; 3324 3325 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3326 3327 // Promote the value if needed. 3328 switch (VA.getLocInfo()) { 3329 case CCValAssign::Full: break; 3330 case CCValAssign::SExt: { 3331 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3332 "Unexpected extend"); 3333 3334 if (ArgVT == MVT::i1) 3335 return false; 3336 3337 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3338 ArgVT, ArgReg); 3339 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3340 ArgVT = VA.getLocVT(); 3341 break; 3342 } 3343 case CCValAssign::ZExt: { 3344 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3345 "Unexpected extend"); 3346 3347 // Handle zero-extension from i1 to i8, which is common. 3348 if (ArgVT == MVT::i1) { 3349 // Set the high bits to zero. 3350 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false); 3351 ArgVT = MVT::i8; 3352 3353 if (ArgReg == 0) 3354 return false; 3355 } 3356 3357 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3358 ArgVT, ArgReg); 3359 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3360 ArgVT = VA.getLocVT(); 3361 break; 3362 } 3363 case CCValAssign::AExt: { 3364 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3365 "Unexpected extend"); 3366 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3367 ArgVT, ArgReg); 3368 if (!Emitted) 3369 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3370 ArgVT, ArgReg); 3371 if (!Emitted) 3372 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3373 ArgVT, ArgReg); 3374 3375 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3376 ArgVT = VA.getLocVT(); 3377 break; 3378 } 3379 case CCValAssign::BCvt: { 3380 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, 3381 /*TODO: Kill=*/false); 3382 assert(ArgReg && "Failed to emit a bitcast!"); 3383 ArgVT = VA.getLocVT(); 3384 break; 3385 } 3386 case CCValAssign::VExt: 3387 // VExt has not been implemented, so this should be impossible to reach 3388 // for now. However, fallback to Selection DAG isel once implemented. 3389 return false; 3390 case CCValAssign::AExtUpper: 3391 case CCValAssign::SExtUpper: 3392 case CCValAssign::ZExtUpper: 3393 case CCValAssign::FPExt: 3394 case CCValAssign::Trunc: 3395 llvm_unreachable("Unexpected loc info!"); 3396 case CCValAssign::Indirect: 3397 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3398 // support this. 3399 return false; 3400 } 3401 3402 if (VA.isRegLoc()) { 3403 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3404 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3405 OutRegs.push_back(VA.getLocReg()); 3406 } else { 3407 assert(VA.isMemLoc()); 3408 3409 // Don't emit stores for undef values. 3410 if (isa<UndefValue>(ArgVal)) 3411 continue; 3412 3413 unsigned LocMemOffset = VA.getLocMemOffset(); 3414 X86AddressMode AM; 3415 AM.Base.Reg = RegInfo->getStackRegister(); 3416 AM.Disp = LocMemOffset; 3417 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3418 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); 3419 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3420 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3421 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3422 if (Flags.isByVal()) { 3423 X86AddressMode SrcAM; 3424 SrcAM.Base.Reg = ArgReg; 3425 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3426 return false; 3427 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3428 // If this is a really simple value, emit this with the Value* version 3429 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3430 // as it can cause us to reevaluate the argument. 3431 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3432 return false; 3433 } else { 3434 bool ValIsKill = hasTrivialKill(ArgVal); 3435 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) 3436 return false; 3437 } 3438 } 3439 } 3440 3441 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3442 // GOT pointer. 3443 if (Subtarget->isPICStyleGOT()) { 3444 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3446 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3447 } 3448 3449 if (Is64Bit && IsVarArg && !IsWin64) { 3450 // From AMD64 ABI document: 3451 // For calls that may call functions that use varargs or stdargs 3452 // (prototype-less calls or calls to functions containing ellipsis (...) in 3453 // the declaration) %al is used as hidden argument to specify the number 3454 // of SSE registers used. The contents of %al do not need to match exactly 3455 // the number of registers, but must be an ubound on the number of SSE 3456 // registers used and is in the range 0 - 8 inclusive. 3457 3458 // Count the number of XMM registers allocated. 3459 static const MCPhysReg XMMArgRegs[] = { 3460 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3461 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3462 }; 3463 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3464 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3465 && "SSE registers cannot be used when SSE is disabled"); 3466 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 3467 X86::AL).addImm(NumXMMRegs); 3468 } 3469 3470 // Materialize callee address in a register. FIXME: GV address can be 3471 // handled with a CALLpcrel32 instead. 3472 X86AddressMode CalleeAM; 3473 if (!X86SelectCallAddress(Callee, CalleeAM)) 3474 return false; 3475 3476 unsigned CalleeOp = 0; 3477 const GlobalValue *GV = nullptr; 3478 if (CalleeAM.GV != nullptr) { 3479 GV = CalleeAM.GV; 3480 } else if (CalleeAM.Base.Reg != 0) { 3481 CalleeOp = CalleeAM.Base.Reg; 3482 } else 3483 return false; 3484 3485 // Issue the call. 3486 MachineInstrBuilder MIB; 3487 if (CalleeOp) { 3488 // Register-indirect call. 3489 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3490 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) 3491 .addReg(CalleeOp); 3492 } else { 3493 // Direct call. 3494 assert(GV && "Not a direct call"); 3495 // See if we need any target-specific flags on the GV operand. 3496 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3497 3498 // This will be a direct call, or an indirect call through memory for 3499 // NonLazyBind calls or dllimport calls. 3500 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3501 OpFlags == X86II::MO_GOTPCREL || 3502 OpFlags == X86II::MO_COFFSTUB; 3503 unsigned CallOpc = NeedLoad 3504 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3505 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3506 3507 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); 3508 if (NeedLoad) 3509 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); 3510 if (Symbol) 3511 MIB.addSym(Symbol, OpFlags); 3512 else 3513 MIB.addGlobalAddress(GV, 0, OpFlags); 3514 if (NeedLoad) 3515 MIB.addReg(0); 3516 } 3517 3518 // Add a register mask operand representing the call-preserved registers. 3519 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3520 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3521 3522 // Add an implicit use GOT pointer in EBX. 3523 if (Subtarget->isPICStyleGOT()) 3524 MIB.addReg(X86::EBX, RegState::Implicit); 3525 3526 if (Is64Bit && IsVarArg && !IsWin64) 3527 MIB.addReg(X86::AL, RegState::Implicit); 3528 3529 // Add implicit physical register uses to the call. 3530 for (auto Reg : OutRegs) 3531 MIB.addReg(Reg, RegState::Implicit); 3532 3533 // Issue CALLSEQ_END 3534 unsigned NumBytesForCalleeToPop = 3535 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3536 TM.Options.GuaranteedTailCallOpt) 3537 ? NumBytes // Callee pops everything. 3538 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS); 3539 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3540 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 3541 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3542 3543 // Now handle call return values. 3544 SmallVector<CCValAssign, 16> RVLocs; 3545 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3546 CLI.RetTy->getContext()); 3547 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3548 3549 // Copy all of the result registers out of their specified physreg. 3550 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3551 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3552 CCValAssign &VA = RVLocs[i]; 3553 EVT CopyVT = VA.getValVT(); 3554 unsigned CopyReg = ResultReg + i; 3555 Register SrcReg = VA.getLocReg(); 3556 3557 // If this is x86-64, and we disabled SSE, we can't return FP values 3558 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3559 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3560 report_fatal_error("SSE register return with SSE disabled"); 3561 } 3562 3563 // If we prefer to use the value in xmm registers, copy it out as f80 and 3564 // use a truncate to move it from fp stack reg to xmm reg. 3565 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3566 isScalarFPTypeInSSEReg(VA.getValVT())) { 3567 CopyVT = MVT::f80; 3568 CopyReg = createResultReg(&X86::RFP80RegClass); 3569 } 3570 3571 // Copy out the result. 3572 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3573 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3574 InRegs.push_back(VA.getLocReg()); 3575 3576 // Round the f80 to the right size, which also moves it to the appropriate 3577 // xmm register. This is accomplished by storing the f80 value in memory 3578 // and then loading it back. 3579 if (CopyVT != VA.getValVT()) { 3580 EVT ResVT = VA.getValVT(); 3581 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3582 unsigned MemSize = ResVT.getSizeInBits()/8; 3583 int FI = MFI.CreateStackObject(MemSize, MemSize, false); 3584 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3585 TII.get(Opc)), FI) 3586 .addReg(CopyReg); 3587 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3588 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3589 TII.get(Opc), ResultReg + i), FI); 3590 } 3591 } 3592 3593 CLI.ResultReg = ResultReg; 3594 CLI.NumResultRegs = RVLocs.size(); 3595 CLI.Call = MIB; 3596 3597 return true; 3598 } 3599 3600 bool 3601 X86FastISel::fastSelectInstruction(const Instruction *I) { 3602 switch (I->getOpcode()) { 3603 default: break; 3604 case Instruction::Load: 3605 return X86SelectLoad(I); 3606 case Instruction::Store: 3607 return X86SelectStore(I); 3608 case Instruction::Ret: 3609 return X86SelectRet(I); 3610 case Instruction::ICmp: 3611 case Instruction::FCmp: 3612 return X86SelectCmp(I); 3613 case Instruction::ZExt: 3614 return X86SelectZExt(I); 3615 case Instruction::SExt: 3616 return X86SelectSExt(I); 3617 case Instruction::Br: 3618 return X86SelectBranch(I); 3619 case Instruction::LShr: 3620 case Instruction::AShr: 3621 case Instruction::Shl: 3622 return X86SelectShift(I); 3623 case Instruction::SDiv: 3624 case Instruction::UDiv: 3625 case Instruction::SRem: 3626 case Instruction::URem: 3627 return X86SelectDivRem(I); 3628 case Instruction::Select: 3629 return X86SelectSelect(I); 3630 case Instruction::Trunc: 3631 return X86SelectTrunc(I); 3632 case Instruction::FPExt: 3633 return X86SelectFPExt(I); 3634 case Instruction::FPTrunc: 3635 return X86SelectFPTrunc(I); 3636 case Instruction::SIToFP: 3637 return X86SelectSIToFP(I); 3638 case Instruction::UIToFP: 3639 return X86SelectUIToFP(I); 3640 case Instruction::IntToPtr: // Deliberate fall-through. 3641 case Instruction::PtrToInt: { 3642 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3643 EVT DstVT = TLI.getValueType(DL, I->getType()); 3644 if (DstVT.bitsGT(SrcVT)) 3645 return X86SelectZExt(I); 3646 if (DstVT.bitsLT(SrcVT)) 3647 return X86SelectTrunc(I); 3648 unsigned Reg = getRegForValue(I->getOperand(0)); 3649 if (Reg == 0) return false; 3650 updateValueMap(I, Reg); 3651 return true; 3652 } 3653 case Instruction::BitCast: { 3654 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3655 if (!Subtarget->hasSSE2()) 3656 return false; 3657 3658 MVT SrcVT, DstVT; 3659 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3660 !isTypeLegal(I->getType(), DstVT)) 3661 return false; 3662 3663 // Only allow vectors that use xmm/ymm/zmm. 3664 if (!SrcVT.isVector() || !DstVT.isVector() || 3665 SrcVT.getVectorElementType() == MVT::i1 || 3666 DstVT.getVectorElementType() == MVT::i1) 3667 return false; 3668 3669 unsigned Reg = getRegForValue(I->getOperand(0)); 3670 if (Reg == 0) 3671 return false; 3672 3673 // No instruction is needed for conversion. Reuse the register used by 3674 // the fist operand. 3675 updateValueMap(I, Reg); 3676 return true; 3677 } 3678 } 3679 3680 return false; 3681 } 3682 3683 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3684 if (VT > MVT::i64) 3685 return 0; 3686 3687 uint64_t Imm = CI->getZExtValue(); 3688 if (Imm == 0) { 3689 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3690 switch (VT.SimpleTy) { 3691 default: llvm_unreachable("Unexpected value type"); 3692 case MVT::i1: 3693 case MVT::i8: 3694 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, 3695 X86::sub_8bit); 3696 case MVT::i16: 3697 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, 3698 X86::sub_16bit); 3699 case MVT::i32: 3700 return SrcReg; 3701 case MVT::i64: { 3702 unsigned ResultReg = createResultReg(&X86::GR64RegClass); 3703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3704 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3705 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3706 return ResultReg; 3707 } 3708 } 3709 } 3710 3711 unsigned Opc = 0; 3712 switch (VT.SimpleTy) { 3713 default: llvm_unreachable("Unexpected value type"); 3714 case MVT::i1: 3715 VT = MVT::i8; 3716 LLVM_FALLTHROUGH; 3717 case MVT::i8: Opc = X86::MOV8ri; break; 3718 case MVT::i16: Opc = X86::MOV16ri; break; 3719 case MVT::i32: Opc = X86::MOV32ri; break; 3720 case MVT::i64: { 3721 if (isUInt<32>(Imm)) 3722 Opc = X86::MOV32ri64; 3723 else if (isInt<32>(Imm)) 3724 Opc = X86::MOV64ri32; 3725 else 3726 Opc = X86::MOV64ri; 3727 break; 3728 } 3729 } 3730 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3731 } 3732 3733 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3734 if (CFP->isNullValue()) 3735 return fastMaterializeFloatZero(CFP); 3736 3737 // Can't handle alternate code models yet. 3738 CodeModel::Model CM = TM.getCodeModel(); 3739 if (CM != CodeModel::Small && CM != CodeModel::Large) 3740 return 0; 3741 3742 // Get opcode and regclass of the output for the given load instruction. 3743 unsigned Opc = 0; 3744 bool HasAVX = Subtarget->hasAVX(); 3745 bool HasAVX512 = Subtarget->hasAVX512(); 3746 switch (VT.SimpleTy) { 3747 default: return 0; 3748 case MVT::f32: 3749 if (X86ScalarSSEf32) 3750 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 3751 HasAVX ? X86::VMOVSSrm_alt : 3752 X86::MOVSSrm_alt; 3753 else 3754 Opc = X86::LD_Fp32m; 3755 break; 3756 case MVT::f64: 3757 if (X86ScalarSSEf64) 3758 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 3759 HasAVX ? X86::VMOVSDrm_alt : 3760 X86::MOVSDrm_alt; 3761 else 3762 Opc = X86::LD_Fp64m; 3763 break; 3764 case MVT::f80: 3765 // No f80 support yet. 3766 return 0; 3767 } 3768 3769 // MachineConstantPool wants an explicit alignment. 3770 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 3771 if (Align == 0) { 3772 // Alignment of vector types. FIXME! 3773 Align = DL.getTypeAllocSize(CFP->getType()); 3774 } 3775 3776 // x86-32 PIC requires a PIC base register for constant pools. 3777 unsigned PICBase = 0; 3778 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3779 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3780 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3781 else if (OpFlag == X86II::MO_GOTOFF) 3782 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3783 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) 3784 PICBase = X86::RIP; 3785 3786 // Create the load from the constant pool. 3787 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align); 3788 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3789 3790 if (CM == CodeModel::Large) { 3791 unsigned AddrReg = createResultReg(&X86::GR64RegClass); 3792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3793 AddrReg) 3794 .addConstantPoolIndex(CPI, 0, OpFlag); 3795 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3796 TII.get(Opc), ResultReg); 3797 addDirectMem(MIB, AddrReg); 3798 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3799 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3800 MachineMemOperand::MOLoad, DL.getPointerSize(), Align); 3801 MIB->addMemOperand(*FuncInfo.MF, MMO); 3802 return ResultReg; 3803 } 3804 3805 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3806 TII.get(Opc), ResultReg), 3807 CPI, PICBase, OpFlag); 3808 return ResultReg; 3809 } 3810 3811 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3812 // Can't handle alternate code models yet. 3813 if (TM.getCodeModel() != CodeModel::Small) 3814 return 0; 3815 3816 // Materialize addresses with LEA/MOV instructions. 3817 X86AddressMode AM; 3818 if (X86SelectAddress(GV, AM)) { 3819 // If the expression is just a basereg, then we're done, otherwise we need 3820 // to emit an LEA. 3821 if (AM.BaseType == X86AddressMode::RegBase && 3822 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3823 return AM.Base.Reg; 3824 3825 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3826 if (TM.getRelocationModel() == Reloc::Static && 3827 TLI.getPointerTy(DL) == MVT::i64) { 3828 // The displacement code could be more than 32 bits away so we need to use 3829 // an instruction with a 64 bit immediate 3830 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3831 ResultReg) 3832 .addGlobalAddress(GV); 3833 } else { 3834 unsigned Opc = 3835 TLI.getPointerTy(DL) == MVT::i32 3836 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3837 : X86::LEA64r; 3838 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3839 TII.get(Opc), ResultReg), AM); 3840 } 3841 return ResultReg; 3842 } 3843 return 0; 3844 } 3845 3846 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3847 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3848 3849 // Only handle simple types. 3850 if (!CEVT.isSimple()) 3851 return 0; 3852 MVT VT = CEVT.getSimpleVT(); 3853 3854 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3855 return X86MaterializeInt(CI, VT); 3856 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 3857 return X86MaterializeFP(CFP, VT); 3858 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 3859 return X86MaterializeGV(GV, VT); 3860 3861 return 0; 3862 } 3863 3864 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3865 // Fail on dynamic allocas. At this point, getRegForValue has already 3866 // checked its CSE maps, so if we're here trying to handle a dynamic 3867 // alloca, we're not going to succeed. X86SelectAddress has a 3868 // check for dynamic allocas, because it's called directly from 3869 // various places, but targetMaterializeAlloca also needs a check 3870 // in order to avoid recursion between getRegForValue, 3871 // X86SelectAddrss, and targetMaterializeAlloca. 3872 if (!FuncInfo.StaticAllocaMap.count(C)) 3873 return 0; 3874 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3875 3876 X86AddressMode AM; 3877 if (!X86SelectAddress(C, AM)) 3878 return 0; 3879 unsigned Opc = 3880 TLI.getPointerTy(DL) == MVT::i32 3881 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3882 : X86::LEA64r; 3883 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3884 unsigned ResultReg = createResultReg(RC); 3885 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3886 TII.get(Opc), ResultReg), AM); 3887 return ResultReg; 3888 } 3889 3890 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3891 MVT VT; 3892 if (!isTypeLegal(CF->getType(), VT)) 3893 return 0; 3894 3895 // Get opcode and regclass for the given zero. 3896 bool HasAVX512 = Subtarget->hasAVX512(); 3897 unsigned Opc = 0; 3898 switch (VT.SimpleTy) { 3899 default: return 0; 3900 case MVT::f32: 3901 if (X86ScalarSSEf32) 3902 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; 3903 else 3904 Opc = X86::LD_Fp032; 3905 break; 3906 case MVT::f64: 3907 if (X86ScalarSSEf64) 3908 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; 3909 else 3910 Opc = X86::LD_Fp064; 3911 break; 3912 case MVT::f80: 3913 // No f80 support yet. 3914 return 0; 3915 } 3916 3917 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 3919 return ResultReg; 3920 } 3921 3922 3923 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3924 const LoadInst *LI) { 3925 const Value *Ptr = LI->getPointerOperand(); 3926 X86AddressMode AM; 3927 if (!X86SelectAddress(Ptr, AM)) 3928 return false; 3929 3930 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3931 3932 unsigned Size = DL.getTypeAllocSize(LI->getType()); 3933 unsigned Alignment = LI->getAlignment(); 3934 3935 if (Alignment == 0) // Ensure that codegen never sees alignment 0 3936 Alignment = DL.getABITypeAlignment(LI->getType()); 3937 3938 SmallVector<MachineOperand, 8> AddrOps; 3939 AM.getFullAddress(AddrOps); 3940 3941 MachineInstr *Result = XII.foldMemoryOperandImpl( 3942 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment, 3943 /*AllowCommute=*/true); 3944 if (!Result) 3945 return false; 3946 3947 // The index register could be in the wrong register class. Unfortunately, 3948 // foldMemoryOperandImpl could have commuted the instruction so its not enough 3949 // to just look at OpNo + the offset to the index reg. We actually need to 3950 // scan the instruction to find the index reg and see if its the correct reg 3951 // class. 3952 unsigned OperandNo = 0; 3953 for (MachineInstr::mop_iterator I = Result->operands_begin(), 3954 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 3955 MachineOperand &MO = *I; 3956 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 3957 continue; 3958 // Found the index reg, now try to rewrite it. 3959 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(), 3960 MO.getReg(), OperandNo); 3961 if (IndexReg == MO.getReg()) 3962 continue; 3963 MO.setReg(IndexReg); 3964 } 3965 3966 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 3967 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 3968 MachineBasicBlock::iterator I(MI); 3969 removeDeadCode(I, std::next(I)); 3970 return true; 3971 } 3972 3973 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 3974 const TargetRegisterClass *RC, 3975 unsigned Op0, bool Op0IsKill, 3976 unsigned Op1, bool Op1IsKill, 3977 unsigned Op2, bool Op2IsKill, 3978 unsigned Op3, bool Op3IsKill) { 3979 const MCInstrDesc &II = TII.get(MachineInstOpcode); 3980 3981 unsigned ResultReg = createResultReg(RC); 3982 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 3983 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 3984 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 3985 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 3986 3987 if (II.getNumDefs() >= 1) 3988 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 3989 .addReg(Op0, getKillRegState(Op0IsKill)) 3990 .addReg(Op1, getKillRegState(Op1IsKill)) 3991 .addReg(Op2, getKillRegState(Op2IsKill)) 3992 .addReg(Op3, getKillRegState(Op3IsKill)); 3993 else { 3994 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 3995 .addReg(Op0, getKillRegState(Op0IsKill)) 3996 .addReg(Op1, getKillRegState(Op1IsKill)) 3997 .addReg(Op2, getKillRegState(Op2IsKill)) 3998 .addReg(Op3, getKillRegState(Op3IsKill)); 3999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 4000 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 4001 } 4002 return ResultReg; 4003 } 4004 4005 4006 namespace llvm { 4007 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4008 const TargetLibraryInfo *libInfo) { 4009 return new X86FastISel(funcInfo, libInfo); 4010 } 4011 } 4012