xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/IntrinsicsX86.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
44 
45 namespace {
46 
47 class X86FastISel final : public FastISel {
48   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49   /// make the right decision when generating code for different targets.
50   const X86Subtarget *Subtarget;
51 
52 public:
53   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
54                        const TargetLibraryInfo *libInfo)
55       : FastISel(funcInfo, libInfo) {
56     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
57   }
58 
59   bool fastSelectInstruction(const Instruction *I) override;
60 
61   /// The specified machine instr operand is a vreg, and that
62   /// vreg is being provided by the specified load instruction.  If possible,
63   /// try to fold the load as an operand to the instruction, returning true if
64   /// possible.
65   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
66                            const LoadInst *LI) override;
67 
68   bool fastLowerArguments() override;
69   bool fastLowerCall(CallLoweringInfo &CLI) override;
70   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
71 
72 #include "X86GenFastISel.inc"
73 
74 private:
75   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
76                           const DebugLoc &DL);
77 
78   bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
79                        unsigned &ResultReg, unsigned Alignment = 1);
80 
81   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
82                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
83   bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
84                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
85 
86   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
87                          unsigned &ResultReg);
88 
89   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
90   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
91 
92   bool X86SelectLoad(const Instruction *I);
93 
94   bool X86SelectStore(const Instruction *I);
95 
96   bool X86SelectRet(const Instruction *I);
97 
98   bool X86SelectCmp(const Instruction *I);
99 
100   bool X86SelectZExt(const Instruction *I);
101 
102   bool X86SelectSExt(const Instruction *I);
103 
104   bool X86SelectBranch(const Instruction *I);
105 
106   bool X86SelectShift(const Instruction *I);
107 
108   bool X86SelectDivRem(const Instruction *I);
109 
110   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
111 
112   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
113 
114   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
115 
116   bool X86SelectSelect(const Instruction *I);
117 
118   bool X86SelectTrunc(const Instruction *I);
119 
120   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
121                                const TargetRegisterClass *RC);
122 
123   bool X86SelectFPExt(const Instruction *I);
124   bool X86SelectFPTrunc(const Instruction *I);
125   bool X86SelectSIToFP(const Instruction *I);
126   bool X86SelectUIToFP(const Instruction *I);
127   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
128 
129   const X86InstrInfo *getInstrInfo() const {
130     return Subtarget->getInstrInfo();
131   }
132   const X86TargetMachine *getTargetMachine() const {
133     return static_cast<const X86TargetMachine *>(&TM);
134   }
135 
136   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
137 
138   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
139   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
140   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
141   unsigned fastMaterializeConstant(const Constant *C) override;
142 
143   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
144 
145   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
146 
147   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
148   /// computed in an SSE register, not on the X87 floating point stack.
149   bool isScalarFPTypeInSSEReg(EVT VT) const {
150     return (VT == MVT::f64 && Subtarget->hasSSE2()) ||
151            (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16;
152   }
153 
154   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
155 
156   bool IsMemcpySmall(uint64_t Len);
157 
158   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
159                           X86AddressMode SrcAM, uint64_t Len);
160 
161   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
162                             const Value *Cond);
163 
164   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
165                                             X86AddressMode &AM);
166 
167   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
168                              const TargetRegisterClass *RC, unsigned Op0,
169                              unsigned Op1, unsigned Op2, unsigned Op3);
170 };
171 
172 } // end anonymous namespace.
173 
174 static std::pair<unsigned, bool>
175 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
176   unsigned CC;
177   bool NeedSwap = false;
178 
179   // SSE Condition code mapping:
180   //  0 - EQ
181   //  1 - LT
182   //  2 - LE
183   //  3 - UNORD
184   //  4 - NEQ
185   //  5 - NLT
186   //  6 - NLE
187   //  7 - ORD
188   switch (Predicate) {
189   default: llvm_unreachable("Unexpected predicate");
190   case CmpInst::FCMP_OEQ: CC = 0;          break;
191   case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]];
192   case CmpInst::FCMP_OLT: CC = 1;          break;
193   case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]];
194   case CmpInst::FCMP_OLE: CC = 2;          break;
195   case CmpInst::FCMP_UNO: CC = 3;          break;
196   case CmpInst::FCMP_UNE: CC = 4;          break;
197   case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]];
198   case CmpInst::FCMP_UGE: CC = 5;          break;
199   case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]];
200   case CmpInst::FCMP_UGT: CC = 6;          break;
201   case CmpInst::FCMP_ORD: CC = 7;          break;
202   case CmpInst::FCMP_UEQ: CC = 8;          break;
203   case CmpInst::FCMP_ONE: CC = 12;         break;
204   }
205 
206   return std::make_pair(CC, NeedSwap);
207 }
208 
209 /// Adds a complex addressing mode to the given machine instr builder.
210 /// Note, this will constrain the index register.  If its not possible to
211 /// constrain the given index register, then a new one will be created.  The
212 /// IndexReg field of the addressing mode will be updated to match in this case.
213 const MachineInstrBuilder &
214 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
215                             X86AddressMode &AM) {
216   // First constrain the index register.  It needs to be a GR64_NOSP.
217   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
218                                          MIB->getNumOperands() +
219                                          X86::AddrIndexReg);
220   return ::addFullAddress(MIB, AM);
221 }
222 
223 /// Check if it is possible to fold the condition from the XALU intrinsic
224 /// into the user. The condition code will only be updated on success.
225 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
226                                        const Value *Cond) {
227   if (!isa<ExtractValueInst>(Cond))
228     return false;
229 
230   const auto *EV = cast<ExtractValueInst>(Cond);
231   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
232     return false;
233 
234   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
235   MVT RetVT;
236   const Function *Callee = II->getCalledFunction();
237   Type *RetTy =
238     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
239   if (!isTypeLegal(RetTy, RetVT))
240     return false;
241 
242   if (RetVT != MVT::i32 && RetVT != MVT::i64)
243     return false;
244 
245   X86::CondCode TmpCC;
246   switch (II->getIntrinsicID()) {
247   default: return false;
248   case Intrinsic::sadd_with_overflow:
249   case Intrinsic::ssub_with_overflow:
250   case Intrinsic::smul_with_overflow:
251   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
252   case Intrinsic::uadd_with_overflow:
253   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
254   }
255 
256   // Check if both instructions are in the same basic block.
257   if (II->getParent() != I->getParent())
258     return false;
259 
260   // Make sure nothing is in the way
261   BasicBlock::const_iterator Start(I);
262   BasicBlock::const_iterator End(II);
263   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
264     // We only expect extractvalue instructions between the intrinsic and the
265     // instruction to be selected.
266     if (!isa<ExtractValueInst>(Itr))
267       return false;
268 
269     // Check that the extractvalue operand comes from the intrinsic.
270     const auto *EVI = cast<ExtractValueInst>(Itr);
271     if (EVI->getAggregateOperand() != II)
272       return false;
273   }
274 
275   // Make sure no potentially eflags clobbering phi moves can be inserted in
276   // between.
277   auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); };
278   if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
279     return false;
280 
281   // Make sure there are no potentially eflags clobbering constant
282   // materializations in between.
283   if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); }))
284     return false;
285 
286   CC = TmpCC;
287   return true;
288 }
289 
290 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
291   EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
292   if (evt == MVT::Other || !evt.isSimple())
293     // Unhandled type. Halt "fast" selection and bail.
294     return false;
295 
296   VT = evt.getSimpleVT();
297   // For now, require SSE/SSE2 for performing floating-point operations,
298   // since x87 requires additional work.
299   if (VT == MVT::f64 && !Subtarget->hasSSE2())
300     return false;
301   if (VT == MVT::f32 && !Subtarget->hasSSE1())
302     return false;
303   // Similarly, no f80 support yet.
304   if (VT == MVT::f80)
305     return false;
306   // We only handle legal types. For example, on x86-32 the instruction
307   // selector contains all of the 64-bit instructions from x86-64,
308   // under the assumption that i64 won't be used if the target doesn't
309   // support it.
310   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
311 }
312 
313 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
314 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
315 /// Return true and the result register by reference if it is possible.
316 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
317                                   MachineMemOperand *MMO, unsigned &ResultReg,
318                                   unsigned Alignment) {
319   bool HasSSE1 = Subtarget->hasSSE1();
320   bool HasSSE2 = Subtarget->hasSSE2();
321   bool HasSSE41 = Subtarget->hasSSE41();
322   bool HasAVX = Subtarget->hasAVX();
323   bool HasAVX2 = Subtarget->hasAVX2();
324   bool HasAVX512 = Subtarget->hasAVX512();
325   bool HasVLX = Subtarget->hasVLX();
326   bool IsNonTemporal = MMO && MMO->isNonTemporal();
327 
328   // Treat i1 loads the same as i8 loads. Masking will be done when storing.
329   if (VT == MVT::i1)
330     VT = MVT::i8;
331 
332   // Get opcode and regclass of the output for the given load instruction.
333   unsigned Opc = 0;
334   switch (VT.SimpleTy) {
335   default: return false;
336   case MVT::i8:
337     Opc = X86::MOV8rm;
338     break;
339   case MVT::i16:
340     Opc = X86::MOV16rm;
341     break;
342   case MVT::i32:
343     Opc = X86::MOV32rm;
344     break;
345   case MVT::i64:
346     // Must be in x86-64 mode.
347     Opc = X86::MOV64rm;
348     break;
349   case MVT::f32:
350     Opc = HasAVX512 ? X86::VMOVSSZrm_alt
351           : HasAVX  ? X86::VMOVSSrm_alt
352           : HasSSE1 ? X86::MOVSSrm_alt
353                     : X86::LD_Fp32m;
354     break;
355   case MVT::f64:
356     Opc = HasAVX512 ? X86::VMOVSDZrm_alt
357           : HasAVX  ? X86::VMOVSDrm_alt
358           : HasSSE2 ? X86::MOVSDrm_alt
359                     : X86::LD_Fp64m;
360     break;
361   case MVT::f80:
362     // No f80 support yet.
363     return false;
364   case MVT::v4f32:
365     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
366       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
367             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
368     else if (Alignment >= 16)
369       Opc = HasVLX ? X86::VMOVAPSZ128rm :
370             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
371     else
372       Opc = HasVLX ? X86::VMOVUPSZ128rm :
373             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
374     break;
375   case MVT::v2f64:
376     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
377       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
378             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
379     else if (Alignment >= 16)
380       Opc = HasVLX ? X86::VMOVAPDZ128rm :
381             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
382     else
383       Opc = HasVLX ? X86::VMOVUPDZ128rm :
384             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
385     break;
386   case MVT::v4i32:
387   case MVT::v2i64:
388   case MVT::v8i16:
389   case MVT::v16i8:
390     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
391       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
392             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
393     else if (Alignment >= 16)
394       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
395             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
396     else
397       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
398             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
399     break;
400   case MVT::v8f32:
401     assert(HasAVX);
402     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
403       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
404     else if (IsNonTemporal && Alignment >= 16)
405       return false; // Force split for X86::VMOVNTDQArm
406     else if (Alignment >= 32)
407       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
408     else
409       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
410     break;
411   case MVT::v4f64:
412     assert(HasAVX);
413     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
414       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
415     else if (IsNonTemporal && Alignment >= 16)
416       return false; // Force split for X86::VMOVNTDQArm
417     else if (Alignment >= 32)
418       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
419     else
420       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
421     break;
422   case MVT::v8i32:
423   case MVT::v4i64:
424   case MVT::v16i16:
425   case MVT::v32i8:
426     assert(HasAVX);
427     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
428       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
429     else if (IsNonTemporal && Alignment >= 16)
430       return false; // Force split for X86::VMOVNTDQArm
431     else if (Alignment >= 32)
432       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
433     else
434       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
435     break;
436   case MVT::v16f32:
437     assert(HasAVX512);
438     if (IsNonTemporal && Alignment >= 64)
439       Opc = X86::VMOVNTDQAZrm;
440     else
441       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
442     break;
443   case MVT::v8f64:
444     assert(HasAVX512);
445     if (IsNonTemporal && Alignment >= 64)
446       Opc = X86::VMOVNTDQAZrm;
447     else
448       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
449     break;
450   case MVT::v8i64:
451   case MVT::v16i32:
452   case MVT::v32i16:
453   case MVT::v64i8:
454     assert(HasAVX512);
455     // Note: There are a lot more choices based on type with AVX-512, but
456     // there's really no advantage when the load isn't masked.
457     if (IsNonTemporal && Alignment >= 64)
458       Opc = X86::VMOVNTDQAZrm;
459     else
460       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
461     break;
462   }
463 
464   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
465 
466   ResultReg = createResultReg(RC);
467   MachineInstrBuilder MIB =
468     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
469   addFullAddress(MIB, AM);
470   if (MMO)
471     MIB->addMemOperand(*FuncInfo.MF, MMO);
472   return true;
473 }
474 
475 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
476 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
477 /// and a displacement offset, or a GlobalAddress,
478 /// i.e. V. Return true if it is possible.
479 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
480                                    MachineMemOperand *MMO, bool Aligned) {
481   bool HasSSE1 = Subtarget->hasSSE1();
482   bool HasSSE2 = Subtarget->hasSSE2();
483   bool HasSSE4A = Subtarget->hasSSE4A();
484   bool HasAVX = Subtarget->hasAVX();
485   bool HasAVX512 = Subtarget->hasAVX512();
486   bool HasVLX = Subtarget->hasVLX();
487   bool IsNonTemporal = MMO && MMO->isNonTemporal();
488 
489   // Get opcode and regclass of the output for the given store instruction.
490   unsigned Opc = 0;
491   switch (VT.getSimpleVT().SimpleTy) {
492   case MVT::f80: // No f80 support yet.
493   default: return false;
494   case MVT::i1: {
495     // Mask out all but lowest bit.
496     Register AndResult = createResultReg(&X86::GR8RegClass);
497     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
498             TII.get(X86::AND8ri), AndResult)
499       .addReg(ValReg).addImm(1);
500     ValReg = AndResult;
501     [[fallthrough]]; // handle i1 as i8.
502   }
503   case MVT::i8:  Opc = X86::MOV8mr;  break;
504   case MVT::i16: Opc = X86::MOV16mr; break;
505   case MVT::i32:
506     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
507     break;
508   case MVT::i64:
509     // Must be in x86-64 mode.
510     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
511     break;
512   case MVT::f32:
513     if (HasSSE1) {
514       if (IsNonTemporal && HasSSE4A)
515         Opc = X86::MOVNTSS;
516       else
517         Opc = HasAVX512 ? X86::VMOVSSZmr :
518               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
519     } else
520       Opc = X86::ST_Fp32m;
521     break;
522   case MVT::f64:
523     if (HasSSE2) {
524       if (IsNonTemporal && HasSSE4A)
525         Opc = X86::MOVNTSD;
526       else
527         Opc = HasAVX512 ? X86::VMOVSDZmr :
528               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
529     } else
530       Opc = X86::ST_Fp64m;
531     break;
532   case MVT::x86mmx:
533     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
534     break;
535   case MVT::v4f32:
536     if (Aligned) {
537       if (IsNonTemporal)
538         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
539               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
540       else
541         Opc = HasVLX ? X86::VMOVAPSZ128mr :
542               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
543     } else
544       Opc = HasVLX ? X86::VMOVUPSZ128mr :
545             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
546     break;
547   case MVT::v2f64:
548     if (Aligned) {
549       if (IsNonTemporal)
550         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
551               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
552       else
553         Opc = HasVLX ? X86::VMOVAPDZ128mr :
554               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
555     } else
556       Opc = HasVLX ? X86::VMOVUPDZ128mr :
557             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
558     break;
559   case MVT::v4i32:
560   case MVT::v2i64:
561   case MVT::v8i16:
562   case MVT::v16i8:
563     if (Aligned) {
564       if (IsNonTemporal)
565         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
566               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
567       else
568         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
569               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
570     } else
571       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
572             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
573     break;
574   case MVT::v8f32:
575     assert(HasAVX);
576     if (Aligned) {
577       if (IsNonTemporal)
578         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
579       else
580         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
581     } else
582       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
583     break;
584   case MVT::v4f64:
585     assert(HasAVX);
586     if (Aligned) {
587       if (IsNonTemporal)
588         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
589       else
590         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
591     } else
592       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
593     break;
594   case MVT::v8i32:
595   case MVT::v4i64:
596   case MVT::v16i16:
597   case MVT::v32i8:
598     assert(HasAVX);
599     if (Aligned) {
600       if (IsNonTemporal)
601         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
602       else
603         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
604     } else
605       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
606     break;
607   case MVT::v16f32:
608     assert(HasAVX512);
609     if (Aligned)
610       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
611     else
612       Opc = X86::VMOVUPSZmr;
613     break;
614   case MVT::v8f64:
615     assert(HasAVX512);
616     if (Aligned) {
617       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
618     } else
619       Opc = X86::VMOVUPDZmr;
620     break;
621   case MVT::v8i64:
622   case MVT::v16i32:
623   case MVT::v32i16:
624   case MVT::v64i8:
625     assert(HasAVX512);
626     // Note: There are a lot more choices based on type with AVX-512, but
627     // there's really no advantage when the store isn't masked.
628     if (Aligned)
629       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
630     else
631       Opc = X86::VMOVDQU64Zmr;
632     break;
633   }
634 
635   const MCInstrDesc &Desc = TII.get(Opc);
636   // Some of the instructions in the previous switch use FR128 instead
637   // of FR32 for ValReg. Make sure the register we feed the instruction
638   // matches its register class constraints.
639   // Note: This is fine to do a copy from FR32 to FR128, this is the
640   // same registers behind the scene and actually why it did not trigger
641   // any bugs before.
642   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
643   MachineInstrBuilder MIB =
644       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc);
645   addFullAddress(MIB, AM).addReg(ValReg);
646   if (MMO)
647     MIB->addMemOperand(*FuncInfo.MF, MMO);
648 
649   return true;
650 }
651 
652 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
653                                    X86AddressMode &AM,
654                                    MachineMemOperand *MMO, bool Aligned) {
655   // Handle 'null' like i32/i64 0.
656   if (isa<ConstantPointerNull>(Val))
657     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
658 
659   // If this is a store of a simple constant, fold the constant into the store.
660   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
661     unsigned Opc = 0;
662     bool Signed = true;
663     switch (VT.getSimpleVT().SimpleTy) {
664     default: break;
665     case MVT::i1:
666       Signed = false;
667       [[fallthrough]]; // Handle as i8.
668     case MVT::i8:  Opc = X86::MOV8mi;  break;
669     case MVT::i16: Opc = X86::MOV16mi; break;
670     case MVT::i32: Opc = X86::MOV32mi; break;
671     case MVT::i64:
672       // Must be a 32-bit sign extended value.
673       if (isInt<32>(CI->getSExtValue()))
674         Opc = X86::MOV64mi32;
675       break;
676     }
677 
678     if (Opc) {
679       MachineInstrBuilder MIB =
680         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
681       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
682                                             : CI->getZExtValue());
683       if (MMO)
684         MIB->addMemOperand(*FuncInfo.MF, MMO);
685       return true;
686     }
687   }
688 
689   Register ValReg = getRegForValue(Val);
690   if (ValReg == 0)
691     return false;
692 
693   return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
694 }
695 
696 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
697 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
698 /// ISD::SIGN_EXTEND).
699 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
700                                     unsigned Src, EVT SrcVT,
701                                     unsigned &ResultReg) {
702   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
703   if (RR == 0)
704     return false;
705 
706   ResultReg = RR;
707   return true;
708 }
709 
710 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
711   // Handle constant address.
712   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
713     // Can't handle alternate code models yet.
714     if (TM.getCodeModel() != CodeModel::Small)
715       return false;
716 
717     // Can't handle TLS yet.
718     if (GV->isThreadLocal())
719       return false;
720 
721     // Can't handle !absolute_symbol references yet.
722     if (GV->isAbsoluteSymbolRef())
723       return false;
724 
725     // RIP-relative addresses can't have additional register operands, so if
726     // we've already folded stuff into the addressing mode, just force the
727     // global value into its own register, which we can use as the basereg.
728     if (!Subtarget->isPICStyleRIPRel() ||
729         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
730       // Okay, we've committed to selecting this global. Set up the address.
731       AM.GV = GV;
732 
733       // Allow the subtarget to classify the global.
734       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
735 
736       // If this reference is relative to the pic base, set it now.
737       if (isGlobalRelativeToPICBase(GVFlags)) {
738         // FIXME: How do we know Base.Reg is free??
739         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
740       }
741 
742       // Unless the ABI requires an extra load, return a direct reference to
743       // the global.
744       if (!isGlobalStubReference(GVFlags)) {
745         if (Subtarget->isPICStyleRIPRel()) {
746           // Use rip-relative addressing if we can.  Above we verified that the
747           // base and index registers are unused.
748           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
749           AM.Base.Reg = X86::RIP;
750         }
751         AM.GVOpFlags = GVFlags;
752         return true;
753       }
754 
755       // Ok, we need to do a load from a stub.  If we've already loaded from
756       // this stub, reuse the loaded pointer, otherwise emit the load now.
757       DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
758       Register LoadReg;
759       if (I != LocalValueMap.end() && I->second) {
760         LoadReg = I->second;
761       } else {
762         // Issue load from stub.
763         unsigned Opc = 0;
764         const TargetRegisterClass *RC = nullptr;
765         X86AddressMode StubAM;
766         StubAM.Base.Reg = AM.Base.Reg;
767         StubAM.GV = GV;
768         StubAM.GVOpFlags = GVFlags;
769 
770         // Prepare for inserting code in the local-value area.
771         SavePoint SaveInsertPt = enterLocalValueArea();
772 
773         if (TLI.getPointerTy(DL) == MVT::i64) {
774           Opc = X86::MOV64rm;
775           RC  = &X86::GR64RegClass;
776         } else {
777           Opc = X86::MOV32rm;
778           RC  = &X86::GR32RegClass;
779         }
780 
781         if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL ||
782             GVFlags == X86II::MO_GOTPCREL_NORELAX)
783           StubAM.Base.Reg = X86::RIP;
784 
785         LoadReg = createResultReg(RC);
786         MachineInstrBuilder LoadMI =
787           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg);
788         addFullAddress(LoadMI, StubAM);
789 
790         // Ok, back to normal mode.
791         leaveLocalValueArea(SaveInsertPt);
792 
793         // Prevent loading GV stub multiple times in same MBB.
794         LocalValueMap[V] = LoadReg;
795       }
796 
797       // Now construct the final address. Note that the Disp, Scale,
798       // and Index values may already be set here.
799       AM.Base.Reg = LoadReg;
800       AM.GV = nullptr;
801       return true;
802     }
803   }
804 
805   // If all else fails, try to materialize the value in a register.
806   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
807     if (AM.Base.Reg == 0) {
808       AM.Base.Reg = getRegForValue(V);
809       return AM.Base.Reg != 0;
810     }
811     if (AM.IndexReg == 0) {
812       assert(AM.Scale == 1 && "Scale with no index!");
813       AM.IndexReg = getRegForValue(V);
814       return AM.IndexReg != 0;
815     }
816   }
817 
818   return false;
819 }
820 
821 /// X86SelectAddress - Attempt to fill in an address from the given value.
822 ///
823 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
824   SmallVector<const Value *, 32> GEPs;
825 redo_gep:
826   const User *U = nullptr;
827   unsigned Opcode = Instruction::UserOp1;
828   if (const Instruction *I = dyn_cast<Instruction>(V)) {
829     // Don't walk into other basic blocks; it's possible we haven't
830     // visited them yet, so the instructions may not yet be assigned
831     // virtual registers.
832     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
833         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
834       Opcode = I->getOpcode();
835       U = I;
836     }
837   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
838     Opcode = C->getOpcode();
839     U = C;
840   }
841 
842   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
843     if (Ty->getAddressSpace() > 255)
844       // Fast instruction selection doesn't support the special
845       // address spaces.
846       return false;
847 
848   switch (Opcode) {
849   default: break;
850   case Instruction::BitCast:
851     // Look past bitcasts.
852     return X86SelectAddress(U->getOperand(0), AM);
853 
854   case Instruction::IntToPtr:
855     // Look past no-op inttoptrs.
856     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
857         TLI.getPointerTy(DL))
858       return X86SelectAddress(U->getOperand(0), AM);
859     break;
860 
861   case Instruction::PtrToInt:
862     // Look past no-op ptrtoints.
863     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
864       return X86SelectAddress(U->getOperand(0), AM);
865     break;
866 
867   case Instruction::Alloca: {
868     // Do static allocas.
869     const AllocaInst *A = cast<AllocaInst>(V);
870     DenseMap<const AllocaInst *, int>::iterator SI =
871       FuncInfo.StaticAllocaMap.find(A);
872     if (SI != FuncInfo.StaticAllocaMap.end()) {
873       AM.BaseType = X86AddressMode::FrameIndexBase;
874       AM.Base.FrameIndex = SI->second;
875       return true;
876     }
877     break;
878   }
879 
880   case Instruction::Add: {
881     // Adds of constants are common and easy enough.
882     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
883       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
884       // They have to fit in the 32-bit signed displacement field though.
885       if (isInt<32>(Disp)) {
886         AM.Disp = (uint32_t)Disp;
887         return X86SelectAddress(U->getOperand(0), AM);
888       }
889     }
890     break;
891   }
892 
893   case Instruction::GetElementPtr: {
894     X86AddressMode SavedAM = AM;
895 
896     // Pattern-match simple GEPs.
897     uint64_t Disp = (int32_t)AM.Disp;
898     unsigned IndexReg = AM.IndexReg;
899     unsigned Scale = AM.Scale;
900     gep_type_iterator GTI = gep_type_begin(U);
901     // Iterate through the indices, folding what we can. Constants can be
902     // folded, and one dynamic index can be handled, if the scale is supported.
903     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
904          i != e; ++i, ++GTI) {
905       const Value *Op = *i;
906       if (StructType *STy = GTI.getStructTypeOrNull()) {
907         const StructLayout *SL = DL.getStructLayout(STy);
908         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
909         continue;
910       }
911 
912       // A array/variable index is always of the form i*S where S is the
913       // constant scale size.  See if we can push the scale into immediates.
914       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
915       for (;;) {
916         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
917           // Constant-offset addressing.
918           Disp += CI->getSExtValue() * S;
919           break;
920         }
921         if (canFoldAddIntoGEP(U, Op)) {
922           // A compatible add with a constant operand. Fold the constant.
923           ConstantInt *CI =
924             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
925           Disp += CI->getSExtValue() * S;
926           // Iterate on the other operand.
927           Op = cast<AddOperator>(Op)->getOperand(0);
928           continue;
929         }
930         if (IndexReg == 0 &&
931             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
932             (S == 1 || S == 2 || S == 4 || S == 8)) {
933           // Scaled-index addressing.
934           Scale = S;
935           IndexReg = getRegForGEPIndex(Op);
936           if (IndexReg == 0)
937             return false;
938           break;
939         }
940         // Unsupported.
941         goto unsupported_gep;
942       }
943     }
944 
945     // Check for displacement overflow.
946     if (!isInt<32>(Disp))
947       break;
948 
949     AM.IndexReg = IndexReg;
950     AM.Scale = Scale;
951     AM.Disp = (uint32_t)Disp;
952     GEPs.push_back(V);
953 
954     if (const GetElementPtrInst *GEP =
955           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
956       // Ok, the GEP indices were covered by constant-offset and scaled-index
957       // addressing. Update the address state and move on to examining the base.
958       V = GEP;
959       goto redo_gep;
960     } else if (X86SelectAddress(U->getOperand(0), AM)) {
961       return true;
962     }
963 
964     // If we couldn't merge the gep value into this addr mode, revert back to
965     // our address and just match the value instead of completely failing.
966     AM = SavedAM;
967 
968     for (const Value *I : reverse(GEPs))
969       if (handleConstantAddresses(I, AM))
970         return true;
971 
972     return false;
973   unsupported_gep:
974     // Ok, the GEP indices weren't all covered.
975     break;
976   }
977   }
978 
979   return handleConstantAddresses(V, AM);
980 }
981 
982 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
983 ///
984 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
985   const User *U = nullptr;
986   unsigned Opcode = Instruction::UserOp1;
987   const Instruction *I = dyn_cast<Instruction>(V);
988   // Record if the value is defined in the same basic block.
989   //
990   // This information is crucial to know whether or not folding an
991   // operand is valid.
992   // Indeed, FastISel generates or reuses a virtual register for all
993   // operands of all instructions it selects. Obviously, the definition and
994   // its uses must use the same virtual register otherwise the produced
995   // code is incorrect.
996   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
997   // registers for values that are alive across basic blocks. This ensures
998   // that the values are consistently set between across basic block, even
999   // if different instruction selection mechanisms are used (e.g., a mix of
1000   // SDISel and FastISel).
1001   // For values local to a basic block, the instruction selection process
1002   // generates these virtual registers with whatever method is appropriate
1003   // for its needs. In particular, FastISel and SDISel do not share the way
1004   // local virtual registers are set.
1005   // Therefore, this is impossible (or at least unsafe) to share values
1006   // between basic blocks unless they use the same instruction selection
1007   // method, which is not guarantee for X86.
1008   // Moreover, things like hasOneUse could not be used accurately, if we
1009   // allow to reference values across basic blocks whereas they are not
1010   // alive across basic blocks initially.
1011   bool InMBB = true;
1012   if (I) {
1013     Opcode = I->getOpcode();
1014     U = I;
1015     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1016   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1017     Opcode = C->getOpcode();
1018     U = C;
1019   }
1020 
1021   switch (Opcode) {
1022   default: break;
1023   case Instruction::BitCast:
1024     // Look past bitcasts if its operand is in the same BB.
1025     if (InMBB)
1026       return X86SelectCallAddress(U->getOperand(0), AM);
1027     break;
1028 
1029   case Instruction::IntToPtr:
1030     // Look past no-op inttoptrs if its operand is in the same BB.
1031     if (InMBB &&
1032         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1033             TLI.getPointerTy(DL))
1034       return X86SelectCallAddress(U->getOperand(0), AM);
1035     break;
1036 
1037   case Instruction::PtrToInt:
1038     // Look past no-op ptrtoints if its operand is in the same BB.
1039     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1040       return X86SelectCallAddress(U->getOperand(0), AM);
1041     break;
1042   }
1043 
1044   // Handle constant address.
1045   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1046     // Can't handle alternate code models yet.
1047     if (TM.getCodeModel() != CodeModel::Small)
1048       return false;
1049 
1050     // RIP-relative addresses can't have additional register operands.
1051     if (Subtarget->isPICStyleRIPRel() &&
1052         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1053       return false;
1054 
1055     // Can't handle TLS.
1056     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1057       if (GVar->isThreadLocal())
1058         return false;
1059 
1060     // Okay, we've committed to selecting this global. Set up the basic address.
1061     AM.GV = GV;
1062 
1063     // Return a direct reference to the global. Fastisel can handle calls to
1064     // functions that require loads, such as dllimport and nonlazybind
1065     // functions.
1066     if (Subtarget->isPICStyleRIPRel()) {
1067       // Use rip-relative addressing if we can.  Above we verified that the
1068       // base and index registers are unused.
1069       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1070       AM.Base.Reg = X86::RIP;
1071     } else {
1072       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1073     }
1074 
1075     return true;
1076   }
1077 
1078   // If all else fails, try to materialize the value in a register.
1079   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1080     auto GetCallRegForValue = [this](const Value *V) {
1081       Register Reg = getRegForValue(V);
1082 
1083       // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1084       if (Reg && Subtarget->isTarget64BitILP32()) {
1085         Register CopyReg = createResultReg(&X86::GR32RegClass);
1086         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr),
1087                 CopyReg)
1088             .addReg(Reg);
1089 
1090         Register ExtReg = createResultReg(&X86::GR64RegClass);
1091         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1092                 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1093             .addImm(0)
1094             .addReg(CopyReg)
1095             .addImm(X86::sub_32bit);
1096         Reg = ExtReg;
1097       }
1098 
1099       return Reg;
1100     };
1101 
1102     if (AM.Base.Reg == 0) {
1103       AM.Base.Reg = GetCallRegForValue(V);
1104       return AM.Base.Reg != 0;
1105     }
1106     if (AM.IndexReg == 0) {
1107       assert(AM.Scale == 1 && "Scale with no index!");
1108       AM.IndexReg = GetCallRegForValue(V);
1109       return AM.IndexReg != 0;
1110     }
1111   }
1112 
1113   return false;
1114 }
1115 
1116 
1117 /// X86SelectStore - Select and emit code to implement store instructions.
1118 bool X86FastISel::X86SelectStore(const Instruction *I) {
1119   // Atomic stores need special handling.
1120   const StoreInst *S = cast<StoreInst>(I);
1121 
1122   if (S->isAtomic())
1123     return false;
1124 
1125   const Value *PtrV = I->getOperand(1);
1126   if (TLI.supportSwiftError()) {
1127     // Swifterror values can come from either a function parameter with
1128     // swifterror attribute or an alloca with swifterror attribute.
1129     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1130       if (Arg->hasSwiftErrorAttr())
1131         return false;
1132     }
1133 
1134     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1135       if (Alloca->isSwiftError())
1136         return false;
1137     }
1138   }
1139 
1140   const Value *Val = S->getValueOperand();
1141   const Value *Ptr = S->getPointerOperand();
1142 
1143   MVT VT;
1144   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1145     return false;
1146 
1147   Align Alignment = S->getAlign();
1148   Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1149   bool Aligned = Alignment >= ABIAlignment;
1150 
1151   X86AddressMode AM;
1152   if (!X86SelectAddress(Ptr, AM))
1153     return false;
1154 
1155   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1156 }
1157 
1158 /// X86SelectRet - Select and emit code to implement ret instructions.
1159 bool X86FastISel::X86SelectRet(const Instruction *I) {
1160   const ReturnInst *Ret = cast<ReturnInst>(I);
1161   const Function &F = *I->getParent()->getParent();
1162   const X86MachineFunctionInfo *X86MFInfo =
1163       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1164 
1165   if (!FuncInfo.CanLowerReturn)
1166     return false;
1167 
1168   if (TLI.supportSwiftError() &&
1169       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1170     return false;
1171 
1172   if (TLI.supportSplitCSR(FuncInfo.MF))
1173     return false;
1174 
1175   CallingConv::ID CC = F.getCallingConv();
1176   if (CC != CallingConv::C &&
1177       CC != CallingConv::Fast &&
1178       CC != CallingConv::Tail &&
1179       CC != CallingConv::SwiftTail &&
1180       CC != CallingConv::X86_FastCall &&
1181       CC != CallingConv::X86_StdCall &&
1182       CC != CallingConv::X86_ThisCall &&
1183       CC != CallingConv::X86_64_SysV &&
1184       CC != CallingConv::Win64)
1185     return false;
1186 
1187   // Don't handle popping bytes if they don't fit the ret's immediate.
1188   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1189     return false;
1190 
1191   // fastcc with -tailcallopt is intended to provide a guaranteed
1192   // tail call optimization. Fastisel doesn't know how to do that.
1193   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1194       CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
1195     return false;
1196 
1197   // Let SDISel handle vararg functions.
1198   if (F.isVarArg())
1199     return false;
1200 
1201   // Build a list of return value registers.
1202   SmallVector<unsigned, 4> RetRegs;
1203 
1204   if (Ret->getNumOperands() > 0) {
1205     SmallVector<ISD::OutputArg, 4> Outs;
1206     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1207 
1208     // Analyze operands of the call, assigning locations to each operand.
1209     SmallVector<CCValAssign, 16> ValLocs;
1210     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1211     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1212 
1213     const Value *RV = Ret->getOperand(0);
1214     Register Reg = getRegForValue(RV);
1215     if (Reg == 0)
1216       return false;
1217 
1218     // Only handle a single return value for now.
1219     if (ValLocs.size() != 1)
1220       return false;
1221 
1222     CCValAssign &VA = ValLocs[0];
1223 
1224     // Don't bother handling odd stuff for now.
1225     if (VA.getLocInfo() != CCValAssign::Full)
1226       return false;
1227     // Only handle register returns for now.
1228     if (!VA.isRegLoc())
1229       return false;
1230 
1231     // The calling-convention tables for x87 returns don't tell
1232     // the whole story.
1233     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1234       return false;
1235 
1236     unsigned SrcReg = Reg + VA.getValNo();
1237     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1238     EVT DstVT = VA.getValVT();
1239     // Special handling for extended integers.
1240     if (SrcVT != DstVT) {
1241       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1242         return false;
1243 
1244       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1245         return false;
1246 
1247       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1248 
1249       if (SrcVT == MVT::i1) {
1250         if (Outs[0].Flags.isSExt())
1251           return false;
1252         // TODO
1253         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
1254         SrcVT = MVT::i8;
1255       }
1256       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1257                                              ISD::SIGN_EXTEND;
1258       // TODO
1259       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
1260     }
1261 
1262     // Make the copy.
1263     Register DstReg = VA.getLocReg();
1264     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1265     // Avoid a cross-class copy. This is very unlikely.
1266     if (!SrcRC->contains(DstReg))
1267       return false;
1268     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1269             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1270 
1271     // Add register to return instruction.
1272     RetRegs.push_back(VA.getLocReg());
1273   }
1274 
1275   // Swift calling convention does not require we copy the sret argument
1276   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1277 
1278   // All x86 ABIs require that for returning structs by value we copy
1279   // the sret argument into %rax/%eax (depending on ABI) for the return.
1280   // We saved the argument into a virtual register in the entry block,
1281   // so now we copy the value out and into %rax/%eax.
1282   if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
1283       CC != CallingConv::SwiftTail) {
1284     Register Reg = X86MFInfo->getSRetReturnReg();
1285     assert(Reg &&
1286            "SRetReturnReg should have been set in LowerFormalArguments()!");
1287     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1288     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1289             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1290     RetRegs.push_back(RetReg);
1291   }
1292 
1293   // Now emit the RET.
1294   MachineInstrBuilder MIB;
1295   if (X86MFInfo->getBytesToPopOnReturn()) {
1296     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1297                   TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32))
1298               .addImm(X86MFInfo->getBytesToPopOnReturn());
1299   } else {
1300     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1301                   TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32));
1302   }
1303   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1304     MIB.addReg(RetRegs[i], RegState::Implicit);
1305   return true;
1306 }
1307 
1308 /// X86SelectLoad - Select and emit code to implement load instructions.
1309 ///
1310 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1311   const LoadInst *LI = cast<LoadInst>(I);
1312 
1313   // Atomic loads need special handling.
1314   if (LI->isAtomic())
1315     return false;
1316 
1317   const Value *SV = I->getOperand(0);
1318   if (TLI.supportSwiftError()) {
1319     // Swifterror values can come from either a function parameter with
1320     // swifterror attribute or an alloca with swifterror attribute.
1321     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1322       if (Arg->hasSwiftErrorAttr())
1323         return false;
1324     }
1325 
1326     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1327       if (Alloca->isSwiftError())
1328         return false;
1329     }
1330   }
1331 
1332   MVT VT;
1333   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1334     return false;
1335 
1336   const Value *Ptr = LI->getPointerOperand();
1337 
1338   X86AddressMode AM;
1339   if (!X86SelectAddress(Ptr, AM))
1340     return false;
1341 
1342   unsigned ResultReg = 0;
1343   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1344                        LI->getAlign().value()))
1345     return false;
1346 
1347   updateValueMap(I, ResultReg);
1348   return true;
1349 }
1350 
1351 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1352   bool HasAVX512 = Subtarget->hasAVX512();
1353   bool HasAVX = Subtarget->hasAVX();
1354   bool HasSSE1 = Subtarget->hasSSE1();
1355   bool HasSSE2 = Subtarget->hasSSE2();
1356 
1357   switch (VT.getSimpleVT().SimpleTy) {
1358   default:       return 0;
1359   case MVT::i8:  return X86::CMP8rr;
1360   case MVT::i16: return X86::CMP16rr;
1361   case MVT::i32: return X86::CMP32rr;
1362   case MVT::i64: return X86::CMP64rr;
1363   case MVT::f32:
1364     return HasAVX512 ? X86::VUCOMISSZrr
1365            : HasAVX  ? X86::VUCOMISSrr
1366            : HasSSE1 ? X86::UCOMISSrr
1367                      : 0;
1368   case MVT::f64:
1369     return HasAVX512 ? X86::VUCOMISDZrr
1370            : HasAVX  ? X86::VUCOMISDrr
1371            : HasSSE2 ? X86::UCOMISDrr
1372                      : 0;
1373   }
1374 }
1375 
1376 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1377 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1378 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1379   int64_t Val = RHSC->getSExtValue();
1380   switch (VT.getSimpleVT().SimpleTy) {
1381   // Otherwise, we can't fold the immediate into this comparison.
1382   default:
1383     return 0;
1384   case MVT::i8:
1385     return X86::CMP8ri;
1386   case MVT::i16:
1387     if (isInt<8>(Val))
1388       return X86::CMP16ri8;
1389     return X86::CMP16ri;
1390   case MVT::i32:
1391     if (isInt<8>(Val))
1392       return X86::CMP32ri8;
1393     return X86::CMP32ri;
1394   case MVT::i64:
1395     if (isInt<8>(Val))
1396       return X86::CMP64ri8;
1397     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1398     // field.
1399     if (isInt<32>(Val))
1400       return X86::CMP64ri32;
1401     return 0;
1402   }
1403 }
1404 
1405 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1406                                      const DebugLoc &CurMIMD) {
1407   Register Op0Reg = getRegForValue(Op0);
1408   if (Op0Reg == 0) return false;
1409 
1410   // Handle 'null' like i32/i64 0.
1411   if (isa<ConstantPointerNull>(Op1))
1412     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1413 
1414   // We have two options: compare with register or immediate.  If the RHS of
1415   // the compare is an immediate that we can fold into this compare, use
1416   // CMPri, otherwise use CMPrr.
1417   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1418     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1419       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc))
1420         .addReg(Op0Reg)
1421         .addImm(Op1C->getSExtValue());
1422       return true;
1423     }
1424   }
1425 
1426   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1427   if (CompareOpc == 0) return false;
1428 
1429   Register Op1Reg = getRegForValue(Op1);
1430   if (Op1Reg == 0) return false;
1431   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc))
1432     .addReg(Op0Reg)
1433     .addReg(Op1Reg);
1434 
1435   return true;
1436 }
1437 
1438 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1439   const CmpInst *CI = cast<CmpInst>(I);
1440 
1441   MVT VT;
1442   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1443     return false;
1444 
1445   // Below code only works for scalars.
1446   if (VT.isVector())
1447     return false;
1448 
1449   // Try to optimize or fold the cmp.
1450   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1451   unsigned ResultReg = 0;
1452   switch (Predicate) {
1453   default: break;
1454   case CmpInst::FCMP_FALSE: {
1455     ResultReg = createResultReg(&X86::GR32RegClass);
1456     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0),
1457             ResultReg);
1458     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
1459     if (!ResultReg)
1460       return false;
1461     break;
1462   }
1463   case CmpInst::FCMP_TRUE: {
1464     ResultReg = createResultReg(&X86::GR8RegClass);
1465     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
1466             ResultReg).addImm(1);
1467     break;
1468   }
1469   }
1470 
1471   if (ResultReg) {
1472     updateValueMap(I, ResultReg);
1473     return true;
1474   }
1475 
1476   const Value *LHS = CI->getOperand(0);
1477   const Value *RHS = CI->getOperand(1);
1478 
1479   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1480   // We don't have to materialize a zero constant for this case and can just use
1481   // %x again on the RHS.
1482   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1483     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1484     if (RHSC && RHSC->isNullValue())
1485       RHS = LHS;
1486   }
1487 
1488   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1489   static const uint16_t SETFOpcTable[2][3] = {
1490     { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1491     { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1492   };
1493   const uint16_t *SETFOpc = nullptr;
1494   switch (Predicate) {
1495   default: break;
1496   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1497   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1498   }
1499 
1500   ResultReg = createResultReg(&X86::GR8RegClass);
1501   if (SETFOpc) {
1502     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1503       return false;
1504 
1505     Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1506     Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1507     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1508             FlagReg1).addImm(SETFOpc[0]);
1509     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1510             FlagReg2).addImm(SETFOpc[1]);
1511     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]),
1512             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1513     updateValueMap(I, ResultReg);
1514     return true;
1515   }
1516 
1517   X86::CondCode CC;
1518   bool SwapArgs;
1519   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1520   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1521 
1522   if (SwapArgs)
1523     std::swap(LHS, RHS);
1524 
1525   // Emit a compare of LHS/RHS.
1526   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1527     return false;
1528 
1529   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1530           ResultReg).addImm(CC);
1531   updateValueMap(I, ResultReg);
1532   return true;
1533 }
1534 
1535 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1536   EVT DstVT = TLI.getValueType(DL, I->getType());
1537   if (!TLI.isTypeLegal(DstVT))
1538     return false;
1539 
1540   Register ResultReg = getRegForValue(I->getOperand(0));
1541   if (ResultReg == 0)
1542     return false;
1543 
1544   // Handle zero-extension from i1 to i8, which is common.
1545   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1546   if (SrcVT == MVT::i1) {
1547     // Set the high bits to zero.
1548     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1549     SrcVT = MVT::i8;
1550 
1551     if (ResultReg == 0)
1552       return false;
1553   }
1554 
1555   if (DstVT == MVT::i64) {
1556     // Handle extension to 64-bits via sub-register shenanigans.
1557     unsigned MovInst;
1558 
1559     switch (SrcVT.SimpleTy) {
1560     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1561     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1562     case MVT::i32: MovInst = X86::MOV32rr;     break;
1563     default: llvm_unreachable("Unexpected zext to i64 source type");
1564     }
1565 
1566     Register Result32 = createResultReg(&X86::GR32RegClass);
1567     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32)
1568       .addReg(ResultReg);
1569 
1570     ResultReg = createResultReg(&X86::GR64RegClass);
1571     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG),
1572             ResultReg)
1573       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1574   } else if (DstVT == MVT::i16) {
1575     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1576     // extend to 32-bits and then extract down to 16-bits.
1577     Register Result32 = createResultReg(&X86::GR32RegClass);
1578     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8),
1579             Result32).addReg(ResultReg);
1580 
1581     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1582   } else if (DstVT != MVT::i8) {
1583     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1584                            ResultReg);
1585     if (ResultReg == 0)
1586       return false;
1587   }
1588 
1589   updateValueMap(I, ResultReg);
1590   return true;
1591 }
1592 
1593 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1594   EVT DstVT = TLI.getValueType(DL, I->getType());
1595   if (!TLI.isTypeLegal(DstVT))
1596     return false;
1597 
1598   Register ResultReg = getRegForValue(I->getOperand(0));
1599   if (ResultReg == 0)
1600     return false;
1601 
1602   // Handle sign-extension from i1 to i8.
1603   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1604   if (SrcVT == MVT::i1) {
1605     // Set the high bits to zero.
1606     Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1607     if (ZExtReg == 0)
1608       return false;
1609 
1610     // Negate the result to make an 8-bit sign extended value.
1611     ResultReg = createResultReg(&X86::GR8RegClass);
1612     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r),
1613             ResultReg).addReg(ZExtReg);
1614 
1615     SrcVT = MVT::i8;
1616   }
1617 
1618   if (DstVT == MVT::i16) {
1619     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1620     // extend to 32-bits and then extract down to 16-bits.
1621     Register Result32 = createResultReg(&X86::GR32RegClass);
1622     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8),
1623             Result32).addReg(ResultReg);
1624 
1625     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1626   } else if (DstVT != MVT::i8) {
1627     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1628                            ResultReg);
1629     if (ResultReg == 0)
1630       return false;
1631   }
1632 
1633   updateValueMap(I, ResultReg);
1634   return true;
1635 }
1636 
1637 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1638   // Unconditional branches are selected by tablegen-generated code.
1639   // Handle a conditional branch.
1640   const BranchInst *BI = cast<BranchInst>(I);
1641   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1642   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1643 
1644   // Fold the common case of a conditional branch with a comparison
1645   // in the same block (values defined on other blocks may not have
1646   // initialized registers).
1647   X86::CondCode CC;
1648   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1649     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1650       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1651 
1652       // Try to optimize or fold the cmp.
1653       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1654       switch (Predicate) {
1655       default: break;
1656       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true;
1657       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, MIMD.getDL()); return true;
1658       }
1659 
1660       const Value *CmpLHS = CI->getOperand(0);
1661       const Value *CmpRHS = CI->getOperand(1);
1662 
1663       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1664       // 0.0.
1665       // We don't have to materialize a zero constant for this case and can just
1666       // use %x again on the RHS.
1667       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1668         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1669         if (CmpRHSC && CmpRHSC->isNullValue())
1670           CmpRHS = CmpLHS;
1671       }
1672 
1673       // Try to take advantage of fallthrough opportunities.
1674       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1675         std::swap(TrueMBB, FalseMBB);
1676         Predicate = CmpInst::getInversePredicate(Predicate);
1677       }
1678 
1679       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1680       // code check. Instead two branch instructions are required to check all
1681       // the flags. First we change the predicate to a supported condition code,
1682       // which will be the first branch. Later one we will emit the second
1683       // branch.
1684       bool NeedExtraBranch = false;
1685       switch (Predicate) {
1686       default: break;
1687       case CmpInst::FCMP_OEQ:
1688         std::swap(TrueMBB, FalseMBB);
1689         [[fallthrough]];
1690       case CmpInst::FCMP_UNE:
1691         NeedExtraBranch = true;
1692         Predicate = CmpInst::FCMP_ONE;
1693         break;
1694       }
1695 
1696       bool SwapArgs;
1697       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1698       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1699 
1700       if (SwapArgs)
1701         std::swap(CmpLHS, CmpRHS);
1702 
1703       // Emit a compare of the LHS and RHS, setting the flags.
1704       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1705         return false;
1706 
1707       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1708         .addMBB(TrueMBB).addImm(CC);
1709 
1710       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1711       // to UNE above).
1712       if (NeedExtraBranch) {
1713         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1714           .addMBB(TrueMBB).addImm(X86::COND_P);
1715       }
1716 
1717       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1718       return true;
1719     }
1720   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1721     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1722     // typically happen for _Bool and C++ bools.
1723     MVT SourceVT;
1724     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1725         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1726       unsigned TestOpc = 0;
1727       switch (SourceVT.SimpleTy) {
1728       default: break;
1729       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1730       case MVT::i16: TestOpc = X86::TEST16ri; break;
1731       case MVT::i32: TestOpc = X86::TEST32ri; break;
1732       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1733       }
1734       if (TestOpc) {
1735         Register OpReg = getRegForValue(TI->getOperand(0));
1736         if (OpReg == 0) return false;
1737 
1738         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc))
1739           .addReg(OpReg).addImm(1);
1740 
1741         unsigned JmpCond = X86::COND_NE;
1742         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1743           std::swap(TrueMBB, FalseMBB);
1744           JmpCond = X86::COND_E;
1745         }
1746 
1747         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1748           .addMBB(TrueMBB).addImm(JmpCond);
1749 
1750         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1751         return true;
1752       }
1753     }
1754   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1755     // Fake request the condition, otherwise the intrinsic might be completely
1756     // optimized away.
1757     Register TmpReg = getRegForValue(BI->getCondition());
1758     if (TmpReg == 0)
1759       return false;
1760 
1761     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1762       .addMBB(TrueMBB).addImm(CC);
1763     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1764     return true;
1765   }
1766 
1767   // Otherwise do a clumsy setcc and re-test it.
1768   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1769   // in an explicit cast, so make sure to handle that correctly.
1770   Register OpReg = getRegForValue(BI->getCondition());
1771   if (OpReg == 0) return false;
1772 
1773   // In case OpReg is a K register, COPY to a GPR
1774   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1775     unsigned KOpReg = OpReg;
1776     OpReg = createResultReg(&X86::GR32RegClass);
1777     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1778             TII.get(TargetOpcode::COPY), OpReg)
1779         .addReg(KOpReg);
1780     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
1781   }
1782   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
1783       .addReg(OpReg)
1784       .addImm(1);
1785   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1786     .addMBB(TrueMBB).addImm(X86::COND_NE);
1787   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1788   return true;
1789 }
1790 
1791 bool X86FastISel::X86SelectShift(const Instruction *I) {
1792   unsigned CReg = 0, OpReg = 0;
1793   const TargetRegisterClass *RC = nullptr;
1794   if (I->getType()->isIntegerTy(8)) {
1795     CReg = X86::CL;
1796     RC = &X86::GR8RegClass;
1797     switch (I->getOpcode()) {
1798     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1799     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1800     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1801     default: return false;
1802     }
1803   } else if (I->getType()->isIntegerTy(16)) {
1804     CReg = X86::CX;
1805     RC = &X86::GR16RegClass;
1806     switch (I->getOpcode()) {
1807     default: llvm_unreachable("Unexpected shift opcode");
1808     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1809     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1810     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1811     }
1812   } else if (I->getType()->isIntegerTy(32)) {
1813     CReg = X86::ECX;
1814     RC = &X86::GR32RegClass;
1815     switch (I->getOpcode()) {
1816     default: llvm_unreachable("Unexpected shift opcode");
1817     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1818     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1819     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1820     }
1821   } else if (I->getType()->isIntegerTy(64)) {
1822     CReg = X86::RCX;
1823     RC = &X86::GR64RegClass;
1824     switch (I->getOpcode()) {
1825     default: llvm_unreachable("Unexpected shift opcode");
1826     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1827     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1828     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1829     }
1830   } else {
1831     return false;
1832   }
1833 
1834   MVT VT;
1835   if (!isTypeLegal(I->getType(), VT))
1836     return false;
1837 
1838   Register Op0Reg = getRegForValue(I->getOperand(0));
1839   if (Op0Reg == 0) return false;
1840 
1841   Register Op1Reg = getRegForValue(I->getOperand(1));
1842   if (Op1Reg == 0) return false;
1843   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1844           CReg).addReg(Op1Reg);
1845 
1846   // The shift instruction uses X86::CL. If we defined a super-register
1847   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1848   if (CReg != X86::CL)
1849     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1850             TII.get(TargetOpcode::KILL), X86::CL)
1851       .addReg(CReg, RegState::Kill);
1852 
1853   Register ResultReg = createResultReg(RC);
1854   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg)
1855     .addReg(Op0Reg);
1856   updateValueMap(I, ResultReg);
1857   return true;
1858 }
1859 
1860 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1861   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1862   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1863   const static bool S = true;  // IsSigned
1864   const static bool U = false; // !IsSigned
1865   const static unsigned Copy = TargetOpcode::COPY;
1866   // For the X86 DIV/IDIV instruction, in most cases the dividend
1867   // (numerator) must be in a specific register pair highreg:lowreg,
1868   // producing the quotient in lowreg and the remainder in highreg.
1869   // For most data types, to set up the instruction, the dividend is
1870   // copied into lowreg, and lowreg is sign-extended or zero-extended
1871   // into highreg.  The exception is i8, where the dividend is defined
1872   // as a single register rather than a register pair, and we
1873   // therefore directly sign-extend or zero-extend the dividend into
1874   // lowreg, instead of copying, and ignore the highreg.
1875   const static struct DivRemEntry {
1876     // The following portion depends only on the data type.
1877     const TargetRegisterClass *RC;
1878     unsigned LowInReg;  // low part of the register pair
1879     unsigned HighInReg; // high part of the register pair
1880     // The following portion depends on both the data type and the operation.
1881     struct DivRemResult {
1882     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1883     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1884                               // highreg, or copying a zero into highreg.
1885     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1886                               // zero/sign-extending into lowreg for i8.
1887     unsigned DivRemResultReg; // Register containing the desired result.
1888     bool IsOpSigned;          // Whether to use signed or unsigned form.
1889     } ResultTable[NumOps];
1890   } OpTable[NumTypes] = {
1891     { &X86::GR8RegClass,  X86::AX,  0, {
1892         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1893         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1894         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1895         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1896       }
1897     }, // i8
1898     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1899         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1900         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1901         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1902         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1903       }
1904     }, // i16
1905     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1906         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1907         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1908         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1909         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1910       }
1911     }, // i32
1912     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1913         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1914         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1915         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1916         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1917       }
1918     }, // i64
1919   };
1920 
1921   MVT VT;
1922   if (!isTypeLegal(I->getType(), VT))
1923     return false;
1924 
1925   unsigned TypeIndex, OpIndex;
1926   switch (VT.SimpleTy) {
1927   default: return false;
1928   case MVT::i8:  TypeIndex = 0; break;
1929   case MVT::i16: TypeIndex = 1; break;
1930   case MVT::i32: TypeIndex = 2; break;
1931   case MVT::i64: TypeIndex = 3;
1932     if (!Subtarget->is64Bit())
1933       return false;
1934     break;
1935   }
1936 
1937   switch (I->getOpcode()) {
1938   default: llvm_unreachable("Unexpected div/rem opcode");
1939   case Instruction::SDiv: OpIndex = 0; break;
1940   case Instruction::SRem: OpIndex = 1; break;
1941   case Instruction::UDiv: OpIndex = 2; break;
1942   case Instruction::URem: OpIndex = 3; break;
1943   }
1944 
1945   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1946   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1947   Register Op0Reg = getRegForValue(I->getOperand(0));
1948   if (Op0Reg == 0)
1949     return false;
1950   Register Op1Reg = getRegForValue(I->getOperand(1));
1951   if (Op1Reg == 0)
1952     return false;
1953 
1954   // Move op0 into low-order input register.
1955   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1956           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1957   // Zero-extend or sign-extend into high-order input register.
1958   if (OpEntry.OpSignExtend) {
1959     if (OpEntry.IsOpSigned)
1960       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1961               TII.get(OpEntry.OpSignExtend));
1962     else {
1963       Register Zero32 = createResultReg(&X86::GR32RegClass);
1964       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1965               TII.get(X86::MOV32r0), Zero32);
1966 
1967       // Copy the zero into the appropriate sub/super/identical physical
1968       // register. Unfortunately the operations needed are not uniform enough
1969       // to fit neatly into the table above.
1970       if (VT == MVT::i16) {
1971         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1972                 TII.get(Copy), TypeEntry.HighInReg)
1973           .addReg(Zero32, 0, X86::sub_16bit);
1974       } else if (VT == MVT::i32) {
1975         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1976                 TII.get(Copy), TypeEntry.HighInReg)
1977             .addReg(Zero32);
1978       } else if (VT == MVT::i64) {
1979         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1980                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1981             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1982       }
1983     }
1984   }
1985   // Generate the DIV/IDIV instruction.
1986   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1987           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1988   // For i8 remainder, we can't reference ah directly, as we'll end
1989   // up with bogus copies like %r9b = COPY %ah. Reference ax
1990   // instead to prevent ah references in a rex instruction.
1991   //
1992   // The current assumption of the fast register allocator is that isel
1993   // won't generate explicit references to the GR8_NOREX registers. If
1994   // the allocator and/or the backend get enhanced to be more robust in
1995   // that regard, this can be, and should be, removed.
1996   unsigned ResultReg = 0;
1997   if ((I->getOpcode() == Instruction::SRem ||
1998        I->getOpcode() == Instruction::URem) &&
1999       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
2000     Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
2001     Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
2002     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2003             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2004 
2005     // Shift AX right by 8 bits instead of using AH.
2006     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri),
2007             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2008 
2009     // Now reference the 8-bit subreg of the result.
2010     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2011                                            X86::sub_8bit);
2012   }
2013   // Copy the result out of the physreg if we haven't already.
2014   if (!ResultReg) {
2015     ResultReg = createResultReg(TypeEntry.RC);
2016     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg)
2017         .addReg(OpEntry.DivRemResultReg);
2018   }
2019   updateValueMap(I, ResultReg);
2020 
2021   return true;
2022 }
2023 
2024 /// Emit a conditional move instruction (if the are supported) to lower
2025 /// the select.
2026 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2027   // Check if the subtarget supports these instructions.
2028   if (!Subtarget->canUseCMOV())
2029     return false;
2030 
2031   // FIXME: Add support for i8.
2032   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2033     return false;
2034 
2035   const Value *Cond = I->getOperand(0);
2036   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2037   bool NeedTest = true;
2038   X86::CondCode CC = X86::COND_NE;
2039 
2040   // Optimize conditions coming from a compare if both instructions are in the
2041   // same basic block (values defined in other basic blocks may not have
2042   // initialized registers).
2043   const auto *CI = dyn_cast<CmpInst>(Cond);
2044   if (CI && (CI->getParent() == I->getParent())) {
2045     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2046 
2047     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2048     static const uint16_t SETFOpcTable[2][3] = {
2049       { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2050       { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2051     };
2052     const uint16_t *SETFOpc = nullptr;
2053     switch (Predicate) {
2054     default: break;
2055     case CmpInst::FCMP_OEQ:
2056       SETFOpc = &SETFOpcTable[0][0];
2057       Predicate = CmpInst::ICMP_NE;
2058       break;
2059     case CmpInst::FCMP_UNE:
2060       SETFOpc = &SETFOpcTable[1][0];
2061       Predicate = CmpInst::ICMP_NE;
2062       break;
2063     }
2064 
2065     bool NeedSwap;
2066     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2067     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2068 
2069     const Value *CmpLHS = CI->getOperand(0);
2070     const Value *CmpRHS = CI->getOperand(1);
2071     if (NeedSwap)
2072       std::swap(CmpLHS, CmpRHS);
2073 
2074     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2075     // Emit a compare of the LHS and RHS, setting the flags.
2076     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2077       return false;
2078 
2079     if (SETFOpc) {
2080       Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2081       Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2082       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2083               FlagReg1).addImm(SETFOpc[0]);
2084       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2085               FlagReg2).addImm(SETFOpc[1]);
2086       auto const &II = TII.get(SETFOpc[2]);
2087       if (II.getNumDefs()) {
2088         Register TmpReg = createResultReg(&X86::GR8RegClass);
2089         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg)
2090           .addReg(FlagReg2).addReg(FlagReg1);
2091       } else {
2092         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2093           .addReg(FlagReg2).addReg(FlagReg1);
2094       }
2095     }
2096     NeedTest = false;
2097   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2098     // Fake request the condition, otherwise the intrinsic might be completely
2099     // optimized away.
2100     Register TmpReg = getRegForValue(Cond);
2101     if (TmpReg == 0)
2102       return false;
2103 
2104     NeedTest = false;
2105   }
2106 
2107   if (NeedTest) {
2108     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2109     // garbage. Indeed, only the less significant bit is supposed to be
2110     // accurate. If we read more than the lsb, we may see non-zero values
2111     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2112     // the select. This is achieved by performing TEST against 1.
2113     Register CondReg = getRegForValue(Cond);
2114     if (CondReg == 0)
2115       return false;
2116 
2117     // In case OpReg is a K register, COPY to a GPR
2118     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2119       unsigned KCondReg = CondReg;
2120       CondReg = createResultReg(&X86::GR32RegClass);
2121       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2122               TII.get(TargetOpcode::COPY), CondReg)
2123           .addReg(KCondReg);
2124       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2125     }
2126     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2127         .addReg(CondReg)
2128         .addImm(1);
2129   }
2130 
2131   const Value *LHS = I->getOperand(1);
2132   const Value *RHS = I->getOperand(2);
2133 
2134   Register RHSReg = getRegForValue(RHS);
2135   Register LHSReg = getRegForValue(LHS);
2136   if (!LHSReg || !RHSReg)
2137     return false;
2138 
2139   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2140   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2141   Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2142   updateValueMap(I, ResultReg);
2143   return true;
2144 }
2145 
2146 /// Emit SSE or AVX instructions to lower the select.
2147 ///
2148 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2149 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2150 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2151 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2152   // Optimize conditions coming from a compare if both instructions are in the
2153   // same basic block (values defined in other basic blocks may not have
2154   // initialized registers).
2155   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2156   if (!CI || (CI->getParent() != I->getParent()))
2157     return false;
2158 
2159   if (I->getType() != CI->getOperand(0)->getType() ||
2160       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2161         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2162     return false;
2163 
2164   const Value *CmpLHS = CI->getOperand(0);
2165   const Value *CmpRHS = CI->getOperand(1);
2166   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2167 
2168   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2169   // We don't have to materialize a zero constant for this case and can just use
2170   // %x again on the RHS.
2171   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2172     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2173     if (CmpRHSC && CmpRHSC->isNullValue())
2174       CmpRHS = CmpLHS;
2175   }
2176 
2177   unsigned CC;
2178   bool NeedSwap;
2179   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2180   if (CC > 7 && !Subtarget->hasAVX())
2181     return false;
2182 
2183   if (NeedSwap)
2184     std::swap(CmpLHS, CmpRHS);
2185 
2186   const Value *LHS = I->getOperand(1);
2187   const Value *RHS = I->getOperand(2);
2188 
2189   Register LHSReg = getRegForValue(LHS);
2190   Register RHSReg = getRegForValue(RHS);
2191   Register CmpLHSReg = getRegForValue(CmpLHS);
2192   Register CmpRHSReg = getRegForValue(CmpRHS);
2193   if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2194     return false;
2195 
2196   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2197   unsigned ResultReg;
2198 
2199   if (Subtarget->hasAVX512()) {
2200     // If we have AVX512 we can use a mask compare and masked movss/sd.
2201     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2202     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2203 
2204     unsigned CmpOpcode =
2205       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2206     Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
2207                                        CC);
2208 
2209     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2210     // bits of the result register since its not based on any of the inputs.
2211     Register ImplicitDefReg = createResultReg(VR128X);
2212     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2213             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2214 
2215     // Place RHSReg is the passthru of the masked movss/sd operation and put
2216     // LHS in the input. The mask input comes from the compare.
2217     unsigned MovOpcode =
2218       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2219     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
2220                                         ImplicitDefReg, LHSReg);
2221 
2222     ResultReg = createResultReg(RC);
2223     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2224             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2225 
2226   } else if (Subtarget->hasAVX()) {
2227     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2228 
2229     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2230     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2231     // uses XMM0 as the selection register. That may need just as many
2232     // instructions as the AND/ANDN/OR sequence due to register moves, so
2233     // don't bother.
2234     unsigned CmpOpcode =
2235       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2236     unsigned BlendOpcode =
2237       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2238 
2239     Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
2240                                        CC);
2241     Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
2242                                           CmpReg);
2243     ResultReg = createResultReg(RC);
2244     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2245             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2246   } else {
2247     // Choose the SSE instruction sequence based on data type (float or double).
2248     static const uint16_t OpcTable[2][4] = {
2249       { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2250       { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2251     };
2252 
2253     const uint16_t *Opc = nullptr;
2254     switch (RetVT.SimpleTy) {
2255     default: return false;
2256     case MVT::f32: Opc = &OpcTable[0][0]; break;
2257     case MVT::f64: Opc = &OpcTable[1][0]; break;
2258     }
2259 
2260     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2261     Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
2262     Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
2263     Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
2264     Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
2265     ResultReg = createResultReg(RC);
2266     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2267             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2268   }
2269   updateValueMap(I, ResultReg);
2270   return true;
2271 }
2272 
2273 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2274   // These are pseudo CMOV instructions and will be later expanded into control-
2275   // flow.
2276   unsigned Opc;
2277   switch (RetVT.SimpleTy) {
2278   default: return false;
2279   case MVT::i8:  Opc = X86::CMOV_GR8;   break;
2280   case MVT::i16: Opc = X86::CMOV_GR16;  break;
2281   case MVT::i32: Opc = X86::CMOV_GR32;  break;
2282   case MVT::f16:
2283     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break;
2284   case MVT::f32:
2285     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break;
2286   case MVT::f64:
2287     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break;
2288   }
2289 
2290   const Value *Cond = I->getOperand(0);
2291   X86::CondCode CC = X86::COND_NE;
2292 
2293   // Optimize conditions coming from a compare if both instructions are in the
2294   // same basic block (values defined in other basic blocks may not have
2295   // initialized registers).
2296   const auto *CI = dyn_cast<CmpInst>(Cond);
2297   if (CI && (CI->getParent() == I->getParent())) {
2298     bool NeedSwap;
2299     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2300     if (CC > X86::LAST_VALID_COND)
2301       return false;
2302 
2303     const Value *CmpLHS = CI->getOperand(0);
2304     const Value *CmpRHS = CI->getOperand(1);
2305 
2306     if (NeedSwap)
2307       std::swap(CmpLHS, CmpRHS);
2308 
2309     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2310     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2311       return false;
2312   } else {
2313     Register CondReg = getRegForValue(Cond);
2314     if (CondReg == 0)
2315       return false;
2316 
2317     // In case OpReg is a K register, COPY to a GPR
2318     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2319       unsigned KCondReg = CondReg;
2320       CondReg = createResultReg(&X86::GR32RegClass);
2321       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2322               TII.get(TargetOpcode::COPY), CondReg)
2323           .addReg(KCondReg);
2324       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2325     }
2326     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2327         .addReg(CondReg)
2328         .addImm(1);
2329   }
2330 
2331   const Value *LHS = I->getOperand(1);
2332   const Value *RHS = I->getOperand(2);
2333 
2334   Register LHSReg = getRegForValue(LHS);
2335   Register RHSReg = getRegForValue(RHS);
2336   if (!LHSReg || !RHSReg)
2337     return false;
2338 
2339   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2340 
2341   Register ResultReg =
2342     fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2343   updateValueMap(I, ResultReg);
2344   return true;
2345 }
2346 
2347 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2348   MVT RetVT;
2349   if (!isTypeLegal(I->getType(), RetVT))
2350     return false;
2351 
2352   // Check if we can fold the select.
2353   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2354     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2355     const Value *Opnd = nullptr;
2356     switch (Predicate) {
2357     default:                              break;
2358     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2359     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2360     }
2361     // No need for a select anymore - this is an unconditional move.
2362     if (Opnd) {
2363       Register OpReg = getRegForValue(Opnd);
2364       if (OpReg == 0)
2365         return false;
2366       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2367       Register ResultReg = createResultReg(RC);
2368       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2369               TII.get(TargetOpcode::COPY), ResultReg)
2370         .addReg(OpReg);
2371       updateValueMap(I, ResultReg);
2372       return true;
2373     }
2374   }
2375 
2376   // First try to use real conditional move instructions.
2377   if (X86FastEmitCMoveSelect(RetVT, I))
2378     return true;
2379 
2380   // Try to use a sequence of SSE instructions to simulate a conditional move.
2381   if (X86FastEmitSSESelect(RetVT, I))
2382     return true;
2383 
2384   // Fall-back to pseudo conditional move instructions, which will be later
2385   // converted to control-flow.
2386   if (X86FastEmitPseudoSelect(RetVT, I))
2387     return true;
2388 
2389   return false;
2390 }
2391 
2392 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2393 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2394   // The target-independent selection algorithm in FastISel already knows how
2395   // to select a SINT_TO_FP if the target is SSE but not AVX.
2396   // Early exit if the subtarget doesn't have AVX.
2397   // Unsigned conversion requires avx512.
2398   bool HasAVX512 = Subtarget->hasAVX512();
2399   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2400     return false;
2401 
2402   // TODO: We could sign extend narrower types.
2403   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2404   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2405     return false;
2406 
2407   // Select integer to float/double conversion.
2408   Register OpReg = getRegForValue(I->getOperand(0));
2409   if (OpReg == 0)
2410     return false;
2411 
2412   unsigned Opcode;
2413 
2414   static const uint16_t SCvtOpc[2][2][2] = {
2415     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2416       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2417     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2418       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2419   };
2420   static const uint16_t UCvtOpc[2][2] = {
2421     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2422     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2423   };
2424   bool Is64Bit = SrcVT == MVT::i64;
2425 
2426   if (I->getType()->isDoubleTy()) {
2427     // s/uitofp int -> double
2428     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2429   } else if (I->getType()->isFloatTy()) {
2430     // s/uitofp int -> float
2431     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2432   } else
2433     return false;
2434 
2435   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2436   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2437   Register ImplicitDefReg = createResultReg(RC);
2438   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2439           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2440   Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
2441   updateValueMap(I, ResultReg);
2442   return true;
2443 }
2444 
2445 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2446   return X86SelectIntToFP(I, /*IsSigned*/true);
2447 }
2448 
2449 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2450   return X86SelectIntToFP(I, /*IsSigned*/false);
2451 }
2452 
2453 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2454 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2455                                           unsigned TargetOpc,
2456                                           const TargetRegisterClass *RC) {
2457   assert((I->getOpcode() == Instruction::FPExt ||
2458           I->getOpcode() == Instruction::FPTrunc) &&
2459          "Instruction must be an FPExt or FPTrunc!");
2460   bool HasAVX = Subtarget->hasAVX();
2461 
2462   Register OpReg = getRegForValue(I->getOperand(0));
2463   if (OpReg == 0)
2464     return false;
2465 
2466   unsigned ImplicitDefReg;
2467   if (HasAVX) {
2468     ImplicitDefReg = createResultReg(RC);
2469     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2470             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2471 
2472   }
2473 
2474   Register ResultReg = createResultReg(RC);
2475   MachineInstrBuilder MIB;
2476   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc),
2477                 ResultReg);
2478 
2479   if (HasAVX)
2480     MIB.addReg(ImplicitDefReg);
2481 
2482   MIB.addReg(OpReg);
2483   updateValueMap(I, ResultReg);
2484   return true;
2485 }
2486 
2487 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2488   if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() &&
2489       I->getOperand(0)->getType()->isFloatTy()) {
2490     bool HasAVX512 = Subtarget->hasAVX512();
2491     // fpext from float to double.
2492     unsigned Opc =
2493         HasAVX512 ? X86::VCVTSS2SDZrr
2494                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2495     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2496   }
2497 
2498   return false;
2499 }
2500 
2501 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2502   if (Subtarget->hasSSE2() && I->getType()->isFloatTy() &&
2503       I->getOperand(0)->getType()->isDoubleTy()) {
2504     bool HasAVX512 = Subtarget->hasAVX512();
2505     // fptrunc from double to float.
2506     unsigned Opc =
2507         HasAVX512 ? X86::VCVTSD2SSZrr
2508                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2509     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2510   }
2511 
2512   return false;
2513 }
2514 
2515 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2516   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2517   EVT DstVT = TLI.getValueType(DL, I->getType());
2518 
2519   // This code only handles truncation to byte.
2520   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2521     return false;
2522   if (!TLI.isTypeLegal(SrcVT))
2523     return false;
2524 
2525   Register InputReg = getRegForValue(I->getOperand(0));
2526   if (!InputReg)
2527     // Unhandled operand.  Halt "fast" selection and bail.
2528     return false;
2529 
2530   if (SrcVT == MVT::i8) {
2531     // Truncate from i8 to i1; no code needed.
2532     updateValueMap(I, InputReg);
2533     return true;
2534   }
2535 
2536   // Issue an extract_subreg.
2537   Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
2538                                                   X86::sub_8bit);
2539   if (!ResultReg)
2540     return false;
2541 
2542   updateValueMap(I, ResultReg);
2543   return true;
2544 }
2545 
2546 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2547   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2548 }
2549 
2550 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2551                                      X86AddressMode SrcAM, uint64_t Len) {
2552 
2553   // Make sure we don't bloat code by inlining very large memcpy's.
2554   if (!IsMemcpySmall(Len))
2555     return false;
2556 
2557   bool i64Legal = Subtarget->is64Bit();
2558 
2559   // We don't care about alignment here since we just emit integer accesses.
2560   while (Len) {
2561     MVT VT;
2562     if (Len >= 8 && i64Legal)
2563       VT = MVT::i64;
2564     else if (Len >= 4)
2565       VT = MVT::i32;
2566     else if (Len >= 2)
2567       VT = MVT::i16;
2568     else
2569       VT = MVT::i8;
2570 
2571     unsigned Reg;
2572     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2573     RV &= X86FastEmitStore(VT, Reg, DestAM);
2574     assert(RV && "Failed to emit load or store??");
2575     (void)RV;
2576 
2577     unsigned Size = VT.getSizeInBits()/8;
2578     Len -= Size;
2579     DestAM.Disp += Size;
2580     SrcAM.Disp += Size;
2581   }
2582 
2583   return true;
2584 }
2585 
2586 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2587   // FIXME: Handle more intrinsics.
2588   switch (II->getIntrinsicID()) {
2589   default: return false;
2590   case Intrinsic::convert_from_fp16:
2591   case Intrinsic::convert_to_fp16: {
2592     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2593       return false;
2594 
2595     const Value *Op = II->getArgOperand(0);
2596     Register InputReg = getRegForValue(Op);
2597     if (InputReg == 0)
2598       return false;
2599 
2600     // F16C only allows converting from float to half and from half to float.
2601     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2602     if (IsFloatToHalf) {
2603       if (!Op->getType()->isFloatTy())
2604         return false;
2605     } else {
2606       if (!II->getType()->isFloatTy())
2607         return false;
2608     }
2609 
2610     unsigned ResultReg = 0;
2611     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2612     if (IsFloatToHalf) {
2613       // 'InputReg' is implicitly promoted from register class FR32 to
2614       // register class VR128 by method 'constrainOperandRegClass' which is
2615       // directly called by 'fastEmitInst_ri'.
2616       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2617       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2618       // It's consistent with the other FP instructions, which are usually
2619       // controlled by MXCSR.
2620       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2621                                          : X86::VCVTPS2PHrr;
2622       InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
2623 
2624       // Move the lower 32-bits of ResultReg to another register of class GR32.
2625       Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2626                                    : X86::VMOVPDI2DIrr;
2627       ResultReg = createResultReg(&X86::GR32RegClass);
2628       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
2629           .addReg(InputReg, RegState::Kill);
2630 
2631       // The result value is in the lower 16-bits of ResultReg.
2632       unsigned RegIdx = X86::sub_16bit;
2633       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
2634     } else {
2635       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2636       // Explicitly zero-extend the input to 32-bit.
2637       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
2638 
2639       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2640       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2641                             InputReg);
2642 
2643       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2644                                          : X86::VCVTPH2PSrr;
2645       InputReg = fastEmitInst_r(Opc, RC, InputReg);
2646 
2647       // The result value is in the lower 32-bits of ResultReg.
2648       // Emit an explicit copy from register class VR128 to register class FR32.
2649       ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2650       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2651               TII.get(TargetOpcode::COPY), ResultReg)
2652           .addReg(InputReg, RegState::Kill);
2653     }
2654 
2655     updateValueMap(II, ResultReg);
2656     return true;
2657   }
2658   case Intrinsic::frameaddress: {
2659     MachineFunction *MF = FuncInfo.MF;
2660     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2661       return false;
2662 
2663     Type *RetTy = II->getCalledFunction()->getReturnType();
2664 
2665     MVT VT;
2666     if (!isTypeLegal(RetTy, VT))
2667       return false;
2668 
2669     unsigned Opc;
2670     const TargetRegisterClass *RC = nullptr;
2671 
2672     switch (VT.SimpleTy) {
2673     default: llvm_unreachable("Invalid result type for frameaddress.");
2674     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2675     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2676     }
2677 
2678     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2679     // we get the wrong frame register.
2680     MachineFrameInfo &MFI = MF->getFrameInfo();
2681     MFI.setFrameAddressIsTaken(true);
2682 
2683     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2684     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2685     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2686             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2687            "Invalid Frame Register!");
2688 
2689     // Always make a copy of the frame register to a vreg first, so that we
2690     // never directly reference the frame register (the TwoAddressInstruction-
2691     // Pass doesn't like that).
2692     Register SrcReg = createResultReg(RC);
2693     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2694             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2695 
2696     // Now recursively load from the frame address.
2697     // movq (%rbp), %rax
2698     // movq (%rax), %rax
2699     // movq (%rax), %rax
2700     // ...
2701     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2702     while (Depth--) {
2703       Register DestReg = createResultReg(RC);
2704       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2705                            TII.get(Opc), DestReg), SrcReg);
2706       SrcReg = DestReg;
2707     }
2708 
2709     updateValueMap(II, SrcReg);
2710     return true;
2711   }
2712   case Intrinsic::memcpy: {
2713     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2714     // Don't handle volatile or variable length memcpys.
2715     if (MCI->isVolatile())
2716       return false;
2717 
2718     if (isa<ConstantInt>(MCI->getLength())) {
2719       // Small memcpy's are common enough that we want to do them
2720       // without a call if possible.
2721       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2722       if (IsMemcpySmall(Len)) {
2723         X86AddressMode DestAM, SrcAM;
2724         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2725             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2726           return false;
2727         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2728         return true;
2729       }
2730     }
2731 
2732     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2733     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2734       return false;
2735 
2736     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2737       return false;
2738 
2739     return lowerCallTo(II, "memcpy", II->arg_size() - 1);
2740   }
2741   case Intrinsic::memset: {
2742     const MemSetInst *MSI = cast<MemSetInst>(II);
2743 
2744     if (MSI->isVolatile())
2745       return false;
2746 
2747     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2748     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2749       return false;
2750 
2751     if (MSI->getDestAddressSpace() > 255)
2752       return false;
2753 
2754     return lowerCallTo(II, "memset", II->arg_size() - 1);
2755   }
2756   case Intrinsic::stackprotector: {
2757     // Emit code to store the stack guard onto the stack.
2758     EVT PtrTy = TLI.getPointerTy(DL);
2759 
2760     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2761     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2762 
2763     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2764 
2765     // Grab the frame index.
2766     X86AddressMode AM;
2767     if (!X86SelectAddress(Slot, AM)) return false;
2768     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2769     return true;
2770   }
2771   case Intrinsic::dbg_declare: {
2772     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2773     X86AddressMode AM;
2774     assert(DI->getAddress() && "Null address should be checked earlier!");
2775     if (!X86SelectAddress(DI->getAddress(), AM))
2776       return false;
2777     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2778     assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
2779            "Expected inlined-at fields to agree");
2780     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM)
2781         .addImm(0)
2782         .addMetadata(DI->getVariable())
2783         .addMetadata(DI->getExpression());
2784     return true;
2785   }
2786   case Intrinsic::trap: {
2787     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP));
2788     return true;
2789   }
2790   case Intrinsic::sqrt: {
2791     if (!Subtarget->hasSSE1())
2792       return false;
2793 
2794     Type *RetTy = II->getCalledFunction()->getReturnType();
2795 
2796     MVT VT;
2797     if (!isTypeLegal(RetTy, VT))
2798       return false;
2799 
2800     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2801     // is not generated by FastISel yet.
2802     // FIXME: Update this code once tablegen can handle it.
2803     static const uint16_t SqrtOpc[3][2] = {
2804       { X86::SQRTSSr,   X86::SQRTSDr },
2805       { X86::VSQRTSSr,  X86::VSQRTSDr },
2806       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2807     };
2808     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2809                         Subtarget->hasAVX()    ? 1 :
2810                                                  0;
2811     unsigned Opc;
2812     switch (VT.SimpleTy) {
2813     default: return false;
2814     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2815     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2816     }
2817 
2818     const Value *SrcVal = II->getArgOperand(0);
2819     Register SrcReg = getRegForValue(SrcVal);
2820 
2821     if (SrcReg == 0)
2822       return false;
2823 
2824     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2825     unsigned ImplicitDefReg = 0;
2826     if (AVXLevel > 0) {
2827       ImplicitDefReg = createResultReg(RC);
2828       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2829               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2830     }
2831 
2832     Register ResultReg = createResultReg(RC);
2833     MachineInstrBuilder MIB;
2834     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
2835                   ResultReg);
2836 
2837     if (ImplicitDefReg)
2838       MIB.addReg(ImplicitDefReg);
2839 
2840     MIB.addReg(SrcReg);
2841 
2842     updateValueMap(II, ResultReg);
2843     return true;
2844   }
2845   case Intrinsic::sadd_with_overflow:
2846   case Intrinsic::uadd_with_overflow:
2847   case Intrinsic::ssub_with_overflow:
2848   case Intrinsic::usub_with_overflow:
2849   case Intrinsic::smul_with_overflow:
2850   case Intrinsic::umul_with_overflow: {
2851     // This implements the basic lowering of the xalu with overflow intrinsics
2852     // into add/sub/mul followed by either seto or setb.
2853     const Function *Callee = II->getCalledFunction();
2854     auto *Ty = cast<StructType>(Callee->getReturnType());
2855     Type *RetTy = Ty->getTypeAtIndex(0U);
2856     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2857            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2858            "Overflow value expected to be an i1");
2859 
2860     MVT VT;
2861     if (!isTypeLegal(RetTy, VT))
2862       return false;
2863 
2864     if (VT < MVT::i8 || VT > MVT::i64)
2865       return false;
2866 
2867     const Value *LHS = II->getArgOperand(0);
2868     const Value *RHS = II->getArgOperand(1);
2869 
2870     // Canonicalize immediate to the RHS.
2871     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2872       std::swap(LHS, RHS);
2873 
2874     unsigned BaseOpc, CondCode;
2875     switch (II->getIntrinsicID()) {
2876     default: llvm_unreachable("Unexpected intrinsic!");
2877     case Intrinsic::sadd_with_overflow:
2878       BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2879     case Intrinsic::uadd_with_overflow:
2880       BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2881     case Intrinsic::ssub_with_overflow:
2882       BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2883     case Intrinsic::usub_with_overflow:
2884       BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2885     case Intrinsic::smul_with_overflow:
2886       BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2887     case Intrinsic::umul_with_overflow:
2888       BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2889     }
2890 
2891     Register LHSReg = getRegForValue(LHS);
2892     if (LHSReg == 0)
2893       return false;
2894 
2895     unsigned ResultReg = 0;
2896     // Check if we have an immediate version.
2897     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2898       static const uint16_t Opc[2][4] = {
2899         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2900         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2901       };
2902 
2903       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2904           CondCode == X86::COND_O) {
2905         // We can use INC/DEC.
2906         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2907         bool IsDec = BaseOpc == ISD::SUB;
2908         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2909                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2910           .addReg(LHSReg);
2911       } else
2912         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
2913     }
2914 
2915     unsigned RHSReg;
2916     if (!ResultReg) {
2917       RHSReg = getRegForValue(RHS);
2918       if (RHSReg == 0)
2919         return false;
2920       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
2921     }
2922 
2923     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2924     // it manually.
2925     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2926       static const uint16_t MULOpc[] =
2927         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2928       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2929       // First copy the first operand into RAX, which is an implicit input to
2930       // the X86::MUL*r instruction.
2931       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2932               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2933         .addReg(LHSReg);
2934       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2935                                  TLI.getRegClassFor(VT), RHSReg);
2936     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2937       static const uint16_t MULOpc[] =
2938         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2939       if (VT == MVT::i8) {
2940         // Copy the first operand into AL, which is an implicit input to the
2941         // X86::IMUL8r instruction.
2942         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2943                TII.get(TargetOpcode::COPY), X86::AL)
2944           .addReg(LHSReg);
2945         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
2946       } else
2947         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2948                                     TLI.getRegClassFor(VT), LHSReg, RHSReg);
2949     }
2950 
2951     if (!ResultReg)
2952       return false;
2953 
2954     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2955     Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2956     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2957     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2958             ResultReg2).addImm(CondCode);
2959 
2960     updateValueMap(II, ResultReg, 2);
2961     return true;
2962   }
2963   case Intrinsic::x86_sse_cvttss2si:
2964   case Intrinsic::x86_sse_cvttss2si64:
2965   case Intrinsic::x86_sse2_cvttsd2si:
2966   case Intrinsic::x86_sse2_cvttsd2si64: {
2967     bool IsInputDouble;
2968     switch (II->getIntrinsicID()) {
2969     default: llvm_unreachable("Unexpected intrinsic.");
2970     case Intrinsic::x86_sse_cvttss2si:
2971     case Intrinsic::x86_sse_cvttss2si64:
2972       if (!Subtarget->hasSSE1())
2973         return false;
2974       IsInputDouble = false;
2975       break;
2976     case Intrinsic::x86_sse2_cvttsd2si:
2977     case Intrinsic::x86_sse2_cvttsd2si64:
2978       if (!Subtarget->hasSSE2())
2979         return false;
2980       IsInputDouble = true;
2981       break;
2982     }
2983 
2984     Type *RetTy = II->getCalledFunction()->getReturnType();
2985     MVT VT;
2986     if (!isTypeLegal(RetTy, VT))
2987       return false;
2988 
2989     static const uint16_t CvtOpc[3][2][2] = {
2990       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
2991         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
2992       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
2993         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
2994       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
2995         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
2996     };
2997     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2998                         Subtarget->hasAVX()    ? 1 :
2999                                                  0;
3000     unsigned Opc;
3001     switch (VT.SimpleTy) {
3002     default: llvm_unreachable("Unexpected result type.");
3003     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3004     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3005     }
3006 
3007     // Check if we can fold insertelement instructions into the convert.
3008     const Value *Op = II->getArgOperand(0);
3009     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3010       const Value *Index = IE->getOperand(2);
3011       if (!isa<ConstantInt>(Index))
3012         break;
3013       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3014 
3015       if (Idx == 0) {
3016         Op = IE->getOperand(1);
3017         break;
3018       }
3019       Op = IE->getOperand(0);
3020     }
3021 
3022     Register Reg = getRegForValue(Op);
3023     if (Reg == 0)
3024       return false;
3025 
3026     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3027     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
3028       .addReg(Reg);
3029 
3030     updateValueMap(II, ResultReg);
3031     return true;
3032   }
3033   }
3034 }
3035 
3036 bool X86FastISel::fastLowerArguments() {
3037   if (!FuncInfo.CanLowerReturn)
3038     return false;
3039 
3040   const Function *F = FuncInfo.Fn;
3041   if (F->isVarArg())
3042     return false;
3043 
3044   CallingConv::ID CC = F->getCallingConv();
3045   if (CC != CallingConv::C)
3046     return false;
3047 
3048   if (Subtarget->isCallingConvWin64(CC))
3049     return false;
3050 
3051   if (!Subtarget->is64Bit())
3052     return false;
3053 
3054   if (Subtarget->useSoftFloat())
3055     return false;
3056 
3057   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3058   unsigned GPRCnt = 0;
3059   unsigned FPRCnt = 0;
3060   for (auto const &Arg : F->args()) {
3061     if (Arg.hasAttribute(Attribute::ByVal) ||
3062         Arg.hasAttribute(Attribute::InReg) ||
3063         Arg.hasAttribute(Attribute::StructRet) ||
3064         Arg.hasAttribute(Attribute::SwiftSelf) ||
3065         Arg.hasAttribute(Attribute::SwiftAsync) ||
3066         Arg.hasAttribute(Attribute::SwiftError) ||
3067         Arg.hasAttribute(Attribute::Nest))
3068       return false;
3069 
3070     Type *ArgTy = Arg.getType();
3071     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3072       return false;
3073 
3074     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3075     if (!ArgVT.isSimple()) return false;
3076     switch (ArgVT.getSimpleVT().SimpleTy) {
3077     default: return false;
3078     case MVT::i32:
3079     case MVT::i64:
3080       ++GPRCnt;
3081       break;
3082     case MVT::f32:
3083     case MVT::f64:
3084       if (!Subtarget->hasSSE1())
3085         return false;
3086       ++FPRCnt;
3087       break;
3088     }
3089 
3090     if (GPRCnt > 6)
3091       return false;
3092 
3093     if (FPRCnt > 8)
3094       return false;
3095   }
3096 
3097   static const MCPhysReg GPR32ArgRegs[] = {
3098     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3099   };
3100   static const MCPhysReg GPR64ArgRegs[] = {
3101     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3102   };
3103   static const MCPhysReg XMMArgRegs[] = {
3104     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3105     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3106   };
3107 
3108   unsigned GPRIdx = 0;
3109   unsigned FPRIdx = 0;
3110   for (auto const &Arg : F->args()) {
3111     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3112     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3113     unsigned SrcReg;
3114     switch (VT.SimpleTy) {
3115     default: llvm_unreachable("Unexpected value type.");
3116     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3117     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3118     case MVT::f32: [[fallthrough]];
3119     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3120     }
3121     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3122     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3123     // Without this, EmitLiveInCopies may eliminate the livein if its only
3124     // use is a bitcast (which isn't turned into an instruction).
3125     Register ResultReg = createResultReg(RC);
3126     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3127             TII.get(TargetOpcode::COPY), ResultReg)
3128       .addReg(DstReg, getKillRegState(true));
3129     updateValueMap(&Arg, ResultReg);
3130   }
3131   return true;
3132 }
3133 
3134 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3135                                                   CallingConv::ID CC,
3136                                                   const CallBase *CB) {
3137   if (Subtarget->is64Bit())
3138     return 0;
3139   if (Subtarget->getTargetTriple().isOSMSVCRT())
3140     return 0;
3141   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3142       CC == CallingConv::HiPE || CC == CallingConv::Tail ||
3143       CC == CallingConv::SwiftTail)
3144     return 0;
3145 
3146   if (CB)
3147     if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3148         CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3149       return 0;
3150 
3151   return 4;
3152 }
3153 
3154 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3155   auto &OutVals       = CLI.OutVals;
3156   auto &OutFlags      = CLI.OutFlags;
3157   auto &OutRegs       = CLI.OutRegs;
3158   auto &Ins           = CLI.Ins;
3159   auto &InRegs        = CLI.InRegs;
3160   CallingConv::ID CC  = CLI.CallConv;
3161   bool &IsTailCall    = CLI.IsTailCall;
3162   bool IsVarArg       = CLI.IsVarArg;
3163   const Value *Callee = CLI.Callee;
3164   MCSymbol *Symbol    = CLI.Symbol;
3165   const auto *CB      = CLI.CB;
3166 
3167   bool Is64Bit        = Subtarget->is64Bit();
3168   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3169 
3170   // Call / invoke instructions with NoCfCheck attribute require special
3171   // handling.
3172   if (CB && CB->doesNoCfCheck())
3173     return false;
3174 
3175   // Functions with no_caller_saved_registers that need special handling.
3176   if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
3177     return false;
3178 
3179   // Functions with no_callee_saved_registers that need special handling.
3180   if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
3181     return false;
3182 
3183   // Indirect calls with CFI checks need special handling.
3184   if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi))
3185     return false;
3186 
3187   // Functions using thunks for indirect calls need to use SDISel.
3188   if (Subtarget->useIndirectThunkCalls())
3189     return false;
3190 
3191   // Handle only C, fastcc, and webkit_js calling conventions for now.
3192   switch (CC) {
3193   default: return false;
3194   case CallingConv::C:
3195   case CallingConv::Fast:
3196   case CallingConv::Tail:
3197   case CallingConv::WebKit_JS:
3198   case CallingConv::Swift:
3199   case CallingConv::SwiftTail:
3200   case CallingConv::X86_FastCall:
3201   case CallingConv::X86_StdCall:
3202   case CallingConv::X86_ThisCall:
3203   case CallingConv::Win64:
3204   case CallingConv::X86_64_SysV:
3205   case CallingConv::CFGuard_Check:
3206     break;
3207   }
3208 
3209   // Allow SelectionDAG isel to handle tail calls.
3210   if (IsTailCall)
3211     return false;
3212 
3213   // fastcc with -tailcallopt is intended to provide a guaranteed
3214   // tail call optimization. Fastisel doesn't know how to do that.
3215   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3216       CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
3217     return false;
3218 
3219   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3220   // x86-32. Special handling for x86-64 is implemented.
3221   if (IsVarArg && IsWin64)
3222     return false;
3223 
3224   // Don't know about inalloca yet.
3225   if (CLI.CB && CLI.CB->hasInAllocaArgument())
3226     return false;
3227 
3228   for (auto Flag : CLI.OutFlags)
3229     if (Flag.isSwiftError() || Flag.isPreallocated())
3230       return false;
3231 
3232   SmallVector<MVT, 16> OutVTs;
3233   SmallVector<unsigned, 16> ArgRegs;
3234 
3235   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3236   // instruction. This is safe because it is common to all FastISel supported
3237   // calling conventions on x86.
3238   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3239     Value *&Val = OutVals[i];
3240     ISD::ArgFlagsTy Flags = OutFlags[i];
3241     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3242       if (CI->getBitWidth() < 32) {
3243         if (Flags.isSExt())
3244           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3245         else
3246           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3247       }
3248     }
3249 
3250     // Passing bools around ends up doing a trunc to i1 and passing it.
3251     // Codegen this as an argument + "and 1".
3252     MVT VT;
3253     auto *TI = dyn_cast<TruncInst>(Val);
3254     unsigned ResultReg;
3255     if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3256         (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3257       Value *PrevVal = TI->getOperand(0);
3258       ResultReg = getRegForValue(PrevVal);
3259 
3260       if (!ResultReg)
3261         return false;
3262 
3263       if (!isTypeLegal(PrevVal->getType(), VT))
3264         return false;
3265 
3266       ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
3267     } else {
3268       if (!isTypeLegal(Val->getType(), VT) ||
3269           (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3270         return false;
3271       ResultReg = getRegForValue(Val);
3272     }
3273 
3274     if (!ResultReg)
3275       return false;
3276 
3277     ArgRegs.push_back(ResultReg);
3278     OutVTs.push_back(VT);
3279   }
3280 
3281   // Analyze operands of the call, assigning locations to each operand.
3282   SmallVector<CCValAssign, 16> ArgLocs;
3283   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3284 
3285   // Allocate shadow area for Win64
3286   if (IsWin64)
3287     CCInfo.AllocateStack(32, Align(8));
3288 
3289   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3290 
3291   // Get a count of how many bytes are to be pushed on the stack.
3292   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3293 
3294   // Issue CALLSEQ_START
3295   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3296   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown))
3297     .addImm(NumBytes).addImm(0).addImm(0);
3298 
3299   // Walk the register/memloc assignments, inserting copies/loads.
3300   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3301   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3302     CCValAssign const &VA = ArgLocs[i];
3303     const Value *ArgVal = OutVals[VA.getValNo()];
3304     MVT ArgVT = OutVTs[VA.getValNo()];
3305 
3306     if (ArgVT == MVT::x86mmx)
3307       return false;
3308 
3309     unsigned ArgReg = ArgRegs[VA.getValNo()];
3310 
3311     // Promote the value if needed.
3312     switch (VA.getLocInfo()) {
3313     case CCValAssign::Full: break;
3314     case CCValAssign::SExt: {
3315       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3316              "Unexpected extend");
3317 
3318       if (ArgVT == MVT::i1)
3319         return false;
3320 
3321       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3322                                        ArgVT, ArgReg);
3323       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3324       ArgVT = VA.getLocVT();
3325       break;
3326     }
3327     case CCValAssign::ZExt: {
3328       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3329              "Unexpected extend");
3330 
3331       // Handle zero-extension from i1 to i8, which is common.
3332       if (ArgVT == MVT::i1) {
3333         // Set the high bits to zero.
3334         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
3335         ArgVT = MVT::i8;
3336 
3337         if (ArgReg == 0)
3338           return false;
3339       }
3340 
3341       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3342                                        ArgVT, ArgReg);
3343       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3344       ArgVT = VA.getLocVT();
3345       break;
3346     }
3347     case CCValAssign::AExt: {
3348       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3349              "Unexpected extend");
3350       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3351                                        ArgVT, ArgReg);
3352       if (!Emitted)
3353         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3354                                     ArgVT, ArgReg);
3355       if (!Emitted)
3356         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3357                                     ArgVT, ArgReg);
3358 
3359       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3360       ArgVT = VA.getLocVT();
3361       break;
3362     }
3363     case CCValAssign::BCvt: {
3364       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
3365       assert(ArgReg && "Failed to emit a bitcast!");
3366       ArgVT = VA.getLocVT();
3367       break;
3368     }
3369     case CCValAssign::VExt:
3370       // VExt has not been implemented, so this should be impossible to reach
3371       // for now.  However, fallback to Selection DAG isel once implemented.
3372       return false;
3373     case CCValAssign::AExtUpper:
3374     case CCValAssign::SExtUpper:
3375     case CCValAssign::ZExtUpper:
3376     case CCValAssign::FPExt:
3377     case CCValAssign::Trunc:
3378       llvm_unreachable("Unexpected loc info!");
3379     case CCValAssign::Indirect:
3380       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3381       // support this.
3382       return false;
3383     }
3384 
3385     if (VA.isRegLoc()) {
3386       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3387               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3388       OutRegs.push_back(VA.getLocReg());
3389     } else {
3390       assert(VA.isMemLoc() && "Unknown value location!");
3391 
3392       // Don't emit stores for undef values.
3393       if (isa<UndefValue>(ArgVal))
3394         continue;
3395 
3396       unsigned LocMemOffset = VA.getLocMemOffset();
3397       X86AddressMode AM;
3398       AM.Base.Reg = RegInfo->getStackRegister();
3399       AM.Disp = LocMemOffset;
3400       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3401       Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3402       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3403           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3404           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3405       if (Flags.isByVal()) {
3406         X86AddressMode SrcAM;
3407         SrcAM.Base.Reg = ArgReg;
3408         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3409           return false;
3410       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3411         // If this is a really simple value, emit this with the Value* version
3412         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3413         // as it can cause us to reevaluate the argument.
3414         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3415           return false;
3416       } else {
3417         if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
3418           return false;
3419       }
3420     }
3421   }
3422 
3423   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3424   // GOT pointer.
3425   if (Subtarget->isPICStyleGOT()) {
3426     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3427     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3428             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3429   }
3430 
3431   if (Is64Bit && IsVarArg && !IsWin64) {
3432     // From AMD64 ABI document:
3433     // For calls that may call functions that use varargs or stdargs
3434     // (prototype-less calls or calls to functions containing ellipsis (...) in
3435     // the declaration) %al is used as hidden argument to specify the number
3436     // of SSE registers used. The contents of %al do not need to match exactly
3437     // the number of registers, but must be an ubound on the number of SSE
3438     // registers used and is in the range 0 - 8 inclusive.
3439 
3440     // Count the number of XMM registers allocated.
3441     static const MCPhysReg XMMArgRegs[] = {
3442       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3443       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3444     };
3445     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3446     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3447            && "SSE registers cannot be used when SSE is disabled");
3448     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
3449             X86::AL).addImm(NumXMMRegs);
3450   }
3451 
3452   // Materialize callee address in a register. FIXME: GV address can be
3453   // handled with a CALLpcrel32 instead.
3454   X86AddressMode CalleeAM;
3455   if (!X86SelectCallAddress(Callee, CalleeAM))
3456     return false;
3457 
3458   unsigned CalleeOp = 0;
3459   const GlobalValue *GV = nullptr;
3460   if (CalleeAM.GV != nullptr) {
3461     GV = CalleeAM.GV;
3462   } else if (CalleeAM.Base.Reg != 0) {
3463     CalleeOp = CalleeAM.Base.Reg;
3464   } else
3465     return false;
3466 
3467   // Issue the call.
3468   MachineInstrBuilder MIB;
3469   if (CalleeOp) {
3470     // Register-indirect call.
3471     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3472     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc))
3473       .addReg(CalleeOp);
3474   } else {
3475     // Direct call.
3476     assert(GV && "Not a direct call");
3477     // See if we need any target-specific flags on the GV operand.
3478     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3479 
3480     // This will be a direct call, or an indirect call through memory for
3481     // NonLazyBind calls or dllimport calls.
3482     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3483                     OpFlags == X86II::MO_GOTPCREL ||
3484                     OpFlags == X86II::MO_GOTPCREL_NORELAX ||
3485                     OpFlags == X86II::MO_COFFSTUB;
3486     unsigned CallOpc = NeedLoad
3487                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3488                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3489 
3490     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc));
3491     if (NeedLoad)
3492       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3493     if (Symbol)
3494       MIB.addSym(Symbol, OpFlags);
3495     else
3496       MIB.addGlobalAddress(GV, 0, OpFlags);
3497     if (NeedLoad)
3498       MIB.addReg(0);
3499   }
3500 
3501   // Add a register mask operand representing the call-preserved registers.
3502   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3503   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3504 
3505   // Add an implicit use GOT pointer in EBX.
3506   if (Subtarget->isPICStyleGOT())
3507     MIB.addReg(X86::EBX, RegState::Implicit);
3508 
3509   if (Is64Bit && IsVarArg && !IsWin64)
3510     MIB.addReg(X86::AL, RegState::Implicit);
3511 
3512   // Add implicit physical register uses to the call.
3513   for (auto Reg : OutRegs)
3514     MIB.addReg(Reg, RegState::Implicit);
3515 
3516   // Issue CALLSEQ_END
3517   unsigned NumBytesForCalleeToPop =
3518       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3519                        TM.Options.GuaranteedTailCallOpt)
3520           ? NumBytes // Callee pops everything.
3521           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3522   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3523   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
3524     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3525 
3526   // Now handle call return values.
3527   SmallVector<CCValAssign, 16> RVLocs;
3528   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3529                     CLI.RetTy->getContext());
3530   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3531 
3532   // Copy all of the result registers out of their specified physreg.
3533   Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3534   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3535     CCValAssign &VA = RVLocs[i];
3536     EVT CopyVT = VA.getValVT();
3537     unsigned CopyReg = ResultReg + i;
3538     Register SrcReg = VA.getLocReg();
3539 
3540     // If this is x86-64, and we disabled SSE, we can't return FP values
3541     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3542         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3543       report_fatal_error("SSE register return with SSE disabled");
3544     }
3545 
3546     // If we prefer to use the value in xmm registers, copy it out as f80 and
3547     // use a truncate to move it from fp stack reg to xmm reg.
3548     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3549         isScalarFPTypeInSSEReg(VA.getValVT())) {
3550       CopyVT = MVT::f80;
3551       CopyReg = createResultReg(&X86::RFP80RegClass);
3552     }
3553 
3554     // Copy out the result.
3555     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3556             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3557     InRegs.push_back(VA.getLocReg());
3558 
3559     // Round the f80 to the right size, which also moves it to the appropriate
3560     // xmm register. This is accomplished by storing the f80 value in memory
3561     // and then loading it back.
3562     if (CopyVT != VA.getValVT()) {
3563       EVT ResVT = VA.getValVT();
3564       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3565       unsigned MemSize = ResVT.getSizeInBits()/8;
3566       int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3567       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3568                                 TII.get(Opc)), FI)
3569         .addReg(CopyReg);
3570       Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3571       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3572                                 TII.get(Opc), ResultReg + i), FI);
3573     }
3574   }
3575 
3576   CLI.ResultReg = ResultReg;
3577   CLI.NumResultRegs = RVLocs.size();
3578   CLI.Call = MIB;
3579 
3580   return true;
3581 }
3582 
3583 bool
3584 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3585   switch (I->getOpcode()) {
3586   default: break;
3587   case Instruction::Load:
3588     return X86SelectLoad(I);
3589   case Instruction::Store:
3590     return X86SelectStore(I);
3591   case Instruction::Ret:
3592     return X86SelectRet(I);
3593   case Instruction::ICmp:
3594   case Instruction::FCmp:
3595     return X86SelectCmp(I);
3596   case Instruction::ZExt:
3597     return X86SelectZExt(I);
3598   case Instruction::SExt:
3599     return X86SelectSExt(I);
3600   case Instruction::Br:
3601     return X86SelectBranch(I);
3602   case Instruction::LShr:
3603   case Instruction::AShr:
3604   case Instruction::Shl:
3605     return X86SelectShift(I);
3606   case Instruction::SDiv:
3607   case Instruction::UDiv:
3608   case Instruction::SRem:
3609   case Instruction::URem:
3610     return X86SelectDivRem(I);
3611   case Instruction::Select:
3612     return X86SelectSelect(I);
3613   case Instruction::Trunc:
3614     return X86SelectTrunc(I);
3615   case Instruction::FPExt:
3616     return X86SelectFPExt(I);
3617   case Instruction::FPTrunc:
3618     return X86SelectFPTrunc(I);
3619   case Instruction::SIToFP:
3620     return X86SelectSIToFP(I);
3621   case Instruction::UIToFP:
3622     return X86SelectUIToFP(I);
3623   case Instruction::IntToPtr: // Deliberate fall-through.
3624   case Instruction::PtrToInt: {
3625     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3626     EVT DstVT = TLI.getValueType(DL, I->getType());
3627     if (DstVT.bitsGT(SrcVT))
3628       return X86SelectZExt(I);
3629     if (DstVT.bitsLT(SrcVT))
3630       return X86SelectTrunc(I);
3631     Register Reg = getRegForValue(I->getOperand(0));
3632     if (Reg == 0) return false;
3633     updateValueMap(I, Reg);
3634     return true;
3635   }
3636   case Instruction::BitCast: {
3637     // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3638     if (!Subtarget->hasSSE2())
3639       return false;
3640 
3641     MVT SrcVT, DstVT;
3642     if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3643         !isTypeLegal(I->getType(), DstVT))
3644       return false;
3645 
3646     // Only allow vectors that use xmm/ymm/zmm.
3647     if (!SrcVT.isVector() || !DstVT.isVector() ||
3648         SrcVT.getVectorElementType() == MVT::i1 ||
3649         DstVT.getVectorElementType() == MVT::i1)
3650       return false;
3651 
3652     Register Reg = getRegForValue(I->getOperand(0));
3653     if (!Reg)
3654       return false;
3655 
3656     // Emit a reg-reg copy so we don't propagate cached known bits information
3657     // with the wrong VT if we fall out of fast isel after selecting this.
3658     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3659     Register ResultReg = createResultReg(DstClass);
3660     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3661               TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3662 
3663     updateValueMap(I, ResultReg);
3664     return true;
3665   }
3666   }
3667 
3668   return false;
3669 }
3670 
3671 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3672   if (VT > MVT::i64)
3673     return 0;
3674 
3675   uint64_t Imm = CI->getZExtValue();
3676   if (Imm == 0) {
3677     Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3678     switch (VT.SimpleTy) {
3679     default: llvm_unreachable("Unexpected value type");
3680     case MVT::i1:
3681     case MVT::i8:
3682       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
3683     case MVT::i16:
3684       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
3685     case MVT::i32:
3686       return SrcReg;
3687     case MVT::i64: {
3688       Register ResultReg = createResultReg(&X86::GR64RegClass);
3689       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3690               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3691         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3692       return ResultReg;
3693     }
3694     }
3695   }
3696 
3697   unsigned Opc = 0;
3698   switch (VT.SimpleTy) {
3699   default: llvm_unreachable("Unexpected value type");
3700   case MVT::i1:
3701     VT = MVT::i8;
3702     [[fallthrough]];
3703   case MVT::i8:  Opc = X86::MOV8ri;  break;
3704   case MVT::i16: Opc = X86::MOV16ri; break;
3705   case MVT::i32: Opc = X86::MOV32ri; break;
3706   case MVT::i64: {
3707     if (isUInt<32>(Imm))
3708       Opc = X86::MOV32ri64;
3709     else if (isInt<32>(Imm))
3710       Opc = X86::MOV64ri32;
3711     else
3712       Opc = X86::MOV64ri;
3713     break;
3714   }
3715   }
3716   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3717 }
3718 
3719 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3720   if (CFP->isNullValue())
3721     return fastMaterializeFloatZero(CFP);
3722 
3723   // Can't handle alternate code models yet.
3724   CodeModel::Model CM = TM.getCodeModel();
3725   if (CM != CodeModel::Small && CM != CodeModel::Large)
3726     return 0;
3727 
3728   // Get opcode and regclass of the output for the given load instruction.
3729   unsigned Opc = 0;
3730   bool HasSSE1 = Subtarget->hasSSE1();
3731   bool HasSSE2 = Subtarget->hasSSE2();
3732   bool HasAVX = Subtarget->hasAVX();
3733   bool HasAVX512 = Subtarget->hasAVX512();
3734   switch (VT.SimpleTy) {
3735   default: return 0;
3736   case MVT::f32:
3737     Opc = HasAVX512 ? X86::VMOVSSZrm_alt
3738           : HasAVX  ? X86::VMOVSSrm_alt
3739           : HasSSE1 ? X86::MOVSSrm_alt
3740                     : X86::LD_Fp32m;
3741     break;
3742   case MVT::f64:
3743     Opc = HasAVX512 ? X86::VMOVSDZrm_alt
3744           : HasAVX  ? X86::VMOVSDrm_alt
3745           : HasSSE2 ? X86::MOVSDrm_alt
3746                     : X86::LD_Fp64m;
3747     break;
3748   case MVT::f80:
3749     // No f80 support yet.
3750     return 0;
3751   }
3752 
3753   // MachineConstantPool wants an explicit alignment.
3754   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3755 
3756   // x86-32 PIC requires a PIC base register for constant pools.
3757   unsigned PICBase = 0;
3758   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3759   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3760     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3761   else if (OpFlag == X86II::MO_GOTOFF)
3762     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3763   else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3764     PICBase = X86::RIP;
3765 
3766   // Create the load from the constant pool.
3767   unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3768   Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3769 
3770   // Large code model only applies to 64-bit mode.
3771   if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3772     Register AddrReg = createResultReg(&X86::GR64RegClass);
3773     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3774             AddrReg)
3775       .addConstantPoolIndex(CPI, 0, OpFlag);
3776     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3777                                       TII.get(Opc), ResultReg);
3778     addRegReg(MIB, AddrReg, false, PICBase, false);
3779     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3780         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3781         MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3782     MIB->addMemOperand(*FuncInfo.MF, MMO);
3783     return ResultReg;
3784   }
3785 
3786   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3787                                    TII.get(Opc), ResultReg),
3788                            CPI, PICBase, OpFlag);
3789   return ResultReg;
3790 }
3791 
3792 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3793   // Can't handle alternate code models yet.
3794   if (TM.getCodeModel() != CodeModel::Small)
3795     return 0;
3796 
3797   // Materialize addresses with LEA/MOV instructions.
3798   X86AddressMode AM;
3799   if (X86SelectAddress(GV, AM)) {
3800     // If the expression is just a basereg, then we're done, otherwise we need
3801     // to emit an LEA.
3802     if (AM.BaseType == X86AddressMode::RegBase &&
3803         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3804       return AM.Base.Reg;
3805 
3806     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3807     if (TM.getRelocationModel() == Reloc::Static &&
3808         TLI.getPointerTy(DL) == MVT::i64) {
3809       // The displacement code could be more than 32 bits away so we need to use
3810       // an instruction with a 64 bit immediate
3811       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3812               ResultReg)
3813         .addGlobalAddress(GV);
3814     } else {
3815       unsigned Opc =
3816           TLI.getPointerTy(DL) == MVT::i32
3817               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3818               : X86::LEA64r;
3819       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3820                              TII.get(Opc), ResultReg), AM);
3821     }
3822     return ResultReg;
3823   }
3824   return 0;
3825 }
3826 
3827 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3828   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3829 
3830   // Only handle simple types.
3831   if (!CEVT.isSimple())
3832     return 0;
3833   MVT VT = CEVT.getSimpleVT();
3834 
3835   if (const auto *CI = dyn_cast<ConstantInt>(C))
3836     return X86MaterializeInt(CI, VT);
3837   if (const auto *CFP = dyn_cast<ConstantFP>(C))
3838     return X86MaterializeFP(CFP, VT);
3839   if (const auto *GV = dyn_cast<GlobalValue>(C))
3840     return X86MaterializeGV(GV, VT);
3841   if (isa<UndefValue>(C)) {
3842     unsigned Opc = 0;
3843     switch (VT.SimpleTy) {
3844     default:
3845       break;
3846     case MVT::f32:
3847       if (!Subtarget->hasSSE1())
3848         Opc = X86::LD_Fp032;
3849       break;
3850     case MVT::f64:
3851       if (!Subtarget->hasSSE2())
3852         Opc = X86::LD_Fp064;
3853       break;
3854     case MVT::f80:
3855       Opc = X86::LD_Fp080;
3856       break;
3857     }
3858 
3859     if (Opc) {
3860       Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3861       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
3862               ResultReg);
3863       return ResultReg;
3864     }
3865   }
3866 
3867   return 0;
3868 }
3869 
3870 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3871   // Fail on dynamic allocas. At this point, getRegForValue has already
3872   // checked its CSE maps, so if we're here trying to handle a dynamic
3873   // alloca, we're not going to succeed. X86SelectAddress has a
3874   // check for dynamic allocas, because it's called directly from
3875   // various places, but targetMaterializeAlloca also needs a check
3876   // in order to avoid recursion between getRegForValue,
3877   // X86SelectAddrss, and targetMaterializeAlloca.
3878   if (!FuncInfo.StaticAllocaMap.count(C))
3879     return 0;
3880   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3881 
3882   X86AddressMode AM;
3883   if (!X86SelectAddress(C, AM))
3884     return 0;
3885   unsigned Opc =
3886       TLI.getPointerTy(DL) == MVT::i32
3887           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3888           : X86::LEA64r;
3889   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3890   Register ResultReg = createResultReg(RC);
3891   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3892                          TII.get(Opc), ResultReg), AM);
3893   return ResultReg;
3894 }
3895 
3896 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3897   MVT VT;
3898   if (!isTypeLegal(CF->getType(), VT))
3899     return 0;
3900 
3901   // Get opcode and regclass for the given zero.
3902   bool HasSSE1 = Subtarget->hasSSE1();
3903   bool HasSSE2 = Subtarget->hasSSE2();
3904   bool HasAVX512 = Subtarget->hasAVX512();
3905   unsigned Opc = 0;
3906   switch (VT.SimpleTy) {
3907   default: return 0;
3908   case MVT::f16:
3909     Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH;
3910     break;
3911   case MVT::f32:
3912     Opc = HasAVX512 ? X86::AVX512_FsFLD0SS
3913           : HasSSE1 ? X86::FsFLD0SS
3914                     : X86::LD_Fp032;
3915     break;
3916   case MVT::f64:
3917     Opc = HasAVX512 ? X86::AVX512_FsFLD0SD
3918           : HasSSE2 ? X86::FsFLD0SD
3919                     : X86::LD_Fp064;
3920     break;
3921   case MVT::f80:
3922     // No f80 support yet.
3923     return 0;
3924   }
3925 
3926   Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3927   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
3928   return ResultReg;
3929 }
3930 
3931 
3932 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3933                                       const LoadInst *LI) {
3934   const Value *Ptr = LI->getPointerOperand();
3935   X86AddressMode AM;
3936   if (!X86SelectAddress(Ptr, AM))
3937     return false;
3938 
3939   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3940 
3941   unsigned Size = DL.getTypeAllocSize(LI->getType());
3942 
3943   SmallVector<MachineOperand, 8> AddrOps;
3944   AM.getFullAddress(AddrOps);
3945 
3946   MachineInstr *Result = XII.foldMemoryOperandImpl(
3947       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
3948       /*AllowCommute=*/true);
3949   if (!Result)
3950     return false;
3951 
3952   // The index register could be in the wrong register class.  Unfortunately,
3953   // foldMemoryOperandImpl could have commuted the instruction so its not enough
3954   // to just look at OpNo + the offset to the index reg.  We actually need to
3955   // scan the instruction to find the index reg and see if its the correct reg
3956   // class.
3957   unsigned OperandNo = 0;
3958   for (MachineInstr::mop_iterator I = Result->operands_begin(),
3959        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3960     MachineOperand &MO = *I;
3961     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3962       continue;
3963     // Found the index reg, now try to rewrite it.
3964     Register IndexReg = constrainOperandRegClass(Result->getDesc(),
3965                                                  MO.getReg(), OperandNo);
3966     if (IndexReg == MO.getReg())
3967       continue;
3968     MO.setReg(IndexReg);
3969   }
3970 
3971   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3972   Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
3973   MachineBasicBlock::iterator I(MI);
3974   removeDeadCode(I, std::next(I));
3975   return true;
3976 }
3977 
3978 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3979                                         const TargetRegisterClass *RC,
3980                                         unsigned Op0, unsigned Op1,
3981                                         unsigned Op2, unsigned Op3) {
3982   const MCInstrDesc &II = TII.get(MachineInstOpcode);
3983 
3984   Register ResultReg = createResultReg(RC);
3985   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
3986   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
3987   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
3988   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
3989 
3990   if (II.getNumDefs() >= 1)
3991     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
3992         .addReg(Op0)
3993         .addReg(Op1)
3994         .addReg(Op2)
3995         .addReg(Op3);
3996   else {
3997     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
3998         .addReg(Op0)
3999         .addReg(Op1)
4000         .addReg(Op2)
4001         .addReg(Op3);
4002     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
4003             ResultReg)
4004         .addReg(II.implicit_defs()[0]);
4005   }
4006   return ResultReg;
4007 }
4008 
4009 
4010 namespace llvm {
4011   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4012                                 const TargetLibraryInfo *libInfo) {
4013     return new X86FastISel(funcInfo, libInfo);
4014   }
4015 }
4016