xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp (revision 85a2ea3f5785a299db029b84eee6d33d174e38da)
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/IntrinsicsX86.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Target/TargetOptions.h"
44 using namespace llvm;
45 
46 namespace {
47 
48 class X86FastISel final : public FastISel {
49   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50   /// make the right decision when generating code for different targets.
51   const X86Subtarget *Subtarget;
52 
53   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54   /// floating point ops.
55   /// When SSE is available, use it for f32 operations.
56   /// When SSE2 is available, use it for f64 operations.
57   bool X86ScalarSSEf64;
58   bool X86ScalarSSEf32;
59 
60 public:
61   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62                        const TargetLibraryInfo *libInfo)
63       : FastISel(funcInfo, libInfo) {
64     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
65     X86ScalarSSEf64 = Subtarget->hasSSE2();
66     X86ScalarSSEf32 = Subtarget->hasSSE1();
67   }
68 
69   bool fastSelectInstruction(const Instruction *I) override;
70 
71   /// The specified machine instr operand is a vreg, and that
72   /// vreg is being provided by the specified load instruction.  If possible,
73   /// try to fold the load as an operand to the instruction, returning true if
74   /// possible.
75   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76                            const LoadInst *LI) override;
77 
78   bool fastLowerArguments() override;
79   bool fastLowerCall(CallLoweringInfo &CLI) override;
80   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81 
82 #include "X86GenFastISel.inc"
83 
84 private:
85   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
86                           const DebugLoc &DL);
87 
88   bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
89                        unsigned &ResultReg, unsigned Alignment = 1);
90 
91   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
92                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
93   bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
94                         X86AddressMode &AM,
95                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
96 
97   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98                          unsigned &ResultReg);
99 
100   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102 
103   bool X86SelectLoad(const Instruction *I);
104 
105   bool X86SelectStore(const Instruction *I);
106 
107   bool X86SelectRet(const Instruction *I);
108 
109   bool X86SelectCmp(const Instruction *I);
110 
111   bool X86SelectZExt(const Instruction *I);
112 
113   bool X86SelectSExt(const Instruction *I);
114 
115   bool X86SelectBranch(const Instruction *I);
116 
117   bool X86SelectShift(const Instruction *I);
118 
119   bool X86SelectDivRem(const Instruction *I);
120 
121   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
122 
123   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
124 
125   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
126 
127   bool X86SelectSelect(const Instruction *I);
128 
129   bool X86SelectTrunc(const Instruction *I);
130 
131   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
132                                const TargetRegisterClass *RC);
133 
134   bool X86SelectFPExt(const Instruction *I);
135   bool X86SelectFPTrunc(const Instruction *I);
136   bool X86SelectSIToFP(const Instruction *I);
137   bool X86SelectUIToFP(const Instruction *I);
138   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
139 
140   const X86InstrInfo *getInstrInfo() const {
141     return Subtarget->getInstrInfo();
142   }
143   const X86TargetMachine *getTargetMachine() const {
144     return static_cast<const X86TargetMachine *>(&TM);
145   }
146 
147   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
148 
149   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
150   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
151   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
152   unsigned fastMaterializeConstant(const Constant *C) override;
153 
154   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
155 
156   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
157 
158   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
159   /// computed in an SSE register, not on the X87 floating point stack.
160   bool isScalarFPTypeInSSEReg(EVT VT) const {
161     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
162       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
163   }
164 
165   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
166 
167   bool IsMemcpySmall(uint64_t Len);
168 
169   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
170                           X86AddressMode SrcAM, uint64_t Len);
171 
172   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
173                             const Value *Cond);
174 
175   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
176                                             X86AddressMode &AM);
177 
178   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
179                              const TargetRegisterClass *RC, unsigned Op0,
180                              bool Op0IsKill, unsigned Op1, bool Op1IsKill,
181                              unsigned Op2, bool Op2IsKill, unsigned Op3,
182                              bool Op3IsKill);
183 };
184 
185 } // end anonymous namespace.
186 
187 static std::pair<unsigned, bool>
188 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
189   unsigned CC;
190   bool NeedSwap = false;
191 
192   // SSE Condition code mapping:
193   //  0 - EQ
194   //  1 - LT
195   //  2 - LE
196   //  3 - UNORD
197   //  4 - NEQ
198   //  5 - NLT
199   //  6 - NLE
200   //  7 - ORD
201   switch (Predicate) {
202   default: llvm_unreachable("Unexpected predicate");
203   case CmpInst::FCMP_OEQ: CC = 0;          break;
204   case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
205   case CmpInst::FCMP_OLT: CC = 1;          break;
206   case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
207   case CmpInst::FCMP_OLE: CC = 2;          break;
208   case CmpInst::FCMP_UNO: CC = 3;          break;
209   case CmpInst::FCMP_UNE: CC = 4;          break;
210   case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
211   case CmpInst::FCMP_UGE: CC = 5;          break;
212   case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
213   case CmpInst::FCMP_UGT: CC = 6;          break;
214   case CmpInst::FCMP_ORD: CC = 7;          break;
215   case CmpInst::FCMP_UEQ: CC = 8;          break;
216   case CmpInst::FCMP_ONE: CC = 12;         break;
217   }
218 
219   return std::make_pair(CC, NeedSwap);
220 }
221 
222 /// Adds a complex addressing mode to the given machine instr builder.
223 /// Note, this will constrain the index register.  If its not possible to
224 /// constrain the given index register, then a new one will be created.  The
225 /// IndexReg field of the addressing mode will be updated to match in this case.
226 const MachineInstrBuilder &
227 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
228                             X86AddressMode &AM) {
229   // First constrain the index register.  It needs to be a GR64_NOSP.
230   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
231                                          MIB->getNumOperands() +
232                                          X86::AddrIndexReg);
233   return ::addFullAddress(MIB, AM);
234 }
235 
236 /// Check if it is possible to fold the condition from the XALU intrinsic
237 /// into the user. The condition code will only be updated on success.
238 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
239                                        const Value *Cond) {
240   if (!isa<ExtractValueInst>(Cond))
241     return false;
242 
243   const auto *EV = cast<ExtractValueInst>(Cond);
244   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
245     return false;
246 
247   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
248   MVT RetVT;
249   const Function *Callee = II->getCalledFunction();
250   Type *RetTy =
251     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
252   if (!isTypeLegal(RetTy, RetVT))
253     return false;
254 
255   if (RetVT != MVT::i32 && RetVT != MVT::i64)
256     return false;
257 
258   X86::CondCode TmpCC;
259   switch (II->getIntrinsicID()) {
260   default: return false;
261   case Intrinsic::sadd_with_overflow:
262   case Intrinsic::ssub_with_overflow:
263   case Intrinsic::smul_with_overflow:
264   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
265   case Intrinsic::uadd_with_overflow:
266   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
267   }
268 
269   // Check if both instructions are in the same basic block.
270   if (II->getParent() != I->getParent())
271     return false;
272 
273   // Make sure nothing is in the way
274   BasicBlock::const_iterator Start(I);
275   BasicBlock::const_iterator End(II);
276   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
277     // We only expect extractvalue instructions between the intrinsic and the
278     // instruction to be selected.
279     if (!isa<ExtractValueInst>(Itr))
280       return false;
281 
282     // Check that the extractvalue operand comes from the intrinsic.
283     const auto *EVI = cast<ExtractValueInst>(Itr);
284     if (EVI->getAggregateOperand() != II)
285       return false;
286   }
287 
288   CC = TmpCC;
289   return true;
290 }
291 
292 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
293   EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
294   if (evt == MVT::Other || !evt.isSimple())
295     // Unhandled type. Halt "fast" selection and bail.
296     return false;
297 
298   VT = evt.getSimpleVT();
299   // For now, require SSE/SSE2 for performing floating-point operations,
300   // since x87 requires additional work.
301   if (VT == MVT::f64 && !X86ScalarSSEf64)
302     return false;
303   if (VT == MVT::f32 && !X86ScalarSSEf32)
304     return false;
305   // Similarly, no f80 support yet.
306   if (VT == MVT::f80)
307     return false;
308   // We only handle legal types. For example, on x86-32 the instruction
309   // selector contains all of the 64-bit instructions from x86-64,
310   // under the assumption that i64 won't be used if the target doesn't
311   // support it.
312   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
313 }
314 
315 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
316 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
317 /// Return true and the result register by reference if it is possible.
318 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
319                                   MachineMemOperand *MMO, unsigned &ResultReg,
320                                   unsigned Alignment) {
321   bool HasSSE41 = Subtarget->hasSSE41();
322   bool HasAVX = Subtarget->hasAVX();
323   bool HasAVX2 = Subtarget->hasAVX2();
324   bool HasAVX512 = Subtarget->hasAVX512();
325   bool HasVLX = Subtarget->hasVLX();
326   bool IsNonTemporal = MMO && MMO->isNonTemporal();
327 
328   // Treat i1 loads the same as i8 loads. Masking will be done when storing.
329   if (VT == MVT::i1)
330     VT = MVT::i8;
331 
332   // Get opcode and regclass of the output for the given load instruction.
333   unsigned Opc = 0;
334   switch (VT.SimpleTy) {
335   default: return false;
336   case MVT::i8:
337     Opc = X86::MOV8rm;
338     break;
339   case MVT::i16:
340     Opc = X86::MOV16rm;
341     break;
342   case MVT::i32:
343     Opc = X86::MOV32rm;
344     break;
345   case MVT::i64:
346     // Must be in x86-64 mode.
347     Opc = X86::MOV64rm;
348     break;
349   case MVT::f32:
350     if (X86ScalarSSEf32)
351       Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
352             HasAVX    ? X86::VMOVSSrm_alt :
353                         X86::MOVSSrm_alt;
354     else
355       Opc = X86::LD_Fp32m;
356     break;
357   case MVT::f64:
358     if (X86ScalarSSEf64)
359       Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
360             HasAVX    ? X86::VMOVSDrm_alt :
361                         X86::MOVSDrm_alt;
362     else
363       Opc = X86::LD_Fp64m;
364     break;
365   case MVT::f80:
366     // No f80 support yet.
367     return false;
368   case MVT::v4f32:
369     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
370       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
371             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
372     else if (Alignment >= 16)
373       Opc = HasVLX ? X86::VMOVAPSZ128rm :
374             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
375     else
376       Opc = HasVLX ? X86::VMOVUPSZ128rm :
377             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
378     break;
379   case MVT::v2f64:
380     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
381       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
382             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
383     else if (Alignment >= 16)
384       Opc = HasVLX ? X86::VMOVAPDZ128rm :
385             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
386     else
387       Opc = HasVLX ? X86::VMOVUPDZ128rm :
388             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
389     break;
390   case MVT::v4i32:
391   case MVT::v2i64:
392   case MVT::v8i16:
393   case MVT::v16i8:
394     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
395       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
396             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
397     else if (Alignment >= 16)
398       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
399             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
400     else
401       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
402             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
403     break;
404   case MVT::v8f32:
405     assert(HasAVX);
406     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
407       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
408     else if (IsNonTemporal && Alignment >= 16)
409       return false; // Force split for X86::VMOVNTDQArm
410     else if (Alignment >= 32)
411       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
412     else
413       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
414     break;
415   case MVT::v4f64:
416     assert(HasAVX);
417     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
418       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
419     else if (IsNonTemporal && Alignment >= 16)
420       return false; // Force split for X86::VMOVNTDQArm
421     else if (Alignment >= 32)
422       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
423     else
424       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
425     break;
426   case MVT::v8i32:
427   case MVT::v4i64:
428   case MVT::v16i16:
429   case MVT::v32i8:
430     assert(HasAVX);
431     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
432       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
433     else if (IsNonTemporal && Alignment >= 16)
434       return false; // Force split for X86::VMOVNTDQArm
435     else if (Alignment >= 32)
436       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
437     else
438       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
439     break;
440   case MVT::v16f32:
441     assert(HasAVX512);
442     if (IsNonTemporal && Alignment >= 64)
443       Opc = X86::VMOVNTDQAZrm;
444     else
445       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
446     break;
447   case MVT::v8f64:
448     assert(HasAVX512);
449     if (IsNonTemporal && Alignment >= 64)
450       Opc = X86::VMOVNTDQAZrm;
451     else
452       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
453     break;
454   case MVT::v8i64:
455   case MVT::v16i32:
456   case MVT::v32i16:
457   case MVT::v64i8:
458     assert(HasAVX512);
459     // Note: There are a lot more choices based on type with AVX-512, but
460     // there's really no advantage when the load isn't masked.
461     if (IsNonTemporal && Alignment >= 64)
462       Opc = X86::VMOVNTDQAZrm;
463     else
464       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
465     break;
466   }
467 
468   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
469 
470   ResultReg = createResultReg(RC);
471   MachineInstrBuilder MIB =
472     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
473   addFullAddress(MIB, AM);
474   if (MMO)
475     MIB->addMemOperand(*FuncInfo.MF, MMO);
476   return true;
477 }
478 
479 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
480 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
481 /// and a displacement offset, or a GlobalAddress,
482 /// i.e. V. Return true if it is possible.
483 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
484                                    X86AddressMode &AM,
485                                    MachineMemOperand *MMO, bool Aligned) {
486   bool HasSSE1 = Subtarget->hasSSE1();
487   bool HasSSE2 = Subtarget->hasSSE2();
488   bool HasSSE4A = Subtarget->hasSSE4A();
489   bool HasAVX = Subtarget->hasAVX();
490   bool HasAVX512 = Subtarget->hasAVX512();
491   bool HasVLX = Subtarget->hasVLX();
492   bool IsNonTemporal = MMO && MMO->isNonTemporal();
493 
494   // Get opcode and regclass of the output for the given store instruction.
495   unsigned Opc = 0;
496   switch (VT.getSimpleVT().SimpleTy) {
497   case MVT::f80: // No f80 support yet.
498   default: return false;
499   case MVT::i1: {
500     // Mask out all but lowest bit.
501     unsigned AndResult = createResultReg(&X86::GR8RegClass);
502     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
503             TII.get(X86::AND8ri), AndResult)
504       .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
505     ValReg = AndResult;
506     LLVM_FALLTHROUGH; // handle i1 as i8.
507   }
508   case MVT::i8:  Opc = X86::MOV8mr;  break;
509   case MVT::i16: Opc = X86::MOV16mr; break;
510   case MVT::i32:
511     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
512     break;
513   case MVT::i64:
514     // Must be in x86-64 mode.
515     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
516     break;
517   case MVT::f32:
518     if (X86ScalarSSEf32) {
519       if (IsNonTemporal && HasSSE4A)
520         Opc = X86::MOVNTSS;
521       else
522         Opc = HasAVX512 ? X86::VMOVSSZmr :
523               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
524     } else
525       Opc = X86::ST_Fp32m;
526     break;
527   case MVT::f64:
528     if (X86ScalarSSEf32) {
529       if (IsNonTemporal && HasSSE4A)
530         Opc = X86::MOVNTSD;
531       else
532         Opc = HasAVX512 ? X86::VMOVSDZmr :
533               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
534     } else
535       Opc = X86::ST_Fp64m;
536     break;
537   case MVT::x86mmx:
538     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
539     break;
540   case MVT::v4f32:
541     if (Aligned) {
542       if (IsNonTemporal)
543         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
544               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
545       else
546         Opc = HasVLX ? X86::VMOVAPSZ128mr :
547               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
548     } else
549       Opc = HasVLX ? X86::VMOVUPSZ128mr :
550             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
551     break;
552   case MVT::v2f64:
553     if (Aligned) {
554       if (IsNonTemporal)
555         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
556               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
557       else
558         Opc = HasVLX ? X86::VMOVAPDZ128mr :
559               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
560     } else
561       Opc = HasVLX ? X86::VMOVUPDZ128mr :
562             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
563     break;
564   case MVT::v4i32:
565   case MVT::v2i64:
566   case MVT::v8i16:
567   case MVT::v16i8:
568     if (Aligned) {
569       if (IsNonTemporal)
570         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
571               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
572       else
573         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
574               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
575     } else
576       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
577             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
578     break;
579   case MVT::v8f32:
580     assert(HasAVX);
581     if (Aligned) {
582       if (IsNonTemporal)
583         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
584       else
585         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
586     } else
587       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
588     break;
589   case MVT::v4f64:
590     assert(HasAVX);
591     if (Aligned) {
592       if (IsNonTemporal)
593         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
594       else
595         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
596     } else
597       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
598     break;
599   case MVT::v8i32:
600   case MVT::v4i64:
601   case MVT::v16i16:
602   case MVT::v32i8:
603     assert(HasAVX);
604     if (Aligned) {
605       if (IsNonTemporal)
606         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
607       else
608         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
609     } else
610       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
611     break;
612   case MVT::v16f32:
613     assert(HasAVX512);
614     if (Aligned)
615       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
616     else
617       Opc = X86::VMOVUPSZmr;
618     break;
619   case MVT::v8f64:
620     assert(HasAVX512);
621     if (Aligned) {
622       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
623     } else
624       Opc = X86::VMOVUPDZmr;
625     break;
626   case MVT::v8i64:
627   case MVT::v16i32:
628   case MVT::v32i16:
629   case MVT::v64i8:
630     assert(HasAVX512);
631     // Note: There are a lot more choices based on type with AVX-512, but
632     // there's really no advantage when the store isn't masked.
633     if (Aligned)
634       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
635     else
636       Opc = X86::VMOVDQU64Zmr;
637     break;
638   }
639 
640   const MCInstrDesc &Desc = TII.get(Opc);
641   // Some of the instructions in the previous switch use FR128 instead
642   // of FR32 for ValReg. Make sure the register we feed the instruction
643   // matches its register class constraints.
644   // Note: This is fine to do a copy from FR32 to FR128, this is the
645   // same registers behind the scene and actually why it did not trigger
646   // any bugs before.
647   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
648   MachineInstrBuilder MIB =
649       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
650   addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
651   if (MMO)
652     MIB->addMemOperand(*FuncInfo.MF, MMO);
653 
654   return true;
655 }
656 
657 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
658                                    X86AddressMode &AM,
659                                    MachineMemOperand *MMO, bool Aligned) {
660   // Handle 'null' like i32/i64 0.
661   if (isa<ConstantPointerNull>(Val))
662     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
663 
664   // If this is a store of a simple constant, fold the constant into the store.
665   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
666     unsigned Opc = 0;
667     bool Signed = true;
668     switch (VT.getSimpleVT().SimpleTy) {
669     default: break;
670     case MVT::i1:
671       Signed = false;
672       LLVM_FALLTHROUGH; // Handle as i8.
673     case MVT::i8:  Opc = X86::MOV8mi;  break;
674     case MVT::i16: Opc = X86::MOV16mi; break;
675     case MVT::i32: Opc = X86::MOV32mi; break;
676     case MVT::i64:
677       // Must be a 32-bit sign extended value.
678       if (isInt<32>(CI->getSExtValue()))
679         Opc = X86::MOV64mi32;
680       break;
681     }
682 
683     if (Opc) {
684       MachineInstrBuilder MIB =
685         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
686       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
687                                             : CI->getZExtValue());
688       if (MMO)
689         MIB->addMemOperand(*FuncInfo.MF, MMO);
690       return true;
691     }
692   }
693 
694   unsigned ValReg = getRegForValue(Val);
695   if (ValReg == 0)
696     return false;
697 
698   bool ValKill = hasTrivialKill(Val);
699   return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
700 }
701 
702 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
703 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
704 /// ISD::SIGN_EXTEND).
705 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
706                                     unsigned Src, EVT SrcVT,
707                                     unsigned &ResultReg) {
708   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
709                            Src, /*TODO: Kill=*/false);
710   if (RR == 0)
711     return false;
712 
713   ResultReg = RR;
714   return true;
715 }
716 
717 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
718   // Handle constant address.
719   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
720     // Can't handle alternate code models yet.
721     if (TM.getCodeModel() != CodeModel::Small)
722       return false;
723 
724     // Can't handle TLS yet.
725     if (GV->isThreadLocal())
726       return false;
727 
728     // Can't handle !absolute_symbol references yet.
729     if (GV->isAbsoluteSymbolRef())
730       return false;
731 
732     // RIP-relative addresses can't have additional register operands, so if
733     // we've already folded stuff into the addressing mode, just force the
734     // global value into its own register, which we can use as the basereg.
735     if (!Subtarget->isPICStyleRIPRel() ||
736         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
737       // Okay, we've committed to selecting this global. Set up the address.
738       AM.GV = GV;
739 
740       // Allow the subtarget to classify the global.
741       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
742 
743       // If this reference is relative to the pic base, set it now.
744       if (isGlobalRelativeToPICBase(GVFlags)) {
745         // FIXME: How do we know Base.Reg is free??
746         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
747       }
748 
749       // Unless the ABI requires an extra load, return a direct reference to
750       // the global.
751       if (!isGlobalStubReference(GVFlags)) {
752         if (Subtarget->isPICStyleRIPRel()) {
753           // Use rip-relative addressing if we can.  Above we verified that the
754           // base and index registers are unused.
755           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
756           AM.Base.Reg = X86::RIP;
757         }
758         AM.GVOpFlags = GVFlags;
759         return true;
760       }
761 
762       // Ok, we need to do a load from a stub.  If we've already loaded from
763       // this stub, reuse the loaded pointer, otherwise emit the load now.
764       DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
765       unsigned LoadReg;
766       if (I != LocalValueMap.end() && I->second != 0) {
767         LoadReg = I->second;
768       } else {
769         // Issue load from stub.
770         unsigned Opc = 0;
771         const TargetRegisterClass *RC = nullptr;
772         X86AddressMode StubAM;
773         StubAM.Base.Reg = AM.Base.Reg;
774         StubAM.GV = GV;
775         StubAM.GVOpFlags = GVFlags;
776 
777         // Prepare for inserting code in the local-value area.
778         SavePoint SaveInsertPt = enterLocalValueArea();
779 
780         if (TLI.getPointerTy(DL) == MVT::i64) {
781           Opc = X86::MOV64rm;
782           RC  = &X86::GR64RegClass;
783 
784           if (Subtarget->isPICStyleRIPRel())
785             StubAM.Base.Reg = X86::RIP;
786         } else {
787           Opc = X86::MOV32rm;
788           RC  = &X86::GR32RegClass;
789         }
790 
791         LoadReg = createResultReg(RC);
792         MachineInstrBuilder LoadMI =
793           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
794         addFullAddress(LoadMI, StubAM);
795 
796         // Ok, back to normal mode.
797         leaveLocalValueArea(SaveInsertPt);
798 
799         // Prevent loading GV stub multiple times in same MBB.
800         LocalValueMap[V] = LoadReg;
801       }
802 
803       // Now construct the final address. Note that the Disp, Scale,
804       // and Index values may already be set here.
805       AM.Base.Reg = LoadReg;
806       AM.GV = nullptr;
807       return true;
808     }
809   }
810 
811   // If all else fails, try to materialize the value in a register.
812   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
813     if (AM.Base.Reg == 0) {
814       AM.Base.Reg = getRegForValue(V);
815       return AM.Base.Reg != 0;
816     }
817     if (AM.IndexReg == 0) {
818       assert(AM.Scale == 1 && "Scale with no index!");
819       AM.IndexReg = getRegForValue(V);
820       return AM.IndexReg != 0;
821     }
822   }
823 
824   return false;
825 }
826 
827 /// X86SelectAddress - Attempt to fill in an address from the given value.
828 ///
829 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
830   SmallVector<const Value *, 32> GEPs;
831 redo_gep:
832   const User *U = nullptr;
833   unsigned Opcode = Instruction::UserOp1;
834   if (const Instruction *I = dyn_cast<Instruction>(V)) {
835     // Don't walk into other basic blocks; it's possible we haven't
836     // visited them yet, so the instructions may not yet be assigned
837     // virtual registers.
838     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
839         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
840       Opcode = I->getOpcode();
841       U = I;
842     }
843   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
844     Opcode = C->getOpcode();
845     U = C;
846   }
847 
848   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
849     if (Ty->getAddressSpace() > 255)
850       // Fast instruction selection doesn't support the special
851       // address spaces.
852       return false;
853 
854   switch (Opcode) {
855   default: break;
856   case Instruction::BitCast:
857     // Look past bitcasts.
858     return X86SelectAddress(U->getOperand(0), AM);
859 
860   case Instruction::IntToPtr:
861     // Look past no-op inttoptrs.
862     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
863         TLI.getPointerTy(DL))
864       return X86SelectAddress(U->getOperand(0), AM);
865     break;
866 
867   case Instruction::PtrToInt:
868     // Look past no-op ptrtoints.
869     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
870       return X86SelectAddress(U->getOperand(0), AM);
871     break;
872 
873   case Instruction::Alloca: {
874     // Do static allocas.
875     const AllocaInst *A = cast<AllocaInst>(V);
876     DenseMap<const AllocaInst *, int>::iterator SI =
877       FuncInfo.StaticAllocaMap.find(A);
878     if (SI != FuncInfo.StaticAllocaMap.end()) {
879       AM.BaseType = X86AddressMode::FrameIndexBase;
880       AM.Base.FrameIndex = SI->second;
881       return true;
882     }
883     break;
884   }
885 
886   case Instruction::Add: {
887     // Adds of constants are common and easy enough.
888     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
889       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
890       // They have to fit in the 32-bit signed displacement field though.
891       if (isInt<32>(Disp)) {
892         AM.Disp = (uint32_t)Disp;
893         return X86SelectAddress(U->getOperand(0), AM);
894       }
895     }
896     break;
897   }
898 
899   case Instruction::GetElementPtr: {
900     X86AddressMode SavedAM = AM;
901 
902     // Pattern-match simple GEPs.
903     uint64_t Disp = (int32_t)AM.Disp;
904     unsigned IndexReg = AM.IndexReg;
905     unsigned Scale = AM.Scale;
906     gep_type_iterator GTI = gep_type_begin(U);
907     // Iterate through the indices, folding what we can. Constants can be
908     // folded, and one dynamic index can be handled, if the scale is supported.
909     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
910          i != e; ++i, ++GTI) {
911       const Value *Op = *i;
912       if (StructType *STy = GTI.getStructTypeOrNull()) {
913         const StructLayout *SL = DL.getStructLayout(STy);
914         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
915         continue;
916       }
917 
918       // A array/variable index is always of the form i*S where S is the
919       // constant scale size.  See if we can push the scale into immediates.
920       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
921       for (;;) {
922         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
923           // Constant-offset addressing.
924           Disp += CI->getSExtValue() * S;
925           break;
926         }
927         if (canFoldAddIntoGEP(U, Op)) {
928           // A compatible add with a constant operand. Fold the constant.
929           ConstantInt *CI =
930             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
931           Disp += CI->getSExtValue() * S;
932           // Iterate on the other operand.
933           Op = cast<AddOperator>(Op)->getOperand(0);
934           continue;
935         }
936         if (IndexReg == 0 &&
937             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
938             (S == 1 || S == 2 || S == 4 || S == 8)) {
939           // Scaled-index addressing.
940           Scale = S;
941           IndexReg = getRegForGEPIndex(Op).first;
942           if (IndexReg == 0)
943             return false;
944           break;
945         }
946         // Unsupported.
947         goto unsupported_gep;
948       }
949     }
950 
951     // Check for displacement overflow.
952     if (!isInt<32>(Disp))
953       break;
954 
955     AM.IndexReg = IndexReg;
956     AM.Scale = Scale;
957     AM.Disp = (uint32_t)Disp;
958     GEPs.push_back(V);
959 
960     if (const GetElementPtrInst *GEP =
961           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
962       // Ok, the GEP indices were covered by constant-offset and scaled-index
963       // addressing. Update the address state and move on to examining the base.
964       V = GEP;
965       goto redo_gep;
966     } else if (X86SelectAddress(U->getOperand(0), AM)) {
967       return true;
968     }
969 
970     // If we couldn't merge the gep value into this addr mode, revert back to
971     // our address and just match the value instead of completely failing.
972     AM = SavedAM;
973 
974     for (const Value *I : reverse(GEPs))
975       if (handleConstantAddresses(I, AM))
976         return true;
977 
978     return false;
979   unsupported_gep:
980     // Ok, the GEP indices weren't all covered.
981     break;
982   }
983   }
984 
985   return handleConstantAddresses(V, AM);
986 }
987 
988 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
989 ///
990 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
991   const User *U = nullptr;
992   unsigned Opcode = Instruction::UserOp1;
993   const Instruction *I = dyn_cast<Instruction>(V);
994   // Record if the value is defined in the same basic block.
995   //
996   // This information is crucial to know whether or not folding an
997   // operand is valid.
998   // Indeed, FastISel generates or reuses a virtual register for all
999   // operands of all instructions it selects. Obviously, the definition and
1000   // its uses must use the same virtual register otherwise the produced
1001   // code is incorrect.
1002   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1003   // registers for values that are alive across basic blocks. This ensures
1004   // that the values are consistently set between across basic block, even
1005   // if different instruction selection mechanisms are used (e.g., a mix of
1006   // SDISel and FastISel).
1007   // For values local to a basic block, the instruction selection process
1008   // generates these virtual registers with whatever method is appropriate
1009   // for its needs. In particular, FastISel and SDISel do not share the way
1010   // local virtual registers are set.
1011   // Therefore, this is impossible (or at least unsafe) to share values
1012   // between basic blocks unless they use the same instruction selection
1013   // method, which is not guarantee for X86.
1014   // Moreover, things like hasOneUse could not be used accurately, if we
1015   // allow to reference values across basic blocks whereas they are not
1016   // alive across basic blocks initially.
1017   bool InMBB = true;
1018   if (I) {
1019     Opcode = I->getOpcode();
1020     U = I;
1021     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1022   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1023     Opcode = C->getOpcode();
1024     U = C;
1025   }
1026 
1027   switch (Opcode) {
1028   default: break;
1029   case Instruction::BitCast:
1030     // Look past bitcasts if its operand is in the same BB.
1031     if (InMBB)
1032       return X86SelectCallAddress(U->getOperand(0), AM);
1033     break;
1034 
1035   case Instruction::IntToPtr:
1036     // Look past no-op inttoptrs if its operand is in the same BB.
1037     if (InMBB &&
1038         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1039             TLI.getPointerTy(DL))
1040       return X86SelectCallAddress(U->getOperand(0), AM);
1041     break;
1042 
1043   case Instruction::PtrToInt:
1044     // Look past no-op ptrtoints if its operand is in the same BB.
1045     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1046       return X86SelectCallAddress(U->getOperand(0), AM);
1047     break;
1048   }
1049 
1050   // Handle constant address.
1051   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1052     // Can't handle alternate code models yet.
1053     if (TM.getCodeModel() != CodeModel::Small)
1054       return false;
1055 
1056     // RIP-relative addresses can't have additional register operands.
1057     if (Subtarget->isPICStyleRIPRel() &&
1058         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1059       return false;
1060 
1061     // Can't handle TLS.
1062     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1063       if (GVar->isThreadLocal())
1064         return false;
1065 
1066     // Okay, we've committed to selecting this global. Set up the basic address.
1067     AM.GV = GV;
1068 
1069     // Return a direct reference to the global. Fastisel can handle calls to
1070     // functions that require loads, such as dllimport and nonlazybind
1071     // functions.
1072     if (Subtarget->isPICStyleRIPRel()) {
1073       // Use rip-relative addressing if we can.  Above we verified that the
1074       // base and index registers are unused.
1075       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1076       AM.Base.Reg = X86::RIP;
1077     } else {
1078       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1079     }
1080 
1081     return true;
1082   }
1083 
1084   // If all else fails, try to materialize the value in a register.
1085   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1086     if (AM.Base.Reg == 0) {
1087       AM.Base.Reg = getRegForValue(V);
1088       return AM.Base.Reg != 0;
1089     }
1090     if (AM.IndexReg == 0) {
1091       assert(AM.Scale == 1 && "Scale with no index!");
1092       AM.IndexReg = getRegForValue(V);
1093       return AM.IndexReg != 0;
1094     }
1095   }
1096 
1097   return false;
1098 }
1099 
1100 
1101 /// X86SelectStore - Select and emit code to implement store instructions.
1102 bool X86FastISel::X86SelectStore(const Instruction *I) {
1103   // Atomic stores need special handling.
1104   const StoreInst *S = cast<StoreInst>(I);
1105 
1106   if (S->isAtomic())
1107     return false;
1108 
1109   const Value *PtrV = I->getOperand(1);
1110   if (TLI.supportSwiftError()) {
1111     // Swifterror values can come from either a function parameter with
1112     // swifterror attribute or an alloca with swifterror attribute.
1113     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1114       if (Arg->hasSwiftErrorAttr())
1115         return false;
1116     }
1117 
1118     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1119       if (Alloca->isSwiftError())
1120         return false;
1121     }
1122   }
1123 
1124   const Value *Val = S->getValueOperand();
1125   const Value *Ptr = S->getPointerOperand();
1126 
1127   MVT VT;
1128   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1129     return false;
1130 
1131   unsigned Alignment = S->getAlignment();
1132   unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1133   if (Alignment == 0) // Ensure that codegen never sees alignment 0
1134     Alignment = ABIAlignment;
1135   bool Aligned = Alignment >= ABIAlignment;
1136 
1137   X86AddressMode AM;
1138   if (!X86SelectAddress(Ptr, AM))
1139     return false;
1140 
1141   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1142 }
1143 
1144 /// X86SelectRet - Select and emit code to implement ret instructions.
1145 bool X86FastISel::X86SelectRet(const Instruction *I) {
1146   const ReturnInst *Ret = cast<ReturnInst>(I);
1147   const Function &F = *I->getParent()->getParent();
1148   const X86MachineFunctionInfo *X86MFInfo =
1149       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1150 
1151   if (!FuncInfo.CanLowerReturn)
1152     return false;
1153 
1154   if (TLI.supportSwiftError() &&
1155       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1156     return false;
1157 
1158   if (TLI.supportSplitCSR(FuncInfo.MF))
1159     return false;
1160 
1161   CallingConv::ID CC = F.getCallingConv();
1162   if (CC != CallingConv::C &&
1163       CC != CallingConv::Fast &&
1164       CC != CallingConv::Tail &&
1165       CC != CallingConv::X86_FastCall &&
1166       CC != CallingConv::X86_StdCall &&
1167       CC != CallingConv::X86_ThisCall &&
1168       CC != CallingConv::X86_64_SysV &&
1169       CC != CallingConv::Win64)
1170     return false;
1171 
1172   // Don't handle popping bytes if they don't fit the ret's immediate.
1173   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1174     return false;
1175 
1176   // fastcc with -tailcallopt is intended to provide a guaranteed
1177   // tail call optimization. Fastisel doesn't know how to do that.
1178   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1179       CC == CallingConv::Tail)
1180     return false;
1181 
1182   // Let SDISel handle vararg functions.
1183   if (F.isVarArg())
1184     return false;
1185 
1186   // Build a list of return value registers.
1187   SmallVector<unsigned, 4> RetRegs;
1188 
1189   if (Ret->getNumOperands() > 0) {
1190     SmallVector<ISD::OutputArg, 4> Outs;
1191     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1192 
1193     // Analyze operands of the call, assigning locations to each operand.
1194     SmallVector<CCValAssign, 16> ValLocs;
1195     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1196     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1197 
1198     const Value *RV = Ret->getOperand(0);
1199     unsigned Reg = getRegForValue(RV);
1200     if (Reg == 0)
1201       return false;
1202 
1203     // Only handle a single return value for now.
1204     if (ValLocs.size() != 1)
1205       return false;
1206 
1207     CCValAssign &VA = ValLocs[0];
1208 
1209     // Don't bother handling odd stuff for now.
1210     if (VA.getLocInfo() != CCValAssign::Full)
1211       return false;
1212     // Only handle register returns for now.
1213     if (!VA.isRegLoc())
1214       return false;
1215 
1216     // The calling-convention tables for x87 returns don't tell
1217     // the whole story.
1218     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1219       return false;
1220 
1221     unsigned SrcReg = Reg + VA.getValNo();
1222     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1223     EVT DstVT = VA.getValVT();
1224     // Special handling for extended integers.
1225     if (SrcVT != DstVT) {
1226       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1227         return false;
1228 
1229       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1230         return false;
1231 
1232       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1233 
1234       if (SrcVT == MVT::i1) {
1235         if (Outs[0].Flags.isSExt())
1236           return false;
1237         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1238         SrcVT = MVT::i8;
1239       }
1240       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1241                                              ISD::SIGN_EXTEND;
1242       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1243                           SrcReg, /*TODO: Kill=*/false);
1244     }
1245 
1246     // Make the copy.
1247     Register DstReg = VA.getLocReg();
1248     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1249     // Avoid a cross-class copy. This is very unlikely.
1250     if (!SrcRC->contains(DstReg))
1251       return false;
1252     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1253             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1254 
1255     // Add register to return instruction.
1256     RetRegs.push_back(VA.getLocReg());
1257   }
1258 
1259   // Swift calling convention does not require we copy the sret argument
1260   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1261 
1262   // All x86 ABIs require that for returning structs by value we copy
1263   // the sret argument into %rax/%eax (depending on ABI) for the return.
1264   // We saved the argument into a virtual register in the entry block,
1265   // so now we copy the value out and into %rax/%eax.
1266   if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1267     unsigned Reg = X86MFInfo->getSRetReturnReg();
1268     assert(Reg &&
1269            "SRetReturnReg should have been set in LowerFormalArguments()!");
1270     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1271     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1272             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1273     RetRegs.push_back(RetReg);
1274   }
1275 
1276   // Now emit the RET.
1277   MachineInstrBuilder MIB;
1278   if (X86MFInfo->getBytesToPopOnReturn()) {
1279     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1280                   TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1281               .addImm(X86MFInfo->getBytesToPopOnReturn());
1282   } else {
1283     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1284                   TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1285   }
1286   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1287     MIB.addReg(RetRegs[i], RegState::Implicit);
1288   return true;
1289 }
1290 
1291 /// X86SelectLoad - Select and emit code to implement load instructions.
1292 ///
1293 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1294   const LoadInst *LI = cast<LoadInst>(I);
1295 
1296   // Atomic loads need special handling.
1297   if (LI->isAtomic())
1298     return false;
1299 
1300   const Value *SV = I->getOperand(0);
1301   if (TLI.supportSwiftError()) {
1302     // Swifterror values can come from either a function parameter with
1303     // swifterror attribute or an alloca with swifterror attribute.
1304     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1305       if (Arg->hasSwiftErrorAttr())
1306         return false;
1307     }
1308 
1309     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1310       if (Alloca->isSwiftError())
1311         return false;
1312     }
1313   }
1314 
1315   MVT VT;
1316   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1317     return false;
1318 
1319   const Value *Ptr = LI->getPointerOperand();
1320 
1321   X86AddressMode AM;
1322   if (!X86SelectAddress(Ptr, AM))
1323     return false;
1324 
1325   unsigned Alignment = LI->getAlignment();
1326   unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1327   if (Alignment == 0) // Ensure that codegen never sees alignment 0
1328     Alignment = ABIAlignment;
1329 
1330   unsigned ResultReg = 0;
1331   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1332                        Alignment))
1333     return false;
1334 
1335   updateValueMap(I, ResultReg);
1336   return true;
1337 }
1338 
1339 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1340   bool HasAVX512 = Subtarget->hasAVX512();
1341   bool HasAVX = Subtarget->hasAVX();
1342   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1343   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1344 
1345   switch (VT.getSimpleVT().SimpleTy) {
1346   default:       return 0;
1347   case MVT::i8:  return X86::CMP8rr;
1348   case MVT::i16: return X86::CMP16rr;
1349   case MVT::i32: return X86::CMP32rr;
1350   case MVT::i64: return X86::CMP64rr;
1351   case MVT::f32:
1352     return X86ScalarSSEf32
1353                ? (HasAVX512 ? X86::VUCOMISSZrr
1354                             : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1355                : 0;
1356   case MVT::f64:
1357     return X86ScalarSSEf64
1358                ? (HasAVX512 ? X86::VUCOMISDZrr
1359                             : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1360                : 0;
1361   }
1362 }
1363 
1364 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1365 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1366 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1367   int64_t Val = RHSC->getSExtValue();
1368   switch (VT.getSimpleVT().SimpleTy) {
1369   // Otherwise, we can't fold the immediate into this comparison.
1370   default:
1371     return 0;
1372   case MVT::i8:
1373     return X86::CMP8ri;
1374   case MVT::i16:
1375     if (isInt<8>(Val))
1376       return X86::CMP16ri8;
1377     return X86::CMP16ri;
1378   case MVT::i32:
1379     if (isInt<8>(Val))
1380       return X86::CMP32ri8;
1381     return X86::CMP32ri;
1382   case MVT::i64:
1383     if (isInt<8>(Val))
1384       return X86::CMP64ri8;
1385     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1386     // field.
1387     if (isInt<32>(Val))
1388       return X86::CMP64ri32;
1389     return 0;
1390   }
1391 }
1392 
1393 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1394                                      const DebugLoc &CurDbgLoc) {
1395   unsigned Op0Reg = getRegForValue(Op0);
1396   if (Op0Reg == 0) return false;
1397 
1398   // Handle 'null' like i32/i64 0.
1399   if (isa<ConstantPointerNull>(Op1))
1400     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1401 
1402   // We have two options: compare with register or immediate.  If the RHS of
1403   // the compare is an immediate that we can fold into this compare, use
1404   // CMPri, otherwise use CMPrr.
1405   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1406     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1407       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1408         .addReg(Op0Reg)
1409         .addImm(Op1C->getSExtValue());
1410       return true;
1411     }
1412   }
1413 
1414   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1415   if (CompareOpc == 0) return false;
1416 
1417   unsigned Op1Reg = getRegForValue(Op1);
1418   if (Op1Reg == 0) return false;
1419   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1420     .addReg(Op0Reg)
1421     .addReg(Op1Reg);
1422 
1423   return true;
1424 }
1425 
1426 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1427   const CmpInst *CI = cast<CmpInst>(I);
1428 
1429   MVT VT;
1430   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1431     return false;
1432 
1433   // Try to optimize or fold the cmp.
1434   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1435   unsigned ResultReg = 0;
1436   switch (Predicate) {
1437   default: break;
1438   case CmpInst::FCMP_FALSE: {
1439     ResultReg = createResultReg(&X86::GR32RegClass);
1440     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1441             ResultReg);
1442     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1443                                            X86::sub_8bit);
1444     if (!ResultReg)
1445       return false;
1446     break;
1447   }
1448   case CmpInst::FCMP_TRUE: {
1449     ResultReg = createResultReg(&X86::GR8RegClass);
1450     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1451             ResultReg).addImm(1);
1452     break;
1453   }
1454   }
1455 
1456   if (ResultReg) {
1457     updateValueMap(I, ResultReg);
1458     return true;
1459   }
1460 
1461   const Value *LHS = CI->getOperand(0);
1462   const Value *RHS = CI->getOperand(1);
1463 
1464   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1465   // We don't have to materialize a zero constant for this case and can just use
1466   // %x again on the RHS.
1467   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1468     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1469     if (RHSC && RHSC->isNullValue())
1470       RHS = LHS;
1471   }
1472 
1473   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1474   static const uint16_t SETFOpcTable[2][3] = {
1475     { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1476     { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1477   };
1478   const uint16_t *SETFOpc = nullptr;
1479   switch (Predicate) {
1480   default: break;
1481   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1482   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1483   }
1484 
1485   ResultReg = createResultReg(&X86::GR8RegClass);
1486   if (SETFOpc) {
1487     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1488       return false;
1489 
1490     unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1491     unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1492     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1493             FlagReg1).addImm(SETFOpc[0]);
1494     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1495             FlagReg2).addImm(SETFOpc[1]);
1496     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1497             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1498     updateValueMap(I, ResultReg);
1499     return true;
1500   }
1501 
1502   X86::CondCode CC;
1503   bool SwapArgs;
1504   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1505   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1506 
1507   if (SwapArgs)
1508     std::swap(LHS, RHS);
1509 
1510   // Emit a compare of LHS/RHS.
1511   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1512     return false;
1513 
1514   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1515           ResultReg).addImm(CC);
1516   updateValueMap(I, ResultReg);
1517   return true;
1518 }
1519 
1520 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1521   EVT DstVT = TLI.getValueType(DL, I->getType());
1522   if (!TLI.isTypeLegal(DstVT))
1523     return false;
1524 
1525   unsigned ResultReg = getRegForValue(I->getOperand(0));
1526   if (ResultReg == 0)
1527     return false;
1528 
1529   // Handle zero-extension from i1 to i8, which is common.
1530   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1531   if (SrcVT == MVT::i1) {
1532     // Set the high bits to zero.
1533     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1534     SrcVT = MVT::i8;
1535 
1536     if (ResultReg == 0)
1537       return false;
1538   }
1539 
1540   if (DstVT == MVT::i64) {
1541     // Handle extension to 64-bits via sub-register shenanigans.
1542     unsigned MovInst;
1543 
1544     switch (SrcVT.SimpleTy) {
1545     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1546     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1547     case MVT::i32: MovInst = X86::MOV32rr;     break;
1548     default: llvm_unreachable("Unexpected zext to i64 source type");
1549     }
1550 
1551     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1552     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1553       .addReg(ResultReg);
1554 
1555     ResultReg = createResultReg(&X86::GR64RegClass);
1556     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1557             ResultReg)
1558       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1559   } else if (DstVT == MVT::i16) {
1560     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1561     // extend to 32-bits and then extract down to 16-bits.
1562     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1563     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1564             Result32).addReg(ResultReg);
1565 
1566     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1567                                            X86::sub_16bit);
1568   } else if (DstVT != MVT::i8) {
1569     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1570                            ResultReg, /*Kill=*/true);
1571     if (ResultReg == 0)
1572       return false;
1573   }
1574 
1575   updateValueMap(I, ResultReg);
1576   return true;
1577 }
1578 
1579 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1580   EVT DstVT = TLI.getValueType(DL, I->getType());
1581   if (!TLI.isTypeLegal(DstVT))
1582     return false;
1583 
1584   unsigned ResultReg = getRegForValue(I->getOperand(0));
1585   if (ResultReg == 0)
1586     return false;
1587 
1588   // Handle sign-extension from i1 to i8.
1589   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1590   if (SrcVT == MVT::i1) {
1591     // Set the high bits to zero.
1592     unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1593                                           /*TODO: Kill=*/false);
1594     if (ZExtReg == 0)
1595       return false;
1596 
1597     // Negate the result to make an 8-bit sign extended value.
1598     ResultReg = createResultReg(&X86::GR8RegClass);
1599     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1600             ResultReg).addReg(ZExtReg);
1601 
1602     SrcVT = MVT::i8;
1603   }
1604 
1605   if (DstVT == MVT::i16) {
1606     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1607     // extend to 32-bits and then extract down to 16-bits.
1608     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1609     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1610             Result32).addReg(ResultReg);
1611 
1612     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1613                                            X86::sub_16bit);
1614   } else if (DstVT != MVT::i8) {
1615     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1616                            ResultReg, /*Kill=*/true);
1617     if (ResultReg == 0)
1618       return false;
1619   }
1620 
1621   updateValueMap(I, ResultReg);
1622   return true;
1623 }
1624 
1625 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1626   // Unconditional branches are selected by tablegen-generated code.
1627   // Handle a conditional branch.
1628   const BranchInst *BI = cast<BranchInst>(I);
1629   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1630   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1631 
1632   // Fold the common case of a conditional branch with a comparison
1633   // in the same block (values defined on other blocks may not have
1634   // initialized registers).
1635   X86::CondCode CC;
1636   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1637     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1638       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1639 
1640       // Try to optimize or fold the cmp.
1641       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1642       switch (Predicate) {
1643       default: break;
1644       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1645       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
1646       }
1647 
1648       const Value *CmpLHS = CI->getOperand(0);
1649       const Value *CmpRHS = CI->getOperand(1);
1650 
1651       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1652       // 0.0.
1653       // We don't have to materialize a zero constant for this case and can just
1654       // use %x again on the RHS.
1655       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1656         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1657         if (CmpRHSC && CmpRHSC->isNullValue())
1658           CmpRHS = CmpLHS;
1659       }
1660 
1661       // Try to take advantage of fallthrough opportunities.
1662       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1663         std::swap(TrueMBB, FalseMBB);
1664         Predicate = CmpInst::getInversePredicate(Predicate);
1665       }
1666 
1667       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1668       // code check. Instead two branch instructions are required to check all
1669       // the flags. First we change the predicate to a supported condition code,
1670       // which will be the first branch. Later one we will emit the second
1671       // branch.
1672       bool NeedExtraBranch = false;
1673       switch (Predicate) {
1674       default: break;
1675       case CmpInst::FCMP_OEQ:
1676         std::swap(TrueMBB, FalseMBB);
1677         LLVM_FALLTHROUGH;
1678       case CmpInst::FCMP_UNE:
1679         NeedExtraBranch = true;
1680         Predicate = CmpInst::FCMP_ONE;
1681         break;
1682       }
1683 
1684       bool SwapArgs;
1685       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1686       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1687 
1688       if (SwapArgs)
1689         std::swap(CmpLHS, CmpRHS);
1690 
1691       // Emit a compare of the LHS and RHS, setting the flags.
1692       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1693         return false;
1694 
1695       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1696         .addMBB(TrueMBB).addImm(CC);
1697 
1698       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1699       // to UNE above).
1700       if (NeedExtraBranch) {
1701         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1702           .addMBB(TrueMBB).addImm(X86::COND_P);
1703       }
1704 
1705       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1706       return true;
1707     }
1708   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1709     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1710     // typically happen for _Bool and C++ bools.
1711     MVT SourceVT;
1712     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1713         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1714       unsigned TestOpc = 0;
1715       switch (SourceVT.SimpleTy) {
1716       default: break;
1717       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1718       case MVT::i16: TestOpc = X86::TEST16ri; break;
1719       case MVT::i32: TestOpc = X86::TEST32ri; break;
1720       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1721       }
1722       if (TestOpc) {
1723         unsigned OpReg = getRegForValue(TI->getOperand(0));
1724         if (OpReg == 0) return false;
1725 
1726         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1727           .addReg(OpReg).addImm(1);
1728 
1729         unsigned JmpCond = X86::COND_NE;
1730         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1731           std::swap(TrueMBB, FalseMBB);
1732           JmpCond = X86::COND_E;
1733         }
1734 
1735         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1736           .addMBB(TrueMBB).addImm(JmpCond);
1737 
1738         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1739         return true;
1740       }
1741     }
1742   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1743     // Fake request the condition, otherwise the intrinsic might be completely
1744     // optimized away.
1745     unsigned TmpReg = getRegForValue(BI->getCondition());
1746     if (TmpReg == 0)
1747       return false;
1748 
1749     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1750       .addMBB(TrueMBB).addImm(CC);
1751     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1752     return true;
1753   }
1754 
1755   // Otherwise do a clumsy setcc and re-test it.
1756   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1757   // in an explicit cast, so make sure to handle that correctly.
1758   unsigned OpReg = getRegForValue(BI->getCondition());
1759   if (OpReg == 0) return false;
1760 
1761   // In case OpReg is a K register, COPY to a GPR
1762   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1763     unsigned KOpReg = OpReg;
1764     OpReg = createResultReg(&X86::GR32RegClass);
1765     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1766             TII.get(TargetOpcode::COPY), OpReg)
1767         .addReg(KOpReg);
1768     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
1769                                        X86::sub_8bit);
1770   }
1771   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1772       .addReg(OpReg)
1773       .addImm(1);
1774   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1775     .addMBB(TrueMBB).addImm(X86::COND_NE);
1776   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1777   return true;
1778 }
1779 
1780 bool X86FastISel::X86SelectShift(const Instruction *I) {
1781   unsigned CReg = 0, OpReg = 0;
1782   const TargetRegisterClass *RC = nullptr;
1783   if (I->getType()->isIntegerTy(8)) {
1784     CReg = X86::CL;
1785     RC = &X86::GR8RegClass;
1786     switch (I->getOpcode()) {
1787     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1788     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1789     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1790     default: return false;
1791     }
1792   } else if (I->getType()->isIntegerTy(16)) {
1793     CReg = X86::CX;
1794     RC = &X86::GR16RegClass;
1795     switch (I->getOpcode()) {
1796     default: llvm_unreachable("Unexpected shift opcode");
1797     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1798     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1799     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1800     }
1801   } else if (I->getType()->isIntegerTy(32)) {
1802     CReg = X86::ECX;
1803     RC = &X86::GR32RegClass;
1804     switch (I->getOpcode()) {
1805     default: llvm_unreachable("Unexpected shift opcode");
1806     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1807     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1808     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1809     }
1810   } else if (I->getType()->isIntegerTy(64)) {
1811     CReg = X86::RCX;
1812     RC = &X86::GR64RegClass;
1813     switch (I->getOpcode()) {
1814     default: llvm_unreachable("Unexpected shift opcode");
1815     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1816     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1817     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1818     }
1819   } else {
1820     return false;
1821   }
1822 
1823   MVT VT;
1824   if (!isTypeLegal(I->getType(), VT))
1825     return false;
1826 
1827   unsigned Op0Reg = getRegForValue(I->getOperand(0));
1828   if (Op0Reg == 0) return false;
1829 
1830   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1831   if (Op1Reg == 0) return false;
1832   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1833           CReg).addReg(Op1Reg);
1834 
1835   // The shift instruction uses X86::CL. If we defined a super-register
1836   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1837   if (CReg != X86::CL)
1838     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1839             TII.get(TargetOpcode::KILL), X86::CL)
1840       .addReg(CReg, RegState::Kill);
1841 
1842   unsigned ResultReg = createResultReg(RC);
1843   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1844     .addReg(Op0Reg);
1845   updateValueMap(I, ResultReg);
1846   return true;
1847 }
1848 
1849 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1850   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1851   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1852   const static bool S = true;  // IsSigned
1853   const static bool U = false; // !IsSigned
1854   const static unsigned Copy = TargetOpcode::COPY;
1855   // For the X86 DIV/IDIV instruction, in most cases the dividend
1856   // (numerator) must be in a specific register pair highreg:lowreg,
1857   // producing the quotient in lowreg and the remainder in highreg.
1858   // For most data types, to set up the instruction, the dividend is
1859   // copied into lowreg, and lowreg is sign-extended or zero-extended
1860   // into highreg.  The exception is i8, where the dividend is defined
1861   // as a single register rather than a register pair, and we
1862   // therefore directly sign-extend or zero-extend the dividend into
1863   // lowreg, instead of copying, and ignore the highreg.
1864   const static struct DivRemEntry {
1865     // The following portion depends only on the data type.
1866     const TargetRegisterClass *RC;
1867     unsigned LowInReg;  // low part of the register pair
1868     unsigned HighInReg; // high part of the register pair
1869     // The following portion depends on both the data type and the operation.
1870     struct DivRemResult {
1871     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1872     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1873                               // highreg, or copying a zero into highreg.
1874     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1875                               // zero/sign-extending into lowreg for i8.
1876     unsigned DivRemResultReg; // Register containing the desired result.
1877     bool IsOpSigned;          // Whether to use signed or unsigned form.
1878     } ResultTable[NumOps];
1879   } OpTable[NumTypes] = {
1880     { &X86::GR8RegClass,  X86::AX,  0, {
1881         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1882         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1883         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1884         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1885       }
1886     }, // i8
1887     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1888         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1889         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1890         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1891         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1892       }
1893     }, // i16
1894     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1895         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1896         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1897         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1898         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1899       }
1900     }, // i32
1901     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1902         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1903         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1904         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1905         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1906       }
1907     }, // i64
1908   };
1909 
1910   MVT VT;
1911   if (!isTypeLegal(I->getType(), VT))
1912     return false;
1913 
1914   unsigned TypeIndex, OpIndex;
1915   switch (VT.SimpleTy) {
1916   default: return false;
1917   case MVT::i8:  TypeIndex = 0; break;
1918   case MVT::i16: TypeIndex = 1; break;
1919   case MVT::i32: TypeIndex = 2; break;
1920   case MVT::i64: TypeIndex = 3;
1921     if (!Subtarget->is64Bit())
1922       return false;
1923     break;
1924   }
1925 
1926   switch (I->getOpcode()) {
1927   default: llvm_unreachable("Unexpected div/rem opcode");
1928   case Instruction::SDiv: OpIndex = 0; break;
1929   case Instruction::SRem: OpIndex = 1; break;
1930   case Instruction::UDiv: OpIndex = 2; break;
1931   case Instruction::URem: OpIndex = 3; break;
1932   }
1933 
1934   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1935   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1936   unsigned Op0Reg = getRegForValue(I->getOperand(0));
1937   if (Op0Reg == 0)
1938     return false;
1939   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1940   if (Op1Reg == 0)
1941     return false;
1942 
1943   // Move op0 into low-order input register.
1944   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1945           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1946   // Zero-extend or sign-extend into high-order input register.
1947   if (OpEntry.OpSignExtend) {
1948     if (OpEntry.IsOpSigned)
1949       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1950               TII.get(OpEntry.OpSignExtend));
1951     else {
1952       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1953       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1954               TII.get(X86::MOV32r0), Zero32);
1955 
1956       // Copy the zero into the appropriate sub/super/identical physical
1957       // register. Unfortunately the operations needed are not uniform enough
1958       // to fit neatly into the table above.
1959       if (VT == MVT::i16) {
1960         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1961                 TII.get(Copy), TypeEntry.HighInReg)
1962           .addReg(Zero32, 0, X86::sub_16bit);
1963       } else if (VT == MVT::i32) {
1964         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1965                 TII.get(Copy), TypeEntry.HighInReg)
1966             .addReg(Zero32);
1967       } else if (VT == MVT::i64) {
1968         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1969                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1970             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1971       }
1972     }
1973   }
1974   // Generate the DIV/IDIV instruction.
1975   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1976           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1977   // For i8 remainder, we can't reference ah directly, as we'll end
1978   // up with bogus copies like %r9b = COPY %ah. Reference ax
1979   // instead to prevent ah references in a rex instruction.
1980   //
1981   // The current assumption of the fast register allocator is that isel
1982   // won't generate explicit references to the GR8_NOREX registers. If
1983   // the allocator and/or the backend get enhanced to be more robust in
1984   // that regard, this can be, and should be, removed.
1985   unsigned ResultReg = 0;
1986   if ((I->getOpcode() == Instruction::SRem ||
1987        I->getOpcode() == Instruction::URem) &&
1988       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1989     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1990     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1991     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1993 
1994     // Shift AX right by 8 bits instead of using AH.
1995     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1996             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1997 
1998     // Now reference the 8-bit subreg of the result.
1999     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2000                                            /*Kill=*/true, X86::sub_8bit);
2001   }
2002   // Copy the result out of the physreg if we haven't already.
2003   if (!ResultReg) {
2004     ResultReg = createResultReg(TypeEntry.RC);
2005     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2006         .addReg(OpEntry.DivRemResultReg);
2007   }
2008   updateValueMap(I, ResultReg);
2009 
2010   return true;
2011 }
2012 
2013 /// Emit a conditional move instruction (if the are supported) to lower
2014 /// the select.
2015 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2016   // Check if the subtarget supports these instructions.
2017   if (!Subtarget->hasCMov())
2018     return false;
2019 
2020   // FIXME: Add support for i8.
2021   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2022     return false;
2023 
2024   const Value *Cond = I->getOperand(0);
2025   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2026   bool NeedTest = true;
2027   X86::CondCode CC = X86::COND_NE;
2028 
2029   // Optimize conditions coming from a compare if both instructions are in the
2030   // same basic block (values defined in other basic blocks may not have
2031   // initialized registers).
2032   const auto *CI = dyn_cast<CmpInst>(Cond);
2033   if (CI && (CI->getParent() == I->getParent())) {
2034     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2035 
2036     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2037     static const uint16_t SETFOpcTable[2][3] = {
2038       { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2039       { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2040     };
2041     const uint16_t *SETFOpc = nullptr;
2042     switch (Predicate) {
2043     default: break;
2044     case CmpInst::FCMP_OEQ:
2045       SETFOpc = &SETFOpcTable[0][0];
2046       Predicate = CmpInst::ICMP_NE;
2047       break;
2048     case CmpInst::FCMP_UNE:
2049       SETFOpc = &SETFOpcTable[1][0];
2050       Predicate = CmpInst::ICMP_NE;
2051       break;
2052     }
2053 
2054     bool NeedSwap;
2055     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2056     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2057 
2058     const Value *CmpLHS = CI->getOperand(0);
2059     const Value *CmpRHS = CI->getOperand(1);
2060     if (NeedSwap)
2061       std::swap(CmpLHS, CmpRHS);
2062 
2063     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2064     // Emit a compare of the LHS and RHS, setting the flags.
2065     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2066       return false;
2067 
2068     if (SETFOpc) {
2069       unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2070       unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2071       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2072               FlagReg1).addImm(SETFOpc[0]);
2073       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2074               FlagReg2).addImm(SETFOpc[1]);
2075       auto const &II = TII.get(SETFOpc[2]);
2076       if (II.getNumDefs()) {
2077         unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2078         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2079           .addReg(FlagReg2).addReg(FlagReg1);
2080       } else {
2081         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2082           .addReg(FlagReg2).addReg(FlagReg1);
2083       }
2084     }
2085     NeedTest = false;
2086   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2087     // Fake request the condition, otherwise the intrinsic might be completely
2088     // optimized away.
2089     unsigned TmpReg = getRegForValue(Cond);
2090     if (TmpReg == 0)
2091       return false;
2092 
2093     NeedTest = false;
2094   }
2095 
2096   if (NeedTest) {
2097     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2098     // garbage. Indeed, only the less significant bit is supposed to be
2099     // accurate. If we read more than the lsb, we may see non-zero values
2100     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2101     // the select. This is achieved by performing TEST against 1.
2102     unsigned CondReg = getRegForValue(Cond);
2103     if (CondReg == 0)
2104       return false;
2105     bool CondIsKill = hasTrivialKill(Cond);
2106 
2107     // In case OpReg is a K register, COPY to a GPR
2108     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2109       unsigned KCondReg = CondReg;
2110       CondReg = createResultReg(&X86::GR32RegClass);
2111       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2112               TII.get(TargetOpcode::COPY), CondReg)
2113           .addReg(KCondReg, getKillRegState(CondIsKill));
2114       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2115                                            X86::sub_8bit);
2116     }
2117     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2118         .addReg(CondReg, getKillRegState(CondIsKill))
2119         .addImm(1);
2120   }
2121 
2122   const Value *LHS = I->getOperand(1);
2123   const Value *RHS = I->getOperand(2);
2124 
2125   unsigned RHSReg = getRegForValue(RHS);
2126   bool RHSIsKill = hasTrivialKill(RHS);
2127 
2128   unsigned LHSReg = getRegForValue(LHS);
2129   bool LHSIsKill = hasTrivialKill(LHS);
2130 
2131   if (!LHSReg || !RHSReg)
2132     return false;
2133 
2134   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2135   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2136   unsigned ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill,
2137                                         LHSReg, LHSIsKill, CC);
2138   updateValueMap(I, ResultReg);
2139   return true;
2140 }
2141 
2142 /// Emit SSE or AVX instructions to lower the select.
2143 ///
2144 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2145 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2146 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2147 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2148   // Optimize conditions coming from a compare if both instructions are in the
2149   // same basic block (values defined in other basic blocks may not have
2150   // initialized registers).
2151   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2152   if (!CI || (CI->getParent() != I->getParent()))
2153     return false;
2154 
2155   if (I->getType() != CI->getOperand(0)->getType() ||
2156       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2157         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2158     return false;
2159 
2160   const Value *CmpLHS = CI->getOperand(0);
2161   const Value *CmpRHS = CI->getOperand(1);
2162   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2163 
2164   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2165   // We don't have to materialize a zero constant for this case and can just use
2166   // %x again on the RHS.
2167   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2168     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2169     if (CmpRHSC && CmpRHSC->isNullValue())
2170       CmpRHS = CmpLHS;
2171   }
2172 
2173   unsigned CC;
2174   bool NeedSwap;
2175   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2176   if (CC > 7 && !Subtarget->hasAVX())
2177     return false;
2178 
2179   if (NeedSwap)
2180     std::swap(CmpLHS, CmpRHS);
2181 
2182   const Value *LHS = I->getOperand(1);
2183   const Value *RHS = I->getOperand(2);
2184 
2185   unsigned LHSReg = getRegForValue(LHS);
2186   bool LHSIsKill = hasTrivialKill(LHS);
2187 
2188   unsigned RHSReg = getRegForValue(RHS);
2189   bool RHSIsKill = hasTrivialKill(RHS);
2190 
2191   unsigned CmpLHSReg = getRegForValue(CmpLHS);
2192   bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2193 
2194   unsigned CmpRHSReg = getRegForValue(CmpRHS);
2195   bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2196 
2197   if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2198     return false;
2199 
2200   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2201   unsigned ResultReg;
2202 
2203   if (Subtarget->hasAVX512()) {
2204     // If we have AVX512 we can use a mask compare and masked movss/sd.
2205     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2206     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2207 
2208     unsigned CmpOpcode =
2209       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2210     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2211                                        CmpRHSReg, CmpRHSIsKill, CC);
2212 
2213     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2214     // bits of the result register since its not based on any of the inputs.
2215     unsigned ImplicitDefReg = createResultReg(VR128X);
2216     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2217             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2218 
2219     // Place RHSReg is the passthru of the masked movss/sd operation and put
2220     // LHS in the input. The mask input comes from the compare.
2221     unsigned MovOpcode =
2222       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2223     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2224                                         CmpReg, true, ImplicitDefReg, true,
2225                                         LHSReg, LHSIsKill);
2226 
2227     ResultReg = createResultReg(RC);
2228     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2229             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2230 
2231   } else if (Subtarget->hasAVX()) {
2232     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2233 
2234     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2235     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2236     // uses XMM0 as the selection register. That may need just as many
2237     // instructions as the AND/ANDN/OR sequence due to register moves, so
2238     // don't bother.
2239     unsigned CmpOpcode =
2240       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2241     unsigned BlendOpcode =
2242       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2243 
2244     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
2245                                        CmpRHSReg, CmpRHSIsKill, CC);
2246     unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2247                                           LHSReg, LHSIsKill, CmpReg, true);
2248     ResultReg = createResultReg(RC);
2249     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2250             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2251   } else {
2252     // Choose the SSE instruction sequence based on data type (float or double).
2253     static const uint16_t OpcTable[2][4] = {
2254       { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2255       { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2256     };
2257 
2258     const uint16_t *Opc = nullptr;
2259     switch (RetVT.SimpleTy) {
2260     default: return false;
2261     case MVT::f32: Opc = &OpcTable[0][0]; break;
2262     case MVT::f64: Opc = &OpcTable[1][0]; break;
2263     }
2264 
2265     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2266     unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2267                                        CmpRHSReg, CmpRHSIsKill, CC);
2268     unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
2269                                       LHSReg, LHSIsKill);
2270     unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
2271                                        RHSReg, RHSIsKill);
2272     unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
2273                                      AndReg, /*IsKill=*/true);
2274     ResultReg = createResultReg(RC);
2275     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2276             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2277   }
2278   updateValueMap(I, ResultReg);
2279   return true;
2280 }
2281 
2282 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2283   // These are pseudo CMOV instructions and will be later expanded into control-
2284   // flow.
2285   unsigned Opc;
2286   switch (RetVT.SimpleTy) {
2287   default: return false;
2288   case MVT::i8:  Opc = X86::CMOV_GR8;  break;
2289   case MVT::i16: Opc = X86::CMOV_GR16; break;
2290   case MVT::i32: Opc = X86::CMOV_GR32; break;
2291   case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X
2292                                               : X86::CMOV_FR32; break;
2293   case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X
2294                                               : X86::CMOV_FR64; break;
2295   }
2296 
2297   const Value *Cond = I->getOperand(0);
2298   X86::CondCode CC = X86::COND_NE;
2299 
2300   // Optimize conditions coming from a compare if both instructions are in the
2301   // same basic block (values defined in other basic blocks may not have
2302   // initialized registers).
2303   const auto *CI = dyn_cast<CmpInst>(Cond);
2304   if (CI && (CI->getParent() == I->getParent())) {
2305     bool NeedSwap;
2306     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2307     if (CC > X86::LAST_VALID_COND)
2308       return false;
2309 
2310     const Value *CmpLHS = CI->getOperand(0);
2311     const Value *CmpRHS = CI->getOperand(1);
2312 
2313     if (NeedSwap)
2314       std::swap(CmpLHS, CmpRHS);
2315 
2316     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2317     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2318       return false;
2319   } else {
2320     unsigned CondReg = getRegForValue(Cond);
2321     if (CondReg == 0)
2322       return false;
2323     bool CondIsKill = hasTrivialKill(Cond);
2324 
2325     // In case OpReg is a K register, COPY to a GPR
2326     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2327       unsigned KCondReg = CondReg;
2328       CondReg = createResultReg(&X86::GR32RegClass);
2329       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2330               TII.get(TargetOpcode::COPY), CondReg)
2331           .addReg(KCondReg, getKillRegState(CondIsKill));
2332       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2333                                            X86::sub_8bit);
2334     }
2335     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2336         .addReg(CondReg, getKillRegState(CondIsKill))
2337         .addImm(1);
2338   }
2339 
2340   const Value *LHS = I->getOperand(1);
2341   const Value *RHS = I->getOperand(2);
2342 
2343   unsigned LHSReg = getRegForValue(LHS);
2344   bool LHSIsKill = hasTrivialKill(LHS);
2345 
2346   unsigned RHSReg = getRegForValue(RHS);
2347   bool RHSIsKill = hasTrivialKill(RHS);
2348 
2349   if (!LHSReg || !RHSReg)
2350     return false;
2351 
2352   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2353 
2354   unsigned ResultReg =
2355     fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2356   updateValueMap(I, ResultReg);
2357   return true;
2358 }
2359 
2360 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2361   MVT RetVT;
2362   if (!isTypeLegal(I->getType(), RetVT))
2363     return false;
2364 
2365   // Check if we can fold the select.
2366   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2367     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2368     const Value *Opnd = nullptr;
2369     switch (Predicate) {
2370     default:                              break;
2371     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2372     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2373     }
2374     // No need for a select anymore - this is an unconditional move.
2375     if (Opnd) {
2376       unsigned OpReg = getRegForValue(Opnd);
2377       if (OpReg == 0)
2378         return false;
2379       bool OpIsKill = hasTrivialKill(Opnd);
2380       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2381       unsigned ResultReg = createResultReg(RC);
2382       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2383               TII.get(TargetOpcode::COPY), ResultReg)
2384         .addReg(OpReg, getKillRegState(OpIsKill));
2385       updateValueMap(I, ResultReg);
2386       return true;
2387     }
2388   }
2389 
2390   // First try to use real conditional move instructions.
2391   if (X86FastEmitCMoveSelect(RetVT, I))
2392     return true;
2393 
2394   // Try to use a sequence of SSE instructions to simulate a conditional move.
2395   if (X86FastEmitSSESelect(RetVT, I))
2396     return true;
2397 
2398   // Fall-back to pseudo conditional move instructions, which will be later
2399   // converted to control-flow.
2400   if (X86FastEmitPseudoSelect(RetVT, I))
2401     return true;
2402 
2403   return false;
2404 }
2405 
2406 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2407 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2408   // The target-independent selection algorithm in FastISel already knows how
2409   // to select a SINT_TO_FP if the target is SSE but not AVX.
2410   // Early exit if the subtarget doesn't have AVX.
2411   // Unsigned conversion requires avx512.
2412   bool HasAVX512 = Subtarget->hasAVX512();
2413   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2414     return false;
2415 
2416   // TODO: We could sign extend narrower types.
2417   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2418   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2419     return false;
2420 
2421   // Select integer to float/double conversion.
2422   unsigned OpReg = getRegForValue(I->getOperand(0));
2423   if (OpReg == 0)
2424     return false;
2425 
2426   unsigned Opcode;
2427 
2428   static const uint16_t SCvtOpc[2][2][2] = {
2429     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2430       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2431     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2432       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2433   };
2434   static const uint16_t UCvtOpc[2][2] = {
2435     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2436     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2437   };
2438   bool Is64Bit = SrcVT == MVT::i64;
2439 
2440   if (I->getType()->isDoubleTy()) {
2441     // s/uitofp int -> double
2442     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2443   } else if (I->getType()->isFloatTy()) {
2444     // s/uitofp int -> float
2445     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2446   } else
2447     return false;
2448 
2449   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2450   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2451   unsigned ImplicitDefReg = createResultReg(RC);
2452   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2453           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2454   unsigned ResultReg =
2455       fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2456   updateValueMap(I, ResultReg);
2457   return true;
2458 }
2459 
2460 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2461   return X86SelectIntToFP(I, /*IsSigned*/true);
2462 }
2463 
2464 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2465   return X86SelectIntToFP(I, /*IsSigned*/false);
2466 }
2467 
2468 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2469 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2470                                           unsigned TargetOpc,
2471                                           const TargetRegisterClass *RC) {
2472   assert((I->getOpcode() == Instruction::FPExt ||
2473           I->getOpcode() == Instruction::FPTrunc) &&
2474          "Instruction must be an FPExt or FPTrunc!");
2475   bool HasAVX = Subtarget->hasAVX();
2476 
2477   unsigned OpReg = getRegForValue(I->getOperand(0));
2478   if (OpReg == 0)
2479     return false;
2480 
2481   unsigned ImplicitDefReg;
2482   if (HasAVX) {
2483     ImplicitDefReg = createResultReg(RC);
2484     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2485             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2486 
2487   }
2488 
2489   unsigned ResultReg = createResultReg(RC);
2490   MachineInstrBuilder MIB;
2491   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2492                 ResultReg);
2493 
2494   if (HasAVX)
2495     MIB.addReg(ImplicitDefReg);
2496 
2497   MIB.addReg(OpReg);
2498   updateValueMap(I, ResultReg);
2499   return true;
2500 }
2501 
2502 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2503   if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2504       I->getOperand(0)->getType()->isFloatTy()) {
2505     bool HasAVX512 = Subtarget->hasAVX512();
2506     // fpext from float to double.
2507     unsigned Opc =
2508         HasAVX512 ? X86::VCVTSS2SDZrr
2509                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2510     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2511   }
2512 
2513   return false;
2514 }
2515 
2516 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2517   if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2518       I->getOperand(0)->getType()->isDoubleTy()) {
2519     bool HasAVX512 = Subtarget->hasAVX512();
2520     // fptrunc from double to float.
2521     unsigned Opc =
2522         HasAVX512 ? X86::VCVTSD2SSZrr
2523                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2524     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2525   }
2526 
2527   return false;
2528 }
2529 
2530 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2531   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2532   EVT DstVT = TLI.getValueType(DL, I->getType());
2533 
2534   // This code only handles truncation to byte.
2535   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2536     return false;
2537   if (!TLI.isTypeLegal(SrcVT))
2538     return false;
2539 
2540   unsigned InputReg = getRegForValue(I->getOperand(0));
2541   if (!InputReg)
2542     // Unhandled operand.  Halt "fast" selection and bail.
2543     return false;
2544 
2545   if (SrcVT == MVT::i8) {
2546     // Truncate from i8 to i1; no code needed.
2547     updateValueMap(I, InputReg);
2548     return true;
2549   }
2550 
2551   // Issue an extract_subreg.
2552   unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2553                                                   InputReg, false,
2554                                                   X86::sub_8bit);
2555   if (!ResultReg)
2556     return false;
2557 
2558   updateValueMap(I, ResultReg);
2559   return true;
2560 }
2561 
2562 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2563   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2564 }
2565 
2566 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2567                                      X86AddressMode SrcAM, uint64_t Len) {
2568 
2569   // Make sure we don't bloat code by inlining very large memcpy's.
2570   if (!IsMemcpySmall(Len))
2571     return false;
2572 
2573   bool i64Legal = Subtarget->is64Bit();
2574 
2575   // We don't care about alignment here since we just emit integer accesses.
2576   while (Len) {
2577     MVT VT;
2578     if (Len >= 8 && i64Legal)
2579       VT = MVT::i64;
2580     else if (Len >= 4)
2581       VT = MVT::i32;
2582     else if (Len >= 2)
2583       VT = MVT::i16;
2584     else
2585       VT = MVT::i8;
2586 
2587     unsigned Reg;
2588     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2589     RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2590     assert(RV && "Failed to emit load or store??");
2591 
2592     unsigned Size = VT.getSizeInBits()/8;
2593     Len -= Size;
2594     DestAM.Disp += Size;
2595     SrcAM.Disp += Size;
2596   }
2597 
2598   return true;
2599 }
2600 
2601 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2602   // FIXME: Handle more intrinsics.
2603   switch (II->getIntrinsicID()) {
2604   default: return false;
2605   case Intrinsic::convert_from_fp16:
2606   case Intrinsic::convert_to_fp16: {
2607     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2608       return false;
2609 
2610     const Value *Op = II->getArgOperand(0);
2611     unsigned InputReg = getRegForValue(Op);
2612     if (InputReg == 0)
2613       return false;
2614 
2615     // F16C only allows converting from float to half and from half to float.
2616     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2617     if (IsFloatToHalf) {
2618       if (!Op->getType()->isFloatTy())
2619         return false;
2620     } else {
2621       if (!II->getType()->isFloatTy())
2622         return false;
2623     }
2624 
2625     unsigned ResultReg = 0;
2626     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2627     if (IsFloatToHalf) {
2628       // 'InputReg' is implicitly promoted from register class FR32 to
2629       // register class VR128 by method 'constrainOperandRegClass' which is
2630       // directly called by 'fastEmitInst_ri'.
2631       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2632       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2633       // It's consistent with the other FP instructions, which are usually
2634       // controlled by MXCSR.
2635       InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
2636 
2637       // Move the lower 32-bits of ResultReg to another register of class GR32.
2638       ResultReg = createResultReg(&X86::GR32RegClass);
2639       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2640               TII.get(X86::VMOVPDI2DIrr), ResultReg)
2641           .addReg(InputReg, RegState::Kill);
2642 
2643       // The result value is in the lower 16-bits of ResultReg.
2644       unsigned RegIdx = X86::sub_16bit;
2645       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2646     } else {
2647       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2648       // Explicitly sign-extend the input to 32-bit.
2649       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2650                             /*Kill=*/false);
2651 
2652       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2653       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2654                             InputReg, /*Kill=*/true);
2655 
2656       InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2657 
2658       // The result value is in the lower 32-bits of ResultReg.
2659       // Emit an explicit copy from register class VR128 to register class FR32.
2660       ResultReg = createResultReg(&X86::FR32RegClass);
2661       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2662               TII.get(TargetOpcode::COPY), ResultReg)
2663           .addReg(InputReg, RegState::Kill);
2664     }
2665 
2666     updateValueMap(II, ResultReg);
2667     return true;
2668   }
2669   case Intrinsic::frameaddress: {
2670     MachineFunction *MF = FuncInfo.MF;
2671     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2672       return false;
2673 
2674     Type *RetTy = II->getCalledFunction()->getReturnType();
2675 
2676     MVT VT;
2677     if (!isTypeLegal(RetTy, VT))
2678       return false;
2679 
2680     unsigned Opc;
2681     const TargetRegisterClass *RC = nullptr;
2682 
2683     switch (VT.SimpleTy) {
2684     default: llvm_unreachable("Invalid result type for frameaddress.");
2685     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2686     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2687     }
2688 
2689     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2690     // we get the wrong frame register.
2691     MachineFrameInfo &MFI = MF->getFrameInfo();
2692     MFI.setFrameAddressIsTaken(true);
2693 
2694     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2695     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2696     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2697             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2698            "Invalid Frame Register!");
2699 
2700     // Always make a copy of the frame register to a vreg first, so that we
2701     // never directly reference the frame register (the TwoAddressInstruction-
2702     // Pass doesn't like that).
2703     unsigned SrcReg = createResultReg(RC);
2704     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2705             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2706 
2707     // Now recursively load from the frame address.
2708     // movq (%rbp), %rax
2709     // movq (%rax), %rax
2710     // movq (%rax), %rax
2711     // ...
2712     unsigned DestReg;
2713     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2714     while (Depth--) {
2715       DestReg = createResultReg(RC);
2716       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2717                            TII.get(Opc), DestReg), SrcReg);
2718       SrcReg = DestReg;
2719     }
2720 
2721     updateValueMap(II, SrcReg);
2722     return true;
2723   }
2724   case Intrinsic::memcpy: {
2725     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2726     // Don't handle volatile or variable length memcpys.
2727     if (MCI->isVolatile())
2728       return false;
2729 
2730     if (isa<ConstantInt>(MCI->getLength())) {
2731       // Small memcpy's are common enough that we want to do them
2732       // without a call if possible.
2733       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2734       if (IsMemcpySmall(Len)) {
2735         X86AddressMode DestAM, SrcAM;
2736         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2737             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2738           return false;
2739         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2740         return true;
2741       }
2742     }
2743 
2744     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2745     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2746       return false;
2747 
2748     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2749       return false;
2750 
2751     return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2752   }
2753   case Intrinsic::memset: {
2754     const MemSetInst *MSI = cast<MemSetInst>(II);
2755 
2756     if (MSI->isVolatile())
2757       return false;
2758 
2759     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2760     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2761       return false;
2762 
2763     if (MSI->getDestAddressSpace() > 255)
2764       return false;
2765 
2766     return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2767   }
2768   case Intrinsic::stackprotector: {
2769     // Emit code to store the stack guard onto the stack.
2770     EVT PtrTy = TLI.getPointerTy(DL);
2771 
2772     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2773     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2774 
2775     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2776 
2777     // Grab the frame index.
2778     X86AddressMode AM;
2779     if (!X86SelectAddress(Slot, AM)) return false;
2780     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2781     return true;
2782   }
2783   case Intrinsic::dbg_declare: {
2784     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2785     X86AddressMode AM;
2786     assert(DI->getAddress() && "Null address should be checked earlier!");
2787     if (!X86SelectAddress(DI->getAddress(), AM))
2788       return false;
2789     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2790     // FIXME may need to add RegState::Debug to any registers produced,
2791     // although ESP/EBP should be the only ones at the moment.
2792     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2793            "Expected inlined-at fields to agree");
2794     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2795         .addImm(0)
2796         .addMetadata(DI->getVariable())
2797         .addMetadata(DI->getExpression());
2798     return true;
2799   }
2800   case Intrinsic::trap: {
2801     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2802     return true;
2803   }
2804   case Intrinsic::sqrt: {
2805     if (!Subtarget->hasSSE1())
2806       return false;
2807 
2808     Type *RetTy = II->getCalledFunction()->getReturnType();
2809 
2810     MVT VT;
2811     if (!isTypeLegal(RetTy, VT))
2812       return false;
2813 
2814     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2815     // is not generated by FastISel yet.
2816     // FIXME: Update this code once tablegen can handle it.
2817     static const uint16_t SqrtOpc[3][2] = {
2818       { X86::SQRTSSr,   X86::SQRTSDr },
2819       { X86::VSQRTSSr,  X86::VSQRTSDr },
2820       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2821     };
2822     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2823                         Subtarget->hasAVX()    ? 1 :
2824                                                  0;
2825     unsigned Opc;
2826     switch (VT.SimpleTy) {
2827     default: return false;
2828     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2829     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2830     }
2831 
2832     const Value *SrcVal = II->getArgOperand(0);
2833     unsigned SrcReg = getRegForValue(SrcVal);
2834 
2835     if (SrcReg == 0)
2836       return false;
2837 
2838     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2839     unsigned ImplicitDefReg = 0;
2840     if (AVXLevel > 0) {
2841       ImplicitDefReg = createResultReg(RC);
2842       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2843               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2844     }
2845 
2846     unsigned ResultReg = createResultReg(RC);
2847     MachineInstrBuilder MIB;
2848     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2849                   ResultReg);
2850 
2851     if (ImplicitDefReg)
2852       MIB.addReg(ImplicitDefReg);
2853 
2854     MIB.addReg(SrcReg);
2855 
2856     updateValueMap(II, ResultReg);
2857     return true;
2858   }
2859   case Intrinsic::sadd_with_overflow:
2860   case Intrinsic::uadd_with_overflow:
2861   case Intrinsic::ssub_with_overflow:
2862   case Intrinsic::usub_with_overflow:
2863   case Intrinsic::smul_with_overflow:
2864   case Intrinsic::umul_with_overflow: {
2865     // This implements the basic lowering of the xalu with overflow intrinsics
2866     // into add/sub/mul followed by either seto or setb.
2867     const Function *Callee = II->getCalledFunction();
2868     auto *Ty = cast<StructType>(Callee->getReturnType());
2869     Type *RetTy = Ty->getTypeAtIndex(0U);
2870     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2871            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2872            "Overflow value expected to be an i1");
2873 
2874     MVT VT;
2875     if (!isTypeLegal(RetTy, VT))
2876       return false;
2877 
2878     if (VT < MVT::i8 || VT > MVT::i64)
2879       return false;
2880 
2881     const Value *LHS = II->getArgOperand(0);
2882     const Value *RHS = II->getArgOperand(1);
2883 
2884     // Canonicalize immediate to the RHS.
2885     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2886         isCommutativeIntrinsic(II))
2887       std::swap(LHS, RHS);
2888 
2889     unsigned BaseOpc, CondCode;
2890     switch (II->getIntrinsicID()) {
2891     default: llvm_unreachable("Unexpected intrinsic!");
2892     case Intrinsic::sadd_with_overflow:
2893       BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2894     case Intrinsic::uadd_with_overflow:
2895       BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2896     case Intrinsic::ssub_with_overflow:
2897       BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2898     case Intrinsic::usub_with_overflow:
2899       BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2900     case Intrinsic::smul_with_overflow:
2901       BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2902     case Intrinsic::umul_with_overflow:
2903       BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2904     }
2905 
2906     unsigned LHSReg = getRegForValue(LHS);
2907     if (LHSReg == 0)
2908       return false;
2909     bool LHSIsKill = hasTrivialKill(LHS);
2910 
2911     unsigned ResultReg = 0;
2912     // Check if we have an immediate version.
2913     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2914       static const uint16_t Opc[2][4] = {
2915         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2916         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2917       };
2918 
2919       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2920           CondCode == X86::COND_O) {
2921         // We can use INC/DEC.
2922         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2923         bool IsDec = BaseOpc == ISD::SUB;
2924         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2925                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2926           .addReg(LHSReg, getKillRegState(LHSIsKill));
2927       } else
2928         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2929                                 CI->getZExtValue());
2930     }
2931 
2932     unsigned RHSReg;
2933     bool RHSIsKill;
2934     if (!ResultReg) {
2935       RHSReg = getRegForValue(RHS);
2936       if (RHSReg == 0)
2937         return false;
2938       RHSIsKill = hasTrivialKill(RHS);
2939       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2940                               RHSIsKill);
2941     }
2942 
2943     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2944     // it manually.
2945     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2946       static const uint16_t MULOpc[] =
2947         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2948       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2949       // First copy the first operand into RAX, which is an implicit input to
2950       // the X86::MUL*r instruction.
2951       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2952               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2953         .addReg(LHSReg, getKillRegState(LHSIsKill));
2954       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2955                                  TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2956     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2957       static const uint16_t MULOpc[] =
2958         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2959       if (VT == MVT::i8) {
2960         // Copy the first operand into AL, which is an implicit input to the
2961         // X86::IMUL8r instruction.
2962         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2963                TII.get(TargetOpcode::COPY), X86::AL)
2964           .addReg(LHSReg, getKillRegState(LHSIsKill));
2965         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2966                                    RHSIsKill);
2967       } else
2968         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2969                                     TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2970                                     RHSReg, RHSIsKill);
2971     }
2972 
2973     if (!ResultReg)
2974       return false;
2975 
2976     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2977     unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
2978     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2979     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2980             ResultReg2).addImm(CondCode);
2981 
2982     updateValueMap(II, ResultReg, 2);
2983     return true;
2984   }
2985   case Intrinsic::x86_sse_cvttss2si:
2986   case Intrinsic::x86_sse_cvttss2si64:
2987   case Intrinsic::x86_sse2_cvttsd2si:
2988   case Intrinsic::x86_sse2_cvttsd2si64: {
2989     bool IsInputDouble;
2990     switch (II->getIntrinsicID()) {
2991     default: llvm_unreachable("Unexpected intrinsic.");
2992     case Intrinsic::x86_sse_cvttss2si:
2993     case Intrinsic::x86_sse_cvttss2si64:
2994       if (!Subtarget->hasSSE1())
2995         return false;
2996       IsInputDouble = false;
2997       break;
2998     case Intrinsic::x86_sse2_cvttsd2si:
2999     case Intrinsic::x86_sse2_cvttsd2si64:
3000       if (!Subtarget->hasSSE2())
3001         return false;
3002       IsInputDouble = true;
3003       break;
3004     }
3005 
3006     Type *RetTy = II->getCalledFunction()->getReturnType();
3007     MVT VT;
3008     if (!isTypeLegal(RetTy, VT))
3009       return false;
3010 
3011     static const uint16_t CvtOpc[3][2][2] = {
3012       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
3013         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
3014       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
3015         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
3016       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3017         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3018     };
3019     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3020                         Subtarget->hasAVX()    ? 1 :
3021                                                  0;
3022     unsigned Opc;
3023     switch (VT.SimpleTy) {
3024     default: llvm_unreachable("Unexpected result type.");
3025     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3026     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3027     }
3028 
3029     // Check if we can fold insertelement instructions into the convert.
3030     const Value *Op = II->getArgOperand(0);
3031     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3032       const Value *Index = IE->getOperand(2);
3033       if (!isa<ConstantInt>(Index))
3034         break;
3035       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3036 
3037       if (Idx == 0) {
3038         Op = IE->getOperand(1);
3039         break;
3040       }
3041       Op = IE->getOperand(0);
3042     }
3043 
3044     unsigned Reg = getRegForValue(Op);
3045     if (Reg == 0)
3046       return false;
3047 
3048     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3049     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3050       .addReg(Reg);
3051 
3052     updateValueMap(II, ResultReg);
3053     return true;
3054   }
3055   }
3056 }
3057 
3058 bool X86FastISel::fastLowerArguments() {
3059   if (!FuncInfo.CanLowerReturn)
3060     return false;
3061 
3062   const Function *F = FuncInfo.Fn;
3063   if (F->isVarArg())
3064     return false;
3065 
3066   CallingConv::ID CC = F->getCallingConv();
3067   if (CC != CallingConv::C)
3068     return false;
3069 
3070   if (Subtarget->isCallingConvWin64(CC))
3071     return false;
3072 
3073   if (!Subtarget->is64Bit())
3074     return false;
3075 
3076   if (Subtarget->useSoftFloat())
3077     return false;
3078 
3079   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3080   unsigned GPRCnt = 0;
3081   unsigned FPRCnt = 0;
3082   for (auto const &Arg : F->args()) {
3083     if (Arg.hasAttribute(Attribute::ByVal) ||
3084         Arg.hasAttribute(Attribute::InReg) ||
3085         Arg.hasAttribute(Attribute::StructRet) ||
3086         Arg.hasAttribute(Attribute::SwiftSelf) ||
3087         Arg.hasAttribute(Attribute::SwiftError) ||
3088         Arg.hasAttribute(Attribute::Nest))
3089       return false;
3090 
3091     Type *ArgTy = Arg.getType();
3092     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3093       return false;
3094 
3095     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3096     if (!ArgVT.isSimple()) return false;
3097     switch (ArgVT.getSimpleVT().SimpleTy) {
3098     default: return false;
3099     case MVT::i32:
3100     case MVT::i64:
3101       ++GPRCnt;
3102       break;
3103     case MVT::f32:
3104     case MVT::f64:
3105       if (!Subtarget->hasSSE1())
3106         return false;
3107       ++FPRCnt;
3108       break;
3109     }
3110 
3111     if (GPRCnt > 6)
3112       return false;
3113 
3114     if (FPRCnt > 8)
3115       return false;
3116   }
3117 
3118   static const MCPhysReg GPR32ArgRegs[] = {
3119     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3120   };
3121   static const MCPhysReg GPR64ArgRegs[] = {
3122     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3123   };
3124   static const MCPhysReg XMMArgRegs[] = {
3125     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3126     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3127   };
3128 
3129   unsigned GPRIdx = 0;
3130   unsigned FPRIdx = 0;
3131   for (auto const &Arg : F->args()) {
3132     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3133     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3134     unsigned SrcReg;
3135     switch (VT.SimpleTy) {
3136     default: llvm_unreachable("Unexpected value type.");
3137     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3138     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3139     case MVT::f32: LLVM_FALLTHROUGH;
3140     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3141     }
3142     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3143     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3144     // Without this, EmitLiveInCopies may eliminate the livein if its only
3145     // use is a bitcast (which isn't turned into an instruction).
3146     unsigned ResultReg = createResultReg(RC);
3147     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3148             TII.get(TargetOpcode::COPY), ResultReg)
3149       .addReg(DstReg, getKillRegState(true));
3150     updateValueMap(&Arg, ResultReg);
3151   }
3152   return true;
3153 }
3154 
3155 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3156                                                   CallingConv::ID CC,
3157                                                   ImmutableCallSite *CS) {
3158   if (Subtarget->is64Bit())
3159     return 0;
3160   if (Subtarget->getTargetTriple().isOSMSVCRT())
3161     return 0;
3162   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3163       CC == CallingConv::HiPE || CC == CallingConv::Tail)
3164     return 0;
3165 
3166   if (CS)
3167     if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
3168         CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3169       return 0;
3170 
3171   return 4;
3172 }
3173 
3174 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3175   auto &OutVals       = CLI.OutVals;
3176   auto &OutFlags      = CLI.OutFlags;
3177   auto &OutRegs       = CLI.OutRegs;
3178   auto &Ins           = CLI.Ins;
3179   auto &InRegs        = CLI.InRegs;
3180   CallingConv::ID CC  = CLI.CallConv;
3181   bool &IsTailCall    = CLI.IsTailCall;
3182   bool IsVarArg       = CLI.IsVarArg;
3183   const Value *Callee = CLI.Callee;
3184   MCSymbol *Symbol = CLI.Symbol;
3185 
3186   bool Is64Bit        = Subtarget->is64Bit();
3187   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3188 
3189   const CallInst *CI =
3190       CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
3191   const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3192 
3193   // Call / invoke instructions with NoCfCheck attribute require special
3194   // handling.
3195   const auto *II =
3196       CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr;
3197   if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
3198     return false;
3199 
3200   // Functions with no_caller_saved_registers that need special handling.
3201   if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3202       (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3203     return false;
3204 
3205   // Functions using thunks for indirect calls need to use SDISel.
3206   if (Subtarget->useIndirectThunkCalls())
3207     return false;
3208 
3209   // Handle only C, fastcc, and webkit_js calling conventions for now.
3210   switch (CC) {
3211   default: return false;
3212   case CallingConv::C:
3213   case CallingConv::Fast:
3214   case CallingConv::Tail:
3215   case CallingConv::WebKit_JS:
3216   case CallingConv::Swift:
3217   case CallingConv::X86_FastCall:
3218   case CallingConv::X86_StdCall:
3219   case CallingConv::X86_ThisCall:
3220   case CallingConv::Win64:
3221   case CallingConv::X86_64_SysV:
3222   case CallingConv::CFGuard_Check:
3223     break;
3224   }
3225 
3226   // Allow SelectionDAG isel to handle tail calls.
3227   if (IsTailCall)
3228     return false;
3229 
3230   // fastcc with -tailcallopt is intended to provide a guaranteed
3231   // tail call optimization. Fastisel doesn't know how to do that.
3232   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3233       CC == CallingConv::Tail)
3234     return false;
3235 
3236   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3237   // x86-32. Special handling for x86-64 is implemented.
3238   if (IsVarArg && IsWin64)
3239     return false;
3240 
3241   // Don't know about inalloca yet.
3242   if (CLI.CS && CLI.CS->hasInAllocaArgument())
3243     return false;
3244 
3245   for (auto Flag : CLI.OutFlags)
3246     if (Flag.isSwiftError())
3247       return false;
3248 
3249   SmallVector<MVT, 16> OutVTs;
3250   SmallVector<unsigned, 16> ArgRegs;
3251 
3252   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3253   // instruction. This is safe because it is common to all FastISel supported
3254   // calling conventions on x86.
3255   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3256     Value *&Val = OutVals[i];
3257     ISD::ArgFlagsTy Flags = OutFlags[i];
3258     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3259       if (CI->getBitWidth() < 32) {
3260         if (Flags.isSExt())
3261           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3262         else
3263           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3264       }
3265     }
3266 
3267     // Passing bools around ends up doing a trunc to i1 and passing it.
3268     // Codegen this as an argument + "and 1".
3269     MVT VT;
3270     auto *TI = dyn_cast<TruncInst>(Val);
3271     unsigned ResultReg;
3272     if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3273               (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3274               TI->hasOneUse()) {
3275       Value *PrevVal = TI->getOperand(0);
3276       ResultReg = getRegForValue(PrevVal);
3277 
3278       if (!ResultReg)
3279         return false;
3280 
3281       if (!isTypeLegal(PrevVal->getType(), VT))
3282         return false;
3283 
3284       ResultReg =
3285         fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3286     } else {
3287       if (!isTypeLegal(Val->getType(), VT))
3288         return false;
3289       ResultReg = getRegForValue(Val);
3290     }
3291 
3292     if (!ResultReg)
3293       return false;
3294 
3295     ArgRegs.push_back(ResultReg);
3296     OutVTs.push_back(VT);
3297   }
3298 
3299   // Analyze operands of the call, assigning locations to each operand.
3300   SmallVector<CCValAssign, 16> ArgLocs;
3301   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3302 
3303   // Allocate shadow area for Win64
3304   if (IsWin64)
3305     CCInfo.AllocateStack(32, 8);
3306 
3307   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3308 
3309   // Get a count of how many bytes are to be pushed on the stack.
3310   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3311 
3312   // Issue CALLSEQ_START
3313   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3314   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3315     .addImm(NumBytes).addImm(0).addImm(0);
3316 
3317   // Walk the register/memloc assignments, inserting copies/loads.
3318   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3319   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3320     CCValAssign const &VA = ArgLocs[i];
3321     const Value *ArgVal = OutVals[VA.getValNo()];
3322     MVT ArgVT = OutVTs[VA.getValNo()];
3323 
3324     if (ArgVT == MVT::x86mmx)
3325       return false;
3326 
3327     unsigned ArgReg = ArgRegs[VA.getValNo()];
3328 
3329     // Promote the value if needed.
3330     switch (VA.getLocInfo()) {
3331     case CCValAssign::Full: break;
3332     case CCValAssign::SExt: {
3333       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3334              "Unexpected extend");
3335 
3336       if (ArgVT == MVT::i1)
3337         return false;
3338 
3339       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3340                                        ArgVT, ArgReg);
3341       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3342       ArgVT = VA.getLocVT();
3343       break;
3344     }
3345     case CCValAssign::ZExt: {
3346       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3347              "Unexpected extend");
3348 
3349       // Handle zero-extension from i1 to i8, which is common.
3350       if (ArgVT == MVT::i1) {
3351         // Set the high bits to zero.
3352         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3353         ArgVT = MVT::i8;
3354 
3355         if (ArgReg == 0)
3356           return false;
3357       }
3358 
3359       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3360                                        ArgVT, ArgReg);
3361       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3362       ArgVT = VA.getLocVT();
3363       break;
3364     }
3365     case CCValAssign::AExt: {
3366       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3367              "Unexpected extend");
3368       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3369                                        ArgVT, ArgReg);
3370       if (!Emitted)
3371         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3372                                     ArgVT, ArgReg);
3373       if (!Emitted)
3374         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3375                                     ArgVT, ArgReg);
3376 
3377       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3378       ArgVT = VA.getLocVT();
3379       break;
3380     }
3381     case CCValAssign::BCvt: {
3382       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3383                           /*TODO: Kill=*/false);
3384       assert(ArgReg && "Failed to emit a bitcast!");
3385       ArgVT = VA.getLocVT();
3386       break;
3387     }
3388     case CCValAssign::VExt:
3389       // VExt has not been implemented, so this should be impossible to reach
3390       // for now.  However, fallback to Selection DAG isel once implemented.
3391       return false;
3392     case CCValAssign::AExtUpper:
3393     case CCValAssign::SExtUpper:
3394     case CCValAssign::ZExtUpper:
3395     case CCValAssign::FPExt:
3396     case CCValAssign::Trunc:
3397       llvm_unreachable("Unexpected loc info!");
3398     case CCValAssign::Indirect:
3399       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3400       // support this.
3401       return false;
3402     }
3403 
3404     if (VA.isRegLoc()) {
3405       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3406               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3407       OutRegs.push_back(VA.getLocReg());
3408     } else {
3409       assert(VA.isMemLoc());
3410 
3411       // Don't emit stores for undef values.
3412       if (isa<UndefValue>(ArgVal))
3413         continue;
3414 
3415       unsigned LocMemOffset = VA.getLocMemOffset();
3416       X86AddressMode AM;
3417       AM.Base.Reg = RegInfo->getStackRegister();
3418       AM.Disp = LocMemOffset;
3419       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3420       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3421       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3422           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3423           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3424       if (Flags.isByVal()) {
3425         X86AddressMode SrcAM;
3426         SrcAM.Base.Reg = ArgReg;
3427         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3428           return false;
3429       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3430         // If this is a really simple value, emit this with the Value* version
3431         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3432         // as it can cause us to reevaluate the argument.
3433         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3434           return false;
3435       } else {
3436         bool ValIsKill = hasTrivialKill(ArgVal);
3437         if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3438           return false;
3439       }
3440     }
3441   }
3442 
3443   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3444   // GOT pointer.
3445   if (Subtarget->isPICStyleGOT()) {
3446     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3447     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3448             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3449   }
3450 
3451   if (Is64Bit && IsVarArg && !IsWin64) {
3452     // From AMD64 ABI document:
3453     // For calls that may call functions that use varargs or stdargs
3454     // (prototype-less calls or calls to functions containing ellipsis (...) in
3455     // the declaration) %al is used as hidden argument to specify the number
3456     // of SSE registers used. The contents of %al do not need to match exactly
3457     // the number of registers, but must be an ubound on the number of SSE
3458     // registers used and is in the range 0 - 8 inclusive.
3459 
3460     // Count the number of XMM registers allocated.
3461     static const MCPhysReg XMMArgRegs[] = {
3462       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3463       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3464     };
3465     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3466     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3467            && "SSE registers cannot be used when SSE is disabled");
3468     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3469             X86::AL).addImm(NumXMMRegs);
3470   }
3471 
3472   // Materialize callee address in a register. FIXME: GV address can be
3473   // handled with a CALLpcrel32 instead.
3474   X86AddressMode CalleeAM;
3475   if (!X86SelectCallAddress(Callee, CalleeAM))
3476     return false;
3477 
3478   unsigned CalleeOp = 0;
3479   const GlobalValue *GV = nullptr;
3480   if (CalleeAM.GV != nullptr) {
3481     GV = CalleeAM.GV;
3482   } else if (CalleeAM.Base.Reg != 0) {
3483     CalleeOp = CalleeAM.Base.Reg;
3484   } else
3485     return false;
3486 
3487   // Issue the call.
3488   MachineInstrBuilder MIB;
3489   if (CalleeOp) {
3490     // Register-indirect call.
3491     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3492     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3493       .addReg(CalleeOp);
3494   } else {
3495     // Direct call.
3496     assert(GV && "Not a direct call");
3497     // See if we need any target-specific flags on the GV operand.
3498     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3499 
3500     // This will be a direct call, or an indirect call through memory for
3501     // NonLazyBind calls or dllimport calls.
3502     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3503                     OpFlags == X86II::MO_GOTPCREL ||
3504                     OpFlags == X86II::MO_COFFSTUB;
3505     unsigned CallOpc = NeedLoad
3506                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3507                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3508 
3509     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3510     if (NeedLoad)
3511       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3512     if (Symbol)
3513       MIB.addSym(Symbol, OpFlags);
3514     else
3515       MIB.addGlobalAddress(GV, 0, OpFlags);
3516     if (NeedLoad)
3517       MIB.addReg(0);
3518   }
3519 
3520   // Add a register mask operand representing the call-preserved registers.
3521   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3522   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3523 
3524   // Add an implicit use GOT pointer in EBX.
3525   if (Subtarget->isPICStyleGOT())
3526     MIB.addReg(X86::EBX, RegState::Implicit);
3527 
3528   if (Is64Bit && IsVarArg && !IsWin64)
3529     MIB.addReg(X86::AL, RegState::Implicit);
3530 
3531   // Add implicit physical register uses to the call.
3532   for (auto Reg : OutRegs)
3533     MIB.addReg(Reg, RegState::Implicit);
3534 
3535   // Issue CALLSEQ_END
3536   unsigned NumBytesForCalleeToPop =
3537       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3538                        TM.Options.GuaranteedTailCallOpt)
3539           ? NumBytes // Callee pops everything.
3540           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
3541   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3542   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3543     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3544 
3545   // Now handle call return values.
3546   SmallVector<CCValAssign, 16> RVLocs;
3547   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3548                     CLI.RetTy->getContext());
3549   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3550 
3551   // Copy all of the result registers out of their specified physreg.
3552   unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3553   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3554     CCValAssign &VA = RVLocs[i];
3555     EVT CopyVT = VA.getValVT();
3556     unsigned CopyReg = ResultReg + i;
3557     Register SrcReg = VA.getLocReg();
3558 
3559     // If this is x86-64, and we disabled SSE, we can't return FP values
3560     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3561         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3562       report_fatal_error("SSE register return with SSE disabled");
3563     }
3564 
3565     // If we prefer to use the value in xmm registers, copy it out as f80 and
3566     // use a truncate to move it from fp stack reg to xmm reg.
3567     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3568         isScalarFPTypeInSSEReg(VA.getValVT())) {
3569       CopyVT = MVT::f80;
3570       CopyReg = createResultReg(&X86::RFP80RegClass);
3571     }
3572 
3573     // Copy out the result.
3574     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3575             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3576     InRegs.push_back(VA.getLocReg());
3577 
3578     // Round the f80 to the right size, which also moves it to the appropriate
3579     // xmm register. This is accomplished by storing the f80 value in memory
3580     // and then loading it back.
3581     if (CopyVT != VA.getValVT()) {
3582       EVT ResVT = VA.getValVT();
3583       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3584       unsigned MemSize = ResVT.getSizeInBits()/8;
3585       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3586       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3587                                 TII.get(Opc)), FI)
3588         .addReg(CopyReg);
3589       Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3590       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3591                                 TII.get(Opc), ResultReg + i), FI);
3592     }
3593   }
3594 
3595   CLI.ResultReg = ResultReg;
3596   CLI.NumResultRegs = RVLocs.size();
3597   CLI.Call = MIB;
3598 
3599   return true;
3600 }
3601 
3602 bool
3603 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3604   switch (I->getOpcode()) {
3605   default: break;
3606   case Instruction::Load:
3607     return X86SelectLoad(I);
3608   case Instruction::Store:
3609     return X86SelectStore(I);
3610   case Instruction::Ret:
3611     return X86SelectRet(I);
3612   case Instruction::ICmp:
3613   case Instruction::FCmp:
3614     return X86SelectCmp(I);
3615   case Instruction::ZExt:
3616     return X86SelectZExt(I);
3617   case Instruction::SExt:
3618     return X86SelectSExt(I);
3619   case Instruction::Br:
3620     return X86SelectBranch(I);
3621   case Instruction::LShr:
3622   case Instruction::AShr:
3623   case Instruction::Shl:
3624     return X86SelectShift(I);
3625   case Instruction::SDiv:
3626   case Instruction::UDiv:
3627   case Instruction::SRem:
3628   case Instruction::URem:
3629     return X86SelectDivRem(I);
3630   case Instruction::Select:
3631     return X86SelectSelect(I);
3632   case Instruction::Trunc:
3633     return X86SelectTrunc(I);
3634   case Instruction::FPExt:
3635     return X86SelectFPExt(I);
3636   case Instruction::FPTrunc:
3637     return X86SelectFPTrunc(I);
3638   case Instruction::SIToFP:
3639     return X86SelectSIToFP(I);
3640   case Instruction::UIToFP:
3641     return X86SelectUIToFP(I);
3642   case Instruction::IntToPtr: // Deliberate fall-through.
3643   case Instruction::PtrToInt: {
3644     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3645     EVT DstVT = TLI.getValueType(DL, I->getType());
3646     if (DstVT.bitsGT(SrcVT))
3647       return X86SelectZExt(I);
3648     if (DstVT.bitsLT(SrcVT))
3649       return X86SelectTrunc(I);
3650     unsigned Reg = getRegForValue(I->getOperand(0));
3651     if (Reg == 0) return false;
3652     updateValueMap(I, Reg);
3653     return true;
3654   }
3655   case Instruction::BitCast: {
3656     // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3657     if (!Subtarget->hasSSE2())
3658       return false;
3659 
3660     MVT SrcVT, DstVT;
3661     if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3662         !isTypeLegal(I->getType(), DstVT))
3663       return false;
3664 
3665     // Only allow vectors that use xmm/ymm/zmm.
3666     if (!SrcVT.isVector() || !DstVT.isVector() ||
3667         SrcVT.getVectorElementType() == MVT::i1 ||
3668         DstVT.getVectorElementType() == MVT::i1)
3669       return false;
3670 
3671     unsigned Reg = getRegForValue(I->getOperand(0));
3672     if (Reg == 0)
3673       return false;
3674 
3675     // No instruction is needed for conversion. Reuse the register used by
3676     // the fist operand.
3677     updateValueMap(I, Reg);
3678     return true;
3679   }
3680   }
3681 
3682   return false;
3683 }
3684 
3685 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3686   if (VT > MVT::i64)
3687     return 0;
3688 
3689   uint64_t Imm = CI->getZExtValue();
3690   if (Imm == 0) {
3691     unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3692     switch (VT.SimpleTy) {
3693     default: llvm_unreachable("Unexpected value type");
3694     case MVT::i1:
3695     case MVT::i8:
3696       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3697                                         X86::sub_8bit);
3698     case MVT::i16:
3699       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3700                                         X86::sub_16bit);
3701     case MVT::i32:
3702       return SrcReg;
3703     case MVT::i64: {
3704       unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3705       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3706               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3707         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3708       return ResultReg;
3709     }
3710     }
3711   }
3712 
3713   unsigned Opc = 0;
3714   switch (VT.SimpleTy) {
3715   default: llvm_unreachable("Unexpected value type");
3716   case MVT::i1:
3717     VT = MVT::i8;
3718     LLVM_FALLTHROUGH;
3719   case MVT::i8:  Opc = X86::MOV8ri;  break;
3720   case MVT::i16: Opc = X86::MOV16ri; break;
3721   case MVT::i32: Opc = X86::MOV32ri; break;
3722   case MVT::i64: {
3723     if (isUInt<32>(Imm))
3724       Opc = X86::MOV32ri64;
3725     else if (isInt<32>(Imm))
3726       Opc = X86::MOV64ri32;
3727     else
3728       Opc = X86::MOV64ri;
3729     break;
3730   }
3731   }
3732   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3733 }
3734 
3735 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3736   if (CFP->isNullValue())
3737     return fastMaterializeFloatZero(CFP);
3738 
3739   // Can't handle alternate code models yet.
3740   CodeModel::Model CM = TM.getCodeModel();
3741   if (CM != CodeModel::Small && CM != CodeModel::Large)
3742     return 0;
3743 
3744   // Get opcode and regclass of the output for the given load instruction.
3745   unsigned Opc = 0;
3746   bool HasAVX = Subtarget->hasAVX();
3747   bool HasAVX512 = Subtarget->hasAVX512();
3748   switch (VT.SimpleTy) {
3749   default: return 0;
3750   case MVT::f32:
3751     if (X86ScalarSSEf32)
3752       Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
3753             HasAVX    ? X86::VMOVSSrm_alt :
3754                         X86::MOVSSrm_alt;
3755     else
3756       Opc = X86::LD_Fp32m;
3757     break;
3758   case MVT::f64:
3759     if (X86ScalarSSEf64)
3760       Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
3761             HasAVX    ? X86::VMOVSDrm_alt :
3762                         X86::MOVSDrm_alt;
3763     else
3764       Opc = X86::LD_Fp64m;
3765     break;
3766   case MVT::f80:
3767     // No f80 support yet.
3768     return 0;
3769   }
3770 
3771   // MachineConstantPool wants an explicit alignment.
3772   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3773   if (Align == 0) {
3774     // Alignment of vector types. FIXME!
3775     Align = DL.getTypeAllocSize(CFP->getType());
3776   }
3777 
3778   // x86-32 PIC requires a PIC base register for constant pools.
3779   unsigned PICBase = 0;
3780   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3781   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3782     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3783   else if (OpFlag == X86II::MO_GOTOFF)
3784     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3785   else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3786     PICBase = X86::RIP;
3787 
3788   // Create the load from the constant pool.
3789   unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3790   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3791 
3792   if (CM == CodeModel::Large) {
3793     unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3794     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3795             AddrReg)
3796       .addConstantPoolIndex(CPI, 0, OpFlag);
3797     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3798                                       TII.get(Opc), ResultReg);
3799     addDirectMem(MIB, AddrReg);
3800     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3801         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3802         MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3803     MIB->addMemOperand(*FuncInfo.MF, MMO);
3804     return ResultReg;
3805   }
3806 
3807   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3808                                    TII.get(Opc), ResultReg),
3809                            CPI, PICBase, OpFlag);
3810   return ResultReg;
3811 }
3812 
3813 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3814   // Can't handle alternate code models yet.
3815   if (TM.getCodeModel() != CodeModel::Small)
3816     return 0;
3817 
3818   // Materialize addresses with LEA/MOV instructions.
3819   X86AddressMode AM;
3820   if (X86SelectAddress(GV, AM)) {
3821     // If the expression is just a basereg, then we're done, otherwise we need
3822     // to emit an LEA.
3823     if (AM.BaseType == X86AddressMode::RegBase &&
3824         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3825       return AM.Base.Reg;
3826 
3827     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3828     if (TM.getRelocationModel() == Reloc::Static &&
3829         TLI.getPointerTy(DL) == MVT::i64) {
3830       // The displacement code could be more than 32 bits away so we need to use
3831       // an instruction with a 64 bit immediate
3832       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3833               ResultReg)
3834         .addGlobalAddress(GV);
3835     } else {
3836       unsigned Opc =
3837           TLI.getPointerTy(DL) == MVT::i32
3838               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3839               : X86::LEA64r;
3840       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3841                              TII.get(Opc), ResultReg), AM);
3842     }
3843     return ResultReg;
3844   }
3845   return 0;
3846 }
3847 
3848 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3849   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3850 
3851   // Only handle simple types.
3852   if (!CEVT.isSimple())
3853     return 0;
3854   MVT VT = CEVT.getSimpleVT();
3855 
3856   if (const auto *CI = dyn_cast<ConstantInt>(C))
3857     return X86MaterializeInt(CI, VT);
3858   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3859     return X86MaterializeFP(CFP, VT);
3860   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3861     return X86MaterializeGV(GV, VT);
3862 
3863   return 0;
3864 }
3865 
3866 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3867   // Fail on dynamic allocas. At this point, getRegForValue has already
3868   // checked its CSE maps, so if we're here trying to handle a dynamic
3869   // alloca, we're not going to succeed. X86SelectAddress has a
3870   // check for dynamic allocas, because it's called directly from
3871   // various places, but targetMaterializeAlloca also needs a check
3872   // in order to avoid recursion between getRegForValue,
3873   // X86SelectAddrss, and targetMaterializeAlloca.
3874   if (!FuncInfo.StaticAllocaMap.count(C))
3875     return 0;
3876   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3877 
3878   X86AddressMode AM;
3879   if (!X86SelectAddress(C, AM))
3880     return 0;
3881   unsigned Opc =
3882       TLI.getPointerTy(DL) == MVT::i32
3883           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3884           : X86::LEA64r;
3885   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3886   unsigned ResultReg = createResultReg(RC);
3887   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3888                          TII.get(Opc), ResultReg), AM);
3889   return ResultReg;
3890 }
3891 
3892 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3893   MVT VT;
3894   if (!isTypeLegal(CF->getType(), VT))
3895     return 0;
3896 
3897   // Get opcode and regclass for the given zero.
3898   bool HasAVX512 = Subtarget->hasAVX512();
3899   unsigned Opc = 0;
3900   switch (VT.SimpleTy) {
3901   default: return 0;
3902   case MVT::f32:
3903     if (X86ScalarSSEf32)
3904       Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3905     else
3906       Opc = X86::LD_Fp032;
3907     break;
3908   case MVT::f64:
3909     if (X86ScalarSSEf64)
3910       Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3911     else
3912       Opc = X86::LD_Fp064;
3913     break;
3914   case MVT::f80:
3915     // No f80 support yet.
3916     return 0;
3917   }
3918 
3919   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3920   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3921   return ResultReg;
3922 }
3923 
3924 
3925 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3926                                       const LoadInst *LI) {
3927   const Value *Ptr = LI->getPointerOperand();
3928   X86AddressMode AM;
3929   if (!X86SelectAddress(Ptr, AM))
3930     return false;
3931 
3932   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3933 
3934   unsigned Size = DL.getTypeAllocSize(LI->getType());
3935   unsigned Alignment = LI->getAlignment();
3936 
3937   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3938     Alignment = DL.getABITypeAlignment(LI->getType());
3939 
3940   SmallVector<MachineOperand, 8> AddrOps;
3941   AM.getFullAddress(AddrOps);
3942 
3943   MachineInstr *Result = XII.foldMemoryOperandImpl(
3944       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3945       /*AllowCommute=*/true);
3946   if (!Result)
3947     return false;
3948 
3949   // The index register could be in the wrong register class.  Unfortunately,
3950   // foldMemoryOperandImpl could have commuted the instruction so its not enough
3951   // to just look at OpNo + the offset to the index reg.  We actually need to
3952   // scan the instruction to find the index reg and see if its the correct reg
3953   // class.
3954   unsigned OperandNo = 0;
3955   for (MachineInstr::mop_iterator I = Result->operands_begin(),
3956        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3957     MachineOperand &MO = *I;
3958     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3959       continue;
3960     // Found the index reg, now try to rewrite it.
3961     unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
3962                                                  MO.getReg(), OperandNo);
3963     if (IndexReg == MO.getReg())
3964       continue;
3965     MO.setReg(IndexReg);
3966   }
3967 
3968   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3969   Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
3970   MachineBasicBlock::iterator I(MI);
3971   removeDeadCode(I, std::next(I));
3972   return true;
3973 }
3974 
3975 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3976                                         const TargetRegisterClass *RC,
3977                                         unsigned Op0, bool Op0IsKill,
3978                                         unsigned Op1, bool Op1IsKill,
3979                                         unsigned Op2, bool Op2IsKill,
3980                                         unsigned Op3, bool Op3IsKill) {
3981   const MCInstrDesc &II = TII.get(MachineInstOpcode);
3982 
3983   unsigned ResultReg = createResultReg(RC);
3984   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
3985   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
3986   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
3987   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
3988 
3989   if (II.getNumDefs() >= 1)
3990     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
3991         .addReg(Op0, getKillRegState(Op0IsKill))
3992         .addReg(Op1, getKillRegState(Op1IsKill))
3993         .addReg(Op2, getKillRegState(Op2IsKill))
3994         .addReg(Op3, getKillRegState(Op3IsKill));
3995   else {
3996     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
3997         .addReg(Op0, getKillRegState(Op0IsKill))
3998         .addReg(Op1, getKillRegState(Op1IsKill))
3999         .addReg(Op2, getKillRegState(Op2IsKill))
4000         .addReg(Op3, getKillRegState(Op3IsKill));
4001     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
4002             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
4003   }
4004   return ResultReg;
4005 }
4006 
4007 
4008 namespace llvm {
4009   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4010                                 const TargetLibraryInfo *libInfo) {
4011     return new X86FastISel(funcInfo, libInfo);
4012   }
4013 }
4014