1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/IntrinsicsX86.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Target/TargetOptions.h" 43 using namespace llvm; 44 45 namespace { 46 47 class X86FastISel final : public FastISel { 48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 49 /// make the right decision when generating code for different targets. 50 const X86Subtarget *Subtarget; 51 52 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 53 /// floating point ops. 54 /// When SSE is available, use it for f32 operations. 55 /// When SSE2 is available, use it for f64 operations. 56 bool X86ScalarSSEf64; 57 bool X86ScalarSSEf32; 58 bool X86ScalarSSEf16; 59 60 public: 61 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 62 const TargetLibraryInfo *libInfo) 63 : FastISel(funcInfo, libInfo) { 64 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 65 X86ScalarSSEf64 = Subtarget->hasSSE2(); 66 X86ScalarSSEf32 = Subtarget->hasSSE1(); 67 X86ScalarSSEf16 = Subtarget->hasFP16(); 68 } 69 70 bool fastSelectInstruction(const Instruction *I) override; 71 72 /// The specified machine instr operand is a vreg, and that 73 /// vreg is being provided by the specified load instruction. If possible, 74 /// try to fold the load as an operand to the instruction, returning true if 75 /// possible. 76 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 77 const LoadInst *LI) override; 78 79 bool fastLowerArguments() override; 80 bool fastLowerCall(CallLoweringInfo &CLI) override; 81 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 82 83 #include "X86GenFastISel.inc" 84 85 private: 86 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 87 const DebugLoc &DL); 88 89 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 90 unsigned &ResultReg, unsigned Alignment = 1); 91 92 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 93 MachineMemOperand *MMO = nullptr, bool Aligned = false); 94 bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 95 MachineMemOperand *MMO = nullptr, bool Aligned = false); 96 97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 98 unsigned &ResultReg); 99 100 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 102 103 bool X86SelectLoad(const Instruction *I); 104 105 bool X86SelectStore(const Instruction *I); 106 107 bool X86SelectRet(const Instruction *I); 108 109 bool X86SelectCmp(const Instruction *I); 110 111 bool X86SelectZExt(const Instruction *I); 112 113 bool X86SelectSExt(const Instruction *I); 114 115 bool X86SelectBranch(const Instruction *I); 116 117 bool X86SelectShift(const Instruction *I); 118 119 bool X86SelectDivRem(const Instruction *I); 120 121 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 122 123 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 124 125 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 126 127 bool X86SelectSelect(const Instruction *I); 128 129 bool X86SelectTrunc(const Instruction *I); 130 131 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 132 const TargetRegisterClass *RC); 133 134 bool X86SelectFPExt(const Instruction *I); 135 bool X86SelectFPTrunc(const Instruction *I); 136 bool X86SelectSIToFP(const Instruction *I); 137 bool X86SelectUIToFP(const Instruction *I); 138 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 139 140 const X86InstrInfo *getInstrInfo() const { 141 return Subtarget->getInstrInfo(); 142 } 143 const X86TargetMachine *getTargetMachine() const { 144 return static_cast<const X86TargetMachine *>(&TM); 145 } 146 147 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 148 149 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 150 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 151 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 152 unsigned fastMaterializeConstant(const Constant *C) override; 153 154 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 155 156 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 157 158 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 159 /// computed in an SSE register, not on the X87 floating point stack. 160 bool isScalarFPTypeInSSEReg(EVT VT) const { 161 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 162 (VT == MVT::f32 && X86ScalarSSEf32) || // f32 is when SSE1 163 (VT == MVT::f16 && X86ScalarSSEf16); // f16 is when AVX512FP16 164 } 165 166 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 167 168 bool IsMemcpySmall(uint64_t Len); 169 170 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 171 X86AddressMode SrcAM, uint64_t Len); 172 173 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 174 const Value *Cond); 175 176 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 177 X86AddressMode &AM); 178 179 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 180 const TargetRegisterClass *RC, unsigned Op0, 181 unsigned Op1, unsigned Op2, unsigned Op3); 182 }; 183 184 } // end anonymous namespace. 185 186 static std::pair<unsigned, bool> 187 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 188 unsigned CC; 189 bool NeedSwap = false; 190 191 // SSE Condition code mapping: 192 // 0 - EQ 193 // 1 - LT 194 // 2 - LE 195 // 3 - UNORD 196 // 4 - NEQ 197 // 5 - NLT 198 // 6 - NLE 199 // 7 - ORD 200 switch (Predicate) { 201 default: llvm_unreachable("Unexpected predicate"); 202 case CmpInst::FCMP_OEQ: CC = 0; break; 203 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; 204 case CmpInst::FCMP_OLT: CC = 1; break; 205 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; 206 case CmpInst::FCMP_OLE: CC = 2; break; 207 case CmpInst::FCMP_UNO: CC = 3; break; 208 case CmpInst::FCMP_UNE: CC = 4; break; 209 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; 210 case CmpInst::FCMP_UGE: CC = 5; break; 211 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; 212 case CmpInst::FCMP_UGT: CC = 6; break; 213 case CmpInst::FCMP_ORD: CC = 7; break; 214 case CmpInst::FCMP_UEQ: CC = 8; break; 215 case CmpInst::FCMP_ONE: CC = 12; break; 216 } 217 218 return std::make_pair(CC, NeedSwap); 219 } 220 221 /// Adds a complex addressing mode to the given machine instr builder. 222 /// Note, this will constrain the index register. If its not possible to 223 /// constrain the given index register, then a new one will be created. The 224 /// IndexReg field of the addressing mode will be updated to match in this case. 225 const MachineInstrBuilder & 226 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 227 X86AddressMode &AM) { 228 // First constrain the index register. It needs to be a GR64_NOSP. 229 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 230 MIB->getNumOperands() + 231 X86::AddrIndexReg); 232 return ::addFullAddress(MIB, AM); 233 } 234 235 /// Check if it is possible to fold the condition from the XALU intrinsic 236 /// into the user. The condition code will only be updated on success. 237 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 238 const Value *Cond) { 239 if (!isa<ExtractValueInst>(Cond)) 240 return false; 241 242 const auto *EV = cast<ExtractValueInst>(Cond); 243 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 244 return false; 245 246 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 247 MVT RetVT; 248 const Function *Callee = II->getCalledFunction(); 249 Type *RetTy = 250 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 251 if (!isTypeLegal(RetTy, RetVT)) 252 return false; 253 254 if (RetVT != MVT::i32 && RetVT != MVT::i64) 255 return false; 256 257 X86::CondCode TmpCC; 258 switch (II->getIntrinsicID()) { 259 default: return false; 260 case Intrinsic::sadd_with_overflow: 261 case Intrinsic::ssub_with_overflow: 262 case Intrinsic::smul_with_overflow: 263 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 264 case Intrinsic::uadd_with_overflow: 265 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 266 } 267 268 // Check if both instructions are in the same basic block. 269 if (II->getParent() != I->getParent()) 270 return false; 271 272 // Make sure nothing is in the way 273 BasicBlock::const_iterator Start(I); 274 BasicBlock::const_iterator End(II); 275 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 276 // We only expect extractvalue instructions between the intrinsic and the 277 // instruction to be selected. 278 if (!isa<ExtractValueInst>(Itr)) 279 return false; 280 281 // Check that the extractvalue operand comes from the intrinsic. 282 const auto *EVI = cast<ExtractValueInst>(Itr); 283 if (EVI->getAggregateOperand() != II) 284 return false; 285 } 286 287 // Make sure no potentially eflags clobbering phi moves can be inserted in 288 // between. 289 auto HasPhis = [](const BasicBlock *Succ) { 290 return !llvm::empty(Succ->phis()); 291 }; 292 if (I->isTerminator() && llvm::any_of(successors(I), HasPhis)) 293 return false; 294 295 CC = TmpCC; 296 return true; 297 } 298 299 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 300 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 301 if (evt == MVT::Other || !evt.isSimple()) 302 // Unhandled type. Halt "fast" selection and bail. 303 return false; 304 305 VT = evt.getSimpleVT(); 306 // For now, require SSE/SSE2 for performing floating-point operations, 307 // since x87 requires additional work. 308 if (VT == MVT::f64 && !X86ScalarSSEf64) 309 return false; 310 if (VT == MVT::f32 && !X86ScalarSSEf32) 311 return false; 312 // Similarly, no f80 support yet. 313 if (VT == MVT::f80) 314 return false; 315 // We only handle legal types. For example, on x86-32 the instruction 316 // selector contains all of the 64-bit instructions from x86-64, 317 // under the assumption that i64 won't be used if the target doesn't 318 // support it. 319 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 320 } 321 322 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 323 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 324 /// Return true and the result register by reference if it is possible. 325 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 326 MachineMemOperand *MMO, unsigned &ResultReg, 327 unsigned Alignment) { 328 bool HasSSE41 = Subtarget->hasSSE41(); 329 bool HasAVX = Subtarget->hasAVX(); 330 bool HasAVX2 = Subtarget->hasAVX2(); 331 bool HasAVX512 = Subtarget->hasAVX512(); 332 bool HasVLX = Subtarget->hasVLX(); 333 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 334 335 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 336 if (VT == MVT::i1) 337 VT = MVT::i8; 338 339 // Get opcode and regclass of the output for the given load instruction. 340 unsigned Opc = 0; 341 switch (VT.SimpleTy) { 342 default: return false; 343 case MVT::i8: 344 Opc = X86::MOV8rm; 345 break; 346 case MVT::i16: 347 Opc = X86::MOV16rm; 348 break; 349 case MVT::i32: 350 Opc = X86::MOV32rm; 351 break; 352 case MVT::i64: 353 // Must be in x86-64 mode. 354 Opc = X86::MOV64rm; 355 break; 356 case MVT::f32: 357 if (X86ScalarSSEf32) 358 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 359 HasAVX ? X86::VMOVSSrm_alt : 360 X86::MOVSSrm_alt; 361 else 362 Opc = X86::LD_Fp32m; 363 break; 364 case MVT::f64: 365 if (X86ScalarSSEf64) 366 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 367 HasAVX ? X86::VMOVSDrm_alt : 368 X86::MOVSDrm_alt; 369 else 370 Opc = X86::LD_Fp64m; 371 break; 372 case MVT::f80: 373 // No f80 support yet. 374 return false; 375 case MVT::v4f32: 376 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 377 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 378 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 379 else if (Alignment >= 16) 380 Opc = HasVLX ? X86::VMOVAPSZ128rm : 381 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 382 else 383 Opc = HasVLX ? X86::VMOVUPSZ128rm : 384 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 385 break; 386 case MVT::v2f64: 387 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 388 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 389 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 390 else if (Alignment >= 16) 391 Opc = HasVLX ? X86::VMOVAPDZ128rm : 392 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 393 else 394 Opc = HasVLX ? X86::VMOVUPDZ128rm : 395 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 396 break; 397 case MVT::v4i32: 398 case MVT::v2i64: 399 case MVT::v8i16: 400 case MVT::v16i8: 401 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 402 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 403 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 404 else if (Alignment >= 16) 405 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 406 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 407 else 408 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 409 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 410 break; 411 case MVT::v8f32: 412 assert(HasAVX); 413 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 414 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 415 else if (IsNonTemporal && Alignment >= 16) 416 return false; // Force split for X86::VMOVNTDQArm 417 else if (Alignment >= 32) 418 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 419 else 420 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 421 break; 422 case MVT::v4f64: 423 assert(HasAVX); 424 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 425 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 426 else if (IsNonTemporal && Alignment >= 16) 427 return false; // Force split for X86::VMOVNTDQArm 428 else if (Alignment >= 32) 429 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 430 else 431 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 432 break; 433 case MVT::v8i32: 434 case MVT::v4i64: 435 case MVT::v16i16: 436 case MVT::v32i8: 437 assert(HasAVX); 438 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 439 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 440 else if (IsNonTemporal && Alignment >= 16) 441 return false; // Force split for X86::VMOVNTDQArm 442 else if (Alignment >= 32) 443 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 444 else 445 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 446 break; 447 case MVT::v16f32: 448 assert(HasAVX512); 449 if (IsNonTemporal && Alignment >= 64) 450 Opc = X86::VMOVNTDQAZrm; 451 else 452 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 453 break; 454 case MVT::v8f64: 455 assert(HasAVX512); 456 if (IsNonTemporal && Alignment >= 64) 457 Opc = X86::VMOVNTDQAZrm; 458 else 459 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 460 break; 461 case MVT::v8i64: 462 case MVT::v16i32: 463 case MVT::v32i16: 464 case MVT::v64i8: 465 assert(HasAVX512); 466 // Note: There are a lot more choices based on type with AVX-512, but 467 // there's really no advantage when the load isn't masked. 468 if (IsNonTemporal && Alignment >= 64) 469 Opc = X86::VMOVNTDQAZrm; 470 else 471 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 472 break; 473 } 474 475 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 476 477 ResultReg = createResultReg(RC); 478 MachineInstrBuilder MIB = 479 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 480 addFullAddress(MIB, AM); 481 if (MMO) 482 MIB->addMemOperand(*FuncInfo.MF, MMO); 483 return true; 484 } 485 486 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 487 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 488 /// and a displacement offset, or a GlobalAddress, 489 /// i.e. V. Return true if it is possible. 490 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 491 MachineMemOperand *MMO, bool Aligned) { 492 bool HasSSE1 = Subtarget->hasSSE1(); 493 bool HasSSE2 = Subtarget->hasSSE2(); 494 bool HasSSE4A = Subtarget->hasSSE4A(); 495 bool HasAVX = Subtarget->hasAVX(); 496 bool HasAVX512 = Subtarget->hasAVX512(); 497 bool HasVLX = Subtarget->hasVLX(); 498 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 499 500 // Get opcode and regclass of the output for the given store instruction. 501 unsigned Opc = 0; 502 switch (VT.getSimpleVT().SimpleTy) { 503 case MVT::f80: // No f80 support yet. 504 default: return false; 505 case MVT::i1: { 506 // Mask out all but lowest bit. 507 Register AndResult = createResultReg(&X86::GR8RegClass); 508 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 509 TII.get(X86::AND8ri), AndResult) 510 .addReg(ValReg).addImm(1); 511 ValReg = AndResult; 512 LLVM_FALLTHROUGH; // handle i1 as i8. 513 } 514 case MVT::i8: Opc = X86::MOV8mr; break; 515 case MVT::i16: Opc = X86::MOV16mr; break; 516 case MVT::i32: 517 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 518 break; 519 case MVT::i64: 520 // Must be in x86-64 mode. 521 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 522 break; 523 case MVT::f32: 524 if (X86ScalarSSEf32) { 525 if (IsNonTemporal && HasSSE4A) 526 Opc = X86::MOVNTSS; 527 else 528 Opc = HasAVX512 ? X86::VMOVSSZmr : 529 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 530 } else 531 Opc = X86::ST_Fp32m; 532 break; 533 case MVT::f64: 534 if (X86ScalarSSEf32) { 535 if (IsNonTemporal && HasSSE4A) 536 Opc = X86::MOVNTSD; 537 else 538 Opc = HasAVX512 ? X86::VMOVSDZmr : 539 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 540 } else 541 Opc = X86::ST_Fp64m; 542 break; 543 case MVT::x86mmx: 544 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 545 break; 546 case MVT::v4f32: 547 if (Aligned) { 548 if (IsNonTemporal) 549 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 550 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 551 else 552 Opc = HasVLX ? X86::VMOVAPSZ128mr : 553 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 554 } else 555 Opc = HasVLX ? X86::VMOVUPSZ128mr : 556 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 557 break; 558 case MVT::v2f64: 559 if (Aligned) { 560 if (IsNonTemporal) 561 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 562 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 563 else 564 Opc = HasVLX ? X86::VMOVAPDZ128mr : 565 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 566 } else 567 Opc = HasVLX ? X86::VMOVUPDZ128mr : 568 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 569 break; 570 case MVT::v4i32: 571 case MVT::v2i64: 572 case MVT::v8i16: 573 case MVT::v16i8: 574 if (Aligned) { 575 if (IsNonTemporal) 576 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 577 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 578 else 579 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 580 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 581 } else 582 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 583 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 584 break; 585 case MVT::v8f32: 586 assert(HasAVX); 587 if (Aligned) { 588 if (IsNonTemporal) 589 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 590 else 591 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 592 } else 593 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 594 break; 595 case MVT::v4f64: 596 assert(HasAVX); 597 if (Aligned) { 598 if (IsNonTemporal) 599 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 600 else 601 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 602 } else 603 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 604 break; 605 case MVT::v8i32: 606 case MVT::v4i64: 607 case MVT::v16i16: 608 case MVT::v32i8: 609 assert(HasAVX); 610 if (Aligned) { 611 if (IsNonTemporal) 612 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 613 else 614 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 615 } else 616 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 617 break; 618 case MVT::v16f32: 619 assert(HasAVX512); 620 if (Aligned) 621 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 622 else 623 Opc = X86::VMOVUPSZmr; 624 break; 625 case MVT::v8f64: 626 assert(HasAVX512); 627 if (Aligned) { 628 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 629 } else 630 Opc = X86::VMOVUPDZmr; 631 break; 632 case MVT::v8i64: 633 case MVT::v16i32: 634 case MVT::v32i16: 635 case MVT::v64i8: 636 assert(HasAVX512); 637 // Note: There are a lot more choices based on type with AVX-512, but 638 // there's really no advantage when the store isn't masked. 639 if (Aligned) 640 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 641 else 642 Opc = X86::VMOVDQU64Zmr; 643 break; 644 } 645 646 const MCInstrDesc &Desc = TII.get(Opc); 647 // Some of the instructions in the previous switch use FR128 instead 648 // of FR32 for ValReg. Make sure the register we feed the instruction 649 // matches its register class constraints. 650 // Note: This is fine to do a copy from FR32 to FR128, this is the 651 // same registers behind the scene and actually why it did not trigger 652 // any bugs before. 653 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 654 MachineInstrBuilder MIB = 655 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); 656 addFullAddress(MIB, AM).addReg(ValReg); 657 if (MMO) 658 MIB->addMemOperand(*FuncInfo.MF, MMO); 659 660 return true; 661 } 662 663 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 664 X86AddressMode &AM, 665 MachineMemOperand *MMO, bool Aligned) { 666 // Handle 'null' like i32/i64 0. 667 if (isa<ConstantPointerNull>(Val)) 668 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 669 670 // If this is a store of a simple constant, fold the constant into the store. 671 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 672 unsigned Opc = 0; 673 bool Signed = true; 674 switch (VT.getSimpleVT().SimpleTy) { 675 default: break; 676 case MVT::i1: 677 Signed = false; 678 LLVM_FALLTHROUGH; // Handle as i8. 679 case MVT::i8: Opc = X86::MOV8mi; break; 680 case MVT::i16: Opc = X86::MOV16mi; break; 681 case MVT::i32: Opc = X86::MOV32mi; break; 682 case MVT::i64: 683 // Must be a 32-bit sign extended value. 684 if (isInt<32>(CI->getSExtValue())) 685 Opc = X86::MOV64mi32; 686 break; 687 } 688 689 if (Opc) { 690 MachineInstrBuilder MIB = 691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 692 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 693 : CI->getZExtValue()); 694 if (MMO) 695 MIB->addMemOperand(*FuncInfo.MF, MMO); 696 return true; 697 } 698 } 699 700 Register ValReg = getRegForValue(Val); 701 if (ValReg == 0) 702 return false; 703 704 return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); 705 } 706 707 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 708 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 709 /// ISD::SIGN_EXTEND). 710 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 711 unsigned Src, EVT SrcVT, 712 unsigned &ResultReg) { 713 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); 714 if (RR == 0) 715 return false; 716 717 ResultReg = RR; 718 return true; 719 } 720 721 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 722 // Handle constant address. 723 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 724 // Can't handle alternate code models yet. 725 if (TM.getCodeModel() != CodeModel::Small) 726 return false; 727 728 // Can't handle TLS yet. 729 if (GV->isThreadLocal()) 730 return false; 731 732 // Can't handle !absolute_symbol references yet. 733 if (GV->isAbsoluteSymbolRef()) 734 return false; 735 736 // RIP-relative addresses can't have additional register operands, so if 737 // we've already folded stuff into the addressing mode, just force the 738 // global value into its own register, which we can use as the basereg. 739 if (!Subtarget->isPICStyleRIPRel() || 740 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 741 // Okay, we've committed to selecting this global. Set up the address. 742 AM.GV = GV; 743 744 // Allow the subtarget to classify the global. 745 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 746 747 // If this reference is relative to the pic base, set it now. 748 if (isGlobalRelativeToPICBase(GVFlags)) { 749 // FIXME: How do we know Base.Reg is free?? 750 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 751 } 752 753 // Unless the ABI requires an extra load, return a direct reference to 754 // the global. 755 if (!isGlobalStubReference(GVFlags)) { 756 if (Subtarget->isPICStyleRIPRel()) { 757 // Use rip-relative addressing if we can. Above we verified that the 758 // base and index registers are unused. 759 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 760 AM.Base.Reg = X86::RIP; 761 } 762 AM.GVOpFlags = GVFlags; 763 return true; 764 } 765 766 // Ok, we need to do a load from a stub. If we've already loaded from 767 // this stub, reuse the loaded pointer, otherwise emit the load now. 768 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V); 769 Register LoadReg; 770 if (I != LocalValueMap.end() && I->second) { 771 LoadReg = I->second; 772 } else { 773 // Issue load from stub. 774 unsigned Opc = 0; 775 const TargetRegisterClass *RC = nullptr; 776 X86AddressMode StubAM; 777 StubAM.Base.Reg = AM.Base.Reg; 778 StubAM.GV = GV; 779 StubAM.GVOpFlags = GVFlags; 780 781 // Prepare for inserting code in the local-value area. 782 SavePoint SaveInsertPt = enterLocalValueArea(); 783 784 if (TLI.getPointerTy(DL) == MVT::i64) { 785 Opc = X86::MOV64rm; 786 RC = &X86::GR64RegClass; 787 } else { 788 Opc = X86::MOV32rm; 789 RC = &X86::GR32RegClass; 790 } 791 792 if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || 793 GVFlags == X86II::MO_GOTPCREL_NORELAX) 794 StubAM.Base.Reg = X86::RIP; 795 796 LoadReg = createResultReg(RC); 797 MachineInstrBuilder LoadMI = 798 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); 799 addFullAddress(LoadMI, StubAM); 800 801 // Ok, back to normal mode. 802 leaveLocalValueArea(SaveInsertPt); 803 804 // Prevent loading GV stub multiple times in same MBB. 805 LocalValueMap[V] = LoadReg; 806 } 807 808 // Now construct the final address. Note that the Disp, Scale, 809 // and Index values may already be set here. 810 AM.Base.Reg = LoadReg; 811 AM.GV = nullptr; 812 return true; 813 } 814 } 815 816 // If all else fails, try to materialize the value in a register. 817 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 818 if (AM.Base.Reg == 0) { 819 AM.Base.Reg = getRegForValue(V); 820 return AM.Base.Reg != 0; 821 } 822 if (AM.IndexReg == 0) { 823 assert(AM.Scale == 1 && "Scale with no index!"); 824 AM.IndexReg = getRegForValue(V); 825 return AM.IndexReg != 0; 826 } 827 } 828 829 return false; 830 } 831 832 /// X86SelectAddress - Attempt to fill in an address from the given value. 833 /// 834 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 835 SmallVector<const Value *, 32> GEPs; 836 redo_gep: 837 const User *U = nullptr; 838 unsigned Opcode = Instruction::UserOp1; 839 if (const Instruction *I = dyn_cast<Instruction>(V)) { 840 // Don't walk into other basic blocks; it's possible we haven't 841 // visited them yet, so the instructions may not yet be assigned 842 // virtual registers. 843 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 844 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 845 Opcode = I->getOpcode(); 846 U = I; 847 } 848 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 849 Opcode = C->getOpcode(); 850 U = C; 851 } 852 853 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 854 if (Ty->getAddressSpace() > 255) 855 // Fast instruction selection doesn't support the special 856 // address spaces. 857 return false; 858 859 switch (Opcode) { 860 default: break; 861 case Instruction::BitCast: 862 // Look past bitcasts. 863 return X86SelectAddress(U->getOperand(0), AM); 864 865 case Instruction::IntToPtr: 866 // Look past no-op inttoptrs. 867 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 868 TLI.getPointerTy(DL)) 869 return X86SelectAddress(U->getOperand(0), AM); 870 break; 871 872 case Instruction::PtrToInt: 873 // Look past no-op ptrtoints. 874 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 875 return X86SelectAddress(U->getOperand(0), AM); 876 break; 877 878 case Instruction::Alloca: { 879 // Do static allocas. 880 const AllocaInst *A = cast<AllocaInst>(V); 881 DenseMap<const AllocaInst *, int>::iterator SI = 882 FuncInfo.StaticAllocaMap.find(A); 883 if (SI != FuncInfo.StaticAllocaMap.end()) { 884 AM.BaseType = X86AddressMode::FrameIndexBase; 885 AM.Base.FrameIndex = SI->second; 886 return true; 887 } 888 break; 889 } 890 891 case Instruction::Add: { 892 // Adds of constants are common and easy enough. 893 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 894 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 895 // They have to fit in the 32-bit signed displacement field though. 896 if (isInt<32>(Disp)) { 897 AM.Disp = (uint32_t)Disp; 898 return X86SelectAddress(U->getOperand(0), AM); 899 } 900 } 901 break; 902 } 903 904 case Instruction::GetElementPtr: { 905 X86AddressMode SavedAM = AM; 906 907 // Pattern-match simple GEPs. 908 uint64_t Disp = (int32_t)AM.Disp; 909 unsigned IndexReg = AM.IndexReg; 910 unsigned Scale = AM.Scale; 911 gep_type_iterator GTI = gep_type_begin(U); 912 // Iterate through the indices, folding what we can. Constants can be 913 // folded, and one dynamic index can be handled, if the scale is supported. 914 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 915 i != e; ++i, ++GTI) { 916 const Value *Op = *i; 917 if (StructType *STy = GTI.getStructTypeOrNull()) { 918 const StructLayout *SL = DL.getStructLayout(STy); 919 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 920 continue; 921 } 922 923 // A array/variable index is always of the form i*S where S is the 924 // constant scale size. See if we can push the scale into immediates. 925 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 926 for (;;) { 927 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 928 // Constant-offset addressing. 929 Disp += CI->getSExtValue() * S; 930 break; 931 } 932 if (canFoldAddIntoGEP(U, Op)) { 933 // A compatible add with a constant operand. Fold the constant. 934 ConstantInt *CI = 935 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 936 Disp += CI->getSExtValue() * S; 937 // Iterate on the other operand. 938 Op = cast<AddOperator>(Op)->getOperand(0); 939 continue; 940 } 941 if (IndexReg == 0 && 942 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 943 (S == 1 || S == 2 || S == 4 || S == 8)) { 944 // Scaled-index addressing. 945 Scale = S; 946 IndexReg = getRegForGEPIndex(Op); 947 if (IndexReg == 0) 948 return false; 949 break; 950 } 951 // Unsupported. 952 goto unsupported_gep; 953 } 954 } 955 956 // Check for displacement overflow. 957 if (!isInt<32>(Disp)) 958 break; 959 960 AM.IndexReg = IndexReg; 961 AM.Scale = Scale; 962 AM.Disp = (uint32_t)Disp; 963 GEPs.push_back(V); 964 965 if (const GetElementPtrInst *GEP = 966 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 967 // Ok, the GEP indices were covered by constant-offset and scaled-index 968 // addressing. Update the address state and move on to examining the base. 969 V = GEP; 970 goto redo_gep; 971 } else if (X86SelectAddress(U->getOperand(0), AM)) { 972 return true; 973 } 974 975 // If we couldn't merge the gep value into this addr mode, revert back to 976 // our address and just match the value instead of completely failing. 977 AM = SavedAM; 978 979 for (const Value *I : reverse(GEPs)) 980 if (handleConstantAddresses(I, AM)) 981 return true; 982 983 return false; 984 unsupported_gep: 985 // Ok, the GEP indices weren't all covered. 986 break; 987 } 988 } 989 990 return handleConstantAddresses(V, AM); 991 } 992 993 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 994 /// 995 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 996 const User *U = nullptr; 997 unsigned Opcode = Instruction::UserOp1; 998 const Instruction *I = dyn_cast<Instruction>(V); 999 // Record if the value is defined in the same basic block. 1000 // 1001 // This information is crucial to know whether or not folding an 1002 // operand is valid. 1003 // Indeed, FastISel generates or reuses a virtual register for all 1004 // operands of all instructions it selects. Obviously, the definition and 1005 // its uses must use the same virtual register otherwise the produced 1006 // code is incorrect. 1007 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 1008 // registers for values that are alive across basic blocks. This ensures 1009 // that the values are consistently set between across basic block, even 1010 // if different instruction selection mechanisms are used (e.g., a mix of 1011 // SDISel and FastISel). 1012 // For values local to a basic block, the instruction selection process 1013 // generates these virtual registers with whatever method is appropriate 1014 // for its needs. In particular, FastISel and SDISel do not share the way 1015 // local virtual registers are set. 1016 // Therefore, this is impossible (or at least unsafe) to share values 1017 // between basic blocks unless they use the same instruction selection 1018 // method, which is not guarantee for X86. 1019 // Moreover, things like hasOneUse could not be used accurately, if we 1020 // allow to reference values across basic blocks whereas they are not 1021 // alive across basic blocks initially. 1022 bool InMBB = true; 1023 if (I) { 1024 Opcode = I->getOpcode(); 1025 U = I; 1026 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1027 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1028 Opcode = C->getOpcode(); 1029 U = C; 1030 } 1031 1032 switch (Opcode) { 1033 default: break; 1034 case Instruction::BitCast: 1035 // Look past bitcasts if its operand is in the same BB. 1036 if (InMBB) 1037 return X86SelectCallAddress(U->getOperand(0), AM); 1038 break; 1039 1040 case Instruction::IntToPtr: 1041 // Look past no-op inttoptrs if its operand is in the same BB. 1042 if (InMBB && 1043 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1044 TLI.getPointerTy(DL)) 1045 return X86SelectCallAddress(U->getOperand(0), AM); 1046 break; 1047 1048 case Instruction::PtrToInt: 1049 // Look past no-op ptrtoints if its operand is in the same BB. 1050 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1051 return X86SelectCallAddress(U->getOperand(0), AM); 1052 break; 1053 } 1054 1055 // Handle constant address. 1056 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1057 // Can't handle alternate code models yet. 1058 if (TM.getCodeModel() != CodeModel::Small) 1059 return false; 1060 1061 // RIP-relative addresses can't have additional register operands. 1062 if (Subtarget->isPICStyleRIPRel() && 1063 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1064 return false; 1065 1066 // Can't handle TLS. 1067 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1068 if (GVar->isThreadLocal()) 1069 return false; 1070 1071 // Okay, we've committed to selecting this global. Set up the basic address. 1072 AM.GV = GV; 1073 1074 // Return a direct reference to the global. Fastisel can handle calls to 1075 // functions that require loads, such as dllimport and nonlazybind 1076 // functions. 1077 if (Subtarget->isPICStyleRIPRel()) { 1078 // Use rip-relative addressing if we can. Above we verified that the 1079 // base and index registers are unused. 1080 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1081 AM.Base.Reg = X86::RIP; 1082 } else { 1083 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1084 } 1085 1086 return true; 1087 } 1088 1089 // If all else fails, try to materialize the value in a register. 1090 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1091 auto GetCallRegForValue = [this](const Value *V) { 1092 Register Reg = getRegForValue(V); 1093 1094 // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. 1095 if (Reg && Subtarget->isTarget64BitILP32()) { 1096 Register CopyReg = createResultReg(&X86::GR32RegClass); 1097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32rr), 1098 CopyReg) 1099 .addReg(Reg); 1100 1101 Register ExtReg = createResultReg(&X86::GR64RegClass); 1102 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1103 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg) 1104 .addImm(0) 1105 .addReg(CopyReg) 1106 .addImm(X86::sub_32bit); 1107 Reg = ExtReg; 1108 } 1109 1110 return Reg; 1111 }; 1112 1113 if (AM.Base.Reg == 0) { 1114 AM.Base.Reg = GetCallRegForValue(V); 1115 return AM.Base.Reg != 0; 1116 } 1117 if (AM.IndexReg == 0) { 1118 assert(AM.Scale == 1 && "Scale with no index!"); 1119 AM.IndexReg = GetCallRegForValue(V); 1120 return AM.IndexReg != 0; 1121 } 1122 } 1123 1124 return false; 1125 } 1126 1127 1128 /// X86SelectStore - Select and emit code to implement store instructions. 1129 bool X86FastISel::X86SelectStore(const Instruction *I) { 1130 // Atomic stores need special handling. 1131 const StoreInst *S = cast<StoreInst>(I); 1132 1133 if (S->isAtomic()) 1134 return false; 1135 1136 const Value *PtrV = I->getOperand(1); 1137 if (TLI.supportSwiftError()) { 1138 // Swifterror values can come from either a function parameter with 1139 // swifterror attribute or an alloca with swifterror attribute. 1140 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1141 if (Arg->hasSwiftErrorAttr()) 1142 return false; 1143 } 1144 1145 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1146 if (Alloca->isSwiftError()) 1147 return false; 1148 } 1149 } 1150 1151 const Value *Val = S->getValueOperand(); 1152 const Value *Ptr = S->getPointerOperand(); 1153 1154 MVT VT; 1155 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1156 return false; 1157 1158 Align Alignment = S->getAlign(); 1159 Align ABIAlignment = DL.getABITypeAlign(Val->getType()); 1160 bool Aligned = Alignment >= ABIAlignment; 1161 1162 X86AddressMode AM; 1163 if (!X86SelectAddress(Ptr, AM)) 1164 return false; 1165 1166 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1167 } 1168 1169 /// X86SelectRet - Select and emit code to implement ret instructions. 1170 bool X86FastISel::X86SelectRet(const Instruction *I) { 1171 const ReturnInst *Ret = cast<ReturnInst>(I); 1172 const Function &F = *I->getParent()->getParent(); 1173 const X86MachineFunctionInfo *X86MFInfo = 1174 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1175 1176 if (!FuncInfo.CanLowerReturn) 1177 return false; 1178 1179 if (TLI.supportSwiftError() && 1180 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1181 return false; 1182 1183 if (TLI.supportSplitCSR(FuncInfo.MF)) 1184 return false; 1185 1186 CallingConv::ID CC = F.getCallingConv(); 1187 if (CC != CallingConv::C && 1188 CC != CallingConv::Fast && 1189 CC != CallingConv::Tail && 1190 CC != CallingConv::SwiftTail && 1191 CC != CallingConv::X86_FastCall && 1192 CC != CallingConv::X86_StdCall && 1193 CC != CallingConv::X86_ThisCall && 1194 CC != CallingConv::X86_64_SysV && 1195 CC != CallingConv::Win64) 1196 return false; 1197 1198 // Don't handle popping bytes if they don't fit the ret's immediate. 1199 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1200 return false; 1201 1202 // fastcc with -tailcallopt is intended to provide a guaranteed 1203 // tail call optimization. Fastisel doesn't know how to do that. 1204 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 1205 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 1206 return false; 1207 1208 // Let SDISel handle vararg functions. 1209 if (F.isVarArg()) 1210 return false; 1211 1212 // Build a list of return value registers. 1213 SmallVector<unsigned, 4> RetRegs; 1214 1215 if (Ret->getNumOperands() > 0) { 1216 SmallVector<ISD::OutputArg, 4> Outs; 1217 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1218 1219 // Analyze operands of the call, assigning locations to each operand. 1220 SmallVector<CCValAssign, 16> ValLocs; 1221 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1222 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1223 1224 const Value *RV = Ret->getOperand(0); 1225 Register Reg = getRegForValue(RV); 1226 if (Reg == 0) 1227 return false; 1228 1229 // Only handle a single return value for now. 1230 if (ValLocs.size() != 1) 1231 return false; 1232 1233 CCValAssign &VA = ValLocs[0]; 1234 1235 // Don't bother handling odd stuff for now. 1236 if (VA.getLocInfo() != CCValAssign::Full) 1237 return false; 1238 // Only handle register returns for now. 1239 if (!VA.isRegLoc()) 1240 return false; 1241 1242 // The calling-convention tables for x87 returns don't tell 1243 // the whole story. 1244 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1245 return false; 1246 1247 unsigned SrcReg = Reg + VA.getValNo(); 1248 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1249 EVT DstVT = VA.getValVT(); 1250 // Special handling for extended integers. 1251 if (SrcVT != DstVT) { 1252 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1253 return false; 1254 1255 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1256 return false; 1257 1258 assert(DstVT == MVT::i32 && "X86 should always ext to i32"); 1259 1260 if (SrcVT == MVT::i1) { 1261 if (Outs[0].Flags.isSExt()) 1262 return false; 1263 // TODO 1264 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg); 1265 SrcVT = MVT::i8; 1266 } 1267 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : 1268 ISD::SIGN_EXTEND; 1269 // TODO 1270 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg); 1271 } 1272 1273 // Make the copy. 1274 Register DstReg = VA.getLocReg(); 1275 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1276 // Avoid a cross-class copy. This is very unlikely. 1277 if (!SrcRC->contains(DstReg)) 1278 return false; 1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1280 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1281 1282 // Add register to return instruction. 1283 RetRegs.push_back(VA.getLocReg()); 1284 } 1285 1286 // Swift calling convention does not require we copy the sret argument 1287 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1288 1289 // All x86 ABIs require that for returning structs by value we copy 1290 // the sret argument into %rax/%eax (depending on ABI) for the return. 1291 // We saved the argument into a virtual register in the entry block, 1292 // so now we copy the value out and into %rax/%eax. 1293 if (F.hasStructRetAttr() && CC != CallingConv::Swift && 1294 CC != CallingConv::SwiftTail) { 1295 Register Reg = X86MFInfo->getSRetReturnReg(); 1296 assert(Reg && 1297 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1298 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1300 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1301 RetRegs.push_back(RetReg); 1302 } 1303 1304 // Now emit the RET. 1305 MachineInstrBuilder MIB; 1306 if (X86MFInfo->getBytesToPopOnReturn()) { 1307 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1308 TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) 1309 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1310 } else { 1311 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1312 TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); 1313 } 1314 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1315 MIB.addReg(RetRegs[i], RegState::Implicit); 1316 return true; 1317 } 1318 1319 /// X86SelectLoad - Select and emit code to implement load instructions. 1320 /// 1321 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1322 const LoadInst *LI = cast<LoadInst>(I); 1323 1324 // Atomic loads need special handling. 1325 if (LI->isAtomic()) 1326 return false; 1327 1328 const Value *SV = I->getOperand(0); 1329 if (TLI.supportSwiftError()) { 1330 // Swifterror values can come from either a function parameter with 1331 // swifterror attribute or an alloca with swifterror attribute. 1332 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1333 if (Arg->hasSwiftErrorAttr()) 1334 return false; 1335 } 1336 1337 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1338 if (Alloca->isSwiftError()) 1339 return false; 1340 } 1341 } 1342 1343 MVT VT; 1344 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1345 return false; 1346 1347 const Value *Ptr = LI->getPointerOperand(); 1348 1349 X86AddressMode AM; 1350 if (!X86SelectAddress(Ptr, AM)) 1351 return false; 1352 1353 unsigned ResultReg = 0; 1354 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1355 LI->getAlign().value())) 1356 return false; 1357 1358 updateValueMap(I, ResultReg); 1359 return true; 1360 } 1361 1362 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1363 bool HasAVX512 = Subtarget->hasAVX512(); 1364 bool HasAVX = Subtarget->hasAVX(); 1365 bool X86ScalarSSEf32 = Subtarget->hasSSE1(); 1366 bool X86ScalarSSEf64 = Subtarget->hasSSE2(); 1367 1368 switch (VT.getSimpleVT().SimpleTy) { 1369 default: return 0; 1370 case MVT::i8: return X86::CMP8rr; 1371 case MVT::i16: return X86::CMP16rr; 1372 case MVT::i32: return X86::CMP32rr; 1373 case MVT::i64: return X86::CMP64rr; 1374 case MVT::f32: 1375 return X86ScalarSSEf32 1376 ? (HasAVX512 ? X86::VUCOMISSZrr 1377 : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) 1378 : 0; 1379 case MVT::f64: 1380 return X86ScalarSSEf64 1381 ? (HasAVX512 ? X86::VUCOMISDZrr 1382 : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) 1383 : 0; 1384 } 1385 } 1386 1387 /// If we have a comparison with RHS as the RHS of the comparison, return an 1388 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1389 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1390 int64_t Val = RHSC->getSExtValue(); 1391 switch (VT.getSimpleVT().SimpleTy) { 1392 // Otherwise, we can't fold the immediate into this comparison. 1393 default: 1394 return 0; 1395 case MVT::i8: 1396 return X86::CMP8ri; 1397 case MVT::i16: 1398 if (isInt<8>(Val)) 1399 return X86::CMP16ri8; 1400 return X86::CMP16ri; 1401 case MVT::i32: 1402 if (isInt<8>(Val)) 1403 return X86::CMP32ri8; 1404 return X86::CMP32ri; 1405 case MVT::i64: 1406 if (isInt<8>(Val)) 1407 return X86::CMP64ri8; 1408 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1409 // field. 1410 if (isInt<32>(Val)) 1411 return X86::CMP64ri32; 1412 return 0; 1413 } 1414 } 1415 1416 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1417 const DebugLoc &CurDbgLoc) { 1418 Register Op0Reg = getRegForValue(Op0); 1419 if (Op0Reg == 0) return false; 1420 1421 // Handle 'null' like i32/i64 0. 1422 if (isa<ConstantPointerNull>(Op1)) 1423 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1424 1425 // We have two options: compare with register or immediate. If the RHS of 1426 // the compare is an immediate that we can fold into this compare, use 1427 // CMPri, otherwise use CMPrr. 1428 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1429 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1430 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) 1431 .addReg(Op0Reg) 1432 .addImm(Op1C->getSExtValue()); 1433 return true; 1434 } 1435 } 1436 1437 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1438 if (CompareOpc == 0) return false; 1439 1440 Register Op1Reg = getRegForValue(Op1); 1441 if (Op1Reg == 0) return false; 1442 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) 1443 .addReg(Op0Reg) 1444 .addReg(Op1Reg); 1445 1446 return true; 1447 } 1448 1449 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1450 const CmpInst *CI = cast<CmpInst>(I); 1451 1452 MVT VT; 1453 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1454 return false; 1455 1456 // Below code only works for scalars. 1457 if (VT.isVector()) 1458 return false; 1459 1460 // Try to optimize or fold the cmp. 1461 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1462 unsigned ResultReg = 0; 1463 switch (Predicate) { 1464 default: break; 1465 case CmpInst::FCMP_FALSE: { 1466 ResultReg = createResultReg(&X86::GR32RegClass); 1467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), 1468 ResultReg); 1469 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit); 1470 if (!ResultReg) 1471 return false; 1472 break; 1473 } 1474 case CmpInst::FCMP_TRUE: { 1475 ResultReg = createResultReg(&X86::GR8RegClass); 1476 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 1477 ResultReg).addImm(1); 1478 break; 1479 } 1480 } 1481 1482 if (ResultReg) { 1483 updateValueMap(I, ResultReg); 1484 return true; 1485 } 1486 1487 const Value *LHS = CI->getOperand(0); 1488 const Value *RHS = CI->getOperand(1); 1489 1490 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1491 // We don't have to materialize a zero constant for this case and can just use 1492 // %x again on the RHS. 1493 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1494 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1495 if (RHSC && RHSC->isNullValue()) 1496 RHS = LHS; 1497 } 1498 1499 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1500 static const uint16_t SETFOpcTable[2][3] = { 1501 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1502 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1503 }; 1504 const uint16_t *SETFOpc = nullptr; 1505 switch (Predicate) { 1506 default: break; 1507 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1508 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1509 } 1510 1511 ResultReg = createResultReg(&X86::GR8RegClass); 1512 if (SETFOpc) { 1513 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1514 return false; 1515 1516 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 1517 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 1518 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1519 FlagReg1).addImm(SETFOpc[0]); 1520 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1521 FlagReg2).addImm(SETFOpc[1]); 1522 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), 1523 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1524 updateValueMap(I, ResultReg); 1525 return true; 1526 } 1527 1528 X86::CondCode CC; 1529 bool SwapArgs; 1530 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1531 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1532 1533 if (SwapArgs) 1534 std::swap(LHS, RHS); 1535 1536 // Emit a compare of LHS/RHS. 1537 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1538 return false; 1539 1540 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1541 ResultReg).addImm(CC); 1542 updateValueMap(I, ResultReg); 1543 return true; 1544 } 1545 1546 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1547 EVT DstVT = TLI.getValueType(DL, I->getType()); 1548 if (!TLI.isTypeLegal(DstVT)) 1549 return false; 1550 1551 Register ResultReg = getRegForValue(I->getOperand(0)); 1552 if (ResultReg == 0) 1553 return false; 1554 1555 // Handle zero-extension from i1 to i8, which is common. 1556 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1557 if (SrcVT == MVT::i1) { 1558 // Set the high bits to zero. 1559 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1560 SrcVT = MVT::i8; 1561 1562 if (ResultReg == 0) 1563 return false; 1564 } 1565 1566 if (DstVT == MVT::i64) { 1567 // Handle extension to 64-bits via sub-register shenanigans. 1568 unsigned MovInst; 1569 1570 switch (SrcVT.SimpleTy) { 1571 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1572 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1573 case MVT::i32: MovInst = X86::MOV32rr; break; 1574 default: llvm_unreachable("Unexpected zext to i64 source type"); 1575 } 1576 1577 Register Result32 = createResultReg(&X86::GR32RegClass); 1578 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) 1579 .addReg(ResultReg); 1580 1581 ResultReg = createResultReg(&X86::GR64RegClass); 1582 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), 1583 ResultReg) 1584 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1585 } else if (DstVT == MVT::i16) { 1586 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1587 // extend to 32-bits and then extract down to 16-bits. 1588 Register Result32 = createResultReg(&X86::GR32RegClass); 1589 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), 1590 Result32).addReg(ResultReg); 1591 1592 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1593 } else if (DstVT != MVT::i8) { 1594 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1595 ResultReg); 1596 if (ResultReg == 0) 1597 return false; 1598 } 1599 1600 updateValueMap(I, ResultReg); 1601 return true; 1602 } 1603 1604 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1605 EVT DstVT = TLI.getValueType(DL, I->getType()); 1606 if (!TLI.isTypeLegal(DstVT)) 1607 return false; 1608 1609 Register ResultReg = getRegForValue(I->getOperand(0)); 1610 if (ResultReg == 0) 1611 return false; 1612 1613 // Handle sign-extension from i1 to i8. 1614 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1615 if (SrcVT == MVT::i1) { 1616 // Set the high bits to zero. 1617 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1618 if (ZExtReg == 0) 1619 return false; 1620 1621 // Negate the result to make an 8-bit sign extended value. 1622 ResultReg = createResultReg(&X86::GR8RegClass); 1623 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), 1624 ResultReg).addReg(ZExtReg); 1625 1626 SrcVT = MVT::i8; 1627 } 1628 1629 if (DstVT == MVT::i16) { 1630 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1631 // extend to 32-bits and then extract down to 16-bits. 1632 Register Result32 = createResultReg(&X86::GR32RegClass); 1633 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), 1634 Result32).addReg(ResultReg); 1635 1636 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1637 } else if (DstVT != MVT::i8) { 1638 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1639 ResultReg); 1640 if (ResultReg == 0) 1641 return false; 1642 } 1643 1644 updateValueMap(I, ResultReg); 1645 return true; 1646 } 1647 1648 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1649 // Unconditional branches are selected by tablegen-generated code. 1650 // Handle a conditional branch. 1651 const BranchInst *BI = cast<BranchInst>(I); 1652 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1653 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1654 1655 // Fold the common case of a conditional branch with a comparison 1656 // in the same block (values defined on other blocks may not have 1657 // initialized registers). 1658 X86::CondCode CC; 1659 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1660 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1661 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1662 1663 // Try to optimize or fold the cmp. 1664 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1665 switch (Predicate) { 1666 default: break; 1667 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; 1668 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; 1669 } 1670 1671 const Value *CmpLHS = CI->getOperand(0); 1672 const Value *CmpRHS = CI->getOperand(1); 1673 1674 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1675 // 0.0. 1676 // We don't have to materialize a zero constant for this case and can just 1677 // use %x again on the RHS. 1678 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1679 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1680 if (CmpRHSC && CmpRHSC->isNullValue()) 1681 CmpRHS = CmpLHS; 1682 } 1683 1684 // Try to take advantage of fallthrough opportunities. 1685 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1686 std::swap(TrueMBB, FalseMBB); 1687 Predicate = CmpInst::getInversePredicate(Predicate); 1688 } 1689 1690 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1691 // code check. Instead two branch instructions are required to check all 1692 // the flags. First we change the predicate to a supported condition code, 1693 // which will be the first branch. Later one we will emit the second 1694 // branch. 1695 bool NeedExtraBranch = false; 1696 switch (Predicate) { 1697 default: break; 1698 case CmpInst::FCMP_OEQ: 1699 std::swap(TrueMBB, FalseMBB); 1700 LLVM_FALLTHROUGH; 1701 case CmpInst::FCMP_UNE: 1702 NeedExtraBranch = true; 1703 Predicate = CmpInst::FCMP_ONE; 1704 break; 1705 } 1706 1707 bool SwapArgs; 1708 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1709 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1710 1711 if (SwapArgs) 1712 std::swap(CmpLHS, CmpRHS); 1713 1714 // Emit a compare of the LHS and RHS, setting the flags. 1715 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1716 return false; 1717 1718 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1719 .addMBB(TrueMBB).addImm(CC); 1720 1721 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1722 // to UNE above). 1723 if (NeedExtraBranch) { 1724 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1725 .addMBB(TrueMBB).addImm(X86::COND_P); 1726 } 1727 1728 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1729 return true; 1730 } 1731 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1732 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1733 // typically happen for _Bool and C++ bools. 1734 MVT SourceVT; 1735 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1736 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1737 unsigned TestOpc = 0; 1738 switch (SourceVT.SimpleTy) { 1739 default: break; 1740 case MVT::i8: TestOpc = X86::TEST8ri; break; 1741 case MVT::i16: TestOpc = X86::TEST16ri; break; 1742 case MVT::i32: TestOpc = X86::TEST32ri; break; 1743 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1744 } 1745 if (TestOpc) { 1746 Register OpReg = getRegForValue(TI->getOperand(0)); 1747 if (OpReg == 0) return false; 1748 1749 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) 1750 .addReg(OpReg).addImm(1); 1751 1752 unsigned JmpCond = X86::COND_NE; 1753 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1754 std::swap(TrueMBB, FalseMBB); 1755 JmpCond = X86::COND_E; 1756 } 1757 1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1759 .addMBB(TrueMBB).addImm(JmpCond); 1760 1761 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1762 return true; 1763 } 1764 } 1765 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1766 // Fake request the condition, otherwise the intrinsic might be completely 1767 // optimized away. 1768 Register TmpReg = getRegForValue(BI->getCondition()); 1769 if (TmpReg == 0) 1770 return false; 1771 1772 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1773 .addMBB(TrueMBB).addImm(CC); 1774 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1775 return true; 1776 } 1777 1778 // Otherwise do a clumsy setcc and re-test it. 1779 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1780 // in an explicit cast, so make sure to handle that correctly. 1781 Register OpReg = getRegForValue(BI->getCondition()); 1782 if (OpReg == 0) return false; 1783 1784 // In case OpReg is a K register, COPY to a GPR 1785 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1786 unsigned KOpReg = OpReg; 1787 OpReg = createResultReg(&X86::GR32RegClass); 1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1789 TII.get(TargetOpcode::COPY), OpReg) 1790 .addReg(KOpReg); 1791 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit); 1792 } 1793 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 1794 .addReg(OpReg) 1795 .addImm(1); 1796 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1797 .addMBB(TrueMBB).addImm(X86::COND_NE); 1798 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1799 return true; 1800 } 1801 1802 bool X86FastISel::X86SelectShift(const Instruction *I) { 1803 unsigned CReg = 0, OpReg = 0; 1804 const TargetRegisterClass *RC = nullptr; 1805 if (I->getType()->isIntegerTy(8)) { 1806 CReg = X86::CL; 1807 RC = &X86::GR8RegClass; 1808 switch (I->getOpcode()) { 1809 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1810 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1811 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1812 default: return false; 1813 } 1814 } else if (I->getType()->isIntegerTy(16)) { 1815 CReg = X86::CX; 1816 RC = &X86::GR16RegClass; 1817 switch (I->getOpcode()) { 1818 default: llvm_unreachable("Unexpected shift opcode"); 1819 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1820 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1821 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1822 } 1823 } else if (I->getType()->isIntegerTy(32)) { 1824 CReg = X86::ECX; 1825 RC = &X86::GR32RegClass; 1826 switch (I->getOpcode()) { 1827 default: llvm_unreachable("Unexpected shift opcode"); 1828 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1829 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1830 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1831 } 1832 } else if (I->getType()->isIntegerTy(64)) { 1833 CReg = X86::RCX; 1834 RC = &X86::GR64RegClass; 1835 switch (I->getOpcode()) { 1836 default: llvm_unreachable("Unexpected shift opcode"); 1837 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1838 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1839 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1840 } 1841 } else { 1842 return false; 1843 } 1844 1845 MVT VT; 1846 if (!isTypeLegal(I->getType(), VT)) 1847 return false; 1848 1849 Register Op0Reg = getRegForValue(I->getOperand(0)); 1850 if (Op0Reg == 0) return false; 1851 1852 Register Op1Reg = getRegForValue(I->getOperand(1)); 1853 if (Op1Reg == 0) return false; 1854 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1855 CReg).addReg(Op1Reg); 1856 1857 // The shift instruction uses X86::CL. If we defined a super-register 1858 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1859 if (CReg != X86::CL) 1860 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1861 TII.get(TargetOpcode::KILL), X86::CL) 1862 .addReg(CReg, RegState::Kill); 1863 1864 Register ResultReg = createResultReg(RC); 1865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) 1866 .addReg(Op0Reg); 1867 updateValueMap(I, ResultReg); 1868 return true; 1869 } 1870 1871 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1872 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1873 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1874 const static bool S = true; // IsSigned 1875 const static bool U = false; // !IsSigned 1876 const static unsigned Copy = TargetOpcode::COPY; 1877 // For the X86 DIV/IDIV instruction, in most cases the dividend 1878 // (numerator) must be in a specific register pair highreg:lowreg, 1879 // producing the quotient in lowreg and the remainder in highreg. 1880 // For most data types, to set up the instruction, the dividend is 1881 // copied into lowreg, and lowreg is sign-extended or zero-extended 1882 // into highreg. The exception is i8, where the dividend is defined 1883 // as a single register rather than a register pair, and we 1884 // therefore directly sign-extend or zero-extend the dividend into 1885 // lowreg, instead of copying, and ignore the highreg. 1886 const static struct DivRemEntry { 1887 // The following portion depends only on the data type. 1888 const TargetRegisterClass *RC; 1889 unsigned LowInReg; // low part of the register pair 1890 unsigned HighInReg; // high part of the register pair 1891 // The following portion depends on both the data type and the operation. 1892 struct DivRemResult { 1893 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1894 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1895 // highreg, or copying a zero into highreg. 1896 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1897 // zero/sign-extending into lowreg for i8. 1898 unsigned DivRemResultReg; // Register containing the desired result. 1899 bool IsOpSigned; // Whether to use signed or unsigned form. 1900 } ResultTable[NumOps]; 1901 } OpTable[NumTypes] = { 1902 { &X86::GR8RegClass, X86::AX, 0, { 1903 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1904 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1905 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1906 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1907 } 1908 }, // i8 1909 { &X86::GR16RegClass, X86::AX, X86::DX, { 1910 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1911 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1912 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1913 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1914 } 1915 }, // i16 1916 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1917 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1918 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1919 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1920 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1921 } 1922 }, // i32 1923 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1924 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1925 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1926 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1927 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1928 } 1929 }, // i64 1930 }; 1931 1932 MVT VT; 1933 if (!isTypeLegal(I->getType(), VT)) 1934 return false; 1935 1936 unsigned TypeIndex, OpIndex; 1937 switch (VT.SimpleTy) { 1938 default: return false; 1939 case MVT::i8: TypeIndex = 0; break; 1940 case MVT::i16: TypeIndex = 1; break; 1941 case MVT::i32: TypeIndex = 2; break; 1942 case MVT::i64: TypeIndex = 3; 1943 if (!Subtarget->is64Bit()) 1944 return false; 1945 break; 1946 } 1947 1948 switch (I->getOpcode()) { 1949 default: llvm_unreachable("Unexpected div/rem opcode"); 1950 case Instruction::SDiv: OpIndex = 0; break; 1951 case Instruction::SRem: OpIndex = 1; break; 1952 case Instruction::UDiv: OpIndex = 2; break; 1953 case Instruction::URem: OpIndex = 3; break; 1954 } 1955 1956 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1957 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1958 Register Op0Reg = getRegForValue(I->getOperand(0)); 1959 if (Op0Reg == 0) 1960 return false; 1961 Register Op1Reg = getRegForValue(I->getOperand(1)); 1962 if (Op1Reg == 0) 1963 return false; 1964 1965 // Move op0 into low-order input register. 1966 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1967 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1968 // Zero-extend or sign-extend into high-order input register. 1969 if (OpEntry.OpSignExtend) { 1970 if (OpEntry.IsOpSigned) 1971 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1972 TII.get(OpEntry.OpSignExtend)); 1973 else { 1974 Register Zero32 = createResultReg(&X86::GR32RegClass); 1975 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1976 TII.get(X86::MOV32r0), Zero32); 1977 1978 // Copy the zero into the appropriate sub/super/identical physical 1979 // register. Unfortunately the operations needed are not uniform enough 1980 // to fit neatly into the table above. 1981 if (VT == MVT::i16) { 1982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1983 TII.get(Copy), TypeEntry.HighInReg) 1984 .addReg(Zero32, 0, X86::sub_16bit); 1985 } else if (VT == MVT::i32) { 1986 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1987 TII.get(Copy), TypeEntry.HighInReg) 1988 .addReg(Zero32); 1989 } else if (VT == MVT::i64) { 1990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1991 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1992 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1993 } 1994 } 1995 } 1996 // Generate the DIV/IDIV instruction. 1997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1998 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1999 // For i8 remainder, we can't reference ah directly, as we'll end 2000 // up with bogus copies like %r9b = COPY %ah. Reference ax 2001 // instead to prevent ah references in a rex instruction. 2002 // 2003 // The current assumption of the fast register allocator is that isel 2004 // won't generate explicit references to the GR8_NOREX registers. If 2005 // the allocator and/or the backend get enhanced to be more robust in 2006 // that regard, this can be, and should be, removed. 2007 unsigned ResultReg = 0; 2008 if ((I->getOpcode() == Instruction::SRem || 2009 I->getOpcode() == Instruction::URem) && 2010 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 2011 Register SourceSuperReg = createResultReg(&X86::GR16RegClass); 2012 Register ResultSuperReg = createResultReg(&X86::GR16RegClass); 2013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2014 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 2015 2016 // Shift AX right by 8 bits instead of using AH. 2017 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), 2018 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 2019 2020 // Now reference the 8-bit subreg of the result. 2021 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 2022 X86::sub_8bit); 2023 } 2024 // Copy the result out of the physreg if we haven't already. 2025 if (!ResultReg) { 2026 ResultReg = createResultReg(TypeEntry.RC); 2027 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) 2028 .addReg(OpEntry.DivRemResultReg); 2029 } 2030 updateValueMap(I, ResultReg); 2031 2032 return true; 2033 } 2034 2035 /// Emit a conditional move instruction (if the are supported) to lower 2036 /// the select. 2037 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2038 // Check if the subtarget supports these instructions. 2039 if (!Subtarget->hasCMov()) 2040 return false; 2041 2042 // FIXME: Add support for i8. 2043 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2044 return false; 2045 2046 const Value *Cond = I->getOperand(0); 2047 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2048 bool NeedTest = true; 2049 X86::CondCode CC = X86::COND_NE; 2050 2051 // Optimize conditions coming from a compare if both instructions are in the 2052 // same basic block (values defined in other basic blocks may not have 2053 // initialized registers). 2054 const auto *CI = dyn_cast<CmpInst>(Cond); 2055 if (CI && (CI->getParent() == I->getParent())) { 2056 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2057 2058 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2059 static const uint16_t SETFOpcTable[2][3] = { 2060 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2061 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2062 }; 2063 const uint16_t *SETFOpc = nullptr; 2064 switch (Predicate) { 2065 default: break; 2066 case CmpInst::FCMP_OEQ: 2067 SETFOpc = &SETFOpcTable[0][0]; 2068 Predicate = CmpInst::ICMP_NE; 2069 break; 2070 case CmpInst::FCMP_UNE: 2071 SETFOpc = &SETFOpcTable[1][0]; 2072 Predicate = CmpInst::ICMP_NE; 2073 break; 2074 } 2075 2076 bool NeedSwap; 2077 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2078 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2079 2080 const Value *CmpLHS = CI->getOperand(0); 2081 const Value *CmpRHS = CI->getOperand(1); 2082 if (NeedSwap) 2083 std::swap(CmpLHS, CmpRHS); 2084 2085 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2086 // Emit a compare of the LHS and RHS, setting the flags. 2087 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2088 return false; 2089 2090 if (SETFOpc) { 2091 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 2092 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 2093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2094 FlagReg1).addImm(SETFOpc[0]); 2095 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2096 FlagReg2).addImm(SETFOpc[1]); 2097 auto const &II = TII.get(SETFOpc[2]); 2098 if (II.getNumDefs()) { 2099 Register TmpReg = createResultReg(&X86::GR8RegClass); 2100 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) 2101 .addReg(FlagReg2).addReg(FlagReg1); 2102 } else { 2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2104 .addReg(FlagReg2).addReg(FlagReg1); 2105 } 2106 } 2107 NeedTest = false; 2108 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2109 // Fake request the condition, otherwise the intrinsic might be completely 2110 // optimized away. 2111 Register TmpReg = getRegForValue(Cond); 2112 if (TmpReg == 0) 2113 return false; 2114 2115 NeedTest = false; 2116 } 2117 2118 if (NeedTest) { 2119 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2120 // garbage. Indeed, only the less significant bit is supposed to be 2121 // accurate. If we read more than the lsb, we may see non-zero values 2122 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2123 // the select. This is achieved by performing TEST against 1. 2124 Register CondReg = getRegForValue(Cond); 2125 if (CondReg == 0) 2126 return false; 2127 2128 // In case OpReg is a K register, COPY to a GPR 2129 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2130 unsigned KCondReg = CondReg; 2131 CondReg = createResultReg(&X86::GR32RegClass); 2132 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2133 TII.get(TargetOpcode::COPY), CondReg) 2134 .addReg(KCondReg); 2135 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2136 } 2137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2138 .addReg(CondReg) 2139 .addImm(1); 2140 } 2141 2142 const Value *LHS = I->getOperand(1); 2143 const Value *RHS = I->getOperand(2); 2144 2145 Register RHSReg = getRegForValue(RHS); 2146 Register LHSReg = getRegForValue(LHS); 2147 if (!LHSReg || !RHSReg) 2148 return false; 2149 2150 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2151 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); 2152 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2153 updateValueMap(I, ResultReg); 2154 return true; 2155 } 2156 2157 /// Emit SSE or AVX instructions to lower the select. 2158 /// 2159 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2160 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2161 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2162 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2163 // Optimize conditions coming from a compare if both instructions are in the 2164 // same basic block (values defined in other basic blocks may not have 2165 // initialized registers). 2166 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2167 if (!CI || (CI->getParent() != I->getParent())) 2168 return false; 2169 2170 if (I->getType() != CI->getOperand(0)->getType() || 2171 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2172 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2173 return false; 2174 2175 const Value *CmpLHS = CI->getOperand(0); 2176 const Value *CmpRHS = CI->getOperand(1); 2177 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2178 2179 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2180 // We don't have to materialize a zero constant for this case and can just use 2181 // %x again on the RHS. 2182 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2183 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2184 if (CmpRHSC && CmpRHSC->isNullValue()) 2185 CmpRHS = CmpLHS; 2186 } 2187 2188 unsigned CC; 2189 bool NeedSwap; 2190 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2191 if (CC > 7 && !Subtarget->hasAVX()) 2192 return false; 2193 2194 if (NeedSwap) 2195 std::swap(CmpLHS, CmpRHS); 2196 2197 const Value *LHS = I->getOperand(1); 2198 const Value *RHS = I->getOperand(2); 2199 2200 Register LHSReg = getRegForValue(LHS); 2201 Register RHSReg = getRegForValue(RHS); 2202 Register CmpLHSReg = getRegForValue(CmpLHS); 2203 Register CmpRHSReg = getRegForValue(CmpRHS); 2204 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) 2205 return false; 2206 2207 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2208 unsigned ResultReg; 2209 2210 if (Subtarget->hasAVX512()) { 2211 // If we have AVX512 we can use a mask compare and masked movss/sd. 2212 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2213 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2214 2215 unsigned CmpOpcode = 2216 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; 2217 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg, 2218 CC); 2219 2220 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2221 // bits of the result register since its not based on any of the inputs. 2222 Register ImplicitDefReg = createResultReg(VR128X); 2223 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2224 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2225 2226 // Place RHSReg is the passthru of the masked movss/sd operation and put 2227 // LHS in the input. The mask input comes from the compare. 2228 unsigned MovOpcode = 2229 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2230 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg, 2231 ImplicitDefReg, LHSReg); 2232 2233 ResultReg = createResultReg(RC); 2234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2235 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2236 2237 } else if (Subtarget->hasAVX()) { 2238 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2239 2240 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2241 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2242 // uses XMM0 as the selection register. That may need just as many 2243 // instructions as the AND/ANDN/OR sequence due to register moves, so 2244 // don't bother. 2245 unsigned CmpOpcode = 2246 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; 2247 unsigned BlendOpcode = 2248 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; 2249 2250 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg, 2251 CC); 2252 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg, 2253 CmpReg); 2254 ResultReg = createResultReg(RC); 2255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2256 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2257 } else { 2258 // Choose the SSE instruction sequence based on data type (float or double). 2259 static const uint16_t OpcTable[2][4] = { 2260 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2261 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2262 }; 2263 2264 const uint16_t *Opc = nullptr; 2265 switch (RetVT.SimpleTy) { 2266 default: return false; 2267 case MVT::f32: Opc = &OpcTable[0][0]; break; 2268 case MVT::f64: Opc = &OpcTable[1][0]; break; 2269 } 2270 2271 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2272 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC); 2273 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg); 2274 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg); 2275 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg); 2276 ResultReg = createResultReg(RC); 2277 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2278 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2279 } 2280 updateValueMap(I, ResultReg); 2281 return true; 2282 } 2283 2284 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2285 // These are pseudo CMOV instructions and will be later expanded into control- 2286 // flow. 2287 unsigned Opc; 2288 switch (RetVT.SimpleTy) { 2289 default: return false; 2290 case MVT::i8: Opc = X86::CMOV_GR8; break; 2291 case MVT::i16: Opc = X86::CMOV_GR16; break; 2292 case MVT::f16: Opc = X86::CMOV_FR16X; break; 2293 case MVT::i32: Opc = X86::CMOV_GR32; break; 2294 case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X 2295 : X86::CMOV_FR32; break; 2296 case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X 2297 : X86::CMOV_FR64; break; 2298 } 2299 2300 const Value *Cond = I->getOperand(0); 2301 X86::CondCode CC = X86::COND_NE; 2302 2303 // Optimize conditions coming from a compare if both instructions are in the 2304 // same basic block (values defined in other basic blocks may not have 2305 // initialized registers). 2306 const auto *CI = dyn_cast<CmpInst>(Cond); 2307 if (CI && (CI->getParent() == I->getParent())) { 2308 bool NeedSwap; 2309 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2310 if (CC > X86::LAST_VALID_COND) 2311 return false; 2312 2313 const Value *CmpLHS = CI->getOperand(0); 2314 const Value *CmpRHS = CI->getOperand(1); 2315 2316 if (NeedSwap) 2317 std::swap(CmpLHS, CmpRHS); 2318 2319 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2320 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2321 return false; 2322 } else { 2323 Register CondReg = getRegForValue(Cond); 2324 if (CondReg == 0) 2325 return false; 2326 2327 // In case OpReg is a K register, COPY to a GPR 2328 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2329 unsigned KCondReg = CondReg; 2330 CondReg = createResultReg(&X86::GR32RegClass); 2331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2332 TII.get(TargetOpcode::COPY), CondReg) 2333 .addReg(KCondReg); 2334 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2335 } 2336 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2337 .addReg(CondReg) 2338 .addImm(1); 2339 } 2340 2341 const Value *LHS = I->getOperand(1); 2342 const Value *RHS = I->getOperand(2); 2343 2344 Register LHSReg = getRegForValue(LHS); 2345 Register RHSReg = getRegForValue(RHS); 2346 if (!LHSReg || !RHSReg) 2347 return false; 2348 2349 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2350 2351 Register ResultReg = 2352 fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2353 updateValueMap(I, ResultReg); 2354 return true; 2355 } 2356 2357 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2358 MVT RetVT; 2359 if (!isTypeLegal(I->getType(), RetVT)) 2360 return false; 2361 2362 // Check if we can fold the select. 2363 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2364 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2365 const Value *Opnd = nullptr; 2366 switch (Predicate) { 2367 default: break; 2368 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2369 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2370 } 2371 // No need for a select anymore - this is an unconditional move. 2372 if (Opnd) { 2373 Register OpReg = getRegForValue(Opnd); 2374 if (OpReg == 0) 2375 return false; 2376 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2377 Register ResultReg = createResultReg(RC); 2378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2379 TII.get(TargetOpcode::COPY), ResultReg) 2380 .addReg(OpReg); 2381 updateValueMap(I, ResultReg); 2382 return true; 2383 } 2384 } 2385 2386 // First try to use real conditional move instructions. 2387 if (X86FastEmitCMoveSelect(RetVT, I)) 2388 return true; 2389 2390 // Try to use a sequence of SSE instructions to simulate a conditional move. 2391 if (X86FastEmitSSESelect(RetVT, I)) 2392 return true; 2393 2394 // Fall-back to pseudo conditional move instructions, which will be later 2395 // converted to control-flow. 2396 if (X86FastEmitPseudoSelect(RetVT, I)) 2397 return true; 2398 2399 return false; 2400 } 2401 2402 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2403 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2404 // The target-independent selection algorithm in FastISel already knows how 2405 // to select a SINT_TO_FP if the target is SSE but not AVX. 2406 // Early exit if the subtarget doesn't have AVX. 2407 // Unsigned conversion requires avx512. 2408 bool HasAVX512 = Subtarget->hasAVX512(); 2409 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2410 return false; 2411 2412 // TODO: We could sign extend narrower types. 2413 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 2414 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2415 return false; 2416 2417 // Select integer to float/double conversion. 2418 Register OpReg = getRegForValue(I->getOperand(0)); 2419 if (OpReg == 0) 2420 return false; 2421 2422 unsigned Opcode; 2423 2424 static const uint16_t SCvtOpc[2][2][2] = { 2425 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2426 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2427 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2428 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2429 }; 2430 static const uint16_t UCvtOpc[2][2] = { 2431 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2432 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2433 }; 2434 bool Is64Bit = SrcVT == MVT::i64; 2435 2436 if (I->getType()->isDoubleTy()) { 2437 // s/uitofp int -> double 2438 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2439 } else if (I->getType()->isFloatTy()) { 2440 // s/uitofp int -> float 2441 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2442 } else 2443 return false; 2444 2445 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2446 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2447 Register ImplicitDefReg = createResultReg(RC); 2448 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2449 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2450 Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg); 2451 updateValueMap(I, ResultReg); 2452 return true; 2453 } 2454 2455 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2456 return X86SelectIntToFP(I, /*IsSigned*/true); 2457 } 2458 2459 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2460 return X86SelectIntToFP(I, /*IsSigned*/false); 2461 } 2462 2463 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2464 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2465 unsigned TargetOpc, 2466 const TargetRegisterClass *RC) { 2467 assert((I->getOpcode() == Instruction::FPExt || 2468 I->getOpcode() == Instruction::FPTrunc) && 2469 "Instruction must be an FPExt or FPTrunc!"); 2470 bool HasAVX = Subtarget->hasAVX(); 2471 2472 Register OpReg = getRegForValue(I->getOperand(0)); 2473 if (OpReg == 0) 2474 return false; 2475 2476 unsigned ImplicitDefReg; 2477 if (HasAVX) { 2478 ImplicitDefReg = createResultReg(RC); 2479 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2480 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2481 2482 } 2483 2484 Register ResultReg = createResultReg(RC); 2485 MachineInstrBuilder MIB; 2486 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), 2487 ResultReg); 2488 2489 if (HasAVX) 2490 MIB.addReg(ImplicitDefReg); 2491 2492 MIB.addReg(OpReg); 2493 updateValueMap(I, ResultReg); 2494 return true; 2495 } 2496 2497 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2498 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && 2499 I->getOperand(0)->getType()->isFloatTy()) { 2500 bool HasAVX512 = Subtarget->hasAVX512(); 2501 // fpext from float to double. 2502 unsigned Opc = 2503 HasAVX512 ? X86::VCVTSS2SDZrr 2504 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2505 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2506 } 2507 2508 return false; 2509 } 2510 2511 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2512 if (X86ScalarSSEf64 && I->getType()->isFloatTy() && 2513 I->getOperand(0)->getType()->isDoubleTy()) { 2514 bool HasAVX512 = Subtarget->hasAVX512(); 2515 // fptrunc from double to float. 2516 unsigned Opc = 2517 HasAVX512 ? X86::VCVTSD2SSZrr 2518 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2519 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2520 } 2521 2522 return false; 2523 } 2524 2525 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2526 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2527 EVT DstVT = TLI.getValueType(DL, I->getType()); 2528 2529 // This code only handles truncation to byte. 2530 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2531 return false; 2532 if (!TLI.isTypeLegal(SrcVT)) 2533 return false; 2534 2535 Register InputReg = getRegForValue(I->getOperand(0)); 2536 if (!InputReg) 2537 // Unhandled operand. Halt "fast" selection and bail. 2538 return false; 2539 2540 if (SrcVT == MVT::i8) { 2541 // Truncate from i8 to i1; no code needed. 2542 updateValueMap(I, InputReg); 2543 return true; 2544 } 2545 2546 // Issue an extract_subreg. 2547 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg, 2548 X86::sub_8bit); 2549 if (!ResultReg) 2550 return false; 2551 2552 updateValueMap(I, ResultReg); 2553 return true; 2554 } 2555 2556 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2557 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2558 } 2559 2560 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2561 X86AddressMode SrcAM, uint64_t Len) { 2562 2563 // Make sure we don't bloat code by inlining very large memcpy's. 2564 if (!IsMemcpySmall(Len)) 2565 return false; 2566 2567 bool i64Legal = Subtarget->is64Bit(); 2568 2569 // We don't care about alignment here since we just emit integer accesses. 2570 while (Len) { 2571 MVT VT; 2572 if (Len >= 8 && i64Legal) 2573 VT = MVT::i64; 2574 else if (Len >= 4) 2575 VT = MVT::i32; 2576 else if (Len >= 2) 2577 VT = MVT::i16; 2578 else 2579 VT = MVT::i8; 2580 2581 unsigned Reg; 2582 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2583 RV &= X86FastEmitStore(VT, Reg, DestAM); 2584 assert(RV && "Failed to emit load or store??"); 2585 (void)RV; 2586 2587 unsigned Size = VT.getSizeInBits()/8; 2588 Len -= Size; 2589 DestAM.Disp += Size; 2590 SrcAM.Disp += Size; 2591 } 2592 2593 return true; 2594 } 2595 2596 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2597 // FIXME: Handle more intrinsics. 2598 switch (II->getIntrinsicID()) { 2599 default: return false; 2600 case Intrinsic::convert_from_fp16: 2601 case Intrinsic::convert_to_fp16: { 2602 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2603 return false; 2604 2605 const Value *Op = II->getArgOperand(0); 2606 Register InputReg = getRegForValue(Op); 2607 if (InputReg == 0) 2608 return false; 2609 2610 // F16C only allows converting from float to half and from half to float. 2611 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2612 if (IsFloatToHalf) { 2613 if (!Op->getType()->isFloatTy()) 2614 return false; 2615 } else { 2616 if (!II->getType()->isFloatTy()) 2617 return false; 2618 } 2619 2620 unsigned ResultReg = 0; 2621 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2622 if (IsFloatToHalf) { 2623 // 'InputReg' is implicitly promoted from register class FR32 to 2624 // register class VR128 by method 'constrainOperandRegClass' which is 2625 // directly called by 'fastEmitInst_ri'. 2626 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2627 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2628 // It's consistent with the other FP instructions, which are usually 2629 // controlled by MXCSR. 2630 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr 2631 : X86::VCVTPS2PHrr; 2632 InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4); 2633 2634 // Move the lower 32-bits of ResultReg to another register of class GR32. 2635 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr 2636 : X86::VMOVPDI2DIrr; 2637 ResultReg = createResultReg(&X86::GR32RegClass); 2638 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 2639 .addReg(InputReg, RegState::Kill); 2640 2641 // The result value is in the lower 16-bits of ResultReg. 2642 unsigned RegIdx = X86::sub_16bit; 2643 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx); 2644 } else { 2645 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2646 // Explicitly zero-extend the input to 32-bit. 2647 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg); 2648 2649 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2650 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2651 InputReg); 2652 2653 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr 2654 : X86::VCVTPH2PSrr; 2655 InputReg = fastEmitInst_r(Opc, RC, InputReg); 2656 2657 // The result value is in the lower 32-bits of ResultReg. 2658 // Emit an explicit copy from register class VR128 to register class FR32. 2659 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 2660 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2661 TII.get(TargetOpcode::COPY), ResultReg) 2662 .addReg(InputReg, RegState::Kill); 2663 } 2664 2665 updateValueMap(II, ResultReg); 2666 return true; 2667 } 2668 case Intrinsic::frameaddress: { 2669 MachineFunction *MF = FuncInfo.MF; 2670 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2671 return false; 2672 2673 Type *RetTy = II->getCalledFunction()->getReturnType(); 2674 2675 MVT VT; 2676 if (!isTypeLegal(RetTy, VT)) 2677 return false; 2678 2679 unsigned Opc; 2680 const TargetRegisterClass *RC = nullptr; 2681 2682 switch (VT.SimpleTy) { 2683 default: llvm_unreachable("Invalid result type for frameaddress."); 2684 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2685 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2686 } 2687 2688 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2689 // we get the wrong frame register. 2690 MachineFrameInfo &MFI = MF->getFrameInfo(); 2691 MFI.setFrameAddressIsTaken(true); 2692 2693 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2694 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2695 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2696 (FrameReg == X86::EBP && VT == MVT::i32)) && 2697 "Invalid Frame Register!"); 2698 2699 // Always make a copy of the frame register to a vreg first, so that we 2700 // never directly reference the frame register (the TwoAddressInstruction- 2701 // Pass doesn't like that). 2702 Register SrcReg = createResultReg(RC); 2703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2704 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2705 2706 // Now recursively load from the frame address. 2707 // movq (%rbp), %rax 2708 // movq (%rax), %rax 2709 // movq (%rax), %rax 2710 // ... 2711 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2712 while (Depth--) { 2713 Register DestReg = createResultReg(RC); 2714 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2715 TII.get(Opc), DestReg), SrcReg); 2716 SrcReg = DestReg; 2717 } 2718 2719 updateValueMap(II, SrcReg); 2720 return true; 2721 } 2722 case Intrinsic::memcpy: { 2723 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2724 // Don't handle volatile or variable length memcpys. 2725 if (MCI->isVolatile()) 2726 return false; 2727 2728 if (isa<ConstantInt>(MCI->getLength())) { 2729 // Small memcpy's are common enough that we want to do them 2730 // without a call if possible. 2731 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2732 if (IsMemcpySmall(Len)) { 2733 X86AddressMode DestAM, SrcAM; 2734 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2735 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2736 return false; 2737 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2738 return true; 2739 } 2740 } 2741 2742 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2743 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2744 return false; 2745 2746 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2747 return false; 2748 2749 return lowerCallTo(II, "memcpy", II->arg_size() - 1); 2750 } 2751 case Intrinsic::memset: { 2752 const MemSetInst *MSI = cast<MemSetInst>(II); 2753 2754 if (MSI->isVolatile()) 2755 return false; 2756 2757 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2758 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2759 return false; 2760 2761 if (MSI->getDestAddressSpace() > 255) 2762 return false; 2763 2764 return lowerCallTo(II, "memset", II->arg_size() - 1); 2765 } 2766 case Intrinsic::stackprotector: { 2767 // Emit code to store the stack guard onto the stack. 2768 EVT PtrTy = TLI.getPointerTy(DL); 2769 2770 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2771 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2772 2773 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2774 2775 // Grab the frame index. 2776 X86AddressMode AM; 2777 if (!X86SelectAddress(Slot, AM)) return false; 2778 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2779 return true; 2780 } 2781 case Intrinsic::dbg_declare: { 2782 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2783 X86AddressMode AM; 2784 assert(DI->getAddress() && "Null address should be checked earlier!"); 2785 if (!X86SelectAddress(DI->getAddress(), AM)) 2786 return false; 2787 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2788 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 2789 "Expected inlined-at fields to agree"); 2790 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) 2791 .addImm(0) 2792 .addMetadata(DI->getVariable()) 2793 .addMetadata(DI->getExpression()); 2794 return true; 2795 } 2796 case Intrinsic::trap: { 2797 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); 2798 return true; 2799 } 2800 case Intrinsic::sqrt: { 2801 if (!Subtarget->hasSSE1()) 2802 return false; 2803 2804 Type *RetTy = II->getCalledFunction()->getReturnType(); 2805 2806 MVT VT; 2807 if (!isTypeLegal(RetTy, VT)) 2808 return false; 2809 2810 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2811 // is not generated by FastISel yet. 2812 // FIXME: Update this code once tablegen can handle it. 2813 static const uint16_t SqrtOpc[3][2] = { 2814 { X86::SQRTSSr, X86::SQRTSDr }, 2815 { X86::VSQRTSSr, X86::VSQRTSDr }, 2816 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2817 }; 2818 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2819 Subtarget->hasAVX() ? 1 : 2820 0; 2821 unsigned Opc; 2822 switch (VT.SimpleTy) { 2823 default: return false; 2824 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2825 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2826 } 2827 2828 const Value *SrcVal = II->getArgOperand(0); 2829 Register SrcReg = getRegForValue(SrcVal); 2830 2831 if (SrcReg == 0) 2832 return false; 2833 2834 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2835 unsigned ImplicitDefReg = 0; 2836 if (AVXLevel > 0) { 2837 ImplicitDefReg = createResultReg(RC); 2838 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2839 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2840 } 2841 2842 Register ResultReg = createResultReg(RC); 2843 MachineInstrBuilder MIB; 2844 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 2845 ResultReg); 2846 2847 if (ImplicitDefReg) 2848 MIB.addReg(ImplicitDefReg); 2849 2850 MIB.addReg(SrcReg); 2851 2852 updateValueMap(II, ResultReg); 2853 return true; 2854 } 2855 case Intrinsic::sadd_with_overflow: 2856 case Intrinsic::uadd_with_overflow: 2857 case Intrinsic::ssub_with_overflow: 2858 case Intrinsic::usub_with_overflow: 2859 case Intrinsic::smul_with_overflow: 2860 case Intrinsic::umul_with_overflow: { 2861 // This implements the basic lowering of the xalu with overflow intrinsics 2862 // into add/sub/mul followed by either seto or setb. 2863 const Function *Callee = II->getCalledFunction(); 2864 auto *Ty = cast<StructType>(Callee->getReturnType()); 2865 Type *RetTy = Ty->getTypeAtIndex(0U); 2866 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2867 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2868 "Overflow value expected to be an i1"); 2869 2870 MVT VT; 2871 if (!isTypeLegal(RetTy, VT)) 2872 return false; 2873 2874 if (VT < MVT::i8 || VT > MVT::i64) 2875 return false; 2876 2877 const Value *LHS = II->getArgOperand(0); 2878 const Value *RHS = II->getArgOperand(1); 2879 2880 // Canonicalize immediate to the RHS. 2881 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative()) 2882 std::swap(LHS, RHS); 2883 2884 unsigned BaseOpc, CondCode; 2885 switch (II->getIntrinsicID()) { 2886 default: llvm_unreachable("Unexpected intrinsic!"); 2887 case Intrinsic::sadd_with_overflow: 2888 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2889 case Intrinsic::uadd_with_overflow: 2890 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2891 case Intrinsic::ssub_with_overflow: 2892 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2893 case Intrinsic::usub_with_overflow: 2894 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2895 case Intrinsic::smul_with_overflow: 2896 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2897 case Intrinsic::umul_with_overflow: 2898 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2899 } 2900 2901 Register LHSReg = getRegForValue(LHS); 2902 if (LHSReg == 0) 2903 return false; 2904 2905 unsigned ResultReg = 0; 2906 // Check if we have an immediate version. 2907 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2908 static const uint16_t Opc[2][4] = { 2909 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2910 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2911 }; 2912 2913 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2914 CondCode == X86::COND_O) { 2915 // We can use INC/DEC. 2916 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2917 bool IsDec = BaseOpc == ISD::SUB; 2918 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2919 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2920 .addReg(LHSReg); 2921 } else 2922 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue()); 2923 } 2924 2925 unsigned RHSReg; 2926 if (!ResultReg) { 2927 RHSReg = getRegForValue(RHS); 2928 if (RHSReg == 0) 2929 return false; 2930 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg); 2931 } 2932 2933 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2934 // it manually. 2935 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2936 static const uint16_t MULOpc[] = 2937 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2938 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2939 // First copy the first operand into RAX, which is an implicit input to 2940 // the X86::MUL*r instruction. 2941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2942 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2943 .addReg(LHSReg); 2944 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2945 TLI.getRegClassFor(VT), RHSReg); 2946 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2947 static const uint16_t MULOpc[] = 2948 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2949 if (VT == MVT::i8) { 2950 // Copy the first operand into AL, which is an implicit input to the 2951 // X86::IMUL8r instruction. 2952 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2953 TII.get(TargetOpcode::COPY), X86::AL) 2954 .addReg(LHSReg); 2955 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg); 2956 } else 2957 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2958 TLI.getRegClassFor(VT), LHSReg, RHSReg); 2959 } 2960 2961 if (!ResultReg) 2962 return false; 2963 2964 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2965 Register ResultReg2 = createResultReg(&X86::GR8RegClass); 2966 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2968 ResultReg2).addImm(CondCode); 2969 2970 updateValueMap(II, ResultReg, 2); 2971 return true; 2972 } 2973 case Intrinsic::x86_sse_cvttss2si: 2974 case Intrinsic::x86_sse_cvttss2si64: 2975 case Intrinsic::x86_sse2_cvttsd2si: 2976 case Intrinsic::x86_sse2_cvttsd2si64: { 2977 bool IsInputDouble; 2978 switch (II->getIntrinsicID()) { 2979 default: llvm_unreachable("Unexpected intrinsic."); 2980 case Intrinsic::x86_sse_cvttss2si: 2981 case Intrinsic::x86_sse_cvttss2si64: 2982 if (!Subtarget->hasSSE1()) 2983 return false; 2984 IsInputDouble = false; 2985 break; 2986 case Intrinsic::x86_sse2_cvttsd2si: 2987 case Intrinsic::x86_sse2_cvttsd2si64: 2988 if (!Subtarget->hasSSE2()) 2989 return false; 2990 IsInputDouble = true; 2991 break; 2992 } 2993 2994 Type *RetTy = II->getCalledFunction()->getReturnType(); 2995 MVT VT; 2996 if (!isTypeLegal(RetTy, VT)) 2997 return false; 2998 2999 static const uint16_t CvtOpc[3][2][2] = { 3000 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 3001 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 3002 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 3003 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 3004 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 3005 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 3006 }; 3007 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 3008 Subtarget->hasAVX() ? 1 : 3009 0; 3010 unsigned Opc; 3011 switch (VT.SimpleTy) { 3012 default: llvm_unreachable("Unexpected result type."); 3013 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 3014 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 3015 } 3016 3017 // Check if we can fold insertelement instructions into the convert. 3018 const Value *Op = II->getArgOperand(0); 3019 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3020 const Value *Index = IE->getOperand(2); 3021 if (!isa<ConstantInt>(Index)) 3022 break; 3023 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3024 3025 if (Idx == 0) { 3026 Op = IE->getOperand(1); 3027 break; 3028 } 3029 Op = IE->getOperand(0); 3030 } 3031 3032 Register Reg = getRegForValue(Op); 3033 if (Reg == 0) 3034 return false; 3035 3036 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3037 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 3038 .addReg(Reg); 3039 3040 updateValueMap(II, ResultReg); 3041 return true; 3042 } 3043 } 3044 } 3045 3046 bool X86FastISel::fastLowerArguments() { 3047 if (!FuncInfo.CanLowerReturn) 3048 return false; 3049 3050 const Function *F = FuncInfo.Fn; 3051 if (F->isVarArg()) 3052 return false; 3053 3054 CallingConv::ID CC = F->getCallingConv(); 3055 if (CC != CallingConv::C) 3056 return false; 3057 3058 if (Subtarget->isCallingConvWin64(CC)) 3059 return false; 3060 3061 if (!Subtarget->is64Bit()) 3062 return false; 3063 3064 if (Subtarget->useSoftFloat()) 3065 return false; 3066 3067 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3068 unsigned GPRCnt = 0; 3069 unsigned FPRCnt = 0; 3070 for (auto const &Arg : F->args()) { 3071 if (Arg.hasAttribute(Attribute::ByVal) || 3072 Arg.hasAttribute(Attribute::InReg) || 3073 Arg.hasAttribute(Attribute::StructRet) || 3074 Arg.hasAttribute(Attribute::SwiftSelf) || 3075 Arg.hasAttribute(Attribute::SwiftAsync) || 3076 Arg.hasAttribute(Attribute::SwiftError) || 3077 Arg.hasAttribute(Attribute::Nest)) 3078 return false; 3079 3080 Type *ArgTy = Arg.getType(); 3081 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3082 return false; 3083 3084 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3085 if (!ArgVT.isSimple()) return false; 3086 switch (ArgVT.getSimpleVT().SimpleTy) { 3087 default: return false; 3088 case MVT::i32: 3089 case MVT::i64: 3090 ++GPRCnt; 3091 break; 3092 case MVT::f32: 3093 case MVT::f64: 3094 if (!Subtarget->hasSSE1()) 3095 return false; 3096 ++FPRCnt; 3097 break; 3098 } 3099 3100 if (GPRCnt > 6) 3101 return false; 3102 3103 if (FPRCnt > 8) 3104 return false; 3105 } 3106 3107 static const MCPhysReg GPR32ArgRegs[] = { 3108 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3109 }; 3110 static const MCPhysReg GPR64ArgRegs[] = { 3111 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3112 }; 3113 static const MCPhysReg XMMArgRegs[] = { 3114 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3115 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3116 }; 3117 3118 unsigned GPRIdx = 0; 3119 unsigned FPRIdx = 0; 3120 for (auto const &Arg : F->args()) { 3121 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3122 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3123 unsigned SrcReg; 3124 switch (VT.SimpleTy) { 3125 default: llvm_unreachable("Unexpected value type."); 3126 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3127 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3128 case MVT::f32: LLVM_FALLTHROUGH; 3129 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3130 } 3131 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3132 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3133 // Without this, EmitLiveInCopies may eliminate the livein if its only 3134 // use is a bitcast (which isn't turned into an instruction). 3135 Register ResultReg = createResultReg(RC); 3136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3137 TII.get(TargetOpcode::COPY), ResultReg) 3138 .addReg(DstReg, getKillRegState(true)); 3139 updateValueMap(&Arg, ResultReg); 3140 } 3141 return true; 3142 } 3143 3144 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3145 CallingConv::ID CC, 3146 const CallBase *CB) { 3147 if (Subtarget->is64Bit()) 3148 return 0; 3149 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3150 return 0; 3151 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3152 CC == CallingConv::HiPE || CC == CallingConv::Tail || 3153 CC == CallingConv::SwiftTail) 3154 return 0; 3155 3156 if (CB) 3157 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) || 3158 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3159 return 0; 3160 3161 return 4; 3162 } 3163 3164 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3165 auto &OutVals = CLI.OutVals; 3166 auto &OutFlags = CLI.OutFlags; 3167 auto &OutRegs = CLI.OutRegs; 3168 auto &Ins = CLI.Ins; 3169 auto &InRegs = CLI.InRegs; 3170 CallingConv::ID CC = CLI.CallConv; 3171 bool &IsTailCall = CLI.IsTailCall; 3172 bool IsVarArg = CLI.IsVarArg; 3173 const Value *Callee = CLI.Callee; 3174 MCSymbol *Symbol = CLI.Symbol; 3175 const auto *CB = CLI.CB; 3176 3177 bool Is64Bit = Subtarget->is64Bit(); 3178 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3179 3180 // Call / invoke instructions with NoCfCheck attribute require special 3181 // handling. 3182 if (CB && CB->doesNoCfCheck()) 3183 return false; 3184 3185 // Functions with no_caller_saved_registers that need special handling. 3186 if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers"))) 3187 return false; 3188 3189 // Functions with no_callee_saved_registers that need special handling. 3190 if ((CB && CB->hasFnAttr("no_callee_saved_registers"))) 3191 return false; 3192 3193 // Functions using thunks for indirect calls need to use SDISel. 3194 if (Subtarget->useIndirectThunkCalls()) 3195 return false; 3196 3197 // Handle only C, fastcc, and webkit_js calling conventions for now. 3198 switch (CC) { 3199 default: return false; 3200 case CallingConv::C: 3201 case CallingConv::Fast: 3202 case CallingConv::Tail: 3203 case CallingConv::WebKit_JS: 3204 case CallingConv::Swift: 3205 case CallingConv::SwiftTail: 3206 case CallingConv::X86_FastCall: 3207 case CallingConv::X86_StdCall: 3208 case CallingConv::X86_ThisCall: 3209 case CallingConv::Win64: 3210 case CallingConv::X86_64_SysV: 3211 case CallingConv::CFGuard_Check: 3212 break; 3213 } 3214 3215 // Allow SelectionDAG isel to handle tail calls. 3216 if (IsTailCall) 3217 return false; 3218 3219 // fastcc with -tailcallopt is intended to provide a guaranteed 3220 // tail call optimization. Fastisel doesn't know how to do that. 3221 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 3222 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 3223 return false; 3224 3225 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3226 // x86-32. Special handling for x86-64 is implemented. 3227 if (IsVarArg && IsWin64) 3228 return false; 3229 3230 // Don't know about inalloca yet. 3231 if (CLI.CB && CLI.CB->hasInAllocaArgument()) 3232 return false; 3233 3234 for (auto Flag : CLI.OutFlags) 3235 if (Flag.isSwiftError() || Flag.isPreallocated()) 3236 return false; 3237 3238 SmallVector<MVT, 16> OutVTs; 3239 SmallVector<unsigned, 16> ArgRegs; 3240 3241 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3242 // instruction. This is safe because it is common to all FastISel supported 3243 // calling conventions on x86. 3244 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3245 Value *&Val = OutVals[i]; 3246 ISD::ArgFlagsTy Flags = OutFlags[i]; 3247 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3248 if (CI->getBitWidth() < 32) { 3249 if (Flags.isSExt()) 3250 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); 3251 else 3252 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); 3253 } 3254 } 3255 3256 // Passing bools around ends up doing a trunc to i1 and passing it. 3257 // Codegen this as an argument + "and 1". 3258 MVT VT; 3259 auto *TI = dyn_cast<TruncInst>(Val); 3260 unsigned ResultReg; 3261 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB && 3262 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { 3263 Value *PrevVal = TI->getOperand(0); 3264 ResultReg = getRegForValue(PrevVal); 3265 3266 if (!ResultReg) 3267 return false; 3268 3269 if (!isTypeLegal(PrevVal->getType(), VT)) 3270 return false; 3271 3272 ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1); 3273 } else { 3274 if (!isTypeLegal(Val->getType(), VT) || 3275 (VT.isVector() && VT.getVectorElementType() == MVT::i1)) 3276 return false; 3277 ResultReg = getRegForValue(Val); 3278 } 3279 3280 if (!ResultReg) 3281 return false; 3282 3283 ArgRegs.push_back(ResultReg); 3284 OutVTs.push_back(VT); 3285 } 3286 3287 // Analyze operands of the call, assigning locations to each operand. 3288 SmallVector<CCValAssign, 16> ArgLocs; 3289 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3290 3291 // Allocate shadow area for Win64 3292 if (IsWin64) 3293 CCInfo.AllocateStack(32, Align(8)); 3294 3295 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3296 3297 // Get a count of how many bytes are to be pushed on the stack. 3298 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3299 3300 // Issue CALLSEQ_START 3301 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3302 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 3303 .addImm(NumBytes).addImm(0).addImm(0); 3304 3305 // Walk the register/memloc assignments, inserting copies/loads. 3306 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3307 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3308 CCValAssign const &VA = ArgLocs[i]; 3309 const Value *ArgVal = OutVals[VA.getValNo()]; 3310 MVT ArgVT = OutVTs[VA.getValNo()]; 3311 3312 if (ArgVT == MVT::x86mmx) 3313 return false; 3314 3315 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3316 3317 // Promote the value if needed. 3318 switch (VA.getLocInfo()) { 3319 case CCValAssign::Full: break; 3320 case CCValAssign::SExt: { 3321 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3322 "Unexpected extend"); 3323 3324 if (ArgVT == MVT::i1) 3325 return false; 3326 3327 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3328 ArgVT, ArgReg); 3329 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3330 ArgVT = VA.getLocVT(); 3331 break; 3332 } 3333 case CCValAssign::ZExt: { 3334 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3335 "Unexpected extend"); 3336 3337 // Handle zero-extension from i1 to i8, which is common. 3338 if (ArgVT == MVT::i1) { 3339 // Set the high bits to zero. 3340 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg); 3341 ArgVT = MVT::i8; 3342 3343 if (ArgReg == 0) 3344 return false; 3345 } 3346 3347 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3348 ArgVT, ArgReg); 3349 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3350 ArgVT = VA.getLocVT(); 3351 break; 3352 } 3353 case CCValAssign::AExt: { 3354 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3355 "Unexpected extend"); 3356 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3357 ArgVT, ArgReg); 3358 if (!Emitted) 3359 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3360 ArgVT, ArgReg); 3361 if (!Emitted) 3362 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3363 ArgVT, ArgReg); 3364 3365 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3366 ArgVT = VA.getLocVT(); 3367 break; 3368 } 3369 case CCValAssign::BCvt: { 3370 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg); 3371 assert(ArgReg && "Failed to emit a bitcast!"); 3372 ArgVT = VA.getLocVT(); 3373 break; 3374 } 3375 case CCValAssign::VExt: 3376 // VExt has not been implemented, so this should be impossible to reach 3377 // for now. However, fallback to Selection DAG isel once implemented. 3378 return false; 3379 case CCValAssign::AExtUpper: 3380 case CCValAssign::SExtUpper: 3381 case CCValAssign::ZExtUpper: 3382 case CCValAssign::FPExt: 3383 case CCValAssign::Trunc: 3384 llvm_unreachable("Unexpected loc info!"); 3385 case CCValAssign::Indirect: 3386 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3387 // support this. 3388 return false; 3389 } 3390 3391 if (VA.isRegLoc()) { 3392 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3393 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3394 OutRegs.push_back(VA.getLocReg()); 3395 } else { 3396 assert(VA.isMemLoc() && "Unknown value location!"); 3397 3398 // Don't emit stores for undef values. 3399 if (isa<UndefValue>(ArgVal)) 3400 continue; 3401 3402 unsigned LocMemOffset = VA.getLocMemOffset(); 3403 X86AddressMode AM; 3404 AM.Base.Reg = RegInfo->getStackRegister(); 3405 AM.Disp = LocMemOffset; 3406 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3407 Align Alignment = DL.getABITypeAlign(ArgVal->getType()); 3408 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3409 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3410 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3411 if (Flags.isByVal()) { 3412 X86AddressMode SrcAM; 3413 SrcAM.Base.Reg = ArgReg; 3414 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3415 return false; 3416 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3417 // If this is a really simple value, emit this with the Value* version 3418 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3419 // as it can cause us to reevaluate the argument. 3420 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3421 return false; 3422 } else { 3423 if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO)) 3424 return false; 3425 } 3426 } 3427 } 3428 3429 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3430 // GOT pointer. 3431 if (Subtarget->isPICStyleGOT()) { 3432 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3433 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3434 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3435 } 3436 3437 if (Is64Bit && IsVarArg && !IsWin64) { 3438 // From AMD64 ABI document: 3439 // For calls that may call functions that use varargs or stdargs 3440 // (prototype-less calls or calls to functions containing ellipsis (...) in 3441 // the declaration) %al is used as hidden argument to specify the number 3442 // of SSE registers used. The contents of %al do not need to match exactly 3443 // the number of registers, but must be an ubound on the number of SSE 3444 // registers used and is in the range 0 - 8 inclusive. 3445 3446 // Count the number of XMM registers allocated. 3447 static const MCPhysReg XMMArgRegs[] = { 3448 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3449 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3450 }; 3451 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3452 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3453 && "SSE registers cannot be used when SSE is disabled"); 3454 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 3455 X86::AL).addImm(NumXMMRegs); 3456 } 3457 3458 // Materialize callee address in a register. FIXME: GV address can be 3459 // handled with a CALLpcrel32 instead. 3460 X86AddressMode CalleeAM; 3461 if (!X86SelectCallAddress(Callee, CalleeAM)) 3462 return false; 3463 3464 unsigned CalleeOp = 0; 3465 const GlobalValue *GV = nullptr; 3466 if (CalleeAM.GV != nullptr) { 3467 GV = CalleeAM.GV; 3468 } else if (CalleeAM.Base.Reg != 0) { 3469 CalleeOp = CalleeAM.Base.Reg; 3470 } else 3471 return false; 3472 3473 // Issue the call. 3474 MachineInstrBuilder MIB; 3475 if (CalleeOp) { 3476 // Register-indirect call. 3477 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3478 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) 3479 .addReg(CalleeOp); 3480 } else { 3481 // Direct call. 3482 assert(GV && "Not a direct call"); 3483 // See if we need any target-specific flags on the GV operand. 3484 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3485 3486 // This will be a direct call, or an indirect call through memory for 3487 // NonLazyBind calls or dllimport calls. 3488 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3489 OpFlags == X86II::MO_GOTPCREL || 3490 OpFlags == X86II::MO_GOTPCREL_NORELAX || 3491 OpFlags == X86II::MO_COFFSTUB; 3492 unsigned CallOpc = NeedLoad 3493 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3494 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3495 3496 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); 3497 if (NeedLoad) 3498 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); 3499 if (Symbol) 3500 MIB.addSym(Symbol, OpFlags); 3501 else 3502 MIB.addGlobalAddress(GV, 0, OpFlags); 3503 if (NeedLoad) 3504 MIB.addReg(0); 3505 } 3506 3507 // Add a register mask operand representing the call-preserved registers. 3508 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3509 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3510 3511 // Add an implicit use GOT pointer in EBX. 3512 if (Subtarget->isPICStyleGOT()) 3513 MIB.addReg(X86::EBX, RegState::Implicit); 3514 3515 if (Is64Bit && IsVarArg && !IsWin64) 3516 MIB.addReg(X86::AL, RegState::Implicit); 3517 3518 // Add implicit physical register uses to the call. 3519 for (auto Reg : OutRegs) 3520 MIB.addReg(Reg, RegState::Implicit); 3521 3522 // Issue CALLSEQ_END 3523 unsigned NumBytesForCalleeToPop = 3524 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3525 TM.Options.GuaranteedTailCallOpt) 3526 ? NumBytes // Callee pops everything. 3527 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB); 3528 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3529 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 3530 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3531 3532 // Now handle call return values. 3533 SmallVector<CCValAssign, 16> RVLocs; 3534 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3535 CLI.RetTy->getContext()); 3536 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3537 3538 // Copy all of the result registers out of their specified physreg. 3539 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3540 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3541 CCValAssign &VA = RVLocs[i]; 3542 EVT CopyVT = VA.getValVT(); 3543 unsigned CopyReg = ResultReg + i; 3544 Register SrcReg = VA.getLocReg(); 3545 3546 // If this is x86-64, and we disabled SSE, we can't return FP values 3547 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3548 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3549 report_fatal_error("SSE register return with SSE disabled"); 3550 } 3551 3552 // If we prefer to use the value in xmm registers, copy it out as f80 and 3553 // use a truncate to move it from fp stack reg to xmm reg. 3554 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3555 isScalarFPTypeInSSEReg(VA.getValVT())) { 3556 CopyVT = MVT::f80; 3557 CopyReg = createResultReg(&X86::RFP80RegClass); 3558 } 3559 3560 // Copy out the result. 3561 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3562 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3563 InRegs.push_back(VA.getLocReg()); 3564 3565 // Round the f80 to the right size, which also moves it to the appropriate 3566 // xmm register. This is accomplished by storing the f80 value in memory 3567 // and then loading it back. 3568 if (CopyVT != VA.getValVT()) { 3569 EVT ResVT = VA.getValVT(); 3570 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3571 unsigned MemSize = ResVT.getSizeInBits()/8; 3572 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false); 3573 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3574 TII.get(Opc)), FI) 3575 .addReg(CopyReg); 3576 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3577 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3578 TII.get(Opc), ResultReg + i), FI); 3579 } 3580 } 3581 3582 CLI.ResultReg = ResultReg; 3583 CLI.NumResultRegs = RVLocs.size(); 3584 CLI.Call = MIB; 3585 3586 return true; 3587 } 3588 3589 bool 3590 X86FastISel::fastSelectInstruction(const Instruction *I) { 3591 switch (I->getOpcode()) { 3592 default: break; 3593 case Instruction::Load: 3594 return X86SelectLoad(I); 3595 case Instruction::Store: 3596 return X86SelectStore(I); 3597 case Instruction::Ret: 3598 return X86SelectRet(I); 3599 case Instruction::ICmp: 3600 case Instruction::FCmp: 3601 return X86SelectCmp(I); 3602 case Instruction::ZExt: 3603 return X86SelectZExt(I); 3604 case Instruction::SExt: 3605 return X86SelectSExt(I); 3606 case Instruction::Br: 3607 return X86SelectBranch(I); 3608 case Instruction::LShr: 3609 case Instruction::AShr: 3610 case Instruction::Shl: 3611 return X86SelectShift(I); 3612 case Instruction::SDiv: 3613 case Instruction::UDiv: 3614 case Instruction::SRem: 3615 case Instruction::URem: 3616 return X86SelectDivRem(I); 3617 case Instruction::Select: 3618 return X86SelectSelect(I); 3619 case Instruction::Trunc: 3620 return X86SelectTrunc(I); 3621 case Instruction::FPExt: 3622 return X86SelectFPExt(I); 3623 case Instruction::FPTrunc: 3624 return X86SelectFPTrunc(I); 3625 case Instruction::SIToFP: 3626 return X86SelectSIToFP(I); 3627 case Instruction::UIToFP: 3628 return X86SelectUIToFP(I); 3629 case Instruction::IntToPtr: // Deliberate fall-through. 3630 case Instruction::PtrToInt: { 3631 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3632 EVT DstVT = TLI.getValueType(DL, I->getType()); 3633 if (DstVT.bitsGT(SrcVT)) 3634 return X86SelectZExt(I); 3635 if (DstVT.bitsLT(SrcVT)) 3636 return X86SelectTrunc(I); 3637 Register Reg = getRegForValue(I->getOperand(0)); 3638 if (Reg == 0) return false; 3639 updateValueMap(I, Reg); 3640 return true; 3641 } 3642 case Instruction::BitCast: { 3643 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3644 if (!Subtarget->hasSSE2()) 3645 return false; 3646 3647 MVT SrcVT, DstVT; 3648 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3649 !isTypeLegal(I->getType(), DstVT)) 3650 return false; 3651 3652 // Only allow vectors that use xmm/ymm/zmm. 3653 if (!SrcVT.isVector() || !DstVT.isVector() || 3654 SrcVT.getVectorElementType() == MVT::i1 || 3655 DstVT.getVectorElementType() == MVT::i1) 3656 return false; 3657 3658 Register Reg = getRegForValue(I->getOperand(0)); 3659 if (!Reg) 3660 return false; 3661 3662 // Emit a reg-reg copy so we don't propagate cached known bits information 3663 // with the wrong VT if we fall out of fast isel after selecting this. 3664 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 3665 Register ResultReg = createResultReg(DstClass); 3666 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3667 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 3668 3669 updateValueMap(I, ResultReg); 3670 return true; 3671 } 3672 } 3673 3674 return false; 3675 } 3676 3677 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3678 if (VT > MVT::i64) 3679 return 0; 3680 3681 uint64_t Imm = CI->getZExtValue(); 3682 if (Imm == 0) { 3683 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3684 switch (VT.SimpleTy) { 3685 default: llvm_unreachable("Unexpected value type"); 3686 case MVT::i1: 3687 case MVT::i8: 3688 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit); 3689 case MVT::i16: 3690 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit); 3691 case MVT::i32: 3692 return SrcReg; 3693 case MVT::i64: { 3694 Register ResultReg = createResultReg(&X86::GR64RegClass); 3695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3696 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3697 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3698 return ResultReg; 3699 } 3700 } 3701 } 3702 3703 unsigned Opc = 0; 3704 switch (VT.SimpleTy) { 3705 default: llvm_unreachable("Unexpected value type"); 3706 case MVT::i1: 3707 VT = MVT::i8; 3708 LLVM_FALLTHROUGH; 3709 case MVT::i8: Opc = X86::MOV8ri; break; 3710 case MVT::i16: Opc = X86::MOV16ri; break; 3711 case MVT::i32: Opc = X86::MOV32ri; break; 3712 case MVT::i64: { 3713 if (isUInt<32>(Imm)) 3714 Opc = X86::MOV32ri64; 3715 else if (isInt<32>(Imm)) 3716 Opc = X86::MOV64ri32; 3717 else 3718 Opc = X86::MOV64ri; 3719 break; 3720 } 3721 } 3722 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3723 } 3724 3725 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3726 if (CFP->isNullValue()) 3727 return fastMaterializeFloatZero(CFP); 3728 3729 // Can't handle alternate code models yet. 3730 CodeModel::Model CM = TM.getCodeModel(); 3731 if (CM != CodeModel::Small && CM != CodeModel::Large) 3732 return 0; 3733 3734 // Get opcode and regclass of the output for the given load instruction. 3735 unsigned Opc = 0; 3736 bool HasAVX = Subtarget->hasAVX(); 3737 bool HasAVX512 = Subtarget->hasAVX512(); 3738 switch (VT.SimpleTy) { 3739 default: return 0; 3740 case MVT::f32: 3741 if (X86ScalarSSEf32) 3742 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 3743 HasAVX ? X86::VMOVSSrm_alt : 3744 X86::MOVSSrm_alt; 3745 else 3746 Opc = X86::LD_Fp32m; 3747 break; 3748 case MVT::f64: 3749 if (X86ScalarSSEf64) 3750 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 3751 HasAVX ? X86::VMOVSDrm_alt : 3752 X86::MOVSDrm_alt; 3753 else 3754 Opc = X86::LD_Fp64m; 3755 break; 3756 case MVT::f80: 3757 // No f80 support yet. 3758 return 0; 3759 } 3760 3761 // MachineConstantPool wants an explicit alignment. 3762 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 3763 3764 // x86-32 PIC requires a PIC base register for constant pools. 3765 unsigned PICBase = 0; 3766 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3767 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3768 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3769 else if (OpFlag == X86II::MO_GOTOFF) 3770 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3771 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) 3772 PICBase = X86::RIP; 3773 3774 // Create the load from the constant pool. 3775 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment); 3776 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3777 3778 // Large code model only applies to 64-bit mode. 3779 if (Subtarget->is64Bit() && CM == CodeModel::Large) { 3780 Register AddrReg = createResultReg(&X86::GR64RegClass); 3781 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3782 AddrReg) 3783 .addConstantPoolIndex(CPI, 0, OpFlag); 3784 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3785 TII.get(Opc), ResultReg); 3786 addRegReg(MIB, AddrReg, false, PICBase, false); 3787 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3788 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3789 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment); 3790 MIB->addMemOperand(*FuncInfo.MF, MMO); 3791 return ResultReg; 3792 } 3793 3794 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3795 TII.get(Opc), ResultReg), 3796 CPI, PICBase, OpFlag); 3797 return ResultReg; 3798 } 3799 3800 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3801 // Can't handle alternate code models yet. 3802 if (TM.getCodeModel() != CodeModel::Small) 3803 return 0; 3804 3805 // Materialize addresses with LEA/MOV instructions. 3806 X86AddressMode AM; 3807 if (X86SelectAddress(GV, AM)) { 3808 // If the expression is just a basereg, then we're done, otherwise we need 3809 // to emit an LEA. 3810 if (AM.BaseType == X86AddressMode::RegBase && 3811 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3812 return AM.Base.Reg; 3813 3814 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3815 if (TM.getRelocationModel() == Reloc::Static && 3816 TLI.getPointerTy(DL) == MVT::i64) { 3817 // The displacement code could be more than 32 bits away so we need to use 3818 // an instruction with a 64 bit immediate 3819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3820 ResultReg) 3821 .addGlobalAddress(GV); 3822 } else { 3823 unsigned Opc = 3824 TLI.getPointerTy(DL) == MVT::i32 3825 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3826 : X86::LEA64r; 3827 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3828 TII.get(Opc), ResultReg), AM); 3829 } 3830 return ResultReg; 3831 } 3832 return 0; 3833 } 3834 3835 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3836 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3837 3838 // Only handle simple types. 3839 if (!CEVT.isSimple()) 3840 return 0; 3841 MVT VT = CEVT.getSimpleVT(); 3842 3843 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3844 return X86MaterializeInt(CI, VT); 3845 if (const auto *CFP = dyn_cast<ConstantFP>(C)) 3846 return X86MaterializeFP(CFP, VT); 3847 if (const auto *GV = dyn_cast<GlobalValue>(C)) 3848 return X86MaterializeGV(GV, VT); 3849 if (isa<UndefValue>(C)) { 3850 unsigned Opc = 0; 3851 switch (VT.SimpleTy) { 3852 default: 3853 break; 3854 case MVT::f32: 3855 if (!X86ScalarSSEf32) 3856 Opc = X86::LD_Fp032; 3857 break; 3858 case MVT::f64: 3859 if (!X86ScalarSSEf64) 3860 Opc = X86::LD_Fp064; 3861 break; 3862 case MVT::f80: 3863 Opc = X86::LD_Fp080; 3864 break; 3865 } 3866 3867 if (Opc) { 3868 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3869 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 3870 ResultReg); 3871 return ResultReg; 3872 } 3873 } 3874 3875 return 0; 3876 } 3877 3878 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3879 // Fail on dynamic allocas. At this point, getRegForValue has already 3880 // checked its CSE maps, so if we're here trying to handle a dynamic 3881 // alloca, we're not going to succeed. X86SelectAddress has a 3882 // check for dynamic allocas, because it's called directly from 3883 // various places, but targetMaterializeAlloca also needs a check 3884 // in order to avoid recursion between getRegForValue, 3885 // X86SelectAddrss, and targetMaterializeAlloca. 3886 if (!FuncInfo.StaticAllocaMap.count(C)) 3887 return 0; 3888 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3889 3890 X86AddressMode AM; 3891 if (!X86SelectAddress(C, AM)) 3892 return 0; 3893 unsigned Opc = 3894 TLI.getPointerTy(DL) == MVT::i32 3895 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3896 : X86::LEA64r; 3897 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3898 Register ResultReg = createResultReg(RC); 3899 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3900 TII.get(Opc), ResultReg), AM); 3901 return ResultReg; 3902 } 3903 3904 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3905 MVT VT; 3906 if (!isTypeLegal(CF->getType(), VT)) 3907 return 0; 3908 3909 // Get opcode and regclass for the given zero. 3910 bool HasAVX512 = Subtarget->hasAVX512(); 3911 unsigned Opc = 0; 3912 switch (VT.SimpleTy) { 3913 default: return 0; 3914 case MVT::f32: 3915 if (X86ScalarSSEf32) 3916 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; 3917 else 3918 Opc = X86::LD_Fp032; 3919 break; 3920 case MVT::f64: 3921 if (X86ScalarSSEf64) 3922 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; 3923 else 3924 Opc = X86::LD_Fp064; 3925 break; 3926 case MVT::f80: 3927 // No f80 support yet. 3928 return 0; 3929 } 3930 3931 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3932 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 3933 return ResultReg; 3934 } 3935 3936 3937 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3938 const LoadInst *LI) { 3939 const Value *Ptr = LI->getPointerOperand(); 3940 X86AddressMode AM; 3941 if (!X86SelectAddress(Ptr, AM)) 3942 return false; 3943 3944 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3945 3946 unsigned Size = DL.getTypeAllocSize(LI->getType()); 3947 3948 SmallVector<MachineOperand, 8> AddrOps; 3949 AM.getFullAddress(AddrOps); 3950 3951 MachineInstr *Result = XII.foldMemoryOperandImpl( 3952 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(), 3953 /*AllowCommute=*/true); 3954 if (!Result) 3955 return false; 3956 3957 // The index register could be in the wrong register class. Unfortunately, 3958 // foldMemoryOperandImpl could have commuted the instruction so its not enough 3959 // to just look at OpNo + the offset to the index reg. We actually need to 3960 // scan the instruction to find the index reg and see if its the correct reg 3961 // class. 3962 unsigned OperandNo = 0; 3963 for (MachineInstr::mop_iterator I = Result->operands_begin(), 3964 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 3965 MachineOperand &MO = *I; 3966 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 3967 continue; 3968 // Found the index reg, now try to rewrite it. 3969 Register IndexReg = constrainOperandRegClass(Result->getDesc(), 3970 MO.getReg(), OperandNo); 3971 if (IndexReg == MO.getReg()) 3972 continue; 3973 MO.setReg(IndexReg); 3974 } 3975 3976 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 3977 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 3978 MachineBasicBlock::iterator I(MI); 3979 removeDeadCode(I, std::next(I)); 3980 return true; 3981 } 3982 3983 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 3984 const TargetRegisterClass *RC, 3985 unsigned Op0, unsigned Op1, 3986 unsigned Op2, unsigned Op3) { 3987 const MCInstrDesc &II = TII.get(MachineInstOpcode); 3988 3989 Register ResultReg = createResultReg(RC); 3990 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 3991 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 3992 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 3993 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 3994 3995 if (II.getNumDefs() >= 1) 3996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 3997 .addReg(Op0) 3998 .addReg(Op1) 3999 .addReg(Op2) 4000 .addReg(Op3); 4001 else { 4002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 4003 .addReg(Op0) 4004 .addReg(Op1) 4005 .addReg(Op2) 4006 .addReg(Op3); 4007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 4008 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 4009 } 4010 return ResultReg; 4011 } 4012 4013 4014 namespace llvm { 4015 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4016 const TargetLibraryInfo *libInfo) { 4017 return new X86FastISel(funcInfo, libInfo); 4018 } 4019 } 4020