xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/IntrinsicsX86.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
44 
45 namespace {
46 
47 class X86FastISel final : public FastISel {
48   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49   /// make the right decision when generating code for different targets.
50   const X86Subtarget *Subtarget;
51 
52 public:
53   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
54                        const TargetLibraryInfo *libInfo)
55       : FastISel(funcInfo, libInfo) {
56     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
57   }
58 
59   bool fastSelectInstruction(const Instruction *I) override;
60 
61   /// The specified machine instr operand is a vreg, and that
62   /// vreg is being provided by the specified load instruction.  If possible,
63   /// try to fold the load as an operand to the instruction, returning true if
64   /// possible.
65   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
66                            const LoadInst *LI) override;
67 
68   bool fastLowerArguments() override;
69   bool fastLowerCall(CallLoweringInfo &CLI) override;
70   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
71 
72 #include "X86GenFastISel.inc"
73 
74 private:
75   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
76                           const DebugLoc &DL);
77 
78   bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
79                        unsigned &ResultReg, unsigned Alignment = 1);
80 
81   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
82                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
83   bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
84                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
85 
86   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
87                          unsigned &ResultReg);
88 
89   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
90   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
91 
92   bool X86SelectLoad(const Instruction *I);
93 
94   bool X86SelectStore(const Instruction *I);
95 
96   bool X86SelectRet(const Instruction *I);
97 
98   bool X86SelectCmp(const Instruction *I);
99 
100   bool X86SelectZExt(const Instruction *I);
101 
102   bool X86SelectSExt(const Instruction *I);
103 
104   bool X86SelectBranch(const Instruction *I);
105 
106   bool X86SelectShift(const Instruction *I);
107 
108   bool X86SelectDivRem(const Instruction *I);
109 
110   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
111 
112   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
113 
114   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
115 
116   bool X86SelectSelect(const Instruction *I);
117 
118   bool X86SelectTrunc(const Instruction *I);
119 
120   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
121                                const TargetRegisterClass *RC);
122 
123   bool X86SelectFPExt(const Instruction *I);
124   bool X86SelectFPTrunc(const Instruction *I);
125   bool X86SelectSIToFP(const Instruction *I);
126   bool X86SelectUIToFP(const Instruction *I);
127   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
128 
129   const X86InstrInfo *getInstrInfo() const {
130     return Subtarget->getInstrInfo();
131   }
132   const X86TargetMachine *getTargetMachine() const {
133     return static_cast<const X86TargetMachine *>(&TM);
134   }
135 
136   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
137 
138   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
139   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
140   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
141   unsigned fastMaterializeConstant(const Constant *C) override;
142 
143   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
144 
145   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
146 
147   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
148   /// computed in an SSE register, not on the X87 floating point stack.
149   bool isScalarFPTypeInSSEReg(EVT VT) const {
150     return (VT == MVT::f64 && Subtarget->hasSSE2()) ||
151            (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16;
152   }
153 
154   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
155 
156   bool IsMemcpySmall(uint64_t Len);
157 
158   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
159                           X86AddressMode SrcAM, uint64_t Len);
160 
161   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
162                             const Value *Cond);
163 
164   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
165                                             X86AddressMode &AM);
166 
167   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
168                              const TargetRegisterClass *RC, unsigned Op0,
169                              unsigned Op1, unsigned Op2, unsigned Op3);
170 };
171 
172 } // end anonymous namespace.
173 
174 static std::pair<unsigned, bool>
175 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
176   unsigned CC;
177   bool NeedSwap = false;
178 
179   // SSE Condition code mapping:
180   //  0 - EQ
181   //  1 - LT
182   //  2 - LE
183   //  3 - UNORD
184   //  4 - NEQ
185   //  5 - NLT
186   //  6 - NLE
187   //  7 - ORD
188   switch (Predicate) {
189   default: llvm_unreachable("Unexpected predicate");
190   case CmpInst::FCMP_OEQ: CC = 0;          break;
191   case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]];
192   case CmpInst::FCMP_OLT: CC = 1;          break;
193   case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]];
194   case CmpInst::FCMP_OLE: CC = 2;          break;
195   case CmpInst::FCMP_UNO: CC = 3;          break;
196   case CmpInst::FCMP_UNE: CC = 4;          break;
197   case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]];
198   case CmpInst::FCMP_UGE: CC = 5;          break;
199   case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]];
200   case CmpInst::FCMP_UGT: CC = 6;          break;
201   case CmpInst::FCMP_ORD: CC = 7;          break;
202   case CmpInst::FCMP_UEQ: CC = 8;          break;
203   case CmpInst::FCMP_ONE: CC = 12;         break;
204   }
205 
206   return std::make_pair(CC, NeedSwap);
207 }
208 
209 /// Adds a complex addressing mode to the given machine instr builder.
210 /// Note, this will constrain the index register.  If its not possible to
211 /// constrain the given index register, then a new one will be created.  The
212 /// IndexReg field of the addressing mode will be updated to match in this case.
213 const MachineInstrBuilder &
214 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
215                             X86AddressMode &AM) {
216   // First constrain the index register.  It needs to be a GR64_NOSP.
217   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
218                                          MIB->getNumOperands() +
219                                          X86::AddrIndexReg);
220   return ::addFullAddress(MIB, AM);
221 }
222 
223 /// Check if it is possible to fold the condition from the XALU intrinsic
224 /// into the user. The condition code will only be updated on success.
225 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
226                                        const Value *Cond) {
227   if (!isa<ExtractValueInst>(Cond))
228     return false;
229 
230   const auto *EV = cast<ExtractValueInst>(Cond);
231   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
232     return false;
233 
234   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
235   MVT RetVT;
236   const Function *Callee = II->getCalledFunction();
237   Type *RetTy =
238     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
239   if (!isTypeLegal(RetTy, RetVT))
240     return false;
241 
242   if (RetVT != MVT::i32 && RetVT != MVT::i64)
243     return false;
244 
245   X86::CondCode TmpCC;
246   switch (II->getIntrinsicID()) {
247   default: return false;
248   case Intrinsic::sadd_with_overflow:
249   case Intrinsic::ssub_with_overflow:
250   case Intrinsic::smul_with_overflow:
251   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
252   case Intrinsic::uadd_with_overflow:
253   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
254   }
255 
256   // Check if both instructions are in the same basic block.
257   if (II->getParent() != I->getParent())
258     return false;
259 
260   // Make sure nothing is in the way
261   BasicBlock::const_iterator Start(I);
262   BasicBlock::const_iterator End(II);
263   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
264     // We only expect extractvalue instructions between the intrinsic and the
265     // instruction to be selected.
266     if (!isa<ExtractValueInst>(Itr))
267       return false;
268 
269     // Check that the extractvalue operand comes from the intrinsic.
270     const auto *EVI = cast<ExtractValueInst>(Itr);
271     if (EVI->getAggregateOperand() != II)
272       return false;
273   }
274 
275   // Make sure no potentially eflags clobbering phi moves can be inserted in
276   // between.
277   auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); };
278   if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
279     return false;
280 
281   // Make sure there are no potentially eflags clobbering constant
282   // materializations in between.
283   if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); }))
284     return false;
285 
286   CC = TmpCC;
287   return true;
288 }
289 
290 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
291   EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
292   if (evt == MVT::Other || !evt.isSimple())
293     // Unhandled type. Halt "fast" selection and bail.
294     return false;
295 
296   VT = evt.getSimpleVT();
297   // For now, require SSE/SSE2 for performing floating-point operations,
298   // since x87 requires additional work.
299   if (VT == MVT::f64 && !Subtarget->hasSSE2())
300     return false;
301   if (VT == MVT::f32 && !Subtarget->hasSSE1())
302     return false;
303   // Similarly, no f80 support yet.
304   if (VT == MVT::f80)
305     return false;
306   // We only handle legal types. For example, on x86-32 the instruction
307   // selector contains all of the 64-bit instructions from x86-64,
308   // under the assumption that i64 won't be used if the target doesn't
309   // support it.
310   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
311 }
312 
313 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
314 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
315 /// Return true and the result register by reference if it is possible.
316 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
317                                   MachineMemOperand *MMO, unsigned &ResultReg,
318                                   unsigned Alignment) {
319   bool HasSSE1 = Subtarget->hasSSE1();
320   bool HasSSE2 = Subtarget->hasSSE2();
321   bool HasSSE41 = Subtarget->hasSSE41();
322   bool HasAVX = Subtarget->hasAVX();
323   bool HasAVX2 = Subtarget->hasAVX2();
324   bool HasAVX512 = Subtarget->hasAVX512();
325   bool HasVLX = Subtarget->hasVLX();
326   bool IsNonTemporal = MMO && MMO->isNonTemporal();
327 
328   // Treat i1 loads the same as i8 loads. Masking will be done when storing.
329   if (VT == MVT::i1)
330     VT = MVT::i8;
331 
332   // Get opcode and regclass of the output for the given load instruction.
333   unsigned Opc = 0;
334   switch (VT.SimpleTy) {
335   default: return false;
336   case MVT::i8:
337     Opc = X86::MOV8rm;
338     break;
339   case MVT::i16:
340     Opc = X86::MOV16rm;
341     break;
342   case MVT::i32:
343     Opc = X86::MOV32rm;
344     break;
345   case MVT::i64:
346     // Must be in x86-64 mode.
347     Opc = X86::MOV64rm;
348     break;
349   case MVT::f32:
350     Opc = HasAVX512 ? X86::VMOVSSZrm_alt
351           : HasAVX  ? X86::VMOVSSrm_alt
352           : HasSSE1 ? X86::MOVSSrm_alt
353                     : X86::LD_Fp32m;
354     break;
355   case MVT::f64:
356     Opc = HasAVX512 ? X86::VMOVSDZrm_alt
357           : HasAVX  ? X86::VMOVSDrm_alt
358           : HasSSE2 ? X86::MOVSDrm_alt
359                     : X86::LD_Fp64m;
360     break;
361   case MVT::f80:
362     // No f80 support yet.
363     return false;
364   case MVT::v4f32:
365     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
366       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
367             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
368     else if (Alignment >= 16)
369       Opc = HasVLX ? X86::VMOVAPSZ128rm :
370             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
371     else
372       Opc = HasVLX ? X86::VMOVUPSZ128rm :
373             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
374     break;
375   case MVT::v2f64:
376     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
377       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
378             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
379     else if (Alignment >= 16)
380       Opc = HasVLX ? X86::VMOVAPDZ128rm :
381             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
382     else
383       Opc = HasVLX ? X86::VMOVUPDZ128rm :
384             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
385     break;
386   case MVT::v4i32:
387   case MVT::v2i64:
388   case MVT::v8i16:
389   case MVT::v16i8:
390     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
391       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
392             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
393     else if (Alignment >= 16)
394       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
395             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
396     else
397       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
398             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
399     break;
400   case MVT::v8f32:
401     assert(HasAVX);
402     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
403       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
404     else if (IsNonTemporal && Alignment >= 16)
405       return false; // Force split for X86::VMOVNTDQArm
406     else if (Alignment >= 32)
407       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
408     else
409       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
410     break;
411   case MVT::v4f64:
412     assert(HasAVX);
413     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
414       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
415     else if (IsNonTemporal && Alignment >= 16)
416       return false; // Force split for X86::VMOVNTDQArm
417     else if (Alignment >= 32)
418       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
419     else
420       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
421     break;
422   case MVT::v8i32:
423   case MVT::v4i64:
424   case MVT::v16i16:
425   case MVT::v32i8:
426     assert(HasAVX);
427     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
428       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
429     else if (IsNonTemporal && Alignment >= 16)
430       return false; // Force split for X86::VMOVNTDQArm
431     else if (Alignment >= 32)
432       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
433     else
434       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
435     break;
436   case MVT::v16f32:
437     assert(HasAVX512);
438     if (IsNonTemporal && Alignment >= 64)
439       Opc = X86::VMOVNTDQAZrm;
440     else
441       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
442     break;
443   case MVT::v8f64:
444     assert(HasAVX512);
445     if (IsNonTemporal && Alignment >= 64)
446       Opc = X86::VMOVNTDQAZrm;
447     else
448       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
449     break;
450   case MVT::v8i64:
451   case MVT::v16i32:
452   case MVT::v32i16:
453   case MVT::v64i8:
454     assert(HasAVX512);
455     // Note: There are a lot more choices based on type with AVX-512, but
456     // there's really no advantage when the load isn't masked.
457     if (IsNonTemporal && Alignment >= 64)
458       Opc = X86::VMOVNTDQAZrm;
459     else
460       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
461     break;
462   }
463 
464   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
465 
466   ResultReg = createResultReg(RC);
467   MachineInstrBuilder MIB =
468     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
469   addFullAddress(MIB, AM);
470   if (MMO)
471     MIB->addMemOperand(*FuncInfo.MF, MMO);
472   return true;
473 }
474 
475 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
476 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
477 /// and a displacement offset, or a GlobalAddress,
478 /// i.e. V. Return true if it is possible.
479 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
480                                    MachineMemOperand *MMO, bool Aligned) {
481   bool HasSSE1 = Subtarget->hasSSE1();
482   bool HasSSE2 = Subtarget->hasSSE2();
483   bool HasSSE4A = Subtarget->hasSSE4A();
484   bool HasAVX = Subtarget->hasAVX();
485   bool HasAVX512 = Subtarget->hasAVX512();
486   bool HasVLX = Subtarget->hasVLX();
487   bool IsNonTemporal = MMO && MMO->isNonTemporal();
488 
489   // Get opcode and regclass of the output for the given store instruction.
490   unsigned Opc = 0;
491   switch (VT.getSimpleVT().SimpleTy) {
492   case MVT::f80: // No f80 support yet.
493   default: return false;
494   case MVT::i1: {
495     // Mask out all but lowest bit.
496     Register AndResult = createResultReg(&X86::GR8RegClass);
497     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
498             TII.get(X86::AND8ri), AndResult)
499       .addReg(ValReg).addImm(1);
500     ValReg = AndResult;
501     [[fallthrough]]; // handle i1 as i8.
502   }
503   case MVT::i8:  Opc = X86::MOV8mr;  break;
504   case MVT::i16: Opc = X86::MOV16mr; break;
505   case MVT::i32:
506     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
507     break;
508   case MVT::i64:
509     // Must be in x86-64 mode.
510     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
511     break;
512   case MVT::f32:
513     if (HasSSE1) {
514       if (IsNonTemporal && HasSSE4A)
515         Opc = X86::MOVNTSS;
516       else
517         Opc = HasAVX512 ? X86::VMOVSSZmr :
518               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
519     } else
520       Opc = X86::ST_Fp32m;
521     break;
522   case MVT::f64:
523     if (HasSSE2) {
524       if (IsNonTemporal && HasSSE4A)
525         Opc = X86::MOVNTSD;
526       else
527         Opc = HasAVX512 ? X86::VMOVSDZmr :
528               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
529     } else
530       Opc = X86::ST_Fp64m;
531     break;
532   case MVT::x86mmx:
533     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
534     break;
535   case MVT::v4f32:
536     if (Aligned) {
537       if (IsNonTemporal)
538         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
539               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
540       else
541         Opc = HasVLX ? X86::VMOVAPSZ128mr :
542               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
543     } else
544       Opc = HasVLX ? X86::VMOVUPSZ128mr :
545             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
546     break;
547   case MVT::v2f64:
548     if (Aligned) {
549       if (IsNonTemporal)
550         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
551               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
552       else
553         Opc = HasVLX ? X86::VMOVAPDZ128mr :
554               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
555     } else
556       Opc = HasVLX ? X86::VMOVUPDZ128mr :
557             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
558     break;
559   case MVT::v4i32:
560   case MVT::v2i64:
561   case MVT::v8i16:
562   case MVT::v16i8:
563     if (Aligned) {
564       if (IsNonTemporal)
565         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
566               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
567       else
568         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
569               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
570     } else
571       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
572             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
573     break;
574   case MVT::v8f32:
575     assert(HasAVX);
576     if (Aligned) {
577       if (IsNonTemporal)
578         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
579       else
580         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
581     } else
582       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
583     break;
584   case MVT::v4f64:
585     assert(HasAVX);
586     if (Aligned) {
587       if (IsNonTemporal)
588         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
589       else
590         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
591     } else
592       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
593     break;
594   case MVT::v8i32:
595   case MVT::v4i64:
596   case MVT::v16i16:
597   case MVT::v32i8:
598     assert(HasAVX);
599     if (Aligned) {
600       if (IsNonTemporal)
601         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
602       else
603         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
604     } else
605       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
606     break;
607   case MVT::v16f32:
608     assert(HasAVX512);
609     if (Aligned)
610       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
611     else
612       Opc = X86::VMOVUPSZmr;
613     break;
614   case MVT::v8f64:
615     assert(HasAVX512);
616     if (Aligned) {
617       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
618     } else
619       Opc = X86::VMOVUPDZmr;
620     break;
621   case MVT::v8i64:
622   case MVT::v16i32:
623   case MVT::v32i16:
624   case MVT::v64i8:
625     assert(HasAVX512);
626     // Note: There are a lot more choices based on type with AVX-512, but
627     // there's really no advantage when the store isn't masked.
628     if (Aligned)
629       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
630     else
631       Opc = X86::VMOVDQU64Zmr;
632     break;
633   }
634 
635   const MCInstrDesc &Desc = TII.get(Opc);
636   // Some of the instructions in the previous switch use FR128 instead
637   // of FR32 for ValReg. Make sure the register we feed the instruction
638   // matches its register class constraints.
639   // Note: This is fine to do a copy from FR32 to FR128, this is the
640   // same registers behind the scene and actually why it did not trigger
641   // any bugs before.
642   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
643   MachineInstrBuilder MIB =
644       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc);
645   addFullAddress(MIB, AM).addReg(ValReg);
646   if (MMO)
647     MIB->addMemOperand(*FuncInfo.MF, MMO);
648 
649   return true;
650 }
651 
652 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
653                                    X86AddressMode &AM,
654                                    MachineMemOperand *MMO, bool Aligned) {
655   // Handle 'null' like i32/i64 0.
656   if (isa<ConstantPointerNull>(Val))
657     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
658 
659   // If this is a store of a simple constant, fold the constant into the store.
660   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
661     unsigned Opc = 0;
662     bool Signed = true;
663     switch (VT.getSimpleVT().SimpleTy) {
664     default: break;
665     case MVT::i1:
666       Signed = false;
667       [[fallthrough]]; // Handle as i8.
668     case MVT::i8:  Opc = X86::MOV8mi;  break;
669     case MVT::i16: Opc = X86::MOV16mi; break;
670     case MVT::i32: Opc = X86::MOV32mi; break;
671     case MVT::i64:
672       // Must be a 32-bit sign extended value.
673       if (isInt<32>(CI->getSExtValue()))
674         Opc = X86::MOV64mi32;
675       break;
676     }
677 
678     if (Opc) {
679       MachineInstrBuilder MIB =
680         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
681       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
682                                             : CI->getZExtValue());
683       if (MMO)
684         MIB->addMemOperand(*FuncInfo.MF, MMO);
685       return true;
686     }
687   }
688 
689   Register ValReg = getRegForValue(Val);
690   if (ValReg == 0)
691     return false;
692 
693   return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
694 }
695 
696 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
697 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
698 /// ISD::SIGN_EXTEND).
699 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
700                                     unsigned Src, EVT SrcVT,
701                                     unsigned &ResultReg) {
702   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
703   if (RR == 0)
704     return false;
705 
706   ResultReg = RR;
707   return true;
708 }
709 
710 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
711   // Handle constant address.
712   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
713     // Can't handle alternate code models yet.
714     if (TM.getCodeModel() != CodeModel::Small &&
715         TM.getCodeModel() != CodeModel::Medium)
716       return false;
717 
718     // Can't handle large objects yet.
719     if (TM.isLargeGlobalValue(GV))
720       return false;
721 
722     // Can't handle TLS yet.
723     if (GV->isThreadLocal())
724       return false;
725 
726     // Can't handle !absolute_symbol references yet.
727     if (GV->isAbsoluteSymbolRef())
728       return false;
729 
730     // RIP-relative addresses can't have additional register operands, so if
731     // we've already folded stuff into the addressing mode, just force the
732     // global value into its own register, which we can use as the basereg.
733     if (!Subtarget->isPICStyleRIPRel() ||
734         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
735       // Okay, we've committed to selecting this global. Set up the address.
736       AM.GV = GV;
737 
738       // Allow the subtarget to classify the global.
739       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
740 
741       // If this reference is relative to the pic base, set it now.
742       if (isGlobalRelativeToPICBase(GVFlags)) {
743         // FIXME: How do we know Base.Reg is free??
744         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
745       }
746 
747       // Unless the ABI requires an extra load, return a direct reference to
748       // the global.
749       if (!isGlobalStubReference(GVFlags)) {
750         if (Subtarget->isPICStyleRIPRel()) {
751           // Use rip-relative addressing if we can.  Above we verified that the
752           // base and index registers are unused.
753           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
754           AM.Base.Reg = X86::RIP;
755         }
756         AM.GVOpFlags = GVFlags;
757         return true;
758       }
759 
760       // Ok, we need to do a load from a stub.  If we've already loaded from
761       // this stub, reuse the loaded pointer, otherwise emit the load now.
762       DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
763       Register LoadReg;
764       if (I != LocalValueMap.end() && I->second) {
765         LoadReg = I->second;
766       } else {
767         // Issue load from stub.
768         unsigned Opc = 0;
769         const TargetRegisterClass *RC = nullptr;
770         X86AddressMode StubAM;
771         StubAM.Base.Reg = AM.Base.Reg;
772         StubAM.GV = GV;
773         StubAM.GVOpFlags = GVFlags;
774 
775         // Prepare for inserting code in the local-value area.
776         SavePoint SaveInsertPt = enterLocalValueArea();
777 
778         if (TLI.getPointerTy(DL) == MVT::i64) {
779           Opc = X86::MOV64rm;
780           RC  = &X86::GR64RegClass;
781         } else {
782           Opc = X86::MOV32rm;
783           RC  = &X86::GR32RegClass;
784         }
785 
786         if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL ||
787             GVFlags == X86II::MO_GOTPCREL_NORELAX)
788           StubAM.Base.Reg = X86::RIP;
789 
790         LoadReg = createResultReg(RC);
791         MachineInstrBuilder LoadMI =
792           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg);
793         addFullAddress(LoadMI, StubAM);
794 
795         // Ok, back to normal mode.
796         leaveLocalValueArea(SaveInsertPt);
797 
798         // Prevent loading GV stub multiple times in same MBB.
799         LocalValueMap[V] = LoadReg;
800       }
801 
802       // Now construct the final address. Note that the Disp, Scale,
803       // and Index values may already be set here.
804       AM.Base.Reg = LoadReg;
805       AM.GV = nullptr;
806       return true;
807     }
808   }
809 
810   // If all else fails, try to materialize the value in a register.
811   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
812     if (AM.Base.Reg == 0) {
813       AM.Base.Reg = getRegForValue(V);
814       return AM.Base.Reg != 0;
815     }
816     if (AM.IndexReg == 0) {
817       assert(AM.Scale == 1 && "Scale with no index!");
818       AM.IndexReg = getRegForValue(V);
819       return AM.IndexReg != 0;
820     }
821   }
822 
823   return false;
824 }
825 
826 /// X86SelectAddress - Attempt to fill in an address from the given value.
827 ///
828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
829   SmallVector<const Value *, 32> GEPs;
830 redo_gep:
831   const User *U = nullptr;
832   unsigned Opcode = Instruction::UserOp1;
833   if (const Instruction *I = dyn_cast<Instruction>(V)) {
834     // Don't walk into other basic blocks; it's possible we haven't
835     // visited them yet, so the instructions may not yet be assigned
836     // virtual registers.
837     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
838         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
839       Opcode = I->getOpcode();
840       U = I;
841     }
842   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
843     Opcode = C->getOpcode();
844     U = C;
845   }
846 
847   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
848     if (Ty->getAddressSpace() > 255)
849       // Fast instruction selection doesn't support the special
850       // address spaces.
851       return false;
852 
853   switch (Opcode) {
854   default: break;
855   case Instruction::BitCast:
856     // Look past bitcasts.
857     return X86SelectAddress(U->getOperand(0), AM);
858 
859   case Instruction::IntToPtr:
860     // Look past no-op inttoptrs.
861     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
862         TLI.getPointerTy(DL))
863       return X86SelectAddress(U->getOperand(0), AM);
864     break;
865 
866   case Instruction::PtrToInt:
867     // Look past no-op ptrtoints.
868     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
869       return X86SelectAddress(U->getOperand(0), AM);
870     break;
871 
872   case Instruction::Alloca: {
873     // Do static allocas.
874     const AllocaInst *A = cast<AllocaInst>(V);
875     DenseMap<const AllocaInst *, int>::iterator SI =
876       FuncInfo.StaticAllocaMap.find(A);
877     if (SI != FuncInfo.StaticAllocaMap.end()) {
878       AM.BaseType = X86AddressMode::FrameIndexBase;
879       AM.Base.FrameIndex = SI->second;
880       return true;
881     }
882     break;
883   }
884 
885   case Instruction::Add: {
886     // Adds of constants are common and easy enough.
887     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
888       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
889       // They have to fit in the 32-bit signed displacement field though.
890       if (isInt<32>(Disp)) {
891         AM.Disp = (uint32_t)Disp;
892         return X86SelectAddress(U->getOperand(0), AM);
893       }
894     }
895     break;
896   }
897 
898   case Instruction::GetElementPtr: {
899     X86AddressMode SavedAM = AM;
900 
901     // Pattern-match simple GEPs.
902     uint64_t Disp = (int32_t)AM.Disp;
903     unsigned IndexReg = AM.IndexReg;
904     unsigned Scale = AM.Scale;
905     MVT PtrVT = TLI.getValueType(DL, U->getType()).getSimpleVT();
906 
907     gep_type_iterator GTI = gep_type_begin(U);
908     // Iterate through the indices, folding what we can. Constants can be
909     // folded, and one dynamic index can be handled, if the scale is supported.
910     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
911          i != e; ++i, ++GTI) {
912       const Value *Op = *i;
913       if (StructType *STy = GTI.getStructTypeOrNull()) {
914         const StructLayout *SL = DL.getStructLayout(STy);
915         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
916         continue;
917       }
918 
919       // A array/variable index is always of the form i*S where S is the
920       // constant scale size.  See if we can push the scale into immediates.
921       uint64_t S = GTI.getSequentialElementStride(DL);
922       for (;;) {
923         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
924           // Constant-offset addressing.
925           Disp += CI->getSExtValue() * S;
926           break;
927         }
928         if (canFoldAddIntoGEP(U, Op)) {
929           // A compatible add with a constant operand. Fold the constant.
930           ConstantInt *CI =
931             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
932           Disp += CI->getSExtValue() * S;
933           // Iterate on the other operand.
934           Op = cast<AddOperator>(Op)->getOperand(0);
935           continue;
936         }
937         if (IndexReg == 0 &&
938             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
939             (S == 1 || S == 2 || S == 4 || S == 8)) {
940           // Scaled-index addressing.
941           Scale = S;
942           IndexReg = getRegForGEPIndex(PtrVT, Op);
943           if (IndexReg == 0)
944             return false;
945           break;
946         }
947         // Unsupported.
948         goto unsupported_gep;
949       }
950     }
951 
952     // Check for displacement overflow.
953     if (!isInt<32>(Disp))
954       break;
955 
956     AM.IndexReg = IndexReg;
957     AM.Scale = Scale;
958     AM.Disp = (uint32_t)Disp;
959     GEPs.push_back(V);
960 
961     if (const GetElementPtrInst *GEP =
962           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
963       // Ok, the GEP indices were covered by constant-offset and scaled-index
964       // addressing. Update the address state and move on to examining the base.
965       V = GEP;
966       goto redo_gep;
967     } else if (X86SelectAddress(U->getOperand(0), AM)) {
968       return true;
969     }
970 
971     // If we couldn't merge the gep value into this addr mode, revert back to
972     // our address and just match the value instead of completely failing.
973     AM = SavedAM;
974 
975     for (const Value *I : reverse(GEPs))
976       if (handleConstantAddresses(I, AM))
977         return true;
978 
979     return false;
980   unsupported_gep:
981     // Ok, the GEP indices weren't all covered.
982     break;
983   }
984   }
985 
986   return handleConstantAddresses(V, AM);
987 }
988 
989 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
990 ///
991 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
992   const User *U = nullptr;
993   unsigned Opcode = Instruction::UserOp1;
994   const Instruction *I = dyn_cast<Instruction>(V);
995   // Record if the value is defined in the same basic block.
996   //
997   // This information is crucial to know whether or not folding an
998   // operand is valid.
999   // Indeed, FastISel generates or reuses a virtual register for all
1000   // operands of all instructions it selects. Obviously, the definition and
1001   // its uses must use the same virtual register otherwise the produced
1002   // code is incorrect.
1003   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1004   // registers for values that are alive across basic blocks. This ensures
1005   // that the values are consistently set between across basic block, even
1006   // if different instruction selection mechanisms are used (e.g., a mix of
1007   // SDISel and FastISel).
1008   // For values local to a basic block, the instruction selection process
1009   // generates these virtual registers with whatever method is appropriate
1010   // for its needs. In particular, FastISel and SDISel do not share the way
1011   // local virtual registers are set.
1012   // Therefore, this is impossible (or at least unsafe) to share values
1013   // between basic blocks unless they use the same instruction selection
1014   // method, which is not guarantee for X86.
1015   // Moreover, things like hasOneUse could not be used accurately, if we
1016   // allow to reference values across basic blocks whereas they are not
1017   // alive across basic blocks initially.
1018   bool InMBB = true;
1019   if (I) {
1020     Opcode = I->getOpcode();
1021     U = I;
1022     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1023   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1024     Opcode = C->getOpcode();
1025     U = C;
1026   }
1027 
1028   switch (Opcode) {
1029   default: break;
1030   case Instruction::BitCast:
1031     // Look past bitcasts if its operand is in the same BB.
1032     if (InMBB)
1033       return X86SelectCallAddress(U->getOperand(0), AM);
1034     break;
1035 
1036   case Instruction::IntToPtr:
1037     // Look past no-op inttoptrs if its operand is in the same BB.
1038     if (InMBB &&
1039         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1040             TLI.getPointerTy(DL))
1041       return X86SelectCallAddress(U->getOperand(0), AM);
1042     break;
1043 
1044   case Instruction::PtrToInt:
1045     // Look past no-op ptrtoints if its operand is in the same BB.
1046     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1047       return X86SelectCallAddress(U->getOperand(0), AM);
1048     break;
1049   }
1050 
1051   // Handle constant address.
1052   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1053     // Can't handle alternate code models yet.
1054     if (TM.getCodeModel() != CodeModel::Small &&
1055         TM.getCodeModel() != CodeModel::Medium)
1056       return false;
1057 
1058     // RIP-relative addresses can't have additional register operands.
1059     if (Subtarget->isPICStyleRIPRel() &&
1060         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1061       return false;
1062 
1063     // Can't handle TLS.
1064     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1065       if (GVar->isThreadLocal())
1066         return false;
1067 
1068     // Okay, we've committed to selecting this global. Set up the basic address.
1069     AM.GV = GV;
1070 
1071     // Return a direct reference to the global. Fastisel can handle calls to
1072     // functions that require loads, such as dllimport and nonlazybind
1073     // functions.
1074     if (Subtarget->isPICStyleRIPRel()) {
1075       // Use rip-relative addressing if we can.  Above we verified that the
1076       // base and index registers are unused.
1077       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1078       AM.Base.Reg = X86::RIP;
1079     } else {
1080       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1081     }
1082 
1083     return true;
1084   }
1085 
1086   // If all else fails, try to materialize the value in a register.
1087   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1088     auto GetCallRegForValue = [this](const Value *V) {
1089       Register Reg = getRegForValue(V);
1090 
1091       // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1092       if (Reg && Subtarget->isTarget64BitILP32()) {
1093         Register CopyReg = createResultReg(&X86::GR32RegClass);
1094         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr),
1095                 CopyReg)
1096             .addReg(Reg);
1097 
1098         Register ExtReg = createResultReg(&X86::GR64RegClass);
1099         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1100                 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1101             .addImm(0)
1102             .addReg(CopyReg)
1103             .addImm(X86::sub_32bit);
1104         Reg = ExtReg;
1105       }
1106 
1107       return Reg;
1108     };
1109 
1110     if (AM.Base.Reg == 0) {
1111       AM.Base.Reg = GetCallRegForValue(V);
1112       return AM.Base.Reg != 0;
1113     }
1114     if (AM.IndexReg == 0) {
1115       assert(AM.Scale == 1 && "Scale with no index!");
1116       AM.IndexReg = GetCallRegForValue(V);
1117       return AM.IndexReg != 0;
1118     }
1119   }
1120 
1121   return false;
1122 }
1123 
1124 
1125 /// X86SelectStore - Select and emit code to implement store instructions.
1126 bool X86FastISel::X86SelectStore(const Instruction *I) {
1127   // Atomic stores need special handling.
1128   const StoreInst *S = cast<StoreInst>(I);
1129 
1130   if (S->isAtomic())
1131     return false;
1132 
1133   const Value *PtrV = I->getOperand(1);
1134   if (TLI.supportSwiftError()) {
1135     // Swifterror values can come from either a function parameter with
1136     // swifterror attribute or an alloca with swifterror attribute.
1137     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1138       if (Arg->hasSwiftErrorAttr())
1139         return false;
1140     }
1141 
1142     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1143       if (Alloca->isSwiftError())
1144         return false;
1145     }
1146   }
1147 
1148   const Value *Val = S->getValueOperand();
1149   const Value *Ptr = S->getPointerOperand();
1150 
1151   MVT VT;
1152   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1153     return false;
1154 
1155   Align Alignment = S->getAlign();
1156   Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1157   bool Aligned = Alignment >= ABIAlignment;
1158 
1159   X86AddressMode AM;
1160   if (!X86SelectAddress(Ptr, AM))
1161     return false;
1162 
1163   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1164 }
1165 
1166 /// X86SelectRet - Select and emit code to implement ret instructions.
1167 bool X86FastISel::X86SelectRet(const Instruction *I) {
1168   const ReturnInst *Ret = cast<ReturnInst>(I);
1169   const Function &F = *I->getParent()->getParent();
1170   const X86MachineFunctionInfo *X86MFInfo =
1171       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1172 
1173   if (!FuncInfo.CanLowerReturn)
1174     return false;
1175 
1176   if (TLI.supportSwiftError() &&
1177       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1178     return false;
1179 
1180   if (TLI.supportSplitCSR(FuncInfo.MF))
1181     return false;
1182 
1183   CallingConv::ID CC = F.getCallingConv();
1184   if (CC != CallingConv::C &&
1185       CC != CallingConv::Fast &&
1186       CC != CallingConv::Tail &&
1187       CC != CallingConv::SwiftTail &&
1188       CC != CallingConv::X86_FastCall &&
1189       CC != CallingConv::X86_StdCall &&
1190       CC != CallingConv::X86_ThisCall &&
1191       CC != CallingConv::X86_64_SysV &&
1192       CC != CallingConv::Win64)
1193     return false;
1194 
1195   // Don't handle popping bytes if they don't fit the ret's immediate.
1196   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1197     return false;
1198 
1199   // fastcc with -tailcallopt is intended to provide a guaranteed
1200   // tail call optimization. Fastisel doesn't know how to do that.
1201   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1202       CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
1203     return false;
1204 
1205   // Let SDISel handle vararg functions.
1206   if (F.isVarArg())
1207     return false;
1208 
1209   // Build a list of return value registers.
1210   SmallVector<unsigned, 4> RetRegs;
1211 
1212   if (Ret->getNumOperands() > 0) {
1213     SmallVector<ISD::OutputArg, 4> Outs;
1214     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1215 
1216     // Analyze operands of the call, assigning locations to each operand.
1217     SmallVector<CCValAssign, 16> ValLocs;
1218     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1219     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1220 
1221     const Value *RV = Ret->getOperand(0);
1222     Register Reg = getRegForValue(RV);
1223     if (Reg == 0)
1224       return false;
1225 
1226     // Only handle a single return value for now.
1227     if (ValLocs.size() != 1)
1228       return false;
1229 
1230     CCValAssign &VA = ValLocs[0];
1231 
1232     // Don't bother handling odd stuff for now.
1233     if (VA.getLocInfo() != CCValAssign::Full)
1234       return false;
1235     // Only handle register returns for now.
1236     if (!VA.isRegLoc())
1237       return false;
1238 
1239     // The calling-convention tables for x87 returns don't tell
1240     // the whole story.
1241     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1242       return false;
1243 
1244     unsigned SrcReg = Reg + VA.getValNo();
1245     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1246     EVT DstVT = VA.getValVT();
1247     // Special handling for extended integers.
1248     if (SrcVT != DstVT) {
1249       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1250         return false;
1251 
1252       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1253         return false;
1254 
1255       if (SrcVT == MVT::i1) {
1256         if (Outs[0].Flags.isSExt())
1257           return false;
1258         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
1259         SrcVT = MVT::i8;
1260       }
1261       if (SrcVT != DstVT) {
1262         unsigned Op =
1263             Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
1264         SrcReg =
1265             fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
1266       }
1267     }
1268 
1269     // Make the copy.
1270     Register DstReg = VA.getLocReg();
1271     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1272     // Avoid a cross-class copy. This is very unlikely.
1273     if (!SrcRC->contains(DstReg))
1274       return false;
1275     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1276             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1277 
1278     // Add register to return instruction.
1279     RetRegs.push_back(VA.getLocReg());
1280   }
1281 
1282   // Swift calling convention does not require we copy the sret argument
1283   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1284 
1285   // All x86 ABIs require that for returning structs by value we copy
1286   // the sret argument into %rax/%eax (depending on ABI) for the return.
1287   // We saved the argument into a virtual register in the entry block,
1288   // so now we copy the value out and into %rax/%eax.
1289   if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
1290       CC != CallingConv::SwiftTail) {
1291     Register Reg = X86MFInfo->getSRetReturnReg();
1292     assert(Reg &&
1293            "SRetReturnReg should have been set in LowerFormalArguments()!");
1294     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1295     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1296             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1297     RetRegs.push_back(RetReg);
1298   }
1299 
1300   // Now emit the RET.
1301   MachineInstrBuilder MIB;
1302   if (X86MFInfo->getBytesToPopOnReturn()) {
1303     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1304                   TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32))
1305               .addImm(X86MFInfo->getBytesToPopOnReturn());
1306   } else {
1307     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1308                   TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32));
1309   }
1310   for (unsigned Reg : RetRegs)
1311     MIB.addReg(Reg, RegState::Implicit);
1312   return true;
1313 }
1314 
1315 /// X86SelectLoad - Select and emit code to implement load instructions.
1316 ///
1317 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1318   const LoadInst *LI = cast<LoadInst>(I);
1319 
1320   // Atomic loads need special handling.
1321   if (LI->isAtomic())
1322     return false;
1323 
1324   const Value *SV = I->getOperand(0);
1325   if (TLI.supportSwiftError()) {
1326     // Swifterror values can come from either a function parameter with
1327     // swifterror attribute or an alloca with swifterror attribute.
1328     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1329       if (Arg->hasSwiftErrorAttr())
1330         return false;
1331     }
1332 
1333     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1334       if (Alloca->isSwiftError())
1335         return false;
1336     }
1337   }
1338 
1339   MVT VT;
1340   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1341     return false;
1342 
1343   const Value *Ptr = LI->getPointerOperand();
1344 
1345   X86AddressMode AM;
1346   if (!X86SelectAddress(Ptr, AM))
1347     return false;
1348 
1349   unsigned ResultReg = 0;
1350   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1351                        LI->getAlign().value()))
1352     return false;
1353 
1354   updateValueMap(I, ResultReg);
1355   return true;
1356 }
1357 
1358 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1359   bool HasAVX512 = Subtarget->hasAVX512();
1360   bool HasAVX = Subtarget->hasAVX();
1361   bool HasSSE1 = Subtarget->hasSSE1();
1362   bool HasSSE2 = Subtarget->hasSSE2();
1363 
1364   switch (VT.getSimpleVT().SimpleTy) {
1365   default:       return 0;
1366   case MVT::i8:  return X86::CMP8rr;
1367   case MVT::i16: return X86::CMP16rr;
1368   case MVT::i32: return X86::CMP32rr;
1369   case MVT::i64: return X86::CMP64rr;
1370   case MVT::f32:
1371     return HasAVX512 ? X86::VUCOMISSZrr
1372            : HasAVX  ? X86::VUCOMISSrr
1373            : HasSSE1 ? X86::UCOMISSrr
1374                      : 0;
1375   case MVT::f64:
1376     return HasAVX512 ? X86::VUCOMISDZrr
1377            : HasAVX  ? X86::VUCOMISDrr
1378            : HasSSE2 ? X86::UCOMISDrr
1379                      : 0;
1380   }
1381 }
1382 
1383 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1384 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1385 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1386   switch (VT.getSimpleVT().SimpleTy) {
1387   // Otherwise, we can't fold the immediate into this comparison.
1388   default:
1389     return 0;
1390   case MVT::i8:
1391     return X86::CMP8ri;
1392   case MVT::i16:
1393     return X86::CMP16ri;
1394   case MVT::i32:
1395     return X86::CMP32ri;
1396   case MVT::i64:
1397     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1398     // field.
1399     return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0;
1400   }
1401 }
1402 
1403 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1404                                      const DebugLoc &CurMIMD) {
1405   Register Op0Reg = getRegForValue(Op0);
1406   if (Op0Reg == 0) return false;
1407 
1408   // Handle 'null' like i32/i64 0.
1409   if (isa<ConstantPointerNull>(Op1))
1410     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1411 
1412   // We have two options: compare with register or immediate.  If the RHS of
1413   // the compare is an immediate that we can fold into this compare, use
1414   // CMPri, otherwise use CMPrr.
1415   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1416     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1417       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc))
1418         .addReg(Op0Reg)
1419         .addImm(Op1C->getSExtValue());
1420       return true;
1421     }
1422   }
1423 
1424   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1425   if (CompareOpc == 0) return false;
1426 
1427   Register Op1Reg = getRegForValue(Op1);
1428   if (Op1Reg == 0) return false;
1429   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc))
1430     .addReg(Op0Reg)
1431     .addReg(Op1Reg);
1432 
1433   return true;
1434 }
1435 
1436 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1437   const CmpInst *CI = cast<CmpInst>(I);
1438 
1439   MVT VT;
1440   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1441     return false;
1442 
1443   // Below code only works for scalars.
1444   if (VT.isVector())
1445     return false;
1446 
1447   // Try to optimize or fold the cmp.
1448   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1449   unsigned ResultReg = 0;
1450   switch (Predicate) {
1451   default: break;
1452   case CmpInst::FCMP_FALSE: {
1453     ResultReg = createResultReg(&X86::GR32RegClass);
1454     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0),
1455             ResultReg);
1456     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
1457     if (!ResultReg)
1458       return false;
1459     break;
1460   }
1461   case CmpInst::FCMP_TRUE: {
1462     ResultReg = createResultReg(&X86::GR8RegClass);
1463     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
1464             ResultReg).addImm(1);
1465     break;
1466   }
1467   }
1468 
1469   if (ResultReg) {
1470     updateValueMap(I, ResultReg);
1471     return true;
1472   }
1473 
1474   const Value *LHS = CI->getOperand(0);
1475   const Value *RHS = CI->getOperand(1);
1476 
1477   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1478   // We don't have to materialize a zero constant for this case and can just use
1479   // %x again on the RHS.
1480   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1481     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1482     if (RHSC && RHSC->isNullValue())
1483       RHS = LHS;
1484   }
1485 
1486   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1487   static const uint16_t SETFOpcTable[2][3] = {
1488     { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1489     { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1490   };
1491   const uint16_t *SETFOpc = nullptr;
1492   switch (Predicate) {
1493   default: break;
1494   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1495   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1496   }
1497 
1498   ResultReg = createResultReg(&X86::GR8RegClass);
1499   if (SETFOpc) {
1500     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1501       return false;
1502 
1503     Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1504     Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1505     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1506             FlagReg1).addImm(SETFOpc[0]);
1507     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1508             FlagReg2).addImm(SETFOpc[1]);
1509     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]),
1510             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1511     updateValueMap(I, ResultReg);
1512     return true;
1513   }
1514 
1515   X86::CondCode CC;
1516   bool SwapArgs;
1517   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1518   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1519 
1520   if (SwapArgs)
1521     std::swap(LHS, RHS);
1522 
1523   // Emit a compare of LHS/RHS.
1524   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1525     return false;
1526 
1527   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1528           ResultReg).addImm(CC);
1529   updateValueMap(I, ResultReg);
1530   return true;
1531 }
1532 
1533 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1534   EVT DstVT = TLI.getValueType(DL, I->getType());
1535   if (!TLI.isTypeLegal(DstVT))
1536     return false;
1537 
1538   Register ResultReg = getRegForValue(I->getOperand(0));
1539   if (ResultReg == 0)
1540     return false;
1541 
1542   // Handle zero-extension from i1 to i8, which is common.
1543   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1544   if (SrcVT == MVT::i1) {
1545     // Set the high bits to zero.
1546     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1547     SrcVT = MVT::i8;
1548 
1549     if (ResultReg == 0)
1550       return false;
1551   }
1552 
1553   if (DstVT == MVT::i64) {
1554     // Handle extension to 64-bits via sub-register shenanigans.
1555     unsigned MovInst;
1556 
1557     switch (SrcVT.SimpleTy) {
1558     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1559     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1560     case MVT::i32: MovInst = X86::MOV32rr;     break;
1561     default: llvm_unreachable("Unexpected zext to i64 source type");
1562     }
1563 
1564     Register Result32 = createResultReg(&X86::GR32RegClass);
1565     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32)
1566       .addReg(ResultReg);
1567 
1568     ResultReg = createResultReg(&X86::GR64RegClass);
1569     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG),
1570             ResultReg)
1571       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1572   } else if (DstVT == MVT::i16) {
1573     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1574     // extend to 32-bits and then extract down to 16-bits.
1575     Register Result32 = createResultReg(&X86::GR32RegClass);
1576     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8),
1577             Result32).addReg(ResultReg);
1578 
1579     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1580   } else if (DstVT != MVT::i8) {
1581     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1582                            ResultReg);
1583     if (ResultReg == 0)
1584       return false;
1585   }
1586 
1587   updateValueMap(I, ResultReg);
1588   return true;
1589 }
1590 
1591 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1592   EVT DstVT = TLI.getValueType(DL, I->getType());
1593   if (!TLI.isTypeLegal(DstVT))
1594     return false;
1595 
1596   Register ResultReg = getRegForValue(I->getOperand(0));
1597   if (ResultReg == 0)
1598     return false;
1599 
1600   // Handle sign-extension from i1 to i8.
1601   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1602   if (SrcVT == MVT::i1) {
1603     // Set the high bits to zero.
1604     Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1605     if (ZExtReg == 0)
1606       return false;
1607 
1608     // Negate the result to make an 8-bit sign extended value.
1609     ResultReg = createResultReg(&X86::GR8RegClass);
1610     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r),
1611             ResultReg).addReg(ZExtReg);
1612 
1613     SrcVT = MVT::i8;
1614   }
1615 
1616   if (DstVT == MVT::i16) {
1617     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1618     // extend to 32-bits and then extract down to 16-bits.
1619     Register Result32 = createResultReg(&X86::GR32RegClass);
1620     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8),
1621             Result32).addReg(ResultReg);
1622 
1623     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1624   } else if (DstVT != MVT::i8) {
1625     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1626                            ResultReg);
1627     if (ResultReg == 0)
1628       return false;
1629   }
1630 
1631   updateValueMap(I, ResultReg);
1632   return true;
1633 }
1634 
1635 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1636   // Unconditional branches are selected by tablegen-generated code.
1637   // Handle a conditional branch.
1638   const BranchInst *BI = cast<BranchInst>(I);
1639   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1640   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1641 
1642   // Fold the common case of a conditional branch with a comparison
1643   // in the same block (values defined on other blocks may not have
1644   // initialized registers).
1645   X86::CondCode CC;
1646   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1647     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1648       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1649 
1650       // Try to optimize or fold the cmp.
1651       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1652       switch (Predicate) {
1653       default: break;
1654       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true;
1655       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, MIMD.getDL()); return true;
1656       }
1657 
1658       const Value *CmpLHS = CI->getOperand(0);
1659       const Value *CmpRHS = CI->getOperand(1);
1660 
1661       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1662       // 0.0.
1663       // We don't have to materialize a zero constant for this case and can just
1664       // use %x again on the RHS.
1665       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1666         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1667         if (CmpRHSC && CmpRHSC->isNullValue())
1668           CmpRHS = CmpLHS;
1669       }
1670 
1671       // Try to take advantage of fallthrough opportunities.
1672       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1673         std::swap(TrueMBB, FalseMBB);
1674         Predicate = CmpInst::getInversePredicate(Predicate);
1675       }
1676 
1677       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1678       // code check. Instead two branch instructions are required to check all
1679       // the flags. First we change the predicate to a supported condition code,
1680       // which will be the first branch. Later one we will emit the second
1681       // branch.
1682       bool NeedExtraBranch = false;
1683       switch (Predicate) {
1684       default: break;
1685       case CmpInst::FCMP_OEQ:
1686         std::swap(TrueMBB, FalseMBB);
1687         [[fallthrough]];
1688       case CmpInst::FCMP_UNE:
1689         NeedExtraBranch = true;
1690         Predicate = CmpInst::FCMP_ONE;
1691         break;
1692       }
1693 
1694       bool SwapArgs;
1695       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1696       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1697 
1698       if (SwapArgs)
1699         std::swap(CmpLHS, CmpRHS);
1700 
1701       // Emit a compare of the LHS and RHS, setting the flags.
1702       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1703         return false;
1704 
1705       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1706         .addMBB(TrueMBB).addImm(CC);
1707 
1708       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1709       // to UNE above).
1710       if (NeedExtraBranch) {
1711         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1712           .addMBB(TrueMBB).addImm(X86::COND_P);
1713       }
1714 
1715       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1716       return true;
1717     }
1718   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1719     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1720     // typically happen for _Bool and C++ bools.
1721     MVT SourceVT;
1722     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1723         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1724       unsigned TestOpc = 0;
1725       switch (SourceVT.SimpleTy) {
1726       default: break;
1727       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1728       case MVT::i16: TestOpc = X86::TEST16ri; break;
1729       case MVT::i32: TestOpc = X86::TEST32ri; break;
1730       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1731       }
1732       if (TestOpc) {
1733         Register OpReg = getRegForValue(TI->getOperand(0));
1734         if (OpReg == 0) return false;
1735 
1736         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc))
1737           .addReg(OpReg).addImm(1);
1738 
1739         unsigned JmpCond = X86::COND_NE;
1740         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1741           std::swap(TrueMBB, FalseMBB);
1742           JmpCond = X86::COND_E;
1743         }
1744 
1745         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1746           .addMBB(TrueMBB).addImm(JmpCond);
1747 
1748         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1749         return true;
1750       }
1751     }
1752   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1753     // Fake request the condition, otherwise the intrinsic might be completely
1754     // optimized away.
1755     Register TmpReg = getRegForValue(BI->getCondition());
1756     if (TmpReg == 0)
1757       return false;
1758 
1759     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1760       .addMBB(TrueMBB).addImm(CC);
1761     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1762     return true;
1763   }
1764 
1765   // Otherwise do a clumsy setcc and re-test it.
1766   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1767   // in an explicit cast, so make sure to handle that correctly.
1768   Register OpReg = getRegForValue(BI->getCondition());
1769   if (OpReg == 0) return false;
1770 
1771   // In case OpReg is a K register, COPY to a GPR
1772   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1773     unsigned KOpReg = OpReg;
1774     OpReg = createResultReg(&X86::GR32RegClass);
1775     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1776             TII.get(TargetOpcode::COPY), OpReg)
1777         .addReg(KOpReg);
1778     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
1779   }
1780   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
1781       .addReg(OpReg)
1782       .addImm(1);
1783   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1784     .addMBB(TrueMBB).addImm(X86::COND_NE);
1785   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1786   return true;
1787 }
1788 
1789 bool X86FastISel::X86SelectShift(const Instruction *I) {
1790   unsigned CReg = 0, OpReg = 0;
1791   const TargetRegisterClass *RC = nullptr;
1792   if (I->getType()->isIntegerTy(8)) {
1793     CReg = X86::CL;
1794     RC = &X86::GR8RegClass;
1795     switch (I->getOpcode()) {
1796     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1797     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1798     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1799     default: return false;
1800     }
1801   } else if (I->getType()->isIntegerTy(16)) {
1802     CReg = X86::CX;
1803     RC = &X86::GR16RegClass;
1804     switch (I->getOpcode()) {
1805     default: llvm_unreachable("Unexpected shift opcode");
1806     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1807     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1808     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1809     }
1810   } else if (I->getType()->isIntegerTy(32)) {
1811     CReg = X86::ECX;
1812     RC = &X86::GR32RegClass;
1813     switch (I->getOpcode()) {
1814     default: llvm_unreachable("Unexpected shift opcode");
1815     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1816     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1817     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1818     }
1819   } else if (I->getType()->isIntegerTy(64)) {
1820     CReg = X86::RCX;
1821     RC = &X86::GR64RegClass;
1822     switch (I->getOpcode()) {
1823     default: llvm_unreachable("Unexpected shift opcode");
1824     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1825     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1826     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1827     }
1828   } else {
1829     return false;
1830   }
1831 
1832   MVT VT;
1833   if (!isTypeLegal(I->getType(), VT))
1834     return false;
1835 
1836   Register Op0Reg = getRegForValue(I->getOperand(0));
1837   if (Op0Reg == 0) return false;
1838 
1839   Register Op1Reg = getRegForValue(I->getOperand(1));
1840   if (Op1Reg == 0) return false;
1841   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1842           CReg).addReg(Op1Reg);
1843 
1844   // The shift instruction uses X86::CL. If we defined a super-register
1845   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1846   if (CReg != X86::CL)
1847     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1848             TII.get(TargetOpcode::KILL), X86::CL)
1849       .addReg(CReg, RegState::Kill);
1850 
1851   Register ResultReg = createResultReg(RC);
1852   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg)
1853     .addReg(Op0Reg);
1854   updateValueMap(I, ResultReg);
1855   return true;
1856 }
1857 
1858 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1859   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1860   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1861   const static bool S = true;  // IsSigned
1862   const static bool U = false; // !IsSigned
1863   const static unsigned Copy = TargetOpcode::COPY;
1864   // For the X86 DIV/IDIV instruction, in most cases the dividend
1865   // (numerator) must be in a specific register pair highreg:lowreg,
1866   // producing the quotient in lowreg and the remainder in highreg.
1867   // For most data types, to set up the instruction, the dividend is
1868   // copied into lowreg, and lowreg is sign-extended or zero-extended
1869   // into highreg.  The exception is i8, where the dividend is defined
1870   // as a single register rather than a register pair, and we
1871   // therefore directly sign-extend or zero-extend the dividend into
1872   // lowreg, instead of copying, and ignore the highreg.
1873   const static struct DivRemEntry {
1874     // The following portion depends only on the data type.
1875     const TargetRegisterClass *RC;
1876     unsigned LowInReg;  // low part of the register pair
1877     unsigned HighInReg; // high part of the register pair
1878     // The following portion depends on both the data type and the operation.
1879     struct DivRemResult {
1880     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1881     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1882                               // highreg, or copying a zero into highreg.
1883     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1884                               // zero/sign-extending into lowreg for i8.
1885     unsigned DivRemResultReg; // Register containing the desired result.
1886     bool IsOpSigned;          // Whether to use signed or unsigned form.
1887     } ResultTable[NumOps];
1888   } OpTable[NumTypes] = {
1889     { &X86::GR8RegClass,  X86::AX,  0, {
1890         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1891         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1892         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1893         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1894       }
1895     }, // i8
1896     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1897         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1898         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1899         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1900         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1901       }
1902     }, // i16
1903     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1904         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1905         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1906         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1907         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1908       }
1909     }, // i32
1910     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1911         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1912         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1913         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1914         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1915       }
1916     }, // i64
1917   };
1918 
1919   MVT VT;
1920   if (!isTypeLegal(I->getType(), VT))
1921     return false;
1922 
1923   unsigned TypeIndex, OpIndex;
1924   switch (VT.SimpleTy) {
1925   default: return false;
1926   case MVT::i8:  TypeIndex = 0; break;
1927   case MVT::i16: TypeIndex = 1; break;
1928   case MVT::i32: TypeIndex = 2; break;
1929   case MVT::i64: TypeIndex = 3;
1930     if (!Subtarget->is64Bit())
1931       return false;
1932     break;
1933   }
1934 
1935   switch (I->getOpcode()) {
1936   default: llvm_unreachable("Unexpected div/rem opcode");
1937   case Instruction::SDiv: OpIndex = 0; break;
1938   case Instruction::SRem: OpIndex = 1; break;
1939   case Instruction::UDiv: OpIndex = 2; break;
1940   case Instruction::URem: OpIndex = 3; break;
1941   }
1942 
1943   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1944   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1945   Register Op0Reg = getRegForValue(I->getOperand(0));
1946   if (Op0Reg == 0)
1947     return false;
1948   Register Op1Reg = getRegForValue(I->getOperand(1));
1949   if (Op1Reg == 0)
1950     return false;
1951 
1952   // Move op0 into low-order input register.
1953   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1954           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1955   // Zero-extend or sign-extend into high-order input register.
1956   if (OpEntry.OpSignExtend) {
1957     if (OpEntry.IsOpSigned)
1958       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1959               TII.get(OpEntry.OpSignExtend));
1960     else {
1961       Register Zero32 = createResultReg(&X86::GR32RegClass);
1962       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1963               TII.get(X86::MOV32r0), Zero32);
1964 
1965       // Copy the zero into the appropriate sub/super/identical physical
1966       // register. Unfortunately the operations needed are not uniform enough
1967       // to fit neatly into the table above.
1968       if (VT == MVT::i16) {
1969         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1970                 TII.get(Copy), TypeEntry.HighInReg)
1971           .addReg(Zero32, 0, X86::sub_16bit);
1972       } else if (VT == MVT::i32) {
1973         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1974                 TII.get(Copy), TypeEntry.HighInReg)
1975             .addReg(Zero32);
1976       } else if (VT == MVT::i64) {
1977         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1978                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1979             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1980       }
1981     }
1982   }
1983   // Generate the DIV/IDIV instruction.
1984   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1985           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1986   // For i8 remainder, we can't reference ah directly, as we'll end
1987   // up with bogus copies like %r9b = COPY %ah. Reference ax
1988   // instead to prevent ah references in a rex instruction.
1989   //
1990   // The current assumption of the fast register allocator is that isel
1991   // won't generate explicit references to the GR8_NOREX registers. If
1992   // the allocator and/or the backend get enhanced to be more robust in
1993   // that regard, this can be, and should be, removed.
1994   unsigned ResultReg = 0;
1995   if ((I->getOpcode() == Instruction::SRem ||
1996        I->getOpcode() == Instruction::URem) &&
1997       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1998     Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
1999     Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
2000     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2001             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2002 
2003     // Shift AX right by 8 bits instead of using AH.
2004     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri),
2005             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2006 
2007     // Now reference the 8-bit subreg of the result.
2008     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2009                                            X86::sub_8bit);
2010   }
2011   // Copy the result out of the physreg if we haven't already.
2012   if (!ResultReg) {
2013     ResultReg = createResultReg(TypeEntry.RC);
2014     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg)
2015         .addReg(OpEntry.DivRemResultReg);
2016   }
2017   updateValueMap(I, ResultReg);
2018 
2019   return true;
2020 }
2021 
2022 /// Emit a conditional move instruction (if the are supported) to lower
2023 /// the select.
2024 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2025   // Check if the subtarget supports these instructions.
2026   if (!Subtarget->canUseCMOV())
2027     return false;
2028 
2029   // FIXME: Add support for i8.
2030   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2031     return false;
2032 
2033   const Value *Cond = I->getOperand(0);
2034   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2035   bool NeedTest = true;
2036   X86::CondCode CC = X86::COND_NE;
2037 
2038   // Optimize conditions coming from a compare if both instructions are in the
2039   // same basic block (values defined in other basic blocks may not have
2040   // initialized registers).
2041   const auto *CI = dyn_cast<CmpInst>(Cond);
2042   if (CI && (CI->getParent() == I->getParent())) {
2043     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2044 
2045     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2046     static const uint16_t SETFOpcTable[2][3] = {
2047       { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2048       { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2049     };
2050     const uint16_t *SETFOpc = nullptr;
2051     switch (Predicate) {
2052     default: break;
2053     case CmpInst::FCMP_OEQ:
2054       SETFOpc = &SETFOpcTable[0][0];
2055       Predicate = CmpInst::ICMP_NE;
2056       break;
2057     case CmpInst::FCMP_UNE:
2058       SETFOpc = &SETFOpcTable[1][0];
2059       Predicate = CmpInst::ICMP_NE;
2060       break;
2061     }
2062 
2063     bool NeedSwap;
2064     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2065     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2066 
2067     const Value *CmpLHS = CI->getOperand(0);
2068     const Value *CmpRHS = CI->getOperand(1);
2069     if (NeedSwap)
2070       std::swap(CmpLHS, CmpRHS);
2071 
2072     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2073     // Emit a compare of the LHS and RHS, setting the flags.
2074     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2075       return false;
2076 
2077     if (SETFOpc) {
2078       Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2079       Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2080       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2081               FlagReg1).addImm(SETFOpc[0]);
2082       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2083               FlagReg2).addImm(SETFOpc[1]);
2084       auto const &II = TII.get(SETFOpc[2]);
2085       if (II.getNumDefs()) {
2086         Register TmpReg = createResultReg(&X86::GR8RegClass);
2087         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg)
2088           .addReg(FlagReg2).addReg(FlagReg1);
2089       } else {
2090         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2091           .addReg(FlagReg2).addReg(FlagReg1);
2092       }
2093     }
2094     NeedTest = false;
2095   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2096     // Fake request the condition, otherwise the intrinsic might be completely
2097     // optimized away.
2098     Register TmpReg = getRegForValue(Cond);
2099     if (TmpReg == 0)
2100       return false;
2101 
2102     NeedTest = false;
2103   }
2104 
2105   if (NeedTest) {
2106     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2107     // garbage. Indeed, only the less significant bit is supposed to be
2108     // accurate. If we read more than the lsb, we may see non-zero values
2109     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2110     // the select. This is achieved by performing TEST against 1.
2111     Register CondReg = getRegForValue(Cond);
2112     if (CondReg == 0)
2113       return false;
2114 
2115     // In case OpReg is a K register, COPY to a GPR
2116     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2117       unsigned KCondReg = CondReg;
2118       CondReg = createResultReg(&X86::GR32RegClass);
2119       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2120               TII.get(TargetOpcode::COPY), CondReg)
2121           .addReg(KCondReg);
2122       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2123     }
2124     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2125         .addReg(CondReg)
2126         .addImm(1);
2127   }
2128 
2129   const Value *LHS = I->getOperand(1);
2130   const Value *RHS = I->getOperand(2);
2131 
2132   Register RHSReg = getRegForValue(RHS);
2133   Register LHSReg = getRegForValue(LHS);
2134   if (!LHSReg || !RHSReg)
2135     return false;
2136 
2137   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2138   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC) / 8, false,
2139                                     Subtarget->hasNDD());
2140   Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2141   updateValueMap(I, ResultReg);
2142   return true;
2143 }
2144 
2145 /// Emit SSE or AVX instructions to lower the select.
2146 ///
2147 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2148 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2149 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2150 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2151   // Optimize conditions coming from a compare if both instructions are in the
2152   // same basic block (values defined in other basic blocks may not have
2153   // initialized registers).
2154   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2155   if (!CI || (CI->getParent() != I->getParent()))
2156     return false;
2157 
2158   if (I->getType() != CI->getOperand(0)->getType() ||
2159       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2160         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2161     return false;
2162 
2163   const Value *CmpLHS = CI->getOperand(0);
2164   const Value *CmpRHS = CI->getOperand(1);
2165   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2166 
2167   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2168   // We don't have to materialize a zero constant for this case and can just use
2169   // %x again on the RHS.
2170   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2171     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2172     if (CmpRHSC && CmpRHSC->isNullValue())
2173       CmpRHS = CmpLHS;
2174   }
2175 
2176   unsigned CC;
2177   bool NeedSwap;
2178   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2179   if (CC > 7 && !Subtarget->hasAVX())
2180     return false;
2181 
2182   if (NeedSwap)
2183     std::swap(CmpLHS, CmpRHS);
2184 
2185   const Value *LHS = I->getOperand(1);
2186   const Value *RHS = I->getOperand(2);
2187 
2188   Register LHSReg = getRegForValue(LHS);
2189   Register RHSReg = getRegForValue(RHS);
2190   Register CmpLHSReg = getRegForValue(CmpLHS);
2191   Register CmpRHSReg = getRegForValue(CmpRHS);
2192   if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2193     return false;
2194 
2195   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2196   unsigned ResultReg;
2197 
2198   if (Subtarget->hasAVX512()) {
2199     // If we have AVX512 we can use a mask compare and masked movss/sd.
2200     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2201     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2202 
2203     unsigned CmpOpcode =
2204       (RetVT == MVT::f32) ? X86::VCMPSSZrri : X86::VCMPSDZrri;
2205     Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
2206                                        CC);
2207 
2208     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2209     // bits of the result register since its not based on any of the inputs.
2210     Register ImplicitDefReg = createResultReg(VR128X);
2211     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2212             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2213 
2214     // Place RHSReg is the passthru of the masked movss/sd operation and put
2215     // LHS in the input. The mask input comes from the compare.
2216     unsigned MovOpcode =
2217       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2218     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
2219                                         ImplicitDefReg, LHSReg);
2220 
2221     ResultReg = createResultReg(RC);
2222     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2223             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2224 
2225   } else if (Subtarget->hasAVX()) {
2226     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2227 
2228     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2229     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2230     // uses XMM0 as the selection register. That may need just as many
2231     // instructions as the AND/ANDN/OR sequence due to register moves, so
2232     // don't bother.
2233     unsigned CmpOpcode =
2234       (RetVT == MVT::f32) ? X86::VCMPSSrri : X86::VCMPSDrri;
2235     unsigned BlendOpcode =
2236       (RetVT == MVT::f32) ? X86::VBLENDVPSrrr : X86::VBLENDVPDrrr;
2237 
2238     Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
2239                                        CC);
2240     Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
2241                                           CmpReg);
2242     ResultReg = createResultReg(RC);
2243     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2244             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2245   } else {
2246     // Choose the SSE instruction sequence based on data type (float or double).
2247     static const uint16_t OpcTable[2][4] = {
2248       { X86::CMPSSrri,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2249       { X86::CMPSDrri,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2250     };
2251 
2252     const uint16_t *Opc = nullptr;
2253     switch (RetVT.SimpleTy) {
2254     default: return false;
2255     case MVT::f32: Opc = &OpcTable[0][0]; break;
2256     case MVT::f64: Opc = &OpcTable[1][0]; break;
2257     }
2258 
2259     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2260     Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
2261     Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
2262     Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
2263     Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
2264     ResultReg = createResultReg(RC);
2265     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2266             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2267   }
2268   updateValueMap(I, ResultReg);
2269   return true;
2270 }
2271 
2272 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2273   // These are pseudo CMOV instructions and will be later expanded into control-
2274   // flow.
2275   unsigned Opc;
2276   switch (RetVT.SimpleTy) {
2277   default: return false;
2278   case MVT::i8:  Opc = X86::CMOV_GR8;   break;
2279   case MVT::i16: Opc = X86::CMOV_GR16;  break;
2280   case MVT::i32: Opc = X86::CMOV_GR32;  break;
2281   case MVT::f16:
2282     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break;
2283   case MVT::f32:
2284     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break;
2285   case MVT::f64:
2286     Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break;
2287   }
2288 
2289   const Value *Cond = I->getOperand(0);
2290   X86::CondCode CC = X86::COND_NE;
2291 
2292   // Optimize conditions coming from a compare if both instructions are in the
2293   // same basic block (values defined in other basic blocks may not have
2294   // initialized registers).
2295   const auto *CI = dyn_cast<CmpInst>(Cond);
2296   if (CI && (CI->getParent() == I->getParent())) {
2297     bool NeedSwap;
2298     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2299     if (CC > X86::LAST_VALID_COND)
2300       return false;
2301 
2302     const Value *CmpLHS = CI->getOperand(0);
2303     const Value *CmpRHS = CI->getOperand(1);
2304 
2305     if (NeedSwap)
2306       std::swap(CmpLHS, CmpRHS);
2307 
2308     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2309     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2310       return false;
2311   } else {
2312     Register CondReg = getRegForValue(Cond);
2313     if (CondReg == 0)
2314       return false;
2315 
2316     // In case OpReg is a K register, COPY to a GPR
2317     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2318       unsigned KCondReg = CondReg;
2319       CondReg = createResultReg(&X86::GR32RegClass);
2320       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2321               TII.get(TargetOpcode::COPY), CondReg)
2322           .addReg(KCondReg);
2323       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2324     }
2325     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2326         .addReg(CondReg)
2327         .addImm(1);
2328   }
2329 
2330   const Value *LHS = I->getOperand(1);
2331   const Value *RHS = I->getOperand(2);
2332 
2333   Register LHSReg = getRegForValue(LHS);
2334   Register RHSReg = getRegForValue(RHS);
2335   if (!LHSReg || !RHSReg)
2336     return false;
2337 
2338   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2339 
2340   Register ResultReg =
2341     fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2342   updateValueMap(I, ResultReg);
2343   return true;
2344 }
2345 
2346 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2347   MVT RetVT;
2348   if (!isTypeLegal(I->getType(), RetVT))
2349     return false;
2350 
2351   // Check if we can fold the select.
2352   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2353     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2354     const Value *Opnd = nullptr;
2355     switch (Predicate) {
2356     default:                              break;
2357     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2358     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2359     }
2360     // No need for a select anymore - this is an unconditional move.
2361     if (Opnd) {
2362       Register OpReg = getRegForValue(Opnd);
2363       if (OpReg == 0)
2364         return false;
2365       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2366       Register ResultReg = createResultReg(RC);
2367       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2368               TII.get(TargetOpcode::COPY), ResultReg)
2369         .addReg(OpReg);
2370       updateValueMap(I, ResultReg);
2371       return true;
2372     }
2373   }
2374 
2375   // First try to use real conditional move instructions.
2376   if (X86FastEmitCMoveSelect(RetVT, I))
2377     return true;
2378 
2379   // Try to use a sequence of SSE instructions to simulate a conditional move.
2380   if (X86FastEmitSSESelect(RetVT, I))
2381     return true;
2382 
2383   // Fall-back to pseudo conditional move instructions, which will be later
2384   // converted to control-flow.
2385   if (X86FastEmitPseudoSelect(RetVT, I))
2386     return true;
2387 
2388   return false;
2389 }
2390 
2391 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2392 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2393   // The target-independent selection algorithm in FastISel already knows how
2394   // to select a SINT_TO_FP if the target is SSE but not AVX.
2395   // Early exit if the subtarget doesn't have AVX.
2396   // Unsigned conversion requires avx512.
2397   bool HasAVX512 = Subtarget->hasAVX512();
2398   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2399     return false;
2400 
2401   // TODO: We could sign extend narrower types.
2402   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2403   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2404     return false;
2405 
2406   // Select integer to float/double conversion.
2407   Register OpReg = getRegForValue(I->getOperand(0));
2408   if (OpReg == 0)
2409     return false;
2410 
2411   unsigned Opcode;
2412 
2413   static const uint16_t SCvtOpc[2][2][2] = {
2414     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2415       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2416     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2417       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2418   };
2419   static const uint16_t UCvtOpc[2][2] = {
2420     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2421     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2422   };
2423   bool Is64Bit = SrcVT == MVT::i64;
2424 
2425   if (I->getType()->isDoubleTy()) {
2426     // s/uitofp int -> double
2427     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2428   } else if (I->getType()->isFloatTy()) {
2429     // s/uitofp int -> float
2430     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2431   } else
2432     return false;
2433 
2434   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2435   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2436   Register ImplicitDefReg = createResultReg(RC);
2437   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2438           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2439   Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
2440   updateValueMap(I, ResultReg);
2441   return true;
2442 }
2443 
2444 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2445   return X86SelectIntToFP(I, /*IsSigned*/true);
2446 }
2447 
2448 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2449   return X86SelectIntToFP(I, /*IsSigned*/false);
2450 }
2451 
2452 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2453 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2454                                           unsigned TargetOpc,
2455                                           const TargetRegisterClass *RC) {
2456   assert((I->getOpcode() == Instruction::FPExt ||
2457           I->getOpcode() == Instruction::FPTrunc) &&
2458          "Instruction must be an FPExt or FPTrunc!");
2459   bool HasAVX = Subtarget->hasAVX();
2460 
2461   Register OpReg = getRegForValue(I->getOperand(0));
2462   if (OpReg == 0)
2463     return false;
2464 
2465   unsigned ImplicitDefReg;
2466   if (HasAVX) {
2467     ImplicitDefReg = createResultReg(RC);
2468     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2469             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2470 
2471   }
2472 
2473   Register ResultReg = createResultReg(RC);
2474   MachineInstrBuilder MIB;
2475   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc),
2476                 ResultReg);
2477 
2478   if (HasAVX)
2479     MIB.addReg(ImplicitDefReg);
2480 
2481   MIB.addReg(OpReg);
2482   updateValueMap(I, ResultReg);
2483   return true;
2484 }
2485 
2486 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2487   if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() &&
2488       I->getOperand(0)->getType()->isFloatTy()) {
2489     bool HasAVX512 = Subtarget->hasAVX512();
2490     // fpext from float to double.
2491     unsigned Opc =
2492         HasAVX512 ? X86::VCVTSS2SDZrr
2493                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2494     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2495   }
2496 
2497   return false;
2498 }
2499 
2500 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2501   if (Subtarget->hasSSE2() && I->getType()->isFloatTy() &&
2502       I->getOperand(0)->getType()->isDoubleTy()) {
2503     bool HasAVX512 = Subtarget->hasAVX512();
2504     // fptrunc from double to float.
2505     unsigned Opc =
2506         HasAVX512 ? X86::VCVTSD2SSZrr
2507                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2508     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2509   }
2510 
2511   return false;
2512 }
2513 
2514 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2515   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2516   EVT DstVT = TLI.getValueType(DL, I->getType());
2517 
2518   // This code only handles truncation to byte.
2519   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2520     return false;
2521   if (!TLI.isTypeLegal(SrcVT))
2522     return false;
2523 
2524   Register InputReg = getRegForValue(I->getOperand(0));
2525   if (!InputReg)
2526     // Unhandled operand.  Halt "fast" selection and bail.
2527     return false;
2528 
2529   if (SrcVT == MVT::i8) {
2530     // Truncate from i8 to i1; no code needed.
2531     updateValueMap(I, InputReg);
2532     return true;
2533   }
2534 
2535   // Issue an extract_subreg.
2536   Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
2537                                                   X86::sub_8bit);
2538   if (!ResultReg)
2539     return false;
2540 
2541   updateValueMap(I, ResultReg);
2542   return true;
2543 }
2544 
2545 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2546   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2547 }
2548 
2549 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2550                                      X86AddressMode SrcAM, uint64_t Len) {
2551 
2552   // Make sure we don't bloat code by inlining very large memcpy's.
2553   if (!IsMemcpySmall(Len))
2554     return false;
2555 
2556   bool i64Legal = Subtarget->is64Bit();
2557 
2558   // We don't care about alignment here since we just emit integer accesses.
2559   while (Len) {
2560     MVT VT;
2561     if (Len >= 8 && i64Legal)
2562       VT = MVT::i64;
2563     else if (Len >= 4)
2564       VT = MVT::i32;
2565     else if (Len >= 2)
2566       VT = MVT::i16;
2567     else
2568       VT = MVT::i8;
2569 
2570     unsigned Reg;
2571     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2572     RV &= X86FastEmitStore(VT, Reg, DestAM);
2573     assert(RV && "Failed to emit load or store??");
2574     (void)RV;
2575 
2576     unsigned Size = VT.getSizeInBits()/8;
2577     Len -= Size;
2578     DestAM.Disp += Size;
2579     SrcAM.Disp += Size;
2580   }
2581 
2582   return true;
2583 }
2584 
2585 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2586   // FIXME: Handle more intrinsics.
2587   switch (II->getIntrinsicID()) {
2588   default: return false;
2589   case Intrinsic::convert_from_fp16:
2590   case Intrinsic::convert_to_fp16: {
2591     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2592       return false;
2593 
2594     const Value *Op = II->getArgOperand(0);
2595     Register InputReg = getRegForValue(Op);
2596     if (InputReg == 0)
2597       return false;
2598 
2599     // F16C only allows converting from float to half and from half to float.
2600     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2601     if (IsFloatToHalf) {
2602       if (!Op->getType()->isFloatTy())
2603         return false;
2604     } else {
2605       if (!II->getType()->isFloatTy())
2606         return false;
2607     }
2608 
2609     unsigned ResultReg = 0;
2610     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2611     if (IsFloatToHalf) {
2612       // 'InputReg' is implicitly promoted from register class FR32 to
2613       // register class VR128 by method 'constrainOperandRegClass' which is
2614       // directly called by 'fastEmitInst_ri'.
2615       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2616       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2617       // It's consistent with the other FP instructions, which are usually
2618       // controlled by MXCSR.
2619       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2620                                          : X86::VCVTPS2PHrr;
2621       InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
2622 
2623       // Move the lower 32-bits of ResultReg to another register of class GR32.
2624       Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2625                                    : X86::VMOVPDI2DIrr;
2626       ResultReg = createResultReg(&X86::GR32RegClass);
2627       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
2628           .addReg(InputReg, RegState::Kill);
2629 
2630       // The result value is in the lower 16-bits of ResultReg.
2631       unsigned RegIdx = X86::sub_16bit;
2632       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
2633     } else {
2634       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2635       // Explicitly zero-extend the input to 32-bit.
2636       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
2637 
2638       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2639       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2640                             InputReg);
2641 
2642       unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2643                                          : X86::VCVTPH2PSrr;
2644       InputReg = fastEmitInst_r(Opc, RC, InputReg);
2645 
2646       // The result value is in the lower 32-bits of ResultReg.
2647       // Emit an explicit copy from register class VR128 to register class FR32.
2648       ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2649       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2650               TII.get(TargetOpcode::COPY), ResultReg)
2651           .addReg(InputReg, RegState::Kill);
2652     }
2653 
2654     updateValueMap(II, ResultReg);
2655     return true;
2656   }
2657   case Intrinsic::frameaddress: {
2658     MachineFunction *MF = FuncInfo.MF;
2659     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2660       return false;
2661 
2662     Type *RetTy = II->getCalledFunction()->getReturnType();
2663 
2664     MVT VT;
2665     if (!isTypeLegal(RetTy, VT))
2666       return false;
2667 
2668     unsigned Opc;
2669     const TargetRegisterClass *RC = nullptr;
2670 
2671     switch (VT.SimpleTy) {
2672     default: llvm_unreachable("Invalid result type for frameaddress.");
2673     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2674     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2675     }
2676 
2677     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2678     // we get the wrong frame register.
2679     MachineFrameInfo &MFI = MF->getFrameInfo();
2680     MFI.setFrameAddressIsTaken(true);
2681 
2682     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2683     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2684     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2685             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2686            "Invalid Frame Register!");
2687 
2688     // Always make a copy of the frame register to a vreg first, so that we
2689     // never directly reference the frame register (the TwoAddressInstruction-
2690     // Pass doesn't like that).
2691     Register SrcReg = createResultReg(RC);
2692     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2693             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2694 
2695     // Now recursively load from the frame address.
2696     // movq (%rbp), %rax
2697     // movq (%rax), %rax
2698     // movq (%rax), %rax
2699     // ...
2700     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2701     while (Depth--) {
2702       Register DestReg = createResultReg(RC);
2703       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2704                            TII.get(Opc), DestReg), SrcReg);
2705       SrcReg = DestReg;
2706     }
2707 
2708     updateValueMap(II, SrcReg);
2709     return true;
2710   }
2711   case Intrinsic::memcpy: {
2712     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2713     // Don't handle volatile or variable length memcpys.
2714     if (MCI->isVolatile())
2715       return false;
2716 
2717     if (isa<ConstantInt>(MCI->getLength())) {
2718       // Small memcpy's are common enough that we want to do them
2719       // without a call if possible.
2720       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2721       if (IsMemcpySmall(Len)) {
2722         X86AddressMode DestAM, SrcAM;
2723         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2724             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2725           return false;
2726         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2727         return true;
2728       }
2729     }
2730 
2731     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2732     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2733       return false;
2734 
2735     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2736       return false;
2737 
2738     return lowerCallTo(II, "memcpy", II->arg_size() - 1);
2739   }
2740   case Intrinsic::memset: {
2741     const MemSetInst *MSI = cast<MemSetInst>(II);
2742 
2743     if (MSI->isVolatile())
2744       return false;
2745 
2746     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2747     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2748       return false;
2749 
2750     if (MSI->getDestAddressSpace() > 255)
2751       return false;
2752 
2753     return lowerCallTo(II, "memset", II->arg_size() - 1);
2754   }
2755   case Intrinsic::stackprotector: {
2756     // Emit code to store the stack guard onto the stack.
2757     EVT PtrTy = TLI.getPointerTy(DL);
2758 
2759     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2760     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2761 
2762     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2763 
2764     // Grab the frame index.
2765     X86AddressMode AM;
2766     if (!X86SelectAddress(Slot, AM)) return false;
2767     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2768     return true;
2769   }
2770   case Intrinsic::dbg_declare: {
2771     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2772     X86AddressMode AM;
2773     assert(DI->getAddress() && "Null address should be checked earlier!");
2774     if (!X86SelectAddress(DI->getAddress(), AM))
2775       return false;
2776     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2777     assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
2778            "Expected inlined-at fields to agree");
2779     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM)
2780         .addImm(0)
2781         .addMetadata(DI->getVariable())
2782         .addMetadata(DI->getExpression());
2783     return true;
2784   }
2785   case Intrinsic::trap: {
2786     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP));
2787     return true;
2788   }
2789   case Intrinsic::sqrt: {
2790     if (!Subtarget->hasSSE1())
2791       return false;
2792 
2793     Type *RetTy = II->getCalledFunction()->getReturnType();
2794 
2795     MVT VT;
2796     if (!isTypeLegal(RetTy, VT))
2797       return false;
2798 
2799     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2800     // is not generated by FastISel yet.
2801     // FIXME: Update this code once tablegen can handle it.
2802     static const uint16_t SqrtOpc[3][2] = {
2803       { X86::SQRTSSr,   X86::SQRTSDr },
2804       { X86::VSQRTSSr,  X86::VSQRTSDr },
2805       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2806     };
2807     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2808                         Subtarget->hasAVX()    ? 1 :
2809                                                  0;
2810     unsigned Opc;
2811     switch (VT.SimpleTy) {
2812     default: return false;
2813     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2814     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2815     }
2816 
2817     const Value *SrcVal = II->getArgOperand(0);
2818     Register SrcReg = getRegForValue(SrcVal);
2819 
2820     if (SrcReg == 0)
2821       return false;
2822 
2823     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2824     unsigned ImplicitDefReg = 0;
2825     if (AVXLevel > 0) {
2826       ImplicitDefReg = createResultReg(RC);
2827       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2828               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2829     }
2830 
2831     Register ResultReg = createResultReg(RC);
2832     MachineInstrBuilder MIB;
2833     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
2834                   ResultReg);
2835 
2836     if (ImplicitDefReg)
2837       MIB.addReg(ImplicitDefReg);
2838 
2839     MIB.addReg(SrcReg);
2840 
2841     updateValueMap(II, ResultReg);
2842     return true;
2843   }
2844   case Intrinsic::sadd_with_overflow:
2845   case Intrinsic::uadd_with_overflow:
2846   case Intrinsic::ssub_with_overflow:
2847   case Intrinsic::usub_with_overflow:
2848   case Intrinsic::smul_with_overflow:
2849   case Intrinsic::umul_with_overflow: {
2850     // This implements the basic lowering of the xalu with overflow intrinsics
2851     // into add/sub/mul followed by either seto or setb.
2852     const Function *Callee = II->getCalledFunction();
2853     auto *Ty = cast<StructType>(Callee->getReturnType());
2854     Type *RetTy = Ty->getTypeAtIndex(0U);
2855     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2856            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2857            "Overflow value expected to be an i1");
2858 
2859     MVT VT;
2860     if (!isTypeLegal(RetTy, VT))
2861       return false;
2862 
2863     if (VT < MVT::i8 || VT > MVT::i64)
2864       return false;
2865 
2866     const Value *LHS = II->getArgOperand(0);
2867     const Value *RHS = II->getArgOperand(1);
2868 
2869     // Canonicalize immediate to the RHS.
2870     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2871       std::swap(LHS, RHS);
2872 
2873     unsigned BaseOpc, CondCode;
2874     switch (II->getIntrinsicID()) {
2875     default: llvm_unreachable("Unexpected intrinsic!");
2876     case Intrinsic::sadd_with_overflow:
2877       BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2878     case Intrinsic::uadd_with_overflow:
2879       BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2880     case Intrinsic::ssub_with_overflow:
2881       BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2882     case Intrinsic::usub_with_overflow:
2883       BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2884     case Intrinsic::smul_with_overflow:
2885       BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2886     case Intrinsic::umul_with_overflow:
2887       BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2888     }
2889 
2890     Register LHSReg = getRegForValue(LHS);
2891     if (LHSReg == 0)
2892       return false;
2893 
2894     unsigned ResultReg = 0;
2895     // Check if we have an immediate version.
2896     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2897       static const uint16_t Opc[2][4] = {
2898         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2899         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2900       };
2901 
2902       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2903           CondCode == X86::COND_O) {
2904         // We can use INC/DEC.
2905         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2906         bool IsDec = BaseOpc == ISD::SUB;
2907         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2908                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2909           .addReg(LHSReg);
2910       } else
2911         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
2912     }
2913 
2914     unsigned RHSReg;
2915     if (!ResultReg) {
2916       RHSReg = getRegForValue(RHS);
2917       if (RHSReg == 0)
2918         return false;
2919       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
2920     }
2921 
2922     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2923     // it manually.
2924     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2925       static const uint16_t MULOpc[] =
2926         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2927       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2928       // First copy the first operand into RAX, which is an implicit input to
2929       // the X86::MUL*r instruction.
2930       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2931               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2932         .addReg(LHSReg);
2933       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2934                                  TLI.getRegClassFor(VT), RHSReg);
2935     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2936       static const uint16_t MULOpc[] =
2937         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2938       if (VT == MVT::i8) {
2939         // Copy the first operand into AL, which is an implicit input to the
2940         // X86::IMUL8r instruction.
2941         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2942                TII.get(TargetOpcode::COPY), X86::AL)
2943           .addReg(LHSReg);
2944         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
2945       } else
2946         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2947                                     TLI.getRegClassFor(VT), LHSReg, RHSReg);
2948     }
2949 
2950     if (!ResultReg)
2951       return false;
2952 
2953     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2954     Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2955     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2956     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2957             ResultReg2).addImm(CondCode);
2958 
2959     updateValueMap(II, ResultReg, 2);
2960     return true;
2961   }
2962   case Intrinsic::x86_sse_cvttss2si:
2963   case Intrinsic::x86_sse_cvttss2si64:
2964   case Intrinsic::x86_sse2_cvttsd2si:
2965   case Intrinsic::x86_sse2_cvttsd2si64: {
2966     bool IsInputDouble;
2967     switch (II->getIntrinsicID()) {
2968     default: llvm_unreachable("Unexpected intrinsic.");
2969     case Intrinsic::x86_sse_cvttss2si:
2970     case Intrinsic::x86_sse_cvttss2si64:
2971       if (!Subtarget->hasSSE1())
2972         return false;
2973       IsInputDouble = false;
2974       break;
2975     case Intrinsic::x86_sse2_cvttsd2si:
2976     case Intrinsic::x86_sse2_cvttsd2si64:
2977       if (!Subtarget->hasSSE2())
2978         return false;
2979       IsInputDouble = true;
2980       break;
2981     }
2982 
2983     Type *RetTy = II->getCalledFunction()->getReturnType();
2984     MVT VT;
2985     if (!isTypeLegal(RetTy, VT))
2986       return false;
2987 
2988     static const uint16_t CvtOpc[3][2][2] = {
2989       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
2990         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
2991       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
2992         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
2993       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
2994         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
2995     };
2996     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2997                         Subtarget->hasAVX()    ? 1 :
2998                                                  0;
2999     unsigned Opc;
3000     switch (VT.SimpleTy) {
3001     default: llvm_unreachable("Unexpected result type.");
3002     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3003     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3004     }
3005 
3006     // Check if we can fold insertelement instructions into the convert.
3007     const Value *Op = II->getArgOperand(0);
3008     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3009       const Value *Index = IE->getOperand(2);
3010       if (!isa<ConstantInt>(Index))
3011         break;
3012       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3013 
3014       if (Idx == 0) {
3015         Op = IE->getOperand(1);
3016         break;
3017       }
3018       Op = IE->getOperand(0);
3019     }
3020 
3021     Register Reg = getRegForValue(Op);
3022     if (Reg == 0)
3023       return false;
3024 
3025     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3026     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
3027       .addReg(Reg);
3028 
3029     updateValueMap(II, ResultReg);
3030     return true;
3031   }
3032   case Intrinsic::x86_sse42_crc32_32_8:
3033   case Intrinsic::x86_sse42_crc32_32_16:
3034   case Intrinsic::x86_sse42_crc32_32_32:
3035   case Intrinsic::x86_sse42_crc32_64_64: {
3036     if (!Subtarget->hasCRC32())
3037       return false;
3038 
3039     Type *RetTy = II->getCalledFunction()->getReturnType();
3040 
3041     MVT VT;
3042     if (!isTypeLegal(RetTy, VT))
3043       return false;
3044 
3045     unsigned Opc;
3046     const TargetRegisterClass *RC = nullptr;
3047 
3048     switch (II->getIntrinsicID()) {
3049     default:
3050       llvm_unreachable("Unexpected intrinsic.");
3051 #define GET_EGPR_IF_ENABLED(OPC) Subtarget->hasEGPR() ? OPC##_EVEX : OPC
3052     case Intrinsic::x86_sse42_crc32_32_8:
3053       Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r8);
3054       RC = &X86::GR32RegClass;
3055       break;
3056     case Intrinsic::x86_sse42_crc32_32_16:
3057       Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r16);
3058       RC = &X86::GR32RegClass;
3059       break;
3060     case Intrinsic::x86_sse42_crc32_32_32:
3061       Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r32);
3062       RC = &X86::GR32RegClass;
3063       break;
3064     case Intrinsic::x86_sse42_crc32_64_64:
3065       Opc = GET_EGPR_IF_ENABLED(X86::CRC32r64r64);
3066       RC = &X86::GR64RegClass;
3067       break;
3068 #undef GET_EGPR_IF_ENABLED
3069     }
3070 
3071     const Value *LHS = II->getArgOperand(0);
3072     const Value *RHS = II->getArgOperand(1);
3073 
3074     Register LHSReg = getRegForValue(LHS);
3075     Register RHSReg = getRegForValue(RHS);
3076     if (!LHSReg || !RHSReg)
3077       return false;
3078 
3079     Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg);
3080     if (!ResultReg)
3081       return false;
3082 
3083     updateValueMap(II, ResultReg);
3084     return true;
3085   }
3086   }
3087 }
3088 
3089 bool X86FastISel::fastLowerArguments() {
3090   if (!FuncInfo.CanLowerReturn)
3091     return false;
3092 
3093   const Function *F = FuncInfo.Fn;
3094   if (F->isVarArg())
3095     return false;
3096 
3097   CallingConv::ID CC = F->getCallingConv();
3098   if (CC != CallingConv::C)
3099     return false;
3100 
3101   if (Subtarget->isCallingConvWin64(CC))
3102     return false;
3103 
3104   if (!Subtarget->is64Bit())
3105     return false;
3106 
3107   if (Subtarget->useSoftFloat())
3108     return false;
3109 
3110   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3111   unsigned GPRCnt = 0;
3112   unsigned FPRCnt = 0;
3113   for (auto const &Arg : F->args()) {
3114     if (Arg.hasAttribute(Attribute::ByVal) ||
3115         Arg.hasAttribute(Attribute::InReg) ||
3116         Arg.hasAttribute(Attribute::StructRet) ||
3117         Arg.hasAttribute(Attribute::SwiftSelf) ||
3118         Arg.hasAttribute(Attribute::SwiftAsync) ||
3119         Arg.hasAttribute(Attribute::SwiftError) ||
3120         Arg.hasAttribute(Attribute::Nest))
3121       return false;
3122 
3123     Type *ArgTy = Arg.getType();
3124     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3125       return false;
3126 
3127     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3128     if (!ArgVT.isSimple()) return false;
3129     switch (ArgVT.getSimpleVT().SimpleTy) {
3130     default: return false;
3131     case MVT::i32:
3132     case MVT::i64:
3133       ++GPRCnt;
3134       break;
3135     case MVT::f32:
3136     case MVT::f64:
3137       if (!Subtarget->hasSSE1())
3138         return false;
3139       ++FPRCnt;
3140       break;
3141     }
3142 
3143     if (GPRCnt > 6)
3144       return false;
3145 
3146     if (FPRCnt > 8)
3147       return false;
3148   }
3149 
3150   static const MCPhysReg GPR32ArgRegs[] = {
3151     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3152   };
3153   static const MCPhysReg GPR64ArgRegs[] = {
3154     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3155   };
3156   static const MCPhysReg XMMArgRegs[] = {
3157     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3158     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3159   };
3160 
3161   unsigned GPRIdx = 0;
3162   unsigned FPRIdx = 0;
3163   for (auto const &Arg : F->args()) {
3164     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3165     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3166     unsigned SrcReg;
3167     switch (VT.SimpleTy) {
3168     default: llvm_unreachable("Unexpected value type.");
3169     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3170     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3171     case MVT::f32: [[fallthrough]];
3172     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3173     }
3174     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3175     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3176     // Without this, EmitLiveInCopies may eliminate the livein if its only
3177     // use is a bitcast (which isn't turned into an instruction).
3178     Register ResultReg = createResultReg(RC);
3179     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3180             TII.get(TargetOpcode::COPY), ResultReg)
3181       .addReg(DstReg, getKillRegState(true));
3182     updateValueMap(&Arg, ResultReg);
3183   }
3184   return true;
3185 }
3186 
3187 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3188                                                   CallingConv::ID CC,
3189                                                   const CallBase *CB) {
3190   if (Subtarget->is64Bit())
3191     return 0;
3192   if (Subtarget->getTargetTriple().isOSMSVCRT())
3193     return 0;
3194   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3195       CC == CallingConv::HiPE || CC == CallingConv::Tail ||
3196       CC == CallingConv::SwiftTail)
3197     return 0;
3198 
3199   if (CB)
3200     if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3201         CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3202       return 0;
3203 
3204   return 4;
3205 }
3206 
3207 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3208   auto &OutVals       = CLI.OutVals;
3209   auto &OutFlags      = CLI.OutFlags;
3210   auto &OutRegs       = CLI.OutRegs;
3211   auto &Ins           = CLI.Ins;
3212   auto &InRegs        = CLI.InRegs;
3213   CallingConv::ID CC  = CLI.CallConv;
3214   bool &IsTailCall    = CLI.IsTailCall;
3215   bool IsVarArg       = CLI.IsVarArg;
3216   const Value *Callee = CLI.Callee;
3217   MCSymbol *Symbol    = CLI.Symbol;
3218   const auto *CB      = CLI.CB;
3219 
3220   bool Is64Bit        = Subtarget->is64Bit();
3221   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3222 
3223   // Call / invoke instructions with NoCfCheck attribute require special
3224   // handling.
3225   if (CB && CB->doesNoCfCheck())
3226     return false;
3227 
3228   // Functions with no_caller_saved_registers that need special handling.
3229   if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
3230     return false;
3231 
3232   // Functions with no_callee_saved_registers that need special handling.
3233   if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
3234     return false;
3235 
3236   // Indirect calls with CFI checks need special handling.
3237   if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi))
3238     return false;
3239 
3240   // Functions using thunks for indirect calls need to use SDISel.
3241   if (Subtarget->useIndirectThunkCalls())
3242     return false;
3243 
3244   // Handle only C and fastcc calling conventions for now.
3245   switch (CC) {
3246   default: return false;
3247   case CallingConv::C:
3248   case CallingConv::Fast:
3249   case CallingConv::Tail:
3250   case CallingConv::Swift:
3251   case CallingConv::SwiftTail:
3252   case CallingConv::X86_FastCall:
3253   case CallingConv::X86_StdCall:
3254   case CallingConv::X86_ThisCall:
3255   case CallingConv::Win64:
3256   case CallingConv::X86_64_SysV:
3257   case CallingConv::CFGuard_Check:
3258     break;
3259   }
3260 
3261   // Allow SelectionDAG isel to handle tail calls.
3262   if (IsTailCall)
3263     return false;
3264 
3265   // fastcc with -tailcallopt is intended to provide a guaranteed
3266   // tail call optimization. Fastisel doesn't know how to do that.
3267   if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3268       CC == CallingConv::Tail || CC == CallingConv::SwiftTail)
3269     return false;
3270 
3271   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3272   // x86-32. Special handling for x86-64 is implemented.
3273   if (IsVarArg && IsWin64)
3274     return false;
3275 
3276   // Don't know about inalloca yet.
3277   if (CLI.CB && CLI.CB->hasInAllocaArgument())
3278     return false;
3279 
3280   for (auto Flag : CLI.OutFlags)
3281     if (Flag.isSwiftError() || Flag.isPreallocated())
3282       return false;
3283 
3284   SmallVector<MVT, 16> OutVTs;
3285   SmallVector<unsigned, 16> ArgRegs;
3286 
3287   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3288   // instruction. This is safe because it is common to all FastISel supported
3289   // calling conventions on x86.
3290   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3291     Value *&Val = OutVals[i];
3292     ISD::ArgFlagsTy Flags = OutFlags[i];
3293     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3294       if (CI->getBitWidth() < 32) {
3295         if (Flags.isSExt())
3296           Val = ConstantInt::get(CI->getContext(), CI->getValue().sext(32));
3297         else
3298           Val = ConstantInt::get(CI->getContext(), CI->getValue().zext(32));
3299       }
3300     }
3301 
3302     // Passing bools around ends up doing a trunc to i1 and passing it.
3303     // Codegen this as an argument + "and 1".
3304     MVT VT;
3305     auto *TI = dyn_cast<TruncInst>(Val);
3306     unsigned ResultReg;
3307     if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3308         (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3309       Value *PrevVal = TI->getOperand(0);
3310       ResultReg = getRegForValue(PrevVal);
3311 
3312       if (!ResultReg)
3313         return false;
3314 
3315       if (!isTypeLegal(PrevVal->getType(), VT))
3316         return false;
3317 
3318       ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
3319     } else {
3320       if (!isTypeLegal(Val->getType(), VT) ||
3321           (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3322         return false;
3323       ResultReg = getRegForValue(Val);
3324     }
3325 
3326     if (!ResultReg)
3327       return false;
3328 
3329     ArgRegs.push_back(ResultReg);
3330     OutVTs.push_back(VT);
3331   }
3332 
3333   // Analyze operands of the call, assigning locations to each operand.
3334   SmallVector<CCValAssign, 16> ArgLocs;
3335   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3336 
3337   // Allocate shadow area for Win64
3338   if (IsWin64)
3339     CCInfo.AllocateStack(32, Align(8));
3340 
3341   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3342 
3343   // Get a count of how many bytes are to be pushed on the stack.
3344   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3345 
3346   // Issue CALLSEQ_START
3347   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3348   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown))
3349     .addImm(NumBytes).addImm(0).addImm(0);
3350 
3351   // Walk the register/memloc assignments, inserting copies/loads.
3352   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3353   for (const CCValAssign &VA : ArgLocs) {
3354     const Value *ArgVal = OutVals[VA.getValNo()];
3355     MVT ArgVT = OutVTs[VA.getValNo()];
3356 
3357     if (ArgVT == MVT::x86mmx)
3358       return false;
3359 
3360     unsigned ArgReg = ArgRegs[VA.getValNo()];
3361 
3362     // Promote the value if needed.
3363     switch (VA.getLocInfo()) {
3364     case CCValAssign::Full: break;
3365     case CCValAssign::SExt: {
3366       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3367              "Unexpected extend");
3368 
3369       if (ArgVT == MVT::i1)
3370         return false;
3371 
3372       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3373                                        ArgVT, ArgReg);
3374       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3375       ArgVT = VA.getLocVT();
3376       break;
3377     }
3378     case CCValAssign::ZExt: {
3379       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3380              "Unexpected extend");
3381 
3382       // Handle zero-extension from i1 to i8, which is common.
3383       if (ArgVT == MVT::i1) {
3384         // Set the high bits to zero.
3385         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
3386         ArgVT = MVT::i8;
3387 
3388         if (ArgReg == 0)
3389           return false;
3390       }
3391 
3392       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3393                                        ArgVT, ArgReg);
3394       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3395       ArgVT = VA.getLocVT();
3396       break;
3397     }
3398     case CCValAssign::AExt: {
3399       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3400              "Unexpected extend");
3401       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3402                                        ArgVT, ArgReg);
3403       if (!Emitted)
3404         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3405                                     ArgVT, ArgReg);
3406       if (!Emitted)
3407         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3408                                     ArgVT, ArgReg);
3409 
3410       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3411       ArgVT = VA.getLocVT();
3412       break;
3413     }
3414     case CCValAssign::BCvt: {
3415       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
3416       assert(ArgReg && "Failed to emit a bitcast!");
3417       ArgVT = VA.getLocVT();
3418       break;
3419     }
3420     case CCValAssign::VExt:
3421       // VExt has not been implemented, so this should be impossible to reach
3422       // for now.  However, fallback to Selection DAG isel once implemented.
3423       return false;
3424     case CCValAssign::AExtUpper:
3425     case CCValAssign::SExtUpper:
3426     case CCValAssign::ZExtUpper:
3427     case CCValAssign::FPExt:
3428     case CCValAssign::Trunc:
3429       llvm_unreachable("Unexpected loc info!");
3430     case CCValAssign::Indirect:
3431       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3432       // support this.
3433       return false;
3434     }
3435 
3436     if (VA.isRegLoc()) {
3437       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3438               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3439       OutRegs.push_back(VA.getLocReg());
3440     } else {
3441       assert(VA.isMemLoc() && "Unknown value location!");
3442 
3443       // Don't emit stores for undef values.
3444       if (isa<UndefValue>(ArgVal))
3445         continue;
3446 
3447       unsigned LocMemOffset = VA.getLocMemOffset();
3448       X86AddressMode AM;
3449       AM.Base.Reg = RegInfo->getStackRegister();
3450       AM.Disp = LocMemOffset;
3451       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3452       Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3453       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3454           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3455           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3456       if (Flags.isByVal()) {
3457         X86AddressMode SrcAM;
3458         SrcAM.Base.Reg = ArgReg;
3459         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3460           return false;
3461       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3462         // If this is a really simple value, emit this with the Value* version
3463         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3464         // as it can cause us to reevaluate the argument.
3465         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3466           return false;
3467       } else {
3468         if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
3469           return false;
3470       }
3471     }
3472   }
3473 
3474   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3475   // GOT pointer.
3476   if (Subtarget->isPICStyleGOT()) {
3477     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3478     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3479             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3480   }
3481 
3482   if (Is64Bit && IsVarArg && !IsWin64) {
3483     // From AMD64 ABI document:
3484     // For calls that may call functions that use varargs or stdargs
3485     // (prototype-less calls or calls to functions containing ellipsis (...) in
3486     // the declaration) %al is used as hidden argument to specify the number
3487     // of SSE registers used. The contents of %al do not need to match exactly
3488     // the number of registers, but must be an ubound on the number of SSE
3489     // registers used and is in the range 0 - 8 inclusive.
3490 
3491     // Count the number of XMM registers allocated.
3492     static const MCPhysReg XMMArgRegs[] = {
3493       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3494       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3495     };
3496     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3497     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3498            && "SSE registers cannot be used when SSE is disabled");
3499     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
3500             X86::AL).addImm(NumXMMRegs);
3501   }
3502 
3503   // Materialize callee address in a register. FIXME: GV address can be
3504   // handled with a CALLpcrel32 instead.
3505   X86AddressMode CalleeAM;
3506   if (!X86SelectCallAddress(Callee, CalleeAM))
3507     return false;
3508 
3509   unsigned CalleeOp = 0;
3510   const GlobalValue *GV = nullptr;
3511   if (CalleeAM.GV != nullptr) {
3512     GV = CalleeAM.GV;
3513   } else if (CalleeAM.Base.Reg != 0) {
3514     CalleeOp = CalleeAM.Base.Reg;
3515   } else
3516     return false;
3517 
3518   // Issue the call.
3519   MachineInstrBuilder MIB;
3520   if (CalleeOp) {
3521     // Register-indirect call.
3522     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3523     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc))
3524       .addReg(CalleeOp);
3525   } else {
3526     // Direct call.
3527     assert(GV && "Not a direct call");
3528     // See if we need any target-specific flags on the GV operand.
3529     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3530     if (OpFlags == X86II::MO_PLT && !Is64Bit &&
3531         TM.getRelocationModel() == Reloc::Static && isa<Function>(GV) &&
3532         cast<Function>(GV)->isIntrinsic())
3533       OpFlags = X86II::MO_NO_FLAG;
3534 
3535     // This will be a direct call, or an indirect call through memory for
3536     // NonLazyBind calls or dllimport calls.
3537     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3538                     OpFlags == X86II::MO_GOTPCREL ||
3539                     OpFlags == X86II::MO_GOTPCREL_NORELAX ||
3540                     OpFlags == X86II::MO_COFFSTUB;
3541     unsigned CallOpc = NeedLoad
3542                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3543                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3544 
3545     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc));
3546     if (NeedLoad)
3547       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3548     if (Symbol)
3549       MIB.addSym(Symbol, OpFlags);
3550     else
3551       MIB.addGlobalAddress(GV, 0, OpFlags);
3552     if (NeedLoad)
3553       MIB.addReg(0);
3554   }
3555 
3556   // Add a register mask operand representing the call-preserved registers.
3557   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3558   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3559 
3560   // Add an implicit use GOT pointer in EBX.
3561   if (Subtarget->isPICStyleGOT())
3562     MIB.addReg(X86::EBX, RegState::Implicit);
3563 
3564   if (Is64Bit && IsVarArg && !IsWin64)
3565     MIB.addReg(X86::AL, RegState::Implicit);
3566 
3567   // Add implicit physical register uses to the call.
3568   for (auto Reg : OutRegs)
3569     MIB.addReg(Reg, RegState::Implicit);
3570 
3571   // Issue CALLSEQ_END
3572   unsigned NumBytesForCalleeToPop =
3573       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3574                        TM.Options.GuaranteedTailCallOpt)
3575           ? NumBytes // Callee pops everything.
3576           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3577   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3578   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
3579     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3580 
3581   // Now handle call return values.
3582   SmallVector<CCValAssign, 16> RVLocs;
3583   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3584                     CLI.RetTy->getContext());
3585   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3586 
3587   // Copy all of the result registers out of their specified physreg.
3588   Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3589   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3590     CCValAssign &VA = RVLocs[i];
3591     EVT CopyVT = VA.getValVT();
3592     unsigned CopyReg = ResultReg + i;
3593     Register SrcReg = VA.getLocReg();
3594 
3595     // If this is x86-64, and we disabled SSE, we can't return FP values
3596     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3597         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3598       report_fatal_error("SSE register return with SSE disabled");
3599     }
3600 
3601     // If we prefer to use the value in xmm registers, copy it out as f80 and
3602     // use a truncate to move it from fp stack reg to xmm reg.
3603     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3604         isScalarFPTypeInSSEReg(VA.getValVT())) {
3605       CopyVT = MVT::f80;
3606       CopyReg = createResultReg(&X86::RFP80RegClass);
3607     }
3608 
3609     // Copy out the result.
3610     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3611             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3612     InRegs.push_back(VA.getLocReg());
3613 
3614     // Round the f80 to the right size, which also moves it to the appropriate
3615     // xmm register. This is accomplished by storing the f80 value in memory
3616     // and then loading it back.
3617     if (CopyVT != VA.getValVT()) {
3618       EVT ResVT = VA.getValVT();
3619       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3620       unsigned MemSize = ResVT.getSizeInBits()/8;
3621       int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3622       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3623                                 TII.get(Opc)), FI)
3624         .addReg(CopyReg);
3625       Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3626       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3627                                 TII.get(Opc), ResultReg + i), FI);
3628     }
3629   }
3630 
3631   CLI.ResultReg = ResultReg;
3632   CLI.NumResultRegs = RVLocs.size();
3633   CLI.Call = MIB;
3634 
3635   return true;
3636 }
3637 
3638 bool
3639 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3640   switch (I->getOpcode()) {
3641   default: break;
3642   case Instruction::Load:
3643     return X86SelectLoad(I);
3644   case Instruction::Store:
3645     return X86SelectStore(I);
3646   case Instruction::Ret:
3647     return X86SelectRet(I);
3648   case Instruction::ICmp:
3649   case Instruction::FCmp:
3650     return X86SelectCmp(I);
3651   case Instruction::ZExt:
3652     return X86SelectZExt(I);
3653   case Instruction::SExt:
3654     return X86SelectSExt(I);
3655   case Instruction::Br:
3656     return X86SelectBranch(I);
3657   case Instruction::LShr:
3658   case Instruction::AShr:
3659   case Instruction::Shl:
3660     return X86SelectShift(I);
3661   case Instruction::SDiv:
3662   case Instruction::UDiv:
3663   case Instruction::SRem:
3664   case Instruction::URem:
3665     return X86SelectDivRem(I);
3666   case Instruction::Select:
3667     return X86SelectSelect(I);
3668   case Instruction::Trunc:
3669     return X86SelectTrunc(I);
3670   case Instruction::FPExt:
3671     return X86SelectFPExt(I);
3672   case Instruction::FPTrunc:
3673     return X86SelectFPTrunc(I);
3674   case Instruction::SIToFP:
3675     return X86SelectSIToFP(I);
3676   case Instruction::UIToFP:
3677     return X86SelectUIToFP(I);
3678   case Instruction::IntToPtr: // Deliberate fall-through.
3679   case Instruction::PtrToInt: {
3680     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3681     EVT DstVT = TLI.getValueType(DL, I->getType());
3682     if (DstVT.bitsGT(SrcVT))
3683       return X86SelectZExt(I);
3684     if (DstVT.bitsLT(SrcVT))
3685       return X86SelectTrunc(I);
3686     Register Reg = getRegForValue(I->getOperand(0));
3687     if (Reg == 0) return false;
3688     updateValueMap(I, Reg);
3689     return true;
3690   }
3691   case Instruction::BitCast: {
3692     // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3693     if (!Subtarget->hasSSE2())
3694       return false;
3695 
3696     MVT SrcVT, DstVT;
3697     if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3698         !isTypeLegal(I->getType(), DstVT))
3699       return false;
3700 
3701     // Only allow vectors that use xmm/ymm/zmm.
3702     if (!SrcVT.isVector() || !DstVT.isVector() ||
3703         SrcVT.getVectorElementType() == MVT::i1 ||
3704         DstVT.getVectorElementType() == MVT::i1)
3705       return false;
3706 
3707     Register Reg = getRegForValue(I->getOperand(0));
3708     if (!Reg)
3709       return false;
3710 
3711     // Emit a reg-reg copy so we don't propagate cached known bits information
3712     // with the wrong VT if we fall out of fast isel after selecting this.
3713     const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3714     Register ResultReg = createResultReg(DstClass);
3715     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3716               TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3717 
3718     updateValueMap(I, ResultReg);
3719     return true;
3720   }
3721   }
3722 
3723   return false;
3724 }
3725 
3726 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3727   if (VT > MVT::i64)
3728     return 0;
3729 
3730   uint64_t Imm = CI->getZExtValue();
3731   if (Imm == 0) {
3732     Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3733     switch (VT.SimpleTy) {
3734     default: llvm_unreachable("Unexpected value type");
3735     case MVT::i1:
3736     case MVT::i8:
3737       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
3738     case MVT::i16:
3739       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
3740     case MVT::i32:
3741       return SrcReg;
3742     case MVT::i64: {
3743       Register ResultReg = createResultReg(&X86::GR64RegClass);
3744       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3745               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3746         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3747       return ResultReg;
3748     }
3749     }
3750   }
3751 
3752   unsigned Opc = 0;
3753   switch (VT.SimpleTy) {
3754   default: llvm_unreachable("Unexpected value type");
3755   case MVT::i1:
3756     VT = MVT::i8;
3757     [[fallthrough]];
3758   case MVT::i8:  Opc = X86::MOV8ri;  break;
3759   case MVT::i16: Opc = X86::MOV16ri; break;
3760   case MVT::i32: Opc = X86::MOV32ri; break;
3761   case MVT::i64: {
3762     if (isUInt<32>(Imm))
3763       Opc = X86::MOV32ri64;
3764     else if (isInt<32>(Imm))
3765       Opc = X86::MOV64ri32;
3766     else
3767       Opc = X86::MOV64ri;
3768     break;
3769   }
3770   }
3771   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3772 }
3773 
3774 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3775   if (CFP->isNullValue())
3776     return fastMaterializeFloatZero(CFP);
3777 
3778   // Can't handle alternate code models yet.
3779   CodeModel::Model CM = TM.getCodeModel();
3780   if (CM != CodeModel::Small && CM != CodeModel::Medium &&
3781       CM != CodeModel::Large)
3782     return 0;
3783 
3784   // Get opcode and regclass of the output for the given load instruction.
3785   unsigned Opc = 0;
3786   bool HasSSE1 = Subtarget->hasSSE1();
3787   bool HasSSE2 = Subtarget->hasSSE2();
3788   bool HasAVX = Subtarget->hasAVX();
3789   bool HasAVX512 = Subtarget->hasAVX512();
3790   switch (VT.SimpleTy) {
3791   default: return 0;
3792   case MVT::f32:
3793     Opc = HasAVX512 ? X86::VMOVSSZrm_alt
3794           : HasAVX  ? X86::VMOVSSrm_alt
3795           : HasSSE1 ? X86::MOVSSrm_alt
3796                     : X86::LD_Fp32m;
3797     break;
3798   case MVT::f64:
3799     Opc = HasAVX512 ? X86::VMOVSDZrm_alt
3800           : HasAVX  ? X86::VMOVSDrm_alt
3801           : HasSSE2 ? X86::MOVSDrm_alt
3802                     : X86::LD_Fp64m;
3803     break;
3804   case MVT::f80:
3805     // No f80 support yet.
3806     return 0;
3807   }
3808 
3809   // MachineConstantPool wants an explicit alignment.
3810   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3811 
3812   // x86-32 PIC requires a PIC base register for constant pools.
3813   unsigned PICBase = 0;
3814   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3815   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3816     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3817   else if (OpFlag == X86II::MO_GOTOFF)
3818     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3819   else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large)
3820     PICBase = X86::RIP;
3821 
3822   // Create the load from the constant pool.
3823   unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3824   Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3825 
3826   // Large code model only applies to 64-bit mode.
3827   if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3828     Register AddrReg = createResultReg(&X86::GR64RegClass);
3829     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3830             AddrReg)
3831       .addConstantPoolIndex(CPI, 0, OpFlag);
3832     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3833                                       TII.get(Opc), ResultReg);
3834     addRegReg(MIB, AddrReg, false, PICBase, false);
3835     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3836         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3837         MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3838     MIB->addMemOperand(*FuncInfo.MF, MMO);
3839     return ResultReg;
3840   }
3841 
3842   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3843                                    TII.get(Opc), ResultReg),
3844                            CPI, PICBase, OpFlag);
3845   return ResultReg;
3846 }
3847 
3848 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3849   // Can't handle large GlobalValues yet.
3850   if (TM.getCodeModel() != CodeModel::Small &&
3851       TM.getCodeModel() != CodeModel::Medium)
3852     return 0;
3853   if (TM.isLargeGlobalValue(GV))
3854     return 0;
3855 
3856   // Materialize addresses with LEA/MOV instructions.
3857   X86AddressMode AM;
3858   if (X86SelectAddress(GV, AM)) {
3859     // If the expression is just a basereg, then we're done, otherwise we need
3860     // to emit an LEA.
3861     if (AM.BaseType == X86AddressMode::RegBase &&
3862         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3863       return AM.Base.Reg;
3864 
3865     Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3866     if (TM.getRelocationModel() == Reloc::Static &&
3867         TLI.getPointerTy(DL) == MVT::i64) {
3868       // The displacement code could be more than 32 bits away so we need to use
3869       // an instruction with a 64 bit immediate
3870       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3871               ResultReg)
3872         .addGlobalAddress(GV);
3873     } else {
3874       unsigned Opc =
3875           TLI.getPointerTy(DL) == MVT::i32
3876               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3877               : X86::LEA64r;
3878       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3879                              TII.get(Opc), ResultReg), AM);
3880     }
3881     return ResultReg;
3882   }
3883   return 0;
3884 }
3885 
3886 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3887   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3888 
3889   // Only handle simple types.
3890   if (!CEVT.isSimple())
3891     return 0;
3892   MVT VT = CEVT.getSimpleVT();
3893 
3894   if (const auto *CI = dyn_cast<ConstantInt>(C))
3895     return X86MaterializeInt(CI, VT);
3896   if (const auto *CFP = dyn_cast<ConstantFP>(C))
3897     return X86MaterializeFP(CFP, VT);
3898   if (const auto *GV = dyn_cast<GlobalValue>(C))
3899     return X86MaterializeGV(GV, VT);
3900   if (isa<UndefValue>(C)) {
3901     unsigned Opc = 0;
3902     switch (VT.SimpleTy) {
3903     default:
3904       break;
3905     case MVT::f32:
3906       if (!Subtarget->hasSSE1())
3907         Opc = X86::LD_Fp032;
3908       break;
3909     case MVT::f64:
3910       if (!Subtarget->hasSSE2())
3911         Opc = X86::LD_Fp064;
3912       break;
3913     case MVT::f80:
3914       Opc = X86::LD_Fp080;
3915       break;
3916     }
3917 
3918     if (Opc) {
3919       Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3920       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
3921               ResultReg);
3922       return ResultReg;
3923     }
3924   }
3925 
3926   return 0;
3927 }
3928 
3929 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3930   // Fail on dynamic allocas. At this point, getRegForValue has already
3931   // checked its CSE maps, so if we're here trying to handle a dynamic
3932   // alloca, we're not going to succeed. X86SelectAddress has a
3933   // check for dynamic allocas, because it's called directly from
3934   // various places, but targetMaterializeAlloca also needs a check
3935   // in order to avoid recursion between getRegForValue,
3936   // X86SelectAddrss, and targetMaterializeAlloca.
3937   if (!FuncInfo.StaticAllocaMap.count(C))
3938     return 0;
3939   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3940 
3941   X86AddressMode AM;
3942   if (!X86SelectAddress(C, AM))
3943     return 0;
3944   unsigned Opc =
3945       TLI.getPointerTy(DL) == MVT::i32
3946           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3947           : X86::LEA64r;
3948   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3949   Register ResultReg = createResultReg(RC);
3950   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3951                          TII.get(Opc), ResultReg), AM);
3952   return ResultReg;
3953 }
3954 
3955 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3956   MVT VT;
3957   if (!isTypeLegal(CF->getType(), VT))
3958     return 0;
3959 
3960   // Get opcode and regclass for the given zero.
3961   bool HasSSE1 = Subtarget->hasSSE1();
3962   bool HasSSE2 = Subtarget->hasSSE2();
3963   bool HasAVX512 = Subtarget->hasAVX512();
3964   unsigned Opc = 0;
3965   switch (VT.SimpleTy) {
3966   default: return 0;
3967   case MVT::f16:
3968     Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH;
3969     break;
3970   case MVT::f32:
3971     Opc = HasAVX512 ? X86::AVX512_FsFLD0SS
3972           : HasSSE1 ? X86::FsFLD0SS
3973                     : X86::LD_Fp032;
3974     break;
3975   case MVT::f64:
3976     Opc = HasAVX512 ? X86::AVX512_FsFLD0SD
3977           : HasSSE2 ? X86::FsFLD0SD
3978                     : X86::LD_Fp064;
3979     break;
3980   case MVT::f80:
3981     // No f80 support yet.
3982     return 0;
3983   }
3984 
3985   Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3986   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
3987   return ResultReg;
3988 }
3989 
3990 
3991 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3992                                       const LoadInst *LI) {
3993   const Value *Ptr = LI->getPointerOperand();
3994   X86AddressMode AM;
3995   if (!X86SelectAddress(Ptr, AM))
3996     return false;
3997 
3998   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3999 
4000   unsigned Size = DL.getTypeAllocSize(LI->getType());
4001 
4002   SmallVector<MachineOperand, 8> AddrOps;
4003   AM.getFullAddress(AddrOps);
4004 
4005   MachineInstr *Result = XII.foldMemoryOperandImpl(
4006       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
4007       /*AllowCommute=*/true);
4008   if (!Result)
4009     return false;
4010 
4011   // The index register could be in the wrong register class.  Unfortunately,
4012   // foldMemoryOperandImpl could have commuted the instruction so its not enough
4013   // to just look at OpNo + the offset to the index reg.  We actually need to
4014   // scan the instruction to find the index reg and see if its the correct reg
4015   // class.
4016   unsigned OperandNo = 0;
4017   for (MachineInstr::mop_iterator I = Result->operands_begin(),
4018        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
4019     MachineOperand &MO = *I;
4020     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
4021       continue;
4022     // Found the index reg, now try to rewrite it.
4023     Register IndexReg = constrainOperandRegClass(Result->getDesc(),
4024                                                  MO.getReg(), OperandNo);
4025     if (IndexReg == MO.getReg())
4026       continue;
4027     MO.setReg(IndexReg);
4028   }
4029 
4030   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
4031   Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
4032   MachineBasicBlock::iterator I(MI);
4033   removeDeadCode(I, std::next(I));
4034   return true;
4035 }
4036 
4037 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
4038                                         const TargetRegisterClass *RC,
4039                                         unsigned Op0, unsigned Op1,
4040                                         unsigned Op2, unsigned Op3) {
4041   const MCInstrDesc &II = TII.get(MachineInstOpcode);
4042 
4043   Register ResultReg = createResultReg(RC);
4044   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4045   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4046   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4047   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4048 
4049   if (II.getNumDefs() >= 1)
4050     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
4051         .addReg(Op0)
4052         .addReg(Op1)
4053         .addReg(Op2)
4054         .addReg(Op3);
4055   else {
4056     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
4057         .addReg(Op0)
4058         .addReg(Op1)
4059         .addReg(Op2)
4060         .addReg(Op3);
4061     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
4062             ResultReg)
4063         .addReg(II.implicit_defs()[0]);
4064   }
4065   return ResultReg;
4066 }
4067 
4068 
4069 namespace llvm {
4070   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4071                                 const TargetLibraryInfo *libInfo) {
4072     return new X86FastISel(funcInfo, libInfo);
4073   }
4074 }
4075