1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/IntrinsicsX86.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Target/TargetOptions.h" 43 using namespace llvm; 44 45 namespace { 46 47 class X86FastISel final : public FastISel { 48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 49 /// make the right decision when generating code for different targets. 50 const X86Subtarget *Subtarget; 51 52 public: 53 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 54 const TargetLibraryInfo *libInfo) 55 : FastISel(funcInfo, libInfo) { 56 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 57 } 58 59 bool fastSelectInstruction(const Instruction *I) override; 60 61 /// The specified machine instr operand is a vreg, and that 62 /// vreg is being provided by the specified load instruction. If possible, 63 /// try to fold the load as an operand to the instruction, returning true if 64 /// possible. 65 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 66 const LoadInst *LI) override; 67 68 bool fastLowerArguments() override; 69 bool fastLowerCall(CallLoweringInfo &CLI) override; 70 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 71 72 #include "X86GenFastISel.inc" 73 74 private: 75 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 76 const DebugLoc &DL); 77 78 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 79 unsigned &ResultReg, unsigned Alignment = 1); 80 81 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 82 MachineMemOperand *MMO = nullptr, bool Aligned = false); 83 bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 84 MachineMemOperand *MMO = nullptr, bool Aligned = false); 85 86 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 87 unsigned &ResultReg); 88 89 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 90 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 91 92 bool X86SelectLoad(const Instruction *I); 93 94 bool X86SelectStore(const Instruction *I); 95 96 bool X86SelectRet(const Instruction *I); 97 98 bool X86SelectCmp(const Instruction *I); 99 100 bool X86SelectZExt(const Instruction *I); 101 102 bool X86SelectSExt(const Instruction *I); 103 104 bool X86SelectBranch(const Instruction *I); 105 106 bool X86SelectShift(const Instruction *I); 107 108 bool X86SelectDivRem(const Instruction *I); 109 110 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 111 112 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 113 114 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 115 116 bool X86SelectSelect(const Instruction *I); 117 118 bool X86SelectTrunc(const Instruction *I); 119 120 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 121 const TargetRegisterClass *RC); 122 123 bool X86SelectFPExt(const Instruction *I); 124 bool X86SelectFPTrunc(const Instruction *I); 125 bool X86SelectSIToFP(const Instruction *I); 126 bool X86SelectUIToFP(const Instruction *I); 127 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 128 129 const X86InstrInfo *getInstrInfo() const { 130 return Subtarget->getInstrInfo(); 131 } 132 const X86TargetMachine *getTargetMachine() const { 133 return static_cast<const X86TargetMachine *>(&TM); 134 } 135 136 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 137 138 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 139 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 140 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 141 unsigned fastMaterializeConstant(const Constant *C) override; 142 143 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 144 145 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 146 147 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 148 /// computed in an SSE register, not on the X87 floating point stack. 149 bool isScalarFPTypeInSSEReg(EVT VT) const { 150 return (VT == MVT::f64 && Subtarget->hasSSE2()) || 151 (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16; 152 } 153 154 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 155 156 bool IsMemcpySmall(uint64_t Len); 157 158 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 159 X86AddressMode SrcAM, uint64_t Len); 160 161 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 162 const Value *Cond); 163 164 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 165 X86AddressMode &AM); 166 167 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 168 const TargetRegisterClass *RC, unsigned Op0, 169 unsigned Op1, unsigned Op2, unsigned Op3); 170 }; 171 172 } // end anonymous namespace. 173 174 static std::pair<unsigned, bool> 175 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 176 unsigned CC; 177 bool NeedSwap = false; 178 179 // SSE Condition code mapping: 180 // 0 - EQ 181 // 1 - LT 182 // 2 - LE 183 // 3 - UNORD 184 // 4 - NEQ 185 // 5 - NLT 186 // 6 - NLE 187 // 7 - ORD 188 switch (Predicate) { 189 default: llvm_unreachable("Unexpected predicate"); 190 case CmpInst::FCMP_OEQ: CC = 0; break; 191 case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]]; 192 case CmpInst::FCMP_OLT: CC = 1; break; 193 case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]]; 194 case CmpInst::FCMP_OLE: CC = 2; break; 195 case CmpInst::FCMP_UNO: CC = 3; break; 196 case CmpInst::FCMP_UNE: CC = 4; break; 197 case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]]; 198 case CmpInst::FCMP_UGE: CC = 5; break; 199 case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]]; 200 case CmpInst::FCMP_UGT: CC = 6; break; 201 case CmpInst::FCMP_ORD: CC = 7; break; 202 case CmpInst::FCMP_UEQ: CC = 8; break; 203 case CmpInst::FCMP_ONE: CC = 12; break; 204 } 205 206 return std::make_pair(CC, NeedSwap); 207 } 208 209 /// Adds a complex addressing mode to the given machine instr builder. 210 /// Note, this will constrain the index register. If its not possible to 211 /// constrain the given index register, then a new one will be created. The 212 /// IndexReg field of the addressing mode will be updated to match in this case. 213 const MachineInstrBuilder & 214 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 215 X86AddressMode &AM) { 216 // First constrain the index register. It needs to be a GR64_NOSP. 217 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 218 MIB->getNumOperands() + 219 X86::AddrIndexReg); 220 return ::addFullAddress(MIB, AM); 221 } 222 223 /// Check if it is possible to fold the condition from the XALU intrinsic 224 /// into the user. The condition code will only be updated on success. 225 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 226 const Value *Cond) { 227 if (!isa<ExtractValueInst>(Cond)) 228 return false; 229 230 const auto *EV = cast<ExtractValueInst>(Cond); 231 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 232 return false; 233 234 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 235 MVT RetVT; 236 const Function *Callee = II->getCalledFunction(); 237 Type *RetTy = 238 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 239 if (!isTypeLegal(RetTy, RetVT)) 240 return false; 241 242 if (RetVT != MVT::i32 && RetVT != MVT::i64) 243 return false; 244 245 X86::CondCode TmpCC; 246 switch (II->getIntrinsicID()) { 247 default: return false; 248 case Intrinsic::sadd_with_overflow: 249 case Intrinsic::ssub_with_overflow: 250 case Intrinsic::smul_with_overflow: 251 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 252 case Intrinsic::uadd_with_overflow: 253 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 254 } 255 256 // Check if both instructions are in the same basic block. 257 if (II->getParent() != I->getParent()) 258 return false; 259 260 // Make sure nothing is in the way 261 BasicBlock::const_iterator Start(I); 262 BasicBlock::const_iterator End(II); 263 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 264 // We only expect extractvalue instructions between the intrinsic and the 265 // instruction to be selected. 266 if (!isa<ExtractValueInst>(Itr)) 267 return false; 268 269 // Check that the extractvalue operand comes from the intrinsic. 270 const auto *EVI = cast<ExtractValueInst>(Itr); 271 if (EVI->getAggregateOperand() != II) 272 return false; 273 } 274 275 // Make sure no potentially eflags clobbering phi moves can be inserted in 276 // between. 277 auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); }; 278 if (I->isTerminator() && llvm::any_of(successors(I), HasPhis)) 279 return false; 280 281 // Make sure there are no potentially eflags clobbering constant 282 // materializations in between. 283 if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); })) 284 return false; 285 286 CC = TmpCC; 287 return true; 288 } 289 290 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 291 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 292 if (evt == MVT::Other || !evt.isSimple()) 293 // Unhandled type. Halt "fast" selection and bail. 294 return false; 295 296 VT = evt.getSimpleVT(); 297 // For now, require SSE/SSE2 for performing floating-point operations, 298 // since x87 requires additional work. 299 if (VT == MVT::f64 && !Subtarget->hasSSE2()) 300 return false; 301 if (VT == MVT::f32 && !Subtarget->hasSSE1()) 302 return false; 303 // Similarly, no f80 support yet. 304 if (VT == MVT::f80) 305 return false; 306 // We only handle legal types. For example, on x86-32 the instruction 307 // selector contains all of the 64-bit instructions from x86-64, 308 // under the assumption that i64 won't be used if the target doesn't 309 // support it. 310 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 311 } 312 313 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 314 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 315 /// Return true and the result register by reference if it is possible. 316 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 317 MachineMemOperand *MMO, unsigned &ResultReg, 318 unsigned Alignment) { 319 bool HasSSE1 = Subtarget->hasSSE1(); 320 bool HasSSE2 = Subtarget->hasSSE2(); 321 bool HasSSE41 = Subtarget->hasSSE41(); 322 bool HasAVX = Subtarget->hasAVX(); 323 bool HasAVX2 = Subtarget->hasAVX2(); 324 bool HasAVX512 = Subtarget->hasAVX512(); 325 bool HasVLX = Subtarget->hasVLX(); 326 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 327 328 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 329 if (VT == MVT::i1) 330 VT = MVT::i8; 331 332 // Get opcode and regclass of the output for the given load instruction. 333 unsigned Opc = 0; 334 switch (VT.SimpleTy) { 335 default: return false; 336 case MVT::i8: 337 Opc = X86::MOV8rm; 338 break; 339 case MVT::i16: 340 Opc = X86::MOV16rm; 341 break; 342 case MVT::i32: 343 Opc = X86::MOV32rm; 344 break; 345 case MVT::i64: 346 // Must be in x86-64 mode. 347 Opc = X86::MOV64rm; 348 break; 349 case MVT::f32: 350 Opc = HasAVX512 ? X86::VMOVSSZrm_alt 351 : HasAVX ? X86::VMOVSSrm_alt 352 : HasSSE1 ? X86::MOVSSrm_alt 353 : X86::LD_Fp32m; 354 break; 355 case MVT::f64: 356 Opc = HasAVX512 ? X86::VMOVSDZrm_alt 357 : HasAVX ? X86::VMOVSDrm_alt 358 : HasSSE2 ? X86::MOVSDrm_alt 359 : X86::LD_Fp64m; 360 break; 361 case MVT::f80: 362 // No f80 support yet. 363 return false; 364 case MVT::v4f32: 365 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 366 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 367 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 368 else if (Alignment >= 16) 369 Opc = HasVLX ? X86::VMOVAPSZ128rm : 370 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 371 else 372 Opc = HasVLX ? X86::VMOVUPSZ128rm : 373 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 374 break; 375 case MVT::v2f64: 376 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 377 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 378 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 379 else if (Alignment >= 16) 380 Opc = HasVLX ? X86::VMOVAPDZ128rm : 381 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 382 else 383 Opc = HasVLX ? X86::VMOVUPDZ128rm : 384 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 385 break; 386 case MVT::v4i32: 387 case MVT::v2i64: 388 case MVT::v8i16: 389 case MVT::v16i8: 390 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 391 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 392 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 393 else if (Alignment >= 16) 394 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 395 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 396 else 397 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 398 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 399 break; 400 case MVT::v8f32: 401 assert(HasAVX); 402 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 403 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 404 else if (IsNonTemporal && Alignment >= 16) 405 return false; // Force split for X86::VMOVNTDQArm 406 else if (Alignment >= 32) 407 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 408 else 409 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 410 break; 411 case MVT::v4f64: 412 assert(HasAVX); 413 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 414 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 415 else if (IsNonTemporal && Alignment >= 16) 416 return false; // Force split for X86::VMOVNTDQArm 417 else if (Alignment >= 32) 418 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 419 else 420 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 421 break; 422 case MVT::v8i32: 423 case MVT::v4i64: 424 case MVT::v16i16: 425 case MVT::v32i8: 426 assert(HasAVX); 427 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 428 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 429 else if (IsNonTemporal && Alignment >= 16) 430 return false; // Force split for X86::VMOVNTDQArm 431 else if (Alignment >= 32) 432 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 433 else 434 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 435 break; 436 case MVT::v16f32: 437 assert(HasAVX512); 438 if (IsNonTemporal && Alignment >= 64) 439 Opc = X86::VMOVNTDQAZrm; 440 else 441 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 442 break; 443 case MVT::v8f64: 444 assert(HasAVX512); 445 if (IsNonTemporal && Alignment >= 64) 446 Opc = X86::VMOVNTDQAZrm; 447 else 448 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 449 break; 450 case MVT::v8i64: 451 case MVT::v16i32: 452 case MVT::v32i16: 453 case MVT::v64i8: 454 assert(HasAVX512); 455 // Note: There are a lot more choices based on type with AVX-512, but 456 // there's really no advantage when the load isn't masked. 457 if (IsNonTemporal && Alignment >= 64) 458 Opc = X86::VMOVNTDQAZrm; 459 else 460 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 461 break; 462 } 463 464 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 465 466 ResultReg = createResultReg(RC); 467 MachineInstrBuilder MIB = 468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); 469 addFullAddress(MIB, AM); 470 if (MMO) 471 MIB->addMemOperand(*FuncInfo.MF, MMO); 472 return true; 473 } 474 475 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 476 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 477 /// and a displacement offset, or a GlobalAddress, 478 /// i.e. V. Return true if it is possible. 479 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM, 480 MachineMemOperand *MMO, bool Aligned) { 481 bool HasSSE1 = Subtarget->hasSSE1(); 482 bool HasSSE2 = Subtarget->hasSSE2(); 483 bool HasSSE4A = Subtarget->hasSSE4A(); 484 bool HasAVX = Subtarget->hasAVX(); 485 bool HasAVX512 = Subtarget->hasAVX512(); 486 bool HasVLX = Subtarget->hasVLX(); 487 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 488 489 // Get opcode and regclass of the output for the given store instruction. 490 unsigned Opc = 0; 491 switch (VT.getSimpleVT().SimpleTy) { 492 case MVT::f80: // No f80 support yet. 493 default: return false; 494 case MVT::i1: { 495 // Mask out all but lowest bit. 496 Register AndResult = createResultReg(&X86::GR8RegClass); 497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 498 TII.get(X86::AND8ri), AndResult) 499 .addReg(ValReg).addImm(1); 500 ValReg = AndResult; 501 [[fallthrough]]; // handle i1 as i8. 502 } 503 case MVT::i8: Opc = X86::MOV8mr; break; 504 case MVT::i16: Opc = X86::MOV16mr; break; 505 case MVT::i32: 506 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 507 break; 508 case MVT::i64: 509 // Must be in x86-64 mode. 510 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 511 break; 512 case MVT::f32: 513 if (HasSSE1) { 514 if (IsNonTemporal && HasSSE4A) 515 Opc = X86::MOVNTSS; 516 else 517 Opc = HasAVX512 ? X86::VMOVSSZmr : 518 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 519 } else 520 Opc = X86::ST_Fp32m; 521 break; 522 case MVT::f64: 523 if (HasSSE2) { 524 if (IsNonTemporal && HasSSE4A) 525 Opc = X86::MOVNTSD; 526 else 527 Opc = HasAVX512 ? X86::VMOVSDZmr : 528 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 529 } else 530 Opc = X86::ST_Fp64m; 531 break; 532 case MVT::x86mmx: 533 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 534 break; 535 case MVT::v4f32: 536 if (Aligned) { 537 if (IsNonTemporal) 538 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 539 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 540 else 541 Opc = HasVLX ? X86::VMOVAPSZ128mr : 542 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 543 } else 544 Opc = HasVLX ? X86::VMOVUPSZ128mr : 545 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 546 break; 547 case MVT::v2f64: 548 if (Aligned) { 549 if (IsNonTemporal) 550 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 551 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 552 else 553 Opc = HasVLX ? X86::VMOVAPDZ128mr : 554 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 555 } else 556 Opc = HasVLX ? X86::VMOVUPDZ128mr : 557 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 558 break; 559 case MVT::v4i32: 560 case MVT::v2i64: 561 case MVT::v8i16: 562 case MVT::v16i8: 563 if (Aligned) { 564 if (IsNonTemporal) 565 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 566 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 567 else 568 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 569 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 570 } else 571 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 572 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 573 break; 574 case MVT::v8f32: 575 assert(HasAVX); 576 if (Aligned) { 577 if (IsNonTemporal) 578 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 579 else 580 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 581 } else 582 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 583 break; 584 case MVT::v4f64: 585 assert(HasAVX); 586 if (Aligned) { 587 if (IsNonTemporal) 588 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 589 else 590 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 591 } else 592 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 593 break; 594 case MVT::v8i32: 595 case MVT::v4i64: 596 case MVT::v16i16: 597 case MVT::v32i8: 598 assert(HasAVX); 599 if (Aligned) { 600 if (IsNonTemporal) 601 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 602 else 603 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 604 } else 605 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 606 break; 607 case MVT::v16f32: 608 assert(HasAVX512); 609 if (Aligned) 610 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 611 else 612 Opc = X86::VMOVUPSZmr; 613 break; 614 case MVT::v8f64: 615 assert(HasAVX512); 616 if (Aligned) { 617 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 618 } else 619 Opc = X86::VMOVUPDZmr; 620 break; 621 case MVT::v8i64: 622 case MVT::v16i32: 623 case MVT::v32i16: 624 case MVT::v64i8: 625 assert(HasAVX512); 626 // Note: There are a lot more choices based on type with AVX-512, but 627 // there's really no advantage when the store isn't masked. 628 if (Aligned) 629 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 630 else 631 Opc = X86::VMOVDQU64Zmr; 632 break; 633 } 634 635 const MCInstrDesc &Desc = TII.get(Opc); 636 // Some of the instructions in the previous switch use FR128 instead 637 // of FR32 for ValReg. Make sure the register we feed the instruction 638 // matches its register class constraints. 639 // Note: This is fine to do a copy from FR32 to FR128, this is the 640 // same registers behind the scene and actually why it did not trigger 641 // any bugs before. 642 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 643 MachineInstrBuilder MIB = 644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc); 645 addFullAddress(MIB, AM).addReg(ValReg); 646 if (MMO) 647 MIB->addMemOperand(*FuncInfo.MF, MMO); 648 649 return true; 650 } 651 652 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 653 X86AddressMode &AM, 654 MachineMemOperand *MMO, bool Aligned) { 655 // Handle 'null' like i32/i64 0. 656 if (isa<ConstantPointerNull>(Val)) 657 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 658 659 // If this is a store of a simple constant, fold the constant into the store. 660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 661 unsigned Opc = 0; 662 bool Signed = true; 663 switch (VT.getSimpleVT().SimpleTy) { 664 default: break; 665 case MVT::i1: 666 Signed = false; 667 [[fallthrough]]; // Handle as i8. 668 case MVT::i8: Opc = X86::MOV8mi; break; 669 case MVT::i16: Opc = X86::MOV16mi; break; 670 case MVT::i32: Opc = X86::MOV32mi; break; 671 case MVT::i64: 672 // Must be a 32-bit sign extended value. 673 if (isInt<32>(CI->getSExtValue())) 674 Opc = X86::MOV64mi32; 675 break; 676 } 677 678 if (Opc) { 679 MachineInstrBuilder MIB = 680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)); 681 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 682 : CI->getZExtValue()); 683 if (MMO) 684 MIB->addMemOperand(*FuncInfo.MF, MMO); 685 return true; 686 } 687 } 688 689 Register ValReg = getRegForValue(Val); 690 if (ValReg == 0) 691 return false; 692 693 return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); 694 } 695 696 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 697 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 698 /// ISD::SIGN_EXTEND). 699 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 700 unsigned Src, EVT SrcVT, 701 unsigned &ResultReg) { 702 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src); 703 if (RR == 0) 704 return false; 705 706 ResultReg = RR; 707 return true; 708 } 709 710 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 711 // Handle constant address. 712 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 713 // Can't handle alternate code models yet. 714 if (TM.getCodeModel() != CodeModel::Small && 715 TM.getCodeModel() != CodeModel::Medium) 716 return false; 717 718 // Can't handle large objects yet. 719 if (TM.isLargeGlobalValue(GV)) 720 return false; 721 722 // Can't handle TLS yet. 723 if (GV->isThreadLocal()) 724 return false; 725 726 // Can't handle !absolute_symbol references yet. 727 if (GV->isAbsoluteSymbolRef()) 728 return false; 729 730 // RIP-relative addresses can't have additional register operands, so if 731 // we've already folded stuff into the addressing mode, just force the 732 // global value into its own register, which we can use as the basereg. 733 if (!Subtarget->isPICStyleRIPRel() || 734 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 735 // Okay, we've committed to selecting this global. Set up the address. 736 AM.GV = GV; 737 738 // Allow the subtarget to classify the global. 739 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 740 741 // If this reference is relative to the pic base, set it now. 742 if (isGlobalRelativeToPICBase(GVFlags)) { 743 // FIXME: How do we know Base.Reg is free?? 744 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 745 } 746 747 // Unless the ABI requires an extra load, return a direct reference to 748 // the global. 749 if (!isGlobalStubReference(GVFlags)) { 750 if (Subtarget->isPICStyleRIPRel()) { 751 // Use rip-relative addressing if we can. Above we verified that the 752 // base and index registers are unused. 753 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 754 AM.Base.Reg = X86::RIP; 755 } 756 AM.GVOpFlags = GVFlags; 757 return true; 758 } 759 760 // Ok, we need to do a load from a stub. If we've already loaded from 761 // this stub, reuse the loaded pointer, otherwise emit the load now. 762 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V); 763 Register LoadReg; 764 if (I != LocalValueMap.end() && I->second) { 765 LoadReg = I->second; 766 } else { 767 // Issue load from stub. 768 unsigned Opc = 0; 769 const TargetRegisterClass *RC = nullptr; 770 X86AddressMode StubAM; 771 StubAM.Base.Reg = AM.Base.Reg; 772 StubAM.GV = GV; 773 StubAM.GVOpFlags = GVFlags; 774 775 // Prepare for inserting code in the local-value area. 776 SavePoint SaveInsertPt = enterLocalValueArea(); 777 778 if (TLI.getPointerTy(DL) == MVT::i64) { 779 Opc = X86::MOV64rm; 780 RC = &X86::GR64RegClass; 781 } else { 782 Opc = X86::MOV32rm; 783 RC = &X86::GR32RegClass; 784 } 785 786 if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || 787 GVFlags == X86II::MO_GOTPCREL_NORELAX) 788 StubAM.Base.Reg = X86::RIP; 789 790 LoadReg = createResultReg(RC); 791 MachineInstrBuilder LoadMI = 792 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg); 793 addFullAddress(LoadMI, StubAM); 794 795 // Ok, back to normal mode. 796 leaveLocalValueArea(SaveInsertPt); 797 798 // Prevent loading GV stub multiple times in same MBB. 799 LocalValueMap[V] = LoadReg; 800 } 801 802 // Now construct the final address. Note that the Disp, Scale, 803 // and Index values may already be set here. 804 AM.Base.Reg = LoadReg; 805 AM.GV = nullptr; 806 return true; 807 } 808 } 809 810 // If all else fails, try to materialize the value in a register. 811 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 812 if (AM.Base.Reg == 0) { 813 AM.Base.Reg = getRegForValue(V); 814 return AM.Base.Reg != 0; 815 } 816 if (AM.IndexReg == 0) { 817 assert(AM.Scale == 1 && "Scale with no index!"); 818 AM.IndexReg = getRegForValue(V); 819 return AM.IndexReg != 0; 820 } 821 } 822 823 return false; 824 } 825 826 /// X86SelectAddress - Attempt to fill in an address from the given value. 827 /// 828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 829 SmallVector<const Value *, 32> GEPs; 830 redo_gep: 831 const User *U = nullptr; 832 unsigned Opcode = Instruction::UserOp1; 833 if (const Instruction *I = dyn_cast<Instruction>(V)) { 834 // Don't walk into other basic blocks; it's possible we haven't 835 // visited them yet, so the instructions may not yet be assigned 836 // virtual registers. 837 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 838 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 839 Opcode = I->getOpcode(); 840 U = I; 841 } 842 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 843 Opcode = C->getOpcode(); 844 U = C; 845 } 846 847 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 848 if (Ty->getAddressSpace() > 255) 849 // Fast instruction selection doesn't support the special 850 // address spaces. 851 return false; 852 853 switch (Opcode) { 854 default: break; 855 case Instruction::BitCast: 856 // Look past bitcasts. 857 return X86SelectAddress(U->getOperand(0), AM); 858 859 case Instruction::IntToPtr: 860 // Look past no-op inttoptrs. 861 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 862 TLI.getPointerTy(DL)) 863 return X86SelectAddress(U->getOperand(0), AM); 864 break; 865 866 case Instruction::PtrToInt: 867 // Look past no-op ptrtoints. 868 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 869 return X86SelectAddress(U->getOperand(0), AM); 870 break; 871 872 case Instruction::Alloca: { 873 // Do static allocas. 874 const AllocaInst *A = cast<AllocaInst>(V); 875 DenseMap<const AllocaInst *, int>::iterator SI = 876 FuncInfo.StaticAllocaMap.find(A); 877 if (SI != FuncInfo.StaticAllocaMap.end()) { 878 AM.BaseType = X86AddressMode::FrameIndexBase; 879 AM.Base.FrameIndex = SI->second; 880 return true; 881 } 882 break; 883 } 884 885 case Instruction::Add: { 886 // Adds of constants are common and easy enough. 887 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 888 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 889 // They have to fit in the 32-bit signed displacement field though. 890 if (isInt<32>(Disp)) { 891 AM.Disp = (uint32_t)Disp; 892 return X86SelectAddress(U->getOperand(0), AM); 893 } 894 } 895 break; 896 } 897 898 case Instruction::GetElementPtr: { 899 X86AddressMode SavedAM = AM; 900 901 // Pattern-match simple GEPs. 902 uint64_t Disp = (int32_t)AM.Disp; 903 unsigned IndexReg = AM.IndexReg; 904 unsigned Scale = AM.Scale; 905 MVT PtrVT = TLI.getValueType(DL, U->getType()).getSimpleVT(); 906 907 gep_type_iterator GTI = gep_type_begin(U); 908 // Iterate through the indices, folding what we can. Constants can be 909 // folded, and one dynamic index can be handled, if the scale is supported. 910 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 911 i != e; ++i, ++GTI) { 912 const Value *Op = *i; 913 if (StructType *STy = GTI.getStructTypeOrNull()) { 914 const StructLayout *SL = DL.getStructLayout(STy); 915 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 916 continue; 917 } 918 919 // A array/variable index is always of the form i*S where S is the 920 // constant scale size. See if we can push the scale into immediates. 921 uint64_t S = GTI.getSequentialElementStride(DL); 922 for (;;) { 923 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 924 // Constant-offset addressing. 925 Disp += CI->getSExtValue() * S; 926 break; 927 } 928 if (canFoldAddIntoGEP(U, Op)) { 929 // A compatible add with a constant operand. Fold the constant. 930 ConstantInt *CI = 931 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 932 Disp += CI->getSExtValue() * S; 933 // Iterate on the other operand. 934 Op = cast<AddOperator>(Op)->getOperand(0); 935 continue; 936 } 937 if (IndexReg == 0 && 938 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 939 (S == 1 || S == 2 || S == 4 || S == 8)) { 940 // Scaled-index addressing. 941 Scale = S; 942 IndexReg = getRegForGEPIndex(PtrVT, Op); 943 if (IndexReg == 0) 944 return false; 945 break; 946 } 947 // Unsupported. 948 goto unsupported_gep; 949 } 950 } 951 952 // Check for displacement overflow. 953 if (!isInt<32>(Disp)) 954 break; 955 956 AM.IndexReg = IndexReg; 957 AM.Scale = Scale; 958 AM.Disp = (uint32_t)Disp; 959 GEPs.push_back(V); 960 961 if (const GetElementPtrInst *GEP = 962 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 963 // Ok, the GEP indices were covered by constant-offset and scaled-index 964 // addressing. Update the address state and move on to examining the base. 965 V = GEP; 966 goto redo_gep; 967 } else if (X86SelectAddress(U->getOperand(0), AM)) { 968 return true; 969 } 970 971 // If we couldn't merge the gep value into this addr mode, revert back to 972 // our address and just match the value instead of completely failing. 973 AM = SavedAM; 974 975 for (const Value *I : reverse(GEPs)) 976 if (handleConstantAddresses(I, AM)) 977 return true; 978 979 return false; 980 unsupported_gep: 981 // Ok, the GEP indices weren't all covered. 982 break; 983 } 984 } 985 986 return handleConstantAddresses(V, AM); 987 } 988 989 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 990 /// 991 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 992 const User *U = nullptr; 993 unsigned Opcode = Instruction::UserOp1; 994 const Instruction *I = dyn_cast<Instruction>(V); 995 // Record if the value is defined in the same basic block. 996 // 997 // This information is crucial to know whether or not folding an 998 // operand is valid. 999 // Indeed, FastISel generates or reuses a virtual register for all 1000 // operands of all instructions it selects. Obviously, the definition and 1001 // its uses must use the same virtual register otherwise the produced 1002 // code is incorrect. 1003 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 1004 // registers for values that are alive across basic blocks. This ensures 1005 // that the values are consistently set between across basic block, even 1006 // if different instruction selection mechanisms are used (e.g., a mix of 1007 // SDISel and FastISel). 1008 // For values local to a basic block, the instruction selection process 1009 // generates these virtual registers with whatever method is appropriate 1010 // for its needs. In particular, FastISel and SDISel do not share the way 1011 // local virtual registers are set. 1012 // Therefore, this is impossible (or at least unsafe) to share values 1013 // between basic blocks unless they use the same instruction selection 1014 // method, which is not guarantee for X86. 1015 // Moreover, things like hasOneUse could not be used accurately, if we 1016 // allow to reference values across basic blocks whereas they are not 1017 // alive across basic blocks initially. 1018 bool InMBB = true; 1019 if (I) { 1020 Opcode = I->getOpcode(); 1021 U = I; 1022 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1023 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1024 Opcode = C->getOpcode(); 1025 U = C; 1026 } 1027 1028 switch (Opcode) { 1029 default: break; 1030 case Instruction::BitCast: 1031 // Look past bitcasts if its operand is in the same BB. 1032 if (InMBB) 1033 return X86SelectCallAddress(U->getOperand(0), AM); 1034 break; 1035 1036 case Instruction::IntToPtr: 1037 // Look past no-op inttoptrs if its operand is in the same BB. 1038 if (InMBB && 1039 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1040 TLI.getPointerTy(DL)) 1041 return X86SelectCallAddress(U->getOperand(0), AM); 1042 break; 1043 1044 case Instruction::PtrToInt: 1045 // Look past no-op ptrtoints if its operand is in the same BB. 1046 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1047 return X86SelectCallAddress(U->getOperand(0), AM); 1048 break; 1049 } 1050 1051 // Handle constant address. 1052 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1053 // Can't handle alternate code models yet. 1054 if (TM.getCodeModel() != CodeModel::Small && 1055 TM.getCodeModel() != CodeModel::Medium) 1056 return false; 1057 1058 // RIP-relative addresses can't have additional register operands. 1059 if (Subtarget->isPICStyleRIPRel() && 1060 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1061 return false; 1062 1063 // Can't handle TLS. 1064 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1065 if (GVar->isThreadLocal()) 1066 return false; 1067 1068 // Okay, we've committed to selecting this global. Set up the basic address. 1069 AM.GV = GV; 1070 1071 // Return a direct reference to the global. Fastisel can handle calls to 1072 // functions that require loads, such as dllimport and nonlazybind 1073 // functions. 1074 if (Subtarget->isPICStyleRIPRel()) { 1075 // Use rip-relative addressing if we can. Above we verified that the 1076 // base and index registers are unused. 1077 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1078 AM.Base.Reg = X86::RIP; 1079 } else { 1080 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1081 } 1082 1083 return true; 1084 } 1085 1086 // If all else fails, try to materialize the value in a register. 1087 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1088 auto GetCallRegForValue = [this](const Value *V) { 1089 Register Reg = getRegForValue(V); 1090 1091 // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. 1092 if (Reg && Subtarget->isTarget64BitILP32()) { 1093 Register CopyReg = createResultReg(&X86::GR32RegClass); 1094 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr), 1095 CopyReg) 1096 .addReg(Reg); 1097 1098 Register ExtReg = createResultReg(&X86::GR64RegClass); 1099 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1100 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg) 1101 .addImm(0) 1102 .addReg(CopyReg) 1103 .addImm(X86::sub_32bit); 1104 Reg = ExtReg; 1105 } 1106 1107 return Reg; 1108 }; 1109 1110 if (AM.Base.Reg == 0) { 1111 AM.Base.Reg = GetCallRegForValue(V); 1112 return AM.Base.Reg != 0; 1113 } 1114 if (AM.IndexReg == 0) { 1115 assert(AM.Scale == 1 && "Scale with no index!"); 1116 AM.IndexReg = GetCallRegForValue(V); 1117 return AM.IndexReg != 0; 1118 } 1119 } 1120 1121 return false; 1122 } 1123 1124 1125 /// X86SelectStore - Select and emit code to implement store instructions. 1126 bool X86FastISel::X86SelectStore(const Instruction *I) { 1127 // Atomic stores need special handling. 1128 const StoreInst *S = cast<StoreInst>(I); 1129 1130 if (S->isAtomic()) 1131 return false; 1132 1133 const Value *PtrV = I->getOperand(1); 1134 if (TLI.supportSwiftError()) { 1135 // Swifterror values can come from either a function parameter with 1136 // swifterror attribute or an alloca with swifterror attribute. 1137 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1138 if (Arg->hasSwiftErrorAttr()) 1139 return false; 1140 } 1141 1142 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1143 if (Alloca->isSwiftError()) 1144 return false; 1145 } 1146 } 1147 1148 const Value *Val = S->getValueOperand(); 1149 const Value *Ptr = S->getPointerOperand(); 1150 1151 MVT VT; 1152 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1153 return false; 1154 1155 Align Alignment = S->getAlign(); 1156 Align ABIAlignment = DL.getABITypeAlign(Val->getType()); 1157 bool Aligned = Alignment >= ABIAlignment; 1158 1159 X86AddressMode AM; 1160 if (!X86SelectAddress(Ptr, AM)) 1161 return false; 1162 1163 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1164 } 1165 1166 /// X86SelectRet - Select and emit code to implement ret instructions. 1167 bool X86FastISel::X86SelectRet(const Instruction *I) { 1168 const ReturnInst *Ret = cast<ReturnInst>(I); 1169 const Function &F = *I->getParent()->getParent(); 1170 const X86MachineFunctionInfo *X86MFInfo = 1171 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1172 1173 if (!FuncInfo.CanLowerReturn) 1174 return false; 1175 1176 if (TLI.supportSwiftError() && 1177 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1178 return false; 1179 1180 if (TLI.supportSplitCSR(FuncInfo.MF)) 1181 return false; 1182 1183 CallingConv::ID CC = F.getCallingConv(); 1184 if (CC != CallingConv::C && 1185 CC != CallingConv::Fast && 1186 CC != CallingConv::Tail && 1187 CC != CallingConv::SwiftTail && 1188 CC != CallingConv::X86_FastCall && 1189 CC != CallingConv::X86_StdCall && 1190 CC != CallingConv::X86_ThisCall && 1191 CC != CallingConv::X86_64_SysV && 1192 CC != CallingConv::Win64) 1193 return false; 1194 1195 // Don't handle popping bytes if they don't fit the ret's immediate. 1196 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1197 return false; 1198 1199 // fastcc with -tailcallopt is intended to provide a guaranteed 1200 // tail call optimization. Fastisel doesn't know how to do that. 1201 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 1202 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 1203 return false; 1204 1205 // Let SDISel handle vararg functions. 1206 if (F.isVarArg()) 1207 return false; 1208 1209 // Build a list of return value registers. 1210 SmallVector<unsigned, 4> RetRegs; 1211 1212 if (Ret->getNumOperands() > 0) { 1213 SmallVector<ISD::OutputArg, 4> Outs; 1214 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1215 1216 // Analyze operands of the call, assigning locations to each operand. 1217 SmallVector<CCValAssign, 16> ValLocs; 1218 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1219 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1220 1221 const Value *RV = Ret->getOperand(0); 1222 Register Reg = getRegForValue(RV); 1223 if (Reg == 0) 1224 return false; 1225 1226 // Only handle a single return value for now. 1227 if (ValLocs.size() != 1) 1228 return false; 1229 1230 CCValAssign &VA = ValLocs[0]; 1231 1232 // Don't bother handling odd stuff for now. 1233 if (VA.getLocInfo() != CCValAssign::Full) 1234 return false; 1235 // Only handle register returns for now. 1236 if (!VA.isRegLoc()) 1237 return false; 1238 1239 // The calling-convention tables for x87 returns don't tell 1240 // the whole story. 1241 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1242 return false; 1243 1244 unsigned SrcReg = Reg + VA.getValNo(); 1245 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1246 EVT DstVT = VA.getValVT(); 1247 // Special handling for extended integers. 1248 if (SrcVT != DstVT) { 1249 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1250 return false; 1251 1252 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1253 return false; 1254 1255 if (SrcVT == MVT::i1) { 1256 if (Outs[0].Flags.isSExt()) 1257 return false; 1258 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg); 1259 SrcVT = MVT::i8; 1260 } 1261 if (SrcVT != DstVT) { 1262 unsigned Op = 1263 Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 1264 SrcReg = 1265 fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg); 1266 } 1267 } 1268 1269 // Make the copy. 1270 Register DstReg = VA.getLocReg(); 1271 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1272 // Avoid a cross-class copy. This is very unlikely. 1273 if (!SrcRC->contains(DstReg)) 1274 return false; 1275 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1276 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1277 1278 // Add register to return instruction. 1279 RetRegs.push_back(VA.getLocReg()); 1280 } 1281 1282 // Swift calling convention does not require we copy the sret argument 1283 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1284 1285 // All x86 ABIs require that for returning structs by value we copy 1286 // the sret argument into %rax/%eax (depending on ABI) for the return. 1287 // We saved the argument into a virtual register in the entry block, 1288 // so now we copy the value out and into %rax/%eax. 1289 if (F.hasStructRetAttr() && CC != CallingConv::Swift && 1290 CC != CallingConv::SwiftTail) { 1291 Register Reg = X86MFInfo->getSRetReturnReg(); 1292 assert(Reg && 1293 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1294 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1295 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1296 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1297 RetRegs.push_back(RetReg); 1298 } 1299 1300 // Now emit the RET. 1301 MachineInstrBuilder MIB; 1302 if (X86MFInfo->getBytesToPopOnReturn()) { 1303 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1304 TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) 1305 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1306 } else { 1307 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1308 TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); 1309 } 1310 for (unsigned Reg : RetRegs) 1311 MIB.addReg(Reg, RegState::Implicit); 1312 return true; 1313 } 1314 1315 /// X86SelectLoad - Select and emit code to implement load instructions. 1316 /// 1317 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1318 const LoadInst *LI = cast<LoadInst>(I); 1319 1320 // Atomic loads need special handling. 1321 if (LI->isAtomic()) 1322 return false; 1323 1324 const Value *SV = I->getOperand(0); 1325 if (TLI.supportSwiftError()) { 1326 // Swifterror values can come from either a function parameter with 1327 // swifterror attribute or an alloca with swifterror attribute. 1328 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1329 if (Arg->hasSwiftErrorAttr()) 1330 return false; 1331 } 1332 1333 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1334 if (Alloca->isSwiftError()) 1335 return false; 1336 } 1337 } 1338 1339 MVT VT; 1340 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1341 return false; 1342 1343 const Value *Ptr = LI->getPointerOperand(); 1344 1345 X86AddressMode AM; 1346 if (!X86SelectAddress(Ptr, AM)) 1347 return false; 1348 1349 unsigned ResultReg = 0; 1350 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1351 LI->getAlign().value())) 1352 return false; 1353 1354 updateValueMap(I, ResultReg); 1355 return true; 1356 } 1357 1358 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1359 bool HasAVX512 = Subtarget->hasAVX512(); 1360 bool HasAVX = Subtarget->hasAVX(); 1361 bool HasSSE1 = Subtarget->hasSSE1(); 1362 bool HasSSE2 = Subtarget->hasSSE2(); 1363 1364 switch (VT.getSimpleVT().SimpleTy) { 1365 default: return 0; 1366 case MVT::i8: return X86::CMP8rr; 1367 case MVT::i16: return X86::CMP16rr; 1368 case MVT::i32: return X86::CMP32rr; 1369 case MVT::i64: return X86::CMP64rr; 1370 case MVT::f32: 1371 return HasAVX512 ? X86::VUCOMISSZrr 1372 : HasAVX ? X86::VUCOMISSrr 1373 : HasSSE1 ? X86::UCOMISSrr 1374 : 0; 1375 case MVT::f64: 1376 return HasAVX512 ? X86::VUCOMISDZrr 1377 : HasAVX ? X86::VUCOMISDrr 1378 : HasSSE2 ? X86::UCOMISDrr 1379 : 0; 1380 } 1381 } 1382 1383 /// If we have a comparison with RHS as the RHS of the comparison, return an 1384 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1385 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1386 switch (VT.getSimpleVT().SimpleTy) { 1387 // Otherwise, we can't fold the immediate into this comparison. 1388 default: 1389 return 0; 1390 case MVT::i8: 1391 return X86::CMP8ri; 1392 case MVT::i16: 1393 return X86::CMP16ri; 1394 case MVT::i32: 1395 return X86::CMP32ri; 1396 case MVT::i64: 1397 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1398 // field. 1399 return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0; 1400 } 1401 } 1402 1403 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1404 const DebugLoc &CurMIMD) { 1405 Register Op0Reg = getRegForValue(Op0); 1406 if (Op0Reg == 0) return false; 1407 1408 // Handle 'null' like i32/i64 0. 1409 if (isa<ConstantPointerNull>(Op1)) 1410 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1411 1412 // We have two options: compare with register or immediate. If the RHS of 1413 // the compare is an immediate that we can fold into this compare, use 1414 // CMPri, otherwise use CMPrr. 1415 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1416 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc)) 1418 .addReg(Op0Reg) 1419 .addImm(Op1C->getSExtValue()); 1420 return true; 1421 } 1422 } 1423 1424 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1425 if (CompareOpc == 0) return false; 1426 1427 Register Op1Reg = getRegForValue(Op1); 1428 if (Op1Reg == 0) return false; 1429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc)) 1430 .addReg(Op0Reg) 1431 .addReg(Op1Reg); 1432 1433 return true; 1434 } 1435 1436 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1437 const CmpInst *CI = cast<CmpInst>(I); 1438 1439 MVT VT; 1440 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1441 return false; 1442 1443 // Below code only works for scalars. 1444 if (VT.isVector()) 1445 return false; 1446 1447 // Try to optimize or fold the cmp. 1448 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1449 unsigned ResultReg = 0; 1450 switch (Predicate) { 1451 default: break; 1452 case CmpInst::FCMP_FALSE: { 1453 ResultReg = createResultReg(&X86::GR32RegClass); 1454 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0), 1455 ResultReg); 1456 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit); 1457 if (!ResultReg) 1458 return false; 1459 break; 1460 } 1461 case CmpInst::FCMP_TRUE: { 1462 ResultReg = createResultReg(&X86::GR8RegClass); 1463 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), 1464 ResultReg).addImm(1); 1465 break; 1466 } 1467 } 1468 1469 if (ResultReg) { 1470 updateValueMap(I, ResultReg); 1471 return true; 1472 } 1473 1474 const Value *LHS = CI->getOperand(0); 1475 const Value *RHS = CI->getOperand(1); 1476 1477 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1478 // We don't have to materialize a zero constant for this case and can just use 1479 // %x again on the RHS. 1480 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1481 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1482 if (RHSC && RHSC->isNullValue()) 1483 RHS = LHS; 1484 } 1485 1486 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1487 static const uint16_t SETFOpcTable[2][3] = { 1488 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1489 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1490 }; 1491 const uint16_t *SETFOpc = nullptr; 1492 switch (Predicate) { 1493 default: break; 1494 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1495 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1496 } 1497 1498 ResultReg = createResultReg(&X86::GR8RegClass); 1499 if (SETFOpc) { 1500 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1501 return false; 1502 1503 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 1504 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 1505 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1506 FlagReg1).addImm(SETFOpc[0]); 1507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1508 FlagReg2).addImm(SETFOpc[1]); 1509 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]), 1510 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1511 updateValueMap(I, ResultReg); 1512 return true; 1513 } 1514 1515 X86::CondCode CC; 1516 bool SwapArgs; 1517 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1518 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1519 1520 if (SwapArgs) 1521 std::swap(LHS, RHS); 1522 1523 // Emit a compare of LHS/RHS. 1524 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1525 return false; 1526 1527 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 1528 ResultReg).addImm(CC); 1529 updateValueMap(I, ResultReg); 1530 return true; 1531 } 1532 1533 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1534 EVT DstVT = TLI.getValueType(DL, I->getType()); 1535 if (!TLI.isTypeLegal(DstVT)) 1536 return false; 1537 1538 Register ResultReg = getRegForValue(I->getOperand(0)); 1539 if (ResultReg == 0) 1540 return false; 1541 1542 // Handle zero-extension from i1 to i8, which is common. 1543 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1544 if (SrcVT == MVT::i1) { 1545 // Set the high bits to zero. 1546 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1547 SrcVT = MVT::i8; 1548 1549 if (ResultReg == 0) 1550 return false; 1551 } 1552 1553 if (DstVT == MVT::i64) { 1554 // Handle extension to 64-bits via sub-register shenanigans. 1555 unsigned MovInst; 1556 1557 switch (SrcVT.SimpleTy) { 1558 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1559 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1560 case MVT::i32: MovInst = X86::MOV32rr; break; 1561 default: llvm_unreachable("Unexpected zext to i64 source type"); 1562 } 1563 1564 Register Result32 = createResultReg(&X86::GR32RegClass); 1565 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32) 1566 .addReg(ResultReg); 1567 1568 ResultReg = createResultReg(&X86::GR64RegClass); 1569 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG), 1570 ResultReg) 1571 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1572 } else if (DstVT == MVT::i16) { 1573 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1574 // extend to 32-bits and then extract down to 16-bits. 1575 Register Result32 = createResultReg(&X86::GR32RegClass); 1576 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8), 1577 Result32).addReg(ResultReg); 1578 1579 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1580 } else if (DstVT != MVT::i8) { 1581 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1582 ResultReg); 1583 if (ResultReg == 0) 1584 return false; 1585 } 1586 1587 updateValueMap(I, ResultReg); 1588 return true; 1589 } 1590 1591 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1592 EVT DstVT = TLI.getValueType(DL, I->getType()); 1593 if (!TLI.isTypeLegal(DstVT)) 1594 return false; 1595 1596 Register ResultReg = getRegForValue(I->getOperand(0)); 1597 if (ResultReg == 0) 1598 return false; 1599 1600 // Handle sign-extension from i1 to i8. 1601 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1602 if (SrcVT == MVT::i1) { 1603 // Set the high bits to zero. 1604 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg); 1605 if (ZExtReg == 0) 1606 return false; 1607 1608 // Negate the result to make an 8-bit sign extended value. 1609 ResultReg = createResultReg(&X86::GR8RegClass); 1610 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r), 1611 ResultReg).addReg(ZExtReg); 1612 1613 SrcVT = MVT::i8; 1614 } 1615 1616 if (DstVT == MVT::i16) { 1617 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1618 // extend to 32-bits and then extract down to 16-bits. 1619 Register Result32 = createResultReg(&X86::GR32RegClass); 1620 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8), 1621 Result32).addReg(ResultReg); 1622 1623 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit); 1624 } else if (DstVT != MVT::i8) { 1625 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1626 ResultReg); 1627 if (ResultReg == 0) 1628 return false; 1629 } 1630 1631 updateValueMap(I, ResultReg); 1632 return true; 1633 } 1634 1635 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1636 // Unconditional branches are selected by tablegen-generated code. 1637 // Handle a conditional branch. 1638 const BranchInst *BI = cast<BranchInst>(I); 1639 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1640 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1641 1642 // Fold the common case of a conditional branch with a comparison 1643 // in the same block (values defined on other blocks may not have 1644 // initialized registers). 1645 X86::CondCode CC; 1646 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1647 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1648 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1649 1650 // Try to optimize or fold the cmp. 1651 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1652 switch (Predicate) { 1653 default: break; 1654 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true; 1655 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, MIMD.getDL()); return true; 1656 } 1657 1658 const Value *CmpLHS = CI->getOperand(0); 1659 const Value *CmpRHS = CI->getOperand(1); 1660 1661 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1662 // 0.0. 1663 // We don't have to materialize a zero constant for this case and can just 1664 // use %x again on the RHS. 1665 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1666 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1667 if (CmpRHSC && CmpRHSC->isNullValue()) 1668 CmpRHS = CmpLHS; 1669 } 1670 1671 // Try to take advantage of fallthrough opportunities. 1672 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1673 std::swap(TrueMBB, FalseMBB); 1674 Predicate = CmpInst::getInversePredicate(Predicate); 1675 } 1676 1677 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1678 // code check. Instead two branch instructions are required to check all 1679 // the flags. First we change the predicate to a supported condition code, 1680 // which will be the first branch. Later one we will emit the second 1681 // branch. 1682 bool NeedExtraBranch = false; 1683 switch (Predicate) { 1684 default: break; 1685 case CmpInst::FCMP_OEQ: 1686 std::swap(TrueMBB, FalseMBB); 1687 [[fallthrough]]; 1688 case CmpInst::FCMP_UNE: 1689 NeedExtraBranch = true; 1690 Predicate = CmpInst::FCMP_ONE; 1691 break; 1692 } 1693 1694 bool SwapArgs; 1695 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1696 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1697 1698 if (SwapArgs) 1699 std::swap(CmpLHS, CmpRHS); 1700 1701 // Emit a compare of the LHS and RHS, setting the flags. 1702 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1703 return false; 1704 1705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1706 .addMBB(TrueMBB).addImm(CC); 1707 1708 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1709 // to UNE above). 1710 if (NeedExtraBranch) { 1711 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1712 .addMBB(TrueMBB).addImm(X86::COND_P); 1713 } 1714 1715 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1716 return true; 1717 } 1718 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1719 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1720 // typically happen for _Bool and C++ bools. 1721 MVT SourceVT; 1722 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1723 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1724 unsigned TestOpc = 0; 1725 switch (SourceVT.SimpleTy) { 1726 default: break; 1727 case MVT::i8: TestOpc = X86::TEST8ri; break; 1728 case MVT::i16: TestOpc = X86::TEST16ri; break; 1729 case MVT::i32: TestOpc = X86::TEST32ri; break; 1730 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1731 } 1732 if (TestOpc) { 1733 Register OpReg = getRegForValue(TI->getOperand(0)); 1734 if (OpReg == 0) return false; 1735 1736 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc)) 1737 .addReg(OpReg).addImm(1); 1738 1739 unsigned JmpCond = X86::COND_NE; 1740 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1741 std::swap(TrueMBB, FalseMBB); 1742 JmpCond = X86::COND_E; 1743 } 1744 1745 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1746 .addMBB(TrueMBB).addImm(JmpCond); 1747 1748 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1749 return true; 1750 } 1751 } 1752 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1753 // Fake request the condition, otherwise the intrinsic might be completely 1754 // optimized away. 1755 Register TmpReg = getRegForValue(BI->getCondition()); 1756 if (TmpReg == 0) 1757 return false; 1758 1759 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1760 .addMBB(TrueMBB).addImm(CC); 1761 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1762 return true; 1763 } 1764 1765 // Otherwise do a clumsy setcc and re-test it. 1766 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1767 // in an explicit cast, so make sure to handle that correctly. 1768 Register OpReg = getRegForValue(BI->getCondition()); 1769 if (OpReg == 0) return false; 1770 1771 // In case OpReg is a K register, COPY to a GPR 1772 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1773 unsigned KOpReg = OpReg; 1774 OpReg = createResultReg(&X86::GR32RegClass); 1775 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1776 TII.get(TargetOpcode::COPY), OpReg) 1777 .addReg(KOpReg); 1778 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit); 1779 } 1780 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 1781 .addReg(OpReg) 1782 .addImm(1); 1783 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1)) 1784 .addMBB(TrueMBB).addImm(X86::COND_NE); 1785 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1786 return true; 1787 } 1788 1789 bool X86FastISel::X86SelectShift(const Instruction *I) { 1790 unsigned CReg = 0, OpReg = 0; 1791 const TargetRegisterClass *RC = nullptr; 1792 if (I->getType()->isIntegerTy(8)) { 1793 CReg = X86::CL; 1794 RC = &X86::GR8RegClass; 1795 switch (I->getOpcode()) { 1796 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1797 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1798 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1799 default: return false; 1800 } 1801 } else if (I->getType()->isIntegerTy(16)) { 1802 CReg = X86::CX; 1803 RC = &X86::GR16RegClass; 1804 switch (I->getOpcode()) { 1805 default: llvm_unreachable("Unexpected shift opcode"); 1806 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1807 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1808 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1809 } 1810 } else if (I->getType()->isIntegerTy(32)) { 1811 CReg = X86::ECX; 1812 RC = &X86::GR32RegClass; 1813 switch (I->getOpcode()) { 1814 default: llvm_unreachable("Unexpected shift opcode"); 1815 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1816 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1817 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1818 } 1819 } else if (I->getType()->isIntegerTy(64)) { 1820 CReg = X86::RCX; 1821 RC = &X86::GR64RegClass; 1822 switch (I->getOpcode()) { 1823 default: llvm_unreachable("Unexpected shift opcode"); 1824 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1825 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1826 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1827 } 1828 } else { 1829 return false; 1830 } 1831 1832 MVT VT; 1833 if (!isTypeLegal(I->getType(), VT)) 1834 return false; 1835 1836 Register Op0Reg = getRegForValue(I->getOperand(0)); 1837 if (Op0Reg == 0) return false; 1838 1839 Register Op1Reg = getRegForValue(I->getOperand(1)); 1840 if (Op1Reg == 0) return false; 1841 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 1842 CReg).addReg(Op1Reg); 1843 1844 // The shift instruction uses X86::CL. If we defined a super-register 1845 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1846 if (CReg != X86::CL) 1847 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1848 TII.get(TargetOpcode::KILL), X86::CL) 1849 .addReg(CReg, RegState::Kill); 1850 1851 Register ResultReg = createResultReg(RC); 1852 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg) 1853 .addReg(Op0Reg); 1854 updateValueMap(I, ResultReg); 1855 return true; 1856 } 1857 1858 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1859 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1860 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1861 const static bool S = true; // IsSigned 1862 const static bool U = false; // !IsSigned 1863 const static unsigned Copy = TargetOpcode::COPY; 1864 // For the X86 DIV/IDIV instruction, in most cases the dividend 1865 // (numerator) must be in a specific register pair highreg:lowreg, 1866 // producing the quotient in lowreg and the remainder in highreg. 1867 // For most data types, to set up the instruction, the dividend is 1868 // copied into lowreg, and lowreg is sign-extended or zero-extended 1869 // into highreg. The exception is i8, where the dividend is defined 1870 // as a single register rather than a register pair, and we 1871 // therefore directly sign-extend or zero-extend the dividend into 1872 // lowreg, instead of copying, and ignore the highreg. 1873 const static struct DivRemEntry { 1874 // The following portion depends only on the data type. 1875 const TargetRegisterClass *RC; 1876 unsigned LowInReg; // low part of the register pair 1877 unsigned HighInReg; // high part of the register pair 1878 // The following portion depends on both the data type and the operation. 1879 struct DivRemResult { 1880 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1881 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1882 // highreg, or copying a zero into highreg. 1883 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1884 // zero/sign-extending into lowreg for i8. 1885 unsigned DivRemResultReg; // Register containing the desired result. 1886 bool IsOpSigned; // Whether to use signed or unsigned form. 1887 } ResultTable[NumOps]; 1888 } OpTable[NumTypes] = { 1889 { &X86::GR8RegClass, X86::AX, 0, { 1890 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1891 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1892 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1893 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1894 } 1895 }, // i8 1896 { &X86::GR16RegClass, X86::AX, X86::DX, { 1897 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1898 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1899 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1900 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1901 } 1902 }, // i16 1903 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1904 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1905 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1906 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1907 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1908 } 1909 }, // i32 1910 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1911 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1912 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1913 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1914 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1915 } 1916 }, // i64 1917 }; 1918 1919 MVT VT; 1920 if (!isTypeLegal(I->getType(), VT)) 1921 return false; 1922 1923 unsigned TypeIndex, OpIndex; 1924 switch (VT.SimpleTy) { 1925 default: return false; 1926 case MVT::i8: TypeIndex = 0; break; 1927 case MVT::i16: TypeIndex = 1; break; 1928 case MVT::i32: TypeIndex = 2; break; 1929 case MVT::i64: TypeIndex = 3; 1930 if (!Subtarget->is64Bit()) 1931 return false; 1932 break; 1933 } 1934 1935 switch (I->getOpcode()) { 1936 default: llvm_unreachable("Unexpected div/rem opcode"); 1937 case Instruction::SDiv: OpIndex = 0; break; 1938 case Instruction::SRem: OpIndex = 1; break; 1939 case Instruction::UDiv: OpIndex = 2; break; 1940 case Instruction::URem: OpIndex = 3; break; 1941 } 1942 1943 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1944 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1945 Register Op0Reg = getRegForValue(I->getOperand(0)); 1946 if (Op0Reg == 0) 1947 return false; 1948 Register Op1Reg = getRegForValue(I->getOperand(1)); 1949 if (Op1Reg == 0) 1950 return false; 1951 1952 // Move op0 into low-order input register. 1953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1954 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1955 // Zero-extend or sign-extend into high-order input register. 1956 if (OpEntry.OpSignExtend) { 1957 if (OpEntry.IsOpSigned) 1958 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1959 TII.get(OpEntry.OpSignExtend)); 1960 else { 1961 Register Zero32 = createResultReg(&X86::GR32RegClass); 1962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1963 TII.get(X86::MOV32r0), Zero32); 1964 1965 // Copy the zero into the appropriate sub/super/identical physical 1966 // register. Unfortunately the operations needed are not uniform enough 1967 // to fit neatly into the table above. 1968 if (VT == MVT::i16) { 1969 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1970 TII.get(Copy), TypeEntry.HighInReg) 1971 .addReg(Zero32, 0, X86::sub_16bit); 1972 } else if (VT == MVT::i32) { 1973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1974 TII.get(Copy), TypeEntry.HighInReg) 1975 .addReg(Zero32); 1976 } else if (VT == MVT::i64) { 1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1978 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1979 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1980 } 1981 } 1982 } 1983 // Generate the DIV/IDIV instruction. 1984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1985 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1986 // For i8 remainder, we can't reference ah directly, as we'll end 1987 // up with bogus copies like %r9b = COPY %ah. Reference ax 1988 // instead to prevent ah references in a rex instruction. 1989 // 1990 // The current assumption of the fast register allocator is that isel 1991 // won't generate explicit references to the GR8_NOREX registers. If 1992 // the allocator and/or the backend get enhanced to be more robust in 1993 // that regard, this can be, and should be, removed. 1994 unsigned ResultReg = 0; 1995 if ((I->getOpcode() == Instruction::SRem || 1996 I->getOpcode() == Instruction::URem) && 1997 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 1998 Register SourceSuperReg = createResultReg(&X86::GR16RegClass); 1999 Register ResultSuperReg = createResultReg(&X86::GR16RegClass); 2000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2001 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 2002 2003 // Shift AX right by 8 bits instead of using AH. 2004 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri), 2005 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 2006 2007 // Now reference the 8-bit subreg of the result. 2008 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 2009 X86::sub_8bit); 2010 } 2011 // Copy the result out of the physreg if we haven't already. 2012 if (!ResultReg) { 2013 ResultReg = createResultReg(TypeEntry.RC); 2014 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg) 2015 .addReg(OpEntry.DivRemResultReg); 2016 } 2017 updateValueMap(I, ResultReg); 2018 2019 return true; 2020 } 2021 2022 /// Emit a conditional move instruction (if the are supported) to lower 2023 /// the select. 2024 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2025 // Check if the subtarget supports these instructions. 2026 if (!Subtarget->canUseCMOV()) 2027 return false; 2028 2029 // FIXME: Add support for i8. 2030 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2031 return false; 2032 2033 const Value *Cond = I->getOperand(0); 2034 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2035 bool NeedTest = true; 2036 X86::CondCode CC = X86::COND_NE; 2037 2038 // Optimize conditions coming from a compare if both instructions are in the 2039 // same basic block (values defined in other basic blocks may not have 2040 // initialized registers). 2041 const auto *CI = dyn_cast<CmpInst>(Cond); 2042 if (CI && (CI->getParent() == I->getParent())) { 2043 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2044 2045 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2046 static const uint16_t SETFOpcTable[2][3] = { 2047 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2048 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2049 }; 2050 const uint16_t *SETFOpc = nullptr; 2051 switch (Predicate) { 2052 default: break; 2053 case CmpInst::FCMP_OEQ: 2054 SETFOpc = &SETFOpcTable[0][0]; 2055 Predicate = CmpInst::ICMP_NE; 2056 break; 2057 case CmpInst::FCMP_UNE: 2058 SETFOpc = &SETFOpcTable[1][0]; 2059 Predicate = CmpInst::ICMP_NE; 2060 break; 2061 } 2062 2063 bool NeedSwap; 2064 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2065 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2066 2067 const Value *CmpLHS = CI->getOperand(0); 2068 const Value *CmpRHS = CI->getOperand(1); 2069 if (NeedSwap) 2070 std::swap(CmpLHS, CmpRHS); 2071 2072 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2073 // Emit a compare of the LHS and RHS, setting the flags. 2074 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2075 return false; 2076 2077 if (SETFOpc) { 2078 Register FlagReg1 = createResultReg(&X86::GR8RegClass); 2079 Register FlagReg2 = createResultReg(&X86::GR8RegClass); 2080 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2081 FlagReg1).addImm(SETFOpc[0]); 2082 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2083 FlagReg2).addImm(SETFOpc[1]); 2084 auto const &II = TII.get(SETFOpc[2]); 2085 if (II.getNumDefs()) { 2086 Register TmpReg = createResultReg(&X86::GR8RegClass); 2087 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg) 2088 .addReg(FlagReg2).addReg(FlagReg1); 2089 } else { 2090 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 2091 .addReg(FlagReg2).addReg(FlagReg1); 2092 } 2093 } 2094 NeedTest = false; 2095 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2096 // Fake request the condition, otherwise the intrinsic might be completely 2097 // optimized away. 2098 Register TmpReg = getRegForValue(Cond); 2099 if (TmpReg == 0) 2100 return false; 2101 2102 NeedTest = false; 2103 } 2104 2105 if (NeedTest) { 2106 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2107 // garbage. Indeed, only the less significant bit is supposed to be 2108 // accurate. If we read more than the lsb, we may see non-zero values 2109 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2110 // the select. This is achieved by performing TEST against 1. 2111 Register CondReg = getRegForValue(Cond); 2112 if (CondReg == 0) 2113 return false; 2114 2115 // In case OpReg is a K register, COPY to a GPR 2116 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2117 unsigned KCondReg = CondReg; 2118 CondReg = createResultReg(&X86::GR32RegClass); 2119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2120 TII.get(TargetOpcode::COPY), CondReg) 2121 .addReg(KCondReg); 2122 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2123 } 2124 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 2125 .addReg(CondReg) 2126 .addImm(1); 2127 } 2128 2129 const Value *LHS = I->getOperand(1); 2130 const Value *RHS = I->getOperand(2); 2131 2132 Register RHSReg = getRegForValue(RHS); 2133 Register LHSReg = getRegForValue(LHS); 2134 if (!LHSReg || !RHSReg) 2135 return false; 2136 2137 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2138 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC) / 8, false, 2139 Subtarget->hasNDD()); 2140 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2141 updateValueMap(I, ResultReg); 2142 return true; 2143 } 2144 2145 /// Emit SSE or AVX instructions to lower the select. 2146 /// 2147 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2148 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2149 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2150 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2151 // Optimize conditions coming from a compare if both instructions are in the 2152 // same basic block (values defined in other basic blocks may not have 2153 // initialized registers). 2154 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2155 if (!CI || (CI->getParent() != I->getParent())) 2156 return false; 2157 2158 if (I->getType() != CI->getOperand(0)->getType() || 2159 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2160 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2161 return false; 2162 2163 const Value *CmpLHS = CI->getOperand(0); 2164 const Value *CmpRHS = CI->getOperand(1); 2165 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2166 2167 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2168 // We don't have to materialize a zero constant for this case and can just use 2169 // %x again on the RHS. 2170 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2171 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2172 if (CmpRHSC && CmpRHSC->isNullValue()) 2173 CmpRHS = CmpLHS; 2174 } 2175 2176 unsigned CC; 2177 bool NeedSwap; 2178 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2179 if (CC > 7 && !Subtarget->hasAVX()) 2180 return false; 2181 2182 if (NeedSwap) 2183 std::swap(CmpLHS, CmpRHS); 2184 2185 const Value *LHS = I->getOperand(1); 2186 const Value *RHS = I->getOperand(2); 2187 2188 Register LHSReg = getRegForValue(LHS); 2189 Register RHSReg = getRegForValue(RHS); 2190 Register CmpLHSReg = getRegForValue(CmpLHS); 2191 Register CmpRHSReg = getRegForValue(CmpRHS); 2192 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) 2193 return false; 2194 2195 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2196 unsigned ResultReg; 2197 2198 if (Subtarget->hasAVX512()) { 2199 // If we have AVX512 we can use a mask compare and masked movss/sd. 2200 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2201 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2202 2203 unsigned CmpOpcode = 2204 (RetVT == MVT::f32) ? X86::VCMPSSZrri : X86::VCMPSDZrri; 2205 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg, 2206 CC); 2207 2208 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2209 // bits of the result register since its not based on any of the inputs. 2210 Register ImplicitDefReg = createResultReg(VR128X); 2211 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2212 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2213 2214 // Place RHSReg is the passthru of the masked movss/sd operation and put 2215 // LHS in the input. The mask input comes from the compare. 2216 unsigned MovOpcode = 2217 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2218 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg, 2219 ImplicitDefReg, LHSReg); 2220 2221 ResultReg = createResultReg(RC); 2222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2223 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2224 2225 } else if (Subtarget->hasAVX()) { 2226 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2227 2228 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2229 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2230 // uses XMM0 as the selection register. That may need just as many 2231 // instructions as the AND/ANDN/OR sequence due to register moves, so 2232 // don't bother. 2233 unsigned CmpOpcode = 2234 (RetVT == MVT::f32) ? X86::VCMPSSrri : X86::VCMPSDrri; 2235 unsigned BlendOpcode = 2236 (RetVT == MVT::f32) ? X86::VBLENDVPSrrr : X86::VBLENDVPDrrr; 2237 2238 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg, 2239 CC); 2240 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg, 2241 CmpReg); 2242 ResultReg = createResultReg(RC); 2243 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2244 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2245 } else { 2246 // Choose the SSE instruction sequence based on data type (float or double). 2247 static const uint16_t OpcTable[2][4] = { 2248 { X86::CMPSSrri, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2249 { X86::CMPSDrri, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2250 }; 2251 2252 const uint16_t *Opc = nullptr; 2253 switch (RetVT.SimpleTy) { 2254 default: return false; 2255 case MVT::f32: Opc = &OpcTable[0][0]; break; 2256 case MVT::f64: Opc = &OpcTable[1][0]; break; 2257 } 2258 2259 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2260 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC); 2261 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg); 2262 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg); 2263 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg); 2264 ResultReg = createResultReg(RC); 2265 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2266 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2267 } 2268 updateValueMap(I, ResultReg); 2269 return true; 2270 } 2271 2272 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2273 // These are pseudo CMOV instructions and will be later expanded into control- 2274 // flow. 2275 unsigned Opc; 2276 switch (RetVT.SimpleTy) { 2277 default: return false; 2278 case MVT::i8: Opc = X86::CMOV_GR8; break; 2279 case MVT::i16: Opc = X86::CMOV_GR16; break; 2280 case MVT::i32: Opc = X86::CMOV_GR32; break; 2281 case MVT::f16: 2282 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break; 2283 case MVT::f32: 2284 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break; 2285 case MVT::f64: 2286 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break; 2287 } 2288 2289 const Value *Cond = I->getOperand(0); 2290 X86::CondCode CC = X86::COND_NE; 2291 2292 // Optimize conditions coming from a compare if both instructions are in the 2293 // same basic block (values defined in other basic blocks may not have 2294 // initialized registers). 2295 const auto *CI = dyn_cast<CmpInst>(Cond); 2296 if (CI && (CI->getParent() == I->getParent())) { 2297 bool NeedSwap; 2298 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2299 if (CC > X86::LAST_VALID_COND) 2300 return false; 2301 2302 const Value *CmpLHS = CI->getOperand(0); 2303 const Value *CmpRHS = CI->getOperand(1); 2304 2305 if (NeedSwap) 2306 std::swap(CmpLHS, CmpRHS); 2307 2308 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2309 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2310 return false; 2311 } else { 2312 Register CondReg = getRegForValue(Cond); 2313 if (CondReg == 0) 2314 return false; 2315 2316 // In case OpReg is a K register, COPY to a GPR 2317 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2318 unsigned KCondReg = CondReg; 2319 CondReg = createResultReg(&X86::GR32RegClass); 2320 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2321 TII.get(TargetOpcode::COPY), CondReg) 2322 .addReg(KCondReg); 2323 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit); 2324 } 2325 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri)) 2326 .addReg(CondReg) 2327 .addImm(1); 2328 } 2329 2330 const Value *LHS = I->getOperand(1); 2331 const Value *RHS = I->getOperand(2); 2332 2333 Register LHSReg = getRegForValue(LHS); 2334 Register RHSReg = getRegForValue(RHS); 2335 if (!LHSReg || !RHSReg) 2336 return false; 2337 2338 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2339 2340 Register ResultReg = 2341 fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC); 2342 updateValueMap(I, ResultReg); 2343 return true; 2344 } 2345 2346 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2347 MVT RetVT; 2348 if (!isTypeLegal(I->getType(), RetVT)) 2349 return false; 2350 2351 // Check if we can fold the select. 2352 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2353 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2354 const Value *Opnd = nullptr; 2355 switch (Predicate) { 2356 default: break; 2357 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2358 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2359 } 2360 // No need for a select anymore - this is an unconditional move. 2361 if (Opnd) { 2362 Register OpReg = getRegForValue(Opnd); 2363 if (OpReg == 0) 2364 return false; 2365 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2366 Register ResultReg = createResultReg(RC); 2367 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2368 TII.get(TargetOpcode::COPY), ResultReg) 2369 .addReg(OpReg); 2370 updateValueMap(I, ResultReg); 2371 return true; 2372 } 2373 } 2374 2375 // First try to use real conditional move instructions. 2376 if (X86FastEmitCMoveSelect(RetVT, I)) 2377 return true; 2378 2379 // Try to use a sequence of SSE instructions to simulate a conditional move. 2380 if (X86FastEmitSSESelect(RetVT, I)) 2381 return true; 2382 2383 // Fall-back to pseudo conditional move instructions, which will be later 2384 // converted to control-flow. 2385 if (X86FastEmitPseudoSelect(RetVT, I)) 2386 return true; 2387 2388 return false; 2389 } 2390 2391 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2392 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2393 // The target-independent selection algorithm in FastISel already knows how 2394 // to select a SINT_TO_FP if the target is SSE but not AVX. 2395 // Early exit if the subtarget doesn't have AVX. 2396 // Unsigned conversion requires avx512. 2397 bool HasAVX512 = Subtarget->hasAVX512(); 2398 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2399 return false; 2400 2401 // TODO: We could sign extend narrower types. 2402 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2403 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2404 return false; 2405 2406 // Select integer to float/double conversion. 2407 Register OpReg = getRegForValue(I->getOperand(0)); 2408 if (OpReg == 0) 2409 return false; 2410 2411 unsigned Opcode; 2412 2413 static const uint16_t SCvtOpc[2][2][2] = { 2414 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2415 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2416 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2417 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2418 }; 2419 static const uint16_t UCvtOpc[2][2] = { 2420 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2421 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2422 }; 2423 bool Is64Bit = SrcVT == MVT::i64; 2424 2425 if (I->getType()->isDoubleTy()) { 2426 // s/uitofp int -> double 2427 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2428 } else if (I->getType()->isFloatTy()) { 2429 // s/uitofp int -> float 2430 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2431 } else 2432 return false; 2433 2434 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2435 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2436 Register ImplicitDefReg = createResultReg(RC); 2437 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2438 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2439 Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg); 2440 updateValueMap(I, ResultReg); 2441 return true; 2442 } 2443 2444 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2445 return X86SelectIntToFP(I, /*IsSigned*/true); 2446 } 2447 2448 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2449 return X86SelectIntToFP(I, /*IsSigned*/false); 2450 } 2451 2452 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2453 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2454 unsigned TargetOpc, 2455 const TargetRegisterClass *RC) { 2456 assert((I->getOpcode() == Instruction::FPExt || 2457 I->getOpcode() == Instruction::FPTrunc) && 2458 "Instruction must be an FPExt or FPTrunc!"); 2459 bool HasAVX = Subtarget->hasAVX(); 2460 2461 Register OpReg = getRegForValue(I->getOperand(0)); 2462 if (OpReg == 0) 2463 return false; 2464 2465 unsigned ImplicitDefReg; 2466 if (HasAVX) { 2467 ImplicitDefReg = createResultReg(RC); 2468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2469 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2470 2471 } 2472 2473 Register ResultReg = createResultReg(RC); 2474 MachineInstrBuilder MIB; 2475 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc), 2476 ResultReg); 2477 2478 if (HasAVX) 2479 MIB.addReg(ImplicitDefReg); 2480 2481 MIB.addReg(OpReg); 2482 updateValueMap(I, ResultReg); 2483 return true; 2484 } 2485 2486 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2487 if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() && 2488 I->getOperand(0)->getType()->isFloatTy()) { 2489 bool HasAVX512 = Subtarget->hasAVX512(); 2490 // fpext from float to double. 2491 unsigned Opc = 2492 HasAVX512 ? X86::VCVTSS2SDZrr 2493 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2494 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2495 } 2496 2497 return false; 2498 } 2499 2500 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2501 if (Subtarget->hasSSE2() && I->getType()->isFloatTy() && 2502 I->getOperand(0)->getType()->isDoubleTy()) { 2503 bool HasAVX512 = Subtarget->hasAVX512(); 2504 // fptrunc from double to float. 2505 unsigned Opc = 2506 HasAVX512 ? X86::VCVTSD2SSZrr 2507 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2508 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2509 } 2510 2511 return false; 2512 } 2513 2514 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2515 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2516 EVT DstVT = TLI.getValueType(DL, I->getType()); 2517 2518 // This code only handles truncation to byte. 2519 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2520 return false; 2521 if (!TLI.isTypeLegal(SrcVT)) 2522 return false; 2523 2524 Register InputReg = getRegForValue(I->getOperand(0)); 2525 if (!InputReg) 2526 // Unhandled operand. Halt "fast" selection and bail. 2527 return false; 2528 2529 if (SrcVT == MVT::i8) { 2530 // Truncate from i8 to i1; no code needed. 2531 updateValueMap(I, InputReg); 2532 return true; 2533 } 2534 2535 // Issue an extract_subreg. 2536 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg, 2537 X86::sub_8bit); 2538 if (!ResultReg) 2539 return false; 2540 2541 updateValueMap(I, ResultReg); 2542 return true; 2543 } 2544 2545 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2546 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2547 } 2548 2549 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2550 X86AddressMode SrcAM, uint64_t Len) { 2551 2552 // Make sure we don't bloat code by inlining very large memcpy's. 2553 if (!IsMemcpySmall(Len)) 2554 return false; 2555 2556 bool i64Legal = Subtarget->is64Bit(); 2557 2558 // We don't care about alignment here since we just emit integer accesses. 2559 while (Len) { 2560 MVT VT; 2561 if (Len >= 8 && i64Legal) 2562 VT = MVT::i64; 2563 else if (Len >= 4) 2564 VT = MVT::i32; 2565 else if (Len >= 2) 2566 VT = MVT::i16; 2567 else 2568 VT = MVT::i8; 2569 2570 unsigned Reg; 2571 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2572 RV &= X86FastEmitStore(VT, Reg, DestAM); 2573 assert(RV && "Failed to emit load or store??"); 2574 (void)RV; 2575 2576 unsigned Size = VT.getSizeInBits()/8; 2577 Len -= Size; 2578 DestAM.Disp += Size; 2579 SrcAM.Disp += Size; 2580 } 2581 2582 return true; 2583 } 2584 2585 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2586 // FIXME: Handle more intrinsics. 2587 switch (II->getIntrinsicID()) { 2588 default: return false; 2589 case Intrinsic::convert_from_fp16: 2590 case Intrinsic::convert_to_fp16: { 2591 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2592 return false; 2593 2594 const Value *Op = II->getArgOperand(0); 2595 Register InputReg = getRegForValue(Op); 2596 if (InputReg == 0) 2597 return false; 2598 2599 // F16C only allows converting from float to half and from half to float. 2600 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2601 if (IsFloatToHalf) { 2602 if (!Op->getType()->isFloatTy()) 2603 return false; 2604 } else { 2605 if (!II->getType()->isFloatTy()) 2606 return false; 2607 } 2608 2609 unsigned ResultReg = 0; 2610 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2611 if (IsFloatToHalf) { 2612 // 'InputReg' is implicitly promoted from register class FR32 to 2613 // register class VR128 by method 'constrainOperandRegClass' which is 2614 // directly called by 'fastEmitInst_ri'. 2615 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2616 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2617 // It's consistent with the other FP instructions, which are usually 2618 // controlled by MXCSR. 2619 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr 2620 : X86::VCVTPS2PHrr; 2621 InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4); 2622 2623 // Move the lower 32-bits of ResultReg to another register of class GR32. 2624 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr 2625 : X86::VMOVPDI2DIrr; 2626 ResultReg = createResultReg(&X86::GR32RegClass); 2627 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 2628 .addReg(InputReg, RegState::Kill); 2629 2630 // The result value is in the lower 16-bits of ResultReg. 2631 unsigned RegIdx = X86::sub_16bit; 2632 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx); 2633 } else { 2634 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2635 // Explicitly zero-extend the input to 32-bit. 2636 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg); 2637 2638 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2639 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2640 InputReg); 2641 2642 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr 2643 : X86::VCVTPH2PSrr; 2644 InputReg = fastEmitInst_r(Opc, RC, InputReg); 2645 2646 // The result value is in the lower 32-bits of ResultReg. 2647 // Emit an explicit copy from register class VR128 to register class FR32. 2648 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 2649 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2650 TII.get(TargetOpcode::COPY), ResultReg) 2651 .addReg(InputReg, RegState::Kill); 2652 } 2653 2654 updateValueMap(II, ResultReg); 2655 return true; 2656 } 2657 case Intrinsic::frameaddress: { 2658 MachineFunction *MF = FuncInfo.MF; 2659 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2660 return false; 2661 2662 Type *RetTy = II->getCalledFunction()->getReturnType(); 2663 2664 MVT VT; 2665 if (!isTypeLegal(RetTy, VT)) 2666 return false; 2667 2668 unsigned Opc; 2669 const TargetRegisterClass *RC = nullptr; 2670 2671 switch (VT.SimpleTy) { 2672 default: llvm_unreachable("Invalid result type for frameaddress."); 2673 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2674 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2675 } 2676 2677 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2678 // we get the wrong frame register. 2679 MachineFrameInfo &MFI = MF->getFrameInfo(); 2680 MFI.setFrameAddressIsTaken(true); 2681 2682 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2683 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2684 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2685 (FrameReg == X86::EBP && VT == MVT::i32)) && 2686 "Invalid Frame Register!"); 2687 2688 // Always make a copy of the frame register to a vreg first, so that we 2689 // never directly reference the frame register (the TwoAddressInstruction- 2690 // Pass doesn't like that). 2691 Register SrcReg = createResultReg(RC); 2692 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2693 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2694 2695 // Now recursively load from the frame address. 2696 // movq (%rbp), %rax 2697 // movq (%rax), %rax 2698 // movq (%rax), %rax 2699 // ... 2700 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2701 while (Depth--) { 2702 Register DestReg = createResultReg(RC); 2703 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2704 TII.get(Opc), DestReg), SrcReg); 2705 SrcReg = DestReg; 2706 } 2707 2708 updateValueMap(II, SrcReg); 2709 return true; 2710 } 2711 case Intrinsic::memcpy: { 2712 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2713 // Don't handle volatile or variable length memcpys. 2714 if (MCI->isVolatile()) 2715 return false; 2716 2717 if (isa<ConstantInt>(MCI->getLength())) { 2718 // Small memcpy's are common enough that we want to do them 2719 // without a call if possible. 2720 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2721 if (IsMemcpySmall(Len)) { 2722 X86AddressMode DestAM, SrcAM; 2723 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2724 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2725 return false; 2726 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2727 return true; 2728 } 2729 } 2730 2731 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2732 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2733 return false; 2734 2735 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2736 return false; 2737 2738 return lowerCallTo(II, "memcpy", II->arg_size() - 1); 2739 } 2740 case Intrinsic::memset: { 2741 const MemSetInst *MSI = cast<MemSetInst>(II); 2742 2743 if (MSI->isVolatile()) 2744 return false; 2745 2746 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2747 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2748 return false; 2749 2750 if (MSI->getDestAddressSpace() > 255) 2751 return false; 2752 2753 return lowerCallTo(II, "memset", II->arg_size() - 1); 2754 } 2755 case Intrinsic::stackprotector: { 2756 // Emit code to store the stack guard onto the stack. 2757 EVT PtrTy = TLI.getPointerTy(DL); 2758 2759 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2760 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2761 2762 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2763 2764 // Grab the frame index. 2765 X86AddressMode AM; 2766 if (!X86SelectAddress(Slot, AM)) return false; 2767 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2768 return true; 2769 } 2770 case Intrinsic::dbg_declare: { 2771 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2772 X86AddressMode AM; 2773 assert(DI->getAddress() && "Null address should be checked earlier!"); 2774 if (!X86SelectAddress(DI->getAddress(), AM)) 2775 return false; 2776 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2777 assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && 2778 "Expected inlined-at fields to agree"); 2779 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM) 2780 .addImm(0) 2781 .addMetadata(DI->getVariable()) 2782 .addMetadata(DI->getExpression()); 2783 return true; 2784 } 2785 case Intrinsic::trap: { 2786 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP)); 2787 return true; 2788 } 2789 case Intrinsic::sqrt: { 2790 if (!Subtarget->hasSSE1()) 2791 return false; 2792 2793 Type *RetTy = II->getCalledFunction()->getReturnType(); 2794 2795 MVT VT; 2796 if (!isTypeLegal(RetTy, VT)) 2797 return false; 2798 2799 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2800 // is not generated by FastISel yet. 2801 // FIXME: Update this code once tablegen can handle it. 2802 static const uint16_t SqrtOpc[3][2] = { 2803 { X86::SQRTSSr, X86::SQRTSDr }, 2804 { X86::VSQRTSSr, X86::VSQRTSDr }, 2805 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2806 }; 2807 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2808 Subtarget->hasAVX() ? 1 : 2809 0; 2810 unsigned Opc; 2811 switch (VT.SimpleTy) { 2812 default: return false; 2813 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2814 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2815 } 2816 2817 const Value *SrcVal = II->getArgOperand(0); 2818 Register SrcReg = getRegForValue(SrcVal); 2819 2820 if (SrcReg == 0) 2821 return false; 2822 2823 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2824 unsigned ImplicitDefReg = 0; 2825 if (AVXLevel > 0) { 2826 ImplicitDefReg = createResultReg(RC); 2827 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2828 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2829 } 2830 2831 Register ResultReg = createResultReg(RC); 2832 MachineInstrBuilder MIB; 2833 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 2834 ResultReg); 2835 2836 if (ImplicitDefReg) 2837 MIB.addReg(ImplicitDefReg); 2838 2839 MIB.addReg(SrcReg); 2840 2841 updateValueMap(II, ResultReg); 2842 return true; 2843 } 2844 case Intrinsic::sadd_with_overflow: 2845 case Intrinsic::uadd_with_overflow: 2846 case Intrinsic::ssub_with_overflow: 2847 case Intrinsic::usub_with_overflow: 2848 case Intrinsic::smul_with_overflow: 2849 case Intrinsic::umul_with_overflow: { 2850 // This implements the basic lowering of the xalu with overflow intrinsics 2851 // into add/sub/mul followed by either seto or setb. 2852 const Function *Callee = II->getCalledFunction(); 2853 auto *Ty = cast<StructType>(Callee->getReturnType()); 2854 Type *RetTy = Ty->getTypeAtIndex(0U); 2855 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2856 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2857 "Overflow value expected to be an i1"); 2858 2859 MVT VT; 2860 if (!isTypeLegal(RetTy, VT)) 2861 return false; 2862 2863 if (VT < MVT::i8 || VT > MVT::i64) 2864 return false; 2865 2866 const Value *LHS = II->getArgOperand(0); 2867 const Value *RHS = II->getArgOperand(1); 2868 2869 // Canonicalize immediate to the RHS. 2870 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative()) 2871 std::swap(LHS, RHS); 2872 2873 unsigned BaseOpc, CondCode; 2874 switch (II->getIntrinsicID()) { 2875 default: llvm_unreachable("Unexpected intrinsic!"); 2876 case Intrinsic::sadd_with_overflow: 2877 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2878 case Intrinsic::uadd_with_overflow: 2879 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2880 case Intrinsic::ssub_with_overflow: 2881 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2882 case Intrinsic::usub_with_overflow: 2883 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2884 case Intrinsic::smul_with_overflow: 2885 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2886 case Intrinsic::umul_with_overflow: 2887 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2888 } 2889 2890 Register LHSReg = getRegForValue(LHS); 2891 if (LHSReg == 0) 2892 return false; 2893 2894 unsigned ResultReg = 0; 2895 // Check if we have an immediate version. 2896 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2897 static const uint16_t Opc[2][4] = { 2898 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2899 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2900 }; 2901 2902 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2903 CondCode == X86::COND_O) { 2904 // We can use INC/DEC. 2905 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2906 bool IsDec = BaseOpc == ISD::SUB; 2907 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2908 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2909 .addReg(LHSReg); 2910 } else 2911 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue()); 2912 } 2913 2914 unsigned RHSReg; 2915 if (!ResultReg) { 2916 RHSReg = getRegForValue(RHS); 2917 if (RHSReg == 0) 2918 return false; 2919 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg); 2920 } 2921 2922 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2923 // it manually. 2924 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2925 static const uint16_t MULOpc[] = 2926 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2927 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2928 // First copy the first operand into RAX, which is an implicit input to 2929 // the X86::MUL*r instruction. 2930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2931 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2932 .addReg(LHSReg); 2933 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2934 TLI.getRegClassFor(VT), RHSReg); 2935 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2936 static const uint16_t MULOpc[] = 2937 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2938 if (VT == MVT::i8) { 2939 // Copy the first operand into AL, which is an implicit input to the 2940 // X86::IMUL8r instruction. 2941 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2942 TII.get(TargetOpcode::COPY), X86::AL) 2943 .addReg(LHSReg); 2944 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg); 2945 } else 2946 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2947 TLI.getRegClassFor(VT), LHSReg, RHSReg); 2948 } 2949 2950 if (!ResultReg) 2951 return false; 2952 2953 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2954 Register ResultReg2 = createResultReg(&X86::GR8RegClass); 2955 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2956 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr), 2957 ResultReg2).addImm(CondCode); 2958 2959 updateValueMap(II, ResultReg, 2); 2960 return true; 2961 } 2962 case Intrinsic::x86_sse_cvttss2si: 2963 case Intrinsic::x86_sse_cvttss2si64: 2964 case Intrinsic::x86_sse2_cvttsd2si: 2965 case Intrinsic::x86_sse2_cvttsd2si64: { 2966 bool IsInputDouble; 2967 switch (II->getIntrinsicID()) { 2968 default: llvm_unreachable("Unexpected intrinsic."); 2969 case Intrinsic::x86_sse_cvttss2si: 2970 case Intrinsic::x86_sse_cvttss2si64: 2971 if (!Subtarget->hasSSE1()) 2972 return false; 2973 IsInputDouble = false; 2974 break; 2975 case Intrinsic::x86_sse2_cvttsd2si: 2976 case Intrinsic::x86_sse2_cvttsd2si64: 2977 if (!Subtarget->hasSSE2()) 2978 return false; 2979 IsInputDouble = true; 2980 break; 2981 } 2982 2983 Type *RetTy = II->getCalledFunction()->getReturnType(); 2984 MVT VT; 2985 if (!isTypeLegal(RetTy, VT)) 2986 return false; 2987 2988 static const uint16_t CvtOpc[3][2][2] = { 2989 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 2990 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 2991 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 2992 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 2993 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 2994 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 2995 }; 2996 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2997 Subtarget->hasAVX() ? 1 : 2998 0; 2999 unsigned Opc; 3000 switch (VT.SimpleTy) { 3001 default: llvm_unreachable("Unexpected result type."); 3002 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 3003 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 3004 } 3005 3006 // Check if we can fold insertelement instructions into the convert. 3007 const Value *Op = II->getArgOperand(0); 3008 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3009 const Value *Index = IE->getOperand(2); 3010 if (!isa<ConstantInt>(Index)) 3011 break; 3012 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3013 3014 if (Idx == 0) { 3015 Op = IE->getOperand(1); 3016 break; 3017 } 3018 Op = IE->getOperand(0); 3019 } 3020 3021 Register Reg = getRegForValue(Op); 3022 if (Reg == 0) 3023 return false; 3024 3025 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3026 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 3027 .addReg(Reg); 3028 3029 updateValueMap(II, ResultReg); 3030 return true; 3031 } 3032 case Intrinsic::x86_sse42_crc32_32_8: 3033 case Intrinsic::x86_sse42_crc32_32_16: 3034 case Intrinsic::x86_sse42_crc32_32_32: 3035 case Intrinsic::x86_sse42_crc32_64_64: { 3036 if (!Subtarget->hasCRC32()) 3037 return false; 3038 3039 Type *RetTy = II->getCalledFunction()->getReturnType(); 3040 3041 MVT VT; 3042 if (!isTypeLegal(RetTy, VT)) 3043 return false; 3044 3045 unsigned Opc; 3046 const TargetRegisterClass *RC = nullptr; 3047 3048 switch (II->getIntrinsicID()) { 3049 default: 3050 llvm_unreachable("Unexpected intrinsic."); 3051 #define GET_EGPR_IF_ENABLED(OPC) Subtarget->hasEGPR() ? OPC##_EVEX : OPC 3052 case Intrinsic::x86_sse42_crc32_32_8: 3053 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r8); 3054 RC = &X86::GR32RegClass; 3055 break; 3056 case Intrinsic::x86_sse42_crc32_32_16: 3057 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r16); 3058 RC = &X86::GR32RegClass; 3059 break; 3060 case Intrinsic::x86_sse42_crc32_32_32: 3061 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r32); 3062 RC = &X86::GR32RegClass; 3063 break; 3064 case Intrinsic::x86_sse42_crc32_64_64: 3065 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r64r64); 3066 RC = &X86::GR64RegClass; 3067 break; 3068 #undef GET_EGPR_IF_ENABLED 3069 } 3070 3071 const Value *LHS = II->getArgOperand(0); 3072 const Value *RHS = II->getArgOperand(1); 3073 3074 Register LHSReg = getRegForValue(LHS); 3075 Register RHSReg = getRegForValue(RHS); 3076 if (!LHSReg || !RHSReg) 3077 return false; 3078 3079 Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg); 3080 if (!ResultReg) 3081 return false; 3082 3083 updateValueMap(II, ResultReg); 3084 return true; 3085 } 3086 } 3087 } 3088 3089 bool X86FastISel::fastLowerArguments() { 3090 if (!FuncInfo.CanLowerReturn) 3091 return false; 3092 3093 const Function *F = FuncInfo.Fn; 3094 if (F->isVarArg()) 3095 return false; 3096 3097 CallingConv::ID CC = F->getCallingConv(); 3098 if (CC != CallingConv::C) 3099 return false; 3100 3101 if (Subtarget->isCallingConvWin64(CC)) 3102 return false; 3103 3104 if (!Subtarget->is64Bit()) 3105 return false; 3106 3107 if (Subtarget->useSoftFloat()) 3108 return false; 3109 3110 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3111 unsigned GPRCnt = 0; 3112 unsigned FPRCnt = 0; 3113 for (auto const &Arg : F->args()) { 3114 if (Arg.hasAttribute(Attribute::ByVal) || 3115 Arg.hasAttribute(Attribute::InReg) || 3116 Arg.hasAttribute(Attribute::StructRet) || 3117 Arg.hasAttribute(Attribute::SwiftSelf) || 3118 Arg.hasAttribute(Attribute::SwiftAsync) || 3119 Arg.hasAttribute(Attribute::SwiftError) || 3120 Arg.hasAttribute(Attribute::Nest)) 3121 return false; 3122 3123 Type *ArgTy = Arg.getType(); 3124 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3125 return false; 3126 3127 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3128 if (!ArgVT.isSimple()) return false; 3129 switch (ArgVT.getSimpleVT().SimpleTy) { 3130 default: return false; 3131 case MVT::i32: 3132 case MVT::i64: 3133 ++GPRCnt; 3134 break; 3135 case MVT::f32: 3136 case MVT::f64: 3137 if (!Subtarget->hasSSE1()) 3138 return false; 3139 ++FPRCnt; 3140 break; 3141 } 3142 3143 if (GPRCnt > 6) 3144 return false; 3145 3146 if (FPRCnt > 8) 3147 return false; 3148 } 3149 3150 static const MCPhysReg GPR32ArgRegs[] = { 3151 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3152 }; 3153 static const MCPhysReg GPR64ArgRegs[] = { 3154 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3155 }; 3156 static const MCPhysReg XMMArgRegs[] = { 3157 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3158 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3159 }; 3160 3161 unsigned GPRIdx = 0; 3162 unsigned FPRIdx = 0; 3163 for (auto const &Arg : F->args()) { 3164 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3165 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3166 unsigned SrcReg; 3167 switch (VT.SimpleTy) { 3168 default: llvm_unreachable("Unexpected value type."); 3169 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3170 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3171 case MVT::f32: [[fallthrough]]; 3172 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3173 } 3174 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3175 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3176 // Without this, EmitLiveInCopies may eliminate the livein if its only 3177 // use is a bitcast (which isn't turned into an instruction). 3178 Register ResultReg = createResultReg(RC); 3179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3180 TII.get(TargetOpcode::COPY), ResultReg) 3181 .addReg(DstReg, getKillRegState(true)); 3182 updateValueMap(&Arg, ResultReg); 3183 } 3184 return true; 3185 } 3186 3187 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3188 CallingConv::ID CC, 3189 const CallBase *CB) { 3190 if (Subtarget->is64Bit()) 3191 return 0; 3192 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3193 return 0; 3194 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3195 CC == CallingConv::HiPE || CC == CallingConv::Tail || 3196 CC == CallingConv::SwiftTail) 3197 return 0; 3198 3199 if (CB) 3200 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) || 3201 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3202 return 0; 3203 3204 return 4; 3205 } 3206 3207 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3208 auto &OutVals = CLI.OutVals; 3209 auto &OutFlags = CLI.OutFlags; 3210 auto &OutRegs = CLI.OutRegs; 3211 auto &Ins = CLI.Ins; 3212 auto &InRegs = CLI.InRegs; 3213 CallingConv::ID CC = CLI.CallConv; 3214 bool &IsTailCall = CLI.IsTailCall; 3215 bool IsVarArg = CLI.IsVarArg; 3216 const Value *Callee = CLI.Callee; 3217 MCSymbol *Symbol = CLI.Symbol; 3218 const auto *CB = CLI.CB; 3219 3220 bool Is64Bit = Subtarget->is64Bit(); 3221 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3222 3223 // Call / invoke instructions with NoCfCheck attribute require special 3224 // handling. 3225 if (CB && CB->doesNoCfCheck()) 3226 return false; 3227 3228 // Functions with no_caller_saved_registers that need special handling. 3229 if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers"))) 3230 return false; 3231 3232 // Functions with no_callee_saved_registers that need special handling. 3233 if ((CB && CB->hasFnAttr("no_callee_saved_registers"))) 3234 return false; 3235 3236 // Indirect calls with CFI checks need special handling. 3237 if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi)) 3238 return false; 3239 3240 // Functions using thunks for indirect calls need to use SDISel. 3241 if (Subtarget->useIndirectThunkCalls()) 3242 return false; 3243 3244 // Handle only C and fastcc calling conventions for now. 3245 switch (CC) { 3246 default: return false; 3247 case CallingConv::C: 3248 case CallingConv::Fast: 3249 case CallingConv::Tail: 3250 case CallingConv::Swift: 3251 case CallingConv::SwiftTail: 3252 case CallingConv::X86_FastCall: 3253 case CallingConv::X86_StdCall: 3254 case CallingConv::X86_ThisCall: 3255 case CallingConv::Win64: 3256 case CallingConv::X86_64_SysV: 3257 case CallingConv::CFGuard_Check: 3258 break; 3259 } 3260 3261 // Allow SelectionDAG isel to handle tail calls. 3262 if (IsTailCall) 3263 return false; 3264 3265 // fastcc with -tailcallopt is intended to provide a guaranteed 3266 // tail call optimization. Fastisel doesn't know how to do that. 3267 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 3268 CC == CallingConv::Tail || CC == CallingConv::SwiftTail) 3269 return false; 3270 3271 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3272 // x86-32. Special handling for x86-64 is implemented. 3273 if (IsVarArg && IsWin64) 3274 return false; 3275 3276 // Don't know about inalloca yet. 3277 if (CLI.CB && CLI.CB->hasInAllocaArgument()) 3278 return false; 3279 3280 for (auto Flag : CLI.OutFlags) 3281 if (Flag.isSwiftError() || Flag.isPreallocated()) 3282 return false; 3283 3284 SmallVector<MVT, 16> OutVTs; 3285 SmallVector<unsigned, 16> ArgRegs; 3286 3287 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3288 // instruction. This is safe because it is common to all FastISel supported 3289 // calling conventions on x86. 3290 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3291 Value *&Val = OutVals[i]; 3292 ISD::ArgFlagsTy Flags = OutFlags[i]; 3293 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3294 if (CI->getBitWidth() < 32) { 3295 if (Flags.isSExt()) 3296 Val = ConstantInt::get(CI->getContext(), CI->getValue().sext(32)); 3297 else 3298 Val = ConstantInt::get(CI->getContext(), CI->getValue().zext(32)); 3299 } 3300 } 3301 3302 // Passing bools around ends up doing a trunc to i1 and passing it. 3303 // Codegen this as an argument + "and 1". 3304 MVT VT; 3305 auto *TI = dyn_cast<TruncInst>(Val); 3306 unsigned ResultReg; 3307 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB && 3308 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { 3309 Value *PrevVal = TI->getOperand(0); 3310 ResultReg = getRegForValue(PrevVal); 3311 3312 if (!ResultReg) 3313 return false; 3314 3315 if (!isTypeLegal(PrevVal->getType(), VT)) 3316 return false; 3317 3318 ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1); 3319 } else { 3320 if (!isTypeLegal(Val->getType(), VT) || 3321 (VT.isVector() && VT.getVectorElementType() == MVT::i1)) 3322 return false; 3323 ResultReg = getRegForValue(Val); 3324 } 3325 3326 if (!ResultReg) 3327 return false; 3328 3329 ArgRegs.push_back(ResultReg); 3330 OutVTs.push_back(VT); 3331 } 3332 3333 // Analyze operands of the call, assigning locations to each operand. 3334 SmallVector<CCValAssign, 16> ArgLocs; 3335 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3336 3337 // Allocate shadow area for Win64 3338 if (IsWin64) 3339 CCInfo.AllocateStack(32, Align(8)); 3340 3341 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3342 3343 // Get a count of how many bytes are to be pushed on the stack. 3344 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3345 3346 // Issue CALLSEQ_START 3347 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown)) 3349 .addImm(NumBytes).addImm(0).addImm(0); 3350 3351 // Walk the register/memloc assignments, inserting copies/loads. 3352 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3353 for (const CCValAssign &VA : ArgLocs) { 3354 const Value *ArgVal = OutVals[VA.getValNo()]; 3355 MVT ArgVT = OutVTs[VA.getValNo()]; 3356 3357 if (ArgVT == MVT::x86mmx) 3358 return false; 3359 3360 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3361 3362 // Promote the value if needed. 3363 switch (VA.getLocInfo()) { 3364 case CCValAssign::Full: break; 3365 case CCValAssign::SExt: { 3366 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3367 "Unexpected extend"); 3368 3369 if (ArgVT == MVT::i1) 3370 return false; 3371 3372 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3373 ArgVT, ArgReg); 3374 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3375 ArgVT = VA.getLocVT(); 3376 break; 3377 } 3378 case CCValAssign::ZExt: { 3379 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3380 "Unexpected extend"); 3381 3382 // Handle zero-extension from i1 to i8, which is common. 3383 if (ArgVT == MVT::i1) { 3384 // Set the high bits to zero. 3385 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg); 3386 ArgVT = MVT::i8; 3387 3388 if (ArgReg == 0) 3389 return false; 3390 } 3391 3392 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3393 ArgVT, ArgReg); 3394 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3395 ArgVT = VA.getLocVT(); 3396 break; 3397 } 3398 case CCValAssign::AExt: { 3399 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3400 "Unexpected extend"); 3401 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3402 ArgVT, ArgReg); 3403 if (!Emitted) 3404 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3405 ArgVT, ArgReg); 3406 if (!Emitted) 3407 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3408 ArgVT, ArgReg); 3409 3410 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3411 ArgVT = VA.getLocVT(); 3412 break; 3413 } 3414 case CCValAssign::BCvt: { 3415 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg); 3416 assert(ArgReg && "Failed to emit a bitcast!"); 3417 ArgVT = VA.getLocVT(); 3418 break; 3419 } 3420 case CCValAssign::VExt: 3421 // VExt has not been implemented, so this should be impossible to reach 3422 // for now. However, fallback to Selection DAG isel once implemented. 3423 return false; 3424 case CCValAssign::AExtUpper: 3425 case CCValAssign::SExtUpper: 3426 case CCValAssign::ZExtUpper: 3427 case CCValAssign::FPExt: 3428 case CCValAssign::Trunc: 3429 llvm_unreachable("Unexpected loc info!"); 3430 case CCValAssign::Indirect: 3431 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3432 // support this. 3433 return false; 3434 } 3435 3436 if (VA.isRegLoc()) { 3437 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3438 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3439 OutRegs.push_back(VA.getLocReg()); 3440 } else { 3441 assert(VA.isMemLoc() && "Unknown value location!"); 3442 3443 // Don't emit stores for undef values. 3444 if (isa<UndefValue>(ArgVal)) 3445 continue; 3446 3447 unsigned LocMemOffset = VA.getLocMemOffset(); 3448 X86AddressMode AM; 3449 AM.Base.Reg = RegInfo->getStackRegister(); 3450 AM.Disp = LocMemOffset; 3451 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3452 Align Alignment = DL.getABITypeAlign(ArgVal->getType()); 3453 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3454 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3455 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3456 if (Flags.isByVal()) { 3457 X86AddressMode SrcAM; 3458 SrcAM.Base.Reg = ArgReg; 3459 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3460 return false; 3461 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3462 // If this is a really simple value, emit this with the Value* version 3463 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3464 // as it can cause us to reevaluate the argument. 3465 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3466 return false; 3467 } else { 3468 if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO)) 3469 return false; 3470 } 3471 } 3472 } 3473 3474 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3475 // GOT pointer. 3476 if (Subtarget->isPICStyleGOT()) { 3477 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3478 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3479 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3480 } 3481 3482 if (Is64Bit && IsVarArg && !IsWin64) { 3483 // From AMD64 ABI document: 3484 // For calls that may call functions that use varargs or stdargs 3485 // (prototype-less calls or calls to functions containing ellipsis (...) in 3486 // the declaration) %al is used as hidden argument to specify the number 3487 // of SSE registers used. The contents of %al do not need to match exactly 3488 // the number of registers, but must be an ubound on the number of SSE 3489 // registers used and is in the range 0 - 8 inclusive. 3490 3491 // Count the number of XMM registers allocated. 3492 static const MCPhysReg XMMArgRegs[] = { 3493 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3494 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3495 }; 3496 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3497 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3498 && "SSE registers cannot be used when SSE is disabled"); 3499 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri), 3500 X86::AL).addImm(NumXMMRegs); 3501 } 3502 3503 // Materialize callee address in a register. FIXME: GV address can be 3504 // handled with a CALLpcrel32 instead. 3505 X86AddressMode CalleeAM; 3506 if (!X86SelectCallAddress(Callee, CalleeAM)) 3507 return false; 3508 3509 unsigned CalleeOp = 0; 3510 const GlobalValue *GV = nullptr; 3511 if (CalleeAM.GV != nullptr) { 3512 GV = CalleeAM.GV; 3513 } else if (CalleeAM.Base.Reg != 0) { 3514 CalleeOp = CalleeAM.Base.Reg; 3515 } else 3516 return false; 3517 3518 // Issue the call. 3519 MachineInstrBuilder MIB; 3520 if (CalleeOp) { 3521 // Register-indirect call. 3522 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3523 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)) 3524 .addReg(CalleeOp); 3525 } else { 3526 // Direct call. 3527 assert(GV && "Not a direct call"); 3528 // See if we need any target-specific flags on the GV operand. 3529 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3530 if (OpFlags == X86II::MO_PLT && !Is64Bit && 3531 TM.getRelocationModel() == Reloc::Static && isa<Function>(GV) && 3532 cast<Function>(GV)->isIntrinsic()) 3533 OpFlags = X86II::MO_NO_FLAG; 3534 3535 // This will be a direct call, or an indirect call through memory for 3536 // NonLazyBind calls or dllimport calls. 3537 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3538 OpFlags == X86II::MO_GOTPCREL || 3539 OpFlags == X86II::MO_GOTPCREL_NORELAX || 3540 OpFlags == X86II::MO_COFFSTUB; 3541 unsigned CallOpc = NeedLoad 3542 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3543 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3544 3545 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc)); 3546 if (NeedLoad) 3547 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); 3548 if (Symbol) 3549 MIB.addSym(Symbol, OpFlags); 3550 else 3551 MIB.addGlobalAddress(GV, 0, OpFlags); 3552 if (NeedLoad) 3553 MIB.addReg(0); 3554 } 3555 3556 // Add a register mask operand representing the call-preserved registers. 3557 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3558 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3559 3560 // Add an implicit use GOT pointer in EBX. 3561 if (Subtarget->isPICStyleGOT()) 3562 MIB.addReg(X86::EBX, RegState::Implicit); 3563 3564 if (Is64Bit && IsVarArg && !IsWin64) 3565 MIB.addReg(X86::AL, RegState::Implicit); 3566 3567 // Add implicit physical register uses to the call. 3568 for (auto Reg : OutRegs) 3569 MIB.addReg(Reg, RegState::Implicit); 3570 3571 // Issue CALLSEQ_END 3572 unsigned NumBytesForCalleeToPop = 3573 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3574 TM.Options.GuaranteedTailCallOpt) 3575 ? NumBytes // Callee pops everything. 3576 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB); 3577 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3578 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp)) 3579 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3580 3581 // Now handle call return values. 3582 SmallVector<CCValAssign, 16> RVLocs; 3583 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3584 CLI.RetTy->getContext()); 3585 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3586 3587 // Copy all of the result registers out of their specified physreg. 3588 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3589 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3590 CCValAssign &VA = RVLocs[i]; 3591 EVT CopyVT = VA.getValVT(); 3592 unsigned CopyReg = ResultReg + i; 3593 Register SrcReg = VA.getLocReg(); 3594 3595 // If this is x86-64, and we disabled SSE, we can't return FP values 3596 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3597 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3598 report_fatal_error("SSE register return with SSE disabled"); 3599 } 3600 3601 // If we prefer to use the value in xmm registers, copy it out as f80 and 3602 // use a truncate to move it from fp stack reg to xmm reg. 3603 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3604 isScalarFPTypeInSSEReg(VA.getValVT())) { 3605 CopyVT = MVT::f80; 3606 CopyReg = createResultReg(&X86::RFP80RegClass); 3607 } 3608 3609 // Copy out the result. 3610 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3611 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3612 InRegs.push_back(VA.getLocReg()); 3613 3614 // Round the f80 to the right size, which also moves it to the appropriate 3615 // xmm register. This is accomplished by storing the f80 value in memory 3616 // and then loading it back. 3617 if (CopyVT != VA.getValVT()) { 3618 EVT ResVT = VA.getValVT(); 3619 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3620 unsigned MemSize = ResVT.getSizeInBits()/8; 3621 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false); 3622 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3623 TII.get(Opc)), FI) 3624 .addReg(CopyReg); 3625 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3626 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3627 TII.get(Opc), ResultReg + i), FI); 3628 } 3629 } 3630 3631 CLI.ResultReg = ResultReg; 3632 CLI.NumResultRegs = RVLocs.size(); 3633 CLI.Call = MIB; 3634 3635 return true; 3636 } 3637 3638 bool 3639 X86FastISel::fastSelectInstruction(const Instruction *I) { 3640 switch (I->getOpcode()) { 3641 default: break; 3642 case Instruction::Load: 3643 return X86SelectLoad(I); 3644 case Instruction::Store: 3645 return X86SelectStore(I); 3646 case Instruction::Ret: 3647 return X86SelectRet(I); 3648 case Instruction::ICmp: 3649 case Instruction::FCmp: 3650 return X86SelectCmp(I); 3651 case Instruction::ZExt: 3652 return X86SelectZExt(I); 3653 case Instruction::SExt: 3654 return X86SelectSExt(I); 3655 case Instruction::Br: 3656 return X86SelectBranch(I); 3657 case Instruction::LShr: 3658 case Instruction::AShr: 3659 case Instruction::Shl: 3660 return X86SelectShift(I); 3661 case Instruction::SDiv: 3662 case Instruction::UDiv: 3663 case Instruction::SRem: 3664 case Instruction::URem: 3665 return X86SelectDivRem(I); 3666 case Instruction::Select: 3667 return X86SelectSelect(I); 3668 case Instruction::Trunc: 3669 return X86SelectTrunc(I); 3670 case Instruction::FPExt: 3671 return X86SelectFPExt(I); 3672 case Instruction::FPTrunc: 3673 return X86SelectFPTrunc(I); 3674 case Instruction::SIToFP: 3675 return X86SelectSIToFP(I); 3676 case Instruction::UIToFP: 3677 return X86SelectUIToFP(I); 3678 case Instruction::IntToPtr: // Deliberate fall-through. 3679 case Instruction::PtrToInt: { 3680 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3681 EVT DstVT = TLI.getValueType(DL, I->getType()); 3682 if (DstVT.bitsGT(SrcVT)) 3683 return X86SelectZExt(I); 3684 if (DstVT.bitsLT(SrcVT)) 3685 return X86SelectTrunc(I); 3686 Register Reg = getRegForValue(I->getOperand(0)); 3687 if (Reg == 0) return false; 3688 updateValueMap(I, Reg); 3689 return true; 3690 } 3691 case Instruction::BitCast: { 3692 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3693 if (!Subtarget->hasSSE2()) 3694 return false; 3695 3696 MVT SrcVT, DstVT; 3697 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3698 !isTypeLegal(I->getType(), DstVT)) 3699 return false; 3700 3701 // Only allow vectors that use xmm/ymm/zmm. 3702 if (!SrcVT.isVector() || !DstVT.isVector() || 3703 SrcVT.getVectorElementType() == MVT::i1 || 3704 DstVT.getVectorElementType() == MVT::i1) 3705 return false; 3706 3707 Register Reg = getRegForValue(I->getOperand(0)); 3708 if (!Reg) 3709 return false; 3710 3711 // Emit a reg-reg copy so we don't propagate cached known bits information 3712 // with the wrong VT if we fall out of fast isel after selecting this. 3713 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); 3714 Register ResultReg = createResultReg(DstClass); 3715 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3716 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg); 3717 3718 updateValueMap(I, ResultReg); 3719 return true; 3720 } 3721 } 3722 3723 return false; 3724 } 3725 3726 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3727 if (VT > MVT::i64) 3728 return 0; 3729 3730 uint64_t Imm = CI->getZExtValue(); 3731 if (Imm == 0) { 3732 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3733 switch (VT.SimpleTy) { 3734 default: llvm_unreachable("Unexpected value type"); 3735 case MVT::i1: 3736 case MVT::i8: 3737 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit); 3738 case MVT::i16: 3739 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit); 3740 case MVT::i32: 3741 return SrcReg; 3742 case MVT::i64: { 3743 Register ResultReg = createResultReg(&X86::GR64RegClass); 3744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3745 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3746 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3747 return ResultReg; 3748 } 3749 } 3750 } 3751 3752 unsigned Opc = 0; 3753 switch (VT.SimpleTy) { 3754 default: llvm_unreachable("Unexpected value type"); 3755 case MVT::i1: 3756 VT = MVT::i8; 3757 [[fallthrough]]; 3758 case MVT::i8: Opc = X86::MOV8ri; break; 3759 case MVT::i16: Opc = X86::MOV16ri; break; 3760 case MVT::i32: Opc = X86::MOV32ri; break; 3761 case MVT::i64: { 3762 if (isUInt<32>(Imm)) 3763 Opc = X86::MOV32ri64; 3764 else if (isInt<32>(Imm)) 3765 Opc = X86::MOV64ri32; 3766 else 3767 Opc = X86::MOV64ri; 3768 break; 3769 } 3770 } 3771 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3772 } 3773 3774 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3775 if (CFP->isNullValue()) 3776 return fastMaterializeFloatZero(CFP); 3777 3778 // Can't handle alternate code models yet. 3779 CodeModel::Model CM = TM.getCodeModel(); 3780 if (CM != CodeModel::Small && CM != CodeModel::Medium && 3781 CM != CodeModel::Large) 3782 return 0; 3783 3784 // Get opcode and regclass of the output for the given load instruction. 3785 unsigned Opc = 0; 3786 bool HasSSE1 = Subtarget->hasSSE1(); 3787 bool HasSSE2 = Subtarget->hasSSE2(); 3788 bool HasAVX = Subtarget->hasAVX(); 3789 bool HasAVX512 = Subtarget->hasAVX512(); 3790 switch (VT.SimpleTy) { 3791 default: return 0; 3792 case MVT::f32: 3793 Opc = HasAVX512 ? X86::VMOVSSZrm_alt 3794 : HasAVX ? X86::VMOVSSrm_alt 3795 : HasSSE1 ? X86::MOVSSrm_alt 3796 : X86::LD_Fp32m; 3797 break; 3798 case MVT::f64: 3799 Opc = HasAVX512 ? X86::VMOVSDZrm_alt 3800 : HasAVX ? X86::VMOVSDrm_alt 3801 : HasSSE2 ? X86::MOVSDrm_alt 3802 : X86::LD_Fp64m; 3803 break; 3804 case MVT::f80: 3805 // No f80 support yet. 3806 return 0; 3807 } 3808 3809 // MachineConstantPool wants an explicit alignment. 3810 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 3811 3812 // x86-32 PIC requires a PIC base register for constant pools. 3813 unsigned PICBase = 0; 3814 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3815 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3816 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3817 else if (OpFlag == X86II::MO_GOTOFF) 3818 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3819 else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large) 3820 PICBase = X86::RIP; 3821 3822 // Create the load from the constant pool. 3823 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment); 3824 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3825 3826 // Large code model only applies to 64-bit mode. 3827 if (Subtarget->is64Bit() && CM == CodeModel::Large) { 3828 Register AddrReg = createResultReg(&X86::GR64RegClass); 3829 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), 3830 AddrReg) 3831 .addConstantPoolIndex(CPI, 0, OpFlag); 3832 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3833 TII.get(Opc), ResultReg); 3834 addRegReg(MIB, AddrReg, false, PICBase, false); 3835 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3836 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3837 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment); 3838 MIB->addMemOperand(*FuncInfo.MF, MMO); 3839 return ResultReg; 3840 } 3841 3842 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3843 TII.get(Opc), ResultReg), 3844 CPI, PICBase, OpFlag); 3845 return ResultReg; 3846 } 3847 3848 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3849 // Can't handle large GlobalValues yet. 3850 if (TM.getCodeModel() != CodeModel::Small && 3851 TM.getCodeModel() != CodeModel::Medium) 3852 return 0; 3853 if (TM.isLargeGlobalValue(GV)) 3854 return 0; 3855 3856 // Materialize addresses with LEA/MOV instructions. 3857 X86AddressMode AM; 3858 if (X86SelectAddress(GV, AM)) { 3859 // If the expression is just a basereg, then we're done, otherwise we need 3860 // to emit an LEA. 3861 if (AM.BaseType == X86AddressMode::RegBase && 3862 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3863 return AM.Base.Reg; 3864 3865 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3866 if (TM.getRelocationModel() == Reloc::Static && 3867 TLI.getPointerTy(DL) == MVT::i64) { 3868 // The displacement code could be more than 32 bits away so we need to use 3869 // an instruction with a 64 bit immediate 3870 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri), 3871 ResultReg) 3872 .addGlobalAddress(GV); 3873 } else { 3874 unsigned Opc = 3875 TLI.getPointerTy(DL) == MVT::i32 3876 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3877 : X86::LEA64r; 3878 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3879 TII.get(Opc), ResultReg), AM); 3880 } 3881 return ResultReg; 3882 } 3883 return 0; 3884 } 3885 3886 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3887 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3888 3889 // Only handle simple types. 3890 if (!CEVT.isSimple()) 3891 return 0; 3892 MVT VT = CEVT.getSimpleVT(); 3893 3894 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3895 return X86MaterializeInt(CI, VT); 3896 if (const auto *CFP = dyn_cast<ConstantFP>(C)) 3897 return X86MaterializeFP(CFP, VT); 3898 if (const auto *GV = dyn_cast<GlobalValue>(C)) 3899 return X86MaterializeGV(GV, VT); 3900 if (isa<UndefValue>(C)) { 3901 unsigned Opc = 0; 3902 switch (VT.SimpleTy) { 3903 default: 3904 break; 3905 case MVT::f32: 3906 if (!Subtarget->hasSSE1()) 3907 Opc = X86::LD_Fp032; 3908 break; 3909 case MVT::f64: 3910 if (!Subtarget->hasSSE2()) 3911 Opc = X86::LD_Fp064; 3912 break; 3913 case MVT::f80: 3914 Opc = X86::LD_Fp080; 3915 break; 3916 } 3917 3918 if (Opc) { 3919 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3920 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 3921 ResultReg); 3922 return ResultReg; 3923 } 3924 } 3925 3926 return 0; 3927 } 3928 3929 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3930 // Fail on dynamic allocas. At this point, getRegForValue has already 3931 // checked its CSE maps, so if we're here trying to handle a dynamic 3932 // alloca, we're not going to succeed. X86SelectAddress has a 3933 // check for dynamic allocas, because it's called directly from 3934 // various places, but targetMaterializeAlloca also needs a check 3935 // in order to avoid recursion between getRegForValue, 3936 // X86SelectAddrss, and targetMaterializeAlloca. 3937 if (!FuncInfo.StaticAllocaMap.count(C)) 3938 return 0; 3939 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3940 3941 X86AddressMode AM; 3942 if (!X86SelectAddress(C, AM)) 3943 return 0; 3944 unsigned Opc = 3945 TLI.getPointerTy(DL) == MVT::i32 3946 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3947 : X86::LEA64r; 3948 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3949 Register ResultReg = createResultReg(RC); 3950 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3951 TII.get(Opc), ResultReg), AM); 3952 return ResultReg; 3953 } 3954 3955 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3956 MVT VT; 3957 if (!isTypeLegal(CF->getType(), VT)) 3958 return 0; 3959 3960 // Get opcode and regclass for the given zero. 3961 bool HasSSE1 = Subtarget->hasSSE1(); 3962 bool HasSSE2 = Subtarget->hasSSE2(); 3963 bool HasAVX512 = Subtarget->hasAVX512(); 3964 unsigned Opc = 0; 3965 switch (VT.SimpleTy) { 3966 default: return 0; 3967 case MVT::f16: 3968 Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH; 3969 break; 3970 case MVT::f32: 3971 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS 3972 : HasSSE1 ? X86::FsFLD0SS 3973 : X86::LD_Fp032; 3974 break; 3975 case MVT::f64: 3976 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD 3977 : HasSSE2 ? X86::FsFLD0SD 3978 : X86::LD_Fp064; 3979 break; 3980 case MVT::f80: 3981 // No f80 support yet. 3982 return 0; 3983 } 3984 3985 Register ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3986 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg); 3987 return ResultReg; 3988 } 3989 3990 3991 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3992 const LoadInst *LI) { 3993 const Value *Ptr = LI->getPointerOperand(); 3994 X86AddressMode AM; 3995 if (!X86SelectAddress(Ptr, AM)) 3996 return false; 3997 3998 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3999 4000 unsigned Size = DL.getTypeAllocSize(LI->getType()); 4001 4002 SmallVector<MachineOperand, 8> AddrOps; 4003 AM.getFullAddress(AddrOps); 4004 4005 MachineInstr *Result = XII.foldMemoryOperandImpl( 4006 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(), 4007 /*AllowCommute=*/true); 4008 if (!Result) 4009 return false; 4010 4011 // The index register could be in the wrong register class. Unfortunately, 4012 // foldMemoryOperandImpl could have commuted the instruction so its not enough 4013 // to just look at OpNo + the offset to the index reg. We actually need to 4014 // scan the instruction to find the index reg and see if its the correct reg 4015 // class. 4016 unsigned OperandNo = 0; 4017 for (MachineInstr::mop_iterator I = Result->operands_begin(), 4018 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 4019 MachineOperand &MO = *I; 4020 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 4021 continue; 4022 // Found the index reg, now try to rewrite it. 4023 Register IndexReg = constrainOperandRegClass(Result->getDesc(), 4024 MO.getReg(), OperandNo); 4025 if (IndexReg == MO.getReg()) 4026 continue; 4027 MO.setReg(IndexReg); 4028 } 4029 4030 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 4031 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 4032 MachineBasicBlock::iterator I(MI); 4033 removeDeadCode(I, std::next(I)); 4034 return true; 4035 } 4036 4037 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 4038 const TargetRegisterClass *RC, 4039 unsigned Op0, unsigned Op1, 4040 unsigned Op2, unsigned Op3) { 4041 const MCInstrDesc &II = TII.get(MachineInstOpcode); 4042 4043 Register ResultReg = createResultReg(RC); 4044 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 4045 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 4046 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 4047 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 4048 4049 if (II.getNumDefs() >= 1) 4050 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 4051 .addReg(Op0) 4052 .addReg(Op1) 4053 .addReg(Op2) 4054 .addReg(Op3); 4055 else { 4056 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 4057 .addReg(Op0) 4058 .addReg(Op1) 4059 .addReg(Op2) 4060 .addReg(Op3); 4061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY), 4062 ResultReg) 4063 .addReg(II.implicit_defs()[0]); 4064 } 4065 return ResultReg; 4066 } 4067 4068 4069 namespace llvm { 4070 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4071 const TargetLibraryInfo *libInfo) { 4072 return new X86FastISel(funcInfo, libInfo); 4073 } 4074 } 4075