1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86-specific support for the FastISel class. Much 10 // of the target-specific code is generated by tablegen in the file 11 // X86GenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86CallingConv.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86RegisterInfo.h" 21 #include "X86Subtarget.h" 22 #include "X86TargetMachine.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/IntrinsicsX86.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Target/TargetOptions.h" 44 using namespace llvm; 45 46 namespace { 47 48 class X86FastISel final : public FastISel { 49 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can 50 /// make the right decision when generating code for different targets. 51 const X86Subtarget *Subtarget; 52 53 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 54 /// floating point ops. 55 /// When SSE is available, use it for f32 operations. 56 /// When SSE2 is available, use it for f64 operations. 57 bool X86ScalarSSEf64; 58 bool X86ScalarSSEf32; 59 60 public: 61 explicit X86FastISel(FunctionLoweringInfo &funcInfo, 62 const TargetLibraryInfo *libInfo) 63 : FastISel(funcInfo, libInfo) { 64 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); 65 X86ScalarSSEf64 = Subtarget->hasSSE2(); 66 X86ScalarSSEf32 = Subtarget->hasSSE1(); 67 } 68 69 bool fastSelectInstruction(const Instruction *I) override; 70 71 /// The specified machine instr operand is a vreg, and that 72 /// vreg is being provided by the specified load instruction. If possible, 73 /// try to fold the load as an operand to the instruction, returning true if 74 /// possible. 75 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 76 const LoadInst *LI) override; 77 78 bool fastLowerArguments() override; 79 bool fastLowerCall(CallLoweringInfo &CLI) override; 80 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; 81 82 #include "X86GenFastISel.inc" 83 84 private: 85 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, 86 const DebugLoc &DL); 87 88 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, 89 unsigned &ResultReg, unsigned Alignment = 1); 90 91 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, 92 MachineMemOperand *MMO = nullptr, bool Aligned = false); 93 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, 94 X86AddressMode &AM, 95 MachineMemOperand *MMO = nullptr, bool Aligned = false); 96 97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, 98 unsigned &ResultReg); 99 100 bool X86SelectAddress(const Value *V, X86AddressMode &AM); 101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); 102 103 bool X86SelectLoad(const Instruction *I); 104 105 bool X86SelectStore(const Instruction *I); 106 107 bool X86SelectRet(const Instruction *I); 108 109 bool X86SelectCmp(const Instruction *I); 110 111 bool X86SelectZExt(const Instruction *I); 112 113 bool X86SelectSExt(const Instruction *I); 114 115 bool X86SelectBranch(const Instruction *I); 116 117 bool X86SelectShift(const Instruction *I); 118 119 bool X86SelectDivRem(const Instruction *I); 120 121 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); 122 123 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); 124 125 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); 126 127 bool X86SelectSelect(const Instruction *I); 128 129 bool X86SelectTrunc(const Instruction *I); 130 131 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, 132 const TargetRegisterClass *RC); 133 134 bool X86SelectFPExt(const Instruction *I); 135 bool X86SelectFPTrunc(const Instruction *I); 136 bool X86SelectSIToFP(const Instruction *I); 137 bool X86SelectUIToFP(const Instruction *I); 138 bool X86SelectIntToFP(const Instruction *I, bool IsSigned); 139 140 const X86InstrInfo *getInstrInfo() const { 141 return Subtarget->getInstrInfo(); 142 } 143 const X86TargetMachine *getTargetMachine() const { 144 return static_cast<const X86TargetMachine *>(&TM); 145 } 146 147 bool handleConstantAddresses(const Value *V, X86AddressMode &AM); 148 149 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT); 150 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT); 151 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT); 152 unsigned fastMaterializeConstant(const Constant *C) override; 153 154 unsigned fastMaterializeAlloca(const AllocaInst *C) override; 155 156 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override; 157 158 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is 159 /// computed in an SSE register, not on the X87 floating point stack. 160 bool isScalarFPTypeInSSEReg(EVT VT) const { 161 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 162 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 163 } 164 165 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); 166 167 bool IsMemcpySmall(uint64_t Len); 168 169 bool TryEmitSmallMemcpy(X86AddressMode DestAM, 170 X86AddressMode SrcAM, uint64_t Len); 171 172 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 173 const Value *Cond); 174 175 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, 176 X86AddressMode &AM); 177 178 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode, 179 const TargetRegisterClass *RC, unsigned Op0, 180 bool Op0IsKill, unsigned Op1, bool Op1IsKill, 181 unsigned Op2, bool Op2IsKill, unsigned Op3, 182 bool Op3IsKill); 183 }; 184 185 } // end anonymous namespace. 186 187 static std::pair<unsigned, bool> 188 getX86SSEConditionCode(CmpInst::Predicate Predicate) { 189 unsigned CC; 190 bool NeedSwap = false; 191 192 // SSE Condition code mapping: 193 // 0 - EQ 194 // 1 - LT 195 // 2 - LE 196 // 3 - UNORD 197 // 4 - NEQ 198 // 5 - NLT 199 // 6 - NLE 200 // 7 - ORD 201 switch (Predicate) { 202 default: llvm_unreachable("Unexpected predicate"); 203 case CmpInst::FCMP_OEQ: CC = 0; break; 204 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH; 205 case CmpInst::FCMP_OLT: CC = 1; break; 206 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH; 207 case CmpInst::FCMP_OLE: CC = 2; break; 208 case CmpInst::FCMP_UNO: CC = 3; break; 209 case CmpInst::FCMP_UNE: CC = 4; break; 210 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH; 211 case CmpInst::FCMP_UGE: CC = 5; break; 212 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH; 213 case CmpInst::FCMP_UGT: CC = 6; break; 214 case CmpInst::FCMP_ORD: CC = 7; break; 215 case CmpInst::FCMP_UEQ: CC = 8; break; 216 case CmpInst::FCMP_ONE: CC = 12; break; 217 } 218 219 return std::make_pair(CC, NeedSwap); 220 } 221 222 /// Adds a complex addressing mode to the given machine instr builder. 223 /// Note, this will constrain the index register. If its not possible to 224 /// constrain the given index register, then a new one will be created. The 225 /// IndexReg field of the addressing mode will be updated to match in this case. 226 const MachineInstrBuilder & 227 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, 228 X86AddressMode &AM) { 229 // First constrain the index register. It needs to be a GR64_NOSP. 230 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg, 231 MIB->getNumOperands() + 232 X86::AddrIndexReg); 233 return ::addFullAddress(MIB, AM); 234 } 235 236 /// Check if it is possible to fold the condition from the XALU intrinsic 237 /// into the user. The condition code will only be updated on success. 238 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, 239 const Value *Cond) { 240 if (!isa<ExtractValueInst>(Cond)) 241 return false; 242 243 const auto *EV = cast<ExtractValueInst>(Cond); 244 if (!isa<IntrinsicInst>(EV->getAggregateOperand())) 245 return false; 246 247 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand()); 248 MVT RetVT; 249 const Function *Callee = II->getCalledFunction(); 250 Type *RetTy = 251 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U); 252 if (!isTypeLegal(RetTy, RetVT)) 253 return false; 254 255 if (RetVT != MVT::i32 && RetVT != MVT::i64) 256 return false; 257 258 X86::CondCode TmpCC; 259 switch (II->getIntrinsicID()) { 260 default: return false; 261 case Intrinsic::sadd_with_overflow: 262 case Intrinsic::ssub_with_overflow: 263 case Intrinsic::smul_with_overflow: 264 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; 265 case Intrinsic::uadd_with_overflow: 266 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; 267 } 268 269 // Check if both instructions are in the same basic block. 270 if (II->getParent() != I->getParent()) 271 return false; 272 273 // Make sure nothing is in the way 274 BasicBlock::const_iterator Start(I); 275 BasicBlock::const_iterator End(II); 276 for (auto Itr = std::prev(Start); Itr != End; --Itr) { 277 // We only expect extractvalue instructions between the intrinsic and the 278 // instruction to be selected. 279 if (!isa<ExtractValueInst>(Itr)) 280 return false; 281 282 // Check that the extractvalue operand comes from the intrinsic. 283 const auto *EVI = cast<ExtractValueInst>(Itr); 284 if (EVI->getAggregateOperand() != II) 285 return false; 286 } 287 288 CC = TmpCC; 289 return true; 290 } 291 292 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { 293 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); 294 if (evt == MVT::Other || !evt.isSimple()) 295 // Unhandled type. Halt "fast" selection and bail. 296 return false; 297 298 VT = evt.getSimpleVT(); 299 // For now, require SSE/SSE2 for performing floating-point operations, 300 // since x87 requires additional work. 301 if (VT == MVT::f64 && !X86ScalarSSEf64) 302 return false; 303 if (VT == MVT::f32 && !X86ScalarSSEf32) 304 return false; 305 // Similarly, no f80 support yet. 306 if (VT == MVT::f80) 307 return false; 308 // We only handle legal types. For example, on x86-32 the instruction 309 // selector contains all of the 64-bit instructions from x86-64, 310 // under the assumption that i64 won't be used if the target doesn't 311 // support it. 312 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); 313 } 314 315 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. 316 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. 317 /// Return true and the result register by reference if it is possible. 318 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, 319 MachineMemOperand *MMO, unsigned &ResultReg, 320 unsigned Alignment) { 321 bool HasSSE41 = Subtarget->hasSSE41(); 322 bool HasAVX = Subtarget->hasAVX(); 323 bool HasAVX2 = Subtarget->hasAVX2(); 324 bool HasAVX512 = Subtarget->hasAVX512(); 325 bool HasVLX = Subtarget->hasVLX(); 326 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 327 328 // Treat i1 loads the same as i8 loads. Masking will be done when storing. 329 if (VT == MVT::i1) 330 VT = MVT::i8; 331 332 // Get opcode and regclass of the output for the given load instruction. 333 unsigned Opc = 0; 334 switch (VT.SimpleTy) { 335 default: return false; 336 case MVT::i8: 337 Opc = X86::MOV8rm; 338 break; 339 case MVT::i16: 340 Opc = X86::MOV16rm; 341 break; 342 case MVT::i32: 343 Opc = X86::MOV32rm; 344 break; 345 case MVT::i64: 346 // Must be in x86-64 mode. 347 Opc = X86::MOV64rm; 348 break; 349 case MVT::f32: 350 if (X86ScalarSSEf32) 351 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 352 HasAVX ? X86::VMOVSSrm_alt : 353 X86::MOVSSrm_alt; 354 else 355 Opc = X86::LD_Fp32m; 356 break; 357 case MVT::f64: 358 if (X86ScalarSSEf64) 359 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 360 HasAVX ? X86::VMOVSDrm_alt : 361 X86::MOVSDrm_alt; 362 else 363 Opc = X86::LD_Fp64m; 364 break; 365 case MVT::f80: 366 // No f80 support yet. 367 return false; 368 case MVT::v4f32: 369 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 370 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 371 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 372 else if (Alignment >= 16) 373 Opc = HasVLX ? X86::VMOVAPSZ128rm : 374 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; 375 else 376 Opc = HasVLX ? X86::VMOVUPSZ128rm : 377 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; 378 break; 379 case MVT::v2f64: 380 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 381 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 382 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 383 else if (Alignment >= 16) 384 Opc = HasVLX ? X86::VMOVAPDZ128rm : 385 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; 386 else 387 Opc = HasVLX ? X86::VMOVUPDZ128rm : 388 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; 389 break; 390 case MVT::v4i32: 391 case MVT::v2i64: 392 case MVT::v8i16: 393 case MVT::v16i8: 394 if (IsNonTemporal && Alignment >= 16 && HasSSE41) 395 Opc = HasVLX ? X86::VMOVNTDQAZ128rm : 396 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; 397 else if (Alignment >= 16) 398 Opc = HasVLX ? X86::VMOVDQA64Z128rm : 399 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; 400 else 401 Opc = HasVLX ? X86::VMOVDQU64Z128rm : 402 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; 403 break; 404 case MVT::v8f32: 405 assert(HasAVX); 406 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 407 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 408 else if (IsNonTemporal && Alignment >= 16) 409 return false; // Force split for X86::VMOVNTDQArm 410 else if (Alignment >= 32) 411 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; 412 else 413 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; 414 break; 415 case MVT::v4f64: 416 assert(HasAVX); 417 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 418 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 419 else if (IsNonTemporal && Alignment >= 16) 420 return false; // Force split for X86::VMOVNTDQArm 421 else if (Alignment >= 32) 422 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; 423 else 424 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; 425 break; 426 case MVT::v8i32: 427 case MVT::v4i64: 428 case MVT::v16i16: 429 case MVT::v32i8: 430 assert(HasAVX); 431 if (IsNonTemporal && Alignment >= 32 && HasAVX2) 432 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; 433 else if (IsNonTemporal && Alignment >= 16) 434 return false; // Force split for X86::VMOVNTDQArm 435 else if (Alignment >= 32) 436 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; 437 else 438 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; 439 break; 440 case MVT::v16f32: 441 assert(HasAVX512); 442 if (IsNonTemporal && Alignment >= 64) 443 Opc = X86::VMOVNTDQAZrm; 444 else 445 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; 446 break; 447 case MVT::v8f64: 448 assert(HasAVX512); 449 if (IsNonTemporal && Alignment >= 64) 450 Opc = X86::VMOVNTDQAZrm; 451 else 452 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; 453 break; 454 case MVT::v8i64: 455 case MVT::v16i32: 456 case MVT::v32i16: 457 case MVT::v64i8: 458 assert(HasAVX512); 459 // Note: There are a lot more choices based on type with AVX-512, but 460 // there's really no advantage when the load isn't masked. 461 if (IsNonTemporal && Alignment >= 64) 462 Opc = X86::VMOVNTDQAZrm; 463 else 464 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; 465 break; 466 } 467 468 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 469 470 ResultReg = createResultReg(RC); 471 MachineInstrBuilder MIB = 472 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 473 addFullAddress(MIB, AM); 474 if (MMO) 475 MIB->addMemOperand(*FuncInfo.MF, MMO); 476 return true; 477 } 478 479 /// X86FastEmitStore - Emit a machine instruction to store a value Val of 480 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr 481 /// and a displacement offset, or a GlobalAddress, 482 /// i.e. V. Return true if it is possible. 483 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill, 484 X86AddressMode &AM, 485 MachineMemOperand *MMO, bool Aligned) { 486 bool HasSSE1 = Subtarget->hasSSE1(); 487 bool HasSSE2 = Subtarget->hasSSE2(); 488 bool HasSSE4A = Subtarget->hasSSE4A(); 489 bool HasAVX = Subtarget->hasAVX(); 490 bool HasAVX512 = Subtarget->hasAVX512(); 491 bool HasVLX = Subtarget->hasVLX(); 492 bool IsNonTemporal = MMO && MMO->isNonTemporal(); 493 494 // Get opcode and regclass of the output for the given store instruction. 495 unsigned Opc = 0; 496 switch (VT.getSimpleVT().SimpleTy) { 497 case MVT::f80: // No f80 support yet. 498 default: return false; 499 case MVT::i1: { 500 // Mask out all but lowest bit. 501 unsigned AndResult = createResultReg(&X86::GR8RegClass); 502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 503 TII.get(X86::AND8ri), AndResult) 504 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1); 505 ValReg = AndResult; 506 LLVM_FALLTHROUGH; // handle i1 as i8. 507 } 508 case MVT::i8: Opc = X86::MOV8mr; break; 509 case MVT::i16: Opc = X86::MOV16mr; break; 510 case MVT::i32: 511 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; 512 break; 513 case MVT::i64: 514 // Must be in x86-64 mode. 515 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; 516 break; 517 case MVT::f32: 518 if (X86ScalarSSEf32) { 519 if (IsNonTemporal && HasSSE4A) 520 Opc = X86::MOVNTSS; 521 else 522 Opc = HasAVX512 ? X86::VMOVSSZmr : 523 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; 524 } else 525 Opc = X86::ST_Fp32m; 526 break; 527 case MVT::f64: 528 if (X86ScalarSSEf32) { 529 if (IsNonTemporal && HasSSE4A) 530 Opc = X86::MOVNTSD; 531 else 532 Opc = HasAVX512 ? X86::VMOVSDZmr : 533 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; 534 } else 535 Opc = X86::ST_Fp64m; 536 break; 537 case MVT::x86mmx: 538 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; 539 break; 540 case MVT::v4f32: 541 if (Aligned) { 542 if (IsNonTemporal) 543 Opc = HasVLX ? X86::VMOVNTPSZ128mr : 544 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; 545 else 546 Opc = HasVLX ? X86::VMOVAPSZ128mr : 547 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; 548 } else 549 Opc = HasVLX ? X86::VMOVUPSZ128mr : 550 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; 551 break; 552 case MVT::v2f64: 553 if (Aligned) { 554 if (IsNonTemporal) 555 Opc = HasVLX ? X86::VMOVNTPDZ128mr : 556 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; 557 else 558 Opc = HasVLX ? X86::VMOVAPDZ128mr : 559 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; 560 } else 561 Opc = HasVLX ? X86::VMOVUPDZ128mr : 562 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; 563 break; 564 case MVT::v4i32: 565 case MVT::v2i64: 566 case MVT::v8i16: 567 case MVT::v16i8: 568 if (Aligned) { 569 if (IsNonTemporal) 570 Opc = HasVLX ? X86::VMOVNTDQZ128mr : 571 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; 572 else 573 Opc = HasVLX ? X86::VMOVDQA64Z128mr : 574 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; 575 } else 576 Opc = HasVLX ? X86::VMOVDQU64Z128mr : 577 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; 578 break; 579 case MVT::v8f32: 580 assert(HasAVX); 581 if (Aligned) { 582 if (IsNonTemporal) 583 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; 584 else 585 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; 586 } else 587 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; 588 break; 589 case MVT::v4f64: 590 assert(HasAVX); 591 if (Aligned) { 592 if (IsNonTemporal) 593 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; 594 else 595 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; 596 } else 597 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; 598 break; 599 case MVT::v8i32: 600 case MVT::v4i64: 601 case MVT::v16i16: 602 case MVT::v32i8: 603 assert(HasAVX); 604 if (Aligned) { 605 if (IsNonTemporal) 606 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; 607 else 608 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; 609 } else 610 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; 611 break; 612 case MVT::v16f32: 613 assert(HasAVX512); 614 if (Aligned) 615 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; 616 else 617 Opc = X86::VMOVUPSZmr; 618 break; 619 case MVT::v8f64: 620 assert(HasAVX512); 621 if (Aligned) { 622 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; 623 } else 624 Opc = X86::VMOVUPDZmr; 625 break; 626 case MVT::v8i64: 627 case MVT::v16i32: 628 case MVT::v32i16: 629 case MVT::v64i8: 630 assert(HasAVX512); 631 // Note: There are a lot more choices based on type with AVX-512, but 632 // there's really no advantage when the store isn't masked. 633 if (Aligned) 634 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; 635 else 636 Opc = X86::VMOVDQU64Zmr; 637 break; 638 } 639 640 const MCInstrDesc &Desc = TII.get(Opc); 641 // Some of the instructions in the previous switch use FR128 instead 642 // of FR32 for ValReg. Make sure the register we feed the instruction 643 // matches its register class constraints. 644 // Note: This is fine to do a copy from FR32 to FR128, this is the 645 // same registers behind the scene and actually why it did not trigger 646 // any bugs before. 647 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1); 648 MachineInstrBuilder MIB = 649 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc); 650 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill)); 651 if (MMO) 652 MIB->addMemOperand(*FuncInfo.MF, MMO); 653 654 return true; 655 } 656 657 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, 658 X86AddressMode &AM, 659 MachineMemOperand *MMO, bool Aligned) { 660 // Handle 'null' like i32/i64 0. 661 if (isa<ConstantPointerNull>(Val)) 662 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext())); 663 664 // If this is a store of a simple constant, fold the constant into the store. 665 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 666 unsigned Opc = 0; 667 bool Signed = true; 668 switch (VT.getSimpleVT().SimpleTy) { 669 default: break; 670 case MVT::i1: 671 Signed = false; 672 LLVM_FALLTHROUGH; // Handle as i8. 673 case MVT::i8: Opc = X86::MOV8mi; break; 674 case MVT::i16: Opc = X86::MOV16mi; break; 675 case MVT::i32: Opc = X86::MOV32mi; break; 676 case MVT::i64: 677 // Must be a 32-bit sign extended value. 678 if (isInt<32>(CI->getSExtValue())) 679 Opc = X86::MOV64mi32; 680 break; 681 } 682 683 if (Opc) { 684 MachineInstrBuilder MIB = 685 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc)); 686 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue() 687 : CI->getZExtValue()); 688 if (MMO) 689 MIB->addMemOperand(*FuncInfo.MF, MMO); 690 return true; 691 } 692 } 693 694 unsigned ValReg = getRegForValue(Val); 695 if (ValReg == 0) 696 return false; 697 698 bool ValKill = hasTrivialKill(Val); 699 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned); 700 } 701 702 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of 703 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. 704 /// ISD::SIGN_EXTEND). 705 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, 706 unsigned Src, EVT SrcVT, 707 unsigned &ResultReg) { 708 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, 709 Src, /*TODO: Kill=*/false); 710 if (RR == 0) 711 return false; 712 713 ResultReg = RR; 714 return true; 715 } 716 717 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { 718 // Handle constant address. 719 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 720 // Can't handle alternate code models yet. 721 if (TM.getCodeModel() != CodeModel::Small) 722 return false; 723 724 // Can't handle TLS yet. 725 if (GV->isThreadLocal()) 726 return false; 727 728 // Can't handle !absolute_symbol references yet. 729 if (GV->isAbsoluteSymbolRef()) 730 return false; 731 732 // RIP-relative addresses can't have additional register operands, so if 733 // we've already folded stuff into the addressing mode, just force the 734 // global value into its own register, which we can use as the basereg. 735 if (!Subtarget->isPICStyleRIPRel() || 736 (AM.Base.Reg == 0 && AM.IndexReg == 0)) { 737 // Okay, we've committed to selecting this global. Set up the address. 738 AM.GV = GV; 739 740 // Allow the subtarget to classify the global. 741 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); 742 743 // If this reference is relative to the pic base, set it now. 744 if (isGlobalRelativeToPICBase(GVFlags)) { 745 // FIXME: How do we know Base.Reg is free?? 746 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 747 } 748 749 // Unless the ABI requires an extra load, return a direct reference to 750 // the global. 751 if (!isGlobalStubReference(GVFlags)) { 752 if (Subtarget->isPICStyleRIPRel()) { 753 // Use rip-relative addressing if we can. Above we verified that the 754 // base and index registers are unused. 755 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 756 AM.Base.Reg = X86::RIP; 757 } 758 AM.GVOpFlags = GVFlags; 759 return true; 760 } 761 762 // Ok, we need to do a load from a stub. If we've already loaded from 763 // this stub, reuse the loaded pointer, otherwise emit the load now. 764 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V); 765 unsigned LoadReg; 766 if (I != LocalValueMap.end() && I->second != 0) { 767 LoadReg = I->second; 768 } else { 769 // Issue load from stub. 770 unsigned Opc = 0; 771 const TargetRegisterClass *RC = nullptr; 772 X86AddressMode StubAM; 773 StubAM.Base.Reg = AM.Base.Reg; 774 StubAM.GV = GV; 775 StubAM.GVOpFlags = GVFlags; 776 777 // Prepare for inserting code in the local-value area. 778 SavePoint SaveInsertPt = enterLocalValueArea(); 779 780 if (TLI.getPointerTy(DL) == MVT::i64) { 781 Opc = X86::MOV64rm; 782 RC = &X86::GR64RegClass; 783 784 if (Subtarget->isPICStyleRIPRel()) 785 StubAM.Base.Reg = X86::RIP; 786 } else { 787 Opc = X86::MOV32rm; 788 RC = &X86::GR32RegClass; 789 } 790 791 LoadReg = createResultReg(RC); 792 MachineInstrBuilder LoadMI = 793 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg); 794 addFullAddress(LoadMI, StubAM); 795 796 // Ok, back to normal mode. 797 leaveLocalValueArea(SaveInsertPt); 798 799 // Prevent loading GV stub multiple times in same MBB. 800 LocalValueMap[V] = LoadReg; 801 } 802 803 // Now construct the final address. Note that the Disp, Scale, 804 // and Index values may already be set here. 805 AM.Base.Reg = LoadReg; 806 AM.GV = nullptr; 807 return true; 808 } 809 } 810 811 // If all else fails, try to materialize the value in a register. 812 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 813 if (AM.Base.Reg == 0) { 814 AM.Base.Reg = getRegForValue(V); 815 return AM.Base.Reg != 0; 816 } 817 if (AM.IndexReg == 0) { 818 assert(AM.Scale == 1 && "Scale with no index!"); 819 AM.IndexReg = getRegForValue(V); 820 return AM.IndexReg != 0; 821 } 822 } 823 824 return false; 825 } 826 827 /// X86SelectAddress - Attempt to fill in an address from the given value. 828 /// 829 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { 830 SmallVector<const Value *, 32> GEPs; 831 redo_gep: 832 const User *U = nullptr; 833 unsigned Opcode = Instruction::UserOp1; 834 if (const Instruction *I = dyn_cast<Instruction>(V)) { 835 // Don't walk into other basic blocks; it's possible we haven't 836 // visited them yet, so the instructions may not yet be assigned 837 // virtual registers. 838 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || 839 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 840 Opcode = I->getOpcode(); 841 U = I; 842 } 843 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 844 Opcode = C->getOpcode(); 845 U = C; 846 } 847 848 if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) 849 if (Ty->getAddressSpace() > 255) 850 // Fast instruction selection doesn't support the special 851 // address spaces. 852 return false; 853 854 switch (Opcode) { 855 default: break; 856 case Instruction::BitCast: 857 // Look past bitcasts. 858 return X86SelectAddress(U->getOperand(0), AM); 859 860 case Instruction::IntToPtr: 861 // Look past no-op inttoptrs. 862 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 863 TLI.getPointerTy(DL)) 864 return X86SelectAddress(U->getOperand(0), AM); 865 break; 866 867 case Instruction::PtrToInt: 868 // Look past no-op ptrtoints. 869 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 870 return X86SelectAddress(U->getOperand(0), AM); 871 break; 872 873 case Instruction::Alloca: { 874 // Do static allocas. 875 const AllocaInst *A = cast<AllocaInst>(V); 876 DenseMap<const AllocaInst *, int>::iterator SI = 877 FuncInfo.StaticAllocaMap.find(A); 878 if (SI != FuncInfo.StaticAllocaMap.end()) { 879 AM.BaseType = X86AddressMode::FrameIndexBase; 880 AM.Base.FrameIndex = SI->second; 881 return true; 882 } 883 break; 884 } 885 886 case Instruction::Add: { 887 // Adds of constants are common and easy enough. 888 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 889 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); 890 // They have to fit in the 32-bit signed displacement field though. 891 if (isInt<32>(Disp)) { 892 AM.Disp = (uint32_t)Disp; 893 return X86SelectAddress(U->getOperand(0), AM); 894 } 895 } 896 break; 897 } 898 899 case Instruction::GetElementPtr: { 900 X86AddressMode SavedAM = AM; 901 902 // Pattern-match simple GEPs. 903 uint64_t Disp = (int32_t)AM.Disp; 904 unsigned IndexReg = AM.IndexReg; 905 unsigned Scale = AM.Scale; 906 gep_type_iterator GTI = gep_type_begin(U); 907 // Iterate through the indices, folding what we can. Constants can be 908 // folded, and one dynamic index can be handled, if the scale is supported. 909 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 910 i != e; ++i, ++GTI) { 911 const Value *Op = *i; 912 if (StructType *STy = GTI.getStructTypeOrNull()) { 913 const StructLayout *SL = DL.getStructLayout(STy); 914 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); 915 continue; 916 } 917 918 // A array/variable index is always of the form i*S where S is the 919 // constant scale size. See if we can push the scale into immediates. 920 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 921 for (;;) { 922 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 923 // Constant-offset addressing. 924 Disp += CI->getSExtValue() * S; 925 break; 926 } 927 if (canFoldAddIntoGEP(U, Op)) { 928 // A compatible add with a constant operand. Fold the constant. 929 ConstantInt *CI = 930 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 931 Disp += CI->getSExtValue() * S; 932 // Iterate on the other operand. 933 Op = cast<AddOperator>(Op)->getOperand(0); 934 continue; 935 } 936 if (IndexReg == 0 && 937 (!AM.GV || !Subtarget->isPICStyleRIPRel()) && 938 (S == 1 || S == 2 || S == 4 || S == 8)) { 939 // Scaled-index addressing. 940 Scale = S; 941 IndexReg = getRegForGEPIndex(Op).first; 942 if (IndexReg == 0) 943 return false; 944 break; 945 } 946 // Unsupported. 947 goto unsupported_gep; 948 } 949 } 950 951 // Check for displacement overflow. 952 if (!isInt<32>(Disp)) 953 break; 954 955 AM.IndexReg = IndexReg; 956 AM.Scale = Scale; 957 AM.Disp = (uint32_t)Disp; 958 GEPs.push_back(V); 959 960 if (const GetElementPtrInst *GEP = 961 dyn_cast<GetElementPtrInst>(U->getOperand(0))) { 962 // Ok, the GEP indices were covered by constant-offset and scaled-index 963 // addressing. Update the address state and move on to examining the base. 964 V = GEP; 965 goto redo_gep; 966 } else if (X86SelectAddress(U->getOperand(0), AM)) { 967 return true; 968 } 969 970 // If we couldn't merge the gep value into this addr mode, revert back to 971 // our address and just match the value instead of completely failing. 972 AM = SavedAM; 973 974 for (const Value *I : reverse(GEPs)) 975 if (handleConstantAddresses(I, AM)) 976 return true; 977 978 return false; 979 unsupported_gep: 980 // Ok, the GEP indices weren't all covered. 981 break; 982 } 983 } 984 985 return handleConstantAddresses(V, AM); 986 } 987 988 /// X86SelectCallAddress - Attempt to fill in an address from the given value. 989 /// 990 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { 991 const User *U = nullptr; 992 unsigned Opcode = Instruction::UserOp1; 993 const Instruction *I = dyn_cast<Instruction>(V); 994 // Record if the value is defined in the same basic block. 995 // 996 // This information is crucial to know whether or not folding an 997 // operand is valid. 998 // Indeed, FastISel generates or reuses a virtual register for all 999 // operands of all instructions it selects. Obviously, the definition and 1000 // its uses must use the same virtual register otherwise the produced 1001 // code is incorrect. 1002 // Before instruction selection, FunctionLoweringInfo::set sets the virtual 1003 // registers for values that are alive across basic blocks. This ensures 1004 // that the values are consistently set between across basic block, even 1005 // if different instruction selection mechanisms are used (e.g., a mix of 1006 // SDISel and FastISel). 1007 // For values local to a basic block, the instruction selection process 1008 // generates these virtual registers with whatever method is appropriate 1009 // for its needs. In particular, FastISel and SDISel do not share the way 1010 // local virtual registers are set. 1011 // Therefore, this is impossible (or at least unsafe) to share values 1012 // between basic blocks unless they use the same instruction selection 1013 // method, which is not guarantee for X86. 1014 // Moreover, things like hasOneUse could not be used accurately, if we 1015 // allow to reference values across basic blocks whereas they are not 1016 // alive across basic blocks initially. 1017 bool InMBB = true; 1018 if (I) { 1019 Opcode = I->getOpcode(); 1020 U = I; 1021 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); 1022 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { 1023 Opcode = C->getOpcode(); 1024 U = C; 1025 } 1026 1027 switch (Opcode) { 1028 default: break; 1029 case Instruction::BitCast: 1030 // Look past bitcasts if its operand is in the same BB. 1031 if (InMBB) 1032 return X86SelectCallAddress(U->getOperand(0), AM); 1033 break; 1034 1035 case Instruction::IntToPtr: 1036 // Look past no-op inttoptrs if its operand is in the same BB. 1037 if (InMBB && 1038 TLI.getValueType(DL, U->getOperand(0)->getType()) == 1039 TLI.getPointerTy(DL)) 1040 return X86SelectCallAddress(U->getOperand(0), AM); 1041 break; 1042 1043 case Instruction::PtrToInt: 1044 // Look past no-op ptrtoints if its operand is in the same BB. 1045 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 1046 return X86SelectCallAddress(U->getOperand(0), AM); 1047 break; 1048 } 1049 1050 // Handle constant address. 1051 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1052 // Can't handle alternate code models yet. 1053 if (TM.getCodeModel() != CodeModel::Small) 1054 return false; 1055 1056 // RIP-relative addresses can't have additional register operands. 1057 if (Subtarget->isPICStyleRIPRel() && 1058 (AM.Base.Reg != 0 || AM.IndexReg != 0)) 1059 return false; 1060 1061 // Can't handle TLS. 1062 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 1063 if (GVar->isThreadLocal()) 1064 return false; 1065 1066 // Okay, we've committed to selecting this global. Set up the basic address. 1067 AM.GV = GV; 1068 1069 // Return a direct reference to the global. Fastisel can handle calls to 1070 // functions that require loads, such as dllimport and nonlazybind 1071 // functions. 1072 if (Subtarget->isPICStyleRIPRel()) { 1073 // Use rip-relative addressing if we can. Above we verified that the 1074 // base and index registers are unused. 1075 assert(AM.Base.Reg == 0 && AM.IndexReg == 0); 1076 AM.Base.Reg = X86::RIP; 1077 } else { 1078 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr); 1079 } 1080 1081 return true; 1082 } 1083 1084 // If all else fails, try to materialize the value in a register. 1085 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { 1086 if (AM.Base.Reg == 0) { 1087 AM.Base.Reg = getRegForValue(V); 1088 return AM.Base.Reg != 0; 1089 } 1090 if (AM.IndexReg == 0) { 1091 assert(AM.Scale == 1 && "Scale with no index!"); 1092 AM.IndexReg = getRegForValue(V); 1093 return AM.IndexReg != 0; 1094 } 1095 } 1096 1097 return false; 1098 } 1099 1100 1101 /// X86SelectStore - Select and emit code to implement store instructions. 1102 bool X86FastISel::X86SelectStore(const Instruction *I) { 1103 // Atomic stores need special handling. 1104 const StoreInst *S = cast<StoreInst>(I); 1105 1106 if (S->isAtomic()) 1107 return false; 1108 1109 const Value *PtrV = I->getOperand(1); 1110 if (TLI.supportSwiftError()) { 1111 // Swifterror values can come from either a function parameter with 1112 // swifterror attribute or an alloca with swifterror attribute. 1113 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1114 if (Arg->hasSwiftErrorAttr()) 1115 return false; 1116 } 1117 1118 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1119 if (Alloca->isSwiftError()) 1120 return false; 1121 } 1122 } 1123 1124 const Value *Val = S->getValueOperand(); 1125 const Value *Ptr = S->getPointerOperand(); 1126 1127 MVT VT; 1128 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true)) 1129 return false; 1130 1131 unsigned Alignment = S->getAlignment(); 1132 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType()); 1133 if (Alignment == 0) // Ensure that codegen never sees alignment 0 1134 Alignment = ABIAlignment; 1135 bool Aligned = Alignment >= ABIAlignment; 1136 1137 X86AddressMode AM; 1138 if (!X86SelectAddress(Ptr, AM)) 1139 return false; 1140 1141 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned); 1142 } 1143 1144 /// X86SelectRet - Select and emit code to implement ret instructions. 1145 bool X86FastISel::X86SelectRet(const Instruction *I) { 1146 const ReturnInst *Ret = cast<ReturnInst>(I); 1147 const Function &F = *I->getParent()->getParent(); 1148 const X86MachineFunctionInfo *X86MFInfo = 1149 FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); 1150 1151 if (!FuncInfo.CanLowerReturn) 1152 return false; 1153 1154 if (TLI.supportSwiftError() && 1155 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 1156 return false; 1157 1158 if (TLI.supportSplitCSR(FuncInfo.MF)) 1159 return false; 1160 1161 CallingConv::ID CC = F.getCallingConv(); 1162 if (CC != CallingConv::C && 1163 CC != CallingConv::Fast && 1164 CC != CallingConv::Tail && 1165 CC != CallingConv::X86_FastCall && 1166 CC != CallingConv::X86_StdCall && 1167 CC != CallingConv::X86_ThisCall && 1168 CC != CallingConv::X86_64_SysV && 1169 CC != CallingConv::Win64) 1170 return false; 1171 1172 // Don't handle popping bytes if they don't fit the ret's immediate. 1173 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn())) 1174 return false; 1175 1176 // fastcc with -tailcallopt is intended to provide a guaranteed 1177 // tail call optimization. Fastisel doesn't know how to do that. 1178 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 1179 CC == CallingConv::Tail) 1180 return false; 1181 1182 // Let SDISel handle vararg functions. 1183 if (F.isVarArg()) 1184 return false; 1185 1186 // Build a list of return value registers. 1187 SmallVector<unsigned, 4> RetRegs; 1188 1189 if (Ret->getNumOperands() > 0) { 1190 SmallVector<ISD::OutputArg, 4> Outs; 1191 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1192 1193 // Analyze operands of the call, assigning locations to each operand. 1194 SmallVector<CCValAssign, 16> ValLocs; 1195 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 1196 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1197 1198 const Value *RV = Ret->getOperand(0); 1199 unsigned Reg = getRegForValue(RV); 1200 if (Reg == 0) 1201 return false; 1202 1203 // Only handle a single return value for now. 1204 if (ValLocs.size() != 1) 1205 return false; 1206 1207 CCValAssign &VA = ValLocs[0]; 1208 1209 // Don't bother handling odd stuff for now. 1210 if (VA.getLocInfo() != CCValAssign::Full) 1211 return false; 1212 // Only handle register returns for now. 1213 if (!VA.isRegLoc()) 1214 return false; 1215 1216 // The calling-convention tables for x87 returns don't tell 1217 // the whole story. 1218 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) 1219 return false; 1220 1221 unsigned SrcReg = Reg + VA.getValNo(); 1222 EVT SrcVT = TLI.getValueType(DL, RV->getType()); 1223 EVT DstVT = VA.getValVT(); 1224 // Special handling for extended integers. 1225 if (SrcVT != DstVT) { 1226 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) 1227 return false; 1228 1229 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) 1230 return false; 1231 1232 assert(DstVT == MVT::i32 && "X86 should always ext to i32"); 1233 1234 if (SrcVT == MVT::i1) { 1235 if (Outs[0].Flags.isSExt()) 1236 return false; 1237 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); 1238 SrcVT = MVT::i8; 1239 } 1240 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : 1241 ISD::SIGN_EXTEND; 1242 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, 1243 SrcReg, /*TODO: Kill=*/false); 1244 } 1245 1246 // Make the copy. 1247 Register DstReg = VA.getLocReg(); 1248 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg); 1249 // Avoid a cross-class copy. This is very unlikely. 1250 if (!SrcRC->contains(DstReg)) 1251 return false; 1252 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1253 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 1254 1255 // Add register to return instruction. 1256 RetRegs.push_back(VA.getLocReg()); 1257 } 1258 1259 // Swift calling convention does not require we copy the sret argument 1260 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. 1261 1262 // All x86 ABIs require that for returning structs by value we copy 1263 // the sret argument into %rax/%eax (depending on ABI) for the return. 1264 // We saved the argument into a virtual register in the entry block, 1265 // so now we copy the value out and into %rax/%eax. 1266 if (F.hasStructRetAttr() && CC != CallingConv::Swift) { 1267 unsigned Reg = X86MFInfo->getSRetReturnReg(); 1268 assert(Reg && 1269 "SRetReturnReg should have been set in LowerFormalArguments()!"); 1270 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; 1271 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1272 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg); 1273 RetRegs.push_back(RetReg); 1274 } 1275 1276 // Now emit the RET. 1277 MachineInstrBuilder MIB; 1278 if (X86MFInfo->getBytesToPopOnReturn()) { 1279 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1280 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL)) 1281 .addImm(X86MFInfo->getBytesToPopOnReturn()); 1282 } else { 1283 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1284 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL)); 1285 } 1286 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 1287 MIB.addReg(RetRegs[i], RegState::Implicit); 1288 return true; 1289 } 1290 1291 /// X86SelectLoad - Select and emit code to implement load instructions. 1292 /// 1293 bool X86FastISel::X86SelectLoad(const Instruction *I) { 1294 const LoadInst *LI = cast<LoadInst>(I); 1295 1296 // Atomic loads need special handling. 1297 if (LI->isAtomic()) 1298 return false; 1299 1300 const Value *SV = I->getOperand(0); 1301 if (TLI.supportSwiftError()) { 1302 // Swifterror values can come from either a function parameter with 1303 // swifterror attribute or an alloca with swifterror attribute. 1304 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1305 if (Arg->hasSwiftErrorAttr()) 1306 return false; 1307 } 1308 1309 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1310 if (Alloca->isSwiftError()) 1311 return false; 1312 } 1313 } 1314 1315 MVT VT; 1316 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true)) 1317 return false; 1318 1319 const Value *Ptr = LI->getPointerOperand(); 1320 1321 X86AddressMode AM; 1322 if (!X86SelectAddress(Ptr, AM)) 1323 return false; 1324 1325 unsigned Alignment = LI->getAlignment(); 1326 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType()); 1327 if (Alignment == 0) // Ensure that codegen never sees alignment 0 1328 Alignment = ABIAlignment; 1329 1330 unsigned ResultReg = 0; 1331 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg, 1332 Alignment)) 1333 return false; 1334 1335 updateValueMap(I, ResultReg); 1336 return true; 1337 } 1338 1339 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { 1340 bool HasAVX512 = Subtarget->hasAVX512(); 1341 bool HasAVX = Subtarget->hasAVX(); 1342 bool X86ScalarSSEf32 = Subtarget->hasSSE1(); 1343 bool X86ScalarSSEf64 = Subtarget->hasSSE2(); 1344 1345 switch (VT.getSimpleVT().SimpleTy) { 1346 default: return 0; 1347 case MVT::i8: return X86::CMP8rr; 1348 case MVT::i16: return X86::CMP16rr; 1349 case MVT::i32: return X86::CMP32rr; 1350 case MVT::i64: return X86::CMP64rr; 1351 case MVT::f32: 1352 return X86ScalarSSEf32 1353 ? (HasAVX512 ? X86::VUCOMISSZrr 1354 : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) 1355 : 0; 1356 case MVT::f64: 1357 return X86ScalarSSEf64 1358 ? (HasAVX512 ? X86::VUCOMISDZrr 1359 : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) 1360 : 0; 1361 } 1362 } 1363 1364 /// If we have a comparison with RHS as the RHS of the comparison, return an 1365 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. 1366 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { 1367 int64_t Val = RHSC->getSExtValue(); 1368 switch (VT.getSimpleVT().SimpleTy) { 1369 // Otherwise, we can't fold the immediate into this comparison. 1370 default: 1371 return 0; 1372 case MVT::i8: 1373 return X86::CMP8ri; 1374 case MVT::i16: 1375 if (isInt<8>(Val)) 1376 return X86::CMP16ri8; 1377 return X86::CMP16ri; 1378 case MVT::i32: 1379 if (isInt<8>(Val)) 1380 return X86::CMP32ri8; 1381 return X86::CMP32ri; 1382 case MVT::i64: 1383 if (isInt<8>(Val)) 1384 return X86::CMP64ri8; 1385 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext 1386 // field. 1387 if (isInt<32>(Val)) 1388 return X86::CMP64ri32; 1389 return 0; 1390 } 1391 } 1392 1393 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, 1394 const DebugLoc &CurDbgLoc) { 1395 unsigned Op0Reg = getRegForValue(Op0); 1396 if (Op0Reg == 0) return false; 1397 1398 // Handle 'null' like i32/i64 0. 1399 if (isa<ConstantPointerNull>(Op1)) 1400 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext())); 1401 1402 // We have two options: compare with register or immediate. If the RHS of 1403 // the compare is an immediate that we can fold into this compare, use 1404 // CMPri, otherwise use CMPrr. 1405 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 1406 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { 1407 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc)) 1408 .addReg(Op0Reg) 1409 .addImm(Op1C->getSExtValue()); 1410 return true; 1411 } 1412 } 1413 1414 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); 1415 if (CompareOpc == 0) return false; 1416 1417 unsigned Op1Reg = getRegForValue(Op1); 1418 if (Op1Reg == 0) return false; 1419 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc)) 1420 .addReg(Op0Reg) 1421 .addReg(Op1Reg); 1422 1423 return true; 1424 } 1425 1426 bool X86FastISel::X86SelectCmp(const Instruction *I) { 1427 const CmpInst *CI = cast<CmpInst>(I); 1428 1429 MVT VT; 1430 if (!isTypeLegal(I->getOperand(0)->getType(), VT)) 1431 return false; 1432 1433 // Try to optimize or fold the cmp. 1434 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1435 unsigned ResultReg = 0; 1436 switch (Predicate) { 1437 default: break; 1438 case CmpInst::FCMP_FALSE: { 1439 ResultReg = createResultReg(&X86::GR32RegClass); 1440 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0), 1441 ResultReg); 1442 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true, 1443 X86::sub_8bit); 1444 if (!ResultReg) 1445 return false; 1446 break; 1447 } 1448 case CmpInst::FCMP_TRUE: { 1449 ResultReg = createResultReg(&X86::GR8RegClass); 1450 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 1451 ResultReg).addImm(1); 1452 break; 1453 } 1454 } 1455 1456 if (ResultReg) { 1457 updateValueMap(I, ResultReg); 1458 return true; 1459 } 1460 1461 const Value *LHS = CI->getOperand(0); 1462 const Value *RHS = CI->getOperand(1); 1463 1464 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 1465 // We don't have to materialize a zero constant for this case and can just use 1466 // %x again on the RHS. 1467 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1468 const auto *RHSC = dyn_cast<ConstantFP>(RHS); 1469 if (RHSC && RHSC->isNullValue()) 1470 RHS = LHS; 1471 } 1472 1473 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 1474 static const uint16_t SETFOpcTable[2][3] = { 1475 { X86::COND_E, X86::COND_NP, X86::AND8rr }, 1476 { X86::COND_NE, X86::COND_P, X86::OR8rr } 1477 }; 1478 const uint16_t *SETFOpc = nullptr; 1479 switch (Predicate) { 1480 default: break; 1481 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; 1482 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; 1483 } 1484 1485 ResultReg = createResultReg(&X86::GR8RegClass); 1486 if (SETFOpc) { 1487 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1488 return false; 1489 1490 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); 1491 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); 1492 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1493 FlagReg1).addImm(SETFOpc[0]); 1494 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1495 FlagReg2).addImm(SETFOpc[1]); 1496 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]), 1497 ResultReg).addReg(FlagReg1).addReg(FlagReg2); 1498 updateValueMap(I, ResultReg); 1499 return true; 1500 } 1501 1502 X86::CondCode CC; 1503 bool SwapArgs; 1504 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1505 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1506 1507 if (SwapArgs) 1508 std::swap(LHS, RHS); 1509 1510 // Emit a compare of LHS/RHS. 1511 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc())) 1512 return false; 1513 1514 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 1515 ResultReg).addImm(CC); 1516 updateValueMap(I, ResultReg); 1517 return true; 1518 } 1519 1520 bool X86FastISel::X86SelectZExt(const Instruction *I) { 1521 EVT DstVT = TLI.getValueType(DL, I->getType()); 1522 if (!TLI.isTypeLegal(DstVT)) 1523 return false; 1524 1525 unsigned ResultReg = getRegForValue(I->getOperand(0)); 1526 if (ResultReg == 0) 1527 return false; 1528 1529 // Handle zero-extension from i1 to i8, which is common. 1530 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1531 if (SrcVT == MVT::i1) { 1532 // Set the high bits to zero. 1533 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); 1534 SrcVT = MVT::i8; 1535 1536 if (ResultReg == 0) 1537 return false; 1538 } 1539 1540 if (DstVT == MVT::i64) { 1541 // Handle extension to 64-bits via sub-register shenanigans. 1542 unsigned MovInst; 1543 1544 switch (SrcVT.SimpleTy) { 1545 case MVT::i8: MovInst = X86::MOVZX32rr8; break; 1546 case MVT::i16: MovInst = X86::MOVZX32rr16; break; 1547 case MVT::i32: MovInst = X86::MOV32rr; break; 1548 default: llvm_unreachable("Unexpected zext to i64 source type"); 1549 } 1550 1551 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1552 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32) 1553 .addReg(ResultReg); 1554 1555 ResultReg = createResultReg(&X86::GR64RegClass); 1556 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG), 1557 ResultReg) 1558 .addImm(0).addReg(Result32).addImm(X86::sub_32bit); 1559 } else if (DstVT == MVT::i16) { 1560 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero 1561 // extend to 32-bits and then extract down to 16-bits. 1562 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1563 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8), 1564 Result32).addReg(ResultReg); 1565 1566 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, 1567 X86::sub_16bit); 1568 } else if (DstVT != MVT::i8) { 1569 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, 1570 ResultReg, /*Kill=*/true); 1571 if (ResultReg == 0) 1572 return false; 1573 } 1574 1575 updateValueMap(I, ResultReg); 1576 return true; 1577 } 1578 1579 bool X86FastISel::X86SelectSExt(const Instruction *I) { 1580 EVT DstVT = TLI.getValueType(DL, I->getType()); 1581 if (!TLI.isTypeLegal(DstVT)) 1582 return false; 1583 1584 unsigned ResultReg = getRegForValue(I->getOperand(0)); 1585 if (ResultReg == 0) 1586 return false; 1587 1588 // Handle sign-extension from i1 to i8. 1589 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 1590 if (SrcVT == MVT::i1) { 1591 // Set the high bits to zero. 1592 unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg, 1593 /*TODO: Kill=*/false); 1594 if (ZExtReg == 0) 1595 return false; 1596 1597 // Negate the result to make an 8-bit sign extended value. 1598 ResultReg = createResultReg(&X86::GR8RegClass); 1599 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r), 1600 ResultReg).addReg(ZExtReg); 1601 1602 SrcVT = MVT::i8; 1603 } 1604 1605 if (DstVT == MVT::i16) { 1606 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign 1607 // extend to 32-bits and then extract down to 16-bits. 1608 unsigned Result32 = createResultReg(&X86::GR32RegClass); 1609 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8), 1610 Result32).addReg(ResultReg); 1611 1612 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true, 1613 X86::sub_16bit); 1614 } else if (DstVT != MVT::i8) { 1615 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND, 1616 ResultReg, /*Kill=*/true); 1617 if (ResultReg == 0) 1618 return false; 1619 } 1620 1621 updateValueMap(I, ResultReg); 1622 return true; 1623 } 1624 1625 bool X86FastISel::X86SelectBranch(const Instruction *I) { 1626 // Unconditional branches are selected by tablegen-generated code. 1627 // Handle a conditional branch. 1628 const BranchInst *BI = cast<BranchInst>(I); 1629 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1630 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1631 1632 // Fold the common case of a conditional branch with a comparison 1633 // in the same block (values defined on other blocks may not have 1634 // initialized registers). 1635 X86::CondCode CC; 1636 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1637 if (CI->hasOneUse() && CI->getParent() == I->getParent()) { 1638 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1639 1640 // Try to optimize or fold the cmp. 1641 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 1642 switch (Predicate) { 1643 default: break; 1644 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true; 1645 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true; 1646 } 1647 1648 const Value *CmpLHS = CI->getOperand(0); 1649 const Value *CmpRHS = CI->getOperand(1); 1650 1651 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 1652 // 0.0. 1653 // We don't have to materialize a zero constant for this case and can just 1654 // use %x again on the RHS. 1655 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 1656 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 1657 if (CmpRHSC && CmpRHSC->isNullValue()) 1658 CmpRHS = CmpLHS; 1659 } 1660 1661 // Try to take advantage of fallthrough opportunities. 1662 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1663 std::swap(TrueMBB, FalseMBB); 1664 Predicate = CmpInst::getInversePredicate(Predicate); 1665 } 1666 1667 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition 1668 // code check. Instead two branch instructions are required to check all 1669 // the flags. First we change the predicate to a supported condition code, 1670 // which will be the first branch. Later one we will emit the second 1671 // branch. 1672 bool NeedExtraBranch = false; 1673 switch (Predicate) { 1674 default: break; 1675 case CmpInst::FCMP_OEQ: 1676 std::swap(TrueMBB, FalseMBB); 1677 LLVM_FALLTHROUGH; 1678 case CmpInst::FCMP_UNE: 1679 NeedExtraBranch = true; 1680 Predicate = CmpInst::FCMP_ONE; 1681 break; 1682 } 1683 1684 bool SwapArgs; 1685 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate); 1686 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 1687 1688 if (SwapArgs) 1689 std::swap(CmpLHS, CmpRHS); 1690 1691 // Emit a compare of the LHS and RHS, setting the flags. 1692 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc())) 1693 return false; 1694 1695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1696 .addMBB(TrueMBB).addImm(CC); 1697 1698 // X86 requires a second branch to handle UNE (and OEQ, which is mapped 1699 // to UNE above). 1700 if (NeedExtraBranch) { 1701 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1702 .addMBB(TrueMBB).addImm(X86::COND_P); 1703 } 1704 1705 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1706 return true; 1707 } 1708 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1709 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which 1710 // typically happen for _Bool and C++ bools. 1711 MVT SourceVT; 1712 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1713 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { 1714 unsigned TestOpc = 0; 1715 switch (SourceVT.SimpleTy) { 1716 default: break; 1717 case MVT::i8: TestOpc = X86::TEST8ri; break; 1718 case MVT::i16: TestOpc = X86::TEST16ri; break; 1719 case MVT::i32: TestOpc = X86::TEST32ri; break; 1720 case MVT::i64: TestOpc = X86::TEST64ri32; break; 1721 } 1722 if (TestOpc) { 1723 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1724 if (OpReg == 0) return false; 1725 1726 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc)) 1727 .addReg(OpReg).addImm(1); 1728 1729 unsigned JmpCond = X86::COND_NE; 1730 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { 1731 std::swap(TrueMBB, FalseMBB); 1732 JmpCond = X86::COND_E; 1733 } 1734 1735 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1736 .addMBB(TrueMBB).addImm(JmpCond); 1737 1738 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1739 return true; 1740 } 1741 } 1742 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) { 1743 // Fake request the condition, otherwise the intrinsic might be completely 1744 // optimized away. 1745 unsigned TmpReg = getRegForValue(BI->getCondition()); 1746 if (TmpReg == 0) 1747 return false; 1748 1749 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1750 .addMBB(TrueMBB).addImm(CC); 1751 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1752 return true; 1753 } 1754 1755 // Otherwise do a clumsy setcc and re-test it. 1756 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used 1757 // in an explicit cast, so make sure to handle that correctly. 1758 unsigned OpReg = getRegForValue(BI->getCondition()); 1759 if (OpReg == 0) return false; 1760 1761 // In case OpReg is a K register, COPY to a GPR 1762 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) { 1763 unsigned KOpReg = OpReg; 1764 OpReg = createResultReg(&X86::GR32RegClass); 1765 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1766 TII.get(TargetOpcode::COPY), OpReg) 1767 .addReg(KOpReg); 1768 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true, 1769 X86::sub_8bit); 1770 } 1771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 1772 .addReg(OpReg) 1773 .addImm(1); 1774 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1)) 1775 .addMBB(TrueMBB).addImm(X86::COND_NE); 1776 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB); 1777 return true; 1778 } 1779 1780 bool X86FastISel::X86SelectShift(const Instruction *I) { 1781 unsigned CReg = 0, OpReg = 0; 1782 const TargetRegisterClass *RC = nullptr; 1783 if (I->getType()->isIntegerTy(8)) { 1784 CReg = X86::CL; 1785 RC = &X86::GR8RegClass; 1786 switch (I->getOpcode()) { 1787 case Instruction::LShr: OpReg = X86::SHR8rCL; break; 1788 case Instruction::AShr: OpReg = X86::SAR8rCL; break; 1789 case Instruction::Shl: OpReg = X86::SHL8rCL; break; 1790 default: return false; 1791 } 1792 } else if (I->getType()->isIntegerTy(16)) { 1793 CReg = X86::CX; 1794 RC = &X86::GR16RegClass; 1795 switch (I->getOpcode()) { 1796 default: llvm_unreachable("Unexpected shift opcode"); 1797 case Instruction::LShr: OpReg = X86::SHR16rCL; break; 1798 case Instruction::AShr: OpReg = X86::SAR16rCL; break; 1799 case Instruction::Shl: OpReg = X86::SHL16rCL; break; 1800 } 1801 } else if (I->getType()->isIntegerTy(32)) { 1802 CReg = X86::ECX; 1803 RC = &X86::GR32RegClass; 1804 switch (I->getOpcode()) { 1805 default: llvm_unreachable("Unexpected shift opcode"); 1806 case Instruction::LShr: OpReg = X86::SHR32rCL; break; 1807 case Instruction::AShr: OpReg = X86::SAR32rCL; break; 1808 case Instruction::Shl: OpReg = X86::SHL32rCL; break; 1809 } 1810 } else if (I->getType()->isIntegerTy(64)) { 1811 CReg = X86::RCX; 1812 RC = &X86::GR64RegClass; 1813 switch (I->getOpcode()) { 1814 default: llvm_unreachable("Unexpected shift opcode"); 1815 case Instruction::LShr: OpReg = X86::SHR64rCL; break; 1816 case Instruction::AShr: OpReg = X86::SAR64rCL; break; 1817 case Instruction::Shl: OpReg = X86::SHL64rCL; break; 1818 } 1819 } else { 1820 return false; 1821 } 1822 1823 MVT VT; 1824 if (!isTypeLegal(I->getType(), VT)) 1825 return false; 1826 1827 unsigned Op0Reg = getRegForValue(I->getOperand(0)); 1828 if (Op0Reg == 0) return false; 1829 1830 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1831 if (Op1Reg == 0) return false; 1832 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), 1833 CReg).addReg(Op1Reg); 1834 1835 // The shift instruction uses X86::CL. If we defined a super-register 1836 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. 1837 if (CReg != X86::CL) 1838 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1839 TII.get(TargetOpcode::KILL), X86::CL) 1840 .addReg(CReg, RegState::Kill); 1841 1842 unsigned ResultReg = createResultReg(RC); 1843 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg) 1844 .addReg(Op0Reg); 1845 updateValueMap(I, ResultReg); 1846 return true; 1847 } 1848 1849 bool X86FastISel::X86SelectDivRem(const Instruction *I) { 1850 const static unsigned NumTypes = 4; // i8, i16, i32, i64 1851 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem 1852 const static bool S = true; // IsSigned 1853 const static bool U = false; // !IsSigned 1854 const static unsigned Copy = TargetOpcode::COPY; 1855 // For the X86 DIV/IDIV instruction, in most cases the dividend 1856 // (numerator) must be in a specific register pair highreg:lowreg, 1857 // producing the quotient in lowreg and the remainder in highreg. 1858 // For most data types, to set up the instruction, the dividend is 1859 // copied into lowreg, and lowreg is sign-extended or zero-extended 1860 // into highreg. The exception is i8, where the dividend is defined 1861 // as a single register rather than a register pair, and we 1862 // therefore directly sign-extend or zero-extend the dividend into 1863 // lowreg, instead of copying, and ignore the highreg. 1864 const static struct DivRemEntry { 1865 // The following portion depends only on the data type. 1866 const TargetRegisterClass *RC; 1867 unsigned LowInReg; // low part of the register pair 1868 unsigned HighInReg; // high part of the register pair 1869 // The following portion depends on both the data type and the operation. 1870 struct DivRemResult { 1871 unsigned OpDivRem; // The specific DIV/IDIV opcode to use. 1872 unsigned OpSignExtend; // Opcode for sign-extending lowreg into 1873 // highreg, or copying a zero into highreg. 1874 unsigned OpCopy; // Opcode for copying dividend into lowreg, or 1875 // zero/sign-extending into lowreg for i8. 1876 unsigned DivRemResultReg; // Register containing the desired result. 1877 bool IsOpSigned; // Whether to use signed or unsigned form. 1878 } ResultTable[NumOps]; 1879 } OpTable[NumTypes] = { 1880 { &X86::GR8RegClass, X86::AX, 0, { 1881 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv 1882 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem 1883 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv 1884 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem 1885 } 1886 }, // i8 1887 { &X86::GR16RegClass, X86::AX, X86::DX, { 1888 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv 1889 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem 1890 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv 1891 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem 1892 } 1893 }, // i16 1894 { &X86::GR32RegClass, X86::EAX, X86::EDX, { 1895 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv 1896 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem 1897 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv 1898 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem 1899 } 1900 }, // i32 1901 { &X86::GR64RegClass, X86::RAX, X86::RDX, { 1902 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv 1903 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem 1904 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv 1905 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem 1906 } 1907 }, // i64 1908 }; 1909 1910 MVT VT; 1911 if (!isTypeLegal(I->getType(), VT)) 1912 return false; 1913 1914 unsigned TypeIndex, OpIndex; 1915 switch (VT.SimpleTy) { 1916 default: return false; 1917 case MVT::i8: TypeIndex = 0; break; 1918 case MVT::i16: TypeIndex = 1; break; 1919 case MVT::i32: TypeIndex = 2; break; 1920 case MVT::i64: TypeIndex = 3; 1921 if (!Subtarget->is64Bit()) 1922 return false; 1923 break; 1924 } 1925 1926 switch (I->getOpcode()) { 1927 default: llvm_unreachable("Unexpected div/rem opcode"); 1928 case Instruction::SDiv: OpIndex = 0; break; 1929 case Instruction::SRem: OpIndex = 1; break; 1930 case Instruction::UDiv: OpIndex = 2; break; 1931 case Instruction::URem: OpIndex = 3; break; 1932 } 1933 1934 const DivRemEntry &TypeEntry = OpTable[TypeIndex]; 1935 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; 1936 unsigned Op0Reg = getRegForValue(I->getOperand(0)); 1937 if (Op0Reg == 0) 1938 return false; 1939 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1940 if (Op1Reg == 0) 1941 return false; 1942 1943 // Move op0 into low-order input register. 1944 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1945 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg); 1946 // Zero-extend or sign-extend into high-order input register. 1947 if (OpEntry.OpSignExtend) { 1948 if (OpEntry.IsOpSigned) 1949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1950 TII.get(OpEntry.OpSignExtend)); 1951 else { 1952 unsigned Zero32 = createResultReg(&X86::GR32RegClass); 1953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1954 TII.get(X86::MOV32r0), Zero32); 1955 1956 // Copy the zero into the appropriate sub/super/identical physical 1957 // register. Unfortunately the operations needed are not uniform enough 1958 // to fit neatly into the table above. 1959 if (VT == MVT::i16) { 1960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1961 TII.get(Copy), TypeEntry.HighInReg) 1962 .addReg(Zero32, 0, X86::sub_16bit); 1963 } else if (VT == MVT::i32) { 1964 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1965 TII.get(Copy), TypeEntry.HighInReg) 1966 .addReg(Zero32); 1967 } else if (VT == MVT::i64) { 1968 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1969 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg) 1970 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit); 1971 } 1972 } 1973 } 1974 // Generate the DIV/IDIV instruction. 1975 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1976 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg); 1977 // For i8 remainder, we can't reference ah directly, as we'll end 1978 // up with bogus copies like %r9b = COPY %ah. Reference ax 1979 // instead to prevent ah references in a rex instruction. 1980 // 1981 // The current assumption of the fast register allocator is that isel 1982 // won't generate explicit references to the GR8_NOREX registers. If 1983 // the allocator and/or the backend get enhanced to be more robust in 1984 // that regard, this can be, and should be, removed. 1985 unsigned ResultReg = 0; 1986 if ((I->getOpcode() == Instruction::SRem || 1987 I->getOpcode() == Instruction::URem) && 1988 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { 1989 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass); 1990 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass); 1991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1992 TII.get(Copy), SourceSuperReg).addReg(X86::AX); 1993 1994 // Shift AX right by 8 bits instead of using AH. 1995 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri), 1996 ResultSuperReg).addReg(SourceSuperReg).addImm(8); 1997 1998 // Now reference the 8-bit subreg of the result. 1999 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg, 2000 /*Kill=*/true, X86::sub_8bit); 2001 } 2002 // Copy the result out of the physreg if we haven't already. 2003 if (!ResultReg) { 2004 ResultReg = createResultReg(TypeEntry.RC); 2005 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg) 2006 .addReg(OpEntry.DivRemResultReg); 2007 } 2008 updateValueMap(I, ResultReg); 2009 2010 return true; 2011 } 2012 2013 /// Emit a conditional move instruction (if the are supported) to lower 2014 /// the select. 2015 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { 2016 // Check if the subtarget supports these instructions. 2017 if (!Subtarget->hasCMov()) 2018 return false; 2019 2020 // FIXME: Add support for i8. 2021 if (RetVT < MVT::i16 || RetVT > MVT::i64) 2022 return false; 2023 2024 const Value *Cond = I->getOperand(0); 2025 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2026 bool NeedTest = true; 2027 X86::CondCode CC = X86::COND_NE; 2028 2029 // Optimize conditions coming from a compare if both instructions are in the 2030 // same basic block (values defined in other basic blocks may not have 2031 // initialized registers). 2032 const auto *CI = dyn_cast<CmpInst>(Cond); 2033 if (CI && (CI->getParent() == I->getParent())) { 2034 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2035 2036 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. 2037 static const uint16_t SETFOpcTable[2][3] = { 2038 { X86::COND_NP, X86::COND_E, X86::TEST8rr }, 2039 { X86::COND_P, X86::COND_NE, X86::OR8rr } 2040 }; 2041 const uint16_t *SETFOpc = nullptr; 2042 switch (Predicate) { 2043 default: break; 2044 case CmpInst::FCMP_OEQ: 2045 SETFOpc = &SETFOpcTable[0][0]; 2046 Predicate = CmpInst::ICMP_NE; 2047 break; 2048 case CmpInst::FCMP_UNE: 2049 SETFOpc = &SETFOpcTable[1][0]; 2050 Predicate = CmpInst::ICMP_NE; 2051 break; 2052 } 2053 2054 bool NeedSwap; 2055 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate); 2056 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code."); 2057 2058 const Value *CmpLHS = CI->getOperand(0); 2059 const Value *CmpRHS = CI->getOperand(1); 2060 if (NeedSwap) 2061 std::swap(CmpLHS, CmpRHS); 2062 2063 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2064 // Emit a compare of the LHS and RHS, setting the flags. 2065 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2066 return false; 2067 2068 if (SETFOpc) { 2069 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass); 2070 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass); 2071 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2072 FlagReg1).addImm(SETFOpc[0]); 2073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2074 FlagReg2).addImm(SETFOpc[1]); 2075 auto const &II = TII.get(SETFOpc[2]); 2076 if (II.getNumDefs()) { 2077 unsigned TmpReg = createResultReg(&X86::GR8RegClass); 2078 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg) 2079 .addReg(FlagReg2).addReg(FlagReg1); 2080 } else { 2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 2082 .addReg(FlagReg2).addReg(FlagReg1); 2083 } 2084 } 2085 NeedTest = false; 2086 } else if (foldX86XALUIntrinsic(CC, I, Cond)) { 2087 // Fake request the condition, otherwise the intrinsic might be completely 2088 // optimized away. 2089 unsigned TmpReg = getRegForValue(Cond); 2090 if (TmpReg == 0) 2091 return false; 2092 2093 NeedTest = false; 2094 } 2095 2096 if (NeedTest) { 2097 // Selects operate on i1, however, CondReg is 8 bits width and may contain 2098 // garbage. Indeed, only the less significant bit is supposed to be 2099 // accurate. If we read more than the lsb, we may see non-zero values 2100 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for 2101 // the select. This is achieved by performing TEST against 1. 2102 unsigned CondReg = getRegForValue(Cond); 2103 if (CondReg == 0) 2104 return false; 2105 bool CondIsKill = hasTrivialKill(Cond); 2106 2107 // In case OpReg is a K register, COPY to a GPR 2108 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2109 unsigned KCondReg = CondReg; 2110 CondReg = createResultReg(&X86::GR32RegClass); 2111 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2112 TII.get(TargetOpcode::COPY), CondReg) 2113 .addReg(KCondReg, getKillRegState(CondIsKill)); 2114 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, 2115 X86::sub_8bit); 2116 } 2117 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2118 .addReg(CondReg, getKillRegState(CondIsKill)) 2119 .addImm(1); 2120 } 2121 2122 const Value *LHS = I->getOperand(1); 2123 const Value *RHS = I->getOperand(2); 2124 2125 unsigned RHSReg = getRegForValue(RHS); 2126 bool RHSIsKill = hasTrivialKill(RHS); 2127 2128 unsigned LHSReg = getRegForValue(LHS); 2129 bool LHSIsKill = hasTrivialKill(LHS); 2130 2131 if (!LHSReg || !RHSReg) 2132 return false; 2133 2134 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); 2135 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8); 2136 unsigned ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, 2137 LHSReg, LHSIsKill, CC); 2138 updateValueMap(I, ResultReg); 2139 return true; 2140 } 2141 2142 /// Emit SSE or AVX instructions to lower the select. 2143 /// 2144 /// Try to use SSE1/SSE2 instructions to simulate a select without branches. 2145 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary 2146 /// SSE instructions are available. If AVX is available, try to use a VBLENDV. 2147 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { 2148 // Optimize conditions coming from a compare if both instructions are in the 2149 // same basic block (values defined in other basic blocks may not have 2150 // initialized registers). 2151 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0)); 2152 if (!CI || (CI->getParent() != I->getParent())) 2153 return false; 2154 2155 if (I->getType() != CI->getOperand(0)->getType() || 2156 !((Subtarget->hasSSE1() && RetVT == MVT::f32) || 2157 (Subtarget->hasSSE2() && RetVT == MVT::f64))) 2158 return false; 2159 2160 const Value *CmpLHS = CI->getOperand(0); 2161 const Value *CmpRHS = CI->getOperand(1); 2162 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2163 2164 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. 2165 // We don't have to materialize a zero constant for this case and can just use 2166 // %x again on the RHS. 2167 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { 2168 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS); 2169 if (CmpRHSC && CmpRHSC->isNullValue()) 2170 CmpRHS = CmpLHS; 2171 } 2172 2173 unsigned CC; 2174 bool NeedSwap; 2175 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate); 2176 if (CC > 7 && !Subtarget->hasAVX()) 2177 return false; 2178 2179 if (NeedSwap) 2180 std::swap(CmpLHS, CmpRHS); 2181 2182 const Value *LHS = I->getOperand(1); 2183 const Value *RHS = I->getOperand(2); 2184 2185 unsigned LHSReg = getRegForValue(LHS); 2186 bool LHSIsKill = hasTrivialKill(LHS); 2187 2188 unsigned RHSReg = getRegForValue(RHS); 2189 bool RHSIsKill = hasTrivialKill(RHS); 2190 2191 unsigned CmpLHSReg = getRegForValue(CmpLHS); 2192 bool CmpLHSIsKill = hasTrivialKill(CmpLHS); 2193 2194 unsigned CmpRHSReg = getRegForValue(CmpRHS); 2195 bool CmpRHSIsKill = hasTrivialKill(CmpRHS); 2196 2197 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS) 2198 return false; 2199 2200 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2201 unsigned ResultReg; 2202 2203 if (Subtarget->hasAVX512()) { 2204 // If we have AVX512 we can use a mask compare and masked movss/sd. 2205 const TargetRegisterClass *VR128X = &X86::VR128XRegClass; 2206 const TargetRegisterClass *VK1 = &X86::VK1RegClass; 2207 2208 unsigned CmpOpcode = 2209 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr; 2210 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill, 2211 CmpRHSReg, CmpRHSIsKill, CC); 2212 2213 // Need an IMPLICIT_DEF for the input that is used to generate the upper 2214 // bits of the result register since its not based on any of the inputs. 2215 unsigned ImplicitDefReg = createResultReg(VR128X); 2216 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2217 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2218 2219 // Place RHSReg is the passthru of the masked movss/sd operation and put 2220 // LHS in the input. The mask input comes from the compare. 2221 unsigned MovOpcode = 2222 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; 2223 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill, 2224 CmpReg, true, ImplicitDefReg, true, 2225 LHSReg, LHSIsKill); 2226 2227 ResultReg = createResultReg(RC); 2228 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2229 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg); 2230 2231 } else if (Subtarget->hasAVX()) { 2232 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2233 2234 // If we have AVX, create 1 blendv instead of 3 logic instructions. 2235 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly 2236 // uses XMM0 as the selection register. That may need just as many 2237 // instructions as the AND/ANDN/OR sequence due to register moves, so 2238 // don't bother. 2239 unsigned CmpOpcode = 2240 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr; 2241 unsigned BlendOpcode = 2242 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr; 2243 2244 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill, 2245 CmpRHSReg, CmpRHSIsKill, CC); 2246 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill, 2247 LHSReg, LHSIsKill, CmpReg, true); 2248 ResultReg = createResultReg(RC); 2249 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2250 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg); 2251 } else { 2252 // Choose the SSE instruction sequence based on data type (float or double). 2253 static const uint16_t OpcTable[2][4] = { 2254 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, 2255 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } 2256 }; 2257 2258 const uint16_t *Opc = nullptr; 2259 switch (RetVT.SimpleTy) { 2260 default: return false; 2261 case MVT::f32: Opc = &OpcTable[0][0]; break; 2262 case MVT::f64: Opc = &OpcTable[1][0]; break; 2263 } 2264 2265 const TargetRegisterClass *VR128 = &X86::VR128RegClass; 2266 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill, 2267 CmpRHSReg, CmpRHSIsKill, CC); 2268 unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false, 2269 LHSReg, LHSIsKill); 2270 unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true, 2271 RHSReg, RHSIsKill); 2272 unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true, 2273 AndReg, /*IsKill=*/true); 2274 ResultReg = createResultReg(RC); 2275 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2276 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg); 2277 } 2278 updateValueMap(I, ResultReg); 2279 return true; 2280 } 2281 2282 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { 2283 // These are pseudo CMOV instructions and will be later expanded into control- 2284 // flow. 2285 unsigned Opc; 2286 switch (RetVT.SimpleTy) { 2287 default: return false; 2288 case MVT::i8: Opc = X86::CMOV_GR8; break; 2289 case MVT::i16: Opc = X86::CMOV_GR16; break; 2290 case MVT::i32: Opc = X86::CMOV_GR32; break; 2291 case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X 2292 : X86::CMOV_FR32; break; 2293 case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X 2294 : X86::CMOV_FR64; break; 2295 } 2296 2297 const Value *Cond = I->getOperand(0); 2298 X86::CondCode CC = X86::COND_NE; 2299 2300 // Optimize conditions coming from a compare if both instructions are in the 2301 // same basic block (values defined in other basic blocks may not have 2302 // initialized registers). 2303 const auto *CI = dyn_cast<CmpInst>(Cond); 2304 if (CI && (CI->getParent() == I->getParent())) { 2305 bool NeedSwap; 2306 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate()); 2307 if (CC > X86::LAST_VALID_COND) 2308 return false; 2309 2310 const Value *CmpLHS = CI->getOperand(0); 2311 const Value *CmpRHS = CI->getOperand(1); 2312 2313 if (NeedSwap) 2314 std::swap(CmpLHS, CmpRHS); 2315 2316 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType()); 2317 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc())) 2318 return false; 2319 } else { 2320 unsigned CondReg = getRegForValue(Cond); 2321 if (CondReg == 0) 2322 return false; 2323 bool CondIsKill = hasTrivialKill(Cond); 2324 2325 // In case OpReg is a K register, COPY to a GPR 2326 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) { 2327 unsigned KCondReg = CondReg; 2328 CondReg = createResultReg(&X86::GR32RegClass); 2329 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2330 TII.get(TargetOpcode::COPY), CondReg) 2331 .addReg(KCondReg, getKillRegState(CondIsKill)); 2332 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true, 2333 X86::sub_8bit); 2334 } 2335 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri)) 2336 .addReg(CondReg, getKillRegState(CondIsKill)) 2337 .addImm(1); 2338 } 2339 2340 const Value *LHS = I->getOperand(1); 2341 const Value *RHS = I->getOperand(2); 2342 2343 unsigned LHSReg = getRegForValue(LHS); 2344 bool LHSIsKill = hasTrivialKill(LHS); 2345 2346 unsigned RHSReg = getRegForValue(RHS); 2347 bool RHSIsKill = hasTrivialKill(RHS); 2348 2349 if (!LHSReg || !RHSReg) 2350 return false; 2351 2352 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2353 2354 unsigned ResultReg = 2355 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC); 2356 updateValueMap(I, ResultReg); 2357 return true; 2358 } 2359 2360 bool X86FastISel::X86SelectSelect(const Instruction *I) { 2361 MVT RetVT; 2362 if (!isTypeLegal(I->getType(), RetVT)) 2363 return false; 2364 2365 // Check if we can fold the select. 2366 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) { 2367 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); 2368 const Value *Opnd = nullptr; 2369 switch (Predicate) { 2370 default: break; 2371 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break; 2372 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break; 2373 } 2374 // No need for a select anymore - this is an unconditional move. 2375 if (Opnd) { 2376 unsigned OpReg = getRegForValue(Opnd); 2377 if (OpReg == 0) 2378 return false; 2379 bool OpIsKill = hasTrivialKill(Opnd); 2380 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT); 2381 unsigned ResultReg = createResultReg(RC); 2382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2383 TII.get(TargetOpcode::COPY), ResultReg) 2384 .addReg(OpReg, getKillRegState(OpIsKill)); 2385 updateValueMap(I, ResultReg); 2386 return true; 2387 } 2388 } 2389 2390 // First try to use real conditional move instructions. 2391 if (X86FastEmitCMoveSelect(RetVT, I)) 2392 return true; 2393 2394 // Try to use a sequence of SSE instructions to simulate a conditional move. 2395 if (X86FastEmitSSESelect(RetVT, I)) 2396 return true; 2397 2398 // Fall-back to pseudo conditional move instructions, which will be later 2399 // converted to control-flow. 2400 if (X86FastEmitPseudoSelect(RetVT, I)) 2401 return true; 2402 2403 return false; 2404 } 2405 2406 // Common code for X86SelectSIToFP and X86SelectUIToFP. 2407 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { 2408 // The target-independent selection algorithm in FastISel already knows how 2409 // to select a SINT_TO_FP if the target is SSE but not AVX. 2410 // Early exit if the subtarget doesn't have AVX. 2411 // Unsigned conversion requires avx512. 2412 bool HasAVX512 = Subtarget->hasAVX512(); 2413 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) 2414 return false; 2415 2416 // TODO: We could sign extend narrower types. 2417 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType()); 2418 if (SrcVT != MVT::i32 && SrcVT != MVT::i64) 2419 return false; 2420 2421 // Select integer to float/double conversion. 2422 unsigned OpReg = getRegForValue(I->getOperand(0)); 2423 if (OpReg == 0) 2424 return false; 2425 2426 unsigned Opcode; 2427 2428 static const uint16_t SCvtOpc[2][2][2] = { 2429 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, 2430 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, 2431 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, 2432 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, 2433 }; 2434 static const uint16_t UCvtOpc[2][2] = { 2435 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, 2436 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, 2437 }; 2438 bool Is64Bit = SrcVT == MVT::i64; 2439 2440 if (I->getType()->isDoubleTy()) { 2441 // s/uitofp int -> double 2442 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; 2443 } else if (I->getType()->isFloatTy()) { 2444 // s/uitofp int -> float 2445 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; 2446 } else 2447 return false; 2448 2449 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT(); 2450 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT); 2451 unsigned ImplicitDefReg = createResultReg(RC); 2452 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2453 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2454 unsigned ResultReg = 2455 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false); 2456 updateValueMap(I, ResultReg); 2457 return true; 2458 } 2459 2460 bool X86FastISel::X86SelectSIToFP(const Instruction *I) { 2461 return X86SelectIntToFP(I, /*IsSigned*/true); 2462 } 2463 2464 bool X86FastISel::X86SelectUIToFP(const Instruction *I) { 2465 return X86SelectIntToFP(I, /*IsSigned*/false); 2466 } 2467 2468 // Helper method used by X86SelectFPExt and X86SelectFPTrunc. 2469 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, 2470 unsigned TargetOpc, 2471 const TargetRegisterClass *RC) { 2472 assert((I->getOpcode() == Instruction::FPExt || 2473 I->getOpcode() == Instruction::FPTrunc) && 2474 "Instruction must be an FPExt or FPTrunc!"); 2475 bool HasAVX = Subtarget->hasAVX(); 2476 2477 unsigned OpReg = getRegForValue(I->getOperand(0)); 2478 if (OpReg == 0) 2479 return false; 2480 2481 unsigned ImplicitDefReg; 2482 if (HasAVX) { 2483 ImplicitDefReg = createResultReg(RC); 2484 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2485 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2486 2487 } 2488 2489 unsigned ResultReg = createResultReg(RC); 2490 MachineInstrBuilder MIB; 2491 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc), 2492 ResultReg); 2493 2494 if (HasAVX) 2495 MIB.addReg(ImplicitDefReg); 2496 2497 MIB.addReg(OpReg); 2498 updateValueMap(I, ResultReg); 2499 return true; 2500 } 2501 2502 bool X86FastISel::X86SelectFPExt(const Instruction *I) { 2503 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() && 2504 I->getOperand(0)->getType()->isFloatTy()) { 2505 bool HasAVX512 = Subtarget->hasAVX512(); 2506 // fpext from float to double. 2507 unsigned Opc = 2508 HasAVX512 ? X86::VCVTSS2SDZrr 2509 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; 2510 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64)); 2511 } 2512 2513 return false; 2514 } 2515 2516 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { 2517 if (X86ScalarSSEf64 && I->getType()->isFloatTy() && 2518 I->getOperand(0)->getType()->isDoubleTy()) { 2519 bool HasAVX512 = Subtarget->hasAVX512(); 2520 // fptrunc from double to float. 2521 unsigned Opc = 2522 HasAVX512 ? X86::VCVTSD2SSZrr 2523 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; 2524 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32)); 2525 } 2526 2527 return false; 2528 } 2529 2530 bool X86FastISel::X86SelectTrunc(const Instruction *I) { 2531 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 2532 EVT DstVT = TLI.getValueType(DL, I->getType()); 2533 2534 // This code only handles truncation to byte. 2535 if (DstVT != MVT::i8 && DstVT != MVT::i1) 2536 return false; 2537 if (!TLI.isTypeLegal(SrcVT)) 2538 return false; 2539 2540 unsigned InputReg = getRegForValue(I->getOperand(0)); 2541 if (!InputReg) 2542 // Unhandled operand. Halt "fast" selection and bail. 2543 return false; 2544 2545 if (SrcVT == MVT::i8) { 2546 // Truncate from i8 to i1; no code needed. 2547 updateValueMap(I, InputReg); 2548 return true; 2549 } 2550 2551 // Issue an extract_subreg. 2552 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8, 2553 InputReg, false, 2554 X86::sub_8bit); 2555 if (!ResultReg) 2556 return false; 2557 2558 updateValueMap(I, ResultReg); 2559 return true; 2560 } 2561 2562 bool X86FastISel::IsMemcpySmall(uint64_t Len) { 2563 return Len <= (Subtarget->is64Bit() ? 32 : 16); 2564 } 2565 2566 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, 2567 X86AddressMode SrcAM, uint64_t Len) { 2568 2569 // Make sure we don't bloat code by inlining very large memcpy's. 2570 if (!IsMemcpySmall(Len)) 2571 return false; 2572 2573 bool i64Legal = Subtarget->is64Bit(); 2574 2575 // We don't care about alignment here since we just emit integer accesses. 2576 while (Len) { 2577 MVT VT; 2578 if (Len >= 8 && i64Legal) 2579 VT = MVT::i64; 2580 else if (Len >= 4) 2581 VT = MVT::i32; 2582 else if (Len >= 2) 2583 VT = MVT::i16; 2584 else 2585 VT = MVT::i8; 2586 2587 unsigned Reg; 2588 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg); 2589 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM); 2590 assert(RV && "Failed to emit load or store??"); 2591 2592 unsigned Size = VT.getSizeInBits()/8; 2593 Len -= Size; 2594 DestAM.Disp += Size; 2595 SrcAM.Disp += Size; 2596 } 2597 2598 return true; 2599 } 2600 2601 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { 2602 // FIXME: Handle more intrinsics. 2603 switch (II->getIntrinsicID()) { 2604 default: return false; 2605 case Intrinsic::convert_from_fp16: 2606 case Intrinsic::convert_to_fp16: { 2607 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) 2608 return false; 2609 2610 const Value *Op = II->getArgOperand(0); 2611 unsigned InputReg = getRegForValue(Op); 2612 if (InputReg == 0) 2613 return false; 2614 2615 // F16C only allows converting from float to half and from half to float. 2616 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; 2617 if (IsFloatToHalf) { 2618 if (!Op->getType()->isFloatTy()) 2619 return false; 2620 } else { 2621 if (!II->getType()->isFloatTy()) 2622 return false; 2623 } 2624 2625 unsigned ResultReg = 0; 2626 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16); 2627 if (IsFloatToHalf) { 2628 // 'InputReg' is implicitly promoted from register class FR32 to 2629 // register class VR128 by method 'constrainOperandRegClass' which is 2630 // directly called by 'fastEmitInst_ri'. 2631 // Instruction VCVTPS2PHrr takes an extra immediate operand which is 2632 // used to provide rounding control: use MXCSR.RC, encoded as 0b100. 2633 // It's consistent with the other FP instructions, which are usually 2634 // controlled by MXCSR. 2635 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4); 2636 2637 // Move the lower 32-bits of ResultReg to another register of class GR32. 2638 ResultReg = createResultReg(&X86::GR32RegClass); 2639 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2640 TII.get(X86::VMOVPDI2DIrr), ResultReg) 2641 .addReg(InputReg, RegState::Kill); 2642 2643 // The result value is in the lower 16-bits of ResultReg. 2644 unsigned RegIdx = X86::sub_16bit; 2645 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx); 2646 } else { 2647 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!"); 2648 // Explicitly sign-extend the input to 32-bit. 2649 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg, 2650 /*Kill=*/false); 2651 2652 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. 2653 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR, 2654 InputReg, /*Kill=*/true); 2655 2656 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true); 2657 2658 // The result value is in the lower 32-bits of ResultReg. 2659 // Emit an explicit copy from register class VR128 to register class FR32. 2660 ResultReg = createResultReg(&X86::FR32RegClass); 2661 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2662 TII.get(TargetOpcode::COPY), ResultReg) 2663 .addReg(InputReg, RegState::Kill); 2664 } 2665 2666 updateValueMap(II, ResultReg); 2667 return true; 2668 } 2669 case Intrinsic::frameaddress: { 2670 MachineFunction *MF = FuncInfo.MF; 2671 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) 2672 return false; 2673 2674 Type *RetTy = II->getCalledFunction()->getReturnType(); 2675 2676 MVT VT; 2677 if (!isTypeLegal(RetTy, VT)) 2678 return false; 2679 2680 unsigned Opc; 2681 const TargetRegisterClass *RC = nullptr; 2682 2683 switch (VT.SimpleTy) { 2684 default: llvm_unreachable("Invalid result type for frameaddress."); 2685 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; 2686 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; 2687 } 2688 2689 // This needs to be set before we call getPtrSizedFrameRegister, otherwise 2690 // we get the wrong frame register. 2691 MachineFrameInfo &MFI = MF->getFrameInfo(); 2692 MFI.setFrameAddressIsTaken(true); 2693 2694 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 2695 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF); 2696 assert(((FrameReg == X86::RBP && VT == MVT::i64) || 2697 (FrameReg == X86::EBP && VT == MVT::i32)) && 2698 "Invalid Frame Register!"); 2699 2700 // Always make a copy of the frame register to a vreg first, so that we 2701 // never directly reference the frame register (the TwoAddressInstruction- 2702 // Pass doesn't like that). 2703 unsigned SrcReg = createResultReg(RC); 2704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2705 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg); 2706 2707 // Now recursively load from the frame address. 2708 // movq (%rbp), %rax 2709 // movq (%rax), %rax 2710 // movq (%rax), %rax 2711 // ... 2712 unsigned DestReg; 2713 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue(); 2714 while (Depth--) { 2715 DestReg = createResultReg(RC); 2716 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2717 TII.get(Opc), DestReg), SrcReg); 2718 SrcReg = DestReg; 2719 } 2720 2721 updateValueMap(II, SrcReg); 2722 return true; 2723 } 2724 case Intrinsic::memcpy: { 2725 const MemCpyInst *MCI = cast<MemCpyInst>(II); 2726 // Don't handle volatile or variable length memcpys. 2727 if (MCI->isVolatile()) 2728 return false; 2729 2730 if (isa<ConstantInt>(MCI->getLength())) { 2731 // Small memcpy's are common enough that we want to do them 2732 // without a call if possible. 2733 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 2734 if (IsMemcpySmall(Len)) { 2735 X86AddressMode DestAM, SrcAM; 2736 if (!X86SelectAddress(MCI->getRawDest(), DestAM) || 2737 !X86SelectAddress(MCI->getRawSource(), SrcAM)) 2738 return false; 2739 TryEmitSmallMemcpy(DestAM, SrcAM, Len); 2740 return true; 2741 } 2742 } 2743 2744 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2745 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth)) 2746 return false; 2747 2748 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) 2749 return false; 2750 2751 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1); 2752 } 2753 case Intrinsic::memset: { 2754 const MemSetInst *MSI = cast<MemSetInst>(II); 2755 2756 if (MSI->isVolatile()) 2757 return false; 2758 2759 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; 2760 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth)) 2761 return false; 2762 2763 if (MSI->getDestAddressSpace() > 255) 2764 return false; 2765 2766 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1); 2767 } 2768 case Intrinsic::stackprotector: { 2769 // Emit code to store the stack guard onto the stack. 2770 EVT PtrTy = TLI.getPointerTy(DL); 2771 2772 const Value *Op1 = II->getArgOperand(0); // The guard's value. 2773 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1)); 2774 2775 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); 2776 2777 // Grab the frame index. 2778 X86AddressMode AM; 2779 if (!X86SelectAddress(Slot, AM)) return false; 2780 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; 2781 return true; 2782 } 2783 case Intrinsic::dbg_declare: { 2784 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); 2785 X86AddressMode AM; 2786 assert(DI->getAddress() && "Null address should be checked earlier!"); 2787 if (!X86SelectAddress(DI->getAddress(), AM)) 2788 return false; 2789 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 2790 // FIXME may need to add RegState::Debug to any registers produced, 2791 // although ESP/EBP should be the only ones at the moment. 2792 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && 2793 "Expected inlined-at fields to agree"); 2794 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM) 2795 .addImm(0) 2796 .addMetadata(DI->getVariable()) 2797 .addMetadata(DI->getExpression()); 2798 return true; 2799 } 2800 case Intrinsic::trap: { 2801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP)); 2802 return true; 2803 } 2804 case Intrinsic::sqrt: { 2805 if (!Subtarget->hasSSE1()) 2806 return false; 2807 2808 Type *RetTy = II->getCalledFunction()->getReturnType(); 2809 2810 MVT VT; 2811 if (!isTypeLegal(RetTy, VT)) 2812 return false; 2813 2814 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT 2815 // is not generated by FastISel yet. 2816 // FIXME: Update this code once tablegen can handle it. 2817 static const uint16_t SqrtOpc[3][2] = { 2818 { X86::SQRTSSr, X86::SQRTSDr }, 2819 { X86::VSQRTSSr, X86::VSQRTSDr }, 2820 { X86::VSQRTSSZr, X86::VSQRTSDZr }, 2821 }; 2822 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 2823 Subtarget->hasAVX() ? 1 : 2824 0; 2825 unsigned Opc; 2826 switch (VT.SimpleTy) { 2827 default: return false; 2828 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; 2829 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; 2830 } 2831 2832 const Value *SrcVal = II->getArgOperand(0); 2833 unsigned SrcReg = getRegForValue(SrcVal); 2834 2835 if (SrcReg == 0) 2836 return false; 2837 2838 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 2839 unsigned ImplicitDefReg = 0; 2840 if (AVXLevel > 0) { 2841 ImplicitDefReg = createResultReg(RC); 2842 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2843 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg); 2844 } 2845 2846 unsigned ResultReg = createResultReg(RC); 2847 MachineInstrBuilder MIB; 2848 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 2849 ResultReg); 2850 2851 if (ImplicitDefReg) 2852 MIB.addReg(ImplicitDefReg); 2853 2854 MIB.addReg(SrcReg); 2855 2856 updateValueMap(II, ResultReg); 2857 return true; 2858 } 2859 case Intrinsic::sadd_with_overflow: 2860 case Intrinsic::uadd_with_overflow: 2861 case Intrinsic::ssub_with_overflow: 2862 case Intrinsic::usub_with_overflow: 2863 case Intrinsic::smul_with_overflow: 2864 case Intrinsic::umul_with_overflow: { 2865 // This implements the basic lowering of the xalu with overflow intrinsics 2866 // into add/sub/mul followed by either seto or setb. 2867 const Function *Callee = II->getCalledFunction(); 2868 auto *Ty = cast<StructType>(Callee->getReturnType()); 2869 Type *RetTy = Ty->getTypeAtIndex(0U); 2870 assert(Ty->getTypeAtIndex(1)->isIntegerTy() && 2871 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && 2872 "Overflow value expected to be an i1"); 2873 2874 MVT VT; 2875 if (!isTypeLegal(RetTy, VT)) 2876 return false; 2877 2878 if (VT < MVT::i8 || VT > MVT::i64) 2879 return false; 2880 2881 const Value *LHS = II->getArgOperand(0); 2882 const Value *RHS = II->getArgOperand(1); 2883 2884 // Canonicalize immediate to the RHS. 2885 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && 2886 isCommutativeIntrinsic(II)) 2887 std::swap(LHS, RHS); 2888 2889 unsigned BaseOpc, CondCode; 2890 switch (II->getIntrinsicID()) { 2891 default: llvm_unreachable("Unexpected intrinsic!"); 2892 case Intrinsic::sadd_with_overflow: 2893 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; 2894 case Intrinsic::uadd_with_overflow: 2895 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; 2896 case Intrinsic::ssub_with_overflow: 2897 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; 2898 case Intrinsic::usub_with_overflow: 2899 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; 2900 case Intrinsic::smul_with_overflow: 2901 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; 2902 case Intrinsic::umul_with_overflow: 2903 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; 2904 } 2905 2906 unsigned LHSReg = getRegForValue(LHS); 2907 if (LHSReg == 0) 2908 return false; 2909 bool LHSIsKill = hasTrivialKill(LHS); 2910 2911 unsigned ResultReg = 0; 2912 // Check if we have an immediate version. 2913 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) { 2914 static const uint16_t Opc[2][4] = { 2915 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, 2916 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } 2917 }; 2918 2919 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && 2920 CondCode == X86::COND_O) { 2921 // We can use INC/DEC. 2922 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 2923 bool IsDec = BaseOpc == ISD::SUB; 2924 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2925 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg) 2926 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2927 } else 2928 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill, 2929 CI->getZExtValue()); 2930 } 2931 2932 unsigned RHSReg; 2933 bool RHSIsKill; 2934 if (!ResultReg) { 2935 RHSReg = getRegForValue(RHS); 2936 if (RHSReg == 0) 2937 return false; 2938 RHSIsKill = hasTrivialKill(RHS); 2939 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg, 2940 RHSIsKill); 2941 } 2942 2943 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit 2944 // it manually. 2945 if (BaseOpc == X86ISD::UMUL && !ResultReg) { 2946 static const uint16_t MULOpc[] = 2947 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; 2948 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; 2949 // First copy the first operand into RAX, which is an implicit input to 2950 // the X86::MUL*r instruction. 2951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2952 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8]) 2953 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2954 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8], 2955 TLI.getRegClassFor(VT), RHSReg, RHSIsKill); 2956 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { 2957 static const uint16_t MULOpc[] = 2958 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; 2959 if (VT == MVT::i8) { 2960 // Copy the first operand into AL, which is an implicit input to the 2961 // X86::IMUL8r instruction. 2962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2963 TII.get(TargetOpcode::COPY), X86::AL) 2964 .addReg(LHSReg, getKillRegState(LHSIsKill)); 2965 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg, 2966 RHSIsKill); 2967 } else 2968 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8], 2969 TLI.getRegClassFor(VT), LHSReg, LHSIsKill, 2970 RHSReg, RHSIsKill); 2971 } 2972 2973 if (!ResultReg) 2974 return false; 2975 2976 // Assign to a GPR since the overflow return value is lowered to a SETcc. 2977 unsigned ResultReg2 = createResultReg(&X86::GR8RegClass); 2978 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers."); 2979 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr), 2980 ResultReg2).addImm(CondCode); 2981 2982 updateValueMap(II, ResultReg, 2); 2983 return true; 2984 } 2985 case Intrinsic::x86_sse_cvttss2si: 2986 case Intrinsic::x86_sse_cvttss2si64: 2987 case Intrinsic::x86_sse2_cvttsd2si: 2988 case Intrinsic::x86_sse2_cvttsd2si64: { 2989 bool IsInputDouble; 2990 switch (II->getIntrinsicID()) { 2991 default: llvm_unreachable("Unexpected intrinsic."); 2992 case Intrinsic::x86_sse_cvttss2si: 2993 case Intrinsic::x86_sse_cvttss2si64: 2994 if (!Subtarget->hasSSE1()) 2995 return false; 2996 IsInputDouble = false; 2997 break; 2998 case Intrinsic::x86_sse2_cvttsd2si: 2999 case Intrinsic::x86_sse2_cvttsd2si64: 3000 if (!Subtarget->hasSSE2()) 3001 return false; 3002 IsInputDouble = true; 3003 break; 3004 } 3005 3006 Type *RetTy = II->getCalledFunction()->getReturnType(); 3007 MVT VT; 3008 if (!isTypeLegal(RetTy, VT)) 3009 return false; 3010 3011 static const uint16_t CvtOpc[3][2][2] = { 3012 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, 3013 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, 3014 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, 3015 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, 3016 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, 3017 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, 3018 }; 3019 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : 3020 Subtarget->hasAVX() ? 1 : 3021 0; 3022 unsigned Opc; 3023 switch (VT.SimpleTy) { 3024 default: llvm_unreachable("Unexpected result type."); 3025 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; 3026 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; 3027 } 3028 3029 // Check if we can fold insertelement instructions into the convert. 3030 const Value *Op = II->getArgOperand(0); 3031 while (auto *IE = dyn_cast<InsertElementInst>(Op)) { 3032 const Value *Index = IE->getOperand(2); 3033 if (!isa<ConstantInt>(Index)) 3034 break; 3035 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 3036 3037 if (Idx == 0) { 3038 Op = IE->getOperand(1); 3039 break; 3040 } 3041 Op = IE->getOperand(0); 3042 } 3043 3044 unsigned Reg = getRegForValue(Op); 3045 if (Reg == 0) 3046 return false; 3047 3048 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3049 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg) 3050 .addReg(Reg); 3051 3052 updateValueMap(II, ResultReg); 3053 return true; 3054 } 3055 } 3056 } 3057 3058 bool X86FastISel::fastLowerArguments() { 3059 if (!FuncInfo.CanLowerReturn) 3060 return false; 3061 3062 const Function *F = FuncInfo.Fn; 3063 if (F->isVarArg()) 3064 return false; 3065 3066 CallingConv::ID CC = F->getCallingConv(); 3067 if (CC != CallingConv::C) 3068 return false; 3069 3070 if (Subtarget->isCallingConvWin64(CC)) 3071 return false; 3072 3073 if (!Subtarget->is64Bit()) 3074 return false; 3075 3076 if (Subtarget->useSoftFloat()) 3077 return false; 3078 3079 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. 3080 unsigned GPRCnt = 0; 3081 unsigned FPRCnt = 0; 3082 for (auto const &Arg : F->args()) { 3083 if (Arg.hasAttribute(Attribute::ByVal) || 3084 Arg.hasAttribute(Attribute::InReg) || 3085 Arg.hasAttribute(Attribute::StructRet) || 3086 Arg.hasAttribute(Attribute::SwiftSelf) || 3087 Arg.hasAttribute(Attribute::SwiftError) || 3088 Arg.hasAttribute(Attribute::Nest)) 3089 return false; 3090 3091 Type *ArgTy = Arg.getType(); 3092 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3093 return false; 3094 3095 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3096 if (!ArgVT.isSimple()) return false; 3097 switch (ArgVT.getSimpleVT().SimpleTy) { 3098 default: return false; 3099 case MVT::i32: 3100 case MVT::i64: 3101 ++GPRCnt; 3102 break; 3103 case MVT::f32: 3104 case MVT::f64: 3105 if (!Subtarget->hasSSE1()) 3106 return false; 3107 ++FPRCnt; 3108 break; 3109 } 3110 3111 if (GPRCnt > 6) 3112 return false; 3113 3114 if (FPRCnt > 8) 3115 return false; 3116 } 3117 3118 static const MCPhysReg GPR32ArgRegs[] = { 3119 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D 3120 }; 3121 static const MCPhysReg GPR64ArgRegs[] = { 3122 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 3123 }; 3124 static const MCPhysReg XMMArgRegs[] = { 3125 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3126 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3127 }; 3128 3129 unsigned GPRIdx = 0; 3130 unsigned FPRIdx = 0; 3131 for (auto const &Arg : F->args()) { 3132 MVT VT = TLI.getSimpleValueType(DL, Arg.getType()); 3133 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 3134 unsigned SrcReg; 3135 switch (VT.SimpleTy) { 3136 default: llvm_unreachable("Unexpected value type."); 3137 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; 3138 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; 3139 case MVT::f32: LLVM_FALLTHROUGH; 3140 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; 3141 } 3142 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3143 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3144 // Without this, EmitLiveInCopies may eliminate the livein if its only 3145 // use is a bitcast (which isn't turned into an instruction). 3146 unsigned ResultReg = createResultReg(RC); 3147 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3148 TII.get(TargetOpcode::COPY), ResultReg) 3149 .addReg(DstReg, getKillRegState(true)); 3150 updateValueMap(&Arg, ResultReg); 3151 } 3152 return true; 3153 } 3154 3155 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, 3156 CallingConv::ID CC, 3157 ImmutableCallSite *CS) { 3158 if (Subtarget->is64Bit()) 3159 return 0; 3160 if (Subtarget->getTargetTriple().isOSMSVCRT()) 3161 return 0; 3162 if (CC == CallingConv::Fast || CC == CallingConv::GHC || 3163 CC == CallingConv::HiPE || CC == CallingConv::Tail) 3164 return 0; 3165 3166 if (CS) 3167 if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) || 3168 CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU()) 3169 return 0; 3170 3171 return 4; 3172 } 3173 3174 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { 3175 auto &OutVals = CLI.OutVals; 3176 auto &OutFlags = CLI.OutFlags; 3177 auto &OutRegs = CLI.OutRegs; 3178 auto &Ins = CLI.Ins; 3179 auto &InRegs = CLI.InRegs; 3180 CallingConv::ID CC = CLI.CallConv; 3181 bool &IsTailCall = CLI.IsTailCall; 3182 bool IsVarArg = CLI.IsVarArg; 3183 const Value *Callee = CLI.Callee; 3184 MCSymbol *Symbol = CLI.Symbol; 3185 3186 bool Is64Bit = Subtarget->is64Bit(); 3187 bool IsWin64 = Subtarget->isCallingConvWin64(CC); 3188 3189 const CallInst *CI = 3190 CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr; 3191 const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr; 3192 3193 // Call / invoke instructions with NoCfCheck attribute require special 3194 // handling. 3195 const auto *II = 3196 CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr; 3197 if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck())) 3198 return false; 3199 3200 // Functions with no_caller_saved_registers that need special handling. 3201 if ((CI && CI->hasFnAttr("no_caller_saved_registers")) || 3202 (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers"))) 3203 return false; 3204 3205 // Functions using thunks for indirect calls need to use SDISel. 3206 if (Subtarget->useIndirectThunkCalls()) 3207 return false; 3208 3209 // Handle only C, fastcc, and webkit_js calling conventions for now. 3210 switch (CC) { 3211 default: return false; 3212 case CallingConv::C: 3213 case CallingConv::Fast: 3214 case CallingConv::Tail: 3215 case CallingConv::WebKit_JS: 3216 case CallingConv::Swift: 3217 case CallingConv::X86_FastCall: 3218 case CallingConv::X86_StdCall: 3219 case CallingConv::X86_ThisCall: 3220 case CallingConv::Win64: 3221 case CallingConv::X86_64_SysV: 3222 case CallingConv::CFGuard_Check: 3223 break; 3224 } 3225 3226 // Allow SelectionDAG isel to handle tail calls. 3227 if (IsTailCall) 3228 return false; 3229 3230 // fastcc with -tailcallopt is intended to provide a guaranteed 3231 // tail call optimization. Fastisel doesn't know how to do that. 3232 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || 3233 CC == CallingConv::Tail) 3234 return false; 3235 3236 // Don't know how to handle Win64 varargs yet. Nothing special needed for 3237 // x86-32. Special handling for x86-64 is implemented. 3238 if (IsVarArg && IsWin64) 3239 return false; 3240 3241 // Don't know about inalloca yet. 3242 if (CLI.CS && CLI.CS->hasInAllocaArgument()) 3243 return false; 3244 3245 for (auto Flag : CLI.OutFlags) 3246 if (Flag.isSwiftError()) 3247 return false; 3248 3249 SmallVector<MVT, 16> OutVTs; 3250 SmallVector<unsigned, 16> ArgRegs; 3251 3252 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra 3253 // instruction. This is safe because it is common to all FastISel supported 3254 // calling conventions on x86. 3255 for (int i = 0, e = OutVals.size(); i != e; ++i) { 3256 Value *&Val = OutVals[i]; 3257 ISD::ArgFlagsTy Flags = OutFlags[i]; 3258 if (auto *CI = dyn_cast<ConstantInt>(Val)) { 3259 if (CI->getBitWidth() < 32) { 3260 if (Flags.isSExt()) 3261 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext())); 3262 else 3263 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext())); 3264 } 3265 } 3266 3267 // Passing bools around ends up doing a trunc to i1 and passing it. 3268 // Codegen this as an argument + "and 1". 3269 MVT VT; 3270 auto *TI = dyn_cast<TruncInst>(Val); 3271 unsigned ResultReg; 3272 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS && 3273 (TI->getParent() == CLI.CS->getInstruction()->getParent()) && 3274 TI->hasOneUse()) { 3275 Value *PrevVal = TI->getOperand(0); 3276 ResultReg = getRegForValue(PrevVal); 3277 3278 if (!ResultReg) 3279 return false; 3280 3281 if (!isTypeLegal(PrevVal->getType(), VT)) 3282 return false; 3283 3284 ResultReg = 3285 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1); 3286 } else { 3287 if (!isTypeLegal(Val->getType(), VT)) 3288 return false; 3289 ResultReg = getRegForValue(Val); 3290 } 3291 3292 if (!ResultReg) 3293 return false; 3294 3295 ArgRegs.push_back(ResultReg); 3296 OutVTs.push_back(VT); 3297 } 3298 3299 // Analyze operands of the call, assigning locations to each operand. 3300 SmallVector<CCValAssign, 16> ArgLocs; 3301 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); 3302 3303 // Allocate shadow area for Win64 3304 if (IsWin64) 3305 CCInfo.AllocateStack(32, 8); 3306 3307 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86); 3308 3309 // Get a count of how many bytes are to be pushed on the stack. 3310 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 3311 3312 // Issue CALLSEQ_START 3313 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 3314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 3315 .addImm(NumBytes).addImm(0).addImm(0); 3316 3317 // Walk the register/memloc assignments, inserting copies/loads. 3318 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); 3319 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3320 CCValAssign const &VA = ArgLocs[i]; 3321 const Value *ArgVal = OutVals[VA.getValNo()]; 3322 MVT ArgVT = OutVTs[VA.getValNo()]; 3323 3324 if (ArgVT == MVT::x86mmx) 3325 return false; 3326 3327 unsigned ArgReg = ArgRegs[VA.getValNo()]; 3328 3329 // Promote the value if needed. 3330 switch (VA.getLocInfo()) { 3331 case CCValAssign::Full: break; 3332 case CCValAssign::SExt: { 3333 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3334 "Unexpected extend"); 3335 3336 if (ArgVT == MVT::i1) 3337 return false; 3338 3339 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3340 ArgVT, ArgReg); 3341 assert(Emitted && "Failed to emit a sext!"); (void)Emitted; 3342 ArgVT = VA.getLocVT(); 3343 break; 3344 } 3345 case CCValAssign::ZExt: { 3346 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3347 "Unexpected extend"); 3348 3349 // Handle zero-extension from i1 to i8, which is common. 3350 if (ArgVT == MVT::i1) { 3351 // Set the high bits to zero. 3352 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false); 3353 ArgVT = MVT::i8; 3354 3355 if (ArgReg == 0) 3356 return false; 3357 } 3358 3359 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3360 ArgVT, ArgReg); 3361 assert(Emitted && "Failed to emit a zext!"); (void)Emitted; 3362 ArgVT = VA.getLocVT(); 3363 break; 3364 } 3365 case CCValAssign::AExt: { 3366 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && 3367 "Unexpected extend"); 3368 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg, 3369 ArgVT, ArgReg); 3370 if (!Emitted) 3371 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg, 3372 ArgVT, ArgReg); 3373 if (!Emitted) 3374 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg, 3375 ArgVT, ArgReg); 3376 3377 assert(Emitted && "Failed to emit a aext!"); (void)Emitted; 3378 ArgVT = VA.getLocVT(); 3379 break; 3380 } 3381 case CCValAssign::BCvt: { 3382 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg, 3383 /*TODO: Kill=*/false); 3384 assert(ArgReg && "Failed to emit a bitcast!"); 3385 ArgVT = VA.getLocVT(); 3386 break; 3387 } 3388 case CCValAssign::VExt: 3389 // VExt has not been implemented, so this should be impossible to reach 3390 // for now. However, fallback to Selection DAG isel once implemented. 3391 return false; 3392 case CCValAssign::AExtUpper: 3393 case CCValAssign::SExtUpper: 3394 case CCValAssign::ZExtUpper: 3395 case CCValAssign::FPExt: 3396 case CCValAssign::Trunc: 3397 llvm_unreachable("Unexpected loc info!"); 3398 case CCValAssign::Indirect: 3399 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully 3400 // support this. 3401 return false; 3402 } 3403 3404 if (VA.isRegLoc()) { 3405 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3406 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg); 3407 OutRegs.push_back(VA.getLocReg()); 3408 } else { 3409 assert(VA.isMemLoc()); 3410 3411 // Don't emit stores for undef values. 3412 if (isa<UndefValue>(ArgVal)) 3413 continue; 3414 3415 unsigned LocMemOffset = VA.getLocMemOffset(); 3416 X86AddressMode AM; 3417 AM.Base.Reg = RegInfo->getStackRegister(); 3418 AM.Disp = LocMemOffset; 3419 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; 3420 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType()); 3421 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3422 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset), 3423 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment); 3424 if (Flags.isByVal()) { 3425 X86AddressMode SrcAM; 3426 SrcAM.Base.Reg = ArgReg; 3427 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize())) 3428 return false; 3429 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { 3430 // If this is a really simple value, emit this with the Value* version 3431 // of X86FastEmitStore. If it isn't simple, we don't want to do this, 3432 // as it can cause us to reevaluate the argument. 3433 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO)) 3434 return false; 3435 } else { 3436 bool ValIsKill = hasTrivialKill(ArgVal); 3437 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO)) 3438 return false; 3439 } 3440 } 3441 } 3442 3443 // ELF / PIC requires GOT in the EBX register before function calls via PLT 3444 // GOT pointer. 3445 if (Subtarget->isPICStyleGOT()) { 3446 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3448 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); 3449 } 3450 3451 if (Is64Bit && IsVarArg && !IsWin64) { 3452 // From AMD64 ABI document: 3453 // For calls that may call functions that use varargs or stdargs 3454 // (prototype-less calls or calls to functions containing ellipsis (...) in 3455 // the declaration) %al is used as hidden argument to specify the number 3456 // of SSE registers used. The contents of %al do not need to match exactly 3457 // the number of registers, but must be an ubound on the number of SSE 3458 // registers used and is in the range 0 - 8 inclusive. 3459 3460 // Count the number of XMM registers allocated. 3461 static const MCPhysReg XMMArgRegs[] = { 3462 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 3463 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 3464 }; 3465 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); 3466 assert((Subtarget->hasSSE1() || !NumXMMRegs) 3467 && "SSE registers cannot be used when SSE is disabled"); 3468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri), 3469 X86::AL).addImm(NumXMMRegs); 3470 } 3471 3472 // Materialize callee address in a register. FIXME: GV address can be 3473 // handled with a CALLpcrel32 instead. 3474 X86AddressMode CalleeAM; 3475 if (!X86SelectCallAddress(Callee, CalleeAM)) 3476 return false; 3477 3478 unsigned CalleeOp = 0; 3479 const GlobalValue *GV = nullptr; 3480 if (CalleeAM.GV != nullptr) { 3481 GV = CalleeAM.GV; 3482 } else if (CalleeAM.Base.Reg != 0) { 3483 CalleeOp = CalleeAM.Base.Reg; 3484 } else 3485 return false; 3486 3487 // Issue the call. 3488 MachineInstrBuilder MIB; 3489 if (CalleeOp) { 3490 // Register-indirect call. 3491 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; 3492 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)) 3493 .addReg(CalleeOp); 3494 } else { 3495 // Direct call. 3496 assert(GV && "Not a direct call"); 3497 // See if we need any target-specific flags on the GV operand. 3498 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); 3499 3500 // This will be a direct call, or an indirect call through memory for 3501 // NonLazyBind calls or dllimport calls. 3502 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || 3503 OpFlags == X86II::MO_GOTPCREL || 3504 OpFlags == X86II::MO_COFFSTUB; 3505 unsigned CallOpc = NeedLoad 3506 ? (Is64Bit ? X86::CALL64m : X86::CALL32m) 3507 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); 3508 3509 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc)); 3510 if (NeedLoad) 3511 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0); 3512 if (Symbol) 3513 MIB.addSym(Symbol, OpFlags); 3514 else 3515 MIB.addGlobalAddress(GV, 0, OpFlags); 3516 if (NeedLoad) 3517 MIB.addReg(0); 3518 } 3519 3520 // Add a register mask operand representing the call-preserved registers. 3521 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 3522 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 3523 3524 // Add an implicit use GOT pointer in EBX. 3525 if (Subtarget->isPICStyleGOT()) 3526 MIB.addReg(X86::EBX, RegState::Implicit); 3527 3528 if (Is64Bit && IsVarArg && !IsWin64) 3529 MIB.addReg(X86::AL, RegState::Implicit); 3530 3531 // Add implicit physical register uses to the call. 3532 for (auto Reg : OutRegs) 3533 MIB.addReg(Reg, RegState::Implicit); 3534 3535 // Issue CALLSEQ_END 3536 unsigned NumBytesForCalleeToPop = 3537 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg, 3538 TM.Options.GuaranteedTailCallOpt) 3539 ? NumBytes // Callee pops everything. 3540 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS); 3541 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 3542 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 3543 .addImm(NumBytes).addImm(NumBytesForCalleeToPop); 3544 3545 // Now handle call return values. 3546 SmallVector<CCValAssign, 16> RVLocs; 3547 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, 3548 CLI.RetTy->getContext()); 3549 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); 3550 3551 // Copy all of the result registers out of their specified physreg. 3552 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy); 3553 for (unsigned i = 0; i != RVLocs.size(); ++i) { 3554 CCValAssign &VA = RVLocs[i]; 3555 EVT CopyVT = VA.getValVT(); 3556 unsigned CopyReg = ResultReg + i; 3557 Register SrcReg = VA.getLocReg(); 3558 3559 // If this is x86-64, and we disabled SSE, we can't return FP values 3560 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 3561 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { 3562 report_fatal_error("SSE register return with SSE disabled"); 3563 } 3564 3565 // If we prefer to use the value in xmm registers, copy it out as f80 and 3566 // use a truncate to move it from fp stack reg to xmm reg. 3567 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && 3568 isScalarFPTypeInSSEReg(VA.getValVT())) { 3569 CopyVT = MVT::f80; 3570 CopyReg = createResultReg(&X86::RFP80RegClass); 3571 } 3572 3573 // Copy out the result. 3574 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3575 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg); 3576 InRegs.push_back(VA.getLocReg()); 3577 3578 // Round the f80 to the right size, which also moves it to the appropriate 3579 // xmm register. This is accomplished by storing the f80 value in memory 3580 // and then loading it back. 3581 if (CopyVT != VA.getValVT()) { 3582 EVT ResVT = VA.getValVT(); 3583 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; 3584 unsigned MemSize = ResVT.getSizeInBits()/8; 3585 int FI = MFI.CreateStackObject(MemSize, MemSize, false); 3586 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3587 TII.get(Opc)), FI) 3588 .addReg(CopyReg); 3589 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; 3590 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3591 TII.get(Opc), ResultReg + i), FI); 3592 } 3593 } 3594 3595 CLI.ResultReg = ResultReg; 3596 CLI.NumResultRegs = RVLocs.size(); 3597 CLI.Call = MIB; 3598 3599 return true; 3600 } 3601 3602 bool 3603 X86FastISel::fastSelectInstruction(const Instruction *I) { 3604 switch (I->getOpcode()) { 3605 default: break; 3606 case Instruction::Load: 3607 return X86SelectLoad(I); 3608 case Instruction::Store: 3609 return X86SelectStore(I); 3610 case Instruction::Ret: 3611 return X86SelectRet(I); 3612 case Instruction::ICmp: 3613 case Instruction::FCmp: 3614 return X86SelectCmp(I); 3615 case Instruction::ZExt: 3616 return X86SelectZExt(I); 3617 case Instruction::SExt: 3618 return X86SelectSExt(I); 3619 case Instruction::Br: 3620 return X86SelectBranch(I); 3621 case Instruction::LShr: 3622 case Instruction::AShr: 3623 case Instruction::Shl: 3624 return X86SelectShift(I); 3625 case Instruction::SDiv: 3626 case Instruction::UDiv: 3627 case Instruction::SRem: 3628 case Instruction::URem: 3629 return X86SelectDivRem(I); 3630 case Instruction::Select: 3631 return X86SelectSelect(I); 3632 case Instruction::Trunc: 3633 return X86SelectTrunc(I); 3634 case Instruction::FPExt: 3635 return X86SelectFPExt(I); 3636 case Instruction::FPTrunc: 3637 return X86SelectFPTrunc(I); 3638 case Instruction::SIToFP: 3639 return X86SelectSIToFP(I); 3640 case Instruction::UIToFP: 3641 return X86SelectUIToFP(I); 3642 case Instruction::IntToPtr: // Deliberate fall-through. 3643 case Instruction::PtrToInt: { 3644 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); 3645 EVT DstVT = TLI.getValueType(DL, I->getType()); 3646 if (DstVT.bitsGT(SrcVT)) 3647 return X86SelectZExt(I); 3648 if (DstVT.bitsLT(SrcVT)) 3649 return X86SelectTrunc(I); 3650 unsigned Reg = getRegForValue(I->getOperand(0)); 3651 if (Reg == 0) return false; 3652 updateValueMap(I, Reg); 3653 return true; 3654 } 3655 case Instruction::BitCast: { 3656 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. 3657 if (!Subtarget->hasSSE2()) 3658 return false; 3659 3660 MVT SrcVT, DstVT; 3661 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) || 3662 !isTypeLegal(I->getType(), DstVT)) 3663 return false; 3664 3665 // Only allow vectors that use xmm/ymm/zmm. 3666 if (!SrcVT.isVector() || !DstVT.isVector() || 3667 SrcVT.getVectorElementType() == MVT::i1 || 3668 DstVT.getVectorElementType() == MVT::i1) 3669 return false; 3670 3671 unsigned Reg = getRegForValue(I->getOperand(0)); 3672 if (Reg == 0) 3673 return false; 3674 3675 // No instruction is needed for conversion. Reuse the register used by 3676 // the fist operand. 3677 updateValueMap(I, Reg); 3678 return true; 3679 } 3680 } 3681 3682 return false; 3683 } 3684 3685 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { 3686 if (VT > MVT::i64) 3687 return 0; 3688 3689 uint64_t Imm = CI->getZExtValue(); 3690 if (Imm == 0) { 3691 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass); 3692 switch (VT.SimpleTy) { 3693 default: llvm_unreachable("Unexpected value type"); 3694 case MVT::i1: 3695 case MVT::i8: 3696 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true, 3697 X86::sub_8bit); 3698 case MVT::i16: 3699 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true, 3700 X86::sub_16bit); 3701 case MVT::i32: 3702 return SrcReg; 3703 case MVT::i64: { 3704 unsigned ResultReg = createResultReg(&X86::GR64RegClass); 3705 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3706 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg) 3707 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit); 3708 return ResultReg; 3709 } 3710 } 3711 } 3712 3713 unsigned Opc = 0; 3714 switch (VT.SimpleTy) { 3715 default: llvm_unreachable("Unexpected value type"); 3716 case MVT::i1: 3717 VT = MVT::i8; 3718 LLVM_FALLTHROUGH; 3719 case MVT::i8: Opc = X86::MOV8ri; break; 3720 case MVT::i16: Opc = X86::MOV16ri; break; 3721 case MVT::i32: Opc = X86::MOV32ri; break; 3722 case MVT::i64: { 3723 if (isUInt<32>(Imm)) 3724 Opc = X86::MOV32ri64; 3725 else if (isInt<32>(Imm)) 3726 Opc = X86::MOV64ri32; 3727 else 3728 Opc = X86::MOV64ri; 3729 break; 3730 } 3731 } 3732 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm); 3733 } 3734 3735 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { 3736 if (CFP->isNullValue()) 3737 return fastMaterializeFloatZero(CFP); 3738 3739 // Can't handle alternate code models yet. 3740 CodeModel::Model CM = TM.getCodeModel(); 3741 if (CM != CodeModel::Small && CM != CodeModel::Large) 3742 return 0; 3743 3744 // Get opcode and regclass of the output for the given load instruction. 3745 unsigned Opc = 0; 3746 bool HasAVX = Subtarget->hasAVX(); 3747 bool HasAVX512 = Subtarget->hasAVX512(); 3748 switch (VT.SimpleTy) { 3749 default: return 0; 3750 case MVT::f32: 3751 if (X86ScalarSSEf32) 3752 Opc = HasAVX512 ? X86::VMOVSSZrm_alt : 3753 HasAVX ? X86::VMOVSSrm_alt : 3754 X86::MOVSSrm_alt; 3755 else 3756 Opc = X86::LD_Fp32m; 3757 break; 3758 case MVT::f64: 3759 if (X86ScalarSSEf64) 3760 Opc = HasAVX512 ? X86::VMOVSDZrm_alt : 3761 HasAVX ? X86::VMOVSDrm_alt : 3762 X86::MOVSDrm_alt; 3763 else 3764 Opc = X86::LD_Fp64m; 3765 break; 3766 case MVT::f80: 3767 // No f80 support yet. 3768 return 0; 3769 } 3770 3771 // MachineConstantPool wants an explicit alignment. 3772 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 3773 if (Align == 0) { 3774 // Alignment of vector types. FIXME! 3775 Align = DL.getTypeAllocSize(CFP->getType()); 3776 } 3777 3778 // x86-32 PIC requires a PIC base register for constant pools. 3779 unsigned PICBase = 0; 3780 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr); 3781 if (OpFlag == X86II::MO_PIC_BASE_OFFSET) 3782 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3783 else if (OpFlag == X86II::MO_GOTOFF) 3784 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); 3785 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small) 3786 PICBase = X86::RIP; 3787 3788 // Create the load from the constant pool. 3789 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align); 3790 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 3791 3792 if (CM == CodeModel::Large) { 3793 unsigned AddrReg = createResultReg(&X86::GR64RegClass); 3794 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3795 AddrReg) 3796 .addConstantPoolIndex(CPI, 0, OpFlag); 3797 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3798 TII.get(Opc), ResultReg); 3799 addDirectMem(MIB, AddrReg); 3800 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 3801 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 3802 MachineMemOperand::MOLoad, DL.getPointerSize(), Align); 3803 MIB->addMemOperand(*FuncInfo.MF, MMO); 3804 return ResultReg; 3805 } 3806 3807 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3808 TII.get(Opc), ResultReg), 3809 CPI, PICBase, OpFlag); 3810 return ResultReg; 3811 } 3812 3813 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { 3814 // Can't handle alternate code models yet. 3815 if (TM.getCodeModel() != CodeModel::Small) 3816 return 0; 3817 3818 // Materialize addresses with LEA/MOV instructions. 3819 X86AddressMode AM; 3820 if (X86SelectAddress(GV, AM)) { 3821 // If the expression is just a basereg, then we're done, otherwise we need 3822 // to emit an LEA. 3823 if (AM.BaseType == X86AddressMode::RegBase && 3824 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) 3825 return AM.Base.Reg; 3826 3827 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3828 if (TM.getRelocationModel() == Reloc::Static && 3829 TLI.getPointerTy(DL) == MVT::i64) { 3830 // The displacement code could be more than 32 bits away so we need to use 3831 // an instruction with a 64 bit immediate 3832 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri), 3833 ResultReg) 3834 .addGlobalAddress(GV); 3835 } else { 3836 unsigned Opc = 3837 TLI.getPointerTy(DL) == MVT::i32 3838 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3839 : X86::LEA64r; 3840 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3841 TII.get(Opc), ResultReg), AM); 3842 } 3843 return ResultReg; 3844 } 3845 return 0; 3846 } 3847 3848 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) { 3849 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 3850 3851 // Only handle simple types. 3852 if (!CEVT.isSimple()) 3853 return 0; 3854 MVT VT = CEVT.getSimpleVT(); 3855 3856 if (const auto *CI = dyn_cast<ConstantInt>(C)) 3857 return X86MaterializeInt(CI, VT); 3858 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 3859 return X86MaterializeFP(CFP, VT); 3860 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 3861 return X86MaterializeGV(GV, VT); 3862 3863 return 0; 3864 } 3865 3866 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { 3867 // Fail on dynamic allocas. At this point, getRegForValue has already 3868 // checked its CSE maps, so if we're here trying to handle a dynamic 3869 // alloca, we're not going to succeed. X86SelectAddress has a 3870 // check for dynamic allocas, because it's called directly from 3871 // various places, but targetMaterializeAlloca also needs a check 3872 // in order to avoid recursion between getRegForValue, 3873 // X86SelectAddrss, and targetMaterializeAlloca. 3874 if (!FuncInfo.StaticAllocaMap.count(C)) 3875 return 0; 3876 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?"); 3877 3878 X86AddressMode AM; 3879 if (!X86SelectAddress(C, AM)) 3880 return 0; 3881 unsigned Opc = 3882 TLI.getPointerTy(DL) == MVT::i32 3883 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) 3884 : X86::LEA64r; 3885 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3886 unsigned ResultReg = createResultReg(RC); 3887 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3888 TII.get(Opc), ResultReg), AM); 3889 return ResultReg; 3890 } 3891 3892 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { 3893 MVT VT; 3894 if (!isTypeLegal(CF->getType(), VT)) 3895 return 0; 3896 3897 // Get opcode and regclass for the given zero. 3898 bool HasAVX512 = Subtarget->hasAVX512(); 3899 unsigned Opc = 0; 3900 switch (VT.SimpleTy) { 3901 default: return 0; 3902 case MVT::f32: 3903 if (X86ScalarSSEf32) 3904 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS; 3905 else 3906 Opc = X86::LD_Fp032; 3907 break; 3908 case MVT::f64: 3909 if (X86ScalarSSEf64) 3910 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD; 3911 else 3912 Opc = X86::LD_Fp064; 3913 break; 3914 case MVT::f80: 3915 // No f80 support yet. 3916 return 0; 3917 } 3918 3919 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 3920 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg); 3921 return ResultReg; 3922 } 3923 3924 3925 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3926 const LoadInst *LI) { 3927 const Value *Ptr = LI->getPointerOperand(); 3928 X86AddressMode AM; 3929 if (!X86SelectAddress(Ptr, AM)) 3930 return false; 3931 3932 const X86InstrInfo &XII = (const X86InstrInfo &)TII; 3933 3934 unsigned Size = DL.getTypeAllocSize(LI->getType()); 3935 unsigned Alignment = LI->getAlignment(); 3936 3937 if (Alignment == 0) // Ensure that codegen never sees alignment 0 3938 Alignment = DL.getABITypeAlignment(LI->getType()); 3939 3940 SmallVector<MachineOperand, 8> AddrOps; 3941 AM.getFullAddress(AddrOps); 3942 3943 MachineInstr *Result = XII.foldMemoryOperandImpl( 3944 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment, 3945 /*AllowCommute=*/true); 3946 if (!Result) 3947 return false; 3948 3949 // The index register could be in the wrong register class. Unfortunately, 3950 // foldMemoryOperandImpl could have commuted the instruction so its not enough 3951 // to just look at OpNo + the offset to the index reg. We actually need to 3952 // scan the instruction to find the index reg and see if its the correct reg 3953 // class. 3954 unsigned OperandNo = 0; 3955 for (MachineInstr::mop_iterator I = Result->operands_begin(), 3956 E = Result->operands_end(); I != E; ++I, ++OperandNo) { 3957 MachineOperand &MO = *I; 3958 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) 3959 continue; 3960 // Found the index reg, now try to rewrite it. 3961 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(), 3962 MO.getReg(), OperandNo); 3963 if (IndexReg == MO.getReg()) 3964 continue; 3965 MO.setReg(IndexReg); 3966 } 3967 3968 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI)); 3969 Result->cloneInstrSymbols(*FuncInfo.MF, *MI); 3970 MachineBasicBlock::iterator I(MI); 3971 removeDeadCode(I, std::next(I)); 3972 return true; 3973 } 3974 3975 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, 3976 const TargetRegisterClass *RC, 3977 unsigned Op0, bool Op0IsKill, 3978 unsigned Op1, bool Op1IsKill, 3979 unsigned Op2, bool Op2IsKill, 3980 unsigned Op3, bool Op3IsKill) { 3981 const MCInstrDesc &II = TII.get(MachineInstOpcode); 3982 3983 unsigned ResultReg = createResultReg(RC); 3984 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 3985 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 3986 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 3987 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3); 3988 3989 if (II.getNumDefs() >= 1) 3990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 3991 .addReg(Op0, getKillRegState(Op0IsKill)) 3992 .addReg(Op1, getKillRegState(Op1IsKill)) 3993 .addReg(Op2, getKillRegState(Op2IsKill)) 3994 .addReg(Op3, getKillRegState(Op3IsKill)); 3995 else { 3996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 3997 .addReg(Op0, getKillRegState(Op0IsKill)) 3998 .addReg(Op1, getKillRegState(Op1IsKill)) 3999 .addReg(Op2, getKillRegState(Op2IsKill)) 4000 .addReg(Op3, getKillRegState(Op3IsKill)); 4001 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 4002 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 4003 } 4004 return ResultReg; 4005 } 4006 4007 4008 namespace llvm { 4009 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, 4010 const TargetLibraryInfo *libInfo) { 4011 return new X86FastISel(funcInfo, libInfo); 4012 } 4013 } 4014