1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that expands pseudo instructions into target 10 // instructions to allow proper scheduling, if-conversion, other late 11 // optimizations, or simply the encoding of the instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86FrameLowering.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86Subtarget.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/CodeGen/LivePhysRegs.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved. 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/Target/TargetMachine.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "x86-pseudo" 31 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass" 32 33 namespace { 34 class X86ExpandPseudo : public MachineFunctionPass { 35 public: 36 static char ID; 37 X86ExpandPseudo() : MachineFunctionPass(ID) {} 38 39 void getAnalysisUsage(AnalysisUsage &AU) const override { 40 AU.setPreservesCFG(); 41 AU.addPreservedID(MachineLoopInfoID); 42 AU.addPreservedID(MachineDominatorsID); 43 MachineFunctionPass::getAnalysisUsage(AU); 44 } 45 46 const X86Subtarget *STI = nullptr; 47 const X86InstrInfo *TII = nullptr; 48 const X86RegisterInfo *TRI = nullptr; 49 const X86MachineFunctionInfo *X86FI = nullptr; 50 const X86FrameLowering *X86FL = nullptr; 51 52 bool runOnMachineFunction(MachineFunction &Fn) override; 53 54 MachineFunctionProperties getRequiredProperties() const override { 55 return MachineFunctionProperties().set( 56 MachineFunctionProperties::Property::NoVRegs); 57 } 58 59 StringRef getPassName() const override { 60 return "X86 pseudo instruction expansion pass"; 61 } 62 63 private: 64 void ExpandICallBranchFunnel(MachineBasicBlock *MBB, 65 MachineBasicBlock::iterator MBBI); 66 void expandCALL_RVMARKER(MachineBasicBlock &MBB, 67 MachineBasicBlock::iterator MBBI); 68 bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI); 69 bool ExpandMBB(MachineBasicBlock &MBB); 70 71 /// This function expands pseudos which affects control flow. 72 /// It is done in separate pass to simplify blocks navigation in main 73 /// pass(calling ExpandMBB). 74 bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF); 75 76 /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions, 77 /// placed into separate block guarded by check for al register(for SystemV 78 /// abi). 79 void ExpandVastartSaveXmmRegs( 80 MachineBasicBlock *MBB, 81 MachineBasicBlock::iterator VAStartPseudoInstr) const; 82 }; 83 char X86ExpandPseudo::ID = 0; 84 85 } // End anonymous namespace. 86 87 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false, 88 false) 89 90 void X86ExpandPseudo::ExpandICallBranchFunnel( 91 MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) { 92 MachineBasicBlock *JTMBB = MBB; 93 MachineInstr *JTInst = &*MBBI; 94 MachineFunction *MF = MBB->getParent(); 95 const BasicBlock *BB = MBB->getBasicBlock(); 96 auto InsPt = MachineFunction::iterator(MBB); 97 ++InsPt; 98 99 std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs; 100 const DebugLoc &DL = JTInst->getDebugLoc(); 101 MachineOperand Selector = JTInst->getOperand(0); 102 const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal(); 103 104 auto CmpTarget = [&](unsigned Target) { 105 if (Selector.isReg()) 106 MBB->addLiveIn(Selector.getReg()); 107 BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11) 108 .addReg(X86::RIP) 109 .addImm(1) 110 .addReg(0) 111 .addGlobalAddress(CombinedGlobal, 112 JTInst->getOperand(2 + 2 * Target).getImm()) 113 .addReg(0); 114 BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr)) 115 .add(Selector) 116 .addReg(X86::R11); 117 }; 118 119 auto CreateMBB = [&]() { 120 auto *NewMBB = MF->CreateMachineBasicBlock(BB); 121 MBB->addSuccessor(NewMBB); 122 if (!MBB->isLiveIn(X86::EFLAGS)) 123 MBB->addLiveIn(X86::EFLAGS); 124 return NewMBB; 125 }; 126 127 auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) { 128 BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC); 129 130 auto *ElseMBB = CreateMBB(); 131 MF->insert(InsPt, ElseMBB); 132 MBB = ElseMBB; 133 MBBI = MBB->end(); 134 }; 135 136 auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) { 137 auto *ThenMBB = CreateMBB(); 138 TargetMBBs.push_back({ThenMBB, Target}); 139 EmitCondJump(CC, ThenMBB); 140 }; 141 142 auto EmitTailCall = [&](unsigned Target) { 143 BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64)) 144 .add(JTInst->getOperand(3 + 2 * Target)); 145 }; 146 147 std::function<void(unsigned, unsigned)> EmitBranchFunnel = 148 [&](unsigned FirstTarget, unsigned NumTargets) { 149 if (NumTargets == 1) { 150 EmitTailCall(FirstTarget); 151 return; 152 } 153 154 if (NumTargets == 2) { 155 CmpTarget(FirstTarget + 1); 156 EmitCondJumpTarget(X86::COND_B, FirstTarget); 157 EmitTailCall(FirstTarget + 1); 158 return; 159 } 160 161 if (NumTargets < 6) { 162 CmpTarget(FirstTarget + 1); 163 EmitCondJumpTarget(X86::COND_B, FirstTarget); 164 EmitCondJumpTarget(X86::COND_E, FirstTarget + 1); 165 EmitBranchFunnel(FirstTarget + 2, NumTargets - 2); 166 return; 167 } 168 169 auto *ThenMBB = CreateMBB(); 170 CmpTarget(FirstTarget + (NumTargets / 2)); 171 EmitCondJump(X86::COND_B, ThenMBB); 172 EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2)); 173 EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1, 174 NumTargets - (NumTargets / 2) - 1); 175 176 MF->insert(InsPt, ThenMBB); 177 MBB = ThenMBB; 178 MBBI = MBB->end(); 179 EmitBranchFunnel(FirstTarget, NumTargets / 2); 180 }; 181 182 EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2); 183 for (auto P : TargetMBBs) { 184 MF->insert(InsPt, P.first); 185 BuildMI(P.first, DL, TII->get(X86::TAILJMPd64)) 186 .add(JTInst->getOperand(3 + 2 * P.second)); 187 } 188 JTMBB->erase(JTInst); 189 } 190 191 void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB, 192 MachineBasicBlock::iterator MBBI) { 193 // Expand CALL_RVMARKER pseudo to call instruction, followed by the special 194 //"movq %rax, %rdi" marker. 195 MachineInstr &MI = *MBBI; 196 197 MachineInstr *OriginalCall; 198 assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) && 199 "invalid operand for regular call"); 200 unsigned Opc = -1; 201 if (MI.getOpcode() == X86::CALL64m_RVMARKER) 202 Opc = X86::CALL64m; 203 else if (MI.getOpcode() == X86::CALL64r_RVMARKER) 204 Opc = X86::CALL64r; 205 else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER) 206 Opc = X86::CALL64pcrel32; 207 else 208 llvm_unreachable("unexpected opcode"); 209 210 OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr(); 211 bool RAXImplicitDead = false; 212 for (MachineOperand &Op : llvm::drop_begin(MI.operands())) { 213 // RAX may be 'implicit dead', if there are no other users of the return 214 // value. We introduce a new use, so change it to 'implicit def'. 215 if (Op.isReg() && Op.isImplicit() && Op.isDead() && 216 TRI->regsOverlap(Op.getReg(), X86::RAX)) { 217 Op.setIsDead(false); 218 Op.setIsDef(true); 219 RAXImplicitDead = true; 220 } 221 OriginalCall->addOperand(Op); 222 } 223 224 // Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be 225 // live across the earlier call. The call to the ObjC runtime function returns 226 // the first argument, so the value of %rax is unchanged after the ObjC 227 // runtime call. 228 auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr)) 229 .addReg(X86::RDI, RegState::Define) 230 .addReg(X86::RAX) 231 .getInstr(); 232 if (MI.shouldUpdateCallSiteInfo()) 233 MBB.getParent()->moveCallSiteInfo(&MI, Marker); 234 235 // Emit call to ObjC runtime. 236 const uint32_t *RegMask = 237 TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C); 238 MachineInstr *RtCall = 239 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32)) 240 .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0) 241 .addRegMask(RegMask) 242 .addReg(X86::RAX, 243 RegState::Implicit | 244 (RAXImplicitDead ? (RegState::Dead | RegState::Define) 245 : RegState::Define)) 246 .getInstr(); 247 MI.eraseFromParent(); 248 249 auto &TM = MBB.getParent()->getTarget(); 250 // On Darwin platforms, wrap the expanded sequence in a bundle to prevent 251 // later optimizations from breaking up the sequence. 252 if (TM.getTargetTriple().isOSDarwin()) 253 finalizeBundle(MBB, OriginalCall->getIterator(), 254 std::next(RtCall->getIterator())); 255 } 256 257 /// If \p MBBI is a pseudo instruction, this method expands 258 /// it to the corresponding (sequence of) actual instruction(s). 259 /// \returns true if \p MBBI has been expanded. 260 bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB, 261 MachineBasicBlock::iterator MBBI) { 262 MachineInstr &MI = *MBBI; 263 unsigned Opcode = MI.getOpcode(); 264 const DebugLoc &DL = MBBI->getDebugLoc(); 265 switch (Opcode) { 266 default: 267 return false; 268 case X86::TCRETURNdi: 269 case X86::TCRETURNdicc: 270 case X86::TCRETURNri: 271 case X86::TCRETURNmi: 272 case X86::TCRETURNdi64: 273 case X86::TCRETURNdi64cc: 274 case X86::TCRETURNri64: 275 case X86::TCRETURNmi64: { 276 bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64; 277 MachineOperand &JumpTarget = MBBI->getOperand(0); 278 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands 279 : 1); 280 assert(StackAdjust.isImm() && "Expecting immediate value."); 281 282 // Adjust stack pointer. 283 int StackAdj = StackAdjust.getImm(); 284 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 285 int Offset = 0; 286 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 287 288 // Incoporate the retaddr area. 289 Offset = StackAdj - MaxTCDelta; 290 assert(Offset >= 0 && "Offset should never be negative"); 291 292 if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) { 293 assert(Offset == 0 && "Conditional tail call cannot adjust the stack."); 294 } 295 296 if (Offset) { 297 // Check for possible merge with preceding ADD instruction. 298 Offset += X86FL->mergeSPUpdates(MBB, MBBI, true); 299 X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true); 300 } 301 302 // Jump to label or value in register. 303 bool IsWin64 = STI->isTargetWin64(); 304 if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc || 305 Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) { 306 unsigned Op; 307 switch (Opcode) { 308 case X86::TCRETURNdi: 309 Op = X86::TAILJMPd; 310 break; 311 case X86::TCRETURNdicc: 312 Op = X86::TAILJMPd_CC; 313 break; 314 case X86::TCRETURNdi64cc: 315 assert(!MBB.getParent()->hasWinCFI() && 316 "Conditional tail calls confuse " 317 "the Win64 unwinder."); 318 Op = X86::TAILJMPd64_CC; 319 break; 320 default: 321 // Note: Win64 uses REX prefixes indirect jumps out of functions, but 322 // not direct ones. 323 Op = X86::TAILJMPd64; 324 break; 325 } 326 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); 327 if (JumpTarget.isGlobal()) { 328 MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), 329 JumpTarget.getTargetFlags()); 330 } else { 331 assert(JumpTarget.isSymbol()); 332 MIB.addExternalSymbol(JumpTarget.getSymbolName(), 333 JumpTarget.getTargetFlags()); 334 } 335 if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) { 336 MIB.addImm(MBBI->getOperand(2).getImm()); 337 } 338 339 } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) { 340 unsigned Op = (Opcode == X86::TCRETURNmi) 341 ? X86::TAILJMPm 342 : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64); 343 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); 344 for (unsigned i = 0; i != X86::AddrNumOperands; ++i) 345 MIB.add(MBBI->getOperand(i)); 346 } else if (Opcode == X86::TCRETURNri64) { 347 JumpTarget.setIsKill(); 348 BuildMI(MBB, MBBI, DL, 349 TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64)) 350 .add(JumpTarget); 351 } else { 352 JumpTarget.setIsKill(); 353 BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr)) 354 .add(JumpTarget); 355 } 356 357 MachineInstr &NewMI = *std::prev(MBBI); 358 NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI); 359 360 // Update the call site info. 361 if (MBBI->isCandidateForCallSiteEntry()) 362 MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI); 363 364 // Delete the pseudo instruction TCRETURN. 365 MBB.erase(MBBI); 366 367 return true; 368 } 369 case X86::EH_RETURN: 370 case X86::EH_RETURN64: { 371 MachineOperand &DestAddr = MBBI->getOperand(0); 372 assert(DestAddr.isReg() && "Offset should be in register!"); 373 const bool Uses64BitFramePtr = 374 STI->isTarget64BitLP64() || STI->isTargetNaCl64(); 375 Register StackPtr = TRI->getStackRegister(); 376 BuildMI(MBB, MBBI, DL, 377 TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr) 378 .addReg(DestAddr.getReg()); 379 // The EH_RETURN pseudo is really removed during the MC Lowering. 380 return true; 381 } 382 case X86::IRET: { 383 // Adjust stack to erase error code 384 int64_t StackAdj = MBBI->getOperand(0).getImm(); 385 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true); 386 // Replace pseudo with machine iret 387 unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32; 388 // Use UIRET if UINTR is present (except for building kernel) 389 if (STI->is64Bit() && STI->hasUINTR() && 390 MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel) 391 RetOp = X86::UIRET; 392 BuildMI(MBB, MBBI, DL, TII->get(RetOp)); 393 MBB.erase(MBBI); 394 return true; 395 } 396 case X86::RET: { 397 // Adjust stack to erase error code 398 int64_t StackAdj = MBBI->getOperand(0).getImm(); 399 MachineInstrBuilder MIB; 400 if (StackAdj == 0) { 401 MIB = BuildMI(MBB, MBBI, DL, 402 TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32)); 403 } else if (isUInt<16>(StackAdj)) { 404 MIB = BuildMI(MBB, MBBI, DL, 405 TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32)) 406 .addImm(StackAdj); 407 } else { 408 assert(!STI->is64Bit() && 409 "shouldn't need to do this for x86_64 targets!"); 410 // A ret can only handle immediates as big as 2**16-1. If we need to pop 411 // off bytes before the return address, we must do it manually. 412 BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define); 413 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true); 414 BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX); 415 MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32)); 416 } 417 for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I) 418 MIB.add(MBBI->getOperand(I)); 419 MBB.erase(MBBI); 420 return true; 421 } 422 case X86::LCMPXCHG16B_SAVE_RBX: { 423 // Perform the following transformation. 424 // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx 425 // => 426 // RBX = InArg 427 // actualcmpxchg Addr 428 // RBX = SaveRbx 429 const MachineOperand &InArg = MBBI->getOperand(6); 430 Register SaveRbx = MBBI->getOperand(7).getReg(); 431 432 // Copy the input argument of the pseudo into the argument of the 433 // actual instruction. 434 // NOTE: We don't copy the kill flag since the input might be the same reg 435 // as one of the other operands of LCMPXCHG16B. 436 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false); 437 // Create the actual instruction. 438 MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B)); 439 // Copy the operands related to the address. 440 for (unsigned Idx = 1; Idx < 6; ++Idx) 441 NewInstr->addOperand(MBBI->getOperand(Idx)); 442 // Finally, restore the value of RBX. 443 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, 444 /*SrcIsKill*/ true); 445 446 // Delete the pseudo. 447 MBBI->eraseFromParent(); 448 return true; 449 } 450 // Loading/storing mask pairs requires two kmov operations. The second one of 451 // these needs a 2 byte displacement relative to the specified address (with 452 // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the 453 // same spill size, they all are stored using MASKPAIR16STORE, loaded using 454 // MASKPAIR16LOAD. 455 // 456 // The displacement value might wrap around in theory, thus the asserts in 457 // both cases. 458 case X86::MASKPAIR16LOAD: { 459 int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm(); 460 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement"); 461 Register Reg = MBBI->getOperand(0).getReg(); 462 bool DstIsDead = MBBI->getOperand(0).isDead(); 463 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0); 464 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1); 465 466 auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm)) 467 .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead)); 468 auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm)) 469 .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead)); 470 471 for (int i = 0; i < X86::AddrNumOperands; ++i) { 472 MIBLo.add(MBBI->getOperand(1 + i)); 473 if (i == X86::AddrDisp) 474 MIBHi.addImm(Disp + 2); 475 else 476 MIBHi.add(MBBI->getOperand(1 + i)); 477 } 478 479 // Split the memory operand, adjusting the offset and size for the halves. 480 MachineMemOperand *OldMMO = MBBI->memoperands().front(); 481 MachineFunction *MF = MBB.getParent(); 482 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2); 483 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2); 484 485 MIBLo.setMemRefs(MMOLo); 486 MIBHi.setMemRefs(MMOHi); 487 488 // Delete the pseudo. 489 MBB.erase(MBBI); 490 return true; 491 } 492 case X86::MASKPAIR16STORE: { 493 int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm(); 494 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement"); 495 Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg(); 496 bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill(); 497 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0); 498 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1); 499 500 auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk)); 501 auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk)); 502 503 for (int i = 0; i < X86::AddrNumOperands; ++i) { 504 MIBLo.add(MBBI->getOperand(i)); 505 if (i == X86::AddrDisp) 506 MIBHi.addImm(Disp + 2); 507 else 508 MIBHi.add(MBBI->getOperand(i)); 509 } 510 MIBLo.addReg(Reg0, getKillRegState(SrcIsKill)); 511 MIBHi.addReg(Reg1, getKillRegState(SrcIsKill)); 512 513 // Split the memory operand, adjusting the offset and size for the halves. 514 MachineMemOperand *OldMMO = MBBI->memoperands().front(); 515 MachineFunction *MF = MBB.getParent(); 516 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2); 517 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2); 518 519 MIBLo.setMemRefs(MMOLo); 520 MIBHi.setMemRefs(MMOHi); 521 522 // Delete the pseudo. 523 MBB.erase(MBBI); 524 return true; 525 } 526 case X86::MWAITX_SAVE_RBX: { 527 // Perform the following transformation. 528 // SaveRbx = pseudomwaitx InArg, SaveRbx 529 // => 530 // [E|R]BX = InArg 531 // actualmwaitx 532 // [E|R]BX = SaveRbx 533 const MachineOperand &InArg = MBBI->getOperand(1); 534 // Copy the input argument of the pseudo into the argument of the 535 // actual instruction. 536 TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill()); 537 // Create the actual instruction. 538 BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr)); 539 // Finally, restore the value of RBX. 540 Register SaveRbx = MBBI->getOperand(2).getReg(); 541 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true); 542 // Delete the pseudo. 543 MBBI->eraseFromParent(); 544 return true; 545 } 546 case TargetOpcode::ICALL_BRANCH_FUNNEL: 547 ExpandICallBranchFunnel(&MBB, MBBI); 548 return true; 549 case X86::PLDTILECFGV: { 550 MI.setDesc(TII->get(X86::LDTILECFG)); 551 return true; 552 } 553 case X86::PTILELOADDV: 554 case X86::PTILELOADDT1V: { 555 for (unsigned i = 2; i > 0; --i) 556 MI.removeOperand(i); 557 unsigned Opc = 558 Opcode == X86::PTILELOADDV ? X86::TILELOADD : X86::TILELOADDT1; 559 MI.setDesc(TII->get(Opc)); 560 return true; 561 } 562 case X86::PTDPBSSDV: 563 case X86::PTDPBSUDV: 564 case X86::PTDPBUSDV: 565 case X86::PTDPBUUDV: 566 case X86::PTDPBF16PSV: { 567 MI.untieRegOperand(4); 568 for (unsigned i = 3; i > 0; --i) 569 MI.removeOperand(i); 570 unsigned Opc; 571 switch (Opcode) { 572 case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break; 573 case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break; 574 case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break; 575 case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break; 576 case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break; 577 default: llvm_unreachable("Impossible Opcode!"); 578 } 579 MI.setDesc(TII->get(Opc)); 580 MI.tieOperands(0, 1); 581 return true; 582 } 583 case X86::PTILESTOREDV: { 584 for (int i = 1; i >= 0; --i) 585 MI.removeOperand(i); 586 MI.setDesc(TII->get(X86::TILESTORED)); 587 return true; 588 } 589 case X86::PTILEZEROV: { 590 for (int i = 2; i > 0; --i) // Remove row, col 591 MI.removeOperand(i); 592 MI.setDesc(TII->get(X86::TILEZERO)); 593 return true; 594 } 595 case X86::CALL64pcrel32_RVMARKER: 596 case X86::CALL64r_RVMARKER: 597 case X86::CALL64m_RVMARKER: 598 expandCALL_RVMARKER(MBB, MBBI); 599 return true; 600 } 601 llvm_unreachable("Previous switch has a fallthrough?"); 602 } 603 604 // This function creates additional block for storing varargs guarded 605 // registers. It adds check for %al into entry block, to skip 606 // GuardedRegsBlk if xmm registers should not be stored. 607 // 608 // EntryBlk[VAStartPseudoInstr] EntryBlk 609 // | | . 610 // | | . 611 // | | GuardedRegsBlk 612 // | => | . 613 // | | . 614 // | TailBlk 615 // | | 616 // | | 617 // 618 void X86ExpandPseudo::ExpandVastartSaveXmmRegs( 619 MachineBasicBlock *EntryBlk, 620 MachineBasicBlock::iterator VAStartPseudoInstr) const { 621 assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS); 622 623 MachineFunction *Func = EntryBlk->getParent(); 624 const TargetInstrInfo *TII = STI->getInstrInfo(); 625 const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc(); 626 Register CountReg = VAStartPseudoInstr->getOperand(0).getReg(); 627 628 // Calculate liveins for newly created blocks. 629 LivePhysRegs LiveRegs(*STI->getRegisterInfo()); 630 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 631 632 LiveRegs.addLiveIns(*EntryBlk); 633 for (MachineInstr &MI : EntryBlk->instrs()) { 634 if (MI.getOpcode() == VAStartPseudoInstr->getOpcode()) 635 break; 636 637 LiveRegs.stepForward(MI, Clobbers); 638 } 639 640 // Create the new basic blocks. One block contains all the XMM stores, 641 // and another block is the final destination regardless of whether any 642 // stores were performed. 643 const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock(); 644 MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator(); 645 MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk); 646 MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk); 647 Func->insert(EntryBlkIter, GuardedRegsBlk); 648 Func->insert(EntryBlkIter, TailBlk); 649 650 // Transfer the remainder of EntryBlk and its successor edges to TailBlk. 651 TailBlk->splice(TailBlk->begin(), EntryBlk, 652 std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)), 653 EntryBlk->end()); 654 TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk); 655 656 uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm(); 657 uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm(); 658 659 // TODO: add support for YMM and ZMM here. 660 unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; 661 662 // In the XMM save block, save all the XMM argument registers. 663 for (int64_t OpndIdx = 7, RegIdx = 0; 664 OpndIdx < VAStartPseudoInstr->getNumOperands() - 1; 665 OpndIdx++, RegIdx++) { 666 auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc)); 667 for (int i = 0; i < X86::AddrNumOperands; ++i) { 668 if (i == X86::AddrDisp) 669 NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16); 670 else 671 NewMI.add(VAStartPseudoInstr->getOperand(i + 1)); 672 } 673 NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg()); 674 assert(Register::isPhysicalRegister( 675 VAStartPseudoInstr->getOperand(OpndIdx).getReg())); 676 } 677 678 // The original block will now fall through to the GuardedRegsBlk. 679 EntryBlk->addSuccessor(GuardedRegsBlk); 680 // The GuardedRegsBlk will fall through to the TailBlk. 681 GuardedRegsBlk->addSuccessor(TailBlk); 682 683 if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) { 684 // If %al is 0, branch around the XMM save block. 685 BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr)) 686 .addReg(CountReg) 687 .addReg(CountReg); 688 BuildMI(EntryBlk, DL, TII->get(X86::JCC_1)) 689 .addMBB(TailBlk) 690 .addImm(X86::COND_E); 691 EntryBlk->addSuccessor(TailBlk); 692 } 693 694 // Add liveins to the created block. 695 addLiveIns(*GuardedRegsBlk, LiveRegs); 696 addLiveIns(*TailBlk, LiveRegs); 697 698 // Delete the pseudo. 699 VAStartPseudoInstr->eraseFromParent(); 700 } 701 702 /// Expand all pseudo instructions contained in \p MBB. 703 /// \returns true if any expansion occurred for \p MBB. 704 bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) { 705 bool Modified = false; 706 707 // MBBI may be invalidated by the expansion. 708 MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 709 while (MBBI != E) { 710 MachineBasicBlock::iterator NMBBI = std::next(MBBI); 711 Modified |= ExpandMI(MBB, MBBI); 712 MBBI = NMBBI; 713 } 714 715 return Modified; 716 } 717 718 bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) { 719 // Currently pseudo which affects control flow is only 720 // X86::VASTART_SAVE_XMM_REGS which is located in Entry block. 721 // So we do not need to evaluate other blocks. 722 for (MachineInstr &Instr : MF.front().instrs()) { 723 if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) { 724 ExpandVastartSaveXmmRegs(&(MF.front()), Instr); 725 return true; 726 } 727 } 728 729 return false; 730 } 731 732 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) { 733 STI = &MF.getSubtarget<X86Subtarget>(); 734 TII = STI->getInstrInfo(); 735 TRI = STI->getRegisterInfo(); 736 X86FI = MF.getInfo<X86MachineFunctionInfo>(); 737 X86FL = STI->getFrameLowering(); 738 739 bool Modified = ExpandPseudosWhichAffectControlFlow(MF); 740 741 for (MachineBasicBlock &MBB : MF) 742 Modified |= ExpandMBB(MBB); 743 return Modified; 744 } 745 746 /// Returns an instance of the pseudo instruction expansion pass. 747 FunctionPass *llvm::createX86ExpandPseudoPass() { 748 return new X86ExpandPseudo(); 749 } 750