xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ExpandPseudo.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that expands pseudo instructions into target
10 // instructions to allow proper scheduling, if-conversion, other late
11 // optimizations, or simply the encoding of the instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86FrameLowering.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/Target/TargetMachine.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "x86-pseudo"
31 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
32 
33 namespace {
34 class X86ExpandPseudo : public MachineFunctionPass {
35 public:
36   static char ID;
37   X86ExpandPseudo() : MachineFunctionPass(ID) {}
38 
39   void getAnalysisUsage(AnalysisUsage &AU) const override {
40     AU.setPreservesCFG();
41     AU.addPreservedID(MachineLoopInfoID);
42     AU.addPreservedID(MachineDominatorsID);
43     MachineFunctionPass::getAnalysisUsage(AU);
44   }
45 
46   const X86Subtarget *STI = nullptr;
47   const X86InstrInfo *TII = nullptr;
48   const X86RegisterInfo *TRI = nullptr;
49   const X86MachineFunctionInfo *X86FI = nullptr;
50   const X86FrameLowering *X86FL = nullptr;
51 
52   bool runOnMachineFunction(MachineFunction &Fn) override;
53 
54   MachineFunctionProperties getRequiredProperties() const override {
55     return MachineFunctionProperties().set(
56         MachineFunctionProperties::Property::NoVRegs);
57   }
58 
59   StringRef getPassName() const override {
60     return "X86 pseudo instruction expansion pass";
61   }
62 
63 private:
64   void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
65                                MachineBasicBlock::iterator MBBI);
66   void expandCALL_RVMARKER(MachineBasicBlock &MBB,
67                            MachineBasicBlock::iterator MBBI);
68   bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
69   bool ExpandMBB(MachineBasicBlock &MBB);
70 
71   /// This function expands pseudos which affects control flow.
72   /// It is done in separate pass to simplify blocks navigation in main
73   /// pass(calling ExpandMBB).
74   bool ExpandPseudosWhichAffectControlFlow(MachineFunction &MF);
75 
76   /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
77   /// placed into separate block guarded by check for al register(for SystemV
78   /// abi).
79   void ExpandVastartSaveXmmRegs(
80       MachineBasicBlock *MBB,
81       MachineBasicBlock::iterator VAStartPseudoInstr) const;
82 };
83 char X86ExpandPseudo::ID = 0;
84 
85 } // End anonymous namespace.
86 
87 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
88                 false)
89 
90 void X86ExpandPseudo::ExpandICallBranchFunnel(
91     MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
92   MachineBasicBlock *JTMBB = MBB;
93   MachineInstr *JTInst = &*MBBI;
94   MachineFunction *MF = MBB->getParent();
95   const BasicBlock *BB = MBB->getBasicBlock();
96   auto InsPt = MachineFunction::iterator(MBB);
97   ++InsPt;
98 
99   std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
100   const DebugLoc &DL = JTInst->getDebugLoc();
101   MachineOperand Selector = JTInst->getOperand(0);
102   const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
103 
104   auto CmpTarget = [&](unsigned Target) {
105     if (Selector.isReg())
106       MBB->addLiveIn(Selector.getReg());
107     BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
108         .addReg(X86::RIP)
109         .addImm(1)
110         .addReg(0)
111         .addGlobalAddress(CombinedGlobal,
112                           JTInst->getOperand(2 + 2 * Target).getImm())
113         .addReg(0);
114     BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
115         .add(Selector)
116         .addReg(X86::R11);
117   };
118 
119   auto CreateMBB = [&]() {
120     auto *NewMBB = MF->CreateMachineBasicBlock(BB);
121     MBB->addSuccessor(NewMBB);
122     if (!MBB->isLiveIn(X86::EFLAGS))
123       MBB->addLiveIn(X86::EFLAGS);
124     return NewMBB;
125   };
126 
127   auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
128     BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
129 
130     auto *ElseMBB = CreateMBB();
131     MF->insert(InsPt, ElseMBB);
132     MBB = ElseMBB;
133     MBBI = MBB->end();
134   };
135 
136   auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
137     auto *ThenMBB = CreateMBB();
138     TargetMBBs.push_back({ThenMBB, Target});
139     EmitCondJump(CC, ThenMBB);
140   };
141 
142   auto EmitTailCall = [&](unsigned Target) {
143     BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
144         .add(JTInst->getOperand(3 + 2 * Target));
145   };
146 
147   std::function<void(unsigned, unsigned)> EmitBranchFunnel =
148       [&](unsigned FirstTarget, unsigned NumTargets) {
149     if (NumTargets == 1) {
150       EmitTailCall(FirstTarget);
151       return;
152     }
153 
154     if (NumTargets == 2) {
155       CmpTarget(FirstTarget + 1);
156       EmitCondJumpTarget(X86::COND_B, FirstTarget);
157       EmitTailCall(FirstTarget + 1);
158       return;
159     }
160 
161     if (NumTargets < 6) {
162       CmpTarget(FirstTarget + 1);
163       EmitCondJumpTarget(X86::COND_B, FirstTarget);
164       EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
165       EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
166       return;
167     }
168 
169     auto *ThenMBB = CreateMBB();
170     CmpTarget(FirstTarget + (NumTargets / 2));
171     EmitCondJump(X86::COND_B, ThenMBB);
172     EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
173     EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
174                   NumTargets - (NumTargets / 2) - 1);
175 
176     MF->insert(InsPt, ThenMBB);
177     MBB = ThenMBB;
178     MBBI = MBB->end();
179     EmitBranchFunnel(FirstTarget, NumTargets / 2);
180   };
181 
182   EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
183   for (auto P : TargetMBBs) {
184     MF->insert(InsPt, P.first);
185     BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
186         .add(JTInst->getOperand(3 + 2 * P.second));
187   }
188   JTMBB->erase(JTInst);
189 }
190 
191 void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
192                                           MachineBasicBlock::iterator MBBI) {
193   // Expand CALL_RVMARKER pseudo to call instruction, followed by the special
194   //"movq %rax, %rdi" marker.
195   MachineInstr &MI = *MBBI;
196 
197   MachineInstr *OriginalCall;
198   assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
199          "invalid operand for regular call");
200   unsigned Opc = -1;
201   if (MI.getOpcode() == X86::CALL64m_RVMARKER)
202     Opc = X86::CALL64m;
203   else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
204     Opc = X86::CALL64r;
205   else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
206     Opc = X86::CALL64pcrel32;
207   else
208     llvm_unreachable("unexpected opcode");
209 
210   OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
211   bool RAXImplicitDead = false;
212   for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
213     // RAX may be 'implicit dead', if there are no other users of the return
214     // value. We introduce a new use, so change it to 'implicit def'.
215     if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
216         TRI->regsOverlap(Op.getReg(), X86::RAX)) {
217       Op.setIsDead(false);
218       Op.setIsDef(true);
219       RAXImplicitDead = true;
220     }
221     OriginalCall->addOperand(Op);
222   }
223 
224   // Emit marker "movq %rax, %rdi".  %rdi is not callee-saved, so it cannot be
225   // live across the earlier call. The call to the ObjC runtime function returns
226   // the first argument, so the value of %rax is unchanged after the ObjC
227   // runtime call.
228   auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
229                      .addReg(X86::RDI, RegState::Define)
230                      .addReg(X86::RAX)
231                      .getInstr();
232   if (MI.shouldUpdateCallSiteInfo())
233     MBB.getParent()->moveCallSiteInfo(&MI, Marker);
234 
235   // Emit call to ObjC runtime.
236   const uint32_t *RegMask =
237       TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
238   MachineInstr *RtCall =
239       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
240           .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
241           .addRegMask(RegMask)
242           .addReg(X86::RAX,
243                   RegState::Implicit |
244                       (RAXImplicitDead ? (RegState::Dead | RegState::Define)
245                                        : RegState::Define))
246           .getInstr();
247   MI.eraseFromParent();
248 
249   auto &TM = MBB.getParent()->getTarget();
250   // On Darwin platforms, wrap the expanded sequence in a bundle to prevent
251   // later optimizations from breaking up the sequence.
252   if (TM.getTargetTriple().isOSDarwin())
253     finalizeBundle(MBB, OriginalCall->getIterator(),
254                    std::next(RtCall->getIterator()));
255 }
256 
257 /// If \p MBBI is a pseudo instruction, this method expands
258 /// it to the corresponding (sequence of) actual instruction(s).
259 /// \returns true if \p MBBI has been expanded.
260 bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
261                                MachineBasicBlock::iterator MBBI) {
262   MachineInstr &MI = *MBBI;
263   unsigned Opcode = MI.getOpcode();
264   const DebugLoc &DL = MBBI->getDebugLoc();
265   switch (Opcode) {
266   default:
267     return false;
268   case X86::TCRETURNdi:
269   case X86::TCRETURNdicc:
270   case X86::TCRETURNri:
271   case X86::TCRETURNmi:
272   case X86::TCRETURNdi64:
273   case X86::TCRETURNdi64cc:
274   case X86::TCRETURNri64:
275   case X86::TCRETURNmi64: {
276     bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
277     MachineOperand &JumpTarget = MBBI->getOperand(0);
278     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
279                                                          : 1);
280     assert(StackAdjust.isImm() && "Expecting immediate value.");
281 
282     // Adjust stack pointer.
283     int StackAdj = StackAdjust.getImm();
284     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
285     int Offset = 0;
286     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
287 
288     // Incoporate the retaddr area.
289     Offset = StackAdj - MaxTCDelta;
290     assert(Offset >= 0 && "Offset should never be negative");
291 
292     if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
293       assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
294     }
295 
296     if (Offset) {
297       // Check for possible merge with preceding ADD instruction.
298       Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
299       X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
300     }
301 
302     // Jump to label or value in register.
303     bool IsWin64 = STI->isTargetWin64();
304     if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
305         Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
306       unsigned Op;
307       switch (Opcode) {
308       case X86::TCRETURNdi:
309         Op = X86::TAILJMPd;
310         break;
311       case X86::TCRETURNdicc:
312         Op = X86::TAILJMPd_CC;
313         break;
314       case X86::TCRETURNdi64cc:
315         assert(!MBB.getParent()->hasWinCFI() &&
316                "Conditional tail calls confuse "
317                "the Win64 unwinder.");
318         Op = X86::TAILJMPd64_CC;
319         break;
320       default:
321         // Note: Win64 uses REX prefixes indirect jumps out of functions, but
322         // not direct ones.
323         Op = X86::TAILJMPd64;
324         break;
325       }
326       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
327       if (JumpTarget.isGlobal()) {
328         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
329                              JumpTarget.getTargetFlags());
330       } else {
331         assert(JumpTarget.isSymbol());
332         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
333                               JumpTarget.getTargetFlags());
334       }
335       if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
336         MIB.addImm(MBBI->getOperand(2).getImm());
337       }
338 
339     } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
340       unsigned Op = (Opcode == X86::TCRETURNmi)
341                         ? X86::TAILJMPm
342                         : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
343       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
344       for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
345         MIB.add(MBBI->getOperand(i));
346     } else if (Opcode == X86::TCRETURNri64) {
347       JumpTarget.setIsKill();
348       BuildMI(MBB, MBBI, DL,
349               TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
350           .add(JumpTarget);
351     } else {
352       JumpTarget.setIsKill();
353       BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
354           .add(JumpTarget);
355     }
356 
357     MachineInstr &NewMI = *std::prev(MBBI);
358     NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
359 
360     // Update the call site info.
361     if (MBBI->isCandidateForCallSiteEntry())
362       MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
363 
364     // Delete the pseudo instruction TCRETURN.
365     MBB.erase(MBBI);
366 
367     return true;
368   }
369   case X86::EH_RETURN:
370   case X86::EH_RETURN64: {
371     MachineOperand &DestAddr = MBBI->getOperand(0);
372     assert(DestAddr.isReg() && "Offset should be in register!");
373     const bool Uses64BitFramePtr =
374         STI->isTarget64BitLP64() || STI->isTargetNaCl64();
375     Register StackPtr = TRI->getStackRegister();
376     BuildMI(MBB, MBBI, DL,
377             TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
378         .addReg(DestAddr.getReg());
379     // The EH_RETURN pseudo is really removed during the MC Lowering.
380     return true;
381   }
382   case X86::IRET: {
383     // Adjust stack to erase error code
384     int64_t StackAdj = MBBI->getOperand(0).getImm();
385     X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
386     // Replace pseudo with machine iret
387     unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
388     // Use UIRET if UINTR is present (except for building kernel)
389     if (STI->is64Bit() && STI->hasUINTR() &&
390         MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
391       RetOp = X86::UIRET;
392     BuildMI(MBB, MBBI, DL, TII->get(RetOp));
393     MBB.erase(MBBI);
394     return true;
395   }
396   case X86::RET: {
397     // Adjust stack to erase error code
398     int64_t StackAdj = MBBI->getOperand(0).getImm();
399     MachineInstrBuilder MIB;
400     if (StackAdj == 0) {
401       MIB = BuildMI(MBB, MBBI, DL,
402                     TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
403     } else if (isUInt<16>(StackAdj)) {
404       MIB = BuildMI(MBB, MBBI, DL,
405                     TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
406                 .addImm(StackAdj);
407     } else {
408       assert(!STI->is64Bit() &&
409              "shouldn't need to do this for x86_64 targets!");
410       // A ret can only handle immediates as big as 2**16-1.  If we need to pop
411       // off bytes before the return address, we must do it manually.
412       BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
413       X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
414       BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
415       MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
416     }
417     for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
418       MIB.add(MBBI->getOperand(I));
419     MBB.erase(MBBI);
420     return true;
421   }
422   case X86::LCMPXCHG16B_SAVE_RBX: {
423     // Perform the following transformation.
424     // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
425     // =>
426     // RBX = InArg
427     // actualcmpxchg Addr
428     // RBX = SaveRbx
429     const MachineOperand &InArg = MBBI->getOperand(6);
430     Register SaveRbx = MBBI->getOperand(7).getReg();
431 
432     // Copy the input argument of the pseudo into the argument of the
433     // actual instruction.
434     // NOTE: We don't copy the kill flag since the input might be the same reg
435     // as one of the other operands of LCMPXCHG16B.
436     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
437     // Create the actual instruction.
438     MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
439     // Copy the operands related to the address.
440     for (unsigned Idx = 1; Idx < 6; ++Idx)
441       NewInstr->addOperand(MBBI->getOperand(Idx));
442     // Finally, restore the value of RBX.
443     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
444                      /*SrcIsKill*/ true);
445 
446     // Delete the pseudo.
447     MBBI->eraseFromParent();
448     return true;
449   }
450   // Loading/storing mask pairs requires two kmov operations. The second one of
451   // these needs a 2 byte displacement relative to the specified address (with
452   // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
453   // same spill size, they all are stored using MASKPAIR16STORE, loaded using
454   // MASKPAIR16LOAD.
455   //
456   // The displacement value might wrap around in theory, thus the asserts in
457   // both cases.
458   case X86::MASKPAIR16LOAD: {
459     int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
460     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
461     Register Reg = MBBI->getOperand(0).getReg();
462     bool DstIsDead = MBBI->getOperand(0).isDead();
463     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
464     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
465 
466     auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
467       .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
468     auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
469       .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
470 
471     for (int i = 0; i < X86::AddrNumOperands; ++i) {
472       MIBLo.add(MBBI->getOperand(1 + i));
473       if (i == X86::AddrDisp)
474         MIBHi.addImm(Disp + 2);
475       else
476         MIBHi.add(MBBI->getOperand(1 + i));
477     }
478 
479     // Split the memory operand, adjusting the offset and size for the halves.
480     MachineMemOperand *OldMMO = MBBI->memoperands().front();
481     MachineFunction *MF = MBB.getParent();
482     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
483     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
484 
485     MIBLo.setMemRefs(MMOLo);
486     MIBHi.setMemRefs(MMOHi);
487 
488     // Delete the pseudo.
489     MBB.erase(MBBI);
490     return true;
491   }
492   case X86::MASKPAIR16STORE: {
493     int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
494     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
495     Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
496     bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
497     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
498     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
499 
500     auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
501     auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
502 
503     for (int i = 0; i < X86::AddrNumOperands; ++i) {
504       MIBLo.add(MBBI->getOperand(i));
505       if (i == X86::AddrDisp)
506         MIBHi.addImm(Disp + 2);
507       else
508         MIBHi.add(MBBI->getOperand(i));
509     }
510     MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
511     MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
512 
513     // Split the memory operand, adjusting the offset and size for the halves.
514     MachineMemOperand *OldMMO = MBBI->memoperands().front();
515     MachineFunction *MF = MBB.getParent();
516     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
517     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
518 
519     MIBLo.setMemRefs(MMOLo);
520     MIBHi.setMemRefs(MMOHi);
521 
522     // Delete the pseudo.
523     MBB.erase(MBBI);
524     return true;
525   }
526   case X86::MWAITX_SAVE_RBX: {
527     // Perform the following transformation.
528     // SaveRbx = pseudomwaitx InArg, SaveRbx
529     // =>
530     // [E|R]BX = InArg
531     // actualmwaitx
532     // [E|R]BX = SaveRbx
533     const MachineOperand &InArg = MBBI->getOperand(1);
534     // Copy the input argument of the pseudo into the argument of the
535     // actual instruction.
536     TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
537     // Create the actual instruction.
538     BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
539     // Finally, restore the value of RBX.
540     Register SaveRbx = MBBI->getOperand(2).getReg();
541     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
542     // Delete the pseudo.
543     MBBI->eraseFromParent();
544     return true;
545   }
546   case TargetOpcode::ICALL_BRANCH_FUNNEL:
547     ExpandICallBranchFunnel(&MBB, MBBI);
548     return true;
549   case X86::PLDTILECFGV: {
550     MI.setDesc(TII->get(X86::LDTILECFG));
551     return true;
552   }
553   case X86::PTILELOADDV:
554   case X86::PTILELOADDT1V: {
555     for (unsigned i = 2; i > 0; --i)
556       MI.removeOperand(i);
557     unsigned Opc =
558         Opcode == X86::PTILELOADDV ? X86::TILELOADD : X86::TILELOADDT1;
559     MI.setDesc(TII->get(Opc));
560     return true;
561   }
562   case X86::PTDPBSSDV:
563   case X86::PTDPBSUDV:
564   case X86::PTDPBUSDV:
565   case X86::PTDPBUUDV:
566   case X86::PTDPBF16PSV: {
567     MI.untieRegOperand(4);
568     for (unsigned i = 3; i > 0; --i)
569       MI.removeOperand(i);
570     unsigned Opc;
571     switch (Opcode) {
572     case X86::PTDPBSSDV:   Opc = X86::TDPBSSD; break;
573     case X86::PTDPBSUDV:   Opc = X86::TDPBSUD; break;
574     case X86::PTDPBUSDV:   Opc = X86::TDPBUSD; break;
575     case X86::PTDPBUUDV:   Opc = X86::TDPBUUD; break;
576     case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
577     default: llvm_unreachable("Impossible Opcode!");
578     }
579     MI.setDesc(TII->get(Opc));
580     MI.tieOperands(0, 1);
581     return true;
582   }
583   case X86::PTILESTOREDV: {
584     for (int i = 1; i >= 0; --i)
585       MI.removeOperand(i);
586     MI.setDesc(TII->get(X86::TILESTORED));
587     return true;
588   }
589   case X86::PTILEZEROV: {
590     for (int i = 2; i > 0; --i) // Remove row, col
591       MI.removeOperand(i);
592     MI.setDesc(TII->get(X86::TILEZERO));
593     return true;
594   }
595   case X86::CALL64pcrel32_RVMARKER:
596   case X86::CALL64r_RVMARKER:
597   case X86::CALL64m_RVMARKER:
598     expandCALL_RVMARKER(MBB, MBBI);
599     return true;
600   }
601   llvm_unreachable("Previous switch has a fallthrough?");
602 }
603 
604 // This function creates additional block for storing varargs guarded
605 // registers. It adds check for %al into entry block, to skip
606 // GuardedRegsBlk if xmm registers should not be stored.
607 //
608 //     EntryBlk[VAStartPseudoInstr]     EntryBlk
609 //        |                              |     .
610 //        |                              |        .
611 //        |                              |   GuardedRegsBlk
612 //        |                      =>      |        .
613 //        |                              |     .
614 //        |                             TailBlk
615 //        |                              |
616 //        |                              |
617 //
618 void X86ExpandPseudo::ExpandVastartSaveXmmRegs(
619     MachineBasicBlock *EntryBlk,
620     MachineBasicBlock::iterator VAStartPseudoInstr) const {
621   assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
622 
623   MachineFunction *Func = EntryBlk->getParent();
624   const TargetInstrInfo *TII = STI->getInstrInfo();
625   const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
626   Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
627 
628   // Calculate liveins for newly created blocks.
629   LivePhysRegs LiveRegs(*STI->getRegisterInfo());
630   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
631 
632   LiveRegs.addLiveIns(*EntryBlk);
633   for (MachineInstr &MI : EntryBlk->instrs()) {
634     if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
635       break;
636 
637     LiveRegs.stepForward(MI, Clobbers);
638   }
639 
640   // Create the new basic blocks. One block contains all the XMM stores,
641   // and another block is the final destination regardless of whether any
642   // stores were performed.
643   const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
644   MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
645   MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
646   MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
647   Func->insert(EntryBlkIter, GuardedRegsBlk);
648   Func->insert(EntryBlkIter, TailBlk);
649 
650   // Transfer the remainder of EntryBlk and its successor edges to TailBlk.
651   TailBlk->splice(TailBlk->begin(), EntryBlk,
652                   std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
653                   EntryBlk->end());
654   TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
655 
656   uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
657   uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
658 
659   // TODO: add support for YMM and ZMM here.
660   unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
661 
662   // In the XMM save block, save all the XMM argument registers.
663   for (int64_t OpndIdx = 7, RegIdx = 0;
664        OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
665        OpndIdx++, RegIdx++) {
666     auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
667     for (int i = 0; i < X86::AddrNumOperands; ++i) {
668       if (i == X86::AddrDisp)
669         NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
670       else
671         NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
672     }
673     NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
674     assert(Register::isPhysicalRegister(
675         VAStartPseudoInstr->getOperand(OpndIdx).getReg()));
676   }
677 
678   // The original block will now fall through to the GuardedRegsBlk.
679   EntryBlk->addSuccessor(GuardedRegsBlk);
680   // The GuardedRegsBlk will fall through to the TailBlk.
681   GuardedRegsBlk->addSuccessor(TailBlk);
682 
683   if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
684     // If %al is 0, branch around the XMM save block.
685     BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
686         .addReg(CountReg)
687         .addReg(CountReg);
688     BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
689         .addMBB(TailBlk)
690         .addImm(X86::COND_E);
691     EntryBlk->addSuccessor(TailBlk);
692   }
693 
694   // Add liveins to the created block.
695   addLiveIns(*GuardedRegsBlk, LiveRegs);
696   addLiveIns(*TailBlk, LiveRegs);
697 
698   // Delete the pseudo.
699   VAStartPseudoInstr->eraseFromParent();
700 }
701 
702 /// Expand all pseudo instructions contained in \p MBB.
703 /// \returns true if any expansion occurred for \p MBB.
704 bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
705   bool Modified = false;
706 
707   // MBBI may be invalidated by the expansion.
708   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
709   while (MBBI != E) {
710     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
711     Modified |= ExpandMI(MBB, MBBI);
712     MBBI = NMBBI;
713   }
714 
715   return Modified;
716 }
717 
718 bool X86ExpandPseudo::ExpandPseudosWhichAffectControlFlow(MachineFunction &MF) {
719   // Currently pseudo which affects control flow is only
720   // X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
721   // So we do not need to evaluate other blocks.
722   for (MachineInstr &Instr : MF.front().instrs()) {
723     if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
724       ExpandVastartSaveXmmRegs(&(MF.front()), Instr);
725       return true;
726     }
727   }
728 
729   return false;
730 }
731 
732 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
733   STI = &MF.getSubtarget<X86Subtarget>();
734   TII = STI->getInstrInfo();
735   TRI = STI->getRegisterInfo();
736   X86FI = MF.getInfo<X86MachineFunctionInfo>();
737   X86FL = STI->getFrameLowering();
738 
739   bool Modified = ExpandPseudosWhichAffectControlFlow(MF);
740 
741   for (MachineBasicBlock &MBB : MF)
742     Modified |= ExpandMBB(MBB);
743   return Modified;
744 }
745 
746 /// Returns an instance of the pseudo instruction expansion pass.
747 FunctionPass *llvm::createX86ExpandPseudoPass() {
748   return new X86ExpandPseudo();
749 }
750