xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ExpandPseudo.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that expands pseudo instructions into target
10 // instructions to allow proper scheduling, if-conversion, other late
11 // optimizations, or simply the encoding of the instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86FrameLowering.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
25 #include "llvm/IR/GlobalValue.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "x86-pseudo"
29 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
30 
31 namespace {
32 class X86ExpandPseudo : public MachineFunctionPass {
33 public:
34   static char ID;
35   X86ExpandPseudo() : MachineFunctionPass(ID) {}
36 
37   void getAnalysisUsage(AnalysisUsage &AU) const override {
38     AU.setPreservesCFG();
39     AU.addPreservedID(MachineLoopInfoID);
40     AU.addPreservedID(MachineDominatorsID);
41     MachineFunctionPass::getAnalysisUsage(AU);
42   }
43 
44   const X86Subtarget *STI = nullptr;
45   const X86InstrInfo *TII = nullptr;
46   const X86RegisterInfo *TRI = nullptr;
47   const X86MachineFunctionInfo *X86FI = nullptr;
48   const X86FrameLowering *X86FL = nullptr;
49 
50   bool runOnMachineFunction(MachineFunction &Fn) override;
51 
52   MachineFunctionProperties getRequiredProperties() const override {
53     return MachineFunctionProperties().set(
54         MachineFunctionProperties::Property::NoVRegs);
55   }
56 
57   StringRef getPassName() const override {
58     return "X86 pseudo instruction expansion pass";
59   }
60 
61 private:
62   void ExpandICallBranchFunnel(MachineBasicBlock *MBB,
63                                MachineBasicBlock::iterator MBBI);
64 
65   bool ExpandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
66   bool ExpandMBB(MachineBasicBlock &MBB);
67 };
68 char X86ExpandPseudo::ID = 0;
69 
70 } // End anonymous namespace.
71 
72 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
73                 false)
74 
75 void X86ExpandPseudo::ExpandICallBranchFunnel(
76     MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
77   MachineBasicBlock *JTMBB = MBB;
78   MachineInstr *JTInst = &*MBBI;
79   MachineFunction *MF = MBB->getParent();
80   const BasicBlock *BB = MBB->getBasicBlock();
81   auto InsPt = MachineFunction::iterator(MBB);
82   ++InsPt;
83 
84   std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
85   DebugLoc DL = JTInst->getDebugLoc();
86   MachineOperand Selector = JTInst->getOperand(0);
87   const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
88 
89   auto CmpTarget = [&](unsigned Target) {
90     if (Selector.isReg())
91       MBB->addLiveIn(Selector.getReg());
92     BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
93         .addReg(X86::RIP)
94         .addImm(1)
95         .addReg(0)
96         .addGlobalAddress(CombinedGlobal,
97                           JTInst->getOperand(2 + 2 * Target).getImm())
98         .addReg(0);
99     BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
100         .add(Selector)
101         .addReg(X86::R11);
102   };
103 
104   auto CreateMBB = [&]() {
105     auto *NewMBB = MF->CreateMachineBasicBlock(BB);
106     MBB->addSuccessor(NewMBB);
107     if (!MBB->isLiveIn(X86::EFLAGS))
108       MBB->addLiveIn(X86::EFLAGS);
109     return NewMBB;
110   };
111 
112   auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
113     BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
114 
115     auto *ElseMBB = CreateMBB();
116     MF->insert(InsPt, ElseMBB);
117     MBB = ElseMBB;
118     MBBI = MBB->end();
119   };
120 
121   auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
122     auto *ThenMBB = CreateMBB();
123     TargetMBBs.push_back({ThenMBB, Target});
124     EmitCondJump(CC, ThenMBB);
125   };
126 
127   auto EmitTailCall = [&](unsigned Target) {
128     BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
129         .add(JTInst->getOperand(3 + 2 * Target));
130   };
131 
132   std::function<void(unsigned, unsigned)> EmitBranchFunnel =
133       [&](unsigned FirstTarget, unsigned NumTargets) {
134     if (NumTargets == 1) {
135       EmitTailCall(FirstTarget);
136       return;
137     }
138 
139     if (NumTargets == 2) {
140       CmpTarget(FirstTarget + 1);
141       EmitCondJumpTarget(X86::COND_B, FirstTarget);
142       EmitTailCall(FirstTarget + 1);
143       return;
144     }
145 
146     if (NumTargets < 6) {
147       CmpTarget(FirstTarget + 1);
148       EmitCondJumpTarget(X86::COND_B, FirstTarget);
149       EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
150       EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
151       return;
152     }
153 
154     auto *ThenMBB = CreateMBB();
155     CmpTarget(FirstTarget + (NumTargets / 2));
156     EmitCondJump(X86::COND_B, ThenMBB);
157     EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
158     EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
159                   NumTargets - (NumTargets / 2) - 1);
160 
161     MF->insert(InsPt, ThenMBB);
162     MBB = ThenMBB;
163     MBBI = MBB->end();
164     EmitBranchFunnel(FirstTarget, NumTargets / 2);
165   };
166 
167   EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
168   for (auto P : TargetMBBs) {
169     MF->insert(InsPt, P.first);
170     BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
171         .add(JTInst->getOperand(3 + 2 * P.second));
172   }
173   JTMBB->erase(JTInst);
174 }
175 
176 /// If \p MBBI is a pseudo instruction, this method expands
177 /// it to the corresponding (sequence of) actual instruction(s).
178 /// \returns true if \p MBBI has been expanded.
179 bool X86ExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
180                                MachineBasicBlock::iterator MBBI) {
181   MachineInstr &MI = *MBBI;
182   unsigned Opcode = MI.getOpcode();
183   DebugLoc DL = MBBI->getDebugLoc();
184   switch (Opcode) {
185   default:
186     return false;
187   case X86::TCRETURNdi:
188   case X86::TCRETURNdicc:
189   case X86::TCRETURNri:
190   case X86::TCRETURNmi:
191   case X86::TCRETURNdi64:
192   case X86::TCRETURNdi64cc:
193   case X86::TCRETURNri64:
194   case X86::TCRETURNmi64: {
195     bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
196     MachineOperand &JumpTarget = MBBI->getOperand(0);
197     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
198                                                          : 1);
199     assert(StackAdjust.isImm() && "Expecting immediate value.");
200 
201     // Adjust stack pointer.
202     int StackAdj = StackAdjust.getImm();
203     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
204     int Offset = 0;
205     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
206 
207     // Incoporate the retaddr area.
208     Offset = StackAdj - MaxTCDelta;
209     assert(Offset >= 0 && "Offset should never be negative");
210 
211     if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
212       assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
213     }
214 
215     if (Offset) {
216       // Check for possible merge with preceding ADD instruction.
217       Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
218       X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
219     }
220 
221     // Jump to label or value in register.
222     bool IsWin64 = STI->isTargetWin64();
223     if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
224         Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
225       unsigned Op;
226       switch (Opcode) {
227       case X86::TCRETURNdi:
228         Op = X86::TAILJMPd;
229         break;
230       case X86::TCRETURNdicc:
231         Op = X86::TAILJMPd_CC;
232         break;
233       case X86::TCRETURNdi64cc:
234         assert(!MBB.getParent()->hasWinCFI() &&
235                "Conditional tail calls confuse "
236                "the Win64 unwinder.");
237         Op = X86::TAILJMPd64_CC;
238         break;
239       default:
240         // Note: Win64 uses REX prefixes indirect jumps out of functions, but
241         // not direct ones.
242         Op = X86::TAILJMPd64;
243         break;
244       }
245       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
246       if (JumpTarget.isGlobal()) {
247         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
248                              JumpTarget.getTargetFlags());
249       } else {
250         assert(JumpTarget.isSymbol());
251         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
252                               JumpTarget.getTargetFlags());
253       }
254       if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
255         MIB.addImm(MBBI->getOperand(2).getImm());
256       }
257 
258     } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
259       unsigned Op = (Opcode == X86::TCRETURNmi)
260                         ? X86::TAILJMPm
261                         : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
262       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
263       for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
264         MIB.add(MBBI->getOperand(i));
265     } else if (Opcode == X86::TCRETURNri64) {
266       JumpTarget.setIsKill();
267       BuildMI(MBB, MBBI, DL,
268               TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
269           .add(JumpTarget);
270     } else {
271       JumpTarget.setIsKill();
272       BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
273           .add(JumpTarget);
274     }
275 
276     MachineInstr &NewMI = *std::prev(MBBI);
277     NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
278 
279     // Update the call site info.
280     if (MBBI->isCandidateForCallSiteEntry())
281       MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
282 
283     // Delete the pseudo instruction TCRETURN.
284     MBB.erase(MBBI);
285 
286     return true;
287   }
288   case X86::EH_RETURN:
289   case X86::EH_RETURN64: {
290     MachineOperand &DestAddr = MBBI->getOperand(0);
291     assert(DestAddr.isReg() && "Offset should be in register!");
292     const bool Uses64BitFramePtr =
293         STI->isTarget64BitLP64() || STI->isTargetNaCl64();
294     Register StackPtr = TRI->getStackRegister();
295     BuildMI(MBB, MBBI, DL,
296             TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
297         .addReg(DestAddr.getReg());
298     // The EH_RETURN pseudo is really removed during the MC Lowering.
299     return true;
300   }
301   case X86::IRET: {
302     // Adjust stack to erase error code
303     int64_t StackAdj = MBBI->getOperand(0).getImm();
304     X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
305     // Replace pseudo with machine iret
306     BuildMI(MBB, MBBI, DL,
307             TII->get(STI->is64Bit() ? X86::IRET64 : X86::IRET32));
308     MBB.erase(MBBI);
309     return true;
310   }
311   case X86::RET: {
312     // Adjust stack to erase error code
313     int64_t StackAdj = MBBI->getOperand(0).getImm();
314     MachineInstrBuilder MIB;
315     if (StackAdj == 0) {
316       MIB = BuildMI(MBB, MBBI, DL,
317                     TII->get(STI->is64Bit() ? X86::RETQ : X86::RETL));
318     } else if (isUInt<16>(StackAdj)) {
319       MIB = BuildMI(MBB, MBBI, DL,
320                     TII->get(STI->is64Bit() ? X86::RETIQ : X86::RETIL))
321                 .addImm(StackAdj);
322     } else {
323       assert(!STI->is64Bit() &&
324              "shouldn't need to do this for x86_64 targets!");
325       // A ret can only handle immediates as big as 2**16-1.  If we need to pop
326       // off bytes before the return address, we must do it manually.
327       BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
328       X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
329       BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
330       MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RETL));
331     }
332     for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
333       MIB.add(MBBI->getOperand(I));
334     MBB.erase(MBBI);
335     return true;
336   }
337   case X86::LCMPXCHG8B_SAVE_EBX:
338   case X86::LCMPXCHG16B_SAVE_RBX: {
339     // Perform the following transformation.
340     // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
341     // =>
342     // [E|R]BX = InArg
343     // actualcmpxchg Addr
344     // [E|R]BX = SaveRbx
345     const MachineOperand &InArg = MBBI->getOperand(6);
346     Register SaveRbx = MBBI->getOperand(7).getReg();
347 
348     unsigned ActualInArg =
349         Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
350     // Copy the input argument of the pseudo into the argument of the
351     // actual instruction.
352     TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, InArg.getReg(),
353                      InArg.isKill());
354     // Create the actual instruction.
355     unsigned ActualOpc =
356         Opcode == X86::LCMPXCHG8B_SAVE_EBX ? X86::LCMPXCHG8B : X86::LCMPXCHG16B;
357     MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(ActualOpc));
358     // Copy the operands related to the address.
359     for (unsigned Idx = 1; Idx < 6; ++Idx)
360       NewInstr->addOperand(MBBI->getOperand(Idx));
361     // Finally, restore the value of RBX.
362     TII->copyPhysReg(MBB, MBBI, DL, ActualInArg, SaveRbx,
363                      /*SrcIsKill*/ true);
364 
365     // Delete the pseudo.
366     MBBI->eraseFromParent();
367     return true;
368   }
369   // Loading/storing mask pairs requires two kmov operations. The second one of
370   // these needs a 2 byte displacement relative to the specified address (with
371   // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
372   // same spill size, they all are stored using MASKPAIR16STORE, loaded using
373   // MASKPAIR16LOAD.
374   //
375   // The displacement value might wrap around in theory, thus the asserts in
376   // both cases.
377   case X86::MASKPAIR16LOAD: {
378     int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
379     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
380     Register Reg = MBBI->getOperand(0).getReg();
381     bool DstIsDead = MBBI->getOperand(0).isDead();
382     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
383     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
384 
385     auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
386       .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
387     auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWkm))
388       .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
389 
390     for (int i = 0; i < X86::AddrNumOperands; ++i) {
391       MIBLo.add(MBBI->getOperand(1 + i));
392       if (i == X86::AddrDisp)
393         MIBHi.addImm(Disp + 2);
394       else
395         MIBHi.add(MBBI->getOperand(1 + i));
396     }
397 
398     // Split the memory operand, adjusting the offset and size for the halves.
399     MachineMemOperand *OldMMO = MBBI->memoperands().front();
400     MachineFunction *MF = MBB.getParent();
401     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
402     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
403 
404     MIBLo.setMemRefs(MMOLo);
405     MIBHi.setMemRefs(MMOHi);
406 
407     // Delete the pseudo.
408     MBB.erase(MBBI);
409     return true;
410   }
411   case X86::MASKPAIR16STORE: {
412     int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
413     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
414     Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
415     bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
416     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
417     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
418 
419     auto MIBLo = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
420     auto MIBHi = BuildMI(MBB, MBBI, DL, TII->get(X86::KMOVWmk));
421 
422     for (int i = 0; i < X86::AddrNumOperands; ++i) {
423       MIBLo.add(MBBI->getOperand(i));
424       if (i == X86::AddrDisp)
425         MIBHi.addImm(Disp + 2);
426       else
427         MIBHi.add(MBBI->getOperand(i));
428     }
429     MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
430     MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
431 
432     // Split the memory operand, adjusting the offset and size for the halves.
433     MachineMemOperand *OldMMO = MBBI->memoperands().front();
434     MachineFunction *MF = MBB.getParent();
435     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
436     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
437 
438     MIBLo.setMemRefs(MMOLo);
439     MIBHi.setMemRefs(MMOHi);
440 
441     // Delete the pseudo.
442     MBB.erase(MBBI);
443     return true;
444   }
445   case TargetOpcode::ICALL_BRANCH_FUNNEL:
446     ExpandICallBranchFunnel(&MBB, MBBI);
447     return true;
448   }
449   llvm_unreachable("Previous switch has a fallthrough?");
450 }
451 
452 /// Expand all pseudo instructions contained in \p MBB.
453 /// \returns true if any expansion occurred for \p MBB.
454 bool X86ExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
455   bool Modified = false;
456 
457   // MBBI may be invalidated by the expansion.
458   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
459   while (MBBI != E) {
460     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
461     Modified |= ExpandMI(MBB, MBBI);
462     MBBI = NMBBI;
463   }
464 
465   return Modified;
466 }
467 
468 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
469   STI = &static_cast<const X86Subtarget &>(MF.getSubtarget());
470   TII = STI->getInstrInfo();
471   TRI = STI->getRegisterInfo();
472   X86FI = MF.getInfo<X86MachineFunctionInfo>();
473   X86FL = STI->getFrameLowering();
474 
475   bool Modified = false;
476   for (MachineBasicBlock &MBB : MF)
477     Modified |= ExpandMBB(MBB);
478   return Modified;
479 }
480 
481 /// Returns an instance of the pseudo instruction expansion pass.
482 FunctionPass *llvm::createX86ExpandPseudoPass() {
483   return new X86ExpandPseudo();
484 }
485