xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86ExpandPseudo.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that expands pseudo instructions into target
10 // instructions to allow proper scheduling, if-conversion, other late
11 // optimizations, or simply the encoding of the instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86.h"
16 #include "X86FrameLowering.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
25 #include "llvm/IR/EHPersonalities.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/Target/TargetMachine.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "x86-pseudo"
31 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
32 
33 namespace {
34 class X86ExpandPseudo : public MachineFunctionPass {
35 public:
36   static char ID;
37   X86ExpandPseudo() : MachineFunctionPass(ID) {}
38 
39   void getAnalysisUsage(AnalysisUsage &AU) const override {
40     AU.setPreservesCFG();
41     AU.addPreservedID(MachineLoopInfoID);
42     AU.addPreservedID(MachineDominatorsID);
43     MachineFunctionPass::getAnalysisUsage(AU);
44   }
45 
46   const X86Subtarget *STI = nullptr;
47   const X86InstrInfo *TII = nullptr;
48   const X86RegisterInfo *TRI = nullptr;
49   const X86MachineFunctionInfo *X86FI = nullptr;
50   const X86FrameLowering *X86FL = nullptr;
51 
52   bool runOnMachineFunction(MachineFunction &MF) override;
53 
54   MachineFunctionProperties getRequiredProperties() const override {
55     return MachineFunctionProperties().set(
56         MachineFunctionProperties::Property::NoVRegs);
57   }
58 
59   StringRef getPassName() const override {
60     return "X86 pseudo instruction expansion pass";
61   }
62 
63 private:
64   void expandICallBranchFunnel(MachineBasicBlock *MBB,
65                                MachineBasicBlock::iterator MBBI);
66   void expandCALL_RVMARKER(MachineBasicBlock &MBB,
67                            MachineBasicBlock::iterator MBBI);
68   bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
69   bool expandMBB(MachineBasicBlock &MBB);
70 
71   /// This function expands pseudos which affects control flow.
72   /// It is done in separate pass to simplify blocks navigation in main
73   /// pass(calling expandMBB).
74   bool expandPseudosWhichAffectControlFlow(MachineFunction &MF);
75 
76   /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
77   /// placed into separate block guarded by check for al register(for SystemV
78   /// abi).
79   void expandVastartSaveXmmRegs(
80       MachineBasicBlock *EntryBlk,
81       MachineBasicBlock::iterator VAStartPseudoInstr) const;
82 };
83 char X86ExpandPseudo::ID = 0;
84 
85 } // End anonymous namespace.
86 
87 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
88                 false)
89 
90 void X86ExpandPseudo::expandICallBranchFunnel(
91     MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
92   MachineBasicBlock *JTMBB = MBB;
93   MachineInstr *JTInst = &*MBBI;
94   MachineFunction *MF = MBB->getParent();
95   const BasicBlock *BB = MBB->getBasicBlock();
96   auto InsPt = MachineFunction::iterator(MBB);
97   ++InsPt;
98 
99   std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
100   const DebugLoc &DL = JTInst->getDebugLoc();
101   MachineOperand Selector = JTInst->getOperand(0);
102   const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
103 
104   auto CmpTarget = [&](unsigned Target) {
105     if (Selector.isReg())
106       MBB->addLiveIn(Selector.getReg());
107     BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
108         .addReg(X86::RIP)
109         .addImm(1)
110         .addReg(0)
111         .addGlobalAddress(CombinedGlobal,
112                           JTInst->getOperand(2 + 2 * Target).getImm())
113         .addReg(0);
114     BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
115         .add(Selector)
116         .addReg(X86::R11);
117   };
118 
119   auto CreateMBB = [&]() {
120     auto *NewMBB = MF->CreateMachineBasicBlock(BB);
121     MBB->addSuccessor(NewMBB);
122     if (!MBB->isLiveIn(X86::EFLAGS))
123       MBB->addLiveIn(X86::EFLAGS);
124     return NewMBB;
125   };
126 
127   auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
128     BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
129 
130     auto *ElseMBB = CreateMBB();
131     MF->insert(InsPt, ElseMBB);
132     MBB = ElseMBB;
133     MBBI = MBB->end();
134   };
135 
136   auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
137     auto *ThenMBB = CreateMBB();
138     TargetMBBs.push_back({ThenMBB, Target});
139     EmitCondJump(CC, ThenMBB);
140   };
141 
142   auto EmitTailCall = [&](unsigned Target) {
143     BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
144         .add(JTInst->getOperand(3 + 2 * Target));
145   };
146 
147   std::function<void(unsigned, unsigned)> EmitBranchFunnel =
148       [&](unsigned FirstTarget, unsigned NumTargets) {
149     if (NumTargets == 1) {
150       EmitTailCall(FirstTarget);
151       return;
152     }
153 
154     if (NumTargets == 2) {
155       CmpTarget(FirstTarget + 1);
156       EmitCondJumpTarget(X86::COND_B, FirstTarget);
157       EmitTailCall(FirstTarget + 1);
158       return;
159     }
160 
161     if (NumTargets < 6) {
162       CmpTarget(FirstTarget + 1);
163       EmitCondJumpTarget(X86::COND_B, FirstTarget);
164       EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
165       EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
166       return;
167     }
168 
169     auto *ThenMBB = CreateMBB();
170     CmpTarget(FirstTarget + (NumTargets / 2));
171     EmitCondJump(X86::COND_B, ThenMBB);
172     EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
173     EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
174                   NumTargets - (NumTargets / 2) - 1);
175 
176     MF->insert(InsPt, ThenMBB);
177     MBB = ThenMBB;
178     MBBI = MBB->end();
179     EmitBranchFunnel(FirstTarget, NumTargets / 2);
180   };
181 
182   EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
183   for (auto P : TargetMBBs) {
184     MF->insert(InsPt, P.first);
185     BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
186         .add(JTInst->getOperand(3 + 2 * P.second));
187   }
188   JTMBB->erase(JTInst);
189 }
190 
191 void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
192                                           MachineBasicBlock::iterator MBBI) {
193   // Expand CALL_RVMARKER pseudo to call instruction, followed by the special
194   //"movq %rax, %rdi" marker.
195   MachineInstr &MI = *MBBI;
196 
197   MachineInstr *OriginalCall;
198   assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
199          "invalid operand for regular call");
200   unsigned Opc = -1;
201   if (MI.getOpcode() == X86::CALL64m_RVMARKER)
202     Opc = X86::CALL64m;
203   else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
204     Opc = X86::CALL64r;
205   else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
206     Opc = X86::CALL64pcrel32;
207   else
208     llvm_unreachable("unexpected opcode");
209 
210   OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
211   bool RAXImplicitDead = false;
212   for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
213     // RAX may be 'implicit dead', if there are no other users of the return
214     // value. We introduce a new use, so change it to 'implicit def'.
215     if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
216         TRI->regsOverlap(Op.getReg(), X86::RAX)) {
217       Op.setIsDead(false);
218       Op.setIsDef(true);
219       RAXImplicitDead = true;
220     }
221     OriginalCall->addOperand(Op);
222   }
223 
224   // Emit marker "movq %rax, %rdi".  %rdi is not callee-saved, so it cannot be
225   // live across the earlier call. The call to the ObjC runtime function returns
226   // the first argument, so the value of %rax is unchanged after the ObjC
227   // runtime call. On Windows targets, the runtime call follows the regular
228   // x64 calling convention and expects the first argument in %rcx.
229   auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI;
230   auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
231                      .addReg(TargetReg, RegState::Define)
232                      .addReg(X86::RAX)
233                      .getInstr();
234   if (MI.shouldUpdateCallSiteInfo())
235     MBB.getParent()->moveCallSiteInfo(&MI, Marker);
236 
237   // Emit call to ObjC runtime.
238   const uint32_t *RegMask =
239       TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
240   MachineInstr *RtCall =
241       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
242           .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
243           .addRegMask(RegMask)
244           .addReg(X86::RAX,
245                   RegState::Implicit |
246                       (RAXImplicitDead ? (RegState::Dead | RegState::Define)
247                                        : RegState::Define))
248           .getInstr();
249   MI.eraseFromParent();
250 
251   auto &TM = MBB.getParent()->getTarget();
252   // On Darwin platforms, wrap the expanded sequence in a bundle to prevent
253   // later optimizations from breaking up the sequence.
254   if (TM.getTargetTriple().isOSDarwin())
255     finalizeBundle(MBB, OriginalCall->getIterator(),
256                    std::next(RtCall->getIterator()));
257 }
258 
259 /// If \p MBBI is a pseudo instruction, this method expands
260 /// it to the corresponding (sequence of) actual instruction(s).
261 /// \returns true if \p MBBI has been expanded.
262 bool X86ExpandPseudo::expandMI(MachineBasicBlock &MBB,
263                                MachineBasicBlock::iterator MBBI) {
264   MachineInstr &MI = *MBBI;
265   unsigned Opcode = MI.getOpcode();
266   const DebugLoc &DL = MBBI->getDebugLoc();
267 #define GET_EGPR_IF_ENABLED(OPC) (STI->hasEGPR() ? OPC##_EVEX : OPC)
268   switch (Opcode) {
269   default:
270     return false;
271   case X86::TCRETURNdi:
272   case X86::TCRETURNdicc:
273   case X86::TCRETURNri:
274   case X86::TCRETURNmi:
275   case X86::TCRETURNdi64:
276   case X86::TCRETURNdi64cc:
277   case X86::TCRETURNri64:
278   case X86::TCRETURNmi64: {
279     bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
280     MachineOperand &JumpTarget = MBBI->getOperand(0);
281     MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
282                                                          : 1);
283     assert(StackAdjust.isImm() && "Expecting immediate value.");
284 
285     // Adjust stack pointer.
286     int StackAdj = StackAdjust.getImm();
287     int MaxTCDelta = X86FI->getTCReturnAddrDelta();
288     int Offset = 0;
289     assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
290 
291     // Incoporate the retaddr area.
292     Offset = StackAdj - MaxTCDelta;
293     assert(Offset >= 0 && "Offset should never be negative");
294 
295     if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
296       assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
297     }
298 
299     if (Offset) {
300       // Check for possible merge with preceding ADD instruction.
301       Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
302       X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
303     }
304 
305     // Jump to label or value in register.
306     bool IsWin64 = STI->isTargetWin64();
307     if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
308         Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
309       unsigned Op;
310       switch (Opcode) {
311       case X86::TCRETURNdi:
312         Op = X86::TAILJMPd;
313         break;
314       case X86::TCRETURNdicc:
315         Op = X86::TAILJMPd_CC;
316         break;
317       case X86::TCRETURNdi64cc:
318         assert(!MBB.getParent()->hasWinCFI() &&
319                "Conditional tail calls confuse "
320                "the Win64 unwinder.");
321         Op = X86::TAILJMPd64_CC;
322         break;
323       default:
324         // Note: Win64 uses REX prefixes indirect jumps out of functions, but
325         // not direct ones.
326         Op = X86::TAILJMPd64;
327         break;
328       }
329       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
330       if (JumpTarget.isGlobal()) {
331         MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
332                              JumpTarget.getTargetFlags());
333       } else {
334         assert(JumpTarget.isSymbol());
335         MIB.addExternalSymbol(JumpTarget.getSymbolName(),
336                               JumpTarget.getTargetFlags());
337       }
338       if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
339         MIB.addImm(MBBI->getOperand(2).getImm());
340       }
341 
342     } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
343       unsigned Op = (Opcode == X86::TCRETURNmi)
344                         ? X86::TAILJMPm
345                         : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
346       MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
347       for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
348         MIB.add(MBBI->getOperand(i));
349     } else if (Opcode == X86::TCRETURNri64) {
350       JumpTarget.setIsKill();
351       BuildMI(MBB, MBBI, DL,
352               TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
353           .add(JumpTarget);
354     } else {
355       JumpTarget.setIsKill();
356       BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
357           .add(JumpTarget);
358     }
359 
360     MachineInstr &NewMI = *std::prev(MBBI);
361     NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
362     NewMI.setCFIType(*MBB.getParent(), MI.getCFIType());
363 
364     // Update the call site info.
365     if (MBBI->isCandidateForCallSiteEntry())
366       MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
367 
368     // Delete the pseudo instruction TCRETURN.
369     MBB.erase(MBBI);
370 
371     return true;
372   }
373   case X86::EH_RETURN:
374   case X86::EH_RETURN64: {
375     MachineOperand &DestAddr = MBBI->getOperand(0);
376     assert(DestAddr.isReg() && "Offset should be in register!");
377     const bool Uses64BitFramePtr =
378         STI->isTarget64BitLP64() || STI->isTargetNaCl64();
379     Register StackPtr = TRI->getStackRegister();
380     BuildMI(MBB, MBBI, DL,
381             TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
382         .addReg(DestAddr.getReg());
383     // The EH_RETURN pseudo is really removed during the MC Lowering.
384     return true;
385   }
386   case X86::IRET: {
387     // Adjust stack to erase error code
388     int64_t StackAdj = MBBI->getOperand(0).getImm();
389     X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
390     // Replace pseudo with machine iret
391     unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
392     // Use UIRET if UINTR is present (except for building kernel)
393     if (STI->is64Bit() && STI->hasUINTR() &&
394         MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
395       RetOp = X86::UIRET;
396     BuildMI(MBB, MBBI, DL, TII->get(RetOp));
397     MBB.erase(MBBI);
398     return true;
399   }
400   case X86::RET: {
401     // Adjust stack to erase error code
402     int64_t StackAdj = MBBI->getOperand(0).getImm();
403     MachineInstrBuilder MIB;
404     if (StackAdj == 0) {
405       MIB = BuildMI(MBB, MBBI, DL,
406                     TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
407     } else if (isUInt<16>(StackAdj)) {
408       MIB = BuildMI(MBB, MBBI, DL,
409                     TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
410                 .addImm(StackAdj);
411     } else {
412       assert(!STI->is64Bit() &&
413              "shouldn't need to do this for x86_64 targets!");
414       // A ret can only handle immediates as big as 2**16-1.  If we need to pop
415       // off bytes before the return address, we must do it manually.
416       BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
417       X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
418       BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
419       MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
420     }
421     for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
422       MIB.add(MBBI->getOperand(I));
423     MBB.erase(MBBI);
424     return true;
425   }
426   case X86::LCMPXCHG16B_SAVE_RBX: {
427     // Perform the following transformation.
428     // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
429     // =>
430     // RBX = InArg
431     // actualcmpxchg Addr
432     // RBX = SaveRbx
433     const MachineOperand &InArg = MBBI->getOperand(6);
434     Register SaveRbx = MBBI->getOperand(7).getReg();
435 
436     // Copy the input argument of the pseudo into the argument of the
437     // actual instruction.
438     // NOTE: We don't copy the kill flag since the input might be the same reg
439     // as one of the other operands of LCMPXCHG16B.
440     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
441     // Create the actual instruction.
442     MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
443     // Copy the operands related to the address.
444     for (unsigned Idx = 1; Idx < 6; ++Idx)
445       NewInstr->addOperand(MBBI->getOperand(Idx));
446     // Finally, restore the value of RBX.
447     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
448                      /*SrcIsKill*/ true);
449 
450     // Delete the pseudo.
451     MBBI->eraseFromParent();
452     return true;
453   }
454   // Loading/storing mask pairs requires two kmov operations. The second one of
455   // these needs a 2 byte displacement relative to the specified address (with
456   // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
457   // same spill size, they all are stored using MASKPAIR16STORE, loaded using
458   // MASKPAIR16LOAD.
459   //
460   // The displacement value might wrap around in theory, thus the asserts in
461   // both cases.
462   case X86::MASKPAIR16LOAD: {
463     int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
464     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
465     Register Reg = MBBI->getOperand(0).getReg();
466     bool DstIsDead = MBBI->getOperand(0).isDead();
467     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
468     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
469 
470     auto MIBLo =
471         BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
472             .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
473     auto MIBHi =
474         BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
475             .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
476 
477     for (int i = 0; i < X86::AddrNumOperands; ++i) {
478       MIBLo.add(MBBI->getOperand(1 + i));
479       if (i == X86::AddrDisp)
480         MIBHi.addImm(Disp + 2);
481       else
482         MIBHi.add(MBBI->getOperand(1 + i));
483     }
484 
485     // Split the memory operand, adjusting the offset and size for the halves.
486     MachineMemOperand *OldMMO = MBBI->memoperands().front();
487     MachineFunction *MF = MBB.getParent();
488     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
489     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
490 
491     MIBLo.setMemRefs(MMOLo);
492     MIBHi.setMemRefs(MMOHi);
493 
494     // Delete the pseudo.
495     MBB.erase(MBBI);
496     return true;
497   }
498   case X86::MASKPAIR16STORE: {
499     int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
500     assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
501     Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
502     bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
503     Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
504     Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
505 
506     auto MIBLo =
507         BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
508     auto MIBHi =
509         BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
510 
511     for (int i = 0; i < X86::AddrNumOperands; ++i) {
512       MIBLo.add(MBBI->getOperand(i));
513       if (i == X86::AddrDisp)
514         MIBHi.addImm(Disp + 2);
515       else
516         MIBHi.add(MBBI->getOperand(i));
517     }
518     MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
519     MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
520 
521     // Split the memory operand, adjusting the offset and size for the halves.
522     MachineMemOperand *OldMMO = MBBI->memoperands().front();
523     MachineFunction *MF = MBB.getParent();
524     MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
525     MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
526 
527     MIBLo.setMemRefs(MMOLo);
528     MIBHi.setMemRefs(MMOHi);
529 
530     // Delete the pseudo.
531     MBB.erase(MBBI);
532     return true;
533   }
534   case X86::MWAITX_SAVE_RBX: {
535     // Perform the following transformation.
536     // SaveRbx = pseudomwaitx InArg, SaveRbx
537     // =>
538     // [E|R]BX = InArg
539     // actualmwaitx
540     // [E|R]BX = SaveRbx
541     const MachineOperand &InArg = MBBI->getOperand(1);
542     // Copy the input argument of the pseudo into the argument of the
543     // actual instruction.
544     TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
545     // Create the actual instruction.
546     BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
547     // Finally, restore the value of RBX.
548     Register SaveRbx = MBBI->getOperand(2).getReg();
549     TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
550     // Delete the pseudo.
551     MBBI->eraseFromParent();
552     return true;
553   }
554   case TargetOpcode::ICALL_BRANCH_FUNNEL:
555     expandICallBranchFunnel(&MBB, MBBI);
556     return true;
557   case X86::PLDTILECFGV: {
558     MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::LDTILECFG)));
559     return true;
560   }
561   case X86::PTILELOADDV:
562   case X86::PTILELOADDT1V: {
563     for (unsigned i = 2; i > 0; --i)
564       MI.removeOperand(i);
565     unsigned Opc = Opcode == X86::PTILELOADDV
566                        ? GET_EGPR_IF_ENABLED(X86::TILELOADD)
567                        : GET_EGPR_IF_ENABLED(X86::TILELOADDT1);
568     MI.setDesc(TII->get(Opc));
569     return true;
570   }
571   case X86::PTCMMIMFP16PSV:
572   case X86::PTCMMRLFP16PSV:
573   case X86::PTDPBSSDV:
574   case X86::PTDPBSUDV:
575   case X86::PTDPBUSDV:
576   case X86::PTDPBUUDV:
577   case X86::PTDPBF16PSV:
578   case X86::PTDPFP16PSV: {
579     MI.untieRegOperand(4);
580     for (unsigned i = 3; i > 0; --i)
581       MI.removeOperand(i);
582     unsigned Opc;
583     switch (Opcode) {
584     case X86::PTCMMIMFP16PSV:  Opc = X86::TCMMIMFP16PS; break;
585     case X86::PTCMMRLFP16PSV:  Opc = X86::TCMMRLFP16PS; break;
586     case X86::PTDPBSSDV:   Opc = X86::TDPBSSD; break;
587     case X86::PTDPBSUDV:   Opc = X86::TDPBSUD; break;
588     case X86::PTDPBUSDV:   Opc = X86::TDPBUSD; break;
589     case X86::PTDPBUUDV:   Opc = X86::TDPBUUD; break;
590     case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
591     case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break;
592     default: llvm_unreachable("Impossible Opcode!");
593     }
594     MI.setDesc(TII->get(Opc));
595     MI.tieOperands(0, 1);
596     return true;
597   }
598   case X86::PTILESTOREDV: {
599     for (int i = 1; i >= 0; --i)
600       MI.removeOperand(i);
601     MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::TILESTORED)));
602     return true;
603   }
604 #undef GET_EGPR_IF_ENABLED
605   case X86::PTILEZEROV: {
606     for (int i = 2; i > 0; --i) // Remove row, col
607       MI.removeOperand(i);
608     MI.setDesc(TII->get(X86::TILEZERO));
609     return true;
610   }
611   case X86::CALL64pcrel32_RVMARKER:
612   case X86::CALL64r_RVMARKER:
613   case X86::CALL64m_RVMARKER:
614     expandCALL_RVMARKER(MBB, MBBI);
615     return true;
616   case X86::ADD32mi_ND:
617   case X86::ADD64mi32_ND:
618   case X86::SUB32mi_ND:
619   case X86::SUB64mi32_ND:
620   case X86::AND32mi_ND:
621   case X86::AND64mi32_ND:
622   case X86::OR32mi_ND:
623   case X86::OR64mi32_ND:
624   case X86::XOR32mi_ND:
625   case X86::XOR64mi32_ND:
626   case X86::ADC32mi_ND:
627   case X86::ADC64mi32_ND:
628   case X86::SBB32mi_ND:
629   case X86::SBB64mi32_ND: {
630     // It's possible for an EVEX-encoded legacy instruction to reach the 15-byte
631     // instruction length limit: 4 bytes of EVEX prefix + 1 byte of opcode + 1
632     // byte of ModRM + 1 byte of SIB + 4 bytes of displacement + 4 bytes of
633     // immediate = 15 bytes in total, e.g.
634     //
635     //  subq    $184, %fs:257(%rbx, %rcx), %rax
636     //
637     // In such a case, no additional (ADSIZE or segment override) prefix can be
638     // used. To resolve the issue, we split the “long” instruction into 2
639     // instructions:
640     //
641     //  movq %fs:257(%rbx, %rcx),%rax
642     //  subq $184, %rax
643     //
644     //  Therefore we consider the OPmi_ND to be a pseudo instruction to some
645     //  extent.
646     const MachineOperand &ImmOp =
647         MI.getOperand(MI.getNumExplicitOperands() - 1);
648     // If the immediate is a expr, conservatively estimate 4 bytes.
649     if (ImmOp.isImm() && isInt<8>(ImmOp.getImm()))
650       return false;
651     int MemOpNo = X86::getFirstAddrOperandIdx(MI);
652     const MachineOperand &DispOp = MI.getOperand(MemOpNo + X86::AddrDisp);
653     Register Base = MI.getOperand(MemOpNo + X86::AddrBaseReg).getReg();
654     // If the displacement is a expr, conservatively estimate 4 bytes.
655     if (Base && DispOp.isImm() && isInt<8>(DispOp.getImm()))
656       return false;
657     // There can only be one of three: SIB, segment override register, ADSIZE
658     Register Index = MI.getOperand(MemOpNo + X86::AddrIndexReg).getReg();
659     unsigned Count = !!MI.getOperand(MemOpNo + X86::AddrSegmentReg).getReg();
660     if (X86II::needSIB(Base, Index, /*In64BitMode=*/true))
661       ++Count;
662     if (X86MCRegisterClasses[X86::GR32RegClassID].contains(Base) ||
663         X86MCRegisterClasses[X86::GR32RegClassID].contains(Index))
664       ++Count;
665     if (Count < 2)
666       return false;
667     unsigned Opc, LoadOpc;
668     switch (Opcode) {
669 #define MI_TO_RI(OP)                                                           \
670   case X86::OP##32mi_ND:                                                       \
671     Opc = X86::OP##32ri;                                                       \
672     LoadOpc = X86::MOV32rm;                                                    \
673     break;                                                                     \
674   case X86::OP##64mi32_ND:                                                     \
675     Opc = X86::OP##64ri32;                                                     \
676     LoadOpc = X86::MOV64rm;                                                    \
677     break;
678 
679     default:
680       llvm_unreachable("Unexpected Opcode");
681       MI_TO_RI(ADD);
682       MI_TO_RI(SUB);
683       MI_TO_RI(AND);
684       MI_TO_RI(OR);
685       MI_TO_RI(XOR);
686       MI_TO_RI(ADC);
687       MI_TO_RI(SBB);
688 #undef MI_TO_RI
689     }
690     // Insert OPri.
691     Register DestReg = MI.getOperand(0).getReg();
692     BuildMI(MBB, std::next(MBBI), DL, TII->get(Opc), DestReg)
693         .addReg(DestReg)
694         .add(ImmOp);
695     // Change OPmi_ND to MOVrm.
696     for (unsigned I = MI.getNumImplicitOperands() + 1; I != 0; --I)
697       MI.removeOperand(MI.getNumOperands() - 1);
698     MI.setDesc(TII->get(LoadOpc));
699     return true;
700   }
701   }
702   llvm_unreachable("Previous switch has a fallthrough?");
703 }
704 
705 // This function creates additional block for storing varargs guarded
706 // registers. It adds check for %al into entry block, to skip
707 // GuardedRegsBlk if xmm registers should not be stored.
708 //
709 //     EntryBlk[VAStartPseudoInstr]     EntryBlk
710 //        |                              |     .
711 //        |                              |        .
712 //        |                              |   GuardedRegsBlk
713 //        |                      =>      |        .
714 //        |                              |     .
715 //        |                             TailBlk
716 //        |                              |
717 //        |                              |
718 //
719 void X86ExpandPseudo::expandVastartSaveXmmRegs(
720     MachineBasicBlock *EntryBlk,
721     MachineBasicBlock::iterator VAStartPseudoInstr) const {
722   assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
723 
724   MachineFunction *Func = EntryBlk->getParent();
725   const TargetInstrInfo *TII = STI->getInstrInfo();
726   const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
727   Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
728 
729   // Calculate liveins for newly created blocks.
730   LivePhysRegs LiveRegs(*STI->getRegisterInfo());
731   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
732 
733   LiveRegs.addLiveIns(*EntryBlk);
734   for (MachineInstr &MI : EntryBlk->instrs()) {
735     if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
736       break;
737 
738     LiveRegs.stepForward(MI, Clobbers);
739   }
740 
741   // Create the new basic blocks. One block contains all the XMM stores,
742   // and another block is the final destination regardless of whether any
743   // stores were performed.
744   const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
745   MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
746   MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
747   MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
748   Func->insert(EntryBlkIter, GuardedRegsBlk);
749   Func->insert(EntryBlkIter, TailBlk);
750 
751   // Transfer the remainder of EntryBlk and its successor edges to TailBlk.
752   TailBlk->splice(TailBlk->begin(), EntryBlk,
753                   std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
754                   EntryBlk->end());
755   TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
756 
757   uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
758   uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
759 
760   // TODO: add support for YMM and ZMM here.
761   unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
762 
763   // In the XMM save block, save all the XMM argument registers.
764   for (int64_t OpndIdx = 7, RegIdx = 0;
765        OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
766        OpndIdx++, RegIdx++) {
767     auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
768     for (int i = 0; i < X86::AddrNumOperands; ++i) {
769       if (i == X86::AddrDisp)
770         NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
771       else
772         NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
773     }
774     NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
775     assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical());
776   }
777 
778   // The original block will now fall through to the GuardedRegsBlk.
779   EntryBlk->addSuccessor(GuardedRegsBlk);
780   // The GuardedRegsBlk will fall through to the TailBlk.
781   GuardedRegsBlk->addSuccessor(TailBlk);
782 
783   if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
784     // If %al is 0, branch around the XMM save block.
785     BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
786         .addReg(CountReg)
787         .addReg(CountReg);
788     BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
789         .addMBB(TailBlk)
790         .addImm(X86::COND_E);
791     EntryBlk->addSuccessor(TailBlk);
792   }
793 
794   // Add liveins to the created block.
795   addLiveIns(*GuardedRegsBlk, LiveRegs);
796   addLiveIns(*TailBlk, LiveRegs);
797 
798   // Delete the pseudo.
799   VAStartPseudoInstr->eraseFromParent();
800 }
801 
802 /// Expand all pseudo instructions contained in \p MBB.
803 /// \returns true if any expansion occurred for \p MBB.
804 bool X86ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
805   bool Modified = false;
806 
807   // MBBI may be invalidated by the expansion.
808   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
809   while (MBBI != E) {
810     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
811     Modified |= expandMI(MBB, MBBI);
812     MBBI = NMBBI;
813   }
814 
815   return Modified;
816 }
817 
818 bool X86ExpandPseudo::expandPseudosWhichAffectControlFlow(MachineFunction &MF) {
819   // Currently pseudo which affects control flow is only
820   // X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
821   // So we do not need to evaluate other blocks.
822   for (MachineInstr &Instr : MF.front().instrs()) {
823     if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
824       expandVastartSaveXmmRegs(&(MF.front()), Instr);
825       return true;
826     }
827   }
828 
829   return false;
830 }
831 
832 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
833   STI = &MF.getSubtarget<X86Subtarget>();
834   TII = STI->getInstrInfo();
835   TRI = STI->getRegisterInfo();
836   X86FI = MF.getInfo<X86MachineFunctionInfo>();
837   X86FL = STI->getFrameLowering();
838 
839   bool Modified = expandPseudosWhichAffectControlFlow(MF);
840 
841   for (MachineBasicBlock &MBB : MF)
842     Modified |= expandMBB(MBB);
843   return Modified;
844 }
845 
846 /// Returns an instance of the pseudo instruction expansion pass.
847 FunctionPass *llvm::createX86ExpandPseudoPass() {
848   return new X86ExpandPseudo();
849 }
850