1 //===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that expands pseudo instructions into target 10 // instructions to allow proper scheduling, if-conversion, other late 11 // optimizations, or simply the encoding of the instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "X86.h" 16 #include "X86FrameLowering.h" 17 #include "X86InstrBuilder.h" 18 #include "X86InstrInfo.h" 19 #include "X86MachineFunctionInfo.h" 20 #include "X86Subtarget.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved. 25 #include "llvm/IR/EHPersonalities.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/Target/TargetMachine.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "x86-pseudo" 31 #define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass" 32 33 namespace { 34 class X86ExpandPseudo : public MachineFunctionPass { 35 public: 36 static char ID; 37 X86ExpandPseudo() : MachineFunctionPass(ID) {} 38 39 void getAnalysisUsage(AnalysisUsage &AU) const override { 40 AU.setPreservesCFG(); 41 AU.addPreservedID(MachineLoopInfoID); 42 AU.addPreservedID(MachineDominatorsID); 43 MachineFunctionPass::getAnalysisUsage(AU); 44 } 45 46 const X86Subtarget *STI = nullptr; 47 const X86InstrInfo *TII = nullptr; 48 const X86RegisterInfo *TRI = nullptr; 49 const X86MachineFunctionInfo *X86FI = nullptr; 50 const X86FrameLowering *X86FL = nullptr; 51 52 bool runOnMachineFunction(MachineFunction &MF) override; 53 54 MachineFunctionProperties getRequiredProperties() const override { 55 return MachineFunctionProperties().set( 56 MachineFunctionProperties::Property::NoVRegs); 57 } 58 59 StringRef getPassName() const override { 60 return "X86 pseudo instruction expansion pass"; 61 } 62 63 private: 64 void expandICallBranchFunnel(MachineBasicBlock *MBB, 65 MachineBasicBlock::iterator MBBI); 66 void expandCALL_RVMARKER(MachineBasicBlock &MBB, 67 MachineBasicBlock::iterator MBBI); 68 bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI); 69 bool expandMBB(MachineBasicBlock &MBB); 70 71 /// This function expands pseudos which affects control flow. 72 /// It is done in separate pass to simplify blocks navigation in main 73 /// pass(calling expandMBB). 74 bool expandPseudosWhichAffectControlFlow(MachineFunction &MF); 75 76 /// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions, 77 /// placed into separate block guarded by check for al register(for SystemV 78 /// abi). 79 void expandVastartSaveXmmRegs( 80 MachineBasicBlock *EntryBlk, 81 MachineBasicBlock::iterator VAStartPseudoInstr) const; 82 }; 83 char X86ExpandPseudo::ID = 0; 84 85 } // End anonymous namespace. 86 87 INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false, 88 false) 89 90 void X86ExpandPseudo::expandICallBranchFunnel( 91 MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) { 92 MachineBasicBlock *JTMBB = MBB; 93 MachineInstr *JTInst = &*MBBI; 94 MachineFunction *MF = MBB->getParent(); 95 const BasicBlock *BB = MBB->getBasicBlock(); 96 auto InsPt = MachineFunction::iterator(MBB); 97 ++InsPt; 98 99 std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs; 100 const DebugLoc &DL = JTInst->getDebugLoc(); 101 MachineOperand Selector = JTInst->getOperand(0); 102 const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal(); 103 104 auto CmpTarget = [&](unsigned Target) { 105 if (Selector.isReg()) 106 MBB->addLiveIn(Selector.getReg()); 107 BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11) 108 .addReg(X86::RIP) 109 .addImm(1) 110 .addReg(0) 111 .addGlobalAddress(CombinedGlobal, 112 JTInst->getOperand(2 + 2 * Target).getImm()) 113 .addReg(0); 114 BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr)) 115 .add(Selector) 116 .addReg(X86::R11); 117 }; 118 119 auto CreateMBB = [&]() { 120 auto *NewMBB = MF->CreateMachineBasicBlock(BB); 121 MBB->addSuccessor(NewMBB); 122 if (!MBB->isLiveIn(X86::EFLAGS)) 123 MBB->addLiveIn(X86::EFLAGS); 124 return NewMBB; 125 }; 126 127 auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) { 128 BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC); 129 130 auto *ElseMBB = CreateMBB(); 131 MF->insert(InsPt, ElseMBB); 132 MBB = ElseMBB; 133 MBBI = MBB->end(); 134 }; 135 136 auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) { 137 auto *ThenMBB = CreateMBB(); 138 TargetMBBs.push_back({ThenMBB, Target}); 139 EmitCondJump(CC, ThenMBB); 140 }; 141 142 auto EmitTailCall = [&](unsigned Target) { 143 BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64)) 144 .add(JTInst->getOperand(3 + 2 * Target)); 145 }; 146 147 std::function<void(unsigned, unsigned)> EmitBranchFunnel = 148 [&](unsigned FirstTarget, unsigned NumTargets) { 149 if (NumTargets == 1) { 150 EmitTailCall(FirstTarget); 151 return; 152 } 153 154 if (NumTargets == 2) { 155 CmpTarget(FirstTarget + 1); 156 EmitCondJumpTarget(X86::COND_B, FirstTarget); 157 EmitTailCall(FirstTarget + 1); 158 return; 159 } 160 161 if (NumTargets < 6) { 162 CmpTarget(FirstTarget + 1); 163 EmitCondJumpTarget(X86::COND_B, FirstTarget); 164 EmitCondJumpTarget(X86::COND_E, FirstTarget + 1); 165 EmitBranchFunnel(FirstTarget + 2, NumTargets - 2); 166 return; 167 } 168 169 auto *ThenMBB = CreateMBB(); 170 CmpTarget(FirstTarget + (NumTargets / 2)); 171 EmitCondJump(X86::COND_B, ThenMBB); 172 EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2)); 173 EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1, 174 NumTargets - (NumTargets / 2) - 1); 175 176 MF->insert(InsPt, ThenMBB); 177 MBB = ThenMBB; 178 MBBI = MBB->end(); 179 EmitBranchFunnel(FirstTarget, NumTargets / 2); 180 }; 181 182 EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2); 183 for (auto P : TargetMBBs) { 184 MF->insert(InsPt, P.first); 185 BuildMI(P.first, DL, TII->get(X86::TAILJMPd64)) 186 .add(JTInst->getOperand(3 + 2 * P.second)); 187 } 188 JTMBB->erase(JTInst); 189 } 190 191 void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB, 192 MachineBasicBlock::iterator MBBI) { 193 // Expand CALL_RVMARKER pseudo to call instruction, followed by the special 194 //"movq %rax, %rdi" marker. 195 MachineInstr &MI = *MBBI; 196 197 MachineInstr *OriginalCall; 198 assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) && 199 "invalid operand for regular call"); 200 unsigned Opc = -1; 201 if (MI.getOpcode() == X86::CALL64m_RVMARKER) 202 Opc = X86::CALL64m; 203 else if (MI.getOpcode() == X86::CALL64r_RVMARKER) 204 Opc = X86::CALL64r; 205 else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER) 206 Opc = X86::CALL64pcrel32; 207 else 208 llvm_unreachable("unexpected opcode"); 209 210 OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr(); 211 bool RAXImplicitDead = false; 212 for (MachineOperand &Op : llvm::drop_begin(MI.operands())) { 213 // RAX may be 'implicit dead', if there are no other users of the return 214 // value. We introduce a new use, so change it to 'implicit def'. 215 if (Op.isReg() && Op.isImplicit() && Op.isDead() && 216 TRI->regsOverlap(Op.getReg(), X86::RAX)) { 217 Op.setIsDead(false); 218 Op.setIsDef(true); 219 RAXImplicitDead = true; 220 } 221 OriginalCall->addOperand(Op); 222 } 223 224 // Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be 225 // live across the earlier call. The call to the ObjC runtime function returns 226 // the first argument, so the value of %rax is unchanged after the ObjC 227 // runtime call. On Windows targets, the runtime call follows the regular 228 // x64 calling convention and expects the first argument in %rcx. 229 auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI; 230 auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr)) 231 .addReg(TargetReg, RegState::Define) 232 .addReg(X86::RAX) 233 .getInstr(); 234 if (MI.shouldUpdateCallSiteInfo()) 235 MBB.getParent()->moveCallSiteInfo(&MI, Marker); 236 237 // Emit call to ObjC runtime. 238 const uint32_t *RegMask = 239 TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C); 240 MachineInstr *RtCall = 241 BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32)) 242 .addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0) 243 .addRegMask(RegMask) 244 .addReg(X86::RAX, 245 RegState::Implicit | 246 (RAXImplicitDead ? (RegState::Dead | RegState::Define) 247 : RegState::Define)) 248 .getInstr(); 249 MI.eraseFromParent(); 250 251 auto &TM = MBB.getParent()->getTarget(); 252 // On Darwin platforms, wrap the expanded sequence in a bundle to prevent 253 // later optimizations from breaking up the sequence. 254 if (TM.getTargetTriple().isOSDarwin()) 255 finalizeBundle(MBB, OriginalCall->getIterator(), 256 std::next(RtCall->getIterator())); 257 } 258 259 /// If \p MBBI is a pseudo instruction, this method expands 260 /// it to the corresponding (sequence of) actual instruction(s). 261 /// \returns true if \p MBBI has been expanded. 262 bool X86ExpandPseudo::expandMI(MachineBasicBlock &MBB, 263 MachineBasicBlock::iterator MBBI) { 264 MachineInstr &MI = *MBBI; 265 unsigned Opcode = MI.getOpcode(); 266 const DebugLoc &DL = MBBI->getDebugLoc(); 267 #define GET_EGPR_IF_ENABLED(OPC) (STI->hasEGPR() ? OPC##_EVEX : OPC) 268 switch (Opcode) { 269 default: 270 return false; 271 case X86::TCRETURNdi: 272 case X86::TCRETURNdicc: 273 case X86::TCRETURNri: 274 case X86::TCRETURNmi: 275 case X86::TCRETURNdi64: 276 case X86::TCRETURNdi64cc: 277 case X86::TCRETURNri64: 278 case X86::TCRETURNmi64: { 279 bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64; 280 MachineOperand &JumpTarget = MBBI->getOperand(0); 281 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands 282 : 1); 283 assert(StackAdjust.isImm() && "Expecting immediate value."); 284 285 // Adjust stack pointer. 286 int StackAdj = StackAdjust.getImm(); 287 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 288 int Offset = 0; 289 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 290 291 // Incoporate the retaddr area. 292 Offset = StackAdj - MaxTCDelta; 293 assert(Offset >= 0 && "Offset should never be negative"); 294 295 if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) { 296 assert(Offset == 0 && "Conditional tail call cannot adjust the stack."); 297 } 298 299 if (Offset) { 300 // Check for possible merge with preceding ADD instruction. 301 Offset += X86FL->mergeSPUpdates(MBB, MBBI, true); 302 X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true); 303 } 304 305 // Jump to label or value in register. 306 bool IsWin64 = STI->isTargetWin64(); 307 if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc || 308 Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) { 309 unsigned Op; 310 switch (Opcode) { 311 case X86::TCRETURNdi: 312 Op = X86::TAILJMPd; 313 break; 314 case X86::TCRETURNdicc: 315 Op = X86::TAILJMPd_CC; 316 break; 317 case X86::TCRETURNdi64cc: 318 assert(!MBB.getParent()->hasWinCFI() && 319 "Conditional tail calls confuse " 320 "the Win64 unwinder."); 321 Op = X86::TAILJMPd64_CC; 322 break; 323 default: 324 // Note: Win64 uses REX prefixes indirect jumps out of functions, but 325 // not direct ones. 326 Op = X86::TAILJMPd64; 327 break; 328 } 329 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); 330 if (JumpTarget.isGlobal()) { 331 MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), 332 JumpTarget.getTargetFlags()); 333 } else { 334 assert(JumpTarget.isSymbol()); 335 MIB.addExternalSymbol(JumpTarget.getSymbolName(), 336 JumpTarget.getTargetFlags()); 337 } 338 if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) { 339 MIB.addImm(MBBI->getOperand(2).getImm()); 340 } 341 342 } else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) { 343 unsigned Op = (Opcode == X86::TCRETURNmi) 344 ? X86::TAILJMPm 345 : (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64); 346 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op)); 347 for (unsigned i = 0; i != X86::AddrNumOperands; ++i) 348 MIB.add(MBBI->getOperand(i)); 349 } else if (Opcode == X86::TCRETURNri64) { 350 JumpTarget.setIsKill(); 351 BuildMI(MBB, MBBI, DL, 352 TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64)) 353 .add(JumpTarget); 354 } else { 355 JumpTarget.setIsKill(); 356 BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr)) 357 .add(JumpTarget); 358 } 359 360 MachineInstr &NewMI = *std::prev(MBBI); 361 NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI); 362 NewMI.setCFIType(*MBB.getParent(), MI.getCFIType()); 363 364 // Update the call site info. 365 if (MBBI->isCandidateForCallSiteEntry()) 366 MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI); 367 368 // Delete the pseudo instruction TCRETURN. 369 MBB.erase(MBBI); 370 371 return true; 372 } 373 case X86::EH_RETURN: 374 case X86::EH_RETURN64: { 375 MachineOperand &DestAddr = MBBI->getOperand(0); 376 assert(DestAddr.isReg() && "Offset should be in register!"); 377 const bool Uses64BitFramePtr = 378 STI->isTarget64BitLP64() || STI->isTargetNaCl64(); 379 Register StackPtr = TRI->getStackRegister(); 380 BuildMI(MBB, MBBI, DL, 381 TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr) 382 .addReg(DestAddr.getReg()); 383 // The EH_RETURN pseudo is really removed during the MC Lowering. 384 return true; 385 } 386 case X86::IRET: { 387 // Adjust stack to erase error code 388 int64_t StackAdj = MBBI->getOperand(0).getImm(); 389 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true); 390 // Replace pseudo with machine iret 391 unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32; 392 // Use UIRET if UINTR is present (except for building kernel) 393 if (STI->is64Bit() && STI->hasUINTR() && 394 MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel) 395 RetOp = X86::UIRET; 396 BuildMI(MBB, MBBI, DL, TII->get(RetOp)); 397 MBB.erase(MBBI); 398 return true; 399 } 400 case X86::RET: { 401 // Adjust stack to erase error code 402 int64_t StackAdj = MBBI->getOperand(0).getImm(); 403 MachineInstrBuilder MIB; 404 if (StackAdj == 0) { 405 MIB = BuildMI(MBB, MBBI, DL, 406 TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32)); 407 } else if (isUInt<16>(StackAdj)) { 408 MIB = BuildMI(MBB, MBBI, DL, 409 TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32)) 410 .addImm(StackAdj); 411 } else { 412 assert(!STI->is64Bit() && 413 "shouldn't need to do this for x86_64 targets!"); 414 // A ret can only handle immediates as big as 2**16-1. If we need to pop 415 // off bytes before the return address, we must do it manually. 416 BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define); 417 X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true); 418 BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX); 419 MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32)); 420 } 421 for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I) 422 MIB.add(MBBI->getOperand(I)); 423 MBB.erase(MBBI); 424 return true; 425 } 426 case X86::LCMPXCHG16B_SAVE_RBX: { 427 // Perform the following transformation. 428 // SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx 429 // => 430 // RBX = InArg 431 // actualcmpxchg Addr 432 // RBX = SaveRbx 433 const MachineOperand &InArg = MBBI->getOperand(6); 434 Register SaveRbx = MBBI->getOperand(7).getReg(); 435 436 // Copy the input argument of the pseudo into the argument of the 437 // actual instruction. 438 // NOTE: We don't copy the kill flag since the input might be the same reg 439 // as one of the other operands of LCMPXCHG16B. 440 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false); 441 // Create the actual instruction. 442 MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B)); 443 // Copy the operands related to the address. 444 for (unsigned Idx = 1; Idx < 6; ++Idx) 445 NewInstr->addOperand(MBBI->getOperand(Idx)); 446 // Finally, restore the value of RBX. 447 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, 448 /*SrcIsKill*/ true); 449 450 // Delete the pseudo. 451 MBBI->eraseFromParent(); 452 return true; 453 } 454 // Loading/storing mask pairs requires two kmov operations. The second one of 455 // these needs a 2 byte displacement relative to the specified address (with 456 // 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the 457 // same spill size, they all are stored using MASKPAIR16STORE, loaded using 458 // MASKPAIR16LOAD. 459 // 460 // The displacement value might wrap around in theory, thus the asserts in 461 // both cases. 462 case X86::MASKPAIR16LOAD: { 463 int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm(); 464 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement"); 465 Register Reg = MBBI->getOperand(0).getReg(); 466 bool DstIsDead = MBBI->getOperand(0).isDead(); 467 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0); 468 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1); 469 470 auto MIBLo = 471 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm))) 472 .addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead)); 473 auto MIBHi = 474 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm))) 475 .addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead)); 476 477 for (int i = 0; i < X86::AddrNumOperands; ++i) { 478 MIBLo.add(MBBI->getOperand(1 + i)); 479 if (i == X86::AddrDisp) 480 MIBHi.addImm(Disp + 2); 481 else 482 MIBHi.add(MBBI->getOperand(1 + i)); 483 } 484 485 // Split the memory operand, adjusting the offset and size for the halves. 486 MachineMemOperand *OldMMO = MBBI->memoperands().front(); 487 MachineFunction *MF = MBB.getParent(); 488 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2); 489 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2); 490 491 MIBLo.setMemRefs(MMOLo); 492 MIBHi.setMemRefs(MMOHi); 493 494 // Delete the pseudo. 495 MBB.erase(MBBI); 496 return true; 497 } 498 case X86::MASKPAIR16STORE: { 499 int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm(); 500 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement"); 501 Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg(); 502 bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill(); 503 Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0); 504 Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1); 505 506 auto MIBLo = 507 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk))); 508 auto MIBHi = 509 BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk))); 510 511 for (int i = 0; i < X86::AddrNumOperands; ++i) { 512 MIBLo.add(MBBI->getOperand(i)); 513 if (i == X86::AddrDisp) 514 MIBHi.addImm(Disp + 2); 515 else 516 MIBHi.add(MBBI->getOperand(i)); 517 } 518 MIBLo.addReg(Reg0, getKillRegState(SrcIsKill)); 519 MIBHi.addReg(Reg1, getKillRegState(SrcIsKill)); 520 521 // Split the memory operand, adjusting the offset and size for the halves. 522 MachineMemOperand *OldMMO = MBBI->memoperands().front(); 523 MachineFunction *MF = MBB.getParent(); 524 MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2); 525 MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2); 526 527 MIBLo.setMemRefs(MMOLo); 528 MIBHi.setMemRefs(MMOHi); 529 530 // Delete the pseudo. 531 MBB.erase(MBBI); 532 return true; 533 } 534 case X86::MWAITX_SAVE_RBX: { 535 // Perform the following transformation. 536 // SaveRbx = pseudomwaitx InArg, SaveRbx 537 // => 538 // [E|R]BX = InArg 539 // actualmwaitx 540 // [E|R]BX = SaveRbx 541 const MachineOperand &InArg = MBBI->getOperand(1); 542 // Copy the input argument of the pseudo into the argument of the 543 // actual instruction. 544 TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill()); 545 // Create the actual instruction. 546 BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr)); 547 // Finally, restore the value of RBX. 548 Register SaveRbx = MBBI->getOperand(2).getReg(); 549 TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true); 550 // Delete the pseudo. 551 MBBI->eraseFromParent(); 552 return true; 553 } 554 case TargetOpcode::ICALL_BRANCH_FUNNEL: 555 expandICallBranchFunnel(&MBB, MBBI); 556 return true; 557 case X86::PLDTILECFGV: { 558 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::LDTILECFG))); 559 return true; 560 } 561 case X86::PTILELOADDV: 562 case X86::PTILELOADDT1V: { 563 for (unsigned i = 2; i > 0; --i) 564 MI.removeOperand(i); 565 unsigned Opc = Opcode == X86::PTILELOADDV 566 ? GET_EGPR_IF_ENABLED(X86::TILELOADD) 567 : GET_EGPR_IF_ENABLED(X86::TILELOADDT1); 568 MI.setDesc(TII->get(Opc)); 569 return true; 570 } 571 case X86::PTCMMIMFP16PSV: 572 case X86::PTCMMRLFP16PSV: 573 case X86::PTDPBSSDV: 574 case X86::PTDPBSUDV: 575 case X86::PTDPBUSDV: 576 case X86::PTDPBUUDV: 577 case X86::PTDPBF16PSV: 578 case X86::PTDPFP16PSV: { 579 MI.untieRegOperand(4); 580 for (unsigned i = 3; i > 0; --i) 581 MI.removeOperand(i); 582 unsigned Opc; 583 switch (Opcode) { 584 case X86::PTCMMIMFP16PSV: Opc = X86::TCMMIMFP16PS; break; 585 case X86::PTCMMRLFP16PSV: Opc = X86::TCMMRLFP16PS; break; 586 case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break; 587 case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break; 588 case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break; 589 case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break; 590 case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break; 591 case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break; 592 default: llvm_unreachable("Impossible Opcode!"); 593 } 594 MI.setDesc(TII->get(Opc)); 595 MI.tieOperands(0, 1); 596 return true; 597 } 598 case X86::PTILESTOREDV: { 599 for (int i = 1; i >= 0; --i) 600 MI.removeOperand(i); 601 MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::TILESTORED))); 602 return true; 603 } 604 #undef GET_EGPR_IF_ENABLED 605 case X86::PTILEZEROV: { 606 for (int i = 2; i > 0; --i) // Remove row, col 607 MI.removeOperand(i); 608 MI.setDesc(TII->get(X86::TILEZERO)); 609 return true; 610 } 611 case X86::CALL64pcrel32_RVMARKER: 612 case X86::CALL64r_RVMARKER: 613 case X86::CALL64m_RVMARKER: 614 expandCALL_RVMARKER(MBB, MBBI); 615 return true; 616 case X86::ADD32mi_ND: 617 case X86::ADD64mi32_ND: 618 case X86::SUB32mi_ND: 619 case X86::SUB64mi32_ND: 620 case X86::AND32mi_ND: 621 case X86::AND64mi32_ND: 622 case X86::OR32mi_ND: 623 case X86::OR64mi32_ND: 624 case X86::XOR32mi_ND: 625 case X86::XOR64mi32_ND: 626 case X86::ADC32mi_ND: 627 case X86::ADC64mi32_ND: 628 case X86::SBB32mi_ND: 629 case X86::SBB64mi32_ND: { 630 // It's possible for an EVEX-encoded legacy instruction to reach the 15-byte 631 // instruction length limit: 4 bytes of EVEX prefix + 1 byte of opcode + 1 632 // byte of ModRM + 1 byte of SIB + 4 bytes of displacement + 4 bytes of 633 // immediate = 15 bytes in total, e.g. 634 // 635 // subq $184, %fs:257(%rbx, %rcx), %rax 636 // 637 // In such a case, no additional (ADSIZE or segment override) prefix can be 638 // used. To resolve the issue, we split the “long” instruction into 2 639 // instructions: 640 // 641 // movq %fs:257(%rbx, %rcx),%rax 642 // subq $184, %rax 643 // 644 // Therefore we consider the OPmi_ND to be a pseudo instruction to some 645 // extent. 646 const MachineOperand &ImmOp = 647 MI.getOperand(MI.getNumExplicitOperands() - 1); 648 // If the immediate is a expr, conservatively estimate 4 bytes. 649 if (ImmOp.isImm() && isInt<8>(ImmOp.getImm())) 650 return false; 651 int MemOpNo = X86::getFirstAddrOperandIdx(MI); 652 const MachineOperand &DispOp = MI.getOperand(MemOpNo + X86::AddrDisp); 653 Register Base = MI.getOperand(MemOpNo + X86::AddrBaseReg).getReg(); 654 // If the displacement is a expr, conservatively estimate 4 bytes. 655 if (Base && DispOp.isImm() && isInt<8>(DispOp.getImm())) 656 return false; 657 // There can only be one of three: SIB, segment override register, ADSIZE 658 Register Index = MI.getOperand(MemOpNo + X86::AddrIndexReg).getReg(); 659 unsigned Count = !!MI.getOperand(MemOpNo + X86::AddrSegmentReg).getReg(); 660 if (X86II::needSIB(Base, Index, /*In64BitMode=*/true)) 661 ++Count; 662 if (X86MCRegisterClasses[X86::GR32RegClassID].contains(Base) || 663 X86MCRegisterClasses[X86::GR32RegClassID].contains(Index)) 664 ++Count; 665 if (Count < 2) 666 return false; 667 unsigned Opc, LoadOpc; 668 switch (Opcode) { 669 #define MI_TO_RI(OP) \ 670 case X86::OP##32mi_ND: \ 671 Opc = X86::OP##32ri; \ 672 LoadOpc = X86::MOV32rm; \ 673 break; \ 674 case X86::OP##64mi32_ND: \ 675 Opc = X86::OP##64ri32; \ 676 LoadOpc = X86::MOV64rm; \ 677 break; 678 679 default: 680 llvm_unreachable("Unexpected Opcode"); 681 MI_TO_RI(ADD); 682 MI_TO_RI(SUB); 683 MI_TO_RI(AND); 684 MI_TO_RI(OR); 685 MI_TO_RI(XOR); 686 MI_TO_RI(ADC); 687 MI_TO_RI(SBB); 688 #undef MI_TO_RI 689 } 690 // Insert OPri. 691 Register DestReg = MI.getOperand(0).getReg(); 692 BuildMI(MBB, std::next(MBBI), DL, TII->get(Opc), DestReg) 693 .addReg(DestReg) 694 .add(ImmOp); 695 // Change OPmi_ND to MOVrm. 696 for (unsigned I = MI.getNumImplicitOperands() + 1; I != 0; --I) 697 MI.removeOperand(MI.getNumOperands() - 1); 698 MI.setDesc(TII->get(LoadOpc)); 699 return true; 700 } 701 } 702 llvm_unreachable("Previous switch has a fallthrough?"); 703 } 704 705 // This function creates additional block for storing varargs guarded 706 // registers. It adds check for %al into entry block, to skip 707 // GuardedRegsBlk if xmm registers should not be stored. 708 // 709 // EntryBlk[VAStartPseudoInstr] EntryBlk 710 // | | . 711 // | | . 712 // | | GuardedRegsBlk 713 // | => | . 714 // | | . 715 // | TailBlk 716 // | | 717 // | | 718 // 719 void X86ExpandPseudo::expandVastartSaveXmmRegs( 720 MachineBasicBlock *EntryBlk, 721 MachineBasicBlock::iterator VAStartPseudoInstr) const { 722 assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS); 723 724 MachineFunction *Func = EntryBlk->getParent(); 725 const TargetInstrInfo *TII = STI->getInstrInfo(); 726 const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc(); 727 Register CountReg = VAStartPseudoInstr->getOperand(0).getReg(); 728 729 // Calculate liveins for newly created blocks. 730 LivePhysRegs LiveRegs(*STI->getRegisterInfo()); 731 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 732 733 LiveRegs.addLiveIns(*EntryBlk); 734 for (MachineInstr &MI : EntryBlk->instrs()) { 735 if (MI.getOpcode() == VAStartPseudoInstr->getOpcode()) 736 break; 737 738 LiveRegs.stepForward(MI, Clobbers); 739 } 740 741 // Create the new basic blocks. One block contains all the XMM stores, 742 // and another block is the final destination regardless of whether any 743 // stores were performed. 744 const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock(); 745 MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator(); 746 MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk); 747 MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk); 748 Func->insert(EntryBlkIter, GuardedRegsBlk); 749 Func->insert(EntryBlkIter, TailBlk); 750 751 // Transfer the remainder of EntryBlk and its successor edges to TailBlk. 752 TailBlk->splice(TailBlk->begin(), EntryBlk, 753 std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)), 754 EntryBlk->end()); 755 TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk); 756 757 uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm(); 758 uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm(); 759 760 // TODO: add support for YMM and ZMM here. 761 unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; 762 763 // In the XMM save block, save all the XMM argument registers. 764 for (int64_t OpndIdx = 7, RegIdx = 0; 765 OpndIdx < VAStartPseudoInstr->getNumOperands() - 1; 766 OpndIdx++, RegIdx++) { 767 auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc)); 768 for (int i = 0; i < X86::AddrNumOperands; ++i) { 769 if (i == X86::AddrDisp) 770 NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16); 771 else 772 NewMI.add(VAStartPseudoInstr->getOperand(i + 1)); 773 } 774 NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg()); 775 assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical()); 776 } 777 778 // The original block will now fall through to the GuardedRegsBlk. 779 EntryBlk->addSuccessor(GuardedRegsBlk); 780 // The GuardedRegsBlk will fall through to the TailBlk. 781 GuardedRegsBlk->addSuccessor(TailBlk); 782 783 if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) { 784 // If %al is 0, branch around the XMM save block. 785 BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr)) 786 .addReg(CountReg) 787 .addReg(CountReg); 788 BuildMI(EntryBlk, DL, TII->get(X86::JCC_1)) 789 .addMBB(TailBlk) 790 .addImm(X86::COND_E); 791 EntryBlk->addSuccessor(TailBlk); 792 } 793 794 // Add liveins to the created block. 795 addLiveIns(*GuardedRegsBlk, LiveRegs); 796 addLiveIns(*TailBlk, LiveRegs); 797 798 // Delete the pseudo. 799 VAStartPseudoInstr->eraseFromParent(); 800 } 801 802 /// Expand all pseudo instructions contained in \p MBB. 803 /// \returns true if any expansion occurred for \p MBB. 804 bool X86ExpandPseudo::expandMBB(MachineBasicBlock &MBB) { 805 bool Modified = false; 806 807 // MBBI may be invalidated by the expansion. 808 MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 809 while (MBBI != E) { 810 MachineBasicBlock::iterator NMBBI = std::next(MBBI); 811 Modified |= expandMI(MBB, MBBI); 812 MBBI = NMBBI; 813 } 814 815 return Modified; 816 } 817 818 bool X86ExpandPseudo::expandPseudosWhichAffectControlFlow(MachineFunction &MF) { 819 // Currently pseudo which affects control flow is only 820 // X86::VASTART_SAVE_XMM_REGS which is located in Entry block. 821 // So we do not need to evaluate other blocks. 822 for (MachineInstr &Instr : MF.front().instrs()) { 823 if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) { 824 expandVastartSaveXmmRegs(&(MF.front()), Instr); 825 return true; 826 } 827 } 828 829 return false; 830 } 831 832 bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) { 833 STI = &MF.getSubtarget<X86Subtarget>(); 834 TII = STI->getInstrInfo(); 835 TRI = STI->getRegisterInfo(); 836 X86FI = MF.getInfo<X86MachineFunctionInfo>(); 837 X86FL = STI->getFrameLowering(); 838 839 bool Modified = expandPseudosWhichAffectControlFlow(MF); 840 841 for (MachineBasicBlock &MBB : MF) 842 Modified |= expandMBB(MBB); 843 return Modified; 844 } 845 846 /// Returns an instance of the pseudo instruction expansion pass. 847 FunctionPass *llvm::createX86ExpandPseudoPass() { 848 return new X86ExpandPseudo(); 849 } 850